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Abstract 
International shipping provides 80-90% of global trade, but strict environmental regulations 

around NOX, SOX and greenhouse gas (GHG) emissions are set to cause major technological 

shifts. The pathway to achieving the international target of 50% GHG reduction by 2050 is 

unclear, but numerous promising options exist. This study provides a holistic assessment of 

these options and their combined potential to decarbonise international shipping, from a 

technology, environmental and policy perspective.  Liquefied natural gas (LNG) is reaching 

mainstream and provides 20–30% CO2 reductions whilst minimising SOX and other 

emissions. Costs are favourable, but GHG benefits are reduced by methane slip, which 

varies across engine types. Biofuels, hydrogen, nuclear and carbon capture and storage 

(CCS) could all decarbonise much further, but each faces significant barriers around their 

economics, resource potentials and public acceptability. Regarding efficiency measures, 

considerable fuel and GHG savings could be attained by slow-steaming, ship design changes 

and utilising renewable resources. There is clearly no single route and a multifaceted 

response is required for deep decarbonisation. The scale of this challenge is explored by 

estimating the combined decarbonisation potential of multiple options.  Achieving 50% 

decarbonisation with LNG or electric propulsion would likely require 4 or more 

complementary efficiency measures to be applied simultaneously. Broadly, larger GHG 

reductions require stronger policy and may differentiate between short- and long-term 

approaches. With LNG being economically feasible and offering moderate environmental 

benefits, this may have short-term promise with minor policy intervention. Longer term, 

deeper decarbonisation will require strong financial incentives. Lowest-cost policy options 

should be fuel- or technology-agnostic, internationally applied and will require action now 

to ensure targets are met by 2050. 

 

 

mailto:p.balcombe@imperial.ac.uk


2 

Glossary 

BAU Business as usual 

ECA Emission control area 

EEDI Energy Efficiency Design Index 

EP Electric Propulsion 

ETS Emission Trading Scheme 

FOC Flag of convenience 

HFO Heavy Fuel Oil 

IGF Code International Gas Fuelled Ship Code 

IMO International Maritime Organisation 

IMS International Maritime Services 

IPPC Integrated Pollution Prevention and Control  

ITF International Transport Workers’ Federation 

MARPOL Maritime Agreement Regarding Oil Pollution 

MBM Market-based mechanism 

MDO Marine Diesel Oil 

MEPC Maritime Environment Protection Committee 

METS Maritime Emission Trading Scheme 

MGO Marine Gas Oil 

RoRo Roll on – Roll off Ship 

SCR Selective Catalytic Reduction 

WHRS Waste Heat Recovery Systems  

WSC World Shipping Council 
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1 Introduction 
Maritime shipping is a key component of the global economy representing 80-90% of 

international trade [1, 2]. Sea transport emits less carbon dioxide per tonne-km compared 

to other forms of transport [3-5], but given its sheer scale, the maritime sector is a major 

contributor to global ecological impacts [6]. The shipping industry is responsible for emitting 

approximately 1.1 Gt of carbon dioxide (3% of global greenhouse gas emissions), as well as 5 

2.3 Mt of sulphur dioxide and 3.2 Mt nitrogen oxides per year [7-9]. For context, if the 

maritime industry were a country, it would be the 6th largest CO2 emitter worldwide (ahead 

of Brazil and Germany). 

 

For this reason, the International Maritime Organisation (IMO) (the UN agency for shipping) 10 

has established a target for global shipping to decarbonise by at least 50% from 2008 levels 

by 2050 [10].  Similarly, Maersk (the world’s largest shipping container company) has 

announced its intentions to be net-zero carbon by 2050, with carbon neutral vessels 

commercially viable by 2030 [2]. 

 15 

This environmental impacts of shipping are set to rise as world seaborne trade is anticipated 

to grow by around 3% per year into the early 2020s [11]. Even ambitious decarbonisation 

scenarios see energy consumption growing by 40–50% between 2015 and 2050 [12], whilst 

other sectors proceed with decarbonising rapidly. Maritime freight is responsible for 12% of 

global transport energy demand (see Figure 1), totalling approximately 13 million TJ in 2015, 20 

or 1.4 kWh per person per day globally [13].  Consequently, the sector is placed in a unique 

position to not only contribute to climate change mitigation by directly reducing emissions, 

but also by becoming leaders in climate innovation and enabling the decarbonisation of 

other energy sectors via development of low carbon fuel infrastructure.  

 25 
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Figure 1: Breakdown of energy usage in the transport sector globally in 2015.  The 

outer ring gives the share of individual modes, the middle and inner rings aggregate 

these uses.  Data from [13]. 

 30 

 

However despite this, the sector has been largely unregulated until recently [6]. Stringent 

targets have been put in place to significantly reduce NOx and SOx air-quality-related 

emissions [15] and, crucially, in 2018 the IMO set a target for global shipping to decarbonise 

by at least 50% from 2008 levels by 2050 [10].  35 

 

As with other sectors, there is no silver bullet solution to decarbonisation.  It is likely that 

halving carbon emissions will require a range of options, including new fuel sources, raising 

technical or operational efficiencies and reducing demand. Shipping has undergone 

paradigm shifts in fuel before, from coal to diesel in the 1920s and from diesel to heavy fuel 40 

oil (HFO) in the 1950s [17]. Liquefied natural gas (LNG) is the main alternative fuel to liquid 

fossil fuels, offering reduced air quality impacts and direct CO2 emissions, although methane 

emissions have been shown to reduce the GHG benefit [18]. Other alternatives include 

biofuels, methanol, hydrogen, electric propulsion or even nuclear fuels, but each offer 

differing levels of decarbonisation and incur different economic costs as well as pollutants 45 

relating to air quality. Likewise, various efficiency measures exist that would reduce the fuel 

consumption per unit distance, particularly the act of slow steaming. But their impact on 

efficiency depends on various factors such as the class of vessel and its application.  

 

This study reviews the different combinations of fuels, technologies and policies that may 50 

be used to reduce GHG emissions from international shipping. For each option, the 

emissions reduction potential is quantified and feasibility from a technical, economic and 

political perspective is assessed. Combinations of possible reduction measures are assessed 

and recommendations are made in terms of effectiveness and economic-political feasibility. 

The focus of this study is on commercial shipping, particularly with respect to international 55 

trade given the anticipated growth resulting from increasing population and economic 

development.  

 

Existing literature has included broad estimates of global shipping decarbonisation routes 

[3, 19], as well as some specific estimates of emission reduction measures relating to energy 60 

efficiency or vessel design [3, 20, 21], or from alternative fuels [22, 23]. In particular, 

Bouman et al. [20] summarise a large proportion of literature on the potential emissions 

reductions associated with energy efficiency, ship design and fuel changes. They suggest a 

combination of technologies would result in large reductions and that the knock-on impacts 

of other non-CO2 emissions (such as methane, NOX and SOX) must also be considered. Yuan 65 

et al. [24] estimated global CO2 savings from a selection of energy efficiency measures 

under uncertainty, whilst a few studies estimate the cost-effectiveness and emissions-
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reduction potential of energy efficiency measures [25] and fuels for the global fleets [26]. 

Many studies also analyse the policy mechanisms that may achieve shipping 

decarbonisation such as market-based mechanisms (MBMs) and further efficiency 70 

improvement legislation [3, 27-29]. This review adds to this body of literature by providing 

an up-to-date assessment of the current status of shipping and emissions, investigating a 

broad selection of fuel, technical and operational emission reduction options, and providing 

a policy assessment to provide insight into how to achieve a 50% GHG emissions reduction 

target.   75 

 

The contribution of this study is to inform pathways to achieve deep decarbonisation, to 

highlight the mechanisms with greatest potential to reduce emissions and to identify critical 

research gaps. In the next section, the current state of the maritime industry is outlined, 

with respect to fleets, fuels, emissions and current regulatory frameworks. Sections 3 and 4 80 

quantify the potential impacts associated with different fuel switches, including liquefied 

natural gas (LNG, Section 3), renewables and nuclear options (Section 4). Section 5 

evaluates the impact of various energy efficiency measures, before the policy mechanisms 

to achieve emissions reductions are assessed in terms of current status and future potential. 

The combined emissions reductions associated with different combinations of reduction 85 

measures are assessed in Section 7, before conclusions and recommendations for technical 

and regulatory change are made in Section 8. 

2 The current status of international shipping  
Globally there are around 52,000 merchant ships contributing to international shipping of 

goods and passengers (see Figure 2). For a sense of scale, these ships are propelled by over 90 

500 GW of engine capacity [30], more than Europe’s entire fleet of fossil-fuelled power 

stations [31]. There is significant heterogeneity across the merchant fleet with different 

services, ships, fuels, emissions and regulations, thus there is no one-size-fits-all 

decarbonisation solution. The following describes current status of international shipping 

regarding emissions, fuel use and regulatory environments. 95 
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Figure 2. Number of merchant ships and their carbon emissions, by category in 2017.  

Ferry includes passenger and passenger-RoRo (roll-on roll-off).  Data from [30]. 

2.1 Current Emissions from Shipping 100 

In 2014, international shipping emitted 1,130 Mt CO2, which accounts for 3.1% of global CO2 

emissions [32]. As shown in Figure 3, shipping emissions have consistently increased since 

1990, largely in line with global trade increases. However the contribution to total emissions 

has actually decreased from 2007 – 2014 , largely due to growth in other non-shipping 

emissions rather than decarbonised shipping, particularly growth in emissions from coal-105 

fired electricity generation in China and India [32].  
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Figure 3: CO2 emissions from global shipping set against global trade (top panel); and 110 

the relative share of CO2 emissions that come from shipping (bottom panel).  Data from 

[3, 9, 32, 33]. 

 

The greatest source of GHG emissions within shipping are from container ships, bulk carriers 

and oil tankers, as shown in Figure 2. This is due to these vessels conducting longer journeys 115 

to deliver their cargo – international and intercontinental, rather than domestic and 

coastline routes [32].  The spatial distribution of these emissions is shown in Figure 4, and 

covers most of the oceans and seas in the northern hemisphere. 

 

Figure 4: Map showing the global distribution of greenhouse gas emissions from 120 

shipping.  Based on the intensity of shipping lane usage from [34] normalised to 2013 

emissions from the sector. 

 

The emissions from shipping is dependent on fuels and efficiencies: different fuels have 

varying CO2, SOx, NOx and methane emissions, and inefficient ships use more fuel. Of the 125 

approximately 300 Mt of global maritime fuel consumption in 2015, 72% was residual fuels 

(e.g. heavy fuel oil HFO), 26% distillates (e.g. marine diesel oil) and 2% liquefied natural gas 

(LNG) [35]. HFO typically has a high sulphur content [36] and the contribution of 

international shipping to global SOx emissions in 2012 was calculated to be 13% annually 

[37]. SOx emissions cause health implications, as well as causing ecosystem damage via 130 
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acidification to water and soil [38]. In 2009, The Guardian reported that the largest 15 ships 

caused more sulphurous pollution than the global car fleet (760m cars) combined [39].  

 

Sulphurous and nitrogen oxide emissions have a short-lived climate cooling effect, meaning 

the net impact of shipping over 20 years (based on a single year’s emissions) is actually to 135 

reduce global temperatures [40]. However, the longer-term impact of GHG emissions from 

shipping is certainly to rise. Distillate fuels like marine gas oil (MGO) and diesel oil (MDO) 

have lower sulphur content, whereas GHG and NOx emissions, which arise from high 

temperature combustion, may be similar [22, 41, 42].  

 140 

Marine black carbon emissions also have large impacts on the climate and to human health. 

Black carbon is a type of fine particulate (PM2.5) that is emitted from burning HFO and to a 

lesser extent MDO. The GWP of black carbon varies depending on location and source, but 

in aerosol form has a 100 year GWP of 830 [40]. As a solid particle, atmospheric lifespan is 

short at ~1 week [43] but global shipping emissions of black carbon account for 5-8% of 145 

annual GHG emissions on a 100 year timescale according to the ICCT [44]. 

2.2 International Shipping Governance 

The IMO is a UN agency responsible for the safety and environmental regulation of global 

shipping; it has 172 Member States and three Associate Members [45]. IMO regulations 

must be ratified by over half of the member states, which are then translated into domestic 150 

law. However, the compliance process is complicated by the flag state of the respective ship 

and the concept of ‘flags of convenience’ (FOC).  

 

FOC are those characterised by low taxation and lower regulatory measures in place and 

began in the 1920s when US ship owners began to register their ships in Panama after being 155 

frustrated by increased regulations and rising labour costs. As of 2015, over 55% of global 

gross tonnage in the international shipping industry is registered in the top 12 FOC states, as 

identified by the International Transport Workers’ Federation (ITF). The regional Port State 

Control (PSC) authorities monitor the FOCs and quantify their credibility and compliance 

levels.  160 

2.3 Shipping Emission Regulations  

The key regulation for controlling environmental impacts from shipping is the Maritime 

Agreement Regarding Oil Pollution (MARPOL) for SOX, NOX and GHG emissions. The 

regulation originally focused on SOX, limiting sulphur content in bunker fuel to 4.5% and 

gradually dropping over time as shown in Figure 5. The global sulphur content limit is set to 165 

be reduced substantially in 2020 to 0.5%, however, the global average sulphur content of 

HFO has not materially changed in accordance with targets [17].  
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Figure 5: Sulphur and nitrogen oxides (NOX) regulations for shipping fuels.  In the left 

panel, lines show the MARPOL Annex VI limits for open seas and in emissions control 170 

areas (ECAs); points show the global average in HFO fuel [3, 17, 32].  In the right panel, 

lines show the limits as a function of engine speed for open seas (Tier II) and control 

areas (Tier III) [48]. 

 

The IMO (through MARPOL) also set up Emission Controlled Areas (ECA), within which 175 

vessels must comply with stricter emission limits [49]. Currently there are four ECAs, in 

Europe and North America, which also set limits on NOx and particulate emissions [50]. 

MARPOL Annex VI, introduced in 1997 and strengthened in 2005 [51], incorporates 

regulatory limits on NOx emissions. Different tiers of compliance apply to ships with 

different construction dates as indicated in Figure 5, although the most stringent tier III 180 

regulations only apply to ships operating in ECAs [52].  

 

Another addition to MARPOL in 2001 was the Energy Efficiency Design Index (EEDI), to 

reduce CO2 emissions for new ships via technical efficiency improvements [53]. EEDI sets a 

minimum energy efficiency level per capacity mile (e.g. tonne mile) for different ship types 185 

and sizes [7]. Setting the target of a 10% reduction of CO2 levels (grams of CO2 per tonne 

mile) by 2015, 20% by 2020 and 30% by 2025, the EEDI aims to facilitate innovation and 

technological improvements in shipping by tightening the target every 5 years [53, 54]. The 

Ship Energy Efficiency Management Plan (SEEMP) was also introduced into MARPOL, for 

both new and existing ships, as a measure to improve fuel efficiency via operational 190 

improvements [51]. However, whilst there is a requirement to implement the plan, no 

specific fuel savings or efficiency improvements are stipulated [55].  

 

The EEDI is currently the sole carbon emissions policy to mitigate CO2 emissions in 

international shipping and it is estimated that the global shipping fleet will not be fully EEDI 195 

compliant until 2040-2050 [54]. However, the reductions are negligible compared to the 

levels required to meet the UN 2050 global climate change targets [32].  
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2.4 The 50% GHG emission target 

In 2018, the IMO announced an initial agreement to reduce GHG emissions by 50% by 2050 

compared to 2008 emissions [10], with a solidified strategy to be produced in 2023. This 200 

target should not be underestimated in terms of its challenge, as well as potential benefit to 

global decarbonisation pathways. Business-as-usual GHG emissions from the maritime 

industry are expected to increase significantly in the first half of this century, with IMO 

emission scenarios projecting growth between 50% and 250% by 2050 – depending on 

economic growth and development [32]. Reductions in emissions could be sourced from 205 

increasing the efficiency of vessels, such as via the EEDI, or a step change in fuel usage.  

 

Alongside the IMO agreement, various policy measures were suggested for the short- (2018-

2023), medium- (2023-2030) and long-term (beyond 2030). Short-term measures include 

strengthening the EEDI, incentivising early adoption of low carbon technologies, 210 

incentivising speed reduction/optimisation, developing carbon intensity guidelines for all 

marine fuels and research into innovative technologies and fuels for zero-carbon propulsion. 

Mid and long-term measures are to further develop the short-term measures and to 

consider implementing market-based-mechanisms to incentivise emissions reductions. The 

multitude of technical measures to meet emissions targets, and the political and 215 

infrastructural means by which to implement them, are multifaceted and are reviewed in 

depth for the remainder of this paper.  

3 Liquified natural gas (LNG) 
One pathway to comply with SOx and NOx requirements and to reduce CO2 emissions is via 

LNG as a fuel. Natural gas is liquefied by cooling to -162°C and thus takes up 600 times less 220 

space for storage and transportation [58]. There are four main types of LNG engine/turbine 

in use today: lean-burn spark ignition; low pressure dual fuel (4- and 2-stroke); high 

pressure dual fuel; and gas turbine [59]. Each have different operational characteristics, 

efficiencies and exhibit significantly different emission profiles [59]. LNG has been used for 

the propulsion of LNG carrier vessels for more than 40 years, by using the boil-off gas 225 

created in the storage tanks to run dual-fuel engines [60].  

 

The first dedicated LNG-fuelled vessel was built in 2000. In 2017, there were 117 LNG-

fuelled vessels (non-LNG carriers) in commercial operation, with many new LNG-fuelled 

vessels currently under production [59, 61]. Current vessels are mainly operate in Europe 230 

due to the expansive ECAs, and most new vessels are planned in Europe (57%) and North 

America (38%) due to emissions regulations and underlying fuel prices [62], [53].  



11 

3.1 Environmental impacts 

The potential benefits of LNG over conventional liquid fuels relate chiefly to NOx, SOx, 

particulates and CO2 emissions. Natural gas has a higher hydrogen-carbon ratio than liquid 235 

fossil fuels [63], resulting in 20-30% lower CO2 emissions on combustion [64]. However, the 

relative improvement in CO2 emissions may be negated by methane emissions, in particular 

through engine slip [22, 59]. Slip occurs where some methane fails to combust in the 

engine, resulting in leakage to the atmosphere [60]. Additionally, leakage may occur in other 

parts of the drive train, as well as across the natural gas supply chain in general [53, 65, 66]. 240 

Methane is a potent, albeit short-lived, greenhouse gas and has a global warming potential 

(GWP) 36 times stronger than CO2 on a 100-year time horizon [40]. Currently, LNG engines 

have a methane slip of 2-5% of total throughput, although estimates from high-pressure 

dual fuel 2-stroke are substantially lower [61, 67].  

 245 

There are various estimates of life cycle GHG emissions from using LNG as a shipping fuel 

[18, 22, 67-69], a summary of which is given in Figure 6 including the impact of upstream 

supply chain and ship bunkering and operation. Upstream impacts arise from resource 

extraction, processing and liquefaction and transportation, while downstream emissions are 

from combustion and leakage (slip). Studies typically estimate a relative decrease in 250 

emissions by switching from distillate (e.g. MDO) or residual fuel (HFO) to LNG of 

approximately 8-20%. Upstream emissions chiefly arise from the energy-intensive 

liquefaction process, which may use 8-12% of the natural gas throughput as fuel duty [70], 

as well as methane emissions from the supply chain. Emissions from the ship are governed 

by the engine efficiency and the engine methane slip [71]. Therefore, reductions in methane 255 

emissions are imperative if LNG is to contribute to the 50% GHG reduction target. If the 

total methane emissions were 5.5% over its life cycle, then the global warming potential of 

LNG would the equal that of HFO, MDO or MGO [61].  
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Figure 6: Various estimates of GHG emissions from LNG-fuelled ship engines expressed 

per kWh of engine output, split into upstream supply chain and ship emissions. Data 

from: [18, 22, 67-69]. 

 

LNG does not contain sulphur, meaning that the SOx emissions are theoretically reduced to 265 

zero. In dual-fuel engines a small fraction of oil-based fuel is needed for ignition [63] but 

reductions in SOx emissions may still reach 90-99% compared to HFO [59, 72]. Particulate 

matter (PM) is also almost completely eliminated [60]. 

 

NOx emissions are significantly lower in a low-pressure dual-fuel engine system than liquid 270 

fuels. NOx emissions are dependent on the combustion temperature, with higher 

temperatures resulting in more NOx. A lean fuel-to-air ratio achievable with some LNG 

engines and the higher proportion of gas with a dual fuel engine enables a lower 

combustion temperature [73] and reduced NOx emissions of 75-90% relative to HFO [59, 63, 

72]. However, there is a trade-off between NOx and methane emissions: low temperatures 275 

favour low NOx emissions, while higher temperatures result in less methane slip. For high 

pressure dual fuel engines, methane slip may be reduced to ~0.2% of throughput [67], but 

NOx emissions would not meet tier 3 standards without further exhaust treatment [59]. 

 

For dual-fuel engines, the relationship between fuel blend and CO2 emissions is broadly 280 

linear, but significant NOx emission reductions are only seen below a 30% share of diesel 

[73]. Therefore without additional exhaust gas treatment technologies, for example 

selective catalytic reduction (SCR), the proportion of oil fuel will be limited by the NOx 

emissions regulations set out in the NOx ECAs. 

3.2 Fuel Costs for LNG 285 

The North American shale gas boom and resultant fall in gas price has increased the viability 

of LNG as a marine fuel outside Europe [74]. Figure 7 shows the average fuel prices for 

different available shipping fuels, assuming current average engine efficiencies: LNG = 6.2 

kWh/kg fuel [59, 67]; HFO = 5.0 kWh/kg [22, 69]; MDO = 5.4 kWh/kg [22, 67, 69]; methanol 

= 2.5 kWh/kg. After 2008, the freight market went into recession whilst bunker prices 290 

spiked, leading a search for alternative fuel sources [53]. In 2015 the HFO price dropped 

again, but even with increased competitiveness in the prices, there is still interest in LNG as 

a marine fuel due to the environmental drivers. 
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 295 

Figure 7: Average fuel costs for each year for different fuels per kWh of engine output. 

LPDF 4-stroke = low pressure dual fuel 4 stroke run on LNG. Average fuel costs per 

tonne from [14, 75-81] are converted to engine output using standard engine 

efficiencies.  

 300 

The price of LNG is generally lower than HFO, whereas MDO is approximately 50% more 

expensive than HFO. However, the price of LNG as a marine fuel includes much uncertainty, 

through variable gas prices and the cost of new LNG infrastructure required for 

international trade routes [53, 74]. These added costs are estimated to be between 50 

USD/t and 630 USD/t on top of the indexed gas prices [74].  305 

3.3 Capital Costs for LNG 

Table 1 shows the capital costs (CAPEX) for the engine and exhaust technologies associated 

with various fuels. The cost associated with MGO engine conversion is relatively small [74], 

whereas Wang and Notteboom [64] estimate the capital cost for an LNG-fuel vessel relative 

to an oil-fuel equivalent is 20-25% more expensive. However, the cost of the LNG propulsion 310 

technologies may lower as technology production rates increase [82].  

 

Table 1: Cost of installing fuel technologies to current ships and new builds.  Data from 

[74].  MGO = marine gas oil; SCR = selective catalytic reduction; EGR = exhaust gas 

recirculation; Values in 2012 US Dollars. 315 

 

Compliance Strategy Retrofit cost Newbuild cost 

MGO – engine conversion, SGR, EGR $180,000 + $75 / kW $140,000 + $63 / kW 

HFO and scrubber – scrubber and SCR $600 / kW $2,200 / kW 

LNG four stroke duel fuel – LNG tanks, etc. $800 / kW $1,600 / kW 
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LNG two stroke dual fuel – LNG tanks, etc. $700 / kW $1,500 / kW 

LNG four stroke spark ignition – LNG tanks, etc. $800 / kW $1,600 / kW 

 

LNG storage tanks require approximately twice the volume of the conventional bunker 

tanks for the same energy content, due to the density difference. This can cause issues 

when retrofitting and a hull modification may be needed [60], thus it is technologically and 320 

economically favourable to design LNG systems for new-build projects [74].  

 

The cost of adding port infrastructure may also be significant [83]. LNG propulsion have the 

largest economic advantage for those vessels operating for the highest proportion of their 

sailing time in the ECAs. Most vessel voyages are categorised either as those that spend 325 

greater than 80% of their sailing time in the ECA zones and those that spend less than 5% of 

their time in ECA zones [60]. For those that spend less than 5% of their time in ECA zones, 

there is little incentive to switch to LNG propulsion as they may continue to use HFO and 

switch to MDO for the short periods of time in ECAs and ports [53]. Consequently, the 

current emissions standards are not satisfactory to create economic incentives large enough 330 

to cause a fuel change to LNG in the larger vessels with more global voyages.  

4 Alternative Fuels 
Whilst LNG offers advantages over liquid fossil fuels via reduced air quality emissions, it may 

not be enough to meet more stringent climate targets. Nuclear, renewables and biofuels 

also have potential to reduce shipping CO2 emissions and range from economically feasible 335 

short-term options to less developed long-term options. Figure 8 shows the range of 

literature estimates of life cycle GHG emissions for different ship fuels. Broadly, biofuel 

options (bio-LNG, biomethanol and other bio-liquids) exhibit the lowest emissions, whilst 

conventional methanol fuel exhibits the highest emissions. Each alternative fuel is discussed 

in the following section, with respect to their environmental and economic credentials, as 340 

well as resource/political availability.  
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Figure 8. Literature estimates of total life cycle GHG emissions for different categories 

of fuels. Blue circles represent individual literature estimates, red bars represent mean 345 

value for each category. Data from [18, 22, 42, 67-69, 84-87]. 

4.1 Biofuels 

Biofuels may offer large GHG emission reductions and in some cases can be used as a ‘drop-

in’ fuel, requiring very little alteration to the incumbent engines [88]. First generation 

conventional biofuels are readily available today in significant quantities, including straight 350 

vegetable oil (SVO), hydrotreated vegetable oil (HVO), fatty acid methyl ester (FAME) and 

bio-ethanol. However, the use of conventional biofuels is restricted internationally due to 

sustainability issues associated with large scale production. The use of waste oils can 

mitigate these concerns but the availability of waste oils for large scale production are a 

barrier. 355 

 

Advanced biofuels use feedstocks with fewer sustainability concerns. The most applicable 

advanced biofuels to international shipping applications are Fischer-Tropsch diesel (FT-

Diesel), pyrolysis oil, ligno-cellulosic ethanol (LC Ethanol), bio-methanol, dimethyl-ether 

(made of bio-methanol) and bio-LNG. In general, advanced biofuels have lower GHG 360 

emissions than conventional biofuels, as shown in Figure 9. The figure shows a broad range 

of emissions estimates both across and within the biofuel categories. Note that the lowest 

values for FAME and HVO are using waste oils.  
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 365 

Figure 9: Overview of GHG emissions for comparison of selected biofuels and fossil 

fuels.  Data from [86, 89].  

 

Biofuels could help to achieve NOX, SOX and GHG emissions reduction targets. All biofuels 

contain very little sulphur [86]. FAME for example has very low sulphur content (~20 ppm) 370 

and exhibits lower NOX and PM emissions than marine gas oil [87]. Additionally, biofuels are 

biodegradable which is an advantage over fossil fuels with respect to accidental spills [86].  

 

Diesel-like fuels, such as SVO, HVO, FAME, FT-diesel and pyrolysis oil can be used in current 

marine diesel engines with no or small engine modifications and can also use the current 375 

storage and bunkering infrastructures [86]. Alcohols and gaseous fuels like bio-ethanol, bio-

methanol, bio-LNG and bio-DME require more significant changes to engine, storage and 

bunkering infrastructure, incurring additional capital costs. They all require spark ignition 

engines, dual fuel compression ignition engines or converted compression ignition engines, 

given their lower cetane number (with the exception of DME) and cannot self-ignite [90].  380 

 

A barrier to biofuels uptake is the price differential between incumbent fuels like HFO, MDO 

and the biofuels. For example, the IEA estimate a 2016 FAME price of 1,040 USD/t and HVO 

of 542 USD/t, effectively double the fuel price of their fossil counterparts MDO (482 USD/t) 

and HFO (290 USD/t), respectively [88]. Costs are higher for advanced biofuels with the 385 

larger GHG emission savings and fewer sustainability concerns, due to the complexity and 

immaturity of the production processes.  

 

There is also disagreement on whether current GHG emission accounting practices are fit 

for purpose [91]. The magnitude of biogenic carbon emissions factors vary considerably 390 

over time [92], signalling the need for strong oversight of supply chains and forest 

management [93]. Given differing agricultural and processing requirements, and the 
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variability across different biofuel sources, ensuring low environmental impacts across the 

biofuel supply chain is a major challenge. Strong legislative frameworks and incentives for 

bioenergy, for example via the EU’s Renewable Energy Directive, is one way to mandate 395 

sustainable practices [86]. However, some national and regional policies are not yet in 

favour of biofuels and the current classification does not differentiate between biogenic 

carbon and fossil carbon content in the Energy Efficiency Design Index (EEDI) [86].  

 

The wider implications of biofuels involve complex trade-offs in utilising resources that 400 

involve human essentials such as food and water [94]. The global potential for biofuels will 

be heavily constrained once vital crops and land needed to supply food for a growing world 

population are accounted for, which includes constraints on water and fertilizers to grow 

second-generation fuel crops [95]. Some studies have even omitted biofuels from global 

sustainable energy scenarios due to the potential for air pollution during cultivation and 405 

reprocessing, and because carbon neutrality may be unobtainable due to the sacrifice of 

forests for arable land. Nevertheless, in practice, second-generation biofuels are likely to 

play some role for transport in conjunction with renewable electricity [96], but will not be 

capable of meeting the total demand [95]. 

 410 

In summary, biofuels offer compatible replacements to the incumbent fossil marine fuels in 

the short- and medium term. The GHG reduction potential is higher for second generation 

biofuels, where FT-diesel and pyrolysis oil are compatible with diesel infrastructure. Other 

second-generation fuels such as LC ethanol, bio-methanol, DME and bio-LNG would require 

much larger changes to engines, storage and infrastructure. The cost and availability of the 415 

biofuels, particularly advanced biofuels, is a barrier and they will not compete with fossil 

fuel alternatives, unless a strong GHG reduction policy, or carbon price, is introduced. Even 

then, resource must be managed to ensure impacts on broader agriculture and food 

resources are minimised. 

4.2 Methanol 420 

Methanol fuel for ships has received some attention and there is currently one marine 

engine available that may run on methanol as a dual fuel. To date (2018) there are 7 

methanol-fuelled ships in operation, with another 4 planned to be in operation by 2019 

[97]. Methanol combustion in marine engines produces modest CO2 reductions and low 

emissions of other pollutants, relative to HFO or MGO [22, 42]. Stena Germanica, the 425 

world's first methanol-powered sea vessel, is suggested to have reduced SOX emissions by 

99%, NOx by 60%, particulates by 95% and CO₂ by 25%, thus complying with the latest ECA 

regulations on its Baltic Sea route [98].  

Methanol can be produced from many sources, including natural gas, from catalytic 

hydrogenation of a waste CO2 stream or from biomass. In the case of a biomass feedstock, 430 

CO2 emissions are biogenic and may be discounted (see section 4.1 for discussion). 
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However, the methanol supply chain produces significant emissions depending on its 

feedstock and process. The use of methanol from natural gas results in significantly lower 

air quality emissions, but life cycle GHG emissions are around 10% higher than from HFO or 

MDO (see Figure 8), due to the natural gas supply chain, gas reforming and methanol 435 

synthesis. If waste CO2 is to be used (with renewable hydrogen) to produce methanol, great 

care must be taken in carbon accounting: it is not necessarily appropriate to suggest that, if 

it is a thermogenic waste product, emissions are discounted. Thus, life cycle emissions 

associated with methanol from catalytic hydrogenation may be significant, but no studies 

that estimate emissions from this production route were found.  440 

 

The cost of methanol as a fuel is greater than liquid fossil fuels and LNG, as shown in Figure 

7. Thus, whilst air quality emissions may be significantly reduced, the carbon credentials of 

methanol fuel must be proven and then incentivised to encourage further uptake. 

4.3 Hydrogen with marine fuel cells 445 

Fuel cells are an efficient way of producing low carbon electricity [99], but the availability of 

hydrogen and its low volumetric energy density require significant additional infrastructure 

and system design [95]. Hydrogen fuel cells exhibit no direct greenhouse gas emissions, but 

emissions associated with the hydrogen supply chain must be considered. Feedstock 

impacts are highly variable, be it renewable electrolysis, natural gas reforming or biomass 450 

gasification [100, 101]. This is demonstrated in Figure 8, where three estimates of total GHG 

emissions from H2 fuel cells exhibit high variability (from 113 to 997 gCO2eq./kWh), with the 

low emissions using renewable electrolysis, the central emissions using natural gas with 

carbon capture and storage (CCS), and the highest value using natural gas reforming without 

CCS [22]. 455 

 

An advantage of fuel cells is that they generate little noise or vibrations, whilst marine 

ecosystems are currently affected by the highly acoustic nature of shipping [102]. The silent 

electric motors for propulsion have a high efficiency (~95%) and when combined with ~45% 

efficient fuel cells show a significant improvement over internal combustion engines [102]. 460 

A diesel generator and micro gas turbine requires 44% more fuel than a fuel cell of the same 

output power [103]. 

 

There are relatively few hydrogen fuel cell ships in operation today, with DNV GL recording 

23 fuel cell shipping projects at different stages of development in 2017 [104]. The first 465 

civilian ship to utilise fuel cell technology for supplementary propulsion was the Viking Lady. 

Main propulsion was provided by LNG in a diesel engine, with a fuel cell that operated on 

hydrogen or methanol (with reconfiguration). This system reduced SOX by 100%, NOX by 

85% and CO2 by 20% [105]. The ‘ZemShip’ (Zero Emission Ship) FCS Alsterwasser, a hydrogen 
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fuel cell ship based in Hamburg’s port, has 100 passenger capacity  and a power rating of 470 

100 kW for operation on rivers and small waterways [106].  

 

Storage of hydrogen is typically as a compressed gas (up to 700 bar), as a liquid (cryogenic) 

or in solid state (metal hydrides) [102]. Large storage volumes may be a barrier to 

implementation, particularly for retrofits. Table 2 shows the cargo volume and mass impacts 475 

for hydrogen versus HFO and LNG: liquid hydrogen requires 8 times more storage volume 

than HFO and 30 times more for compressed hydrogen. Hydrogen could also be stored as 

liquid ammonia, which does not require such low temperatures (–33°C cf. –254°C for liquid 

hydrogen), giving reduced parasitic energy requirements [107]. Ammonia could be used 

directly for propulsion, either via a combustion engine or in a fuel cell [108]. No 480 

technologies have yet been commercialised for marine operation, although some dual fuel 

engines are under development [109, 110].  

 

Table 2: Cargo volume and mass impacts for different fuels,  

for a vessel with a 5.1 day range.  Data from [111, 112]. 485 

Fuel HFO LNG 

Compressed 

hydrogen 

Liquid 

hydrogen 

Density (kg/m3) 1010 470 23.7 72.4 

Daily fuel use (m3) 83 203 1186 522 

Fuel mass for voyage (t) 421 485 140 140 

Tank volume (m3) 417 1195 12140 3120 

Mass of tanks (t) – 450 8584 972 

     

Containers displaced – 96 372 180 

Volume displaced (m3) – 3700 14340 6939 

Weight displaced (t) – 1258 4878 3123 

 

Cargo shipping must comply with the International Code for the Construction and 

Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code), but the IGC code does not 

currently allow for the transportation of liquid hydrogen. Changes to the code are being 

developed and cargoes not covered by the code can be carried if there is an agreement 490 

between relevant nations [113]. For example, Australia and Japan recently signed a 

memorandum at the Australian Maritime Safety Authority (AMSA) which permits liquid 

hydrogen to be shipped in bulk for the first time [113].  

 

Prohibitive capital costs for new infrastructure are a barrier to global commercialisation. 495 

Some natural gas infrastructure could be used for hydrogen, which could drastically reduce 

capital costs, particularly in countries with a gas-grid network [114]. Hydrogen fuel costs are 

higher, potentially by an order of magnitude, than conventional fuels [111], but this gap 
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should decline as electrolysers fall in cost [115]. Estimates of retail costs for hydrogen vary 

from around 0.06 to 0.24 USD/kWh fuel energy content with an average of 0.12 USD/kWh 500 

[116], reflecting a wide range of potential feedstocks and conversion processes. In 

comparison, the 2017 estimate for MDO was 0.04 USD/kWh energy content (not including 

energy efficiency losses as depicted in Figure 7). Thus, strong incentives are needed to 

encourage uptake of hydrogen.  

 505 

The cost of introducing hydrogen could be reduced by selecting a small number of large 

vessels that are limited to point-to-point routes between highly developed ports with the 

available infrastructure (e.g. Rotterdam and Tokyo) or within a small geographic area (e.g. 

North Sea) [117]. However, despite the potential of some fuel cell technologies, the high-

power demand required to propel large ships is not yet viable with current fuel cell 510 

technology and so will not replace the existing multi megawatt main engines of large ships 

in the foreseeable future [118]. 

4.4 Electric propulsion systems 

As with the propulsion in hydrogen fuel cell ships, electric propulsion (EP) systems feature 

an electric motor supplied by a device that contains a stored form of electrical energy [96]. 515 

The environmental impact is determined by the source of the stored energy, for example 

stored hydrogen or electrical energy can be produced from fossil fuels. Regardless, 

developing the required infrastructure could increase the industry’s flexibility, creating a 

potentially low carbon pathway. The company ‘Norwegian Electric Systems’ (NES) is 

currently developing and integrating hybrid engines and EP systems [119]. Two of its ferries 520 

shall be operating on routes with strict emission requirements as designated by the 

Norwegian Road Authorities, which has resulted in the development and deployment of an 

EP system using chargeable lithium ion batteries [119]. No economic assessments of electric 

propulsion ships were found to date, but cost-effectiveness will be governed primarily by 

battery costs, which are falling rapidly [120], and the cost of electricity or fuel used for 525 

charging. 

4.5 Nuclear Marine Propulsion 

Nuclear fuel offers high power density with low and stable fuel prices, very low greenhouse 

gas and air quality emissions, and the ability to operate for long periods without refuelling. 

Nuclear propulsion is achieved via a small onboard nuclear plant heating water to raise 530 

steam, which drives steam turbines and turbo generators. While used extensively for 

military warships and submarines, the development of a civilian nuclear fleet faces many 

hurdles with public and political perception, legislation and training, and safety against 

catastrophic accidents, terrorism and non-proliferation.  

 535 
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In 2016, it was estimated that 166 naval reactors are in operation: 85  owned by the US, 48 

by Russia and 33 across the rest of the world [121]. To date there have only been four 

commercial nuclear vessels; the Russian Sevmorput is currently the only one active [122]. 

However, this ship experiences restrictions in which ports it can visit, due to civilian 

evacuation plans and fears at docks [123]. Uptake in the commercial sector could utilise 540 

small modular reactor (SMR) technology, sized at a few hundred MW [124], but remain an 

early-stage concept [125]. An example is the ‘RITM-200’ reactor for icebreakers such as the 

NS Arktika, with a seven-year refuelling cycle.  The cost, with two 175 MW steam generators 

is approximately $1.9 billion per vessel [124, 126]. 

 545 

However, control of nuclear material is a significant security and geopolitical concern.  

Highly-enriched uranium (30–90% U235) is used in Russian naval reactors and could be 

subverted into an improvised weapon [121].  Proposals to limit the use of highly-enriched 

uranium in the civilian sector are progressing with support of the International Atomic 

Energy Agency [124], and other nations’ civilian nuclear vessels have used low-enriched 550 

uranium.  

 

Safety concerns may be an insurmountable barrier to wider adoption. There are seven 

nuclear power reactors at the bottom of the ocean due to naval incidents, and the US Navy 

has released radioactive water during fuelling operations [127]. Further challenges involve 555 

the distribution, testing and monitoring of technologies and components needed for 

reactors, fuel production and decommissioning [125]. Retired nuclear vessels are ultimately 

still stored afloat, indicating that a permanent solution has not been established [125]. Due 

to public perception, the lack of precedent and shortfalls in legislative frameworks, trained 

personnel and infrastructure, the potential for large scale deployment before 2050 is low.  560 

5 Vessel Efficiency Improvements 
Several operational and technological changes could reduce shipping emissions (and fuel 

use) via increased efficiency, such as the use of wind propulsion assistance, slow steaming, 

low resistance hull coatings and waste heat recovery systems. Each are described below 

with respect to their decarbonisation potential, costs and applicability. 565 

5.1 Wind assistance 

Wind power is being widely developed through both conventional sails and modern 

alternatives. These include Flettner rotors, kites or spinnakers, soft sails, wing sails and wind 

turbines [128]. They cannot provide a typical ship’s total propulsion power by themselves, 

but as wind speeds are generally highest in the high seas [129], they allow large fuel savings 570 

whilst maintaining full speed [108, 130]. Wind propulsion is most effective at slower speeds 

(e.g. less than 16 knots) [131] and on smaller ships (3,000–10,000 tonnes) [132], which 
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account for one-fifth of global cargo ships. The compatibility of different designs varies 

between ship classes due to potential interference with cargo handling [128, 133].  

 575 

Various studies have estimated fuel savings across a wide range: 2-24% for a single Flettner 

rotor, 1-32% for a towing kite [133], up to 25% for the eConowind sails (which pack into a 

single container) [134] and some estimate savings from 10-60% at slow speeds [131]. 

Several shipping companies have trialled adding sails to cargo vessels [135], but gradual 

uptake is not predicted until 2025 due to their relative immaturity [128]. Additionally, 580 

unfamiliarity with technology, safety and reliability concerns, as well as a lack of 

demonstration have been primary barriers to broad adoption across a relatively risk-averse 

industry [136]. No data on capital costs were found for the installation of wind assistance 

systems as they are at an early stage of development, but the potential fuel savings are 

large and further research is required to determine cost-effectiveness under different 585 

operational conditions and ship types. 

5.2 Solar assistance 

Several carriers are also testing solar assistance, including hybrid sail systems which utilize 

both wind and sunlight to preserve limited deck area. Examples include automated kite sails 

from SkySails, a 3,000 tonne 'zero-emission' cargo carrier vessel from B9 Shipping, and the 590 

UT Wind Challenger hybrid freighter with nine solar sails [135], the EMP Aquarius [137] and 

Nichioh Maru [108].   

 

The attainable energy would only be sufficient to augment the auxiliary power demands 

[128, 138], while the erosion of solar panels by the salty marine environment also poses a 595 

barrier. The potential CO₂ reduction reported in different studies for solar energy 

generation on-board vessels range from 0.2–12% [20], while wind-solar hybrid systems may 

increase fuel savings to 10–40% [135]. As with wind assistance, no capital or operating cost 

data were found and further research is required to determine potential cost-effectiveness. 

5.3 Slow steaming 600 

Full speed for a container ship is normally between 23–25 knots (44 km/h); slow steaming is 

defined as 20–22 knots (39 km/h), extra slow as 17–19 knots (33 km/h) and super slow as 15 

knots (28 km/h) [139]. Slow steaming lengthens round-trip time by 10–20% depending on 

the service route and port times [140], but reduces fuel consumption and CO2 emissions by 

raising vessel efficiency, as shown in Figure 10 [139-142]. Longer transport times associated 605 

with slower speeds means more ships or load is required, which reduces the saving. 

However, a 10% reduction in speed may result in a total average emissions reduction of 19% 

[21]. The benefits of slow steaming are varied across different ship types, sizes, routes and 

duties [143]. Additionally, slow steaming alters engine operating conditions, which could 

increase fouling and corrosion due to low operating temperatures and poor combustion 610 
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[141, 142]. Fouling of the hull also impacts the drag of the vessel that again will increase fuel 

consumption. 

   

Figure 10: Fuel consumption of sea vessels versus average speed. Data from [140].  

 615 

Cariou [144] estimates that slow steaming reduced emissions by 11% from container ships 

between 2008 and 2010 . The greatest reduction was for vessels on large trade routes 

(multi-trade and Europe/Far East), in contrast to smaller trades such as Australia/Oceania 

related trades which are subject to less slow steaming [144]. The IMO suggests that 

container ships, oil tankers and bulk carriers reduced their specific fuel consumption by 30% 620 

between 2007 and 2012 through slow steaming [32].   

 

As shippers and freight forwarders move to 'just-in-time' delivery, slow steaming may 

improve the reliability of scheduling, as vessels can speed up to make up time if needed. 

Slow steaming could also absorb excess fleet capacity during periods of slack demand: in 625 

2010 for example, 40% of potentially excess capacity was absorbed by slow steaming [141].  

 

Fuel costs provide a significant incentive to slow steam, accounting for up to 50% of total 

operating costs, and is anticipated to rise with the introduction of climate related policies 

[145]. However, while slow-steaming for fossil-fuelled ships can reduce costs, the benefits 630 

are not necessarily felt by cargo owners unless those lower fuel costs translate into lower 

freight rates [146].  

 

Thus slow steaming may require regulation or incentive [144]. A regulated global speed 

restriction would decrease emissions significantly, but may be unpopular [143], hard to 635 

achieve [141, 147] and may even deliver perverse results [144]. Speed reductions via de-

rating engines are covered via the EEDI [148], and may be an option if emissions reduction 

targets are increased in the future. A bunker levy or broader market-based mechanism may 
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be more suitable for giving industry flexibility in achieving reductions specific to each case 

[143, 147]. 640 

5.4 Paints and hull coatings  

A smooth hull is important for efficient operation and minimising fuel consumption. 

Bacteria attached to the underwater surface of ships attracts larger organisms, such as 

seaweed, bivalves and mussels (see Figure 11). These increase a ship’s drag coefficient, 

slowing it down and increasing fuel consumption [149-151]. Slime can add 1–2% to drag, 645 

weed adds up to 10%, and the heaviest fouling can increase fuel consumption by 40–50% 

[151-153]. The average surface roughness of a typical ship hull increases by 40 μm/year, 

which translates to 1–1.2% per year increase in fuel consumption [153]. 

 

 650 

Figure 11: Fouling costs upon the attachment to ship hull which cause serious problems 

in shipping industry.  Reproduced with permission from Editec Group. 

 

Paints and hull coating can minimise the skin friction component of resistance, and 

significant capital is invested in anti-fouling paints to prevent bacteria from attaching to the 655 

hull [154, 155]. These have anti-corrosion and anti-fouling properties to protect against 

seawater and marine organisms [156], and have been used for many decades [149, 151].  

 

Tin-based marine coatings were widely used in the 1960-1970s containing tributyltin (TBT) 

compounds that were detrimental to the environment [149]. The degradation of TBT in the 660 

marine environment causes numerous effects, such as endocrine disruption leading to 

sexual disorders, including imposex in dog whelks [128, 149, 155, 157], leading to 

international legislation banning their use [151, 158].  

 

To date it has not been possible to match TBT coatings in terms of performance, cost and 665 

ease of application, but research is ongoing to find ecologically benign alternatives. Modern 

coatings can be broadly classed as either biocide based [157]: 

• Insoluble matrix (epoxy, polyester, vinyl ester); 
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• Soluble matrix (self-polishing, ablative, hybrid); 

or biocide free: 670 

• Fouling release (silicone elastomers); 

• Mechanical cleaning (epoxy/vinyl esters).  

 

Biocides prevent fouling attachment and growth, but may impact upon the environment. 

Unfortunately, their biocide output is greatest when the ship is at voyage and thus least 675 

vulnerable to fouling, causing excessive loss of biocide [157]. Silicone and fouling release 

technologies are attractive biocide-free alternatives from an environmental perspective 

[157]. These paints are non-stick to prevent biofouling but are relatively expensive. They 

also lack the durability of the biocide based systems and are more difficult to apply [153]. 

However, given their environmental profile, these technologies will become increasingly 680 

important for control of marine fouling. 

5.5 Waste Heat Recovery 

Around half of the heat energy produced by the power train is lost as ambient heat without 

doing any useful work [159, 160]. Waste Heat Recovery Systems (WHRS) can convert heat 

from the exhaust and coolant into useful mechanical or electrical energy [161], with 685 

estimates of fuel savings in the range of 4-16% [159, 160, 162].  Several technologies are 

available with a range of efficiencies, notably Steam Rankine Cycle, Organic Rankine Cycle 

(ORC) and Kalina Cycle. The ORC uses an organic fluid for energy conversion [160] and forms 

the basis of most small-scale WHRSs due to simplicity, efficiency at low temperature 

differences, and moderate costs [163]. The Kalina Cycle uses a solution of ammonia and 690 

water, with different boiling points, for its working fluid. This allows more heat to be 

extracted, since boiling occurs over a range of temperatures in distillation [160]. 

 

A WHRS represents an additional capital cost but fuel savings may result in payback period 

of less than 3 years [164], whereas other studies suggest cost-effectiveness across liquid fuel 695 

engines as well as gas engines [165, 166]. However, systems cannot be retrofitted on every 

vessel, even if they are commercially viable.[164-166] 

5.6 Exhaust treatment 

Exhaust gas treatment is another option to decarbonise, albeit at an early stage of 

development for CO2. NOX and SOX scrubbers are widely used for ships using residual fuels, 700 

whilst much work is ongoing to develop methane oxidation catalysts [167-169].  

 

Potential routes exist for carbon capture and storage (CCS) to reduce CO2 emissions from 

the exhaust. The Calix RECAST design involves scrubbing exhaust gas to capture 85–90% of 

the CO2, and using the heat generated in the exothermic reaction to provide additional 705 

motive power and increase fuel efficiency [170]. A dry lime scrubber would produce inert 
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limestone which could be scattered into the ocean. Any surplus lime remaining in the used 

sorbent will remove additional carbon from the oceans by converting to calcium 

bicarbonate, thus reducing ocean acidity [171, 172]. However, this is likely to be an energy-

intensive process from a life cycle perspective; low-carbon lime production would be 710 

required to deliver emissions reductions rather than simply transferring emissions from one 

sector to another [173, 174]. Costs may be significant and more research is required on the 

localised ecosystem impacts of increased pH [175]. 

6 Combined Decarbonisation Potential 
The previous sections have outlined the multitude of technical and operational options to 715 

decarbonise international shipping, and uncertainties around the potential of each. This 

section summarises the carbon mitigation potentials and reveals the opportunity for 

combinations of fuels and efficiency measures to contribute to the IMO 50% 

decarbonisation target. Figure 12 summarises the carbon savings offered by different fuels 

compared to HFO, and of other options that reduce overall fuel consumption, based on a 720 

survey of studies. The figure combines analyses from three industry reports [20, 108, 176], 

the earlier sections of this study, and the systematic review from Bouman et al. [20]. 

 

  

 Figure 12. Ranges of GHG emissions reductions via the use of alternative fuels (left 

panel), and from incorporating various efficiency measures (right panel).  Alternative 725 

fuels are presented relative to the use of conventional fossil liquid fuels, HFO and MDO. 

Light bars represent the range from each study (1st/3rd quartile from Bouman, min/max 

otherwise), and dark horizontal bars represent the median. Data from [20, 108, 176]. 

 

Broadly, there is much more variability in estimates of GHG from fuel switching than there is 730 

from efficiency measures, with the exception of slow steaming. Particularly, the supposedly 
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deeper decarbonisation options from biofuels, hydrogen, nuclear and electric propulsion all 

range from near complete decarbonisation to negligible difference compared to HFO. This is 

likely due to their different feedstock supply chains which must be carefully understood 

prior to being labelled low carbon. 735 

 

LNG is likely to offer a relatively modest improvement compared to HFO, typically resulting 

in 10% reduction in GHGs, but is arguably the most viable short-term solution to reduce CO2 

emissions considering cost-effectiveness and available infrastructure. Conventional 

methanol production from natural gas consistently results in increased emissions compared 740 

to HFO, indicating that any methanol fuel must be derived from low carbon sources (e.g. 

catalytic hydrogenation from renewable hydrogen) if it is to become a decarbonising energy 

vector. The bio-based fuels (bio-LNG, bio-methanol and bio-diesel) give wide ranges of 

decarbonisation potential but typically above 70% reduction whereas the integration of LNG 

and biofuel technology (bio-LNG) could offer up to 90% in a reduction of CO₂, provided that 745 

the bio-LNG supply chain exhibits low environmental and social impacts [177]. Thus, whilst 

infrastructural costs to implement LNG may be large, the additional incorporation of bio-

LNG may represent a palatable option both environmentally and economically.  

 

This study estimates that nuclear gives almost 100% decarbonisation, whereas using grid 750 

electricity is dependent on the regional generation mix [108].  This paper’s estimate (yellow 

bar) is based on the principle that ships would recharge in ports, and so calculates the 

average carbon intensity of electricity at the world’s 100 largest ports [178], weighting each 

port by the shipping volume in 2015 [179]. The weighted average is currently 577±199 

gCO2/kWh, but this would fall by 10% if China were excluded. 755 

 

Efficiency improvement measures may reduce impacts on average by 5–30%. Moderate 

efficiency gains may be made by each option, but the largest contributor is via slow-

steaming (up to 60%) [32, 140, 144]. Indeed, it has been highlighted as a critical step in 

meeting future decarbonisation targets [28, 180]. The incorporation of wind and solar 760 

assistance (up to 32%) and improvements in ship design (up to 24%) give substantial 

benefits also. Notably, none of these options are mutually exclusive, either across these 

options or in conjunction with the fuel options, thus benefits are compounded if combined.  

 

To estimate the combined impact of changing fuels and implementing efficiency measures, 765 

this study uses the improvement estimates given in Figure 12 via a Monte Carlo simulation 

to determine the compounded benefits under different combinations of decarbonising 

measures. The emissions reductions from each fuel and efficiency option were simplified to 

a normal distribution with mean and standard deviation taken from all the studies in Figure 

12. Each fuel was considered with combinations of the five efficiency measures categorised 770 

in Figure 11, sampled across all possible permutations.  
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The results are illustrated in Figure 13 which shows the probability of meeting a 50% and 

80% GHG reduction target compared to HFO by implementing different fuels combined with 

different efficiency measures (from zero efficiency measures to including all five categories). 775 

The error bars represent the minimum and maximum probabilities from the different 

permutations of options. 

 

 
 780 
 

 

Figure 13. Probability of meeting the 50% GHG emission reduction target (top) and a 

stronger 80% target (bottom) via the use of alternative fuels alongside combinations of 

5 different efficiency measures (renewable assisted propulsion, slow steaming, 785 

hydrodynamics, engine design and ship design). 

 

For LNG-fuelled ships to comply with a 50% GHG reduction compared to HFO, strong 

efficiency measures are required. To achieve a 50% likelihood of achieving 50% reductions 

with LNG, all efficiency categories must be implemented. The bio-based fuels require little 790 

efficiency improvement to meet a 50% target, although limited bio-resource availability may 

further incentivise the uptake of efficiency measures to reduce consumption. Further, for 

the bio-LNG routes, efficiency measures are required to reach climate targets due to the 

potential presence of methane emissions which have a strong climate impact. 

 795 
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It must be noted here that this study does not account for the interrelation between 

efficiency measures here. Particularly the impact of slow steaming on both wind assistance 

and hydrodynamics. Slower vessel speeds result in an improved contribution from wind 

assistance, which compounds parallel improvements. However, slower speeds may reduce 

the impact of some hydrodynamic measures such as hull coatings where higher speeds 800 

improve performance. Further work on modelling vessel and fuel improvements would 

serve to better understand the multiple improvement pathways.  

 

Combined fuel and efficiency improvements are shown to potentially drastically reduce 

GHG emissions [20], which is corroborated by the IEA’s estimate of the contribution to 805 

decarbonising international shipping from a selection of measures (Figure 14) [57]. The 

study suggests the main contributors are efficiency improvements which increase ship 

capacity and utilization, as well as through vessel and engine design and operational 

measures. Across the international shipping fleet wind assistance would only contribute up 

to 15%, whereas switching 50% of the fleet to advanced biofuels would result in a reduction 810 

of 16%. 

 

 

Figure 14. IEA pathway to reduce global shipping emissions by 50% by 2050, 

highlighting the trajectories anticipated in their scenarios: Reference Technology 815 

Scenario, two Degree scenario (2DS) and well below two degree scenario (WB2DS).  

The contribution from the major efficiency and fuel change measures in 2060 are 

shown inset to the right. Data from [57] 

 

In conclusion, specific technological and operational measures that would meet the 820 

decarbonisation requirements of the maritime industry could be met via combinations of 

several pathways. This would certainly be achievable with a new fleet with globally 

supportive legislations and policies, but the current fleet may require costly retro-fitting 
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mechanisms to enable said solutions. Ultimately, a combination of technology, fuels and 

operational measures must be enabled by effective, globally enforced policies.  825 

7 Decarbonisation policies 
Given that the EEDI and SEEMP are likely to make only a modest impact on reducing GHG 

emissions alongside projected industrial growth to 2050 [181], stronger policy measures are 

required to meet emerging carbon targets. Potential policies include stronger efficiency 

targets, speed limits, fuel-standards or broader market-based mechanisms [182]. The broad 830 

options for decarbonisation are covered in the following section, followed by discussion of 

existing mechanism proposals and an analysis of the pros and cons of these options. 

7.1 Policy options to decarbonise shipping 

Policy options can be divided in three categories: 

1. The emissions price control approach, in which the participant reacts to a charge or 835 

fluctuation in price (that is linked to emissions) [183]. This includes:  

(a) environmental taxes, fees, or charges; 

(b) charges “en route”; and  

(c) environmentally differentiated port or fairway dues. 

 840 

2. The emissions quantity control approach, where the participants abide by emissions 

limits or the right to emit and allow trading of these “quantities”. This includes: 

(a) credit programs;  

(b) benchmarking programs; and  

(c) cap-and-trade programs.  845 

 

3. Subsidies, where funding is made available for qualifying decarbonisation measures. 

 

7.1.1 Emissions price controls 

A tax placed on the purchase of fuel at the point of sale may be an effective route for 850 

reduction of emissions from shipping [29], where environmental charges are based on the 

quantity and/or quality of the pollutant(s) [29, 184]. The US state of Washington has 

imposed an environmental fuel tax on marine fuels to encourage improvements of the 

state’s waterways. However, there is a risk this method failing from its vulnerability to 

'carbon leakage’, which is defined as the increase in emissions outside a region as a direct 855 

result of a policy to cap emissions within the region [185]. By taking fuel on board from 

areas outside of where the tax is enforced, the operator of the ship can avoid paying the tax 

[29, 186].  
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Unlike environmental charges, a price set “en route” would be determined by the emission 860 

rates, as opposed to fuel quantities. Closely echoing the en route policy already established 

in the aviation sector for many years, this approach may be highly applicable to maritime 

shipping.  

 

7.1.2 Emissions quantity controls 865 

Credit-based trading programs provide operators with credits to manage their emissions to 

meet a required level [183]. This may be an extension of established cap-and-trade 

programs, allowing operations from different sectors of the market to join an existing 

trading program. However, credits should only be provided to measures that reduce 

emissions substantially below a certain level and may require regular evaluation as 870 

technologies, operations and efficiencies change. A trade-off exists between creating 

incentives high enough to motivate ship-owners to participate (given the scheme is 

voluntary) but not so high that credits are awarded to projects with limited additional 

contribution to decarbonisation.  

 875 

Benchmarking trading programmes sets an average emissions level that cannot be exceeded 

[183]. These are typically flexible in nature, where such schemes inherently engage in 

offsetting as opposed to elimination of emissions, thus it is imperative that an appropriate 

benchmark is set to enable effective overall emission reductions [29, 187]. 

 880 

A cap-and-trade program creates a total aggregated cap on emissions. Allowances are 

allocated to emitters and once regulators have fixed a cap, every emitter is free to trade. 

Similar to benchmarking programs, it may be more cost-effective for emitters to invest in 

emissions reductions technologies instead of purchasing allowances.  

 885 

7.1.3 Subsidies 

Subsidies may be delivered through various mechanisms to provide direct financial support 

to industry sectors from either the government, or in the case of shipping, maritime 

authorities. Subsidy mechanisms include grants, low-interest loans, favourable tax 

treatment, tendering systems, and other financial assistance for products with desirable 890 

environmental characteristics [188]. For example, Transport Canada offers subsidies under 

its Freight Technology Incentives Program which aims to lower GHG emissions output by 

reducing fuel consumption and encouraging the employment of energy efficient 

technologies [29]. Another example was the Port of Hamburg, which for a limited period 

offered publicly funded discounts to port dues to ships fulfilling certain emissions criteria 895 

[188]. 

7.2 Market based mechanism proposals 

By 2010, several proposals from various member states had been submitted to the 
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Maritime Environment Protection Committee (MEPC), aligned with IMO principles [189]. 

Norway recommended a sector-wide cap on net emissions from international shipping and 900 

a trading system alongside this, which suggested exemptions should be made for voyages to 

Small Island Developing States (SIDS). France provided a similar proposal, but also targeted 

auction design. The UK suggested that the ETS proposal employ a two-phase approach, with 

the initial phase being one where emissions are offset [190].  

 905 

Under the proposed US Ship Efficiency and Credit Trading, instead of a cap on emissions or a 

surcharge on fuel, all ships would be subject to mandatory energy efficiency standards, 

enforced via an efficiency-credit trading programme [191]. Similar to the EEDI, it sets 

efficiency standards for both new and existing ships which remain committed to reduction 

from the established baseline [191]. Japan and the World Shipping Council (WSC) have 910 

proposed efficiency-targeted standards as opposed to an ETS or bunker levy favoured in 

other countries. The Energy Incentive Scheme (EIS) sets a standard that also mirrors the 

EEDI baseline, and administers supplementary costs to ship-owners, operators or 

consumers in line with the amount of fuel consumed for non-compliance. The International 

Union for Conservation of Nature (IUCN) proposes to compensate developing countries for 915 

the potential financial impact of an MBM via eligibility to rebate mechanisms.  

 

Since 2010, the EU have legislated that shipping will be brought into the EU-ETS by 2023 in 

the absence of action from the IMO by 2021 [181]. Any ships that arrive at EU ports would 

need to comply to this legislation. It may be that this action provides a catalyst for a globally 920 

applicable shipping ETS.  

7.3 Assessment of policy options 

These main policy options are discussed below in terms of the main advantages and 

disadvantages, and are summarised in Table 3. 

 925 

Table 3: The merits of different shipping decarbonisation policy options 

 Advantages Disadvantages 

Emissions price 
controls 

• Economic efficiency 

• Environmental efficiency1 

• Carbon leakage 

• Cap on development 

• Displacement to air or road 

Emissions quality 
controls 

• Flexibility 

• Economic efficiency 

• Transaction costs 

• Burden of additional costs on developing 
countries  

Subsidies • Can be targeted • Requires careful implementation and oversight 

• Need for revision when conditions change 

                                                      
1 Environmental efficiency can be defined as an efficiency measure that accounts for both economic and 
environmental factors [192] M.-L. Song, Y. Guan, F. Song. Environmental efficiency, advances in environmental 
technology and total factor of environmental productivity of China. Kybernetes. 42 (2013) 943-54. 
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A carbon tax represents high economic and environmental efficiency in theory, but may 

result in a cap on development, and potentially a shift away from marine to higher-carbon 

transport routes (aviation and road). A disadvantage of price-control approaches is the risk 

of carbon leakage. Although nation states may initiate a taxation system, a ship remains a 930 

territorial extension of a country whose flag it flies and jurisdiction it will be under. 

However, ships are able to change this legal jurisdiction and register to flags of convenience 

with better tax rates, lower compliance to safety, and potentially less liability to carbon 

regulation [193]. To negate evasions and competitive distortions, it is vital that market-

based measures for maritime transport are globally applied [194].  935 

 

A quantity control mechanism such as an ETS has two key benefits. Firstly, its flexible nature 

enables the cap to vary, but gives certainty on the emissions reductions achieved. Due to 

the highly cyclical nature of the industry, a variation in the demand for allowances 

influences the price of emissions therefore it is essential to set an appropriate cap. 940 

Secondly, it may be cost-efficient in comparison to the ‘charging’ alternatives, producing an 

environmental benefit at least cost.  

 

The deployment of a marine emission-trading scheme (METS) presents several challenges. A 

cap-and-trade policy can confront participants and regulators with high transaction costs 945 

related to trading, monitoring, enforcement, and verification. The volume of allowances 

traded may be lower with higher transactions costs, resulting in sub-optimal trading [195]. 

The economic impacts may add a higher burden to developing countries than to developed 

countries. A mitigation of this disparity may be to apply a "common but differentiated 

responsibility” principle in the international shipping sector [27]. This can be resolved 950 

through the employment of an agreed rebate mechanism, in which developing countries 

could recover the costs.  

 

Credits are pre-certified and approved before they are released for trading, which helps to 

reduce the risk of carbon leakage among members. Other variables to monitor include ship 955 

location, emissions factors, activity and energy consumption. Ship-owners may save 

allowances when mitigation is cheaper, to utilise for the future when high reduction costs 

arise, moderating the effect of price volatility on the ETS. However, there is a risk that 

borrowing against credits may result in firms simply offsetting emissions rather than actually 

reducing them. Thus, if a maritime ETS were to be implemented, borrowing may need to be 960 

restricted by quantity or time limits [196]. 

 

Providing direct financial support through subsidy has been very effective in other sectors, 

can move swiftly, and can target technologies or interventions [197]. In addition there are 

several examples of subsidies in the shipping sector that might guide future policy 965 

development [183, 188]. However, subsidies must be carefully implemented and monitored, 
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and revised where conditions change, as seen in other targeted support mechanisms such 

as feed-in tariffs in the electricity generation sector [197]. 

 

In conclusion, a range of policy options exist to drive decarbonisation in the shipping sector. 970 

A maritime ETS has the potential to provide cost-efficient emissions reductions, but must be 

designed accordingly with respect to auditing processes. The flexible nature of a METS will 

allow for individual ship-owners to employ their own choice of measures as opposed to a 

taxation scheme. To address the capital cost of mitigation options, subsidy schemes such as 

differentiated port dues and incentive schemes could be employed to accelerate the low-975 

carbon transition. Administrative costs could unfairly burden some countries, but could be 

prevented by a rebate system where ETS revenues are partly re-distributed amongst 

developing countries as well as towards climate change funds. Lastly, carbon leakage risks 

eliminating the potential benefits of METS and requires stringent regulation through 

independent external bodies. However, some have argued that implementing a market-980 

based mechanism is unlikely in the short term, and should be examined as a longer-term 

option [27]. 

8 Conclusion 
This study reviewed the potential for a multitude of options to decarbonise international 

shipping, including fuels, energy efficiency technologies, operations and policies. There is no 985 

single route to fully decarbonising the maritime industry, so a multifaceted response is 

required. While rooted within a complex international regulatory framework, 

decarbonisation could be supported by long-term, consistent and effective policy to enable 

the industry to effectively reduce emissions.  

 990 

Liquified natural gas (LNG) is the main alternative to marine diesel and heavy fuel oil (MDO 

and HFO), and could provide a cost-effective reduction in CO2 emissions whilst meeting SOx 

and NOx emissions regulations. However, the greenhouse gas (GHG) benefit is reduced by 

methane slip, with an overall reduction of 8-20% compared to HFO and MDO. LNG is 

currently cheaper than the incumbent marine fuels, but infrastructure must be expanded to 995 

increase market share. LNG cannot be used in isolation to meet a 50% reduction in GHG 

emissions, but must be combined with efficiency measures such as slow steaming, wind 

assistance, or even blended with bio-LNG. 

 

Biofuels have great potential as a renewable source of energy and would be most 1000 

commercially viable when used in conjunction with other liquid or gaseous based fuels. 

However, emissions, costs and applicability vary widely across different biofuels and the 

long-term ramifications of a dependency on biofuels for transport could be ultimately 

detrimental to achieving a sustainable industry.  

 1005 
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Due to the emissions profile and flexibility of hydrogen as a fuel, the potential to reduce 

emissions in shipping and enable renewable industries is high, for example by utilising on-

shore nuclear and renewable power generation to store hydrogen. The capital-intensive 

infrastructure requirements may leave hydrogen as a longer-term solution, but it may be 

more economically feasible to initially select a specific large vessels (e.g. tankers) and ‘point 1010 

to point’ routes to be hydrogen fuelled, minimising infrastructural requirements. Nuclear 

propulsion could almost completely decarbonise shipping and is suitable for vessels that 

require a high-density energy source with long journeys, but safety and security concerns 

are likely to persist as the main barrier for commercial shipping. Renewable sources of 

energy such as solar and wind have potential to increase the efficiency of vessels and assist 1015 

propulsion, thus reducing fuel consumption. With developing energy storage technologies 

and improved designs small ships, there may be a fleet in the future able to run on very little 

conventional fuel. 

 

Even with conventional fuels, various efficiency measures can offer significant 1020 

decarbonisation potential. Slow-steaming reduces fuel consumption and CO2 emissions by 

20–30%, and up to 60% at the extreme. Longer voyage time may result in higher inventory 

costs and may need to be financed and insured for a longer period of time, but can improve 

reliability of scheduling. Antifouling paints can be used as a barrier against biofouling and 

reduce drag, but further work is needed to quantify the cost-benefit and potential 1025 

contribution to reducing emissions from the fleet. Waste heat recovery from ship 

drivetrains may achieve fuel savings of around 4-16%.  

 

There is evidently a cost-emission trade-off, where the most cost effective options such as 

LNG currently only offer modest improvements in GHG emissions. A balance between cost-1030 

effective fuels and improved efficiency measures is essential in minimising costs. To achieve 

a 50% likelihood of achieving 50% GHG reductions with LNG-fuelled ships, all five categories 

of efficiency measures must be implemented together. The bio-based fuels however require 

little efficiency improvement to meet a 50% target, although limited bio-resource 

availability and complications in ensuring sustainability across the full fuel life-cycle may 1035 

further incentivise the uptake of efficiency measures to reduce consumption.  

 

With a growing maritime sector, applying a cap on global shipping emissions would ensure 

this growth is re-routed towards sustainable pathways. A credit-trading based mechanism 

would provide flexibility (appeasing maritime agents) and give room for industry to develop 1040 

and select from various options. The revenue generated from credit-based approaches can 

contribute to investments such as further research in climate change projects, funding 

infrastructure necessary for LNG and other alternative fuels, and compensating developing 

countries that are unfairly burdened by a cap. However, most important to the maritime 

sector, these revenues can fund the subsidies and incentives required for emissions 1045 
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reductions and increasing efficiencies. Stringent regulation will be required to limit the risk 

of carbon leakage.  

 

Ultimately, it is essential that the route to decarbonisation incorporates a combination of 

fuels, technology and policy and that the various combinations of each cater to both short-1050 

term and long-term approaches. With LNG being economically feasible, technologically 

secure and guaranteeing environmental benefits in the short term, a combination of 

subsidies and port dues can effectively accelerate its implementation. However, further 

consideration is still needed to drive the use of nuclear, renewables and hydrogen in the 

long term. Both approaches can be complimented by energy efficiency schemes, both 1055 

technology- and policy-related; however, it is vital that an overarching policy be introduced 

in the short-term to drive the rapid and equitable decarbonisation that this important sector 

vitally needs.  
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