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Abstract. This paper presents an algebraic framework for investigating proposed trans-

lations of classical logic into intuitionistic logic, such as the four negative translations in-

troduced by Kolmogorov, Gödel, Gentzen and Glivenko. We view these as variant seman-

tics and present a semantic formulation of Troelstra’s syntactic criteria for a satisfactory

negative translation. We consider how each of the above-mentioned translation schemes

behaves on two generalisations of Heyting algebras: bounded pocrims and bounded hoops.

When a translation fails for a particular class of algebras, we demonstrate that failure via

specific finite examples. Using these, we prove that the syntactic version of these trans-

lations will fail to satisfy Troelstra’s criteria in the corresponding substructural logical

setting.
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1. Introduction

Schemes for translating classical logic into intuitionistic logic have been stud-
ied since the 1920s and are important for understanding the computational
content of classical logic. These so-called negative translations or double
negation translations such as those proposed by Kolmogorov, Gödel, Gentzen
and Glivenko are generally presented as syntactic translations and are stud-
ied by mainly syntactic methods (e.g., see [9, 11]). In this paper we use an
algebraic framework for investigating proposed double negation translations.

The arguments justifying the syntactic Kolgomorov and Gödel transla-
tions do not need the rule of contraction and hence we develop our framework
in the context of two generalisations of Heyting algebras: bounded pocrims
and bounded hoops. In logical terms these correspond to the conjunction-
implication fragment of intuitionistic affine logic and what we call intu-
itionistic  Lukasiewicz logic, respectively. We view a translation as a variant
semantics for the logical language and we give a semantic formulation of
Troelstra’s criteria for a satisfactory translation.
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The algebras that correspond to classical logic are called involutive (i.e.,
they satisfy ¬¬x = x). We associate with each bounded pocrim A two
involutive pocrims:

• a bounded pocrim AC called the involutive core of A, whose universe is
a subset of the universe of A, and

• a bounded pocrim AR called the involutive replica of A, whose universe
is a quotient of the universe of A.

A generalisation of the first construction (involutive core) was studied in
[20], where it is called a c-retraction. The injection ι : AC → A and the pro-
jection π : A→ AR are not necessarily homomorphisms when A is a general
bounded pocrim, but they are homomorphisms when A is a bounded hoop.
The involutive core and the involutive replica turn out to be naturally iso-
morphic via the composite π ◦ ι. The two constructions give complementary
ways of viewing the double negation operation δ(x) = ¬¬x.

Using the involutive core and the involutive replica, we show that the Kol-
mogorov and Gödel translations satisfy our algebraic formulation of Troel-
stra’s criteria for a satisfactory negative translation in any reasonable class
of bounded pocrims. We also show by explicit finite examples, that the
Gentzen and Glivenko translations fail to satisfy our algebraic formulation
of Troelstra’s criteria in general. The proofs that the Gentzen and Glivenko
translations fail are based on specific finite classes of finite bounded pocrims.
Using these counter-examples we can prove that the syntactic versions of
these translations fail to satisfy Troelstra’s formulation of his criteria.

For bounded hoops, the situation is much simpler. The double negation
operation is a homomorphism implying that all reasonable double negation
translation schemes are equivalent and hence satisfy our formulation of Troel-
stra’s formulation. The results for bounded hoops is dependent on certain
algebraic identities, some of which are not easy to derive from the axioms
for this class of algebra. We use an indirect semantic method to verify the
harder identities (see Section 4.2).

1.1. Related work

Cignoli and Torrell [8] investigate Glivenko’s negative translation scheme in
the setting of bounded BCK algebras, the algebraic models of the implicative
fragment of intuitionistic affine logic. They study an analogue for BCK
algebras of what we call the involutive core of a bounded pocrim, and discuss
extensions of their results on the Glivenko translation to bounded pocrims
and bounded hoops. In the present paper, we are interested in negative
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translation schemes in general and give a framework for comparing different
translations.

Galatos and Ono [14] look at the Glivenko and Kolmogorov translations
for substructural logics over the full Lambek calculus, taking again an al-
gebraic approach studying involutive sub-structures of residuated lattices.
In particular, they show that every involutive sub-structural logic has a
minimal substructural logic that contains the first via a double negation
interpretation. Commutativity is not assumed, so the paper has to deal
with two forms of negation. A proof-theoretic presentation of the results in
[14] for the Glivenko translation are then presented by Ono [20], looking at
the weakest extension of full Lambek calculus needed to derive the Glivenko
theorem for classical logic.

The work that is perhaps closest to ours is that of Farahani and Ono
[10], where they also study various negative translations, analysing the role
of the double negation shift principle in the treatment of the quantifiers in
predicate logic. In their final section on “algebras” they discuss a construc-
tion (c-retraction), which can be viewed as a generalisation of our involu-
tive core construction. In the present paper our goal is to create a general
framework for negative translations, enabling us to identify situations where
particular translation schemes fail to have the required algebraic properties
for a negative translation. In our study we also an alternative to the c-
retraction/involutive core construction, the involutive replica, which turns
out to fit more naturally in some cases.

1.2. Syntactic Negative Translations

As mentioned above, we are studying here classes of algebras that cap-
ture the semantics of some well-known logics. A formula is provable in the
conjunction-implication fragment of intuitionistic affine logic iff it is valid in
all bounded pocrims. Similarly, provability in the conjunction-implication
fragment of GBL (the fragment that we call intuitionistic  Lukasiewicz logic)
is captured by validity in the algebraic class of hoops. The classical counter-
parts of these logics, i.e. the extension of these logics with the double nega-
tion elimination (DNE) principle A⊥⊥ → A, can be also captured by the
sub-class of involutive pocrims/hoops, i.e. bounded pocrims/hoops which
satisfy x⊥⊥ = x.

Negative translations provide a way to eliminate DNE from classical
proofs of a formula A, turning these into intuitionistic proofs of the transla-
tion of A. Although various negative translations have been proposed in the
literature [15, 16, 17, 19], it is well known that all negative translations which
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satisfy Troelstra’s criteria [22, Section 1.10] are intuitionistically equivalent.
Formally, Troelstra calls a formula translation A 7→ AN a negative transla-
tion if

(i) A and AN are classically equivalent;

(ii) If A is provable classically then AN is provable intuitionistically;

(iii) AN is equivalent to a formula in the negative fragment (negated atomic
formulas, implication and conjunction).

The point behind (iii) is that, for this negative fragment, classical and intu-
itionistic provability coincide, and in particular (AN1)N2 is intuitionistically
equivalent to AN1 . Assume then that two translations AN1 and AN2 satisfy
the above. By (DNS1), we have that AN1 → A holds classically. Hence, by
(DNS2), (AN1 → A)N2 is intuitionistically valid. With a further assumption
that these translations are modular (see [11]), we also have (AN1)N2 → AN2

and hence AN1 → AN2 .

2. Pocrims

The most general class of algebras we consider is the class of pocrims: par-
tially ordered, commutative, residuated, integral monoids [3]. Pocrims pro-
vide the natural algebraic models for the fragment of intuitionistic logic
known as minimal affine logic, whose connectives are implication (φ ⇒ ψ)
and a form of conjunction (φ⊗ψ) that is not required to be idempotent (so
that the law of contraction need not hold). The underlying ordered set of a
pocrim is bounded above but not necessarily below; bounded pocrims, i.e.,
those in which the order is bounded below provide the context for our study
of negation.

Definition 2.1 (Pocrim). A pocrim is a structure for the signature (>, ·,→)
of type (0, 2, 2) satisfying the following laws, in which x ≤ y is an abbrevia-
tion for x→ y = >:

(x · y) · z = x · (y · z) [m1]

x · y = y · x [m2]

x · > = x [m3]

x ≤ x [o1]

if x ≤ y and y ≤ z, then x ≤ z [o2]

if x ≤ y and y ≤ x, then x = y [o3]
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if x ≤ y, then x · z ≤ y · z [o4]

x ≤ > [t]

x · y ≤ z iff x ≤ y→ z. [r]

We will refer to the operations · and → as conjunction and residuation
respectively. We adopt the convention that residuation associates to the
right and has lower precedence than conjunction. So the brackets in x ·
((x→ y)→ y) are all necessary while those in (x · z)→(y→ z) may all be
omitted.

Throughout this paper, we adopt the convention that if P is a structure
then P is its universe. If P is a pocrim, the laws [mi], [oj ] and [t] say that
(P ;>, ·;≤) is a partially ordered commutative monoid with the identity >
as top element. Law [r], the residuation property, says that for any y and z
the set {x | x · y ≤ z} is non-empty and has supremum y→ z. It is an easy
exercise in the use of the axioms to show that x→ y is monotonic in y and
antimonotonic in x.

A pocrim is said to be bounded if it has a (necessarily unique) annihilator,
i.e., an element ⊥ such that for every x we have:

⊥ = x · ⊥. [ann]

Note that any finite pocrim P is bounded, the annihilator being given by∏
x∈P x. In a bounded pocrim P, we have that ⊥ = x ·⊥ ≤ x ·> = x for any

x, so that (M ;≤) is indeed a bounded ordered set. We write ¬x for x→⊥
(and give ¬ higher precedence than the binary operators).

Lemma 2.2. The following are valid in all bounded pocrims:

1. ¬¬¬x = ¬x.

2. x→ y ≤ ¬y→¬x.

3. ¬(x · y) = x→¬y = y→¬x.

Proof. The proofs are easy exercises in the use of the bounded pocrim
axioms.

An element x of a bounded pocrim is said to be regular if it satisfies the
double-negation identity:

¬¬x = x. [dne]

For example, > and ⊥ are regular in any bounded pocrim. A bounded
pocrim is said to be involutive if all its elements are regular. This class of
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algebras corresponds to the (>,⊥,⇒,∧)-fragment of classical affine logic.
See [21] for further information about pocrims in general and involutive
pocrims in particular.

We will often write δ(x) for ¬¬x.

Lemma 2.3. The following are valid in all bounded pocrims:

1. x ≤ δ(x).

2. δ2(x) = δ(x).

3. δ is monotonic: if x ≤ y then δ(x) ≤ δ(y).

4. x→ δ(y) = δ(x)→ δ(y).

5. x · δ(y) ≤ δ(x · y).

6. δ(x→ y) ≤ x→ δ(y).

Proof. Let us prove part 6: using [r] several times, we have that (∗) x·¬y ≤
¬(x→ y), whence:

δ(x→ y) · x · ¬y ≤ δ(x→ y) · ¬(x→ y) (∗),[o4]
≤ ⊥ [r]

δ(x→ y) · x ≤ ¬y→⊥ = δ(y) [r]

δ(x→ y) ≤ x→ δ(y) [r]

The proofs of the other parts are similar exercises in the use of the bounded
pocrim axioms together with Lemma 2.2 and the monotonicity properties of
· and → as necessary.

In any bounded pocrim, the set {⊥,>} is closed under · and → and so,
as ¬⊥ = > and ¬> = ⊥, {⊥,>} is the universe of an involutive subpocrim.

Example 2.4. There is a unique pocrim B with two elements. It is involutive
and provides the standard model for classical Boolean logic.

Definition 2.5 (Ordinal sum). If C and D are pocrims, the ordinal sum,
C⊕D, is the pocrim ((C \{>})tD,>, ·,→) where · and → extend the given
operations on C and D to the disjoint union (C \{>}) t D in such a way
that whenever > 6= c ∈ C and d ∈ D, c · d = c (implying that d→ c = c and
c→ d = >).

Thus the order type of C⊕D is the concatenation of the partial orders
(C \{>};≤) and (D;≤). If C 6= {>}, C⊕D is bounded iff C is bounded and
can only be involutive if D = {>} (in which case C⊕D is isomorphic to C),
since if > 6= d ∈ D, then, in C⊕D, we have ¬d = ⊥, so that ¬¬d = > 6= d.
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Remark 2.6. As alluded to in Section 1.2 the equational theory of pocrims
can be viewed as a logical theory, where a term t is viewed as a formula that
holds in a pocrim P iff t = > under all assignments of variables in t to
values in P . Conversely, as x = y in a pocrim iff (x→ y) · (y→x) = >,
the equational theory can be recovered from the logical theory. In the sequel,
we concentrate on the case of bounded pocrims. If C is a class of bounded
pocrims, we write Th(C) for the logical theory of C, i.e., the set of all terms t
over the signature (>,⊥, ·,→) of a bounded pocrim with variables drawn from
the set Var = {v1, v2, . . .}, such that t = > under any assignment Var → P
taking values in a member P of C. It can be shown that a deductive system
called intuitionistic affine logic, which we will refer to as ALi is sound and
complete for the logical theory of all bounded pocrims. ALi is essentially the
usual intuitionistic propositional logic IL without the rule of contraction.

2.1. Involutive pocrims

If P is a bounded pocrim, let N = im(δ) = {δ(x) | x ∈ P}. Since δ(¬x) =
¬x, N = im(¬). In general, N is not closed under conjunction and hence is
not a subpocrim and δ does not respect either · or →:

Example 2.7. There is a bounded pocrim U with elements > > a > b > c >
⊥ and with ·, → and δ as follows:

· > a b c ⊥
> > a b c ⊥
a a b b ⊥ ⊥
b b b b ⊥ ⊥
c c ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

→ > a b c ⊥
> > a b c ⊥
a > > a c c
b > > > c c
c > > > > a
⊥ > > > > >

δ

> >
a a
b a
c c
⊥ ⊥

So, in U, δ(a→ b) = a 6= > = δ(a)→ δ(b), δ(a · a) = a 6= b = δ(a) · δ(a) and
δ(δ(a) · δ(a)) 6= δ(a) · δ(a). The image of negation is N = {>, a, c,⊥}, which
is not closed under conjunction, since a · a = b.

However, in the above example, if we define x ·̂ y = δ(x · y), we find that
N = (N ;>, ·̂,→,⊥) is an involutive pocrim whose residuation agrees with
that of U. Dually, we find that the equivalence relation whose equivalence
classes form the partition Q = {{>}, {a, b}, {c}, {⊥}} of U is a congruence on
the monoid (U,>, ·) and if we define [x] →̌[y] = [x→ δ(y)] (or equivalently
[δ(x)→ δ(y)], by Lemma 2.3, part 4), then Q = (Q; [>], ·̌, →̌, [⊥]) is an
involutive pocrim where ·̌ is induced from · by the monoid congruence. Using
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the following lemma, we will see that these constructions generalise to all
bounded pocrims.

Lemma 2.8. Let P be a bounded pocrim.

1. The set N = im(δ) is closed under →.

2. Let the relation θ be defined on P by x θ y iff δ(x) = δ(y). Then θ is a
congruence on the monoid (P,>, ·).

Proof. 1. As remarked above, N = im(¬), which is closed under → since
¬x→¬y = ¬(¬x · y).
2. Clearly θ is an equivalence relation and we have only to show that if x θ y
then x · z θ y · z. Now, if x θ y, then (∗) ¬y = ¬(δ(y)) = ¬(δ(x)) = ¬x by
Lemma 2.2, part 1 and we have:

δ(x · z) · ¬(y · z) = δ(x · z) · (z→¬y) Lemma 2.2, part 3

= δ(x · z) · (z→¬x) (∗)
= δ(x · z) · ¬(x · z) Lemma 2.2, part 3

= ⊥ [r]

So using [r] again we have δ(x · z) ≤ ¬¬(y · z) = δ(y · z). By symmetry we
also have δ(y · z) ≤ δ(x · z), whence δ(x · z) = δ(y · z), i.e., x · z θ y · z, as
required.

Lemma 2.8 justifies the following definition:

Definition 2.9. Given a bounded pocrim P we define the following struc-
tures over the signature of a bounded pocrim:

• PC , the involutive core of P, is (PC ,>,⊥, ·̂, →̂) where PC = im(δ) ⊆ P ,
where > and ⊥ are as in P and where ·̂ and →̂ are defined as follows:

x ·̂ y := δ(x · y)

x →̂ y := x→ y

We write ι : PC → P for the inclusion.

• PR, the involutive replica of P is (PR, [>], [⊥], ·̌, →̌) where PR is the
quotient P/θ of P by the equivalence relation defined by x θ y iff δ(x) =
δ(y) and where, writing [x] for the equivalence class in PR of x ∈ P , we
define ·̌ and →̌ as follows:

[x] ·̌[y] := [x · y]

[x] →̌[y] := [x→ δ(y)]

We write π : P → PR for the projection.
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We will write ≤̂ and ≤̌ for the order relation on PC and PR respectively.

Theorem 2.10. Let P be a bounded pocrim. Then:

1. PC is an involutive pocrim and the inclusion of (PC , ≤̂) in (P,≤) is
strictly monotonic (x ≤̂ y iff x ≤ y).

2. PR is an involutive pocrim and the projection of (P,≤) onto (PR, ≤̂) is
weakly monotonic (x ≤ y implies [x] ≤̌ [y]).

3. PC and PR are isomorphic bounded pocrims via the composition of the
inclusion ι : PC → P and the projection π : P → PR.

Proof. 1. Noting that →̂ is the restriction to PC of →, the claim about
strong monotonicity is clear and we can write ≤ for ≤̂. The bounded pocrim
axioms are then easily proved with the exception of [m1] (associativity of ·̂)
and [r] (residuation). For associativity, we have:

x ·̂(y ·̂ z) = δ(x · δ(y · z)) Definition

≤ δ(x · y · z) Lemma 2.3, part 5

≤ δ(x · δ(y · z)) [o4], Lemma 2.3, parts 1, 3

So x ·̂(y ·̂ z) = δ(x · y · z) and similarly (x ·̂ y) ·̂ z = δ(x · y · z), giving us the
associativity of ·̂.
For residuation, the right-to-left direction is clear: if x ≤ y →̂ z = y→ z, then
x ·y ≤ z and then x ·̂ y = δ(x ·y) ≤ δ(z) by Lemma 2.3, part 3. But z = δ(z)
since z ∈ PC = im(δ). Hence, x ·̂ y ≤ z. For the converse, assume x ·̂ y ≤ z,
i.e. δ(x · y) ≤ z. By Lemma 2.3, part 5, we have that x · δ(y) ≤ δ(x · y), and
hence x · δ(y) ≤ z. But y = δ(y) since y ∈ PC = im(δ), so we have x · y ≤ z,
which by residuation in P gives x ≤ y→ z. To conclude the proof of part 1,
we must show that PC is involutive, but this is clear since negation in PC

is the restriction to PC = im(δ) of the negation in P and all the elements of
im(δ) are regular by Lemma 2.2, part 1.
2. That (PR, [>], ·̌) is a monoid follows immediately from Lemma 2.8, part 2.
By definition, [x] ≤̌ [y] iff δ(x→ δ(y)) = δ(>) = >. We have

x→ δ(y) ≤ δ(x→ δ(y)) Lemma 2.3, part 1

≤ x→ δ(y) Lemma 2.3, part 6

So δ(x→ δ(y)) = x→ δ(y). Hence [x] ≤̂ [y] iff x ≤ δ(y). Using this, weak
monotonicity and axioms [o1]–[o4] are easily checked. For residuation, we
have that [x] ·̌[y] ≤̌ [z] iff x · y ≤ δ(z) iff x ≤ y→ δ(z) = δ(y→ δ(z)) iff
[x] ≤̌ [y] →̌[δ(z)] = [y] →̌[z].
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Finally, we must show that PR is involutive. Now [x] →̌[⊥] = [x→ δ(⊥)] =
[x→⊥], so negation and hence, also, double negation commute with the
projection of P onto PR. As, by construction [δ(x)] = [x], PR is indeed
involutive.
3. We must show that π ◦ ι is one-to-one, onto and respects the pocrim
operations. To see that π ◦ ι is one-to-one, let x, y ∈ PC , so that x = δ(x)
and y = δ(y), and assume [x] = [y] in PR. By definition δ(x) = δ(y), hence
x = y. To see that π ◦ ι is onto, observe that [x] = [δ(x)] and δ(x) ∈ PC ,
for any x ∈ P . Clearly, (π ◦ ι)(>) = [>] and (π ◦ ι)(⊥) = [⊥]. To see that
π ◦ ι respects conjunction, we must show [x ·̂ y] = [x] ·̌[y] for x, y ∈ PC . By
definition [x] ·̌[y] = [x · y], and [x ·̂ y] = [x · y] iff δ(x ·̂ y) = δ(x · y), but, by
definition, δ(x ·̂ y) = δ(δ(x · y)) = δ(x · y). Finally, to see that π ◦ ι respects
residuation, we must show [x →̂ y] = [x] →̌[y] for x, y ∈ PC . By definition
[x] →̌[y] = [x→ δ(y)] = [x→ y], since y ∈ PC . Moreover, [x →̂ y] = [x→ y]
iff δ(x →̂ y) = δ(x→ y), which holds by definition.

Remark 2.11. For any bounded pocrim P, ι : PC → P is a homomorphism
of the (>,⊥,→)-reduct of P, and π : P → PR is a homomorphism of the
(>,⊥, ·)-reduct of P. In general, however, neither map is a pocrim homo-
morphism (see the discussion of the bounded pocrim U in Example 2.7).

As PC and PR are isomorphic pocrims, one could focus attention on
one of the two constructions, and several authors work solely with their
analogue of PC . We prefer to have both constructions available, since, in
some contexts it is convenient for the (>,⊥,→)-structure to be respected,
while in other contexts it is more convenient for the (>,⊥, ·)-structure to be
respected (cf. the proofs of Theorems 3.5 and 3.6).

3. Generalised and Double Negation Semantics

Beginning with Kolmogorov [19], logicians have studied double negation
translations (or negative translations) that represent classical logic in in-
tuitionistic logic. Kolmogorov’s translation inductively replaces every sub-
formula of a formula by its double negation. Other authors have devised
more economical translations: Gödel’s translation [17] applies double nega-
tion to the right-hand operands of implications and at the outermost level;
Gentzen’s translation [15] applies double negation to atomic formulas only;
and Glivenko’s translation [16] is the most economical off all and just applies
double negation once at the outermost level. In this section we undertake
an algebraic study of these translations.
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3.1. Generalised semantics

We wish to undertake an algebraic analysis of translations such as the var-
ious double negation translations. We will view the translations as variant
semantics and so we need a framework to compare different semantics.

Typically, these translations are defined by recursion over the syntactic
structure of a term, sometimes composed with an additional top-level trans-
formation. See, for example, [11] where top-level transformations are han-
dled by redefining the provability relation. Here, rather than working with
syntax, we prefer to think of a syntactic term t as its denotation viewed as
a family of maps α 7→ x, where x ranges over the universe of a bounded
pocrim P and α is an assignment of values in P to the free variables of t.
The modularity properties of a translation scheme which are needed for our
proofs (see, for example, Theorem 3.11) are then captured by the following
definition:

Definition 3.1. Let Poc⊥ be the category of bounded pocrims and homo-
morphisms and let Set be the category of sets. Given any set X, let HX :
Poc⊥ → Set be the functor that maps a pocrim P to HomSet(X,P ), i.e., the
set of all functions from X to P , and maps a homomorphism h : P → Q
to f 7→ h ◦ f : HomSet(X,P ) → HomSet(X,Q). Now let Ass = HVar and
Sem = HL where L is the set of all terms over the signature (>,⊥, ·,→) of
a bounded pocrim with variables drawn from the set Var = {v1, v2, . . .}. We
define a semantics to be a natural transformation µ : Ass→ Sem.

So given a bounded pocrim P, Ass(P) denotes the set of assignments
α : Var→ P , while Sem(P) denotes the set of all possible functions s : L →
P . A semantics µ is a family of functions µP indexed by bounded pocrims
P such that µP : Ass(P) → Sem(P) and such that for any homomorphism
f : P→ Q the following diagram commutes.

Ass(P)
Ass(f)−−−−→ Ass(Q)yµP yµQ

Sem(P)
Sem(f)−−−−→ Sem(Q)

The standard semantics µS is the one that simply uses the given assign-
ment α : Var → P to give values to the variables in a term in L and then
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calculates its value interpreting the operations in the obvious way:

µSP(α)(vi) = α(vi)

µSP(α)(>) = >
µSP(α)(⊥) = ⊥

µSP(α)(s · t) = µSP(α)(s) · µSP(α)(t)

µSP(α)(s→ t) = µSP(α)(s)→µSP(α)(t)

The Kolmogorov translation corresponds to a semantics µKol defined like
µS, but applying double negation to everything in sight:

µKolP (α)(vi) = δ(α(vi))

µKolP (α)(>) = >
µKolP (α)(⊥) = ⊥

µKolP (α)(s · t)) = δ(µKolP (α)(s) · µKolP (α)(t))

µKolP (α)(s→ t)) = δ(µKolP (α)(s)→µKolP (α)(t))

The Gödel translation1 corresponds to a semantics that applies double
negation to the right operands of residuation and at the outermost level. We
define it using an auxiliary semantics µ∗.

µ∗P(α)(vi) = α(vi)

µ∗P(α)(>) = >
µ∗P(α)(⊥) = ⊥

µ∗P(α)(s · t)) = µ∗P(α)(s) · µ∗P(α)(t)

µ∗P(α)(s→ t)) = µ∗P(α)(s)→ δ(µ∗P(α)(t))

µGödP (α)(s) = δ(µ∗P(α)(s))

It is easily verified that µS, µKol and µGöd are indeed natural transfor-
mations Ass→ Sem.

The Gentzen and Glivenko translations correspond to semantics obtained
by composing the standard semantics with double negation:

µGen = µS ◦ δVar

µGli = δL ◦ µS

1Gödel’s translation of implication is originally stated as (A → B)N = ¬(AN ∧ ¬BN ),
since Gödel’s motivation was to interpret all connectives in terms of conjunction and
negation. But since ¬(AN ∧ ¬BN ) is equivalent to AN → ¬¬BN (even in affine logic),
nowadays this more intuitive definition is taken as the translation of implication.
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where δX denotes the natural transformation from HX = HomSet(X, ·) to
itself with δXP = f 7→ δ ◦ f .

3.2. Double negation semantics

Definition 3.2 (Double negation semantics). Let C be a class of bounded
pocrims, we say that a semantics µ is a double negation semantics for C if
the following conditions hold:

(DNS1) If P ∈ C is involutive, then µP = µSP.

(DNS2) Given a term t, if, for every involutive Q ∈ C and every β : Var→
Q, we have:

µSQ(β)(t) = >,

then, for every P ∈ C and every α : Var→ P , we have:

µP(α)(t) = >.

(DNS3) δL ◦ µP = µP, for every P ∈ C.

Note that these condition are trivially true if C is empty. If C is non-
empty but does not contain any involutive pocrim, the conditions only hold
if µP(α)(t) = > for every P ∈ C, assignment α : Var→ P and term t.

Remark 3.3. Subject to one proviso, the above definition can be seen to
agree with the usual syntactic definition of a double negation translation due
to Troelstra, as summarised in Section 1.2. The proviso is that we must
have Th(I) = Th(C) + [dne], where I comprises the involutive pocrims in
C and where Th(C) + [dne] denotes the smallest set of terms that contains
Th(C) that is closed under rewriting with equations that either hold in every
member of C or have one of the forms ¬¬x = x or x = ¬¬x.

Definition 3.4. We say a class C of bounded pocrims is inv-closed if when-
ever P ∈ C, then there is Q ∈ C such that Q is isomorphic to the involutive
core, or equivalently the involutive replica, of P.

Theorem 3.5. The Kolmogorov semantics, µKol, is a double negation se-
mantics for any inv-closed class C of bounded pocrims.

Proof. (DNS1) and (DNS3) are easy to verify. As for (DNS2), let P ∈ C
and let t be a term such such that µSQ(β)(t) = > for every assignment
β : Var → Q when Q is involutive. Then, if α : Var → P , it is easy to see
by induction on the structure of any term s that the Kolmogorov semantics
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of s in P under an assignment α agrees with the standard semantics of s on
PC , the involutive core of P, under the assignment δ ◦ α:

µKolP (α)(s) = µSPC (δ ◦ α)(s)

(For the inductive step for residuation use the identity δ(δ(x)→ δ(y)) =
δ(x)→ δ(x), which follows from Lemma 2.3 parts 3 and 6.) Now δ ◦ α
is an assignment into the involutive pocrim PC , which by assumption is
isomorphic to some Q ∈ C, via some isomorphism φ : PC → Q. Hence,
using our hypothesis on involutive members of C, and the fact that µS is a
natural transformation, we have:

µKolP (α)(t) = (φ−1 ◦ µSQ(φ ◦ δ ◦ α))(t) = >

completing the proof of (DNS2).

Theorem 3.6. The Gödel semantics, µGöd is a double negation semantics
for any class C of inv-closed bounded pocrims.

Proof. We follow a similar line to the proof of Theorem 3.5 using the
involutive replica in place of the involutive core. Again (DNS1) and (DNS3)
are easy. For (DNS2), given a bounded pocrim P, we see by induction on
the structure of a term s that for any assignment α : Var→ P , we have:

π(µGödP (α)(s)) = µSPR(π ◦ α)(s)

where π : P → PR is the natural projection onto the involutive replica.
Hence if µSQ(β)(t) = > for every assignment β : Var → Q where Q is
involutive, then, using our hypothesis on involutive members of C, and the
fact that µS is a natural transformation, we have:

π(µGödP (α)(t)) = (φ−1 ◦ µSPR(φ ◦ π ◦ α))(t) = π(>)

where φ : PR → Q is an isomorphism of PR with some involutive Q ∈ C.
Now π(x) = π(y) iff δ(x) = δ(y), so δ(µGödP (α)(t)) = δ(>) = >, but clearly
δ ◦ µGöd = µGöd and we have proved (DNS2).

We will now exhibit classes of bounded pocrims where the Gentzen and
Glivenko semantics fail to give double negation semantics. These classes
involve the pocrims defined in the following examples.
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Example 3.7. The pocrim P4 comprises the chain > > p > q > ⊥. The
operation tables for P4 are as follows.

· > p q ⊥
> > p q ⊥
p p ⊥ ⊥ ⊥
q q ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

→ > p q ⊥
> > p q ⊥
p > > p p
q > > > p
⊥ > > > >

δ

⊥ ⊥
p p
q p
> >

In P4, δ(q) = p, so P4 is not involutive. However, the involutive core of
P4 is actually a subpocrim: namely the subpocrim with universe {⊥, p,>}
which (in anticipation of Example 4.4), we will refer to as L3.

Example 3.8. Consider the pocrim Q6 with six elements > > p > q > r >
s > ⊥ and with ·, → and δ as shown in the following tables:

· > p q r s ⊥
> > p q r s ⊥
p p p r r s ⊥
q q r r r ⊥ ⊥
r r r r r ⊥ ⊥
s s s ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

→ > p q r s ⊥
> > p q r s ⊥
p > > q q s ⊥
q > > > p s s
r > > > > s s

s > > > > > q

⊥ > > > > > >

δ

> >
p >
q q
r q

s s

⊥ ⊥

Q6 is not involutive, as δ(x) = x fails for x ∈ {p, r}. In Q6, double
negation is an implicative homomorphism: ¬¬x→¬¬y = ¬¬(x→ y) for
all x, y. Double negation is not quite a conjunctive homomorphism in Q6:
¬¬x · ¬¬y = ¬¬(x · y) unless {x, y} ⊆ {q, r}, in which case ¬¬x · ¬¬y = r <
q = ¬¬(x · y).

The involutive replica of Q6 turns out to be a quotient pocrim: as in-
dicated by the block decomposition of the above operation tables, there is a
homomorphism h : Q6 → Q4, where Q4 is the involutive replica of Q6 and
comprises the chain > > u > v > ⊥ with operation tables as follows:

· > u v ⊥
> > u v ⊥
u u u ⊥ ⊥
v v ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

→ > u v ⊥
> > u v ⊥
u > > v v
v > > > u
⊥ > > > >

δ

> >
u u
v v
⊥ ⊥

The kernel congruence of h has equivalence classes {>, p}, {q, r}, {s} and
{⊥} which are mapped by h to >, u, v, > respectively in Q4.
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Theorem 3.9. (i) The Gentzen semantics µGen is not a double negation
semantics for any class of bounded pocrims that contains the pocrim Q6

of Example 3.8. (ii) The Glivenko semantics µGli is not a double negation
semantics for any class of bounded pocrims that contains the pocrim P4 of
Example 3.7.

Proof. By the remarks after Definition 3.2 we can assume that the class
of bounded pocrims contains at least one involutive pocrim in both cases.

(i): We show that (DNS2) does not hold for µGen in Q6. Let x, y ∈ Var and
let t be the formula δ(x ·y)→x ·y. Clearly, µSP(α)(t) = >, for any involutive
pocrim P and any α : Var → P . Thus (DNS2) requires µGenQ6

(α)(t) = > for
any α : Var→ Q6. However, if α(x) = α(y) = r, we have:

µGenQ6
(α)(t) = δ(δ(r) · δ(r))→ δ(r) · δ(r)

= δ(q · q)→ q · q
= δ(r)→ r = q→ r = p 6= >.

(ii): we argue as in the proof of (i), but taking t to be δ(x)→x. Then, if
α(x) = q, we have:

µGliP (α)(t) = δ(δ(q)→ q)

= δ(p→ q) = δ(p) = p 6= >.

Theorem 3.10. Let C1 comprise the two bounded pocrims P4 and L3 of
Example 3.7 and let C2 comprise the two bounded pocrims Q6 and Q4 of
Example 3.8. Then:
(i) The Gentzen semantics, µGen, is a double negation semantics for C1, but
the Glivenko semantics, µGli, is not.
(ii) The Glivenko semantics, µGli, is a double negation semantics for C2, but
the Gentzen semantics, µGen, is not.

Proof. (i): By Theorem 3.9, µGli is not a double negation semantics for C1.
As for µGen, (DNS1) is easily verified. For (DNS3) and (DNS2), note that
for any α : Var→ P4, we have:

µGenP4
(α) = (µSP4

◦ δVar)(α) = µSP4
(δ ◦ α) = µSL3

(δ ◦ α)

where in the last expression we have identified L3 with the bounded sub-
pocrim of P4 whose universe is im(δ). Thus evaluation under µGen with an
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assignment in any bounded pocrim in C1 is equivalent to evaluation under
the standard semantics, µS, with an assignment in the involutive pocrim L3.
(DNS3) and (DNS2) follow immediately from this.
(ii): By Theorem 3.9, µGen is not a double negation semantics for C2. As
for µGli, (DNS1) and (DNS3) are immediate from the definition of µGli. For
(DNS2), let t be a formula, such that µSQ4

(α)(t) = >, for any assignment
α : Var → Q4. As Q4 is the only involutive pocrim in C2, we must show
that µGliP (α)(t) = > for P ∈ C2 under any assignment α : Var → P . This
is easy to see for P = Q4, since the Glivenko semantics is the double nega-
tion of the standard semantics and Q4 is involutive. As for P = Q6, let
α : Var → Q6 be given. As discussed in Example 3.8, there is a quotient
projection h : Q6 → Q4, so, as µS is a natural transformation, the following
diagram commutes:

Ass(Q6)
Ass(h)−−−−→ Ass(Q4)yµSQ6

yµSQ4

Sem(Q6)
Sem(h)−−−−→ Sem(Q4)

Hence, by the assumption on t, we have:

(h ◦ µSQ6
(α))(t) = µSQ4

(h ◦ α)(t) = >

So µSQ6
(α)(t) ∈ h−1(>) = {>, p}. As δ(>) = δ(p) = >, we can conclude:

µGliQ6
(α)(t) = δ(µSQ6

(α)(t)) = >.

Theorem 3.11. There are extensions of intuitionistic affine logic ALi in
which the syntactic Gentzen translation meets Troelstra’s criteria for a dou-
ble negation translation but the syntactic Glivenko translation does not and
vice versa.

Proof. By Remark 3.3 and Theorem 3.10 it is enough to prove that if L3,
P4, Q4 and Q6 are as in Theorem 3.10, then:

Th(L3) = Th(P4) + [dne]

Th(Q4) = Th(Q6) + [dne].

For the first equation, the right-to-left inclusion holds because identities
are preserved in subalgebras. For left-to-right, let a term t be given and
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let us write P |= t to mean µSP(α)(t) = > for every α : Var → P . As-
sume L3 |= t and let w1, . . . , wk be the variables occurring in t. Define s
to be (δ(w1)→w1) · . . . · (δ(wk)→wk). Clearly s ∈ Th(Poc⊥) + [dne] ⊆
Th(P4) + [dne] I claim that µSP4

(α)(s · s→ t) = > for every α : Var→ P4, so
that, as s ∈ Th(P4) + [dne], t ∈ Th(P4) + [dne]. To see this, let an assign-
ment α : Var→ P4 be given. Then either (i) im(α) ⊆ {>, p, 1}, in which case
µSP4

(α)(s · s→ t)/geµSP4
(α)(t) = >, since α is an assignment into the involu-

tive subpocrim L3 and so L3 |= t by assumption, or (ii) α(wi) = q for some
i, but then µSP4

(α)(δ(wi)→wi) = p→ q = p and so µSP4
(α)(s · s) ≤ p ·p = ⊥.

In both cases, we have that µSP4
(α)(s · s→ t) = >, proving the claim.

The proof of the second equation is similar using the facts that identities
are preserved in quotient algebras and that, if Q4 |= t and α : Var → Q6,
then µSQ6

(α)(t) ∈ {>, p}, implying that Q6 |= (δ(t)→ t)→ t.

4. Hoops

If x and y are elements of a pocrim, x · (x→ y) is a lower bound for x and
y as is y · (y→x). Pocrims in which the two lower bounds coincide (and
hence x · (x→ y) is the meet of x and y) turn out to have many pleasant
properties, motivating the following definition.

Definition 4.1 (Hoop, [5], see also [1, 2, 12]). A hoop2 is a pocrim that
satisfies commutativity of weak conjunction:

x · (x→ y) = y · (y→x). [cwc]

Logically, we can view φ ⊗ (φ ⇒ ψ) or ψ ⊗ (ψ ⇒ φ) as a weak form
of conjunction of φ and ψ. If we define φ ∧ ψ ≡ φ ⊗ (φ ⇒ ψ), then [cwc]
says that ∧ is commutative, i.e. the two forms of weak conjunction coincide.
This is known in substructural logic as the axiom of divisibility.

The following lemma provides some useful characterizations of hoops.

Lemma 4.2. If P is a pocrim, the following are equivalent:

1. P is a hoop. I.e., P satisfies x · (x→ y) = y · (y→x).

2. P is naturally ordered. I.e., for every x, y ∈ P such that x ≤ y, there is
z ∈ P such that x = y · z.

2Büchi and Owens [5] write of hoops that “their importance . . . merits recognition
with a more euphonious name than the merely descriptive “commutative complemented
monoid””. Presumably they chose “hoop” as a euphonious companion to “group” and
“loop”.
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3. For every x, y ∈ P such that x ≤ y, x = y · (y→x).

4. P satisfies x · (x→ y) ≤ y · (y→x)

Proof. 1 ⇒ 2: Assume that P satisfies x · (x→ y) = y · (y→x) and that
x, y ∈ P satisfy x ≤ y, i.e., x→ y = 1. Taking z = y→x, we have:

x = x · 1 = x · (x→ y) = y · (y→x) = y · z.

2 ⇒ 3: Assume that P is naturally ordered and that x, y ∈ P satisfy x ≤ y.
Then x = y · z for some z. By the residuation property, we have z ≤ y→x,
hence x = y · z ≤ y · (y→x) ≤ x and so x = y · (y→x).
3⇒ 4: assume that P satisfies x = y · (y→x) whenever x, y ∈ P and x ≤ y.
Given any x, y ∈ P , we have x · (x→ y) ≤ y, whence:

x · (x→ y) = y · (y→x · (x→ y)) ≤ y · (y→x).

4 ⇒ 1: exchange x and y and use the fact that ≤ is antisymmetric.

The axiom [cwc] is often referred to as the axiom of divisibility in the
literature, for reasons which become clear if one uses the alternative notation
x/y for y→x, so that the formula of part 3 of Lemma 4.2 reads x = y ·(x/y).

4.1. Involutive hoops

Example 4.3. We write I for the involutive hoop whose universe is the unit
interval [0, 1] and whose operations are defined by

> = 1

x · y = max(x+ y − 1, 0)

x→ y = min(1− x+ y, 1)

I provides an infinite model of classical  Lukasiewicz logic, (which we refer
to as  LLc).

Example 4.4. For n ≥ 2, let Ln be the subhoop of I generated by 1
n−1 .

It is easy to see that the universe of Ln is Ln = {0, 1
n−1 ,

2
n−1 , . . . ,

n−2
n−1 , 1}.

The hoops Ln are involutive and provide natural finite models of classical
 Lukasiewicz logic  LLc.

A hoop H is said to be Wajsberg, see [1, 13], if it satisfies

(x→ y)→ y = (y→x)→x.
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Lemma 4.5. A bounded hoop is Wajsberg iff it is involutive.

Proof. In a bounded Wajsberg hoop H we have

δ(x) = (x→⊥)→⊥ = (⊥→x)→x = >→x = x

therefore H is involutive. For the other direction, assume H is an involutive
hoop and let x, y ∈ H. Since H is involutive, it is enough to show that
¬((x→ y)→ y) is symmetric in x and y which one may prove as follows:

¬((x→ y)→ y) = δ(x→ y) · ¬y Theorem 4.11

= (x→ y) · ¬y involutivity of H

= (x→ y) · (y→x) · ((y→x)→¬y) Lemma 4.2, part 3

= (x→ y) · (y→x) · ¬(y · (y→x)) Lemma 2.2, part 3

where the application of Lemma 4.2 uses that ¬y ≤ y→x. By [cwc], the
last expression is symmetric in x and y.

There are, however, unbounded Wajsberg hoops, for instance:

Example 4.6. Let O be the unbounded hoop whose universe is the half-open
interval (0, 1] and whose operations are:

> = 1

x · y = xy

x→ y = min(
y

x
, 1)

O is easily seen to be a Wajsberg hoop because (x→ y)→ y = max(x, y).

Example 4.7. Apart from L3 there is one other pocrim with 3 elements,
namely G3 = B⊕B. G3 is the first non-Boolean example in the sequence of
idempotent pocrims defined by the equations G2 = B and Gn+1 = Gn ⊕ B.
Gn can be taken to be a set of n real numbers {1, x1, x2, . . . , xn−2, 0} with
> = 1 > x1 > x2 . . . > xn−2 > 0 = ⊥ and with operations defined by

x · y = min{x, y} x→ y =

{
y if y < x
> otherwise

The Gn are finite Heyting algebras. They were used by Gödel to prove that
intuitionistic propositional logic requires infinitely many truth values [18].
In Gn, ¬x = ⊥ unless x = ⊥, so for n > 2, Gn is not involutive.
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It is easy to check from the definitions that C⊕D is a hoop iff both C
and D are hoops.

Example 4.8. It can be shown that there are 7 pocrims with 4 elements:
B × B, L4, G4, B ⊕ L3, L3 ⊕ B, P4 and Q4, where P4 and Q4 are as
described in Examples 3.7 and 3.8 respectively. P4 and Q4 are the smallest
pocrims that are not hoops: P4 is not a hoop since it is not naturally ordered:
there is no z with p · z = q. Likewise Q4 is not a hoop, because there is no
z with u · z = v.

4.2. De Morgan identities in hoops

In this section we prove two De Morgan identities for conjunction and resid-
uation in bounded hoops. The proof of the identity for conjunction is el-
ementary. The identity for residuation is proved using an indirect method
captured in the following lemma.

Lemma 4.9. Let φ(x1, . . . , xn) be an identity in the language of a bounded
hoop, then φ(x1, . . . , xn) holds in all hoops iff it holds under every interpre-
tation of the xi in a bounded hoop H that falls under one of the following
three cases:
case (i): H ∼= F⊕ S with F = {>};
case (ii): H ∼= F ⊕ S with F 6= {>}. There is a subcase for each choice of
I = {i | xi ∈ S} 6= ∅ and J = {j | xj ∈ F} 6= ∅, with F generated by the xj
with j ∈ J ;
case (iii): H ∼= B⊕ S, with all xi ∈ S.
Here in each case S is subdirectly irreducible, Wajsberg and generated by the
xi ∈ S. S is not necessarily bounded in cases (i) and (ii).

Proof. The proof uses Birkhoff’s theorem (e.g., see [6, Theorem II.8.6]) to
show that H is isomorphic to a subdirect product of subdirectly irreducible
hoops and then uses the characterization of subdirectly irreducible hoops
due to Blok and Ferreirim [1, Thorem 2.9]. Details are left to the reader.

Note that in case (i) of the lemma H is isomorphic to S and so is a
bounded Wajsberg hoop and hence involutive.

Example 4.10. If 0 < k ∈ N, the identity ¬xk→ δ(x)→x = > clearly holds
in any involutive hoop. It also holds in any hoop of the form B ⊕ S (since
in such a hoop, either x = ⊥ or ¬xk = ⊥). This covers cases (i) and (iii) in
Lemma 4.9. As the identity has only one variable, there is nothing to prove
in case (ii). Hence, ¬xk→ δ(x)→x = ⊥ holds in any bounded hoop.
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In any bounded pocrim, we have ¬(x · y) = x · y→⊥ = x→ y→⊥ =
x→¬y, so the first identity in the following theorem is easily proved. In a
bounded hoop, we have a kind of dual identity: ¬(x→ y) = ¬¬x · ¬y.

Theorem 4.11. The following identities are satisfied in any bounded hoop:

¬(x · y) = x→¬y ¬(x→ y) = ¬¬x · ¬y

Proof. See the above remarks for the first identity. For the second we use
Lemma 4.9, which reduces the problem to the following cases for a hoop H
and its elements x and y.
Case (i): Our assumptions imply that H is involutive. Using Lemma 2.2,
in an involutive hope we have x→ y ≤ ¬y→¬x ≤ δ(x)→ δ(y) = x→ y,
whence x→ y = ¬y→¬x = ¬(x · ¬y) and we have:

¬(x→ y) = ¬¬(x · ¬y) = x · ¬y = ¬¬x · ¬y.

Case (ii): H = F⊕S, {x, y} ∩ S 6= ∅, {x, y} ∩F \{>} 6= ∅: this leads to two
subcases that are proved using elementary properties of F⊕ S, as follows.
Subcase (ii)(a): x ∈ S, y ∈ F \{>}:

¬(x→ y) = ¬y = > · ¬y = ¬¬x · ¬y

Subcase (ii)(b): x ∈ F \{>}, y ∈ S:

¬(x→ y) = ¬> = ⊥ = ¬¬x · ⊥ = ¬¬x · ¬y.

Case (iii): H = B⊕ S where x, y ∈ S: for u ∈ S, ¬u = ⊥, so as x→ y ∈ S,
we have ¬(x→ y) = ⊥ = > · ⊥ = ¬¬x · ¬y.

4.3. Double negation semantics for hoops

Theorem 4.12. Let H be a bounded hoop.

1. The double negation mapping, δ, is a homomorphism H→ H.

2. For x, y ∈ HC , x ·̂ y = x · y, hence HC is a bounded subhoop of H.

3. For x, y ∈ H, [x] →̌[y] = [x→ y], hence HR is a quotient bounded hoop
of H via the the projection π : H → HR.

4. HC and HR are isomorphic hoops via the composition π ◦ ι : HC → HR.
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Proof. 1. By Theorem 4.11, we have3:

δ(x) · δ(y) = ¬(x→¬y) = δ(x · y)

δ(x)→ δ(y) = ¬(δ(x) · ¬y) = δ(x→ y)

2. For x, y ∈ HC , we have

x ·̂ y = δ(x · y) by definition

= δ(x) · δ(y) by part 1

= x · y since x, y ∈ HC

I.e. ι : HC → H respects conjunction. Hence, by Remark 2.11, ι is a hoop
homomorphism.
3. We have

[x] →̌[y] = [x→ δ(y)] by definition

= [δ(x)→ δ(y)] by Lemma 2.3, part 4

= [δ(x→ y)] by part 1

= [x→ y] since δ(δ(x→ y)) = δ(x→ y)

I.e. π : H → HR respects residuation. Hence, by Remark 2.11, π is a hoop
homomorphism.
4. Immediate from Theorem 2.10 (part 3).

Remark 4.13. Cignoli and Torrens ([8, Theorem 4.8] ) show that the set
of regular elements in a bounded hoop is a subhoop if and only if the double
negation map respects conjunction. Theorem 4.12 shows that this is always
the case.

Theorem 4.14. The Kolmogorov semantics, µKol, the Gödel semantics,
µGöd, the Gentzen semantics, µGen, and the Glivenko semantics, µGli are
double negation semantics for any class C of hoops that is closed under tak-
ing involutive cores (or equivalently involutive replicas).

Proof. It is clear from Theorem 4.12 (part 1) that the Kolmogorov, Gödel,
Gentzen and Glivenko semantics all agree when restricted to hoops. The
result is therefore immediate from either Theorem 3.5 or Theorem 3.6.

3This is a strengthening of Lemma 1.3 of [7], which shows that these equations hold in
the more restricted setting of BL algebras.
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