
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Hierarchical binary CNNs for landmark
localization with limited resources

Adrian Bulat and Georgios Tzimiropoulos

Abstract—Our goal is to design architectures that retain the groundbreaking performance of Convolutional Neural Networks (CNNs)
for landmark localization and at the same time are lightweight, compact and suitable for applications with limited computational
resources. To this end, we make the following contributions: (a) we are the first to study the effect of neural network binarization on
localization tasks, namely human pose estimation and face alignment. We exhaustively evaluate various design choices, identify
performance bottlenecks, and more importantly propose multiple orthogonal ways to boost performance. (b) Based on our analysis, we
propose a novel hierarchical, parallel and multi-scale residual architecture that yields large performance improvement over the
standard bottleneck block while having the same number of parameters, thus bridging the gap between the original network and its
binarized counterpart. (c) We perform a large number of ablation studies that shed light on the properties and the performance of the
proposed block. (d) We present results for experiments on the most challenging datasets for human pose estimation and face
alignment, reporting in many cases state-of-the-art performance. (e) We further provide additional results for the problem of facial part
segmentation. Code can be downloaded from https://www.adrianbulat.com/binary-cnn-landmarks

Index Terms—Binary Convolutional Neural Networks, Residual learning, Landmark localization, Human pose estimation, Face
alignment.

F

1 INTRODUCTION

THIS work is on localizing a predefined set of fiducial
points on objects of interest which can typically un-

dergo non-rigid deformations like the human body or face.
Very recently, work based on Convolutional Neural Net-
works (CNNs) has revolutionized landmark localization,
demonstrating results of remarkable accuracy even on the
most challenging datasets for human pose estimation [1],
[2], [3] and face alignment [4]. However, deploying (and
training) such methods is computationally expensive, re-
quiring one or more high-end GPUs, while the learned mod-
els typically require hundreds of MBs, thus rendering them
completely unsuitable for real-time or mobile applications.
This work is on highly accurate and robust yet efficient and
lightweight landmark localization using binarized CNNs.

Our work is inspired by recent results of binarized CNN
architectures on image classification [5], [6]. Contrary to
these works, we are the first to study the effect of neural
network binarization on fine-grained tasks like landmark
localization. Similarly to [5], [6], we find that binarization
results in performance drop, however to address this we
opted to investigate and propose several architectural inno-
vations which led to the introduction of a novel hierarchi-
cal, parallel and multi-scale residual block, as opposed to
investigating ways to improve the binarization process as
proposed in [5], [6]. In summary, our main methodological
contributions are:

• We are the first to study the effect of binarization on
state-of-the-art CNN architectures for the problem
of localization, namely human pose estimation and

• A. Bulat and G. Tzimiropoulos are with the School of Computer Science,
University of Nottingham.
E-mail: {adrian.bulat, yorgos.tzimiropoulos}@nottingham.ac.uk

Manuscript received April 19, 2005; revised August 26, 2015.

1x1, 256 -> 128

3x3, 128 -> 128

1x1, 128 -> 256

+

BN, ReLU

BN, ReLU

BN, ReLU

(a) original

3x3, 192 -> 96

3x3, 96 -> 48

3x3, 48 -> 48

C

+

BN, Binary

BN, Binary

BN, Binary

(b) proposed

Fig. 1. (a) The original bottleneck layer of [7]. (b) The proposed hier-
archical parallel & multi-scale structure: our block increases the recep-
tive field size, improves gradient flow, is specifically designed to have
(almost) the same number of parameters as the original bottleneck,
does not contain 1 × 1 convolutions, and in general is derived from
the perspective of improving the performance and efficiency for binary
networks. Note: a layer is depicted as a rectangular block containing:
its filter size, the number of input and output channels; ”C” - denotes
concatenation and ”+” an element-wise sum.

face alignment. To this end, we exhaustively evaluate
various design choices, and identify performance
bottlenecks. More importantly, we describe multiple
orthogonal ways to boost performance; see Subsec-
tions 4.2, 4.3 and 4.4.

• Based on our analysis, we propose a new hierar-
chical, parallel and multi-scale residual architecture
(see Subsection 4.5) specifically designed to work
well for the binary case. Our block results in large
performance improvement over the baseline binary

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

residual block of [7] (about 6% in absolute terms
when the same number of parameters are used (see
Subsection 4.6.1, Table 2)). Fig. 1 provides a compar-
ison between the baseline residual block of [7] and
the one proposed in this work.

• We investigate the effectiveness of more advanced
extensions of the proposed block (see Section 7) and
improved network architectures including network
stacking (see Section 8).

Further experimental contributions include:

• While our newly proposed block was developed
with the goal of improving the performance of binary
networks, we also show that the performance boost
offered by the proposed architecture also generalizes
to some extent for the case of real-valued networks
(see Subsection 4.6.2).

• We perform a large number of ablation studies that
shed light on the properties and the performance of
the proposed block (see Sections 4.6 and 6).

• We present results for experiments on the most chal-
lenging datasets for human pose estimation and face
alignment, reporting in many cases state-of-the-art
performance (see Section 6).

• We further provide additional results for the problem
of facial part segmentation (see Section 9).

Compared to our previous work in [8], this paper in-
vestigates the effectiveness of more advanced binary ar-
chitectures (both at block and network level), provides a
more in-depth analysis of the proposed methods and results
(including more qualitative ones) and additionally includes
the aforementioned experiment on facial part segmentation.

2 CLOSELY RELATED WORK

This Section reviews related work on network quantization,
network design, and gives an overview of the state-of-the-
art on human pose estimation and face alignment.

2.1 Network quantization
Prior work [9] suggests that high precision parameters are
not essential for obtaining top results for image classifi-
cation. In light of this, [10], [11] propose 16- and 8-bit
quantization, showing negligible performance drop on a
few small datasets [12]. [13] proposes a technique which
allocates different numbers of bits (1-2-6) for the network
parameters, activations and gradients.

Binarization (i.e. the extreme case of quantization) was
long considered to be impractical due to the destructive
property of such a representation [10]. Recently [14] showed
this not to be the case and that by quantizing to {−1, 1}
good results can be actually obtained. [15] introduces a
new technique for training CNNs that uses binary weights
for both forward and backward passes, however, the real
parameters are still required during training. The work of
[6] goes one step further and binarizes both parameters and
activations. In this case multiplications can be replaced with
elementary binary operations [6]. By estimating the binary
weights with the help of a scaling factor, [5] is the first
work to report good results on a large dataset (ImageNet).

Notably, our method makes use of the recent findings from
[5] and [6] using the same way of quantizing the weights
and replacing multiplications with bit-wise xor operations.

Our method differs from all aforementioned works in
two key respects: (a) instead of focusing on image classifica-
tion, we are the first to study neural network binarization in
the context of a fine-grained computer vision task namely
landmark localization (human pose estimation and facial
alignment) by predicting a dense output (heatmaps) in a
fully convolutional manner, and (b) instead of enhancing the
results by improving the quantization method, we follow
a completely different path, by enhancing the performance
via proposing a novel architectural design for a hierarchical,
parallel and multi-scale residual block.

2.2 Block design
The proposed method uses a residual-based architecture
and hence the starting point of our work is the bottleneck
block described in [7], [16]. More recently, [17] explores the
idea of increasing the cardinality of the residual block by
splitting it into a series of c parallel (and much smaller so
that the number of parameters remains roughly the same)
sub-blocks with the same topology which behave as an
ensemble. Beyond bottleneck layers, Szegedy et. al. [18]
propose the inception block which introduces parallel paths
with different receptive field sizes and various ways of low-
ering the number of parameters by factorizing convolutional
layers with large filters into smaller ones. In a follow-up
paper [19], the authors introduce a number of inception-
residual architectures. The latter work is the most related
one to the proposed method.

Our method is different from the aforementioned archi-
tectures in the following ways (see Fig. 1b): we create a hier-
archical, parallel and multi-scale structure that (a) increases
the receptive field size inside the block and (b) improves
gradient flow, (c) is specifically designed to have (almost)
the same number of parameters as the original bottleneck,
(d) our block does not contain 1 × 1 convolutions, and (e)
our block is derived from the perspective of improving the
performance and efficiency of binary networks.

2.3 Network design
Our target was not to propose a new network architecture
for landmark localization; hence we used the state-of-the-
art Hour-Glass (HG) network of [2] which makes use of
the bottleneck block of [16]. Because we are interested in
efficiency, most of our experiments are conducted using
a single network. Our baseline was the single binary HG
obtained by directly quantizing it using [5]. As Table 1
shows, there is a significant performance gap between the
binary and the real valued HGs. We bridge this gap by
replacing the bottleneck block used in the original HG with
the proposed block.

2.4 Human Pose Estimation
Traditionally, human pose estimation methods relied on tree
structured graphical models [20], [21], [22], [23], [24], [25]
to represent the spatial relationships between body parts
and were usually built using hand crafted features. More

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

recently, methods based on CNNs have shown remarkable
results outperforming traditional methods by large mar-
gin [1], [2], [3], [26], [27], [28], [29], [30]. Because learning
a direct mapping from the image to the location of the body
parts is a highly non-linear problem that is difficult to learn,
most methods represent each landmark as a confidence map
encoded as a 2D Gaussian centered at the landmark’s loca-
tion and adopt the fully convolutional framework of [31].
Furthermore, instead of making single-shot predictions, al-
most all methods follow a cascaded approach making a
number of intermediate predictions, refined in a sequential
manner [1], [2], [3]. Notably, to further reduce the number
of parameters of the cascaded approaches the method intro-
duced in [30] uses a recurrent neural network.

While achieving remarkable performance, all the afore-
mentioned deep learning methods are computationally de-
manding, requiring at least one high-end GPU. In contrast,
our network uses binary weights and activations and as
such it is intended to run on systems with limited resources
(e.g. embedded devices, smartphones).

2.5 Face Alignment
Current state-of-the-art for large pose 2D and 3D face
alignment is also based on CNNs [4], [32], [33], [34], [35],
[36]. However, despite their accuracy, these methods are
computationally demanding. Our network produces state-
of-the-art results for this task, yet it is designed to run on
devices with limited computational resources.

3 BACKGROUND

Heatmaps

Binarized Real

+ + + +

Fig. 2. The architecture of a single Hour-Glass (HG) network [2]. Follow-
ing [5], the first and last layers (brown colour) are left real while all the
remaining layers are binarized.

The ResNet consists of two types of blocks: basic and
bottleneck. We are interested only in the latter one which was
designed to reduce the number of parameters and keep the
network memory footprint under control. We use the “pre-
activation” version of [7], in which batch normalization [37]
and the activation function precede the convolutional layer.
Note that we used the version of bottleneck defined in [2]
the middle layer of which has 128 channels (vs 64 used in
[7]).

The residual block is the main building block of the
Hourglass (HG) network, shown in Fig. 2, which is a state-
of-the-art architecture for landmark localization that pre-
dicts a set of heatmaps (one for each landmark) in a fully
convolutional fashion. The HG network is an extension of
[31] allowing however for a more symmetric top-down and
bottom-up processing. See also [2].

4 METHOD

Herein, we describe how we derive the proposed binary
hierarchical, parallel and multi-scale block of Fig. 7e. In
Section 4.6.1, by reducing the number of its parameters to
match the ones of the original bottleneck, we further derive
the block of Fig. 1b. This Section is organized as follows:

• We start by analyzing the performance of the bi-
narized HG in Subsection 4.1 which provides the
motivation as well as the baseline for our method.

• Then, we propose a series of architectural innova-
tions in Subsections 4.2, 4.3, 4.4 and 4.5 (shown in
Figs. 7b, 7c and 7d) each of which is evaluated and
compared against the binarized residual block of
Subsection 4.1.

• We continue, by combining ideas from these archi-
tectures, we propose the binary hierarchical, paral-
lel and multi-scale block of Fig. 7e. Note that the
proposed block is not a trivial combination of the
aforementioned architectures but a completely new
structure.

• Finally, we attempt to make a fair comparison be-
tween the performance of the proposed block against
that of the original bottleneck module for both real
and binary cases.

We note that all results for this Section were generated
for the task of human pose estimation using the standard
training-validation partition of MPII [1], [2].

4.1 Binarized HG
The binarization is accomplished using:

I ∗W ≈ (sign(I)~ sign(W)) ∗ α, (1)

where I is the input tensor, W represents the layer weights,
α ∈ R+ is a scaling factor computed as the average of the
absolute weight values and ~ denotes the binary convolu-
tion operation which can be efficiently implemented with
XNOR.

We start from the original bottleneck blocks of the HG
network and, following [5], we binarize them keeping only
the first and last layers of the network real. See also Fig.
2. This is crucial, especially for the very last layer where
higher precision is required for producing a dense output
(heatmaps). Note that these layers account for less than
0.01% of the total number of parameters.

The performance of the original (real-valued) and the
binarized HG networks can be seen in Fig. 3 and Table 1. We
observe that binarization results in significant performance
drop. As we may notice, for almost all parts, there is a large
difference in performance which clearly indicates that the
binary network has significant less representational power.
Some failure cases are shown in Fig. 4 illustrating that the
binary network was not able to learn some difficult poses.
We address this with a better architecture as detailed in the
next four Subsections.

4.2 On the Width of Residual Blocks
The original bottleneck block of Fig. 7a is composed of 3
convolutional layers with a filter size of 1 × 1, 3 × 3 and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3. Cumulative error curves on MPII validation set for real-valued
(red) and binary (blue) bottleneck blocks within the HG network.

TABLE 1
PCKh error on MPII dataset for real-valued and binary bottleneck

blocks within the HG network.

Crit. Bottleneck (real) Bottleneck (binary)

Head 94.9 90.5
Shld 85.8 79.6
Elbow 76.9 63.0
Wrist 71.3 57.2
Hip 78.1 71.1
Knee 70.1 58.2
Ankle 63.2 53.4
PCKh 76.5 67.2
par. 3.5M 3.5M

B
in
ar
y

R
ea
l

Fig. 4. Examples of failure cases for the binarized HG (first row) and
predictions of its real-valued counterpart (second row). The binary HG
misses certain range of poses while having similar accuracy for the
correct parts.

1 × 1, with the first layer having the role of limiting the
width (i.e. the number of channels) of the second layer,
thus greatly reducing the number of parameters inside the
module. However, it is unclear whether the idea of having a
bottleneck structure will be also successful for the binary
case, too. Due to the limited representational power of
the binary layers, greatly reducing the number of channels
might reduce the amount of information that can be passed
from one layer to another, leading to lower performance.

To investigate this, we modify the bottleneck block by
increasing the number of channels in the thin 3 × 3 layer
from 128 to 256. By doing so, we match the number of
channels from the first and last layer, effectively removing
the “bottleneck”, and increasing the amount of information

that can be passed from one block to another. The resulting
wider block is shown in Fig. 7b. Here, “wider”1 refers to the
increased number of channels over the initial thin layer.

As Table 2 illustrates, while this improves performance
against the baseline, it also raises the memory requirements.
Conclusion: Widening the thin layer offers tangible perfor-
mance improvement, however at a high computational cost.

4.3 On Multi-Scale Filtering

Small filters have been shown both effective and efficient
[18], [39] with models being solely made up by a combina-
tion of convolutional layers with 3 × 3 and/or 1 × 1 filters
[7], [16], [39]. For the case of real-valued networks, a large
number of kernels can be learned. However, for the binary
case, the number of possible unique convolutional kernels
is limited to 2k states only, where k is the size of the filter.
Examples of such 3× 3 learned filters are shown in Fig. 5.

Fig. 5. Examples of learned 3× 3 binary filters.

To address the limited representation power of 3 × 3
filters for the binary case, and similarly to [19], we largely
depart from the block of Fig. 7b by proposing the multi-scale
structure of Fig. 7c. Note that we implement our multi-scale
approach using both larger filter sizes and max-pooling,
which greatly increase the effective receptive field within
the block. Also, because our goal is to analyze the impact
of a multi-scale approach alone, we intentionally keep the
number of parameters to a similar level to that of the
original bottleneck block of Fig. 7a. To this end, we avoid
a leap in the number of parameters, by (a) decomposing
the 5 × 5 filters into two layers of 3 × 3 filters, and (b) by
preserving the presence of thin layer(s) in the middle of the
block.

Given the above, we split the input into two branches.
The first (left) branch works at the same scale as the original
bottleneck of Fig. 7a but has a 1 × 1 layer that projects the
256 channels into 64 (instead of 128) before going to the
3× 3 one. The second (right) branch performs a multi-scale
analysis by firstly passing the input through a max-pooling
layer and then creating two branches, one using a 3×3 filter
and a second one using a 5 × 5 decomposed into two 3 ×
3. By concatenating the outputs of these two sub-branches,
we obtain the remaining 64 channels (out of the 128 of the
original bottleneck block). Finally, the two main branches
are concatenated adding up to 128 channels, which are again
back-projected to 256 with the help of a convolutional layer
with 1× 1 filters.

1. The term wider here strictly refers to a “moderate” increase in the
number of channels in the thin layer (up to 256), effectively removing
the “bottleneck”. Except for the naming there is no other resemblance
with [38] which performs a study of wide vs deep, using a different
building block alongside a much higher number of channels (up to
2048) and without any form of quantization. A similar study falls
outside the scope of our work.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

The accuracy of the proposed structure can be found in
Table 2. We can observe a healthy performance improve-
ment at little additional cost and similar computational
requirements to the original bottleneck of Fig. 7a.
Conclusion: When designing binarized networks, multi-
scale filters should be preferred.

4.4 On 1× 1 Convolutions
In the previously proposed block of Fig. 7c, we opted to
avoid an increase in the number of parameters, by retaining
the two convolutional layers with 1 × 1 filters. In this Sub-
section, by relaxing this restriction, we analyze the influence
of 1× 1 filters on the overall network performance.

In particular, we remove all convolutional layers with
1 × 1 filters from the multi-scale block of Fig. 7c, leading
to the structure of Fig. 7d. Our motivation to remove 1 × 1
convolutions for the binary case is the following: because
1 × 1 filters are limited to two states only (either 1 or -1)
they have a very limited learning power. Due to their nature,
they behave as simple filters deciding when a certain value
should be passed or not. In practice, this allows the input to
pass through the layer with little modifications, sometimes
actually blocking “good features” and hurting the overall
performance by a noticeable amount. This is particularly
problematic for the task of landmark localization, where a
high level of detail is required for successful localization.
Examples of this problem are shown in Fig. 6.

Results reported in Table 2 show that by removing 1× 1
convolutions, performance over the baseline is increased by
more than 8%. Even more interestingly, the newly intro-
duced block outperforms the one of Subsection 4.2, while
having less parameters, which shows that the presence of
1× 1 filters limits the performance of binarized CNNs.
Conclusion: The use of 1 × 1 convolutional filters on bina-
rized CNNs has a detrimental effect on performance and
should be avoided.

Fig. 6. Examples of features before and after a 1 × 1 convolutional
layer. Often the features are copied over with little modifications, usually
consisting in the details’ removal. The contrast was altered for better
visualization.

4.5 On Hierarchical, Parallel & Multi-Scale
Binary networks are even more sensitive to the problem of
fading gradients [5], [6], and for our network we found that
the gradients are up to 10 times smaller than those corre-
sponding to its real-valued counterpart. To alleviate this, we
design a new module which has the form of a hierarchical,
parallel multi-scale structure allowing, for each resolution,
the gradients to have 2 different paths to follow, the shortest
of them being always 1. The proposed block is depicted

in Fig. 7e. Note that, in addition to better gradient flow,
our design encompasses all the findings from the previous
Subsections: (a) no convolutional layers with 1 × 1 filters
should be used, (b) the block should preserve its width as
much as possible (avoiding large drops in the number of
channels), and (c) multi-scale filters should be used.

Contrary to the blocks described in Subsections 4.2 - 4.4,
where the gradients may need to pass through two more
layers before reaching the output of the block, in the newly
proposed module, each convolutional layer has a direct path
that links it to the output, so that at any given time and for
all the layers within the module the shortest possible path
is equal to 1. The presence of a hierarchical structure inside
the module efficiently accommodates larger filters (up to 7×
7), decomposed into convolutional layers with 3 × 3 filters.
This allows for the information to be analysed at different
scales because of the different filter sizes used (hence the
term “multi-scale”). We opted not to use pooling because
it results in loss of information. Furthermore, our design
avoids the use of an element-wise summation layer as for
example in [17], [19], further improving the gradient flow
and keeping the complexity under control.

As we can see in Table 2, the proposed block matches and
even outperforms the block proposed in Section 4.3 having
far less parameters.

TABLE 2
PCKh-based comparison of different blocks on MPII validation set. #

params refers to the number of parameters of the whole network.

Block type # params PCKh

Bottleneck (original) (Fig. 7a) 3.5M 67.2%

Wider (Fig. 7b) 11.3M 70.7%
Multi-Scale (MS) (Fig. 7c) 4.0M 69.3%
MS without 1x1 filters (Fig. 7d) 9.3M 75.5%
Bottleneck (wider) + no 1× 1 5.8M 69.5%

Hierarchical, Parallel & MS
(Ours, Final) (Fig. 1b)

4.0M 72.7%

Hierarchical, Parallel & MS
(Ours, Final) (Fig. 7e)

6.2M 76%

Conclusion: Good gradient flow and hierarchical multi-
scale filtering are crucial for high performance without ex-
cessive increase in the parameters of the binarized network.

4.6 Proposed vs Bottleneck

In this Section, we attempt to make a fair comparison be-
tween the performance of the proposed block (Ours, Final,
as in Fig. 7e) against that of the original bottleneck module
(Fig. 7a) by taking two important factors into account:

• Both blocks should have the same number of param-
eters.

• The two blocks should be compared for the case of
binary but also real-valued networks.

With this in mind, in the following Sections, we show that:

• The proposed block largely outperforms a bottleneck
with the same number of parameters for the binary
case.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

1x1, 256 -> 128

3x3, 128 -> 128

1x1, 128 -> 256

+

BN, Binary

BN, Binary

BN, Binary

(a) The Original Bottleneck block with pre-
activation, as defined in [7]. Its binarized ver-
sion is described in Section 4.1.

1x1, 256 -> 256

3x3, 256 -> 256

1x1, 256 -> 256

+

BN, Binary

BN, Binary

BN, Binary

(b) The Wider version of (a) produced by
increasing the number of filters in the second
layer. See Subsection 4.2.

1x1, 256 -> 64

3x3, 64 -> 64

POOL

3x3, 256 -> 323x3, 256 -> 32

3x3, 32-> 32

UP

C

C

1x1, 128 -> 256

+

BN, Binary

BN, Binary

BN, Binary

BN, Binary

BN, Binary

BN, Binary

(c) Largely departing from (b), this block con-
sists of Multi-Scale (MS) filters for analyzing
the input at multiple scales. See Subsec-
tion 4.3.

3x3, 256 -> 192

POOL

3x3, 256 -> 323x3, 256 -> 32

3x3, 32-> 32

UP

C

C

+

BN, Binary

BN, Binary

BN, Binary

BN, Binary

(d) A variant of the MS block introduced in (c) after removing all
convolutional layers with 1 × 1 filters (MS Without 1 × 1 filters).
See Subsection 4.3.

3x3, 256 -> 128

3x3, 128 -> 64

3x3, 64 -> 64

C

+

BN, Binary

BN, Binary

BN, Binary

(e) The proposed Hierarchical, Parallel & MS (denoted in the
paper as (Ours, final) block incorporates all ideas from (b), (c) and
(d) with an improved gradient flow. See Subsection 4.5

Fig. 7. Different types of blocks described and evaluated. Our best performing block is shown in figure (e). A layer is depicted as a rectangular block
containing: its filter size, number of input channels and the number of output channels). “C” - denotes concatenation operation, “+” an element-wise
sum and “UP” a bilinearly upsample layer.

• The proposed block also outperforms a bottleneck
with the same number of parameters for the real case
but in this case the performance difference is smaller.

We conclude that, for the real case, increasing the number
of parameters (by increasing width) results in performance
increase; however this is not the case for binary networks
where a tailored design as the one proposed here is needed.

4.6.1 Binary
To match the number of parameters between the proposed
and bottleneck block, we follow two paths. Firstly, we
increase the number of parameters of the bottleneck: (a) a
first way to do this is to make the block wider as described
in Section 4.2. Note that in order to keep the number or
input-output channels equal to 256, the resulting block of
Fig. 7b has a far higher number of parameters than the
proposed block. Despite this, the performance gain is only
moderate (see Section 4.2 and Table 2). (b) Because we found
that the 1 × 1 convolutional layers have detrimental effect
to the performance of the Multi-Scale block of Fig. 7c, we
opted to remove them from the bottleneck block, too. To
this end, we modified the Wider module by (a) removing

the 1 × 1 convolutions and (b) halving the number of
parameters in order to match the number of parameters of
the proposed block. The results in Table 2 clearly show that
this modification is helpful but far from being close to the
performance achieved by the proposed block.

Secondly, we decrease the number of parameters in the
proposed block to match the number of parameters of the
original bottleneck. This block is shown in Fig. 1b. To this
end, we reduced the number of input-output channels of
the proposed block from 256 to 192 so that the number of
channels in the first layer are modified from [256→ 128, 3×
3] to [192→96, 3×3], in the second layer from [128→64, 3×3]
to [96→48, 3× 3] and in the third layer from [64→64, 3× 3]
to [48→48, 3×3]. Notice, that even in this case, the proposed
binarized module outperforms the original bottleneck block
by more than 5% (in absolute terms) while both have very
similar number of parameters (see Table 2).

4.6.2 Real
While the proposed block was derived from a binary per-
spective, Table 3 shows that a significant performance gain is
also observed for the case of real-valued networks. In order

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

to quantify this performance improvement and to allow
for a fair comparison, we increase the number of channels
inside the original bottleneck block so that both networks
have the same depth and a similar number of parameters.
For our binary block, in order to bring it back to the real
valued domain, we simply replace the “sign” function with
ReLU activations while keeping all the weights real. Even in
this case, our block outperforms the original block although
the gain is smaller than that observed for the binary case.
We conclude that for real-valued networks performance
increase can be more easily obtained by simply increasing
the number of parameters, but for the binary case a better
design is needed as proposed in this work.

TABLE 3
PCKh-based performance on MPII validation set for real-valued blocks:
Our block is compared with a wider version of the original bottleneck so

that both blocks have similar # parameters.

Layer type # parameters PCKh

Bottleneck (wider) 7.0M 83.1%
(Ours, Final) 6.2M 85.5%

5 ABLATION STUDIES

In this Section, we present a series of other architectural
variations and their effect on the performance of our binary
network. All reported results are obtained using the pro-
posed block of Fig. 7e coined Ours, Final. We focus on the
effect of augmentation and different losses which are novel
experiments not reported in [5], and then comment on the
effect of pooling, ReLUs and performance speed-up.

Is Augmentation required? Recent works have sug-
gested that binarization is an extreme case of regularization
[6], [15], [40]. In light of this, one might wonder whether
data augmentation is still required. Table 4 shows that in
order to accommodate the presence of new poses and/or
scale variations, data augmentation is very helpful provid-
ing a large increase (4%) in performance. See Section 6.1 for
more details on how augmentation was performed.

TABLE 4
The effect of using: augmentation, different losses (Sigmoid vs L2),

different pooling methods and of adding a ReLU after the conv layer,
when training our binary network in terms of PCKh-based performance
on MPII validation set. We note that “(Ours, Final)” was trained using a
Sigmoid Loss, Maxpooling and applying augmentation. The additional

text after it denotes the change made.

Layer type # parameters PCKh

(Ours, Final) - No Aug. 6.2M 72.1%
(Ours, Final) - L2 loss 6.2M 73.8%
(Ours, Final) - AvgPool 6.2M 71.9%

(Ours, Final) 6.2M 76%
(Ours, Final) + ReLU 6.2M 78.1%

The effect of loss. We trained our binary network to
predict a set of heatmaps, one for each landmark [27]. To
this end, we experimented with two types of losses: the
first one places a Gaussian around the correct location of
each landmark and trains using a pixel-wise L2 loss [27].

However, the gradients generated by this loss are usually
small even for the case of a real-valued network. Because
binarized networks tend to amplify this problem, as an
alternative, we also experimented with the Sigmoid cross-
entropy pixel-wise loss typically used for detection tasks
[41]. We found that the use of the Sigmoid cross-entropy
pixel-wise loss increased the gradients by 10-15x (when
compared to the L2 loss), offering a 2% improvement (see
Table 4), after being trained for the same number of epochs.

Pooling type. In the context of binary networks, and
because the output is restricted to 1 and -1, max-pooling
might result in outputs full of 1s only. To limit this effect,
we placed the activation function before the convolutional
layers as proposed in [5], [7]. Additionally, we opted to
replace max-pooling with average pooling. However, this
leads to slightly worse results (see Table 4). In practice, we
found that the use of blocks with pre-activation suffices and
that the ratio of 1 and -1 is close to 50% even after max-
pooling.

With or without ReLU. Because during the binarization
process all ReLU layers are replaced with the Sign function,
one might wonder if ReLUs are still useful for the binary
case. Our findings are in line with the ones reported in
[5]. By adding a ReLU activation after each convolutional
layer, we observe a 2% performance improvement (see
Table 4), which can be attributed to the added non-linearity,
particularly useful for training very deep architectures.

Performance. In theory, by replacing all floating-point
multiplications with bitwise XOR and making use of the
SWAR (Single instruction, multiple data within a register)
[5], [6], the number of operations can be reduced up to 32x
when compared against the multiplication-based convolu-
tion. However, in our tests, we observed speedups of up to
3.5x, when compared against cuBLAS, for matrix multipli-
cations, a result being in accordance with those reported in
[6]. We note that we did not conduct experiments on CPUs.
However, given the fact that we used the same method
for binarization as in [5], similar improvements in terms of
speed, of the order of 58x, are to be expected: as the real-
valued network takes 0.67 seconds to do a forward pass on
a i7-3820 using a single core, a speedup close to x58 will
allow the system to run in real-time.

In terms of memory compression, by removing the bi-
ases, which have minimum impact (or no impact at all) on
performance, and by grouping and storing every 32 weights
in one variable, we can achieve a compression rate of 39x
when compared against the single precision counterpart of
Torch.

6 COMPARISON WITH STATE-OF-THE-ART

In this Section, we compare our method against the current
state-of-the-art for human pose estimation and 3D face
alignment. Our final system comprises a single HG network
but replaces the real-valued bottleneck block used in [2]
with the proposed binary, parallel, multi-scale block trained
with the improvements detailed in Section 5.

6.1 Training
All human pose estimation and 3D face alignment models
were trained from scratch following the algorithm described

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

in [5] and using rmsprop [42]. The initialization was done
as in [16]. For human pose estimation, we randomly aug-
mented the data with rotation (between -40o and 40o de-
grees), flipping and scale jittering (between 0.7 and 1.3). We
trained the network for 100 epochs, dropping the learning
rate four times, from 2.5e-4 to 5e-5. A similar procedure
was applied to the models for 3D face alignment, with the
difference that the training was done for 55 epochs only. The
input was normalized between 0 and 1 and all described
networks were trained using the binary cross-entropy loss,
defined as:

l =
1

N

N∑
n=1

W∑
i=1

H∑
j=1

pn
ij log p̂

n
ij + (1− pn

ij) log (1− p̂n
ij), (2)

where pn
ij denotes the ground truth confidence map of the

n−th part at the output pixel location (i, j) and p̂n
ij is the

corresponding predicted output at the same location.
The models were implemented with Torch7 [43].

6.2 Human Pose Estimation.

As in all previous experiments, we used the standard
training-validation partition of MPII [1], [2]. We report
the performance of (a) the proposed binary block, (b) the
proposed block when implemented and trained with real
values, (c) the real-valued stacked HG network consisting
of 8 stacked single real-valued HG networks trained with
intermediate supervision (state-of-the-art on MPII [2]) and,
finally, (d) the same real-valued network as in (c) where the
bottleneck block is replaced by our proposed block.

The results are shown in Table 5. We observe that when
a single HG network with the proposed block is trained
with real weights, its performance reaches that of [2]. This
result clearly illustrates the enhanced learning capacity of
the proposed block. Moreover, there is still a gap between
the binary and real-valued version of the proposed block
indicating that margin for further improvement is possible.
We also observe that a full-sized model (with 8 HG net-
works) based on the proposed block performs slightly better
than the original network from [2], indicating that, for the
real-valued case, the new block is more effective than the
original one when a smaller computational budget is used.

TABLE 5
PCKh-based comparison on MPII validation set. For “Ours, bin.” we
report the results of its best variation, which includes the ReLU layer

introduced in Section 5.

Crit. [2] Ours, bin. Ours[1x], real Ours[8x], real

Head 97.3 94.7 96.8 97.4
Shld 96.0 89.6 93.8 96.0
Elbow 90.2 78.8 86.4 90.7
Wrist 85.2 71.5 80.3 86.2
Hip 89.1 79.1 87.0 89.6
Knee 85.1 70.5 80.4 86.1
Ankle 82.0 64.0 75.7 83.2
PCKh 89.3 78.1 85.5 89.8
par. 25M 6M 6M 25M

6.3 Face alignment.

We used three very challenging datasets for large pose
face alignment, namely AFLW [44], AFLW-PIFA [45], and
AFLW2000-3D [46]. The evaluation metric is the Normalized
Mean Error (NME) [45].

AFLW is a large-scale face alignment dataset consisting
of 25,993 faces annotated with up to 21 landmarks. The
images are captured in arbitrary conditions exhibiting a
large variety of poses and expressions. As Table 6 shows, our
binarized network outperforms the state-of-the-art methods
of [47] and [34], both of which use large real-valued CNNs.

TABLE 6
NME-based (%) comparison on AFLW test set. The evaluation is done

on the test set used in [34].

Method [0,30] [30,60] [60,90] mean

HyperFace [47] 3.93 4.14 4.71 4.26
AIO [34] 2.84 2.94 3.09 2.96
Ours 2.77 2.86 2.90 2.85

AFLW-PIFA [45] is a gray-scale subset of AFLW [44],
consisting of 5,200 images (3,901 for training and 1,299 for
testing) selected so that there is a balanced number of im-
ages for yaw angle in [0◦, 30◦], [30◦, 60◦] and [60◦, 90◦]. All
images are annotated with 34 points from a 3D perspective.
Fig. 8a and Tables 7 and 8 show our results on AFLW-PIFA.
When evaluated on both visible and occluded points, our
method improves upon the current best result of [33] (which
uses real weights) by more than 10%.

AFLW2000-3D is a subset of AFLW re-annotated by [46]
from a 3D perspective with 68 points. We used this dataset
only for evaluation. The training was done using the first
40,000 images from 300W-LP [46]. As Fig. 8b shows, on
AFLW2000-3D, the improvement over the state-of-the-art
method of [46] (real-valued) is even larger. As further results
in Fig. 9 show, while our method improves over the entire
range of poses, the gain is noticeably higher for large poses
([60◦ − 90◦]), where we outperform [46] by more than 40%.

(a) (b)

Fig. 8. Cumulative error curves (a) on AFLW-PIFA, evaluated on all 34
points (CALE is the method of [33]), (b) on AFLW2000-3D on all points
computed on a random subset of 696 images equally represented in
[0◦, 30◦], [30◦, 60◦], [60◦, 90◦] (see also [46]).

7 ADVANCED BLOCK ARCHITECTURES

In this section, we explore the effectiveness of two architec-
tural changes applied to our best performing block (Ours,
final), namely varying its depth and its cardinality. Again,
we used the standard training-validation partition of MPII.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

3x3, 256 -> 128

3x3, 128 -> 64

3x3, 64 -> 32

C

+

BN, Binary

BN, Binary

BN, Binary

3x3, 4 -> 4

BN, Binary

(a) (Ours, final) binary block with varying depth. See also Subsec-
tion 7.1.

3 4 5 6 7 8
74

74.5

75

75.5

76

76.5

77

76.5

Depth (number of layers)

PC
K

h,
M

PI
I

va
lid

at
io

n
se

t(
%

)

Performance vs block depth

(b) Depth vs PCKh-based performance on the MPII vali-
dation set.

Fig. 9. The effect of varying the depth of the proposed binary block on performance.

TABLE 7
NME-based (%) comparison on AFLW-PIFA evaluated on visible

landmarks only. The results for PIFA, RCPR and PAWF are taken from
[32].

PIFA [45] RCPR [48] PAWF [32] CALE [33] Ours

8.04 6.26 4.72 2.96 3.02

TABLE 8
NME-based (%) based comparison on AFLW-PIFA evaluated on all 34

points, both visible and occluded.

CALE [33] Ours

4.97 4.47

TABLE 9
NME-based (%) based comparison on AFLW2000-3D evaluated on all
68 points, both visible and occluded. The results for RCPR, ESR and

SDM are taken from [46].

Method [0,30] [30,60] [60,90] Mean

RCPR(300W) [48] 4.16 9.88 22.58 12.21
RCPR(300W-LP) [48] 4.26 5.96 13.18 7.80
ESR(300W) [49] 4.38 10.47 20.31 11.72
ESR(300W-LP) [49] 4.60 6.70 12.67 7.99
SDM(300W) [50] 3.56 7.08 17.48 9.37
SDM(300W-LP) [50] 3.67 4.94 9.76 6.12
3DDFA [46] 3.78 4.54 7.93 5.42
3DDFA+SDM [46] 3.43 4.24 7.17 4.94
Ours 2.47 3.01 4.31 3.26

7.1 On the depth of the proposed block

To further explore the importance of the multi-scale com-
ponent in the overall structure of the proposed block, we
gradually increase its depth and as a result, the number of
its layers, as shown in Fig. 9b. The advantage of doing this is
twofold: (a) it increases the receptive field within the block,
and (b) it analyses the input simultaneously at multiple

scales. We ensure that by doing so the number of parameters
remains (approximately) constant. To this end, we halve the
number of channels of the last layer at each stage. In the
most extreme case, the last layer will have a single channel.
Because, the representational power of such a small layer is
insignificant, in practice we stop at a minimum of 4, which
corresponds to a depth equal to 8. The results, reported in
Fig. 9b, show that the performance gradually improves up
to 76.5% for a depth equal to 6, and then, further on, it
saturates and eventually gradually degrades as the depth
increases.

Conclusion: The depth of the multi-scale component is
an important factor on the overall module performance.
Increasing it, up to a certain point, is beneficial and can
further improve the performance at no additional cost.

7.2 On the cardinality of the proposed block
Inspired by the recent innovations of [17] for real-valued
networks, in this section we explore the behavior of an
increased cardinality (defined as in [17] as the size of the set
of transformations) when applied to our binary hierarchical,
parallel & multi-scale block.

Starting again from our block of Fig. 7e, we replicate
its structure C times making the following adjustments in
the process: (1) While the number of input channels of the
first layer remains the same, the output and the input of
the subsequent layers are reduced by a factor of C , and
(2) the output of the replicated blocks is recombined via
concatenation. The final module structure is depicted in
Fig. 10b.

The full results with respect to the network size and
the block cardinality (ranging from 1 to 16) are shown
in Fig. 10b. Our findings are that increasing the block
cardinality, while shown to provide good improvement on
image classification using real-value networks, for the case
of binary networks, given their significantly smaller size,
depth and representational power, the same observation
does not hold. In particular, when incorporated into the
structure of our block with a similar number of parameters,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

3x3, 256 -> 8

3x3, 8 -> 4

3x3, 4 -> 4

C

+

BN, Binary

BN, Binary

BN, Binary

3x3, 256 -> 8

3x3, 8 -> 4

3x3, 4 -> 4

C

BN, Binary

BN, Binary

BN, Binary

C

C paths

(a) ResNetXt-like extension of (Ours, final) binary block. C repre-
sents the cardinality of the block. See also Subsection 7.2.

0 2 4 6 8 10 12 14 16
70

71

72

73

74

75

76

77

Cardinality

PC
K

h,
M

PI
I

va
lid

at
io

n
se

t(
%

)

Performance dependence on the module cardinality

3

4

5

6

7

N
um

be
r

of
pa

ra
m

et
er

s
(m

ili
on

s)

(b) Cardinality vs PCKh-based performance on the MPII
validation set. Notice how the efficiency (the ratio between
the number of parameters and PCKh) decreases as we
increase the block cardinality.

Fig. 10. The effect of varying the cardinality of the proposed binary block on performance.

the module under-performs by 1% compared to the original
block (having a cardinality equal to one).
Conclusion: For the binary case, further increasing the block
cardinality hurts performance.

8 IMPROVED NETWORK ARCHITECTURES

In all previous sections, we investigated the performance
of the various blocks by incorporating them into a single
hourglass network, i.e. by keeping the network architecture
fixed. In this section, we explore a series of architectural
changes applied to the overall network structure. First,
inspired by [51], we simplify the HG model, improving
its performance without sacrificing accuracy for the binary
case. Then, we study the effect of stacking multiple net-
works together and analyze their behavior.

Heatmaps

C C C C

Fig. 11. Improved, U-Net inspired, HG architecture. The dark-green
modules were left unchanged, while for the light-green ones we doubled
the number of their input channels from 256 to 512.

8.1 Improved HG architecture
Motivated by the findings of Subsection 4.5 that shed light
on the importance of the gradient flow and suggested that
skip connections with shorter paths should be used where
possible, we adopt a similar approach to the overall HG
architecture.

In particular, to improve the overall gradient flow, we
removed the residual blocks in the upsampling branches

that are tasked with the “injection” of high resolution infor-
mation into the later stages of the network. To adjust to that
change, the number of input channels of the first layer from
the modules that are immediately after the point where the
branch is merged via concatenation is increased by two times
(to accommodate to the increase in the number of channels).
The resulting architecture, depicted in Fig. 11, is a modified
U-net architecture [51] which was binarized in the same way
as the HG model.

The results, reported in Table 10, show that by remov-
ing the residual blocks from the upsampling branches, the
performance, over the baseline HG is increased by 0.5%,
further solidifying the importance of the gradient flow in
the performance of binary networks. Furthermore, due to
the decrease in the number of layers and parameters, an up
to 20% speedup is observed. The network is trained using
the same procedure described previously, for 100 epochs.

TABLE 10
Comparison between HG and Improved HG on the MPII validation set.

Both networks are built with our proposed binarized block.

Network architecture # parameters PCKh

HG (Fig. 2) 6.2M 76%
Improved HG (Fig. 11) 5.8M 76.6%

8.2 Stacked Binarized HG networks

Network stacking was recently shown to achieve state-of-
the-art results on human pose estimation [1], [2], [3] when
real-valued models are used. In this subsection, we explore
whether the same holds for the binary case.

Following [2], we stack and interconnect the networks
as follows: The first network takes as input the RGB image
and outputs a set of N heatmaps. The next network in the
stack takes as input the sum of: (1) the input to the previ-
ous network, (2) the projection of the previously predicted
heatmaps, and (3) the output of the last but one block from

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

+

Fig. 12. A two-stack binarized HG. All blocks are binarized, except for
the very first and last layers showed in red colour.

R
e

al
B

in
ar

y,
 O

u
rs

B
in

ar
y,

 O
ri

gi
n

al

Fig. 13. Features extracted from the first layer (first column), middle layer
(middle column) and right before the very last layer (right column) for
real-valued and binary (ours and original) networks. As we move on to
the last layers, activations become more noisy for the binary case, which
we believe that it hurts the performance of the stacked networks.

the previous level. The resulting network for a stack of two
is shown in Fig. 12.

As the results of Table 11 show, network stacking for
the binary case behaves to some extent similarly to the real-
valued case, however the gains from one stage to another
are smaller, and performance seems to saturate faster. We
believe that the main reason for this is that for the case of
binary networks, activations are noisier especially for the
last layers of the network. This is illustrated in Fig. 13 where
we compare the feature maps obtained from a real and
the two types of binary networks compared in this paper
(original, based on bottleneck and proposed). Clearly the
feature maps for the binary case are more noisy and blurry
as we move on to the last layers of the network. As network
stacking relies on features from the earlier networks of the
cascade and as these are noisy, we conclude that this has a
negative impact on the overall network’s performance.

Training. To speedup the training process, we trained the
stacked version in a sequential manner. First, we trained the
first network until convergence, then we added the second
one on top of it, freezing its weights and training the second
one. The process is repeated until all networks are added.
Finally, the entire stack is trained jointly for 50 epochs.

TABLE 11
Accuracy of stacked networks on MPII validation set. All networks are

built with our proposed binarized block.

stacks # parameters PCKh

1 6.2M 76%
2 11.0M 79.9%
3 17.8M 81.3%

9 ADDITIONAL EXPERIMENTS

In this section, we further show that the proposed block
generalizes well producing consistent results across various
datasets and tasks. To this end, we report results on the
task of face parsing, also known as semantic facial part
segmentation, which is the problem of assigning a categor-
ical label to every pixel in a facial image. We constructed
a dataset for facial part segmentation by joining together
the 68 ground truth landmarks (originally provided for
face alignment) to fully enclose each facial component. In
total, we created seven classes: skin, lower lip, upper lip,
inner mouth, eyes, nose and background. Fig. 14 shows an
example of a ground truth mask. We trained the network on
the 300W dataset (approximately 3,000 images) and tested
it on the 300W competition test set, both Indoor&Outdoor
subsets (600 images), using the same procedure described in
Section 7.

Fig. 14. Example of a ground truth mask (right) produced by joining the
68 ground truth landmarks (left). Each colour denotes one of the seven
classes.

Architecture. We reused the same architecture for land-
mark localization, changing only the last layer in order
to accommodate the different number of output channels
(from 68 to 7). We report results for three different networks
of interest: (a) a real-valued network using the original
bottleneck block (called “Real, Bottleneck”), (b) a binary
network using the original bottleneck block (called “Binary,
Bottleneck”), and (c) a binary network using the proposed
block (called “Binary, Ours”). To allow for a fair comparison,
all networks have a similar number of parameters and
depth. For training the networks, we used the Log-Softmax
loss [31].

Results. Table 12 shows the obtained results. Similarly
to our human pose estimation and face alignment exper-
iments, we observe that the binarized network based on
the proposed block significantly outperforms a similar-sized
network constructed using the original bottleneck block,
almost matching the performance of the real-valued net-
work. Most of the performance improvement is due to the
higher representation/learning capacity of our block, which

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

is particularly evident for difficult cases like unusual poses,
occlusions or challenging lighting conditions. For visual
comparison, see Fig. 16.

TABLE 12
Results on 300W (Indoor&Outdoor). The pixel acc., mean acc. and

mean IU are computed as in [31].

Network type pixel acc. mean acc. mean IU

Real, bottleneck 97.98% 77.23% 69.29%
Binary, bottleneck 97.41% 70.35% 62.49%
Binary, Ours 97.91% 76.02% 68.05%

10 CONCLUSION

We proposed a novel block architecture, particularly tailored
for binarized CNNs and localization visual tasks. Dur-
ing the process, we exhaustively evaluated various design
choices, identified performance bottlenecks and proposed
solutions. We showed that our hierarchical, parallel and
multi-scale block enhances representational power, allowing
for stronger relations to be learned without excessively in-
creasing the number of network parameters. The proposed
architecture is efficient and can run on limited resources. We
verified the effectiveness of the proposed block on a wide
range of fine-grained recognition tasks including human
pose estimation, face alignment, and facial part segmenta-
tion.

ACKNOWLEDGMENTS

Adrian Bulat was funded by a PhD scholarship from the
University of Nottingham. Georgios Tzimiropoulos was
supported in part by the EPSRC project EP/M02153X/1
Facial Deformable Models of Animals.

REFERENCES

[1] A. Bulat and G. Tzimiropoulos, “Human pose estimation via
convolutional part heatmap regression,” in ECCV, 2016.

[2] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in ECCV, 2016.

[3] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolu-
tional pose machines,” in CVPR, 2016.

[4] A. Bulat and G. Tzimiropoulos, “Two-stage convolutional part
heatmap regression for the 1st 3d face alignment in the wild
(3dfaw) challenge,” in ECCV. Springer International Publishing,
2016, pp. 616–624.

[5] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in ECCV, 2016.

[6] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv, 2016.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks,” in ECCV, 2016.

[8] A. Bulat and G. Tzimiropoulos, “Binarized convolutional land-
mark localizers for human pose estimation and face alignment
with limited resources,” in ICCV, 2017.

[9] J. L. Holi and J.-N. Hwang, “Finite precision error analysis of
neural network hardware implementations,” IEEE Transactions on
Computers, vol. 42, no. 3, pp. 281–290, 1993.

[10] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural
networks with low precision multiplications,” arXiv, 2014.

[11] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point
quantization of deep convolutional networks,” arXiv, 2015.

[12] A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” 2009.

[13] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low
bitwidth gradients,” arXiv, 2016.

[14] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation:
Parameter-free training of multilayer neural networks with con-
tinuous or discrete weights,” in NIPS, 2014.

[15] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Train-
ing deep neural networks with binary weights during propaga-
tions,” in NIPS, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[17] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” arXiv, 2016.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015.

[19] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on
learning.” in AAAI, 2017, pp. 4278–4284.

[20] M. Eichner, M. Marin-Jimenez, A. Zisserman, and V. Ferrari,
“2d articulated human pose estimation and retrieval in (almost)
unconstrained still images,” International journal of computer vision,
vol. 99, no. 2, pp. 190–214, 2012.

[21] P. Buehler, M. Everingham, D. P. Huttenlocher, and A. Zisser-
man, “Upper body detection and tracking in extended signing
sequences,” International journal of computer vision, vol. 95, no. 2,
pp. 180–197, 2011.

[22] Y. Yang and D. Ramanan, “Articulated pose estimation with flex-
ible mixtures-of-parts,” in Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on. IEEE, 2011, pp. 1385–1392.

[23] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele, “Strong
appearance and expressive spatial models for human pose estima-
tion,” in Proceedings of the IEEE International Conference on Computer
Vision, 2013, pp. 3487–3494.

[24] B. Sapp and B. Taskar, “Modec: Multimodal decomposable models
for human pose estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2013, pp. 3674–3681.

[25] V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab, and
S. Ilic, “3d pictorial structures for multiple human pose estima-
tion,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 1669–1676.

[26] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation
via deep neural networks,” in CVPR, 2014.

[27] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of
a convolutional network and a graphical model for human pose
estimation,” in NIPS, 2014.

[28] T. Pfister, J. Charles, and A. Zisserman, “Flowing convnets for
human pose estimation in videos,” in ICCV, 2015.

[29] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and
B. Schiele, “Deepercut: A deeper, stronger, and faster multi-person
pose estimation model,” in ECCV, 2016.

[30] V. Belagiannis and A. Zisserman, “Recurrent human pose estima-
tion,” in Automatic Face & Gesture Recognition (FG 2017), 2017 12th
IEEE International Conference on. IEEE, 2017, pp. 468–475.

[31] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in CVPR, 2015.

[32] A. Jourabloo and X. Liu, “Large-pose face alignment via cnn-based
dense 3d model fitting,” in CVPR, 2016.

[33] A. Bulat and G. Tzimiropoulos, “Convolutional aggregation of
local evidence for large pose face alignment,” in BMVC, 2016.

[34] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chellappa,
“An all-in-one convolutional neural network for face analysis,” in
IEEE Face & Gesture, 2017.

[35] A. Bulat and G. Tzimiropoulos, “How far are we from solving the
2d & 3d face alignment problem?(and a dataset of 230,000 3d facial
landmarks),” in ICCV, 2017.

[36] Y. Wu, S. K. Shah, and I. A. Kakadiaris, “Godp: Globally optimized
dual pathway deep network architecture for facial landmark local-
ization in-the-wild,” Image and Vision Computing, 2017.

[37] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv, 2015.

[38] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
arXiv, 2016.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” arXiv, 2014.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

(a) Fitting examples produced by our binary network on AFLW2000-3D dataset. Notice that our method copes well with extreme poses,
facial expressions and lighting conditions.

(b) Examples of human poses obtained using our binary network. Observe that our method produces good results for a wide variety of
poses and occlusions.

Fig. 15. Qualitative results produced by our method on (a) AFLW2000-3D and (b) MPII datasets.

[40] P. Merolla, R. Appuswamy, J. Arthur, S. K. Esser, and D. Modha,
“Deep neural networks are robust to weight binarization and other
non-linear distortions,” arXiv, 2016.

[41] N. Zhang, E. Shelhamer, Y. Gao, and T. Darrell, “Fine-grained
pose prediction, normalization, and recognition,” arXiv preprint
arXiv:1511.07063, 2015.

[42] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude,” COURSERA:
Neural networks for machine learning, vol. 4, no. 2, 2012.

[43] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-
like environment for machine learning,” in NIPS-W, no. EPFL-
CONF-192376, 2011.

[44] M. Köstinger, P. Wohlhart, P. M. Roth, and H. Bischof, “Annotated
facial landmarks in the wild: A large-scale, real-world database for
facial landmark localization,” in ICCV-W, 2011.

[45] A. Jourabloo and X. Liu, “Pose-invariant 3d face alignment,” in
ICCV, 2015.

[46] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, “Face alignment across
large poses: A 3d solution,” in CVPR, 2016.

[47] R. Ranjan, V. M. Patel, and R. Chellappa, “Hyperface: A deep
multi-task learning framework for face detection, landmark local-
ization, pose estimation, and gender recognition,” arXiv preprint
arXiv:1603.01249, 2016.

[48] X. P. Burgos-Artizzu, P. Perona, and P. Dollár, “Robust face land-
mark estimation under occlusion,” in ICCV, 2013.

[49] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by explicit
shape regression,” International Journal of Computer Vision, vol. 107,
no. 2, pp. 177–190, 2014.

[50] X. Xiong and F. De la Torre, “Supervised descent method and its
applications to face alignment,” in CVPR, 2013.

[51] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International

Conference on Medical Image Computing and Computer-Assisted In-
tervention. Springer, 2015, pp. 234–241.

Adrian Bulat is currently a PhD student with the
Computer Vision Laboratory at the University of
Nottingham, under the supervision of Dr. Geor-
gios Tzimiropoulos. He received his B.Eng. in
Computer Engineering (2015) from the Technical
University “Gheorghe Asachi” (Romania).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Input

Ground truth
segmentation

mask

Binary
ours

Binary
bottleneck

Real
bottleneck

Fig. 16. Qualitative results on 300W (Indoor&Outdoor). Observe that the proposed binarized network significantly outperforms the original binary
one, almost matching the performance of the real-valued network.

Georgios (Yorgos) Tzimiropoulos received the
M.Sc. and Ph.D. degrees in Signal Processing
and Computer Vision from Imperial College Lon-
don, U.K. He is Assistant Professor with the
School of Computer Science at the University of
Nottingham, U.K. Prior to this, he was a Senior
Researcher in the iBUG group, Department of
Computing, Imperial College London. He is cur-
rently Associate Editor of the Image and Vision
Computing Journal. He has worked on the prob-
lems of object detection and tracking, alignment

and pose estimation, and recognition with humans and faces being
the focal point of his research. For his work, he has used a variety
of tools from Mathematical Optimization and Machine Learning. His
current focus is on Deep Learning.

