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More than 30 years after the discovery of linear logic, a simple fully-complete model has still not

been established. As of today, models of logics with type variables rely on di-natural transfor-

mations, with the intuition that a proof should behave uniformly at variable types. Consequently,

the interpretations of the proofs are not concrete. The main goal of this thesis was to shift from

a 2-categorical setting to a first-order category.

We model each literal by a pool of resources of a certain type, that we encode thanks to

sorted names. Based on this, we revisit a range of categorical constructions, leading to nominal

relational models of linear logic.

As these fail to prove fully-complete, we revisit the fully-complete game-model of linear

logic established by Melliès. We give a nominal account of concurrent game semantics, with

an emphasis on names as resources. Based on them, we present fully complete models of

multiplicative additive tensorial, and then linear logics. This model extends the previous result

by adding atomic variables, although names do not play a crucial role in this result. On the other

hand, it provides a nominal structure that allows for a nominal relationship between the Böhm

trees of the linear lambda-terms and the plays of the strategies.

However, this full-completeness result for linear logic rests on a quotient. Therefore, in the

final chapter, we revisit the concurrent operators model which was first developed by Abramsky

and Melliès. In our new model, the axiomatic structure is encoded through nominal techniques

and strengthened in such a way that full completeness still holds for MLL. Our model does not

depend on any 2-categorical argument or quotient. Furthermore, we show that once enriched

with a hypercoherent structure, we get a static fully complete model of MALL.



3

Acknowledgements
First, I would like to thank my supervisor, Nikos Tzevelekos, for his constant support, guid-

ance, for his tremendous proof-reading, and for being a constant source of inspiration (to this

acknowledgement section itself). I also have a special thought for my second supervisor, Ed-

mund Robinson, who placed confidence in me along all these years (although I am still not sure

why).

I am particularly grateful to Paul-André Melliès, who has, after being an unforgettable

teacher of category theory, provided guidance to me, helped me find this PhD, was always

present to answer my questions, and agreed to examine this thesis. This thesis owes a lot to him,

and most of the ideas exposed along it emanates from his work.

I would also like to thanks Samson Abramsky, whose work has been greatly influential

to me, and who notably co-wrote (with Paul-André Melliès) “Concurrent Games and Full-

Completness” [10], a paper that I found so great that I have worked on semantics of Linear

Logic ever since I read it.

I greatly thanks Nikos Tzevelkos, Paulo Oliva and Paul-André Melliès (the latter two acting

as examiners, the former as supervisor) for reading the thesis (something I wouldn’t wish on my

worst enemy) and suggested several corrections and improvements.

Many thanks go to my friends and family who supported me during this Ph.D. I notably

think of Sandra, who has been there for me all these years, and my parents who supported and

had faith in me ever since I was born. Last but not least, all my colleagues from the Theory

Group, and especially my fellow Ph.D students (and post-doc) whom I shared CS420-CS438-

CS249 (in chronological order) with during this time.

Finally, I would like to acknowledge the financial support of Queen Mary University of

London.



4



Contents

List of Figures 11

I Introductory Chapters 13

1 Introduction 15

1.1 Layman’s introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 The calculus of computation . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.2 Interlude: logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.3 The Curry-Howard-Lambek correspondence . . . . . . . . . . . . . . 17

1.1.4 Intuitonistic linear logic . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.5 The communication of intuitonistic logic . . . . . . . . . . . . . . . . 19

1.1.6 Classical linear logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Denotational semantics of linear logic . . . . . . . . . . . . . . . . . . 24

1.2.2 Nominal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.3 Full completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.4 A trick, tensorial logic . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.5 Historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Contributions and thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Linear Logic, Tensorial Logic, and their Models 31

5



6 CONTENTS

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 A brief introduction to linear logic . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Equivalence of proofs in linear logic . . . . . . . . . . . . . . . . . . . 37

2.2.2 Focusing in linear logic . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Proof nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 A brief introduction to tensorial logic . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 Equivalence of proofs in tensorial logic . . . . . . . . . . . . . . . . . 53

2.3.2 Focussing in tensorial logic . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Linear logic and tensorial logic: a translation . . . . . . . . . . . . . . . . . . 63

2.4.1 Reverse translation and quotient . . . . . . . . . . . . . . . . . . . . . 66

2.5 Categorical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.5.1 Free categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Simple Nominal Models 73

3.1 Names and the free symmetric monoidal category . . . . . . . . . . . . . . . . 74

3.1.1 An introduction to nominal sets . . . . . . . . . . . . . . . . . . . . . 74

3.1.2 Building the free symmetric monoidal category . . . . . . . . . . . . . 76

3.2 Traced monoidal category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Polarities and compact closed category . . . . . . . . . . . . . . . . . . . . . . 83

3.3.1 On the free compact closed category . . . . . . . . . . . . . . . . . . . 87

3.4 Nominal relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.1 Nominal linear relations . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.2 Trace structure on NomLinRel . . . . . . . . . . . . . . . . . . . . . . 91

3.4.3 Nominal polarised linear relations . . . . . . . . . . . . . . . . . . . . 96

3.4.4 Nominal linear relations, a downside . . . . . . . . . . . . . . . . . . . 99



CONTENTS 7

3.4.5 Lax polarised nominal relations . . . . . . . . . . . . . . . . . . . . . 100

3.5 Nominal hypercoherence spaces . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5.1 The category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5.2 Properties of nominal hypercoherence spaces . . . . . . . . . . . . . . 107

II Nominal Asynchronous Games 109

4 Nominal Structures for Asynchronous Games 111

4.1 Fraenkel-Mostowski sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Nominal trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.2 Properties of nominal trees . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.3 Structured nominal trees . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Böhm trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.1 Nominal tensorial calculus . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.2 Böhm trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Nominal dialogue games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.1 Interpretation of formulas . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 Nominal event structures and linear di-domains . . . . . . . . . . . . . . . . . 130

4.5.1 Structured event structures and operations . . . . . . . . . . . . . . . . 134

4.5.2 Event structure of a dialogue game . . . . . . . . . . . . . . . . . . . . 136

4.5.3 On moves and events . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.5.4 Lifting the operations to events and positions . . . . . . . . . . . . . . 140

4.5.5 A quick note on the removal of moves . . . . . . . . . . . . . . . . . . 143

4.5.6 Projecting positions into lists . . . . . . . . . . . . . . . . . . . . . . . 143

4.6 Nominal asynchronous games . . . . . . . . . . . . . . . . . . . . . . . . . . 145



8 CONTENTS

4.6.1 On legal positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.6.2 Nominal asynchronous games . . . . . . . . . . . . . . . . . . . . . . 148

4.7 Asynchronous Böhm graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.7.1 On arenas and Böhm trees . . . . . . . . . . . . . . . . . . . . . . . . 153

5 Strategies for Tensorial Logic 159

5.1 Innocent strategies and their structures . . . . . . . . . . . . . . . . . . . . . . 161

5.1.1 Structure of the innocent strategies: positionality . . . . . . . . . . . . 163

5.1.2 Structure of the innocent strategies: strong positionality . . . . . . . . 166

5.1.3 Innocent strategies as sets of positions . . . . . . . . . . . . . . . . . . 167

5.1.4 Innocent strategies and weak sequentiality structures . . . . . . . . . . 173

5.2 On composition of innocent strategies . . . . . . . . . . . . . . . . . . . . . . 177

5.2.1 Transverse strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.2.2 Relational and sequential compositions . . . . . . . . . . . . . . . . . 178

5.2.3 Innocent strategies are stable under composition . . . . . . . . . . . . 182

5.2.4 Composition of weak sequentiality structure . . . . . . . . . . . . . . . 186

5.3 Refining innocent strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.3.1 Totality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.3.2 Innocent strategies and strong structures of sequentiality . . . . . . . . 194

6 Full Completeness 201

6.1 Interpretation of proofs and soundness . . . . . . . . . . . . . . . . . . . . . . 202

6.1.1 TTSFInn is monoidal . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.1.2 TTSFInn is a dialogue category . . . . . . . . . . . . . . . . . . . . . 205

6.1.3 TTSFInn has finite coproducts . . . . . . . . . . . . . . . . . . . . . . 208

6.2 Full completeness for propositional tensorial logic . . . . . . . . . . . . . . . . 210

6.3 The case for MALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215



CONTENTS 9

6.3.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.3.2 About the quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.3.3 Quotient and star autonomy . . . . . . . . . . . . . . . . . . . . . . . 218

6.3.4 Full completeness for linear logic . . . . . . . . . . . . . . . . . . . . 223

III Static Full Completeness and Conclusion 225

7 Revisiting the Concurrent Model 227

7.1 Concurrent nominal games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.1.1 Polarised nominal qualitative domains . . . . . . . . . . . . . . . . . . 228

7.1.2 Finite supported relations . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.1.3 Closure operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7.1.4 Failure of full completeness . . . . . . . . . . . . . . . . . . . . . . . 239

7.2 Partial nominal relations and Chu-conditions . . . . . . . . . . . . . . . . . . . 240

7.2.1 Partial nominal relations . . . . . . . . . . . . . . . . . . . . . . . . . 240

7.2.2 Chu conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

7.2.3 Full completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

7.2.4 ChuLinNom, a new definition . . . . . . . . . . . . . . . . . . . . . . 253

7.2.5 A connection to graph games . . . . . . . . . . . . . . . . . . . . . . . 255

7.3 Hypercoherences and MALL full completeness . . . . . . . . . . . . . . . . . 258

7.3.1 Polarised coherence hypercoherence spaces . . . . . . . . . . . . . . . 258

7.3.2 Projecting hypercoherences on concurrent games . . . . . . . . . . . . 260

7.3.3 The category HypGraph . . . . . . . . . . . . . . . . . . . . . . . . . 265

7.3.4 Strong softness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

7.3.5 Full completeness for PALL− . . . . . . . . . . . . . . . . . . . . . . . 267

7.3.6 The category ChuHypGraph . . . . . . . . . . . . . . . . . . . . . . . 268



10 CONTENTS

7.3.7 Full completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

8 Conclusion 277

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

8.2 Further directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

9 Appendix 281

9.1 Appendix 1: Girard proof structures and hypercoherent relations . . . . . . . . 281

9.1.1 Hypercoherent nominal partial relations and proof structures . . . . . . 281

9.1.2 Narrowing down the cycles . . . . . . . . . . . . . . . . . . . . . . . . 290

9.1.3 Reduction to &-semi-simple sequents . . . . . . . . . . . . . . . . . . 292

9.1.4 Final form for the decisive argument . . . . . . . . . . . . . . . . . . . 294

9.2 Appendix 2: Composition of frugal strategies . . . . . . . . . . . . . . . . . . 296

9.3 Appendix 3: Backward confluence . . . . . . . . . . . . . . . . . . . . . . . . 298

9.4 Appendix 4: Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Bibliography 308



List of Figures

2.1 Sequent Calculus for MALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 A MLL-proof structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 An MLL correction graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 An MALL proof structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 First additive resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Second additive resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Sequent calculus of multiplicative additive tensorial logic, TENS . . . . . . . . 53

2.8 Formation rules for tensorial linear lambda calculus . . . . . . . . . . . . . . . 62

3.1 List of categories of Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 The monoidal + exchange fragment of Linear Logic . . . . . . . . . . . . . . . 77

3.3 Sequent calculus for multiplicative compact closed linear logic . . . . . . . . . 87

3.4 Coproduct diagram of A ⊕ B . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 Structure of a Böhm tree of type ¬(T1 ⊗ ... ⊗ Tm) . . . . . . . . . . . . . . . . 122

4.2 Böhm tree associated with [¬(x,w, f , g, h).h(x ⊗ ¬u.(g(w ⊗ ¬v.( f (u ⊗ v))))))]α . 124

4.3 A term of the tensorial lambda calculus . . . . . . . . . . . . . . . . . . . . . 124

4.4 Böhm tree associated with [¬(u, f ). f (u) ⊗ ¬(w ⊗ g).g(w)]α . . . . . . . . . . . 125

4.5 Pre-dialogue game A . B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.6 Structure of A . B .C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.7 Dialogue game > ⊗ ¬> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11



12 LIST OF FIGURES

4.8 Asynchronous Graph for [¬(x,w, f , g, h).h(x ⊗ ¬u.(g(w ⊗ ¬v.( f (u ⊗ v))))))]α . . 153

4.9 Asyncronous graph associated with [¬(u, f ). f (u) ⊗ ¬(w ⊗ g).g(w)]α . . . . . . 154

4.10 Dialogue game of the type: ¬(X ⊗ Y ⊗ (¬(Z ⊗W) ⊗ (¬(Y ⊗ ¬W)) ⊗ (¬(X ⊗ ¬Z))) 155

4.11 Dialogue game of the type: ¬(X ⊗Y ⊗ (¬(Z ⊗W)⊗ (¬(Y ⊗¬W))⊗ (¬(X ⊗¬Z))),

simplified version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.12 Dialogue game of the type:¬(X ⊗ ¬X) ⊗ ¬(Y ⊗ ¬Y) . . . . . . . . . . . . . . . 156

4.13 Dialogue game of the type:¬(A ⊗ ¬A) ⊗ ¬(B ⊗ ¬B), simplified version . . . . . 157

5.1 Sequences of OP-homotopy steps following backward consistency . . . . . . . 166

5.2 Reverse innocence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.1 Dialogue game of X . X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.2 Structure of A ⊗ B .C ⊗ D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.3 Dialogue game of I . I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.4 Dialogue game for (A ⊗ B ⊗ (¬¬I))∗. . . . . . . . . . . . . . . . . . . . . . . 206

6.5 Dialogue game for (A ⊗ (¬¬B))∗ . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.6 Coproduct diagram of A ⊕ B . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.7 Dialogue game of A ⊕ B .C . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.8 Definability: induction case for m.n.s . . . . . . . . . . . . . . . . . . . . . . 214

7.1 A cycle inside a proof structure corresponding to a MDNF sequent . . . . . . . 252

7.2 Global cycles in the final proof-structure . . . . . . . . . . . . . . . . . . . . . 272

7.3 Local coherence for S i on Gi . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.4 Local coherences of S in Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274



Part I

Introductory Chapters

13





Chapter 1

Introduction

1.1 Layman’s introduction

1.1.1 The calculus of computation

Arguably one of the prominent goals of theoretical computer science is to establish a science of

computation. Just as the physicist can predict the behaviour of a system thanks to an associated

theory; or the architect may ensure, thanks to a reliable science of materials and engineering,

that a building will stand; one would like to have a robust theory of computation, where it is

possible to predict the behaviour of programs, check their properties and make sure they process

without defects.

Interestingly, computer science as a discipline was born before the actual birth of modern

computers designed with electronic circuits. The foundation of the discipline deals with any

computing machines that rely on laws of physics. Therefore, it encompasses, for instance, the

study of mechanical calculators such as the one Pascal invented in the early 17th century. From

1933 to 1936, three attempts laid potential foundations for a science of computability. The first

one, designed by Kleene, consisted of µ-recursive functions, whose outputs could be computed

finitely following a recursive procedure. The second one relied on the design of a theoretical

machine, the Turing machine. Finally, the last one leant on a new calculus, the lambda-calculus.

It was proven by Church and Turing that these 3 designs lead to the same set of functions,

making them equivalent.

The lambda-calculus can be described as the calculus of composition. The basic idea is to

describe a computing system, or machine, by a term. This one has inputs, or arguments, and

outputs. Systems can be composed by putting them side by side, corresponding to the idea

that the outputs of the first can be wired into the inputs of the second. A defect of the lambda

calculus is that it is too inclusive, allowing for self-application. As a result, there are terms that

correspond to never-ending computations (for instance, think about a machine whose outputs

15
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are rewired into its inputs). We often say that such terms “loop”. Therefore, it was sought a

condition on the formation of terms that would ensure they denote well-founded computations.

The solution was brought through typing. This consists in giving a type to all terms of the

calculus. For instance, a term that takes inputs of type A and returns outputs of type B is of type

A⇒ B. On the other hand, a term that takes inputs of type A, and returns as output functions of

type B ⇒ C has type A ⇒ (B ⇒ C). Finally, a term that takes inputs of type A, B and returns

outputs of type C,D has type (A×B)⇒ (C×D). One can prove that the lambda-calculus enriched

with “simple” types, called simply-typed lambda calculus, is convergent: every computation it

encodes terminates. This calculus is the at the heart of current programming languages, that

are designed through blocks, called functions, that are specified by the type of their inputs and

outputs.

At last, we would like to emphasize that the lambda-calculus is by no means the unique

calculus devised to reason about computation. Many more have been developed, following

different paradigms. For instance, the π-calculus can be understood as the calculus of communi-

cations, emphasising computations as communications between different processes. Arguably

what made the lambda-calculus so popular is its simplicity; it morally simply consists in com-

posing functions.

1.1.2 Interlude: logics

In this subsection we will talk about something without, a priori, no relations to the previous

paragraph: logics. Logic is the art of formalising the rules that govern a valid argument. To the

novice, it might seem like logic is intrinsically related to the notion of truth, and that a reasoning

is logically valid if it is common sense. For instance, when scientists try to prove an argument,

either orally or mathematically, they never begin by displaying the logical rules on which the

argument relies, as those are universally accepted. This set of rules, that forms the core of

the human mathematical reasoning, is called classical logic. To enable the reader to grasp the

underlying concept, we present some of its rules, together with their labels:

• (Axiom) A true entails A true.

• (Left and) If A true entails C true, then A and B true entails C true.

• (Right and) If A true entails B true, and if A true entails C true, then A true entails B and

C true.

• (Left negation) If A true entails B or C true, then A true and B false entails C true.

• (Right negation) If A and B true entails C true, then A true entails either B false, or C true.

• ...

Classical logic is the logical system used throughout all mathematical textbooks. Its foun-

dation relies on the following principle: a proposition is either true or false. This is called, in

Latin “principium tertii exclusi”, translated as law of the excluded middle. A proposition cannot

be neither true nor false. In particular, this entails that negating twice a proposition leaves it

unchanged, written ¬¬A ' A. In that case, we say that the negation is involutive, meaning
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applying twice has no noticeable effects on the original proposition. Literally, it translates into:

if A is true then A is not not true (that is, not false). And, if A is not false then A is true.

This involutivity of the negation allows, in mathematics, to prove the existence of objects

without defining them. Such proofs are proofs by contradiction. We assume something is false,

and prove a contradiction. We then deduce that it is not false, that is, it is true. For instance,

the intermediate value theorem (that states that a continuous function f that has both positive

and negative values inside a interval, must accept an element x within this interval such that

f (x) = 0), accepts an easy proof by contradiction. That is, the proof assumes that there is no

such x, and deduces a contradiction.

Intuitionism is a branch of mathematical philosophy that views mathematics as the sole

result of human mind constructions, and not as an objective truth. It resulted in constructive

mathematics, that were defined as the restriction of mathematics where only the objects that

are constructed, or exhibited, are accepted to exist. The attempt to formalise this new kind of

reasoning leads to the definition of a fragment of classical logic, called intuitionistic logic. The

most salient feature of intuitonistic logic is its different handling of the negation. In it, if A is

true entails that A is not false, the reverse does not necessarily hold. That is, A is not false does

not entail that A is true. In other terms, the law of excluded middle is rejected: a formula can be

neither true nor false. This corresponds to a proposition A such that one cannot prove neither A,

nor ¬A.

Finally, the incompleteness theorems proven by Gödel in the early 1930’s ended the dream

of defining a universal notion of truth through logic and rigorous reasoning. These theorems

are well-known within the community, but too often misunderstood and misinterpreted, and we

will not try summarising them here. However, their most important consequence is surely that

there is no proof of the consistency of mathematics (that is, the basic axioms that we use to

do mathematics nowadays might be in contradiction to one another). Furthermore, there are

mathematical propositions that are true, but not provable. If these discoveries closed the doors

on the dreams of some scientists at the time, they opened many others. Indeed, by distancing

logic from the notion of truth, it allowed the definition of many other logical systems, each

emphasising a different paradigm (that is, way of reasoning). Logic nowadays deals with the

way of deducing propositions, not with concluding about their truthfulness.

1.1.3 The Curry-Howard-Lambek correspondence

At the heart of a consequent part of the research currently happening in theoretical computer

science lies the correspondence, first established in 1969 by Howard, between the terms of

the simply typed lambda-calculus and proofs of intuitionistic logic. The discovery, linking

two seemingly unrelated formalisms, has been deeply studied and enriched since then. This

correspondence is far from accidental. In constructive mathematics, a proof seemingly behaves

as an algorithm. The analogy is drawn between the way the proof relies on its hypotheses to

establish the conclusion, and the handling of the inputs of the lambda-term in order to produce
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its outputs. To the composition of programs corresponds the composition of proofs through

entailment. That is, a proof of A entails B can be composed with a proof of B entails C to

provide a proof that A entails C. Finally, it exposes the computational nature of proofs of

intuitonistic logic.

The context of this thesis is the denotational semantics field of research, that aims to devise

proper mathematical models for programs. One of the arguably main purposes of semantics is

to convey an abstract representation of programs, that defines their meaning in terms of com-

putation. Following the Curry-Howard correspondence, this research deals on an equal footing

with denotational semantics of proofs, conceptualising proofs and dealing with them as math-

ematical objects. Mathematical models considered along this thesis are categories. That is, we

consider a collection of objects, corresponding to types / formulas. The model consists, for each

pair of objects A, B of a set of elements which are seen as potential representations of proofs

(respectively programs) that A entails B (respectively that take an object of type A as input and

output one of type B). Furthermore, just as we can compose proofs/programs, we can compose

the elements of our models. The first step of much research in denotational semantics consists

in axiomatising the properties that a category must satisfy to provide a sound model of a given

system of programs/proofs. Lambek characterised precisely those that were sound models of the

simply typed lambda-calculus in the 1970’s, and hence provided a robust basis for definitions of

future models.

Since this triptych discovery, a great deal of work has been produced in order to generalise

this correspondence to various types of logics and, in particular, to classical logic. A major

stumbling block in this direction was the discovery that the only categories that could soundly

model classical logic where “boolean”: each set between objects A, B was either empty, or

consisted of a unique element. In other terms, there is no abstract representation of proofs of

classical logic: all proofs are equivalent. If an adaptation of the simply typed lambda-calculus

has been provided to cater for the specificities of classical logic (and, in particular, its double

negation), this calculus does not enjoy all the equivalences one naturally expects to hold.

1.1.4 Intuitonistic linear logic

Linear logic was built as a refinement of intuitionistic logic, where some hidden computational

aspects were made explicit. For instance, let us consider the following proposition:

If (A is true and B is true) then A is true. (1)

A proof of this proposition in intuitionistic logic basically consists in taking A, B as hypotheses,

disregarding B and returning the input A as conclusion. Hence a proof of intuitonistic logic has

the ability to disregard hypotheses. Similarly, a proof of:

If (A is true) then (A is true and A is true) (2)

duplicates the hypothesis A to produce the conclusion.



1.1. LAYMAN’S INTRODUCTION 19

Linear logic is the system obtained from intuitonistic logic by preventing the proof-system,

and hence the programs, from disregarding hypotheses or duplicating them implicitly. Hence,

it makes the handling of hypotheses throughout the proof, or the program, explicit. This under-

scores the role of hypotheses as resources. For instance, the proposition (1) above would now

become:

If (A is true and B is true) then (A is true and >)

where > is a “garbage collector”, that collects hypotheses that are unused: in this case, B.

Similarly, the second proposition could be translated as:

If !(A is true) then (A is true and A is true)

where the symbol “ !” makes explicit that the resource A is available in a “as much as you want”

quantity.

This logic of resources has an intuitive counterpart in terms of daily speech, by seeing each

proposition as a consumable good. For instance, let A denotes 10 cents, and B denotes a “pain

au chocolat”. Then, according to some french politicians, A entails B, meaning:

With 10 cents, you can buy a pain au chocolat. (3)

However, A entails B does not lead to A entails B and B, which would correspond to:

With 10 cents, you can buy a pain au chocolat and another pain au chocolat,

that is, two pains au chocolat. The ! can be seen as an infinite supply, and > would be akin to

the bank, allowing you to get rid of your spare change.

Intuitonistic linear logic emphasises the roles of hypotheses as resources within the proof,

and the role of the proof as a resource management machine, proceeding in channelling re-

sources.

1.1.5 The communication of intuitonistic logic

Intuitonistic proofs, and lambda terms, are seen as oriented. That is, the way the hypotheses

flow through the computing machine is constrained and can only happen in one direction. This

orientation is mandatory due to the asymmetry of the system. For instance, let us remind the

proposition:

If A is true then (A is true and A is true)

The proof of intuitonistic logic associated duplicates the left resource, where the duplicator

operator is written δ in the following diagram:
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A A A

δ

This duplication prevents it from being symmetric. For instance, let us consider the reverse

direction, and suppose that two different hypotheses are coming simultaneously:

AA2A1

δ

?

Then a proof would need to make a choice. This choice is hard-coded in any proof of the reverse

direction. That is, the diagrams corresponding to the proofs of the reverse directions:

(A is true and A is true) entails A is true

are of the forms:

AA2A1

ε

or:

AA2A1

ε

where the proof has to make a choice between the two hypotheses, while disregarding the other

(the disregard operation is written ε in the diagram). This ability of proofs to disregard hy-

potheses is also part of what causes proofs to be asymmetric. For instance, there is a proof of

the proposition “(A is true and B is true) entails B is true” and this proof consists, basically, in

forgetting about B. However, the reverse direction A is true entails (A is true and B is true) is

wrong since it would correspond to a proof that invents B.

To sum up, the computation of proofs consists of communications, and these communica-

tions are directed. Therefore, most models of logic/programming language perform a precise
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modelling of the progression of the proof/computation through a sequential decomposition of it

in alternating steps, corresponding to exchanges of hypotheses/data between the proof/program

and the so-called environment. We often refer to the protagonists as Proponent for the proof/pro-

gram, and Opponent for the environment. The proof, or the program, is going to communicate

with its environment through a rigorously constrained language, that consists of a trade of ques-

tions and answers. A question can be exchanged for an answer, but not the other way around,

making the system asymmetric. Looking at it in terms of goods as in the previous section, it

means that the exchange money - good has to come from the buyer: one cannot force someone

to buy your goods. Therefore, just as an exchange money - good can happen only if the buyer is

willing to pay, an exchange question - answer can only happen if one desires to ask a question.

This notion of dialogue is at the heart of the current models of programming languages. For

instance, the program P of type ((A ⇒ A) × A) ⇒ A, where A be any atomic type variable,

defined by P : ( f , x) 7→ f (x) is modelled though the set of lookalike conversations:

• Opponent - Question 1: What is the result of the program ?

• Proponent - Question 2: What is the result of the function f you gave me in input.

• Opponent - Question 3: For what input ?

• Proponent : Question 4: What is your second argument ?

• Opponent : Answer to question 4: My second argument is x

• Proponent - Answer to question 3: x

• Opponent - Answer to question 2: f(x)

• Proponent - Answer to question 1: f(x)

represented as follows:

(A1 ⇒ A2) × A3 → A4

OQ : 1

PQ : 2

OQ : 3

PQ : 4

OA : 4 : x

PA : 3 : x

OA : 2 : f (x)

PA : 1 : f (x)

Let us note that the program establishes a communication from A2 to A4 and from A3 to A1,

through a copy-cat behaviour, that consists in copying the questions of opponent from A4/A1

into A2/A1, and replicating its answers the other way around. On the other hand, opponent has

an almost similar behaviour from A2 to A1. We will re-use this example in the next paragraph,

representing the program as a diagram as above.

To conclude this section, at the heart of the computation of intuitonistic proofs lies commu-

nication. Due to the asymmetrical nature of proofs, this communication is directed.
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1.1.6 Classical linear logic

As linear logic is obtained through intuitonistic logic, the computations we get are naturally

oriented. However, this built-in orientation is no longer necessary. Indeed, the asymetrical

nature of intuitonistic logic, that was due to the capacity of the proof to disregard, or duplicate

hypotheses, has been removed. Therefore, we can decide to forget about the direction of the

communication, and consider that they might go both directions. We shall explain it in term of

resources. The proposition (3) above means that a pain au chocolat is exactly worth 10 cents,

otherwise, you would get a proposition like “With 10 cents, one can buy a pain au chocolat and

gets x cents remaining”, with x being different than 0. As a pain au chocolat is worth exactly

10 cents, one can actually sell one for 10 cents. Therefore, there are two directions: buying and

selling, and a symmetry between the two. Reversing the direction is embodied by the negation,

and the symmetry by the involution of the negation ¬¬A = A, just as in classical logic.

This choice to drop the direction highlights the true nature of classical linear logic. In-
tuitonistic proofs compute by communicating through channels. Classical linear logic is
the logic of the communication through these channels.

This has major consequences on the way to think about the computational aspect of classical

linear logic, since it shifts the focus away from the nature of intuitonistic computation, to shed

light on the result. For instance, let us consider the following steps of actions:

1. I buy you a paint au chocolat with 10 cents.

2. I sell you back your paint au chocolat for the 10 cents I just gave you.

Then, these steps have a computational flavour, that is, they correspond to a two-step process

in a computing machine. Calling C the proposition “having 10 cents and no pain au chocolat”,

¬C can be understood as the reverse “ Having a pain au chocolat and 0 cents”. The global

principle of our example is that from C, you can go to ¬C using a one-step computation, that

corresponds to the exchange. That is, negation encodes computation. This is what is done in

step 1. In the second step, we go from ¬C to ¬¬C. However, from the linear logic point of view,

as ¬¬C = C, doing two computations is interpreted just as doing nothing. Of course, in terms

of results, we end up in the same state as at the beginning. However, the computing machine

has just done two computations, that we intentionally disregard. That is, by looking at proofs

of intuitonistic logic from a classical point of view, we forget the computations that create the

channels of communication, to only keep in mind the latter.

For instance, let us re-examine our program ( f , x) 7→ f (x) above. The moves OQ : 1, PQ :

2,OA : 2, PA : 1 encode a communication from A2 to A4.

(A1 ⇒ A2) × A3 → A4

Computation 1
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On the other hand, the moves (OQ : 3, PQ : 4,OA : 4, PA : 3) encode a computation from A3

to A1.

(A1 ⇒ A2) × A3 → A4

Computation 2

Leading to the final representation of the program:

(A1 ⇒ A2) × A3 → A4

Computation 2 Computation 1

Its corresponding proof in classical linear logic forgets both the order in which the compu-

tations happen, and the directions of the communications.

(A1 ⇒ A2) × A3 → A4

Communication Communication

Despite having, like classical logic, an involutive negation, linear logic enjoys having non-

trivial mathematical models. That is, there is a suitable notion of computation underneath it.

Quite surprisingly, there is no simple language to express it. It was not until recently (2012)

that a consistent formal system was presented [92] [19], whose terms could be seen as encoding

proofs of linear logic. However this one is, with reservation, counter-intuitive. On the other

hand, this enables us to talk about the computational extent of proofs without concerns.

A prominent feature of the computational aspect of linear logic is its concurrency. Getting

a firm grip on the handling of resources reveals the truly concurrent nature of the intuitonistic

proofs. For instance, in the proof of “A true entails A true and A true”, once the duplicating

happens, the two resources flow concurrently throughout their respective channels. Similarly,

the classical linear logic view of the program described above reveals two different channels of

communication through which computations can happen concurrently. One of the main ratio-

nale behind the study of classical linear logic is to have a logic of concurrent programs, that

would enable us to ensure the soundness of programs running concurrently.
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1.2 General introduction

1.2.1 Denotational semantics of linear logic

This thesis is concerned about denotational semantics of classical linear logic, that consists in

designing mathematical models of its proofs. We restrain ourselves to the “perfect” (as called

by Girard [37]) fragment without exponential, called Multiplicative Additive Linear Logic, ab-

breviated MALL. We refer to MLL for its multiplicative sub-fragment. We aim for a perfect

modelling, where the elements of the model and the proofs are in correspondence. This way,

one can see each element of the model as the exact abstract representation of a proof. This

has been the subject of a lot of research, that unfortunately fell short of the ultimate goal. The

intent of this dissertation is to obtain a perfect modelling of proofs of fragments of linear logic,

while relying on similar recipes as current models of programming languages. To start, let us

highlight the main motivations behind this research. First, having such a model would give us

a precious insight about the computational nature of proofs, and would help us understand the

calculus of resources that forms the backbone of the lambda-calculus. The second rationale is to

have a model that could potentially forms the basis of a fully abstract model of a programming

language derived from the calculus of linear logic proofs, such as session types [92, 19].

The most famous semantics for linear logic is surely the coherence spaces [39]. Coherence

spaces first emerged as a semantics for the lambda-calculus, notably through their strong rela-

tionship with stable functions. As a model, they provide a key insight into the nature of the

intuitonistic negation, highlighting that it can be divided into two connectives: a pure negation

followed by a modality. This discovery originated classical linear logic [33], by focussing on

the pure fragment. This approach led to the definition of the semantics prior to the definition of

the logic, that was designed accordingly.

Since that pioneering work, the search for a better model of linear logic began, which could

establish a perfect, syntax-free model. This research was undoubtedly fruitful, producing var-

ious models that were successfully re-used in the sibling field of semantics for programming

languages. The flagship of these being certainly the games that provided the first fully com-

plete models of multiplicative linear logic [5], being a great many times refined or completed

for other fragments [50, 10, 66], and being reused for constructing fully abstract models of pro-

gramming languages [49, 7, 80, 43, 45], those being versatile enough to incorporate effects [9,

57, 76, 56] and even model mainstream programming languages [78]. On the other hand, this

research motivated plenty of static models, such as the hypercoherences [27], Chu-spaces [24,

20], double-glued categories [53] or even relations that are seemingly similar to games [51].

This thesis is in line with these previous works, however taking a different stance on atomic

variables. Current models of logic rely on 2-categorical techniques to model atomic variables

and parametricity, following technologies originally introduced for system F [13]. Conse-

quently, these greatly differ in nature to the fully abstract models of programming languages,

where the model has to precisely characterise the nature of computation, while dealing with
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fixed base objects possessing a generally truly simple structure, such as the booleans. The goal

of this research is to shift to a 1-categorical structure while keeping a perfect modelling.

1.2.2 Nominal models

Nominal sets were first introduced in the 1930s in order to create a model of set-theory not

satisfying the axiom of choice. They re-appeared in the 1990s as a means to provide a clean

formalism to deal with names in computer science and notably to binding or α-equivalence.

Names are widespread throughout computer science, being especially prevalent in the presen-

tations of formal languages, such as the lambda or pi-calculus. Since then, their utilisation has

been generalised in programming languages to encompass any kind of resources or methods,

such as exceptions, channels, threads, or references. Names are atomic entities that are avail-

able in infinite quantity, and can be freely passed around or generated. The names we use on

this thesis are sorted. That is, each name belongs to a certain kind, and all names belonging to

the same kind are equivalent, that is, they can only be compared for equality.

The paradigm of names as resources has been used extensively in games for providing se-

mantics of effectful languages, being a key ingredient to provide a clean presentation of effects

such as references [89], exceptions [79], or polymorphism [41]. On the other hand, names also

appear as a key ingredient in modelling proofs via terms through the Curry-Howard isomor-

phism. For instance, the identity is mapped to the alpha-equivalence class of terms λx.x, the

formula on the left of the sequent being interpreted as a name x that is bound under λ to be

passed as a variable to the right hand side. However, the modelling of computation flow has, to

the best of the author’s knowledge, not been modelled nominally when non-syntactical models

have been considered. More precisely, names have so far not been used to model the linear use

of resources in linear logic, and this is what this thesis is targeting.

As of today, models of logics with atomic variables are all built using di-natural transforma-

tions [10, 16, 60], with the intuition that a proof should behave uniformly at variable types [13].

In this work, the uniformity condition is encoded thanks to nominal techniques. Each literal is

seen as a pool of resources of a certain kind, that we encode with names. The names are given

a polarity following the polarity of the literal. Thus, the denotation of a proof is an equivariant

element, dealing with the names in a blind manner, and establishing links between negative and

positive literals. Within this setting, equality between names of same polarity is irrelevant, and

we sometimes rely on substitutions to prevent the proof from acting on it.

1.2.3 Full completeness

When are two proofs the same? To answer this question, one must define a notion of equiv-

alence between proofs, relating proofs that differ only by syntactical considerations, but are

essentially the same. We denote by ~.� the denotation function from formulas and proofs to the

mathematical model. The basic property we expect from our models is soundness, meaning that
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the denotation function respects the equivalence of proofs; two proofs that are essentially equal

have same denotation:

soundness: π ' π′ ⇒ ~π� = ~π′�

In this thesis, we will consider only categorical models, causing the denotation function ~.� to

be a functor. Full completeness has been introduced in [5] and was described as “the tightest

possible connection between syntax and semantics”. A categorical model is fully complete if

the denotational functor is full. In some sense, this is the analogue of definability in models of

programming languages. WritingM for the model:

Full completeness: ∀m ∈ M(A, B).∃π : A ` B. ~π� = m.

In [5], Abramsky and Jagadeesan proposed an even tighter connection, “One may even ask for

there to be a unique cut-free such proof (π such that ~π� = m), i.e. that the above functor be

faithful”. In such models, the denotation functor defines an equivalence of categories, mapping

each class of equivalent proofs to a different element. Within such models, the morphisms are

perfect abstract representations of the essence of proofs.

However, such models are infamously hard to design. As of today, there is no known such

model for the whole linear logic, but some have been obtained for fragments. Their number to

date is rather limited, perhaps because a good characterisation of proofs up to equivalence is

still an obstacle to overcome. The difficulty might also be related to our poor understanding of

the computational extent of the proofs of classical linear logic.

1.2.4 A trick, tensorial logic

The quest for fully-complete models of linear logic led many authors to rely on a realisability

criterion to define models. As explained above, linear logic might be seen as arising from

intuitonisitic computations by forgetting about direction and order. Therefore, several attempts

relied on models of computation, often games, followed by a forgetful operation. In general, this

consisted in looking at the positions reached while forgetting about the plays leading to them.

For instance, the first full-completeness result for MALL was motivated by concurrent games

[10], and the first and only full-completeness result for the whole logic by asynchronous games

[66].

The fact that a full completeness result was obtained through an intermediate game model

meant that the framework (hence, the games) was the perfect dynamic counterpart of linear

logic. In other terms, they form an ideal model of the “intuitonistic computations”, whose

communications flawlessly account for the channels described by linear logic. Therefore, it was

undertaken in [71] to unravel the logic and proof-system corresponding to those asynchronous

games.
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The result, tensorial logic, is deceptively simple. To summarise, it is as classical linear

logic, except that the negation is not involutive anymore. This leads to an intuitonistic logic

(only one formula on the right-hand side of the sequent) called tensorial logic, whose proofs are

akin to focalised proofs of linear logic. Tensorial logic can also be described as a restricted sub-

system of intuitonistic linear logic, whose constraints induce a better behaved notion of polarity.

Several translations between classical linear logic and tensorial logic have been reported [71],

most being analogous to translations between intuitonistic and classical logic.

Consequently, to obtain a full-completeness for linear logic, one can focus on first estab-

lishing a full-completeness result for tensorial logic, and then rely on one of the translations

to provide a fully-complete result for linear logic. This is, how, implicitly, was established the

full-completeness result of linear logic in [66].

1.2.5 Historical perspective

The problem of constructing mathematical abstractions of proofs of linear logic has been widely

studied. At least four distinct directions were taken to tackle this problem.

• Proof structures try to abstract away the bureaucracy of syntax when constructing proofs

by seeing them as graphs, and then rely on geometric or algebraic considerations to char-

acterise those graphs that are valid, that are, denotations of proofs. Proof nets were intro-

duced in the seminal article of linear logic [33], and were undeniably very successful for

multiplicate linear logic without units [23]. They now have been extended to cover the

additives [36] [46]. The handling of the multiplicative units is quite difficult [48], and the

additive units still remain out of the scope of those structures.

• Geomertry of interaction originally consisted in looking at proofs as operators of linear

algebra [38]. Since that, much work has been done, generalising the original idea to cover

a wide range of different models [6]. It was notably given a combinatorial approach,

enabling the construction of models for full linear logic [85].

• Ludics [35] was born as an attempt to somehow reconciliate polarities (encompassed by

the interactive nature of logic), syntax and semantics within one single framework. As

such, it cannot be really considered as a model of linear logic, but a correspondence was

proven nonetheless.

• Denotational semantics, which we expand more on below.

Within denotational semantics, one must again consider two traditions. Inline with the in-

ception of linear logic as the logic for coherent spaces [33], that form a sub-category of the

category of sets and relations, a first class of models arise as refinements of the relational model.

Those are deemed static. Distinguished among them are the hypercoherence spaces [27], the

totality spaces [60], or the Chu-spaces [20]. Notably, hypercoherences have lead to a full-

completeness result for MALL without units [16], whereas Chu-spaces, coherence spaces and

totality spaces can be the ingredients of fully complete models of MLL without units [24, 60,

83]. One might complete this list by adding vector spaces, lattices, posets and relations, logical
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relations... Hyland and Schalk review and present a wealth of such models in [53].

On the other hand, games have emerged as a powerful tool to interpret semantically linear

logic. At their core live strategies, that produce results only through interacting with a peer

protagonist, called Opponent. Therefore, those models can be seen as dynamics. The use of

games for logics goes back to the work of Lorenzen [62, 61], or even Gentzen (although in

different terms). However, games for linear logic were pioneered by Blass [15], though he

did not succeed in organising them in a category. Abramsky and Jagadeesan were the first to

notice that games could be used for full-completeness although the original paper dealt with

unitless MLL only and the games were permissive of the MIX-rule [5]. However, these were

shortly refined afterwards by Hyland and Ong to remove the MIX-rule [50]. The incorporation of

additives was quite challenging, since sequential games are inherently unable to form a category

having both products and coproducts, as highlighted by the Blass problem. A solution was

found through concurrent games by Abramsky and Melliès[10], that circumvented the problem

and led to a full-completeness result. However, these relied on a realisability technique that was

introduced by Baillot, Danos, Ehrhard and Regnier [12], consisting in forgetting about “time”,

to project games on relations.

The concurrent games shed light to a very peculiar property: they enjoy being both static

and dynamic. This was at the heart of the line of research developed by Méllies on asynchronous

games [63, 64, 65, 66, 70] who redefined innocence as a positional property, and highlighted

the static, and concurrent nature of the lambda-calculus. Relying on these results, Méllies was

able to prove a full-completeness result for linear logic. Dually, this gave born to tensorial logic

[71].

1.3 Contributions and thesis outline

The purpose of this thesis is to design models of linear logic with type variables while staying

within the realm of first-order category theory. The pinnacle of this work is the presentation,

in Chapter 7 of a model of MALL, not relying on 2-categorical tools nor quotient, that is fully-

complete for MALL without units. This thesis is divided in 3 parts. The first is devoted to

background material used throughout the thesis on logic and static nominal models. The second

revisits the work on asynchronous games and tensorial logic through a nominal perspective. The

main source of inspiration of the third are the concurrent games, though we quickly shift to in-

troducing new models. We present a more detailed outline of the chapters and their contributions

below.

The first Chapter is the current introduction.

The second Chapter 2 is devoted to recalling some general results concerning linear logic

and tensorial logic. We notably present the focalised proof systems for them, and a translation

between the two. Most of the material presented during this chapter originates from the litera-
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ture, and our contributions are minimal. It often consists in clarifying and exposing properties

that could be considered as folklore. We introduce a notion of (global) focalised sequent cal-

culus for both linear and tensorial logic, present the multiplicative tensorial lambda calculus,

expose the proof of the translation between tensorial logic and linear logic. Also, we exhibit

all the equivalences that proofs of MALL enjoy, together with those for multiplicate additive

tensorial logic. This allows us to define a notion of normal form for proofs of tensorial logic,

that will be pivotal for our future proof of full completeness.

In the third chapter 3, we give a brief exposition of how nominal sets can be used to pro-

vide representations of various linear categories. We start with monoidal categories, and show

how the usual tracing amounts to the use of substitutions within this setting. Based on this, we

display a category of nominal polarised relations, that forms a compact-closed category, and

show how one can decorate them with hypercoherences. The use of names refines the relational

model by giving an intensional content to the atoms it deals with, and allows for a precise for-

malisation of the notion of resources. Though the nominal treatment of atomic variables allows

us to enforce linearity, and the hypercoherence structure prevents us from having a degenerate

compact closed category, we conclude this chapter by noticing that the final model we obtain is

not fully complete.

The purpose of the second part is to refine the previous model by precisely characterising

relations that arise as denotations of proofs. In order to do so, we rely on the connection between

linear logic and tensorial logic, and the full-completeness result established for asynchronous

games for tensorial logic [69]. Therefore, we introduce nominal asynchronous game semantics,

by recasting the whole work achieved by Melliès in [66, 69, 64] within the nominal framework.

This achieves the following contributions. First, it shortens the gap between syntactical and

mathematical models, by making the strategies and the terms live within the same universe,

allowing one to establish a nominal correspondence between the plays and the Böhm trees.

Second, it advocates the vision of type variables as typed resources, and emphasises the ability

of names to model them. Third, it extends the previous fully complete game model of linear

logic [66] by adding type-variables to it. Furthermore, this method allows us to deal with them

while staying within first-order category theory. The second part is divided between chapters

4,5, 6, that we present shortly below.

In Chapter 4, we present the nominal structures underlying the nominal games. These struc-

tures allow us to define the nominal arenas. We expose informally how these are related to

Böhm trees. In particular, those shed light on the handling of names one should expect within

the strategies. In Chapter 5 we define the nominal strategies for tensorial logic. Finally, in Chap-

ter 6 we prove that the categorical model thus formed is sound for tensorial logic, and establish

full completeness. We then project strategies onto nominal relations and prove that the model

thus obtained is fully-compete for MALL.

The third part consists of a single Chapter 7, bringing attention to a different model. If the

previous part led to a fully-complete model of MALL, it was through an intermediate medium.

This part is devoted to forget about this medium to obtain a direct characterisation. The model
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we rely on has been discovered through a careful analysis of the concurrent games model of

Abramsky and Melliès [10]. These have the particularity to be simultaneously static and dy-

namic. Notably, they can be seen as a special kind of relation, and compose as such. The original

model is strong enough to only prevent directed cycles in the proof structures, the full complete-

ness being achieved through clever tricks using dinatural transformations. As we drop them,

we have to strengthen the conditions to get rid of undirected cycles, and impose connectedness.

This is done partially using ideas relating games and static models, especially those developed

by Hyland and Schalk [51, 53, 52]. This model addresses two issues that current fully complete

models have: it tackles the use of 2-categorical tools, whilst avoiding relying on a quotient. In

a second section, we enrich our model with hypercoherences. Those allow us to replace the

extensional content of concurrent games in a static manner and enables us, following a method

devised by Blute, Hamano and Scott [16] to achieve full completeness for MALL without units.



Chapter 2

Linear Logic, Tensorial Logic, and
their Models

This short chapter briefly introduces some background material on logic, which will be used

throughout the thesis. This thesis is mainly concerned with linear logic, but tensorial logic will

be used as an intermediate logic to achieve the desired results. The next section describes a

particular translation between these two logics, the focalised one.

2.1 Introduction

2.1.1 Logic

A logic L comprises of a set formulas, given through an explicit grammar, called syntax, to-

gether with a proof system, that allows us to establish propositions that are deemed provable.

The logics we introduce along this thesis all rely on the same recipe. The building blocks

of the syntax consist of an enumerable set of atomic variables TVar, that we may also refer to

as type variables, or propositional variables, and a finite set of constants . These come together

with a set of binary or unary connectives, sometimes relabelled operations, that allow us to

form new elements. A formula, or proposition ofL is an element of the syntax. Each constant

introduced acts as a unit for one of the operations. For instance, the binary operation ⊗, called

tensor, will have a constant named I as a unit. That is, A ⊗ I and A will be isomorphic from a

proof theory point of view: a proof of one can be turned into a proof of the other. The only unary

operation introduced will be the negation, denoted (.)⊥ or ¬. A literal is an atomic variable or

its negation . An atomic formula is either a constant or an atomic variable.

The proof systems presented along this thesis will all be different variations of sequent

calculi. A sequent can be either one-sided, or two-sided. A two-sided sequent is an ordered list

of two finite sequences of formulas, ((F1, ..., Fn), (G1, ...,Gm)), and will be written F1, .., Fn `

31
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G1, ..,Gm. The Fi are referred to as hypotheses, and the Gi as conclusions. We will commonly

write Γ,∆, .. for sequences of formulas, and write Γ,∆,G1, ..,Gm for the concatenated sequence

Γ.∆.G1. ... .Gm. A one-sided sequent is a two-sided sequent whose first sequence is empty, and

will be denoted ` Γ.

A sequent calculus system is a set of rules, that take as input 0 or a finite number of

sequents, and lead to a single sequent as output. The number of inputs of a given rule will be

referred to as its arity. A proof of Γ ` ∆ is a tree (by respect to mother-nature, we consider

that the root is at the bottom of the tree, and the leaves at the top) such that each leaf of the tree

is a rule of arity 0 in the sequent calculus, each node corresponds to the application of a rule,

and the root of the tree is Γ ` ∆. Proofs will be denoted by π and variants. We write π : Γ ` ∆

to emphasise that π is a proof of Γ ` ∆. The rules of the sequent calculus allow us to combine

proofs together to provide proofs of new sequents. For instance, we present below an example

of a rule that introduces the binary connective ⊗ :

Γ ` ∆, A Γ′ ` ∆′, B
⊗ :

Γ,Γ′ ` ∆,∆′, A ⊗ B

A fragment of a logic L is a restriction of the syntax and of the set of rules, such that this

restriction still defines a logic. That is, a rule in the restricted sequent system cannot lead to a

formula out of the restricted syntax.

Among the rules of arity different than 0, all but one, named cut, will satisfy the sub-formula

property. This property roughly states that each formula in the input sequents will be present in

the output sequent, either as an element of the sequent or as a sub-formula, and reversely: each

formula in the output sequent comes from a combination of formulas from the input sequents. If

every rule of arity 0 introduces atomic formulas only, this entails that every atomic sub-formula

in the conclusion must have been introduced by a rule at a leaf of the proof-tree, and conversely.

This property allows us to derive the consistency of logic for the fragment without cut: if there

was a proof of falsehood π :` ⊥, then the only possible case is if this one came as a rule of arity

0. So we simply need to ensure that there is no rule of arity 0 that introduces solely the false

statement.

The cut-rule is a rule of the shape :

Γ ` ∆, A Γ′, A ` ∆
Cut :

Γ,Γ′ ` ∆,∆′

for two-sided sequents, or

` Γ, A ` A⊥,∆
Cut :

` Γ,∆

for one-sided sequents. It allows us to “compose” proofs through A. All the logics intro-

duced satisfy cut-elimination. That is, there is an algorithm that, given a proof with some
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cut-rules, removes the cuts while still resulting in a proof of the same sequent. It allows us

to conclude about the consistency of the whole logic. Furthermore, this enables us to define a

notion of composition of cut-free proofs, where the composition is defined by applying the cut

rule followed by the cut-elimination algorithm. Finally, for each formula A, there is a canonical

proof A ` A, referred to as idA. Therefore, the proofs seemingly behave as a category.

2.1.1.1 Invariants of proofs

However, due to the “bureaucracy of syntax” (term coined by Girard in [38]), proofs do not

generally form a category. For instance, when applying a cut-elimination algorithm, one may

find that π;cut id , π, or equivalent problematic cases, such as a non-associative composition,

due to slight syntactic differences. Therefore, we introduce a notion of invariant, that behaves

well with regard to the rules of logic, and notably the cut. This means that:

• Writing π for a proof with cuts, and π′ for any proof obtained by applying (partially or

totally) the cut-elimination procedure to π, then the invariant of π and π′ must coincide.

• A proof π and the result of applying the cut elimination to π;cut id or id;cut π must have

same invariant.

• The results of applying the cut-elimination to (π1;cut π2);cut π3 and π1;cut (π2;cut π3) have

same invariant.

Equivalently, one can speak about equivalence: two proofs are equivalent if and only if they have

same invariant. We write [.] for the function that maps a proof to its invariant, or, analogously,

to its equivalence class. We denote ∼ for the relation of equivalence between proofs. Of course,

two proofs are equivalent only if they have equal conclusion. Furthermore, one needs the in-

variants to be modular: given two proofs π :` Γ, A and π′ :` A⊥,∆, then one can deduce directly

from the invariants of π, π′ what is the invariant of cutting π against π′. Then the invariants of

proofs organise themselves as a (multi)-category. Of course, it might be that depending on the

cut-elimination procedure we choose, we obtain different notions of invariant and equivalence.

Similarly, one expects the invariants to behave well with regard to the other rules, such as

the ⊗ introduced above, especially from a categorical point of view. For instance, the tensor

product might behave almost like a monoidal product when it comes to proofs, but not quite.

Generally, one should add some more quotienting in order to get a well-behaved tensor. For

more on that, we refer to [67].

The proof invariants are such that proofs whose rules order differ only “in minor details”,

without significant structural differences, have same invariant. Two proofs are equivalent if

they are equal up to insignificant syntactic considerations. Finally, one considers that all proofs

that are deemed equivalent, from a syntactic point of view, are indeed, equivalent from a proof-

theoretic point of view. That is, the quotient only gets rid of bureaucracy, and reveals the intrinsic

nature of proofs.

If one could argue that the equivalence chosen is not adequate, for instance that we consider
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two proofs as similar whereas they are intrinsically different, it seems that a general consensus

has been achieved within the community for the logics presented in this thesis. It is the same

consensus that allows us to speak, for instance, about the categorical semantics of linear logic,

and not a. Even if there now is a standard model, it does not prevent us from exploring what

would happen if we relax some of the equivalences. For instance, if we consider that two

exchange rules do not necessarily commute:

` Γ, A, BExchange
` Γ, B, AExchange
` Γ, A, B

/ ` Γ, A, B

then the model fundamentally differs. In that case, the category of invariants will no longer be a

symmetric monoidal category but a braided category.

2.1.1.2 Denotational semantics

Denotational semantics is the art of mapping proofs into a mathematical model M, and such

that the operations on proofs translate well as operations on the model. Once the mathematical

model is clearly defined, we will denote ~.� the function from proofs and formulas to it. For

instance, given two proofs πA :` A and πB :` B, one can form a new proof πA ⊗ πB : A ⊗ B. We

expect this operation to lift to the model: ~πA ⊗ πB� = ~πA� ⊗M ~πB�. Similarly, the function

must satisfy ~π1;cut π2� = ~π1�;M ~π2�. Therefore, it seems appropriate to consider that M

forms a category.

Formally, given a category C, we introduce the denotation function ~.�C from L- formulas

and proofs to C, whereL is a given logic. Generally, C andL will be clear from the context, and

we will simply write ~.�. As explained before, in order for ~.� to be a functor, the proofs have

to be considered up to equivalence. C is a model of L if ~.� factorises through [.], that is, given

two proofs π, π′ : A → B, π ∼ π′ ⇒ ~π� = ~π′�. Furthermore, we expect ~.� to behave nicely

with regards to the rules of the sequent calculus. Therefore, the rules of the sequent calculus lift

to additive structure at the categorical level. For instance, the ⊗ rule implies the monoidality of

the category.

Formally, the denotation of a proof π : F1, ..., Fn ` G1, ..,Gm will be a map

~F1��...�~Fn�→ ~G1�♦....♦ ~Gm�, where � and ♦ are associative functors : C × C → C.

Given a logicL (that satisfies cut-elimination), together with an appropriate notion of equiv-

alence, one can devise what categorical structure S precisely corresponds to it, that is, the mod-

els of L are exactly those with the S -structure.
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2.2 A brief introduction to linear logic

Since its initial discovery in the 1980s [33], linear logic has been widely studied and used to rea-

son about programming languages. Following its inception, a translation of intuitionistic logic

into it has been established, that was one of the keys to understand the semantics of program-

ming languages, and a step towards the first fully complete model of PCF [7, 49]. This initial

translation has been extended to others logics (classical logic, affine logic...) and paradigms

(call-by-name / call-by value), establishing linear logic as a central tool in computer science.

By its ability of subsuming both intuitionistic and classical logic, it led the original author, Gi-

rard, to ask whether there was finally a unique structural logic [34] for computer science, and

that linear logic was, ultimately, the most primitive one [34]. In this thesis, we do not focus on

the logical aspect, but on the denotational side. Therefore, we will keep short the presentation

of linear logic.

As we will deal with neither the exponential nor the polymorphic part, we will not include

them in our presentation. The remaining subset is often referred to as Multiplicative Additive

Linear Logic, or MALL, and is perceived as being the heart of the whole system. The key aspect

of linear logic is its resource awareness: each hypothesis can be used only once, and has to

been used once. Often, one draws an analogy between hypotheses and resources. In a proof

of linear logic, each resource has to be consumed exactly once to produce the conclusion, just

as, for instance, in a chemical equation. This leads to the distinction between two kinds of

binary connectives: the multiplicatives, where the two resources are either used or produce; and

the additives, where a choice between the two resources is made. We hence obtain 4 binary

connectors. Two “or”s, the multiplicative (M) (referred to as parr) and additive one (⊕), together

with two “and”s, the multiplicative (⊗) and additive (&) one. Together with them come four

units ⊥, 0, 1,>. We also consider an enumerable set of atomic variables TVAR = X,Y, ..., and

a negation (.)⊥ obeying De Morgan equations, produced below. Finally, the formulas of MALL

are defined by recursion as follows:

F ::= ⊥ | 0 | 1 | > | X ∈ TVar | F M F | F ⊕ F | F ⊗ F | F & F | (F)⊥.

We shall use F, A, B,C and variants to range over formulas. The negation obeys the following

equalities :

(X⊥)⊥ = X .

1⊥ = ⊥ ⊥⊥ = 1

>⊥ = 0 0⊥ = >

(A ⊗ B)⊥ = A⊥ M B⊥ (A M B)⊥ = A⊥ ⊗ B⊥

(A & B)⊥ = A⊥ ⊕ B⊥ (A ⊕ B)⊥ = A⊥ & B⊥.

We say that negation is involutive, that is, ((.)⊥)⊥ = id. Also, in the sequel, we will write

A( B for A⊥ M B.
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Figure 2.1: Sequent Calculus for MALL

Axiom :
` A⊥, A

` Γ, A ` A,∆
Cut :

` Γ,∆

` Γ1, A, B,Γ2Exchange :
` Γ1, B, A,Γ2

` Γ1, A, B,Γ2Par :
` Γ1, A M B,Γ2

` Γ, A ` ∆, B
Tensor :

` Γ,∆ ` A ⊗ B

1 :
` 1

` Γ
⊥
` Γ,⊥

> :
` Γ,>

` Γ, A
⊕ 1 :

` Γ, A ⊕ B
Γ ` B

⊕ 2 :
` Γ, A ⊕ B

` Γ, A ` Γ, B
& :

` Γ, A & B

We present the sequent calculus of MALL in figure 2.1.

Given a proof with some cuts in it, there is an algorithm, often referred to as "cut-elimination

procedure" that transforms it into a proof with same conclusion, but without cuts. This topic

exceeds the scope of the introduction, but such an algorithm has been presented in [67] for

instance. As a proof without cut obeys the sub-formula property, one can conclude about the

consistency of the MALL fragment, that is, there is no proof π such that π :` ⊥.

Sometimes, we might speak about an additional rule, called mix, presented below :

` Γ ` ∆mix :
` Γ,∆

To assume this supplementary rule is equivalent to, at a categorical level, having morphisms

A ⊗ B → A M B. It turns out that numerous models of linear logic satisfy the mix-rule, such

as for instance, the first fully-complete model [5], or models that appear as refinement of the

relational model, such as the coherence [33] or hypercoherence models [27]. This is perceived,

along this thesis, as a defect that should be corrected.

There is an alternative presentation of MALL, where the sequents are two-sided, and where to

each rule on the right-hand-side corresponds a rule on the left-hand-side. To avoid the doubling,

we consider a slightly different alternative but equivalent presentation. We add to the above

sequent calculus the two following rules:

Γ ` A,∆Left negation :
Γ, A⊥ ` ∆

Γ, A ` ∆Right negation :
Γ, ` A⊥,∆

Considering a two-sided sequent calculus is useful for the denotational presentation. Given

a proof of a one-sided sequent, it is not clear what will be the image and pre-image of the proof,

that is, how to model it in a category.

Despite that, in the sequel, we will only focus on the one-sided sequent fragment. This

fragment is large enough for a comprehensive study of the logic, and easier to deal with as there

is no duplication of the rules. Indeed, to any two-sided sequent can be assigned a one-sided
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sequent by applying the right negation to every formula on the left-hand part of the sequent. In

the sequel, we will also not pay attention to the exchange rule, that commutes with absolutely

every rule. Somehow, we look at sequents just as if they were finite multisets, that are, sets

where each element may appear a finite number of times.

Along this thesis, we will sometime speak about multiplicative linear logic, often refereed

to as MLL. It is the fragment of MALL formed from propositional variables, constants I,⊥, the

connectives ⊗,M, and their associated rules.

2.2.1 Equivalence of proofs in linear logic

2.2.1.1 A case study

We would like the tensor ⊗ to define a monoidal product in linear logic. However, this leads us

to impose some equivalence between proofs that appears natural.

Among them, is the equivalence between the following following proofs:

(1) ` Γ, A
` ∆, B ` Θ,C,D

⊗
` ∆,Θ,C, B ⊗ D

⊗
` Γ,∆,Θ, A ⊗C, B ⊗ D

!

(2) ` ∆, B
` Γ, A ` Θ,C,D

⊗
` Γ,∆, A ⊗C,D

⊗
` Γ,∆,Θ, A ⊗C, B ⊗ D

This equivalence is required to make cut-elimination work well with identities. We present

below a cut-elimination algorithm, and prove this equivalence using it. The cut-elimination pro-

cedure is classic, and follows from [67]. We do not display the full cut-elimination procedure,

only the relevant part. The cut-elimination algorithm starts by picking one of the top cuts, and

then applies the cut-elimination steps presented below. In the case of a cut where the premises

are principal, the proof evolves as follows:

` Θ, A⊥, B⊥

` Θ, A⊥ M B⊥
` Γ, A ` ∆, B
` ∆,Γ, A ⊗ B

Cut
` Θ,∆,Γ

!

` Θ, A⊥, B⊥ ` ∆, B
Cut

` Θ,∆, A⊥ ` Γ, A
Cut

` Θ,∆,Γ

.

The order between the cuts is chosen arbitrarily, but, as proven in [67], it does not matter and
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the order can be changed. The second case we explore is the secondary (that is, non principal)

versus secondary case. We present it for ⊗.

` Γ, A ` ∆, B, E
` Γ,∆, A ⊗ B, E

` Θ,C ` Σ,D, E⊥

` Θ,Σ,C ⊗ D, E⊥
Cut

` Γ,∆,Θ,Σ, A ⊗ B,C ⊗ D

In that case, two choices can be made. Either we choose to give priority to the left branch,

or the right one (as we will see later, in games semantics, this precisely correspond to the case

where player has to choose between two independent moves). We first display the right-first

priority policy.

` Θ,C

` Γ, A ` ∆, B, E
⊗

` Γ,∆, A ⊗ B, E ` Σ,D, E⊥
Cut

` Γ,∆,Σ,D
⊗

` Γ,∆,Θ,Σ, A ⊗ B,C ⊗ D

We could just as well pick the left priority policy.

` Γ, A
` ∆, B, E

` Θ,C ` Σ,D, E⊥
⊗

` Θ,Σ,C ⊗ D, E⊥
Cut

` ∆,Θ,Σ,C ⊗ D, B
⊗

` Γ,∆,Θ,Σ, A ⊗ B,C ⊗ D

So finally, consider the proof (1) as before, and suppose we use the first cut-elimination

procedure as before, using the left priority policy. To simplify things, we replace Γ, A with

A⊥, A (and similarly for B,C,D), as this will not change the scope of our remarks. We make it

interact with the η expansion of the identity A ⊗ C → A ⊗ C on the left. As we want our proof

invariants to be stable under composition with identities, the following proofs have the same

invariant as the proof (1).

` A⊥, A ` C⊥,C
⊗

` A⊥,C⊥, A ⊗C
` A⊥ MC⊥, A ⊗C

` A⊥, A
` B⊥, B ` C⊥ ⊗ D⊥,C,D

⊗
` B⊥,C⊥,⊗D⊥, B ⊗ D

⊗
` A⊥, B⊥,C⊥ ⊗ D⊥, A ⊗C, B ⊗ D

Cut
` A⊥, B⊥,C⊥ ⊗ D⊥, A ⊗C, B ⊗ D

!

` A⊥, A ` C⊥,C
⊗

` A⊥,C⊥, A ⊗C
` B⊥, B ` C⊥ ⊗ D⊥,C,D

⊗
` B⊥,C,C⊥ ⊗ D⊥, B ⊗ D

Cut
` A⊥, B⊥, B ⊗ D,C⊥ ⊗ D⊥, A ⊗C ` A⊥, A

Cut
` A⊥, B⊥,C⊥ ⊗ D⊥, A ⊗C, B ⊗ D

! (left priority)
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` A⊥, A
` C⊥,C

⊗
` C⊥ ⊗ D⊥,C,D

Cut
` C⊥ ⊗ D⊥,C,D

⊗
` A⊥,C⊥ ⊗ D⊥, A ⊗C,D ` B⊥, B

⊗
` A⊥,C⊥ ⊗ D⊥, A ⊗C, B ⊗ D ` A⊥, A

Cut
` A⊥,C⊥ ⊗ D⊥, A ⊗C, B ⊗ D

!

several easy steps to get rid of the cut from A⊥, A

!

` A⊥, A ` C⊥ ⊗ D⊥,C,D
` A⊥,C⊥ ⊗ D⊥, A ⊗C,D ` B⊥, B

` A⊥,C⊥ ⊗ D⊥, A ⊗C, B ⊗ D

So the cut-elimination procedure makes (1) equivalent to (2). One could argue that this

comes from our cut-elimination policy. But actually, if we had chosen the alternative policy, we

would have obtained a similar result by composing with the identity on the right-hand-side.

2.2.1.2 All the equivalences

We present in the table below the equivalences of proofs for MALL. These were partially pre-

sented, without the additive, in [40]. For each of the equivalence presented, we assume that

there are proofs that lead to the leaves of the trees, and make sometimes the proof explicit by

writing:

π
` Γ

We start with the pure multiplicative fragment.

⊥ vs ⊥ :
` Γ
` Γ,⊥a
` Γ,⊥a,⊥b

∼

` Γ
` Γ,⊥b
` Γ,⊥a,⊥b

⊥ vs M :
` Γ, A, B
` Γ, A M B
` Γ, A M B,⊥

∼

` Γ, A, B
` Γ, A, B,⊥
` Γ, A M B,⊥

⊥ vs ⊗ :
` Γ, A
` Γ, A,⊥ ` ∆, B
` Γ,∆, A ⊗ B,⊥

∼

` Γ, A ` ∆, B
` Γ,∆, A ⊗ B
` Γ,∆, A ⊗ B,⊥

∼ ` Γ, A
` ∆, B
` ∆, B,⊥

` Γ,∆, A ⊗ B,⊥

M vs M :
` Γ, A, B,C,D
` Γ, A M B,C,D
` Γ, A M B,C M D

∼

` Γ, A, B,C,D
` Γ, A, B,C M D
` Γ, A M B,C M D

M vs ⊗ :
` Γ, A, B,C ` ∆,D
` Γ,∆, A, B,C ⊗ D
` Γ,∆A M B,C ⊗ D

∼

` Γ, A, B,C
` Γ, A M B,C ` ∆,D
` Γ,∆, A M B,C ⊗ D
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⊗ vs ⊗ : ` Γ, A
` ∆, B,C ` Ξ,D
` ∆,Ξ, B,C ⊗ D

` Γ,∆,Ξ, A ⊗ B,C ⊗ D
∼

` Γ, A ` ∆, B,C
` Γ,∆, A ⊗ B,C ` Ξ,D
` Γ,∆,Ξ, A ⊗ B,C ⊗ D

Then the pure additive one.

> vs > : >a
` >a,>b,Γ ∼ >b

` >a,>b,Γ

> vs ⊕ :
>

` Γ, A,>
` Γ, A ⊕ B,>

∼ >
` Γ, A ⊕ B,> ∼

>
` Γ, B,>
` Γ, A ⊕ B,>

> vs & :
>

` Γ, A,>
π

Γ,>, B
` Γ, A & B,>

∼ >
` Γ, A & B,> ∼

π′

Γ, A,> >
Γ, B,>

Γ, A & B,>

⊕ vs ⊕ :
` Γ, A,C
` Γ, A ⊕ B,C
` Γ, A ⊕ B,C ⊕ D

∼

` Γ, A,C
` Γ, A,C ⊕ D
` Γ, A ⊕ B,C ⊕ D

⊕ vs & :
` Γ, A,C ` Γ, A,D
`,Γ, A,C & D
` Γ, A ⊕ B,C & D

∼

` Γ, A,C
` Γ, A ⊕ B,C

Γ, A,D
` Γ, A ⊕ B,D

` Γ, A ⊕ B,C & D

& vs & : ` Γ, A,C ` Γ, B,C
` Γ, A & B,C

` Γ, A,D ` Γ, B,D
` Γ, A & B,D

` Γ, A & B,C & D
∼

` Γ, A,C ` Γ, A,D
` Γ, A,C & D

` Γ, B,C ` Γ, B,D
` Γ, B,C & D

` Γ, A & B,C & D

And finally when the two fragments interact :

⊥ vs >:
>

` Γ,>
` Γ,⊥,>

∼ >
` Γ,⊥,>

⊥ vs & :
` Γ, A ` Γ, B
` Γ, A & B
` Γ, A & B,⊥

∼

` Γ, A
` Γ, A,⊥

` Γ, B
` Γ, B,⊥

` Γ, A & B,⊥

⊥ vs ⊕ :
` Γ, A
`,Γ, A,⊥
` Γ, A ⊕ B,⊥

∼

` Γ, A
`,Γ, A ⊕ B
` Γ, A ⊕ B,⊥

⊗ vs > :
>

` Γ, A,> ` ∆, B
` Γ,∆, A ⊗ B,>

∼ >
` Γ,∆, A ⊗ B,> ∼ ` Γ, A

>
` ∆, B,>

` Γ,∆, A ⊗ B,>
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⊗ vs & :
` Γ, A,C ` Γ, B,C
` Γ, A & B,C ` ∆,D
` Γ,∆, A & B,C ⊗ D

∼

` Γ, A,C `,∆D
` Γ,∆, A,C ⊗ D

` Γ, B,C `,∆,D
` Γ,∆, B,C ⊗ D

` Γ,∆, A & B,C ⊗ D

⊗ vs ⊕ :
` Γ, A,C ` ∆,D
` Γ,∆, A,C ⊗ D
` Γ,∆, A ⊕ B,C ⊗ D

∼

` Γ, A,C
` Γ, A ⊕ B,C ` ∆,D
` Γ,∆, A ⊕ B,C ⊗ D

M vs > :
>

` Γ.A, B,>
` Γ, A M B,>

∼ >
` Γ, A M B,>

M vs & :
` Γ, A, B,C ` Γ, A, B,D

` Γ, A, B,C & D
` Γ, A M B,C & D

∼

` Γ, A, B,C
` Γ, A M B,C

` Γ, A, B,D
` Γ, A M B,D

` Γ, A M B,C & D

M vs ⊕ :
` Γ, A, B,C
` Γ, A M B,C
` Γ, A M B,C ⊕ D

∼

` Γ, AB,C
` Γ, A, B,C ⊕ D
` Γ, A M B,C ⊕ D

2.2.2 Focusing in linear logic

The rules of the sequent calculus of MALL are of two kinds: the synchronous ones, and the

asynchronous ones. Asynchronous rules are those that can always be permuted with other rules,

that is, pushed down the proof-tree. For instance, the introduction rule of ⊥ is asynchronous.

They will later correspond to opponent moves in games semantics, and the synchronous ones

correspond to player, or proponent moves. Seeing a proof as a strategy, if a proof is able to play

a (player)-move at some point in the game, then it can still produce it after some more opponent

moves. Therefore, the opponent-moves that happened after the player-move can be inverted

with this move and played before-hand. On the other hand, in a proof, a player move cannot be

inverted with the opponent moves that happened before, since it might depend on some of the

informations produced by these opponent-moves.

By extension, the connectives of linear logic are given a polarity, in relation with their

introduction rules. The connectives ⊗,⊕ are positive, and their negations M,& are negative.

Similarly, ⊥,> are negative, and I, 0 are positive. On the other hand, assigning a polarity to

literals must be an arbitrary choice, since X, X⊥ are introduced alongside by the same rule, but

it is common to consider X as positive, and X⊥ as negative [11], and corresponds to the idea

that the axiom link is directed from X⊥ to X. According to the above remark, it follows that

the formulas of linear logic can be split into two sets N, P of negative and positive formulas

respectively.

P ::= X | F ⊗ F′ | F ⊕ F′ | 0 | 1 | N⊥

N ::= F M F′ | F & F′ | > | ⊥ | P⊥

where F, F′ are formulas of MALL.
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If the polarity assigned to a rule is something rooted in the sequent calculus, its extension

to formulas is a bit dubious. Therefore, the polarity of formulas should not be considered as

a ground feature of linear logic, but more as a tool, that will later be used in order to devise

properly the focussed sequent calculus.

These distinctions between asynchronous and synchronous rules lead to a second sequent

calculus for linear logic, called focussed (or focalised in the literature, but here we will re-

strain from using the term focalised since it will refer to another property) Before presenting it

formally, we expose the general idea.

According to the definition of asynchronous rules, they can all be pushed backwards towards

the root of the proof-tree, until they are blocked by a positive connective that happens before

in the syntactic formula tree (for instance, one cannot push the & before the ⊕ when trying

to prove A ⊕ (B & C)). Once this process is finished, we end up with a proof-stree such that

starting from the root of the tree and going upward, we will encounter only negative rules until

all formulas (except maybe the literals) in the sequent are positive. Now, a proof is focussed, if

it chooses one of the positive decomposable formulas, and all the next rules are positive rules

decomposing this formula until all the resulting sub-formulas are either negative or literals.

Then, one can repeat this routine: a set of negative rules until all formulas in the sequent are

positive, following by a choice of a focus, and the decomposition of the focussed formula.

The stunning result established by Andreoli [11] is that every cut-free proof of linear logic is

equivalent to a focussed one. This gives us a precious insight into the structure of cut-free proofs

of linear logic.

Let P stands for a list of positive formulas, N be a list of negative formulas, X a list of

negative atomic formulas, P,Q are positive formulas, N,M negative ones. The sequents are of

two shapes: either ` P,N ,X; or ` P,X; P. The focussed sequent calculus is defined as follows.

Note that O is a formula of either positive or negative polarity.

Ax
` A⊥; A

` P,X; P
foc

` P,X, P;

` P,N , A, B;
M

` P,N , A M B;

` P,X; P ` P′,X′; Q
⊗

` P,P′,X,X′; P ⊗ Q
` P,X; P ` P′,X′,M;

⊗
` P,P′,X,X′; P ⊗ M

` P,X,M; ` P′,X′; P′
⊗

` P,P′,X,X′; M ⊗ P′
` P,X,M; ` P′,X′,N;

⊗
` P,P′,X,X′; M ⊗ N

` P,N ,X, A; ` P,N ,X, B;
&

` P,N ,X, A & B;

` P,X; P
⊕1

` P,X; P ⊕ O
` P,X; P

⊕2
` P,X; O ⊕ P

` P,M,X;
⊕1

` P,X; M ⊕ O
` P,X,M;

⊕2
` P,X; O ⊕ M
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1
`; 1

P,N ,X;
⊥

P,N ,X,⊥;
>

P,N ,X,>;

A slightly weaker system is presented, called weakly focused. Just as in [59], where it

was originally presented, we write Π for a sequent that is either empty or consists of a unique

positive formula P. The sequents of MALLwfoc are of the form ` Γ; Π, where Γ is a multi-set

of formulas. This system is more permissive than MALLfoc as it allows rules to be applied to

negative formulas on the left-hand-side of the sequent even when the right-hand-side of the

sequent is non-empty. Furthermore, the negative formulas are now pushed on the left-hand-side

of the sequent thanks to a “unfoc”-rule, instead of a built-in machinery.

Ax
` A⊥; A

` Γ; P
foc

` Γ, P;
` Γ,M;

unfoc
` Γ; M

` Γ, A, B; Π
M

` Γ, A M B; Π

` Γ; A ` ∆; B
⊗

` Γ,∆; A ⊗ B

` Γ, A; Π ` Γ, B; Π
&

` Γ, A & B; Π

` Γ; A
⊕1

` Γ; A ⊕ B
` Γ; B

⊕2
` Γ; A ⊕ B

1
`; 1

` Γ; Π
⊥

` Γ,⊥; Π
>

` Γ,>; Π

Theorem 2.1. [11] [59] Every proof of MALL is equivalent to a proof of MALLwfoc (resp

MALLFoc), and MALLwfoc (resp MALLFoc) can be seen as a subsystem of MALL.

2.2.2.1 Global connectives

In this section, we strive to prove that proofs of linear logic can be represented, up to equivalence

by two global connectives. We present in the paragraph an intermediate step, with four ones, that

will be enough for our purposes. They consist of two positive ones, that encapsulate sequences

of ⊗ and ⊕, and two negative ones, that encapsulate sequences of M and &. However, for such

a system to work, one must consider formulas up to distributivity isomorphisms.

In MALL, there are four distributivity laws, coming from proofs of linear logic.

A ⊗ (B ⊕C) ' (A ⊗ B) ⊕ (A ⊗C)

(A ⊕ B) ⊗C ' (A ⊗C) ⊕ (B ⊗C)

A M (B & C) ' (A MC) & (A MC)

(A & B) MC ' (A MC) & (BMC)



44 CHAPTER 2. LINEAR LOGIC, TENSORIAL LOGIC, AND THEIR MODELS

We write F1 ' F2 to indicate that there are two proofs π1 : F1 → F2, and π2 : F2 → F1

such that π1;cut π2 ∼ idF1 and π2;cut π1 ∼ idF1 . We present these proofs for the first equation,

while the others can be designed in a similar way.

` A⊥, A ` B⊥, B
` A⊥, B⊥, A ⊗ B

` A⊥, B⊥, (A ⊗ B) ⊕ (A ⊗C)

` A⊥, A ` C⊥,C
` A⊥,C⊥, A ⊗C

` A⊥,C⊥, (A ⊗ B) ⊕ (A ⊗C)
` A⊥, B⊥ & C⊥, (A ⊗ B) ⊕ (A ⊗C)
` A⊥ M (B⊥ & C⊥), (A ⊗ B) ⊕ (A ⊗C)

` A⊥, A
` B⊥, B
` B⊥, B ⊕C

A⊥, B⊥, A ⊗ (B ⊕C)
A⊥ M B⊥, A ⊕ B ⊕C

` A⊥, A
` C⊥,C
` C⊥, B ⊕C

` A⊥,C⊥, A ⊗ (B ⊕C)
` A⊥ MC⊥, A ⊗ (B ⊕C)

` (A⊥ M B⊥) & (A⊥ MC⊥), A ⊗ (B ⊕C)

As these proofs are isomorphisms, they only change the set of morphisms up to (set)-

isomorphism. That is, given a formula A, such that, for instance, π1 can be applied to A,

π1 : A → A′, then C(A, B) ' C(A′, B). Therefore we consider the following rewriting sys-

tem:

A ⊗ (B ⊕C) (A ⊗ B) ⊕ (A ⊗C)

(A ⊕ B) ⊗C (A ⊗C) ⊕ (B ⊗C)

A M (B & C) (A MC) & (A MC)

(A & B) MC (A MC) & (BMC)

A B ⇒ F[A] F[B]

This system is confluent and strongly normalizing. Therefore, for any given formula A, there

exists a unique A′ such that A′ is the normal form of A. That is, A′ is obtained from A by

a sequence of steps from the rewriting system, and one cannot rewrite A′ any further. Then

given A, B any formula of linear logic, and A′, B′ their normal form, we have the following

isomorphism:

C(A, B) ' C(A′, B′)

as each of the rewriting step corresponds to the application of an isomorphism. In other terms,

when dealing with proof invariants, one can restrict to considering only formulas in normal

form. This generalises straightforwardly to sequents, where a sequent is considered in normal

form if each formula in it is.

A second important set of isomorphisms comes from the associativity of each of the con-

nective of linear logic ⊗,M,&,⊕. For instance:

C(I, A ⊗ (B ⊗C)) ' C(I, (A ⊗ B) ⊗C).
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This isomorphism allows us to forget the parentheses, and simply write it as A ⊗ B⊗C, without

specifying the order in which the ⊗ connectives must be considered. This generalises straight-

forwardly in the case where we consider n-tensored formulas, and we write
⊗

i=1...n Ai in that

case. In terms of proofs, these isomorphisms tell us that the order in which the ⊗-rules are ap-

plied does not matter. This reasoning applies to the other binary connectives of MALL similarly.

By considering formulas up to these two sets of isomorphisms, we can restrict to formulas of

two different forms. A negative formula in normal form, is, once considered up to associativity

isomorphisms, shaped as follows: &i(M j Ai, j), where each Ai, j is either a literal or a positive

formula in normal form. On the other hand, a positive formula in normal form is of the shape:⊕
i(
⊗

j Ai, j), where each Ai, j is either a literal or a negative formula in normal form. We will

say that these formulas are in distributive-associative normal form.

Now, let us consider a focused proof of linear logic, where the sequents are in normal

form. Then the root of the proof is of the shape P,N ,X. We see it as a unique formula

(MP) M (MN) M (MX), and put it in distributive-associative normal form. That is, it is a

formula of the shape &i(M j Ai, j). If this ends up being the & of 0 formula, that is of the shape

& ∅ = >, then the proof proceeds with a >-rule. Otherwise, a proof of this sequent starts with

a global &-connective, that encapsulates a series of &-rules.

`M j A1, j; ... `M j Ai, j; ... `Mn An, j;
&

`&i(M j Ai, j);

Then, let us focus on one of the branch. The second step consists in decomposing the M:

` Ai,1, .., Ai, j, .., Am, j :
M

`M j Ai, j;

And finally, if there is some ⊥ present among the Ai, j, then the proof removes them using a

global ⊥-rule, whose shape is as follows:

` A1, .., An ⊥m
` A1, ..., An,⊥1, ...,⊥m

This is the end of the asynchronous phase. These three global connectives will be encapsulate

into one negative move in the sequel, Chapter 5. At this point the synchronous phase begins. It

starts with a choice of a focus, that is, a positive formula.

` Γ, P;
Foc

` Γ; P

Then, as we consider formulas in distributive-associative normal form, P =⊕
i(
⊗

j Mi, j
⊗

k Xi,k,
⊗

l 1i,l). Then the focused proof at this stage going to consists in three

distinct steps. The first one is going to consist in a series of ⊕ rule, that we can sum up into one

major
⊕

rule:
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Γ ` Pi
⊕

Γ `
⊕

i Pi

Following that, the Pi is going to consists in tensored formulas Pi =

(
⊗

j Mi, j
⊗

k Xi,k
⊗

l 1i,l). The following sequence of ⊗-rules can be summed up into a

single global
⊗

-rule:

Γ1 ` B1 ... Γi ` Bi ... Γn ` Bn ⊗
Γ1, ..,Γi, ...,Γn `

⊗
i=1..n Bi

Finally, the third part of the synchronous phase is going to consist in dealing with all the

branches just created. For instance, if the proof reaches a negative formula on the right-hand-

side, then it pushes it on the left-hand-side, thanks to a unfoc-rule.

Γ,M;
unfoc

Γ; M

If, on the other hand, it reaches a sequent `; 1, then it applies the right 1 rule. Finally, if the

sequent reached is of the form Γ; X, then we must have Γ = X, and the proof-leaf consists of an

axiom-rule.

Therefore, we can consider the following proof-system, called MALLfoc−glob. We decompose

the formulas into four sets, depending on what is their principal connective.

N = &
i

Oi | > | l

O = M
i

PiM
j

⊥ j

P =
⊕

i

Ri | 0 | l

R =
⊗

i

Ni

⊗
j

1 j

l ::= X | X⊥

where X ∈ TVar. Note that > corresponds to & ∅, and 0 to
⊕
∅. In the following, P denotes a

list of P-formulas, N a list of N-formulas, and N,O,R, P formulas as above.

Ax
` X⊥; X

` P; P
foc

` P, P;
` P,N;

unfoc
` P; N

` P, P1, ..., Pm,⊥1, ..⊥n;
M

` P,Mi PiM j⊥ j;

` P1; N1 ... ` Pi; Ni ... ` Pn; Nn ⊗
` P1, ...,Pn;

⊗
i Ni

` P; Rk ⊕
k,n

` P;
⊕

i=1..n Ri
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` P,O1; ... ` P,Oi; ... ` P,On; &
` P,&i=1..n Oi;

1
`; 1

` P;
⊥m

` P,⊥1, ...,⊥m;
>

P,>;

As explained above, the following theorem holds.

Theorem 2.2. Every proof π :` Γ of MALL is equivalent to a proof π′ : A of MALLfoc−glob, where

A is the distributive-associative normal form ofMΓ.

This system can be once again reformulated into a system with two global connectives: the

positive one, that is a mix of
⊕

and
⊗

, and its negation, a global negative one. This is the

idea underlying the creation of ludics [35], and that originates fully complete alternating game

models, such as the one presented in the next chapter 5.

2.2.3 Proof nets

In the next chapters, one will often rely on a geometric characterisation of invariants of linear

proofs, called proof nets. The basic structures we rely on are proof-structures. We first consider

the MLL case, then the MALL one.

2.2.3.1 Proof structures for MLL

Proof structures form a common tool introduced in [33] to reason about invariants of linear logic

proofs. Proofs structures are more general than proof invariants. That is, some proof structures

do not correspond to proof invariants, but to all proof invariants corresponds one, or several,

proof structures. Proof structures that indeed correspond to proof invariants are refereed to as

proof-nets. Therefore, one seeks to find the right characterization, that discriminates proof-

structures that are valid, that is, correspond to proofs. Proof structures can be composed, and

form a category, of which the proof-nets form a sub-category. However, this topic exceeds the

scope of this introduction.

Often, in the literature, one will encounter the definition restricted to MLL without units.

The reason behind this choice is that, for this fragment, proof structures that are valid are

in one-to-one correspondence to proof invariants of linear logic restricted to this fragment.

However, when extended to units, we lose this property. That is, a single proof invariant can

actually be encoded as various proof structures: proof structures are then too precise. One can

bypass this issue by defining a quotient, using a method called Trimble’s empire rewriting [47,

48]. However, for brevity, we will not expose this method, and refer to the above references for

its presentation.
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⊥ M I ⊗ X M X⊥ , X ⊗ X⊥ , Y ⊗ ⊥ , Y⊥ M I

M M

⊗

⊗ ⊗ M

Figure 2.2: A MLL-proof structure

Definition 2.3. An MLL sequent is a multiset of formulas built out of the following grammar :

F, F′ ::= X | X⊥ | I | ⊥ | F ⊗ F′ | F M F′,

where X ∈ TVar. An MLL− sequent is a multiset of formulas built out of the following grammar:

F, F′ := X | X⊥ | F ⊗ F′ | F M F′

where X ∈ TVar. A sequent is said to be balanced if each atomic variable X appears the same

number of times as its negation X⊥.

In the sequel, we will refer to MLL− and MLL to speak about the canonical fragment of MALL

whose cut-free proofs are those with conclusions lying inside MLL− and MLL respectively.

In the sequel, we identify formulas with their parse trees, and hence see them as tree-graphs.

Therefore, a sequent is seen as a forest. The propositional variables X,Y, ... as well as the

unit 1 are positive, whereas their negation X⊥,Y⊥, ... and ⊥ are negative. Given a balanced

MLL-sequent, we define a linking λ to be a function from its set of negative leaves to its set

of positive ones, that is type preserving : λ(X⊥) = X, and such that it establishes a bijection

between its set of occurrences of positive propositional variables and negative ones. This

enforces that the sequent be balanced.

Definition 2.4. A proof structure is a graph, made out from a sequent ` Γ, seen as a forest,

together with a linking function λ on it, by adding edges between x and λ(x). When x, λ(x) are

propositional variables, such an edge is called an axiom link. On the other hand, when x = ⊥,

we call it a ⊥-link.

Such a proof-structure is presented in the figure 2.2. There is a famous criterion that

characterizes precisely the proof structures that arise from the denotation of an actual proof of

MLL. It has been first presented by Danos and Regnier in [23] for MLL−. To implement it, we

first need to define the notion of switching.

Definition 2.5. Given a proof structure P, a switching S is a choice, for each M-occurrence



2.2. A BRIEF INTRODUCTION TO LINEAR LOGIC 49

⊥ M I ⊗ A M A⊥ , A ⊗ A⊥ , B ⊗ ⊥ , B⊥ M I

M M

⊗

⊗ ⊗ M

Figure 2.3: An MLL correction graph

in the parse tree, of the left or the right premise. That is, it is a function from the set of M-

occurrences to the set {l, r}.

The correction graph consists in, given a proof structure P and a switching S, removing the

edge between the premise not chosen by the switching and its conclusion. We say that a proof

structure is acyclic (respectively connected) if the correction graphs are connected (respectively

acyclic) for all the switchings S on it.

For instance, the correction graph in figure 2.3 is disconnected and acyclic.

Theorem 2.6. [23, 48]

• To every equivalence class of proofs of MLL−, or MLL−+MIX, one can assign a unique

MLL−proof structure (that is, a unique linking). Furthermore, this assignment is faithful

and functorial.

• An MLL−proof structure is a denotation of an MLL−+ MIX proof if and only if it is acyclic.

• An MLL−proof structure is a denotation of an MLL−proof it is acyclic and connected, that

is, a tree.

• To every MLL proof structure satisfying the acyclicity criterion, one can canonically as-

sign an MLL + MIX proof.

• To every MLL proof-structure satisfying the acyclicity and the connectedness criterion,

one can assign an MLL proof.

• To every MLL proof, one can assign a unique equivalence class of MLL proof structures

satisfying both criteria. This assignment is functorial, and an isomorphism of categories.

We will sometimes refer to these conditions (connectedness and acyclicity) as the Danos-

Reigner criterion. We say that an MLL− proof structure is a proof-net if it satisfies the Danos-

Reigner criterion. That is, a proof-net is a proof structure that can be assigned a proof.

2.2.3.2 Proof structures for MALL

In this section, we will restrict our attention to MALL−, the fragment of MALL without units,

neither additive nor multiplicative. That is, we focus purely on the propositional part. The
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grammar of the formulas MALL− is defined as follows :

F ::= X | X⊥ | F ⊗ F′ | F M F′ | F ⊕ F′ | F & F′.

where X ∈ TVar. Historically, two notions of proof structures, and proof-nets, have been de-

veloped for MALL−. The first one, presented by Girard in [36] is based on a notion of graph

enriched with booleans, that tracks in what “branch” of a &-link we are. Although we will

make use of them in the final chapter 7, they are hard to present, understand, and are mostly

dealt with as a technical tool in the scope of this thesis. We will simply say here that their cor-

rectness criterion is related to the one of MLL; the notion of switching is much more elaborate,

but the final correction graphs must also be acyclic and connected.

The second one, presented by Hughes in [46], satisfies a much simpler presentation, and its

exposition might help the reader getting an idea of how invariants of proofs behave in MALL.

The correctedness criterion, on the other hand, is a bit obscure, and we will restrict our attention

to proof structures. We refer to the literature [46] for more details.

Once again, we see each sequent as a set of parse trees, hence a parse forest. A &-resolution
on Γ is the result of erasing one argument sub-graph of each &-occurrence. An additive reso-
lution is the result of deleting one argument sub-graph of each ⊕,&-occurrence. We say that an

additive resolution is on a &-resolution, if it can be obtained through deleting argument sub-trees

of the ⊕-occurrences of this &-resolution.

An axiom-link is an edge between complementary literal. A linking on a sequent Γ is a set

λ of disjoint axiom links such that
⋃
λ partitions the set of leaves of an additive resolution of Γ,

called Γ � λ. That is, each literal of the additive resolution is under an unique axiom-link.

A MALL-proof structure comprises a MALL-sequent, seen as a forest, together with a set

of linkings Λ = {λ1, ..., λn}, such that:

• (P1) For each &-resolution of Γ, there is a unique linking λ ∈ Λ such that Γ � λ is on this

&-resolution.

• (P2) Each graph Γ � λ satisfies the Danos-Reigner criterion: for any switching (choice

for each M of one of its subtree arguments), the correction graph is a tree.

We usually represent MALL proof structure with all the axiom-links coming from the set of

linkings Λ at once, as presented in figure 2.4. As there is only once linking per &-resolution,

one can recover the set of linkings by ranging through all &-resolutions.

For instance, there are only two possible &-resolutions on that proof structure, as there is

only one &. The set of linkings defines two additive resolutions:
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X⊥ ⊕ (Y ⊕ X) , (X & X) ⊗ (Z ⊕ Z) , (Z⊥ ⊗ Z) M Z⊥

⊕

⊕ &

⊗

⊕ ⊗

M

Figure 2.4: An MALL proof structure

X⊥ , X ⊗ Z , (Z⊥ ⊗ Z) M Z⊥

⊕

&

⊗

⊕ ⊗

M

Figure 2.5: First additive resolution

is the first one, and the second is :

X , X ⊗ Z , (Z⊥ ⊗ Z) M Z⊥

⊕

⊕ &

⊗

⊕ ⊗

M .

Figure 2.6: Second additive resolution

For a proof-structure of MALL− to be a proof-net, one also needs the toggling condition,

that is too technical to be exposed here. Just as the switching condition enforces that sequen-

tialisation is possible for the multiplicative part, the toggling condition is concerned with the

additive fragment of the proof. For the next chapters, the relevant aspect of the definition of

proof structure is the condition (P1), that can actually be divided into two sub-conditions :

• For each & resolution, the proof chooses exactly one ⊕-resolution on this &-resolution.

• On this additive resolution, it defines a unique linking, that is, a unique set of axiom-links

that partitions the leaves of this resolution.

Therefore, the proofs structure can be seen as functions f from the domainD = ×&∈Γ{l&, r&},

where & ∈ Γ refers to the set of &-occurrences in Γ, to the set of linkings, such that given an

element k ∈ D, Γ � f (k) is a ⊕-resolution compatible with k. This path has notably been

explored in [2].
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2.3 A brief introduction to tensorial logic

On the quest to fully complete game models of linear logic, two major difficulties have been

highlighted. The first one concerned the ability of games to cope with polarities of the additives

together with composition. Indeed, the initial presentation of a game semantics of linear logic,

as devised by Blass [15], leads to the composition being non-associative. This is the so-called

Blass problem, highlighted and explained by Abramsky in [5, 3]. The root of the issue lies

in the order in which the proof of, for instance, ` A1 ⊕ A2, B1 ⊕ B2, decomposes the left ⊕

connector and the right one. Assuming that this order is relevant translates, in term of games,

that the strategy has to start by either decomposing the first ⊕-occurence, or the second one.

This is consistent with the strategy being sequential. However, this leads to a non-associative

composition of strategies. To solve this, two solutions were proposed. First, we can consider

concurrent, or asynchronous, game semantics where the two moves appear concurrently (the

strategies decomposes the two at the same time). This way has been explored in [10, 3]. Or, we

rather look at the proof from a focused point of view. Focussing leads to a clear control of the

flow of the proof, and notably to a clear control of the flow of cut elimination. This way, the

problematic cases that were non-associative are excluded. More on this issue can be found in

[3].

If one chooses the focussing way out (and, therefore, keep on working with sequential

games), a second problem arises from the difficulty to interpret the relationship between ⊗ and

M. For instance, let us consider the following proof:

` A⊥, A ` B⊥, B
` A⊥, B⊥, A ⊗ B ` C⊥,C
` A⊥, B⊥ ⊗C⊥, A ⊗ B,C

` A⊥ M (B⊥ ⊗C⊥), (A ⊗ B) MC
` A⊥ M (B⊥ ⊗C⊥), (A ⊗ B) MC

As A⊥ M (B⊥ ⊗ C⊥) = (A ⊗ (B M C))⊥, it expresses the fact that A ⊗ (B M C) ` (A ⊗ B) M C.

One might wonder where does this distributivity law comes from and how to translate it into

game semantics. To succeed, the key is to consider that ⊗ or M does not just put the two games

in parallel (as in the concurrent case, or in the multiplicative case without additives [5]), but

actually might add an initial move to the game that we have to take into account, as discovered

by Melliès in [65]. That is, in those games, the multiplicative connectives ⊗,M are played,

there are moves corresponding to them. But this comes at a price. Now, (A ⊗ 1) M ⊥ has two

additional moves, corresponding to the two binary tensors, but it is equivalent to A, that does not

have such moves. This problem is deeply related to the fact that the negation is self-inverse. The

game denoting ((A)⊥)⊥ should be equal to the one denoting A. However, a faithful modelling

through games that takes into account polarity would impose to add an initial move to the game

for each negation. That is, the game for ((A)⊥)⊥ should have two additional moves compare to

the denotation of A. If this can be solved by a quotient, the conclusion of this paragraph is that
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there is no canonical good notion of sequential games for linear logic, as games rely to much on

polarities, and because the negation is self inverse [65].

Tensorial logic has been introduced by Melliès [71], following his discovery of a fully com-

plete model of linear logic [66], using sequential games as support and a quotient (as explained

above, see [65]) to circumvent the problems arising from playing additional moves . Those

games were somehow more primitive than linear logic itself, as emphasising more the role of

polarity, and by being able to distinguish proofs that the sole equational theory of the sequent

calculus of linear logic would not. As a result, tensorial logic was exposed as being, somehow,

the logic of sequential games.

The formulas of tensorial logic are built out of three connectives ⊗, ⊕, ¬, the units 0, 1,⊥,

and an enumerable set of atomic variables TVar = X,Y, ... .

F ::= 0 | 1 | ⊥ | X | F ⊗ F | F ⊕ F | ¬F ,

where X ∈ TVar. The sequent calculus of multiplicative additive tensorial logic, or TENS is

presented in the figure 2.7 below.

Axiom : A ` A
Γ ` A ∆1, A,∆2 ` B

Cut :
∆1,Γ,∆2 ` B

Γ1, A, B,Γ2 ` CLeft Exchange :
Γ1, B, A,Γ2 ` C

Γ1, A, B,Γ2 ` C
Left Tensor :

Γ1, A ⊗ B,Γ2 ` C
Γ ` A ∆ ` BRight Tensor :

Γ,∆ ` A ⊗ B

Right Unit :
` 1

Γ1,Γ2 ` A
Left Unit :

Γ1, 1,Γ2 ` A
Left 0 :

Γ, 0 ` A

Γ ` ALeft Negation :
Γ,¬A ` ⊥

Γ, A ` ⊥Right Negation :
Γ ` ¬A

Γ ` ARight ⊕ 1 :
Γ ` A ⊕ B

Γ ` BRight ⊕ 2 :
Γ ` A ⊕ B

Γ, A ` C Γ, B ` C
Left ⊕ :

Γ, A ⊕ B ` C

Figure 2.7: Sequent calculus of multiplicative additive tensorial logic, TENS

In contrast to linear logic, there is a good notion of games for tensorial logic, as polarities

are this time entrenched in the sequent calculus via the negation. If a formula is negated, that

is, is of the form ¬F, then it is negative, otherwise it is positive. This time, the double negation

is not equal to the identity, and can be faithfully modelled through the addition of two moves.

That is, the De-Morgan equation ¬¬A = A does not hold.

2.3.1 Equivalence of proofs in tensorial logic

The equivalence of proofs in tensorial logic is strongly similar to the one in linear logic, except

one central difference; the use of ¬. In linear logic, due to the one-sided presentation, we are

not concerned about where the focus of the proof is: to any formula present in the sequent
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either a positive or a negative rule might be applied. Here, the split of the sequent in two parts,

with the need of a non-involutive operator to switch from one side to the other, is breaking the

symmetry. The focus is now the right-hand-side of the sequent, and changing focus comes at a

price: the double use of the negation operator. This changes fundamentally the structure of the

proof invariants.

To our knowledge, the equivalence relation between proofs of tensorial logic has never been

formally presented. However, it is clear from the idea underlying its inception that these shall

seemingly be the same as those coming from linear logic, with the distinction coming from the

double-sided form of the sequent and the use of a non involutive negation. We first tackle the

multiplicative fragment.

left 1 - left 1
Γ ` A

Γ, 1a ` A
Γ, 1a, 1b ` A

∼

Γ ` A
Γ, 1b ` A

Γ, 1a, 1a ` A

left 1 - left ⊗
Γ, A, B ` C

Γ, A ⊗ B ` C
Γ, A ⊗ B, 1 ` C

∼

Γ, A, B ` C
Γ, A, B, 1 ` C

Γ, A ⊗ B, 1 ` C

left 1 - right ⊗

Γ ` A
Γ, 1 ` A ∆ ` B

Γ, 1,∆ ` A ⊗ B
∼

Γ ` A ∆ ` B
Γ,∆ ` A ⊗ B

Γ,∆, 1 ` A ⊗ B
∼ Γ ` A

∆ ` B
∆, 1 ` B

Γ, 1,∆ ` A ⊗ B

left ⊗ - left ⊗
Γ, A, B,C,D, ` E

Γ, A ⊗ B,C,D, ` E
Γ, A ⊗ B,C ⊗ D, ` E

∼

Γ, A, B,C,D, ` E
Γ, A, B,C ⊗ D, ` E

Γ, A ⊗ B,C ⊗ D, ` E

left ⊗ - right ⊗
Γ, A, B ` C

Γ, A ⊗ B ` C ∆ ` D
Γ, A ⊗ B,∆ ` C ⊗ D

∼

Γ, A, B ` C ∆ ` D
Γ, A, B,∆ ` C ⊗ D

Γ, A ⊗ B,∆ ` C ⊗ D

right ⊗ - right ⊗ none

The multiplicative fragment against the negation.

left 1 - left ¬
Γ ` A

Γ, 1 ` A
Γ, 1,¬A ` ⊥

∼

Γ ` A
Γ,¬A ` ⊥

Γ,¬A, 1 ` ⊥

left 1 - right ¬
Γ, A ` ⊥

Γ, A, 1 ` ⊥
Γ, 1, ` ¬A

∼
ΓA ` ⊥
Γ ` ¬A

Γ, 1 ` ¬A
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left ⊗ - left ¬
Γ, A, B ` C

Γ, A ⊗ B ` C
Γ, A ⊗ B,¬C ` ⊥

∼

Γ, A, B ` C
Γ, A, B,¬C ` ⊥

Γ, A ⊗ B,¬C ` ⊥

left ⊗ - right ¬
Γ, A, B,C ` ⊥

Γ, A ⊗ B,C ` ⊥
Γ, A ⊗ B ` ¬C

∼

Γ, A, B,C ` ⊥
Γ, A, B,⊥ ` ¬C

Γ, A ⊗ B,⊥ ` ¬C

right ⊗ - left / right ¬ No permutation

We now address the purely additive fragment :

left 0 - left 0 Left 0a :
Γ, 0a, 0b ` A ∼ Left 0b :

Γ, 0a, 0b ` A

left 0 - right ⊕
Left 0 :

Γ, 0 ` A
Γ, 0 ` A ⊕ B

∼ Left 0 :
Γ, 0 ` A ⊕ B and similarly for ⊕2.

left 0 - left ⊕

0
Γ, 0, A ` C

π2
Γ, 0, B ` C

Γ, 0, A & B ` C
∼ 0

Γ, 0, A & B ` C ∼

π1
Γ, 0, A ` C 0

Γ, 0, B ` C
Γ, 0, A ⊕ B ` C

left ⊕ - left ⊕

Γ, B,C ` E Γ, B,D ` E
Γ, B,C ⊕ D ` E

Γ, A,C ` E Γ, A,D ` E
Γ, A,C ⊕ D ` E

Γ, A ⊕ B,C ⊕ D ` E
∼

Γ, A,C ` E Γ, B,C ` E
Γ, A ⊕ B,C ` E

Γ, A,D ` E Γ, B,D ` E
Γ, A ⊕ B,D ` E

Γ, A ⊕ B,C ⊕ D ` E

left ⊕ - right ⊕1

Γ, A ` C
Γ, A ` C ⊕ D

Γ, B ` C
Γ, B ` C ⊕ D

Γ, A ⊕ B ` C ⊕ D
∼

Γ, A ` C Γ, B ` C
Γ, A ⊕ B ` C

Γ, A ⊕ B ` C ⊕ D
and similarly for ⊕2

right ⊕ vs right ⊕ none.

Additive against negation :
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left 0 - left ¬
Left 0 :

Γ, 0, ` A
Γ, 0,¬A ` ⊥

∼ Left 0 :
Γ, 0,¬A ` ⊥

left 0 - right ¬
Left 0 :

Γ, 0, A ` ⊥
Γ, 0 ` ¬A

∼ Left 0 :
Γ, 0 ` ¬A

left oplus - left ¬
Γ, A ` C Γ, B ` C

Γ, A ⊕ B ` C
Γ, A ⊕ B,¬C ` ⊥

∼

Γ, A ` C
Γ, A,¬C ` A

Γ, B ` C
Γ, B,¬C ` ⊥

Γ, A ⊕ B,¬C ` ⊥

left oplus - right ¬
Γ, A,C ` ⊥ Γ, B,C ` ⊥

Γ, A ⊕ B,C ` ⊥
Γ, A ⊕ B, ` ¬C

∼

Γ, A,C ` ⊥
Γ, A ` ¬C

Γ, B,C ` ⊥
Γ, B, ` ¬C

Γ, A ⊕ B ` ¬C

right oplus - left/right ¬ none

And finally multiplicative against additive.

left 0 - left 1
Left 0:

Γ, 0 ` A
Γ, 0, 1, ` A

∼ Left 0 :
Γ, 0, 1 ` A

left 0 - left ⊗
Left 0:

Γ, A, B, 0 ` C
Γ, A ⊗ B, 0 ` C

∼ Left 0:
Γ, A ⊗ B, 0 ` C

left 0 - right ⊗
Left 0:

Γ, 0 ` A ∆ ` B
Γ,∆, 0 ` A ⊗ B

∼ Left 0 :
Γ,∆, 0 ` A ⊗ B

right ⊕ -left 1
Γ, ` A

Γ, 1 ` A
Γ, 1 ` A ⊕ B

∼
Γ ` A

Γ ` A ⊕ B
Γ, 1 ` A ⊕ B

right ⊕ - left ⊗
Γ, A, B, ` C
Γ, A ⊗ B ` C

Γ, A ⊗ B ` C ⊕ D
∼

Γ, A, B ` C
Γ, A, B ` C ⊕ D
Γ, A, B ` C ⊕ D

right ⊕ - right ⊗ none.

left ⊕ - left 1
Γ, A, ` C Γ, B ` C

Γ, A ⊕ B ` C
Γ, A ⊕ B, 1 ` C

∼

Γ, A, ` C
Γ, A, 1 ` C

Γ, B ` C
Γ, B, 1 ` C

Γ, A ⊕ B, 1 ` C

left ⊕ - left ⊗

Γ, A, B,C ` E Γ, A, B,D ` E
Γ, A, B,C ⊕ D ` E

Γ, A ⊗ B,C ⊕ D ` E
∼

Γ, A, B,C ` E
Γ, A ⊗ B,C ` E

Γ, A, B,D ` E
Γ, A ⊗ B,D ` E

Γ, A ⊗ B,C ⊕ D ` E
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left ⊕ - right ⊗

π
Γ ` C

∆, A ` D ∆, B ` D
∆, A ⊕ B ` D

Γ,∆, A ⊕ B ` C ⊗ D
∼

π
Γ ` C ∆, A ` D

Γ,∆, A ` C ⊗ D

π
Γ ` C ∆, B ` D

Γ,∆, B ` C ⊗ D
Γ,∆, A ⊕ B ` C ⊗ D

2.3.2 Focussing in tensorial logic

Tensorial logic somehow acts as weakly focused linear logic: there is a focus, the right-hand-

side of the sequent, and the sequent rules can be both applied to the focus or the left-hand part of

the sequent. Just as one can strengthen weakly focused linear logic to get focused linear logic,

one can strengthen the sequent calculus of tensorial logic to get focused tensorial logic.

A formula A is said to be in negative if A = ¬A′. It is positive otherwise. We write P for a

list of positive formulas,N a list of negative formulas, X a list of positive atomic formulas, P,Q

are formulas of either negative or positive polarity. The sequents are of the shape P,N ,X ` P.

The sequent calculus of focussed tensorial logic focussed tensorial logic TENSFoc is as

follows:

AxA ` A
Right 1

` 1

P,N ,X, ` P
Left 1

P,N ,X, 1 ` P
Left 0

P,N ,X, 0 ` P

N ,X ` P
Left ¬

N ,¬P,X ` ⊥
N , P,X ` ⊥ Right ¬
N ,X ` ¬P

P,N ,X, P,Q ` R
Left ⊗

P,N ,X, P ⊗ Q ` R
N ,X ` P N ′,X′ ` Q

Right ⊗
N ,N ′,X,X′ ` P ⊗ Q

P,N ,X, P ` R P,N ,X,Q ` R
Left ⊕

P,N ,X, P ⊕ Q ` R
N ,X ` P Right ⊕2
N ,X ` P ⊕ Q

N ,X ` Q
Right ⊕1 :

N ,X ` P ⊕ Q

The focused sequent calculus prevents a rule from being applied on the right-hand-side as

long as all the formulas on the left-hand-side of the sequent are not negative. So basically, a

proof in focused tensorial logic goes as follows : it starts by decomposing all the formulas on

the left-hand-side of the sequent until the left list is only composed of negative formulas and

atomic variables. At this point, no more operations can be performed on the left-hand-side of

the sequent. This is the asynchronous phase. Now begins the synchronous phase. The proof

decomposes the formula on the right-hand-side until it reaches a negative formula. This formula

is then brought back to the left-hand-side by the right negation rule. Then, another asynchronous
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phase begins, that will decompose the newly brought formula on the left-hand-side until the

outcomes are all either negative or atomic formulas. Then, begins another synchronous phase,

that starts by choosing a new focus, a new formula for the right-hand-side of the sequent, by

applying a right negation.

This decomposition of the proof into a sequence of two phases corresponds to the decom-

position of the "plays", in terms of games, into sequences of O and P-moves. The O-moves

correspond to the asynchronous phases, the P to the synchronous ones.

We have the following theorem, that is a simple extension of its sibling for linear logic, and

whose proof is analogous to the one in the case of linear logic, that can be found in [11, 59], and

will not be repeated here.

Theorem 2.7. Every proof of Γ ` A of tensorial logic is equivalent to a proof of Γ ` A in

focused tensorial logic.

Let us note however, that the system is different in nature compared to its focused counter-

part in linear logic. Indeed, in linear logic, we could impose that the proof starts without focus,

that is, with the right-hand-side of the sequent being empty. However, here, it is not the case.

Let us note however that in the case where we start with a empty right-hand-side sequent, then

the two systems behave seemingly similarly.

2.3.2.1 Global connectives

Just as in linear logic, we can reorganize the sequent calculus to a much simpler system, by

noticing the existence of a normal form, stemming from the following isomorphisms:

A ⊗ (B ⊕C) ' (A ⊗ B) ⊕ (A ⊗C) (2.1)

(A ⊕ B) ⊗C ' (A ⊗C) ⊕ (B ⊗C) (2.2)

The isomorphism and its inverse of the first equation 2.1 are presented below:

A ` A B ` B
A, B ` A ⊗ B

A, B ` (A ⊗ B) ⊕ (A ⊗C)

A ` A C ` C
A,C ` A ⊗C

A,C ` (A ⊗ B) ⊕ (A ⊗C)
A, B ⊕C ` (A ⊗ B) ⊕ (A ⊗C)

A ⊗ (B ⊕C) ` (A ⊗ B ⊕ (A ⊗C)

A ` A
B ` B

B ` B ⊕C
A ⊗ B ` A ⊗ (B ⊕C)

A ` A
C ` C

C ` B ⊕C
A ⊗C ` A ⊗ (B ⊕C)

(A ⊗ B) ⊕ (A ⊗C) ` A ⊗ (B ⊕C)

.

Working with these isomorphisms allows us to characterise the sets of morphisms by working
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with their normal forms, as in the case of linear logic. We define the following rewriting system:

A ⊗ (B ⊕C) (A ⊗ B) ⊕ (A ⊗C)

(A ⊕ B) ⊗C (A ⊗C) ⊕ (B ⊗C)

A B ⇒ F[A] F[B]

and call normal form a formula that cannot be further rewritten. To each formula of tensorial

logic is asscociated a unique normal form. Then given two formulas A, B and their associated

normal form Ā and B̄, we then have C(A, B) ' C(Ā, B̄), where C is the category of tensorial logic

formulas and proofs between them, considered up to equivalence. Furthermore, just as in linear

logic, due to the associativity isomorphisms:

A ⊕ (B ⊕C) ' (A ⊕ B) ⊕C

A ⊗ (B ⊗C) ' (A ⊗C) ⊗C

the order in which side to side tensors (and sums) appear in the formula does not matter. There-

fore, we consider formulas up to associativity isomorphisms equivalence, and write
⊗

for a

sequence of ⊗,
⊕

for a sequence of ⊕. A formula F is said to be in distributive-associative

normal form if it originates from the following syntax:

N ::= ¬F | X | 1

P ::=
⊕

i

(
⊗

j

Ni, j)

F ::= N | P

For instance, X⊗X is translated in this setting into (
⊕

(
⊗

(X)(X)). Note that, despite the perhaps

misleading notation, N, P do not precisely correspond to negative and positive formulas, since

atomic formulas are positive but, for simplicity, are considered N in the above syntax.

Now, let us study how a proof of focused tensorial logic behaves when the sequent is in

normal form. We start with a sequent Γ ` P, where Γ, considered as a
⊗

of formulas, is

considered in normal form: Γ =
⊕

i(
⊗

j Ai, j). The first step consists in a global left
⊕

-rule:

⊗
j A1, j ` P ...

⊗
j Ai, j ` P ...

⊗
n An, j ` P

Left
⊕⊕

i(
⊗

j Ai, j) ` P

Focussing on one of the branch, the proof now decomposes the
⊗

, through a left global
⊗

rule.

Ai,1, .., Ai, j, .., Am, j ` P
Left
⊗⊗

j Ai, j ` P
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Now, if some of the Ai,1 are 1, then the proof proceeds with a global left 1-rule, of the

following shape.

B1, ..., Bn ` P
Left 1mB1, ..., Bn, 11, ..., 1m ` P

This ends the asynchronous phase, that will be represented through a opponent move. It is

then player’s turn to play, and so begins the synchronous phase. Now, there are two cases to

consider. Either P is ⊥, and the proof is going to proceeds with the choice of a focus, embodied

by a left negation rule. Or it is a negated formula, and the proof proceeds with a right negation.

The cases where it is a atomic formula are dealt with below. The general case consists in P

being of the form
⊕

(
⊗

Di, j)).

As each Bi is not a tensor nor a sum of sub-formulas, it is either a negation or an atomic

formula. In the case where P = ⊥, the synchronous phase start by picking one of the negated

formula Bi, of the shape ¬C.

Γ ` C Left ¬
Γ,¬C ` ⊥

Now C is of the shape
⊕

i

⊗
j(Di, j). We now are in a similar position as when P was

originally of this form. Hence the first step consists in a global right
⊕

rule:

Γ ` (
⊗

Di, j) ⊕
Γ `
⊕

i(
⊗

j Di, j)

followed by a global right tensor rule.

Γ1 ` Di,1 ... Γ j ` Di, j ... Γn ` Di,n ⊗
Γ1, ..,Γi, ...,Γn `

⊗
Bi, j

Finally, we apply the necessary rules for all the branches we created. If the formula Di, j is

negated (Di, j = ¬E), then we apply a right negation rule.

Γ, E ` ⊥;
Γ ` ¬E

If, Γi = ∅, and Bi, j = I, then we apply the right I rule. Finally, in the case where Bi, j is a

positive atomic formula then so must be Γi, and we apply the axiom rule.

So, we can present the following proof-system, called TENSfoc−glob. This time, we decom-
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pose the formulas into three sets, depending on what is their principal connective.

N = ¬F | X | 1

P =
⊕

i

Ri | 0

R =
⊗

i

Ni

F ::= N | P

where X ∈ TVar, In the following, N denotes a list of N-formulas without 1, N ′ a list of

N-formulas, N,R, P, F are formulas as above.

AxX ` X
N ` F Left ¬
N ,¬F ` ⊥

N , F ` ⊥ Right ¬
N ` ¬F;

N1, ...,Nm ` F
left
⊗⊗

i Ni ` F

N1 ` N1 ... Ni ` Ni ... Nn ` Nn Right
⊗

N1, ...,Nn `
⊗

i Ni

N ` Rk Right
⊕

k,n
N `
⊕

i=1..n Ri

N ,R1 ` F ... N ,Ri ` F ... N ,Rn ` F
Left
⊕

N ,
⊕

i=1..n Ri ` F

Right 1
` 1

N ` F Left 1m
N , 11, ..., 1m ` F

Left O
N ′, 0 ` F;

As explained above, the following theorem holds.

Theorem 2.8. Every proof π : Γ ` F of TENS is equivalent to a proof π′ : Γ̄ ` F̄ of MALLfoc−glob,

where Γ̄ is the distributive-associative normal form of
⊗

Γ, and F̄ the distributive-associative

normal form of F.

This system can be once again reformulated into a system with one global connective, that

is a mix of ⊕ and ⊗. A major theorem in the case of tensorial logic is that this proof-system

characterises exactly the equivalence classes of proofs.

Theorem 2.9. Two proofs of TENSglob−foc are equivalent if and only if they are equal.

Hence, we are able to precisely characterise the proofs invariants of tensorial logic. The

proof of the theorem consists in noticing that no permutation rule can be applied to proofs

presented with global connectives. However, this is not the case for linear logic, as different

choices of focus entails different proofs invariants in tensorial logic, but not in linear logic.

More on this will be presented in the section below.
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2.3.2.2 Tensorial linear lambda calculus

The goal of this section is to establish a lambda-calculus for multiplicative tensorial logic. We

restrict our attention to multiplicative tensorial logic. The terms of our calculus are as follows:

Types TY 3 T,U ::= X | 1 | ¬T | T ⊗ U

where X ∈ TVar.

Terms T E 3 t, u ::= x | ? | tu | ¬x.t | t ⊗ u | let z be x ⊗ y in t

where ¬x is a binder that binds x.

Typing context Γ ::= ∅ | x : T,Γ

We write x : T,Γ for {x : T } ∪ Γ, with x not already appearing in Γ. The typing rules of our

terms are presented in figure 2.8, where we write ⊥ for the type ¬1.

` ? : 1
Γ ` t : T

Γ, x : 1 ` t : T

x : X ` x : X
Γ ` t : T x : T,∆ ` u : U

Γ,∆ ` u[t/x] : U

Γ, x : U ` t : ⊥
Γ ` ¬x.t : ¬U

Γ ` t : T
Γ, f : ¬T ` f t : ⊥

Γ ` t : T ∆ ` u : U
Γ,∆ ` t ⊗ u : T ⊗ U

Γ, x : T, y : U ` v : V
Γ, z : T ⊗ U ` let z be x ⊗ y in v

Figure 2.8: Formation rules for tensorial linear lambda calculus

These correspond precisely to the terms of the Linear Lambda Calculus LLC [91], where

we have restricted the terms of type T ( U to the case where U = ⊥. In that case, we write

¬T for T ( ⊥. Indeed, one can see tensorial logic as the fragment of intuitionistic linear logic

where the isomorphism between C(A ⊗ B,C) and C(A, B( C) holds only when C = ⊥.

Just as in LLC, the term formation is constrained by the linearity of the typing judgement.

In particular :

x1 : A1, ...., xk : Ak ` t : A

implies that, each xi that is not of type a tensor product of units, occurs exactly once freely

within t.

Furthermore, we write let u be (x⊗y⊗z) in v for either let u be (x⊗w) in let w be (y⊗z) in v

or its right associative analogous. To furthermore shorten the notation, we write ¬(x1, ..., xn).

for ¬x.( let x be (x1, ..., xn) in .).

We define the free variables of a term as follows:



2.4. LINEAR LOGIC AND TENSORIAL LOGIC: A TRANSLATION 63

bv(x) = ∅ fv(x) = x

bv(•) = ∅ fv(•) = ∅

bv(tu) = bv(t) ∪ bv(u) fv(tu) = fv(t) ∪ fv(u)

bv((¬(x1, ..., xn).t) = {x1, ..., xn} ∪ bv(t) fv(¬(x1, .., xn).t) = fv(t) \ {x1, .., xn}

bv(t ⊗ u) = bv(t) ∪ bv(u) fv(t ⊗ u) = fv(t) ∪ fv(u)

bv(let z be x ⊗ y in t) = bv(t) ∪ {x, y} fv(let z be x ⊗ y in t) = {z} ∪ fv(t) \ {x, y}

The rules for β-reduction are:

(¬x.t)u −→β t[u/x]

let t ⊗ u be x ⊗ y in v −→β v[t/x, u/y].

where the substitution is defined as follows. We define t[u/x] by induction on the structure of

the term t:

• x[u/x] = u

• y[u/x] = y

• (t1 ⊗ t2)[u/x] = (t1[u/x]) ⊗ (t2[u/x])

• t1t2[u/x] = t1[u/x]t2[u/x]

• (¬y.t)[u/x] = ¬y.(t[u/x]) if y , t and y < fv(u).

• ( let y be y1 ⊗ y2 in t)[u ⊗ v/y] = t[u/y1, v/y2]

• ( let y bey1⊗y2 in t)[u/x] = let y bey1⊗y2 in (t[u/x]) if x , y, y1, y2 and y, y1, y2 < fv(u).

The conflictual cases x = y or x = y1, y2 are resolved using α-equivalent terms. We give below

an example of a term derivation. We can check that the λ-term:

¬(x,w, f , g, h).h(x⊗¬u.(g(w⊗¬v.( f (u⊗v)))))) : ¬(X⊗Y⊗(¬(Z⊗W)⊗(¬(Y⊗¬W))⊗(¬(X⊗¬Z)))

is well-typed.

u : Z ` u : Z v : W ` v : W
u : Z, v : W ` u ⊗ v : Z ⊗W

u : Z, v : W, f : ¬(Z ⊗W) ` f (u ⊗ v) : ⊥
u : Z, f : ¬(Z ⊗W) ` ¬v.( f (u ⊗ v)) : ¬W w : Y :` w : Y

w : Y, u : Z, f : ¬(Z ⊗W) ` w ⊗ ¬v.( f (u ⊗ v)) : Y ⊗ ¬W
w : Y, u : Z, f : ¬(Z ⊗W), g : ¬(Y ⊗ ¬W) ` g(w ⊗ ¬.v( f (u ⊗ v))) : ⊥
w : Y, f : ¬(Z ⊗W), g : ¬(Y ⊗ ¬W) ` ¬u.(g(w ⊗ ¬v.( f (u ⊗ v)))) : ¬Z x : X ` x : X

x : X,w : Y, f : ¬(Z ⊗W), g : ¬(Y ⊗ ¬W) : x ⊗ ¬u.(g(w ⊗ ¬v.( f (u ⊗ v)))) : X ⊗ ¬Z
x : X,w : Y, f : ¬(Z ⊗W), g : ¬(Y ⊗ ¬W), h : ¬(X ⊗ ¬Z) ` h(x ⊗ ¬u.(g(w ⊗ ¬v.( f (u ⊗ v)))))

y : X ⊗ Y ⊗ (¬(Z ⊗W) ⊗ (¬(Y ⊗ ¬W)) ⊗ (¬(X ⊗ ¬Z)) ` let y be(x,w, f , g, h) in h(x ⊗ ¬u.(g(w ⊗ ¬v.( f (u ⊗ v)))))
` ¬(x,w, f , g, h).h(x ⊗ ¬u.(g(w ⊗ ¬v.( f (u ⊗ v)))))) : ¬(X ⊗ Y ⊗ (¬(Z ⊗W) ⊗ (¬(Y ⊗ ¬W)) ⊗ (¬(X ⊗ ¬Z)))

2.4 Linear logic and tensorial logic: a translation

Relying on polarities, one can devise several translations of linear logic into tensorial logic. The

games for linear logic defined in [66] come from a translation from linear logic into tensorial

logic named " focalised translation" in [71] where it was originally presented.

Using if necessary the equations ruling (.)⊥, each formula of linear logic is equal to one

where the (.)⊥ connective is only applied to atomic propositional variable. Using this form, we
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recall that we can split the formulas of linear logic into two sets of formulas,

P = X | F ⊗ F′ | F ⊕ F′ | 0 | 1

N = X⊥ | F M F′ | F & F′ | > | ⊥ ;

where F, F′ denotes any formula of MALL. This way, One can notice, that, as expected, the

negation of a positive formula is a negative formula and conversely. Given a positive formula of

linear logic P, its translation into tensorial logic (P)F is defined as follows, where ∗ ∈ {⊕,⊗}:

P = X ⇒ (P)F = X

P = O⇒ (P)F = 0

P = 1⇒ (P)F = 1

P = P1 ∗ P2 ⇒ (P)F = (P1)F ∗ (P2)F

P = N1 ⊗ P2 ⇒ (P)F = ¬(N⊥1 )F ⊗ (P2)F

P = P1 ⊗ N2 ⇒ (P)F = (P1)F ⊗ ¬(N⊥2 )F

P = N1 ⊗ N2 ⇒ (P)F = ¬(N⊥1 )F ⊗ ¬(N⊥2 )F

Proposition 2.10. • There is an syntactic equivalence between the cut-free proofs ` Γ; Π in

weakly focused linear logic and the proof of ¬(P)F , (N⊥)F ,X⊥ ` (Π)F in tensorial logic,

where P is the subset of positive formulas of Γ, X its subset of negative atomic formulas,

N its subset of negative formulas that are not in X. Furthermore (Π)F = ⊥ if (Π) is

empty, (P)F in the case where (Π) = P is positive, and ¬(M⊥)F in the case where Π = M

is negative.

• There is a syntactic equivalence between the cut-free proofs of ` P,N ,X; in focused

linear logic and the proofs of ¬(P)F , (N⊥)F ,X⊥ ` ⊥ in focused tensorial logic.

• There is a syntactic equivalence between the cut-free proofs of ` P,N ,X; in focused

linear logic with global connectives and the proofs of ¬(P)F , (N⊥)F ,X⊥ ` ⊥ in focused

tensorial logic with global connectives.

This theorem can be summed up in the following table.

MALL

MALLwfoc

MALLfoc

MALLfoc−glob

TENS

TENSfoc

TENSfoc−glob

'

'

'

The proposition is at the core of the definability result for games for linear logic. If one can

establish a definability result for games for tensor logic, then to each strategy will correspond
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a proof in tensorial logic and, finally, a proof of linear logic. However, to two strategies might

correspond equivalent proofs. This issue has to be tackled via a quotient on strategies.

Proof. The proof is done by induction on the rules of the proofs. We remind that Π denotes

either a unique formula of a empty-sequent of MALL. ` A⊥; A of MALLwfoc is translated into

((A⊥)⊥)F ` (A)F = A ` A, that is, the axiom rule of tensor logic.

Weakly Focused Linear Logic Tensorial Logic

Ax
` A⊥; A AxA ` A

` P,N ,X; P
Foc

` P,N ,X, P;
¬(P)F , (N⊥)F ,X⊥ ` (P)F

Left ¬
¬(P)F ,¬(P)F , (N⊥)F ,X⊥ ` ⊥

P,N ,M,X;
Unfoc

P,N ,X; M
¬(P)F , (N⊥)F , (M⊥)F , (X)⊥ ` ⊥

Right ¬
¬(P)F , (N⊥)F , (X)⊥ ` ¬(M⊥)F

` P,N ,M,N,X; Π
M

` P,N ,M M N,X; Π

¬(P)F , (N⊥)F , (M⊥)F , (N⊥)F ,X⊥ ` (Π)F
Left ⊗

¬(P)F , (N⊥)F , (M⊥ ⊗ N⊥)F ,X⊥ ` (Π)F

since ((M M N)⊥)F = (M⊥ ⊗ N⊥)F = ((M⊥)F ⊗ (N⊥)F))

` P,N , P,Q,X; Π
M

` P,N , P M Q,X; Π

¬(P)F , (N⊥)F ,¬(P)F ,¬(Q)FX⊥ ` (Π)F
Left ⊗

¬(P)F , (N⊥)F ,¬(P)F ⊗ ¬(Q)F ,X⊥ ` (Π)F

since ((P M Q)⊥)F = (P⊥ ⊗ Q⊥)F = (¬(P)F ⊗ ¬(Q)F)

` P,N ,X; Q ` P′,N ′,X; P
⊗

` P,P′,N ,N ′X,X′; P ⊗ Q

¬(P)F , (N⊥)F ,X⊥ ` (P)F ¬(P′)F , ((N ′)⊥)F ,X′⊥ ` (Q)F
Right ⊗

¬(P)F ,¬(P′)F , (N⊥)F , (N ′⊥)F ,X⊥,X′⊥ ` (P)F ⊗ (Q)F

since (P ⊗ Q)F = PF ⊗ QF .

` P,N ,X; M ` P′,N ′,X; N
⊗

` P,P′,N ,N ′,X,X′; M ⊗ N

¬(P)F , (N⊥)F ,X⊥ ` ¬(M⊥)F ¬(P′)F , (N ′⊥)F ,X′⊥ ` ¬(N⊥)F
⊗

¬(P)F ,¬(P′)F , (N⊥)F , (N ′⊥)F ,X⊥,X′⊥ ` ¬(M⊥)F ⊗ ¬(N⊥)F

since (M ⊗ N)F = (¬(M⊥)F ⊗ ¬(N⊥)F).

` P,N ,X; Π
⊥

` P,N ,⊥,X; Π

¬(P)F , (N⊥)F ,X⊥ ` (Π)F
Left 1

¬(P)F , (N⊥)F , 1,X⊥ ` (Π)F

since, as ⊥ is negative, (⊥⊥)F = (1)F = 1.
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1
` 1 1

`; 1

` P,N , P,X; Π ` P,N ,Q,X; Π
&

` P,N , P & Q,X; Π

¬(P)F ,¬(PF), (N⊥)F ,X⊥ ` Π ¬(P)F ,¬(QF), (N⊥)F ,X⊥ ` Π
Left ⊕

¬(P)F ,¬(PF) ⊕ ¬(QF), (N)F ,X⊥ ` (Π)F

since ((P & Q)⊥)F = (P⊥ ⊕ Q⊥)F = ¬(PF) ⊕ ¬(QF)

` P,N , A,X; Π ` P,N , B,X; Π
&

` P,N ,M & N,X; Π

¬(P)F , (N⊥)F , (M⊥)F ,X⊥ ` Π ¬(P)F , (N⊥)F , (N⊥)F ,X⊥ ` Π
Right ⊕1

¬(P)F , (N)F , (M⊥)F ⊕ (N⊥)F ,X⊥ ` Π

since ((M & N)⊥)F = (M⊥ ⊕ N⊥)F = (M⊥)F ⊕ (N⊥)F

` P,N ,X; P
⊕1

` P,N ,X; P ⊕ Q

¬(P)F , (N⊥)F ,X⊥ ` PF
Right ⊕1

¬(P)F , (N⊥)F ,X⊥ ` PF ⊕ QF

since (P ⊕ Q)F = PF ⊕ QF

` P,N ,X; P
⊕1

` P,N ,X⊥; P ⊕ M

¬(P)F , (N⊥)F ,X⊥ ` PF
Right ⊕1

¬(P)F , (N⊥)F ,X⊥ ` PF ⊕ ¬(M⊥)F

since (P ⊕ M)F = PF ⊕ ¬(M⊥)F

` P,N ,X; M
⊕1

` P,N ,X; M ⊕ P

¬(P)F , (N⊥)F ,X⊥ ` ¬(M⊥)F
Right ⊕1

¬(P)F , (N⊥)F ,X⊥ ` ¬(M⊥)F ⊕ ¬PF

since (M ⊕ P)F = ¬(M⊥)F ⊕ PF

` P,N ,X; M
⊕1

` P,N ,X; M ⊕ N

¬(P)F , (N⊥)F ,X⊥ ` ¬(M⊥)F
Right ⊕1

¬(P)F , (N⊥)F ,X⊥ ` ¬(M⊥)F ⊕ ¬(N⊥)F

since (M ⊕ N)F = ¬(M⊥)F ⊕ ¬(N⊥)F

>
` P,N , X,>; Π

Left 0
¬(P)F , (N⊥)F ,X⊥, 0 ` Π

The focused, and global focused systems are dealt with on a equal footing. �

2.4.1 Reverse translation and quotient

Tensorial logic is essentially linear logic with non-involutive negation. Therefore, there is also

a canonical translation from tensorial into linear logic. We denote by (.)I this mapping, and it is

defined by induction on formulas by:
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(0)I = 0 (1)I = 1 (⊥)I = ⊥

(A ⊗ B)I = (A)I ⊗ (B)I (A ⊕ B)I = AI ⊕ BI

(¬A)I = ((A)I)⊥

The mapping (.)I extends to proofs. It maps a proof of tensorial logic into a proof of

MALLwfoc. If we denote by TensLog the pre-category (that is, we are not concerned about

composition) of tensorial logics, which has formulas of tensorial logic as objects and proofs as

morphisms between them, and MALLwfoc its sibling for weakly focused linear logic, then we

have a pair of mappings :

TensLog
(.)I

(.)F
MALLwfoc

The mapping (.)I can be lifted through [.] (that is, the map that to each proof associates its

equivalence class) and hence leads to a functor. That is, given two proofs π, π′ of tensorial logic,

π ∼ π′ ⇒ (π)I ∼ (π′)I . Equivalently, there is a map (.)[I] from the category of invariant of proofs

of tensor logic, to the category of invariants of proofs of linear logic, such that ([π]TensLog)[I] =

[(π)I]MALL. However, this is not the case for (.)F , as it does not factor through [.]MALL. That

is, it does not respect the equivalences of proofs of linear logic: two proofs of linear logic that

are equivalent might be mapped to non-equivalent proofs of tensorial logic. We will display an

example below.

These mappings somehow define an embedding, that is ((.)F)I = id. On the other hand, we

do not have ((.)I)F = id, since the mapping (.)I will forget about any possible double negations.

For instance ((¬¬A)I)F = ((A)I)F .

Let us display why some non-equivalent proofs of tensorial logic might be mapped to equiv-

alent proofs of linear logic. For instance, let us consider the following two proofs of the same

proposition of tensorial logic.

A ` A

B ` B

C ` C D ` D
C,D ` C ⊗ D

¬3
C,D,¬(C ⊗ D) ` ⊥

¬l,2
C,¬(C ⊗ D) ` ¬D

B,C¬(C ⊗ D) ` B ⊗ ¬D
¬l,1

B,C¬(C ⊗ D),¬(B ⊗ ¬D) ` ⊥
¬r,2

B,¬(C ⊗ D),¬(B ⊗ ¬D) ` ¬C
A, B,¬(C ⊗ D),¬(B ⊗ ¬D) ` A ⊗ ¬C

¬r,1
A, B,¬(C ⊗ D),¬(B ⊗ ¬D),¬(A ⊗ ¬C) ` ⊥

and
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B ` B

A ` A

C ` C D ` D
C,D ` C ⊗ D

¬3
¬(C ⊗ D),D,C, ` ⊥

¬r,2
¬(C ⊗ D),D ` ¬C

A,¬(C ⊗ D),D ` A ⊗ ¬C
¬r,1

A,¬(C ⊗ D),¬(A ⊗ ¬C),D ` ⊥
¬l,2

A,¬(C ⊗ D),¬(A ⊗ ¬C) ` ¬D
A, B,¬(C ⊗ D),¬(A ⊗ ¬C) ` (B ⊗ ¬D)

¬l,1
A, B,¬(C ⊗ D),¬(B ⊗ ¬D),¬(A ⊗ ¬C) ` ⊥

These proofs differ in the order in which they will explore each branch. The first one will

start exploring ¬(A ⊗ ¬C), whereas the second will focus on (B ⊗ ¬C). To make it clear, we

expose below the (simplified) arena for the proofs. At this stage, one only needs to know that

an arena is a tree whose edges are labelled “player” or “opponent”, and the moves are equipped

with a notion of cell, that corresponds to propositional variables.

?

(A⊥, B⊥)

B

D⊥

A

C⊥

(C,D)

O

¬l,1, P

¬l,2,O

¬r,1, P

¬r,2,O

¬3, P

The two proofs above correspond to two different strategies, as the first one reacts to the

initial O-move by playing the P-move ¬l,1, whereas the second reacts by playing ¬r,1. However,

if we translate the first proof into linear logic we obtain:

A ` A

B ` B

C ` C D ` D
C,D ` C ⊗ D

C,D, (C⊥ M D⊥) ` ⊥
C, (C⊥ M D⊥) ` D⊥

B,C, (C⊥ M D⊥) ` B ⊗ D⊥

B,C, (C⊥ M D⊥), (B⊥ ⊗ D⊥) ` ⊥
B, (C⊥ M D⊥), B⊥ M D ` C⊥

A, B, (C⊥ M D⊥), B⊥ M D ` A ⊗C⊥

A, B, (C⊥ M D⊥), (B⊥ M D), (A⊥ M C) ` ⊥

that we can simplify, by forgetting the back and forth around `, to form:
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` A⊥, A
` B⊥, B

` C⊥,C ` D⊥,D
` C,D,C⊥ ⊗ D⊥

` B⊥,C ⊗ D,C⊥, B ⊗ D⊥

` A⊥, B⊥,C ⊗ D, B ⊗ D⊥, A ⊗C⊥

for the first one. Doing an equal translation, we get

` B⊥, B
` A⊥, A

` C⊥,C ` D⊥,D
` C,D,C⊥ ⊗ D⊥

` A⊥,C ⊗ D,D⊥, A ⊗C⊥

` A⊥, B⊥,C ⊗ D, B ⊗ D⊥, A ⊗C⊥

for the second one. But these two proofs are equivalent in linear logic. The reason why was

highlighted in the previous section 2.2.1.1. The same argument explains why (.)F is not a func-

tor. Indeed, the two above proofs of linear logic are equivalent, but are mapped by (.)F to two

different proofs of tensorial logic. Therefore, the mapping (.)F does not respect the invariants of

linear logic; it is only a syntactic translation.

This is (partly) related to the Blass problem, as explained in [65]. In tensorial logic, the order

in which the tensors are played is made precise. However, in linear logic, the two player moves

¬l,1,¬r,1 happen concomitantly. Therefore, there are two ways to circumvent this problem (from

a semantical point of view). Either we consider that the two moves happen concomitantly, that

is, the strategy is now a concurrent strategy, being able to play several moves at once. Or, we

force the strategy to choose an order, even arbitrary, and then we forget about it by imposing a

quotient on strategies, that relates two strategies whose order on those moves differ.

2.5 Categorical models

Along this thesis, we will often refer to the categorical structure of our models, and their

properties. For a complete introduction to categories, we refer to [58] or [91]. The purpose of

this section is to briefly remind what are categorical models of linear and tensorial logic. To

keep it short, we do not give a full description, and refer the reader to [67] [71] for more. To

start, we briefly remind the definition of a monoidal category.

Definition 2.11. A category C is said to be monoidal if there exists a functor ⊗ : C × C → C,

a unit object I, two unit natural isomorphisms ρ : A ⊗ I ' A and λ : I ⊗ A ' A, and a natural

associativity isomorphism αa,b,c : A ⊗ (B ⊗ C) ' (A ⊗ B) ⊗ C satisfying certain coherence

diagrams, which we omit.

Models of linear logic and tensorial logic consist of symmetric monoidal categories, that are

monoidal categories equipped with a natural associativity isomorphism sA,B : A ⊗ B → B ⊗ A,
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such that s−1
A,B = sB,A, and subject to some conditions that we do not present here. If both

categories behave the same way with regards to the tensor, they present a schism when it comes

to the negation.

We start with tensorial logic. A categorical model of multiplicative tensorial logic is

referred to as a dialogue category. A proof π : Γ = F1, ..., Fn ` A of tensorial logic is interpreted

as a morphism F1 ⊗ ... ⊗ Fn → A.

Definition 2.12. A dialogue category C is a symmetric monoidal category together with a ten-

sorial negation ¬ : C → Cop such that there is a family of bijections natural in A, B,C :

C(A ⊗ B,¬C) ' C(A,¬(B ⊗C))

In particular, writing ⊥ for ¬I, this entails the following:

C(A ⊗ B,⊥) ' C(A,¬B).

A dialogue category defines a model of multiplicative additive tensorial logic if it has co-

products that distribute over the monoidal products. Given a dialogue category, an easy way

to obtain such coproducts is to perform the family construction, that consists in taking lists of

objects as new objects. More details can be found in [71] [8]. On the other hand, models of mul-

tiplicative linear logic turn out to be star-autonomous. A dialogue category is star-autonomous

only when the double-negation monad is the identity. Star-autonomous categories notably have

an additional property of closure. We say that a symmetric monoidal category is closed when,

for every object B the functor _ ⊗ B admits a right adjunct denoted B ( _. It then satisfies the

following correspondence:

C(A ⊗ B,C) ' C(A, B( C)

Therefore, the left adjunct of the identity A( B→ A( B is a morphism (A( B)⊗A→ B

called evalA,B. We can then obtain a morphism A → (A ( B) ( B, using first the symmetry

(A ( B) ⊗ A ' A ⊗ (A ( B) and then the left to right isomorphism. This morphism is called

the currying of the evalA,B map. A proof π : F1, ..., Fn ` G1, ..,Gn of linear logic is interpreted

as a morphism F1 ⊗ ... ⊗ Fn → G1 M ....MGn.

Definition 2.13. A star-autonomous category is a symmetric monoidal category C with a dual-

ising object ⊥ such that the currying of the evaluation map evalA,⊥ is an isomorphism:

(A( ⊥)( ⊥ ' A.
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In a star-autonomous category, we do notably have (A)⊥ ' A ( ⊥. There are alternative

presentations of star-autonomous categories, but all of them are equivalent. Among them, one

of the most relevant consists defining them through a double monoidal structure. Indeed, star-

autonomous have two monoidal structures, one coming from the tensor ⊗ and the second one

coming from its negation. The original one models the tensor ⊗ from the logic, whereas the

second one models the par M. If both tensors are interpreted the same way (that is, ⊗ = M), then

the star-autonomous category is said to be degenerate. Compact closed categories correspond

precisely to the degenerate case, that is, they are star-autonomous categories with ⊗ = M. We

give the formal definition below.

Definition 2.14. A compact closed category is a symmetric closed monoidal category in which

every object A is assigned a dual A⊥, a unit ηA : I → A⊥ ⊗ A and a co-unit εA : A ⊗ A⊥ → I

such that the following equalities hold :

A
IdA⊗ηA
−−−−−−→ A ⊗ A⊥ ⊗ A

εA⊗idA
−−−−−−→ A = idA

A⊥
ηA⊗idA
−−−−−−→ A⊥ ⊗ A ⊗ A⊥

idA⊗εA
−−−−−−→ A⊥ = idA

It turns out that the assignment A → A⊥ can be turned into a contravariant functor. To each

morphism f : A→ B, f⊥ : B⊥ → A⊥ is :

B⊥
idB⊥⊗ηA
−−−−−−→ B⊥ ⊗ A⊥ ⊗ A

idB⊥⊗A⊥⊗ f
−−−−−−−−→ B⊥ ⊗ A⊥ ⊗ B

exchange
−−−−−−−→ B ⊗ B⊥ ⊗ A⊥

ηB⊗idA⊥
−−−−−−→ A⊥

Therefore, in the sequel, we will simply present compact closed categories as monoidal

categories together with a negation functor. It should be clear from context what the families ηA

and εA are.

If star-autonomous categories form a sound model for multiplicative linear logic, one needs

more structure for the additive part. To model it, coproducts and products are required for every

two objects of the category, together with a initial and final object for the additive units. However

it turns out that a star-autonomous category can not have one without the other: the negation of

a product becoming a coproduct, and reversely. Therefore, it is enough to require only one of

the two. By convention, we say that a categorical model of MALL is a star-autonomous category

with products.

2.5.1 Free categories

Given a category C in Cat, its free S-category will be precisely defined in terms of the following

universal property. Given US :S-Cat → Cat, the forgetful functor, and C a category, the free

S -category of C consists of an object CS of S-Cat, such that there exists a canonical functor

εC : C → US (Cs) that makes C a subcategory of US (Cs), and furthermore such that for every

S -category D, and every functor h : C → US (D) there exists an arrow h[ : Cs → D such that

US (h[)◦εC = h. This arrow h[ is not necessarily unique, but is unique up to structure-preserving

isomorphism. Diagrammatically:
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Cat S-cat
US

U(D)

U(CS )C

D

CSεC

U(h[)h h[

The free category could be explicitly described by means of algebraic combinations of gen-

erators and relations, but the interesting cases arise when a description can be given by a direct

definition. Our interest will range from S being the free symmetric monoidal category to S

being compact closed. We will furthermore give an explicit description of a compact category,

and then star-autonomous categories with products and co-products. Unfortunately, those will

not be the free-categories.



Chapter 3

Simple Nominal Models

Models of linear logic are often referred to as static, in the sense that they do not involve a notion

of evolution or time. Unfortunately, no full completeness result has been achieved with statics

models without using some additional categorical structure like di-natural transformations [16,

84], or similar 2-cateogorical tools [5] [60], in order to deal with atomic types. We here present

basic adaptations of some of the most popular static models of linear logic to the nominal world,

and highlight why nominal models are ideal to deal with resources and linearity. Our goal is

to shift from a 2-categorical setting to a first-order one. In order to do so, one must be able to

give to each formula, as denotation, a single object in the category. Therefore, we do not deal

with abstract structures, but really concrete ones where each object can be formed from basic

building blocks, corresponding to atomic formulas and units, and a finite number of categorical

operations, that are the analogues of the connectives of the logic. We chose to model atomic

variables by sets of names, that seem to be suitable candidates to represent the “elementary

particles of logic” [67].

We construct gradually more and more complex categories that correspond to bigger frag-

ments of linear logic. Our basic category will be a discrete category, where the only morphisms

are the identities. We start by presenting its free symmetric monoidal category, and from it con-

struct a compact closed category, that we briefly compare to the free one. This is the simplest

model of multiplicative linear logic one might look for. To enrich it with additive structure, we

move on to nominal relations. Finally, to keep the model from being degenerate, we introduce

a notion of coherence that allows us to distinguish ⊗ from M. At this stage, one could either

present coherence or hypercoherence spaces, and we choose the former as it refines the latter.

We recall that the denotation function is designated by ~.�C, from L- formulas and proofs

to C, where L is a fragment of linear logic and C is a category. Generally, C and L will be clear

from the context, and we will simply write ~.�.

Definition 3.1. The category VAR is the discrete category with objects X ∈ TVar, and whose

only morphisms are the identities.

73
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The logic associated with the category VAR is the “axiomatic” fragment:

AxX ` X X ∈ TVar

At this stage, the function ~.� maps each type variable to its associated canonical object, and

each proof X ` X to the identity morphism.

In this section, we build a simple nominal model of propositional linear logic, using sorted

names to represent atomic types. We construct it gradually. We sum up in this table the different

categories we present, what logic they model, and what is their relationship to the logic and its

invariants.

Category Logic Relation

VAR Axiomatic Fragment Free

NomLinList ⊗ + Exchange Fragment Free

NomLinPol Compact closed logic Fully complete

NomLinPol MLL Sound, degenerate

NomLinRel (⊗,⊕) Sound

NomLinRelPol Compact closed logic with biproduct Sound

NomLinRelPol MALL Sound, degenerate

NomHypCoh MALL Sound

Figure 3.1: List of categories of Chapter 3.

In the above table, we wrote “Free” to indicate that the category is the free S -category on

VAR, where S is the appropriate categorical structure corresponding to the logic. That is, a

category is Free if there is a correspondence between the morphisms of it and the invariants of

proofs of the suitable logic.

3.1 Names and the free symmetric monoidal category

3.1.1 An introduction to nominal sets

We briefly recall some key notions of sorted nominal set theory, for a more complete introduc-

tion we advise looking at [81] or [82]. Let us denote TVar = X,Y, ... a countable infinite set of

atomic types and let us fix a countable infinite family (AX)X∈TVar of pairwise disjoint, countable

infinite sets of names. We write Perm(AX) for the group of finite permutations of AX , that are,

permutations that change only a finite number of elements We will denote names by a, b, c....

and name permutations by π. Also, (a, b) is the permutation swapping a and b. We will call A

the set of all names : A =
⊎

X AX , and consider Perm(A) =
⊕

X Perm(AX), where
⊎

is the dis-
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joint union, and
⊕

the direct product. We call name permutations the elements of Perm(A).

Proposition 3.2. (Perm(A), ◦, id) forms a group. The inverse of each element is its inverse as a

function.

The proof is straightforward. We recall below the axioms of group actions.

Definition 3.3. Given a group (G, ◦, 1) and a set S , a (left) group action fromG to S is a function

G × S → S denoted (g, x)→ (g · x) such that:

• g · (g′ · x) = (g ◦ g′) · x.

• 1 · x = x.

In the future we will only consider left group actions and hence simply denote them group

actions.

Definition 3.4. A Perm(A)-set S is a set |S | together with a group action Perm(A) × |S | → |S |.

We say that a subset A ⊆ A supports an element x ∈ S, if ∀π ∈ Perm(A).(∀a ∈ A.π(a) =

a)⇒ π · x = x.

Definition 3.5. A nominal set S is a Perm(A)-set such that each element of S has a finite

supporting set.

A key property of finite supporting sets is that they intersect. That is, given x an element of

a nominal set, S ,T ⊆ finA such that S ,T support x then S ∩T supports x as well (see [90, p. 17]

for a proof). Therefore, we can write ν(x) for the minimal supporting set of x, and call it the

support of x. In the case where the element x is finite, the support is exactly the set of names it

contains.

Given an element x in a nominal set, we denote [x] its orbit, defined by [x] = {π · x | π ∈

Perm(A)}. Given two elements x, y of S, we write x#y if they have disjoint support (ν(x)∩ν(y) =

∅. We say that two elements x, y are equivalent, written x ' y if there is a permutation π such

that π · x = y. Equivalently, two elements are equivalent if they have same orbit. Given a

function between nominal sets f : S → T , we define (π · f ) by (π · f )(x) = π · ( f (π−1 · x)).

This way, we equip the set of functions from S to T with a group action, given it the structure

of a Perm(A)-set. An element x is equivariant if ∀π ∈ Perm(A). π · x = x. Equivalently, an

element is equivariant if it has empty support. In particular, a function between two nominal sets

is equivariant if f (π · x) = π · f (x) for all x, π. In this case, one can establish that ν( f (x)) ⊆ ν(x).

Definition 3.6. Nominal sets and equivariant functions between them form a category, called

NSet.

We sometimes write nominal instead of equivariant. For instance, a nominal subset of a

nominal set is a subset closed under nominal permutations.
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Definition 3.7. An element x of a nominal set has strong support if π · x = x⇒ π#x.

Alternatively, we say that the element x is strongly supported. One should note that the

property above is actually an equivalence π · x = x ⇔ π#x, since the right to left direction is

automaticly true. Strong support has been introduced in [90], where it was noted that it was a

necessary condition to model adequately nominal programming languages. A simple example

of an element with non strong support is the set {a, b}, since (a, b) · {a, b} = {a, b}, though

ν((a, b)) = ν({a, b}). On the other hand, the list a.b has strong support.

Definition 3.8. A nominal set with strong support is a nominal set such that each of its element

enjoys being strongly supported.

In the sequel, the careful reader might notice that all the nominal sets we present have strong

support, since they massively rely on lists.

3.1.2 Building the free symmetric monoidal category

Given a small discrete category, that is, a category where the only morphisms are the identities,

one can construct the free symmetric monoidal category out of it using sorted names. The

category NomLinList, that we present below, will be our first construction. In order to cope with

the unit of the monoidal category, we introduce a distinctive element • of empty support. We

use the word atome (in the literature, atom is a synonym for names, and this is why we preferred

a french spelling) to refer to either a name or to •. We overload the previous notation, and let

a, b, c and variants range over the set of atomes. We say that two atomes are name-distinct (or

simply distinct) if they have non-intersecting support. That is, two atomes a, b are distinct only

if a#b. If a list of atomes contains only name-distinct atoms, we say that this list is separated.

We say that a nominal set is 1-orbit if it possesses only one equivalence class relatively to name

permutations, that is, for every two elements of the set x, y, it follows that x ' y. Therefore,

given a 1-orbit nominal set S , we have ∀x ∈ S .S = [x], that is, S is perfectly defined by each of

its elements.

The objects of NomLinList will be set of separated lists L built out of the following grammar:

L ::= • | a | L1.L2

where a ∈ A and L1#L2. We write L1.L2 for list concatenation and we abuse notation by writing

“•” and “a” for the one element list containing • and a respectively.

Definition 3.9. The category NomLinList has:

• non-empty 1-orbit sets of finite non-empty separated lists of atomes as objects

• functions φ that are equivariant and linear as morphisms, in the sense that each resource

in its antecedent should appear in its image.

– φ is equivariant : π · (φ(x)) = φ(π · x)
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– φ is linear : ν(x) = ν(φ(x))

The composition of morphisms is the standard composition of set-functions, and the identity

function acts as the identity morphism. Both the equivariance condition and the linearity one

compose, and the idendity morphism is equivariant and linear. For each X ∈ TVar, we set

~X� = AX . This assigns to X a pool of names (resources) of sort X. We furthermore define

~I� = {•}.

NomLinList is equipped with a monoidal product, that originates from a mix between sepa-

rated product and concatenation of lists. We name it separated concatenation, denote it ? and

define it by the following operation :

X1 ? X2 = {x1.x2 | x1 ∈ X1, x2 ∈ X2, x1#x2}

As expected, we set ~A ⊗ B� = ~A� ? ~B�. Note that any object of NomLinList is well
typed, that is, it can be inductively generated from I, ~X�(X ∈ TVar) and the binary operation

? defined below. Separated concatenation prevents a resource from appearing several times

in an list, hence the linear condition really enforces linearity: there are no morphisms of type

X → X ⊗ X, nor of type X → I. Furthermore, the use of sorted names prevents incoherent

typing, such as morphisms X → Y . Note also that any element of empty support would do as a

unit for the monoidal product, therefore, we take I = {•} for it, where ν(•) = ∅. The morphism

ρA : A ⊗ I → A is defined by ρA(l.•) = l, where l is an element of A. λ : I ⊗ A → A is defined

dually, and the natural associativity isomorphism is the identity. The monoidal product acts like

the cartesian product on morphisms, that is:

φ ? ψ(L1.L2) = φ(L1).ψ(L2).

From the equivariance of φ and ψ follows that φ(L1)#ψ(L2) and therefore the monoidal product

is well defined on functions.

Therefore, the category NomLinList is a model of the monoidal fragment of linear logic,

defined below:

AxA ` A
Γ ` A A,∆ ` B

Cut
Γ,∆ ` B

Γ1, A, B,Γ2 ` C Left exchange
Γ1, B, A,Γ2 ` C

Γ ` A Left 1
Γ, 1 ` A

1
` 1

Γ ` A ∆ ` B Right ⊗
Γ,∆ ` A ⊗ B

Γ, A, B ` C
Left ⊗

Γ, A ⊗ B ` C

Figure 3.2: The monoidal + exchange fragment of Linear Logic
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3.1.2.1 Free semi-strict symmetric monoidal category

Definition 3.10. • A symmmtric monoidal category is semi-strict if the associator α : (A ⊗

B) ⊗C → (A ⊗ B) ⊗C is the identity.

• A monoidal category is strict if the isomorphisms αA,B,C : (A⊗ B)⊗C → A⊗ (B⊗C), λA,

ρA are identities (for all objects A, B,C of the category).

With NomLinList defined, we can move on to prove it is the free semi-strict symmetric

monoidal category over VAR. To simplify things, we do not write explicitly the forgetful functor

U. The functor ε : VAR → NomLinList is defined by mapping each variable X onto the set AX

viewed as a 1-orbit set of lists of length 1, and the identities to identity maps of NomLinList. Let

D be a symmetric monoidal category, and F a functor F : VAR→ D. The symmetric monoidal

functor F[ : NomLinList→ D is defined on objects as follows:

• F[(I) = ID
• F[(AX) = F(X), when X ∈ TVar.

• F[(A1 ? A2) = F[(A1) ⊗ F[(A2)

To define its action on morphisms, we need the following proposition, that can be found in

[58], chapter XI.

Proposition 3.11. Each symmetric monoidal category is equivalent (via strong monoidal func-

tors) to a strict monoidal category.

We recall that two categories are equivalent if there is a fully faithful functor from one to

the other. Here, it is required that, furthermore, this functor is a strong monoidal one, that is

F(A ⊗ B) ' F(A) ⊗ F(B) and F(I) ' I, where I are the monoidal units of the categories.

More precisely, a semi-strict symmetric monoidal category is strongly equivalent to its strict

subcategory, defined to be the restriction of the category to strict objects. An object X is strict

if it is either I, or writing X = X1 ⊗ ... ⊗ Xn, where each Xi is irreducible (that is, cannot be

written as Xi = Y1⊗Y2), then ∀i.Xi , I. The strict subcategory forms a strict monoidal category,

where given two objects X,Y , X ⊗strict Y = X ⊗ Y if X,Y , I, and X ⊗strict Y = X if Y = I or

X ⊗strict Y = Y if X = I.

Writing F : C → Cstrict and G : Cstrict → C for the functors of monoidal categories reflecting

the equivalence, we define χ : IdC → G ◦ F the monoidal natural isomorphism coming from

the equivalence. Then χ maps an object formed by tensoring atomic objects and units to the

same object without the units (for instance, it sends A ⊗ I ⊗ B to A ⊗ B). Then, every morphism

f : A→ B factors as a morphism: f : A
χA
−−→ Astrict

fstrict
−−−→ Bstrict

(χB)−1

−−−−−→ B.

The standard construction of the free strict symmetric monoidal category can be found in

[1], and is reminded here. Given a category C, the free strict symmetric monoidal category

SSMC(C) adjoined to C has objects finite lists of objects of C and the morphisms are described
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as follows. f : (A1, ..., An) → (B1, ..., Bn) consists of a permutation sn ∈ Σn, where Σn is the

group of permutations of {1, .., n}, and a family { fi | i ∈ [1, n]} of morphisms of C such that

fi : Ai → Bsn(i).

The monoidal product consists of the concatenation of lists, and the unit is the empty list.

The composition of morphisms is defined through the combination of set-theoretic composition

of permutations and composition of morphisms of C. Here, as we based our constructions on

the category VAR that has only identities as morphisms, we can forget about the family fi.

The morphisms of SSMC(VAR), that we refer to simply as SSMC in the sequel, are simply

permutations sn such that for all i ∈ [1, n], Ai = Bsn(i).

NomLinList and SSMC are equivalent, but not isomorphic. Indeed, in the list construction,

the objects A ⊗ I and A are identical, whereas they differ in the nominal construction. However,

SSMC corresponds precisely to the strict subcategory of NomLinList. Consequently, the action

of morphisms of NomLinList on objects is uniquely defined by their permutation of objects

coming from the symmetry of NomLinList. This can be presented as follows: for any objects A =⊗
i Xi, B =

⊗
i Yi, and any morphism f : A → B, fstrict can clearly be seen as a permutation,

by attributing to each atomic variable a natural number indicating its position in the formula:

X ⊗ Y ⊗ Z ⊗ W
1 2 3 4

and then noticing that fstrict will send a name in position i to a position j. For instance, the

morphism fstrict below:

A ⊗ B ⊗ C ⊗ D → W ⊗ X ⊗ Y ⊗ Z
(a . b . c . d) → (c . a . b . d)

is equivalent to the permutation (1, 2, 3). Therefore, to each morphism f of NomLinList

can be assigned a permutation, by looking at the sole position of atomic variables inside the

formula (that is, we do not pay attention to units), and how it acts on their associated names. For

instance, to the morphism f :

1 2 → 1 2
X ⊗ I ⊗ I ⊗ Y → I ⊗ Y ⊗ I ⊗ X
(a . • . • . b) → (• . b . • . a)

one can assign the permutation (1, 2). The number associated to each type variable will be called

its location. Equivalently, we also speak about the location of a name in the list. Moreover,

composition of morphisms works as composition of permutations. These permutations can be

built from the symmetry morphisms sX,Y and the identities by tensoring and composing them.

Therefore, they are present in any symmetric monoidal category.
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Based on this result, we can uncover the action of F[ on a morphism f : A → B. On strict
objects, that, is, objects built from the atomic variables and the tensor product, without using

the unit, its image F[( f ) is the exact same permutation, this time applied to:

F[(A1) ⊗ ... ⊗ F[(An)→ F[(B1) ⊗ ... ⊗ F[(Bn).

Given f : A → B, and its decomposition χA; fstrict; χ−1
B , its image F[( f ) : F[(A) → F[(B),

is given by χF[(A); F[( fstrict); χ−1
F[(B)

. One can straightforwardly check that F[(idA) = idF[(A),

and F[( f ; g) = F[( f ); F[(g), as the two structural morphisms χ−1, χ in the middle will cancel

themselves out.

Note that in order to obtain the free symmetric monoidal category, one should work with

products instead of lists. This way, we would have keep the parentheses inside the elements.

For instance, an object of X⊗ (Y ⊗Z) would have been under the form (x, (y, z)) instead of being

a simple list (x, y, z). Therefore, by working with lists, we obtain an almost perfect abstract

representation of proofs, as we work up to associativity equivalence.

3.2 Traced monoidal category

Symmetric monoidal categories are models of the ⊗-part of linear logic. To incorporate

the whole multiplicative structure, one needs star-autonomous categories. Compact closed

categories are the simplest instance of such categories. Given a traced monoidal category, there

is a standard (and free) completion of it to a compact closed category. We would like to apply

this construction to our former category, in order to get a model of multiplicative linear logic.

Therefore, we need to check that the category previously defined can be equipped with a trace,

and, if so, present its definition.

Definition 3.12. A traced monoidal category is a symmetric monoidal category equipped with

a family of functions TrU
A,B : C(A ⊗ U, B ⊗ U) → C(A, B) for all objects A, B,U of C satisfying

the following properties:
• Given f : A ⊗ U → B ⊗ U and g : A′ → A then: TrU

A,B( f ) ◦ g = TrU
A′,B( f ◦ (g ⊗ IdU))

(Naturality 1).

• Given f : A ⊗ U → B ⊗ U and g : B → B′, then g ◦ TrU
A,B( f ) = TrU

A,B′((g ⊗ idU) ◦ f )

(Naturality 2).

• Given f : A ⊗ U → B ⊗ U′ and g : U′ → U then: TrU
A,B((IdB ⊗ g) ◦ f ) = TrU′

A,B( f ◦ (IdA ⊗ g))

(Dinaturality 3).

• Given f : A ⊗ I → B ⊗ I then TrI
A,B( f ) = f , and given g : A ⊗ U ⊗ V → B ⊗ U ⊗ V then:

TrU⊗V
A,B (g) = TrU

A,B(TrV
A⊗U,B⊗U(g)) (Vanishing).

• Given f : A ⊗ U → B ⊗ U and g : W → Z then: g ⊗ TrU
A,B( f ) = TrU

W⊗A,Z⊗B(g ⊗ f ) (Super-

posing).

• Given sA,B : A⊗B→ B⊗A the family of symmetry functions that comes from the symmetry

of the monoidal product, then TrU
A,A(sA,A) = IdA (Yanking).
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Note that the three first conditions only state that TrU
A,B is natural in its three parameters

U, A, B. Surprisingly, even if one can easily uncover a trace for our category, it turns out that

the resulting category is not the free traced category (see [1] for more details). The trace is not

easily describable in terms of names and functions, therefore, we use the parallel established in

the previous section between our morphisms and permutations.

To define the trace of f : A ⊗ U → B ⊗ U, we focus on the associated permutation. We

assume there are m locations in U, and n in A, B. The trace of a permutation is defined through

the feedback operator. To f : A⊗U → B⊗U, seen as a permutation, we define the permutation

associated to g = tr( f ) as follows. We take g = g′ � {1, .., n} where g′ is defined by: 1

g′(i) = f (i) if f (i) ≤ n

g′(i) = g′( f (i) otherwise

Since f is a finite, respecting types, permutation, we can easily check that the above is

well-defined.

As proven in [1], the trace defined above indeed forms a trace on the category SSMC, that is,

on the sub-strict category of NomLinList. We can prove that this forms a trace on NomLinList

using categorical arguments, by relying on the equivalence between the category NomLinList

and its strict subcategory. The trace exposed above can be described in these new terms:

TrU
A,B, NomLinList( f ) = χA; (G ◦ TrF(U)

F(A),F(B),SSMC ◦ F( f )); χ−1
B

Lemma 3.13. The family of functions TrU
A,B, NomLinList : C(A ⊗U, B ⊗U)→ C(A, B) that to each

f : A ⊗ U → B ⊗ U assigns χA; (G ◦ TrF(U)
F(A),F(B),SSMC ◦ F( f )); χ−1

B is a trace in NomLinList.

Proof. We start by focussing on naturality 1. Let f : A⊗U → B⊗U, and g : A′ → A. Then we

have the following equalities. Note that, in our case, F is a strict functor of monoidal categories,

1A equivalent definition is given through the feedback operator:

Given i ≤ n, g(i) =

 f (i) if f (i) ≤ n
feedback f (i) otherwise

Given i > n, feedback(i) =

 f (i) if f (i) ≤ n
feedback( f (i)) otherwise
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that is F( f ⊗ g) = F( f ) ⊗ F(g).

g; TrU
A,B NomLinList( f ) = g; χA; (G(TrF(U)

F(A),F(B),SSMC(F( f ))); χ−1
B (3.1)

= χA′ ; (G ◦ F)(g); (G ◦ TrF(U)
F(A),F(B),SSMC(F( f ))); χ−1

B (3.2)

= χA′ ; (G ◦ (F(g); TrF(U)
F(A),F(B),SSMC(F( f ))); χ−1

B (3.3)

= χA′ ; (G ◦ TrF(U)
F(A′),F(B),SSMC((F(g) ⊗ idF(U)); F( f ))); χ−1

B (3.4)

= χA′ ; (G ◦ TrF(U)
F(A′),F(B),SSMC((F(g ⊗ idU); F( f ))); χ−1

B (3.5)

= χA′ ; (G ◦ TrF(U)
F(A′),F(B),SSMC((F(g ⊗ idU); f ))); χ−1

B (3.6)

= TrU
A′,B, NomLinList((g ⊗ idU); f ) (3.7)

where the passage from (3.1) to (3.2) follows the naturality of χ, from (3.2) to (3.3) the functo-

riality of G, from (3.3) to (3.4) we use the property (1) of the trace, from (3.4) to (3.5) the strict

monoidality of F, from (3.5) to (3.6) the functoriality of F, and finally the definition of the trace

in NomLinList for the last bit.

The two other naturality properties are proven in a similar manner. We now turn to vanish-

ing. Given f : A ⊗ I → B ⊗ I, then let us compute the trace:

TrI
A,B, NomLinList( f ) = χA; G ◦ TrF(I)

F(A),F(B), SSMC(F( f )); χ−1
B (3.8)

= χA; G ◦ TrI
F(A),F(B), SSMC(F( f )); χ−1

B (3.9)

= χA; G ◦ F( f ); χ−1
B (3.10)

= f (3.11)

Similarly, we compute TrU⊗V
A,B, NomLinList( f ). To do that, we first have to notice that for every

morphism g : A → B ∈ SSMC, there is a morphism f : A′ → B′ ∈ NomLinList such that

F( f ) = g. As a result, F(χA′ ; G(g); χ−1
B′ ) = F(χA′ ; G ◦ F( f ); χ−1

B′ ) = F( f ) = g.

TrU⊗V
A,B, NomLinList( f ) = χA; G ◦ TrF(U⊗V)

F(A),F(B), SSMC(F( f )); χ−1
B (3.12)

= χA; G ◦ TrF(U)⊗F(V)
F(A),F(B), SSMCF( f )χ−1

B (3.13)

= χA; G ◦ (TrF(U)
F(A),F(B), SSMC(TrF(V)

F(A)⊗F(U),F(B)⊗F(U), SSMC(F( f ))))χ−1
B (3.14)

= χA; G ◦ TrF(U)
F(A),F(B), SSMC(F(χA⊗U ; G(TrF(V)

F(A⊗U),F(B⊗U)(F( f )); χ−1
B⊗U)); χ−1

B

(3.15)

= TrU
A,B,NomLinList(TrV

A,B,NomLinList( f )) (3.16)
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The superposing property relies on the monoidality of the natural isomorphism χ.

g ⊗ TrU
A,B, NomLinList( f ) = g ⊗ (χA; G ◦ TrF(U)

F(A),F(B), SSMC(F( f )); χ−1
B ) (3.17)

= (χW ; (G ◦ F)(g); χ−1
Z ) ⊗ (χA; G ◦ TrF(U)

F(A),F(B), SSMC(F( f )); χ−1
B ) (3.18)

= χW⊗A; G ◦ (F(g)) ⊗ (G ◦ TrF(U)
F(A),F(B), SSMC(F( f ))); χ−1

Z⊗B (3.19)

= χW⊗A; G ◦ (F(g) ⊗ TrF(U)
F(A),F(B), SSMC(F( f ))); χ−1

Z⊗B (3.20)

= χW⊗A; G ◦ (TrF(U)
F(W)⊗F(A),F(Z)⊗F(B), SSMC(F(g ⊗ f ))); χ−1

Z⊗B (3.21)

= χW⊗A; G ◦ (TrF(U)
F(W⊗A),F(Z⊗B), SSMC(F(g ⊗ f ))); χ−1

Z⊗B (3.22)

= TrU
W⊗A,Z⊗B, NomLinList(g ⊗ f ) (3.23)

Finally, the last property, yanking, is straightforward. �

As a final note, it turns out that this category is not the free traced monoidal category. Indeed,

the free traced monoidal category “counts the loops” that have been erased, as proven in [1].

3.3 Polarities and compact closed category

Having established that the category NomLinList can be equipped with a trace, we can build the

free compact closed category of it following a famous construction by Joyal, Street, and Verity

[54]. We recall that the definition of a compact closed category might be found in 2.5. We

present below the original Int construction, that will be later slightly refined for our purposes.

In the sequel, we will slightly generalise the definition of the trace. Given given f :

A1 ⊗ U ⊗ A2 → B1 ⊗ U ⊗ B2, we define TrU
A1,A2,B1,B2

( f ) : A1 ⊗ A2 → B1 ⊗ B2 to be

TrU
A1⊗A2,B1⊗B2

((idA1 ⊗ sA2,U); f ; (idB1 ⊗ sU,B2)).

Definition 3.14. Given a traced symmetric monoidal category C, its free compact closure Int(C)

can be described by the following :

• Objects of Int(C) are pairs of objects A = (A−, A+) of C.

• Morphisms f : A→ B are morphisms g : A+ ⊗ B− → A− ⊗ B+ of C

• Composition is defined through parallel composition + tracing . Given f : A → B and

g : B→ C, one defines:

f ; g = TrB−⊗B+

A+,C−,A−,C+(( f ⊗ g); (id+
A ⊗ sB−,B+ ⊗ idC+))
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A+ ⊗ B− B+ ⊗ C−

A− ⊗ B+ B− ⊗ C+

A− ⊗ B− B+ ⊗ C+

f g

idA− idC+

sB−,B+

• The tensor product is given by the following formula on objects: (A− ⊗ A+) ⊗ (B−, B+) =

(A− ⊗ B−, A+ ⊗ B+); and given two morphisms f1 : (A−1 , A
+
1 )→ (B−1 , B

+
1 ), f2 : (A−2 , A

+
2 )→

(B−2 , B
+
2 ), we define their tensor product according the below diagram:

A+
1 ⊗ A+

2 ⊗ B−1 ⊗ B−2

A+
1 ⊗ B−1 ⊗ A+

2 ⊗ B−2

A−1 ⊗ B+
1 ⊗ A−2 ⊗ B+

2

A−1 ⊗ A−2 ⊗ B+
1 ⊗ B+

2

f g

idA+
1

idB−2

idA−1
idB+

2
sB+

1 ,A
−
2

sA+
2 ,B
−
1

Furthermore, the unit of the tensor product is (I, I).

• The negation is defined by (A−, A+)⊥ = (A+, A−) on objects. Given a morphism f :

(A−, A+) → (B−, B+), seen as a morphism f : A+ ⊗ B− → A− ⊗ B+, the morphism f⊥ :

(B+, B−)→ (A+, A−), seen as f⊥ : B−⊗A+ → B+⊗A− is defined by f⊥ = sB−,A+ ; f ; sB+,A− .

This defines a contravariant functor.

Each formula is modelled by spitting it into its negative and positive fragment, whereas

occurrences of positive or negative atomic formulas can appear throughout the formula. For

instance, to interpret the formula Y⊗Y⊥⊗Z⊗W⊥ in this category, we would have to reorder and

divide the formula in two distinct fragments of opposite polarity ((Y⊥ ⊗W⊥,Y ⊗Z)). Therefore,

we make use of the key property that in Int(C), negation commutes with tensor. That is:

(A ⊗ B)⊥ = A⊥ ⊗ B⊥.

We call irreducible objects, objects A of NomLinList that can not be further decomposed into

A = A1 ⊗ A2. As a consequence of the above remark, any object of Int(NomLinList) will be

isomorphic to one of the form :
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⊗
Ai ⊗
⊗

B⊥i

where each Ai, Bi is an irreducible object of NomLinList, seen as an object of Int(NomLinList) .

Therefore, it is enough to assign polarity to irreducible objects only.

As a result, we can give a second description of the free compact closed category on

(NomLinList,Tr) by only assigning polarity to irreducible objects. We will call this category

NomLinPol. We do that by the means of polarised atomes, that are pairs (a, p) where p is either

+1 or −1, and where a is an atome. Indeed, 1-orbit sets of lists of length 1 correspond precisely

to irreducible objects. The objects of NomLinPol are nominal sets of polarised and separated

lists subject to some more properties stated below. Elements of the sets are built out of the

following grammar:

L ::= (a, p) | (•, p) | L1.L2

where a ∈ A, p ∈ {−1, 1}, and L1#polL2 where #pol is defined below. Such an element is called

a polarised separated list. The p next to each atome is called the polarity of the atome. Given

a list L, we define by Pos(L) the restriction of L to its atomes of positive polarity, and Neg(L)

its restriction to the negative ones. Formally, these two functions are defined as follows, where

ε denotes the empty list, and a ranges over atomes:

Pos(ε) = ε Pos(a, 1) = a Pos(a,−1) = ε Pos(L1.L2) = Pos(L1).Pos(L2)

Neg(ε) = ε Neg(a, 1) = ε Neg(a,−1) = a Neg(L1.L2) = Neg(L1).Neg(L2)

We write L1#polL2 if (Pos(L1)#Pos(L2)) ∧ (Neg(L1)#Neg(L2)), and note ?pol the associated

polarised separated concatenation operation :

A ?pol B = {L1.L2 | L1 ∈ A, L2 ∈ B, L1#polL2}.

We write L1 ?pol L2 as a shorthand for L1.L2 knowing L1#polL2. We furthermore define the

operation (.)⊥ on lists, that consists in inverting all polarities.

(a, p)⊥ = (a,−p) (•, p)⊥ = (•,−p) (L1.L2)⊥ = L⊥1 .L
⊥
2

We extend this operation to sets : A⊥ = {L⊥ | L ∈ A}.

Furthermore, to avoid sets of the form {(a,−1).(a, 1) | a ∈ AX}, that do not correspond

to a denotation of a formula of MLL, it is necessary to add a condition that stipulates that

X ' Neg(X)×Pos(X). This basically enforces that there is no relationship between the negative

and positive names occurring within the list. Note that if X is non-empty, then Pos(X), Neg(X)

are never empty.
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Definition 3.15. The objects of NomLinPol are non-empty nominal sets A of non-empty po-

larised separated lists such that A ' Neg(A) × Pos(A), and both Neg(A),Pos(A) are 1-orbit

sets of lists. The morphisms A→ B are nominal linear functions f :

f : Pos(A) ? Neg(B)→ Neg(A) ? Pos(B).

The composition of morphisms is defined by using the trace structure just as presented in the Int

construction. NomLinPol is a compact closed category :

• The monoidal product A ⊗ B is modelled by ?pol on objects, and by cartesian product on

morphisms. The unit I is I = {(•, 1)}.

• The negation is modelled by (.)⊥ on objects, and as defined by the Int-construction on

morphisms.

Note that the monoidal product is well-defined since if A ' Neg(A) × Pos(A), and B '

Pos(B)×Neg(B), then A?pol B ' Neg(A?pol B)×Pos(A?B), since Neg(A?pol B) ' Neg(A)?

Neg(B).

Let us note that our choice of a monoidal unit is far from innocent. Indeed, decomposing I

into its negative and positive part, we have I = {•} × {ε}. This corresponds to the idea that we

want I to be somehow positive. We could also have chosen I = {(•,−1)}, I = {(•,−1).(•, 1)},

or, finally, I = {ε} if we had allowed sets of empty lists in the objects of our category. However,

these choices would have not been appropriate for a future modelling of a star-autonomous

category, where we expect I to be the positive unit, and ⊥ = I⊥ the negative one. In categorical

terms, we have chosen a unit I = {(e, 1).(d,−1))} where e is a non strict unit: e ⊗ A ' A but

e ⊗ A , A, and d is a strict one: d ⊗ A = A.

We can define a denotation by assigning to the atomic type X the set ~X� = {(a, 1) | a ∈

AX} giving polarity 1 to the atomes of X, ~1� = I = {(•, 1)}. Furthermore, we obviously set

~A ⊗ B� = ~A� ⊗ ~B�, and ~A⊥� = ~A�⊥. As the objects of the category are those freely

generated by negation and tensor from VAR, NomLinPol is the free compact closed category on

the traced monoidal category (NomLinList,Tr).

A sequent calculus has been presented in [86] for the collapsed version of multiplicative lin-

ear logic, where the two tensors ⊗ andM are merged, giving rise to a logic, named multiplicative

compact closed linear logic , whose sound models are precisely the compact closed categories.

NomLinPol is a model of multiplicative compact closed linear logic, whose sequent calculus is

presented in the figure 3.3 below.

Due to the symmetry between the right rules and the left rules, a simplified version can be

given, where the left exchange is obtained as a combination: left negation - right exchange -

right negation, and similarly for the left ⊗.

A proof π : A1, .., An ` B1, ..., Bn is modelled by a morphism φ : ~A1 ⊗ .... ⊗ An� →

~B1 ⊗ ... ⊗ Bn�, such that if there is an axiom link between two occurrences X⊥, X in π, then
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AxA ` A
Γ1 ` ∆1, A A,Γ2 ` ∆2 Cut

Γ1,Γ2 ` ∆1,∆2

Γ1, A, B,Γ2 ` ∆ Left exchange
Γ1, B, A,Γ2 ` ∆

Γ ` ∆1, A, B,∆2 Right exchange
Γ ` ∆1, B, A,∆2

Γ, A ` ∆ Left negation
Γ ` A⊥,∆

Γ ` A,∆ Right negation
Γ, A⊥ ` ∆

Γ ` ∆ Left 1
Γ, 1 ` ∆

Right 1
` 1

Γ1 ` ∆1, A Γ2 ` ∆2, B Right ⊗ -1
Γ1,Γ2 ` ∆1,∆2, A ⊗ B

Γ ` A, B,∆ Right ⊗-2
Γ ` A ⊗ B,∆

Γ, A, B ` ∆
Left ⊗

Γ, A ⊗ B ` ∆

Figure 3.3: Sequent calculus for multiplicative compact closed linear logic

φ will send the name in the location associated to the occurrence X⊥ to the location of the

occurrence of X.

3.3.1 On the free compact closed category

The category NomLinPol is the free compact closed category on the traced monoidal category

(NomLinList,Tr), but not the free compact closed category on VAR, as, as explained above,

(NomLinList,Tr) is not the free traced monoidal category on NomLinList. Indeed, the free traced

category FTC has scalars (morphisms f : I → I) that reflect on loops erased when composing

/ tracing the morphisms, whereas NomLinList has a collapsed homset NomLinList(I → I); the

only morphism in it is the identity.

More precisely the objects of the free traced monoidal category are obviously the same

as NomLinList, but now the morphisms are pairs ( f , S ), where S is a set of natural numbers

indexed by TVar. Each of them reflect the loops of type X, (X ∈ TVar) that have been erased

when tracing. For instance, the following equality holds. Given f : A⊗B⊗B⊗A→ A⊗B⊗B⊗A,

given by f = (idA ? sB,B ? idA) then TrB⊗B⊗A
A,A ( f ) = (idA, 1B, 1A) : A → A. Indeed, one loop has

been erased between B-objects, and one between A-objects.

This is related to the fact that the compact closed linear logic does not enjoy a full cut-

elimination procedure. A proof is called normal when the only cuts are loops, that are, proofs

of the following form:

A ` A
` A⊥, A
` A⊥ ⊗ A

A ` A
A⊥, A `

A⊥ ⊗ A ` Cut`

A loop cannot be eliminated by a cut elimination algorithm, as there are no cut-free proofs
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of ` .

Therefore, the normal form of a proof in normal-form can only be faithfully modelled

through a morphism of NomLinPol that represents the cut-free part, and a sequence of num-

bers labelled with TVar representing the loops. For instance, the proof I → I above should be

modelled by (idI , 1A). Therefore, NomLinPol is fully complete for the compact closed logic, but

not faithfully so. Several proofs with different invariants might be sent to the same morphism.

3.4 Nominal relations

3.4.1 Nominal linear relations

One major drawback of the previous construction is that it does not have products and co-

products. We can tackle this problem by moving from functions to relations. The category of

relations is one of the simplest known models of linear logic. We carefully adapt it to take care

of polarities and names.

Definition 3.16. A nominal linear relation R : A → B is a nominal subset of A × B such that

if (a, b) ∈ R then ν(a) = ν(b).

In the future, we will write aR b for (a, b) ∈ R . Linear nominal relations compose as

relations and the identity relation is linear nominal. Consequently, they organise themselves as

a category. We shall specify a full subcategory of it, whose objects correspond to denotations

of formulas of MALL. We denote this sub-category NomLinRel. Its objects are nominal sets of

non-empty separated, annotated lists of atomes, where the adjective annotated highlights the

fact that lists will be built using patterns. More precisely, the elements L of the sets are built

from the following grammar :

L := a | • | inl(L) | inr(L) | L1.L2

where a ∈ A, and L1#L2.

Note that the previously enforced condition that the sets are 1-orbit, or non-empty is

dropped. The category NomLinRel can be equipped with a monoidal product, written ?. The

monoidal product of relations is usually defined via the cartesian product of sets, but to accom-

modate names and lists we rather use the separated concatenation ?, just as in NomLinList.

• A ⊗ B = A ? B = {L1.L2 | L1 ∈ A, L2 ∈ B, L1#L2}

• R 1 ⊗ R 2 = R 1 ? R 2 = {(a.b, c.d) | (a, c) ∈ R 1, (b, d) ∈ R 2, a#b ∧ c#d}

The unit of the monoidal product is the set I = {•}. Once again, the use of the separated

product as a monoidal product prevents the category from having non-linear morphisms, simi-

larly as NomLinList. In the sequel, given L = L1.L2 in A⊗B, we will write � A for the projection

on A, and � B for the projection on B, that is L � A = L1 and L �= L2.
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The inl, inr constructors are called patterns, and will allow us to form coproducts, denoted

by ⊕.

• A ⊕ B = inl(A) ] inr(B) = {inl(L) | L ∈ A} ] {inr(L) | L ∈ B}.

• R 1 ⊕ R 2 = inl(R 1) ] inr(R 2)

where, given R : A → B, we define inl(R ) = {inl(L1).L2 | L1.L2 ∈ R , L1 ∈ A, L2 ∈ B}, and

respectively for inr. Furthermore, we write ] to express the union of disjoint sets.

The unit of the coproduct 0 is the empty set ∅. ⊕ is not a simple tensor product, it actually

defines a biproduct: A ⊕ B is the biproduct of A and B. We remind here that a biproduct is an

object that can act both as a coproduct of A,B, as a product of A, B, and does both in a compatible

way that we will not describe here.

The category (NomLinRel,⊗,⊕) is a monoidal category with coproduct. Furthermore, the

tensor product distributes over the coproduct: A ⊗ (B ⊕ C) ' (A ⊗ B) ⊕ (A ⊗ C), in the sense

that there is an isomorphism between them. As a result, (NomLinRel,⊗,⊕) defines a model of

the (⊗,⊕) fragment of MALL, where ~1� = I, ~X� = AX , ~0� = 0NomLinRel. One can easily

see that NomLinList is a subcategory of NomLinRel, and we write I for the inclusion functor

NomLinList
I
−→ NomLinRel. We say that an object of the category is well-typed if it can be built

out of the ~X�, I, 0 using the two previously described operations. This time, as we dropped the

restriction that the objects are 1-orbit, some objects might not be well-typed. A typical example

of such an object is A. The subcategory of well-typed objects of NomLinRel corresponds to

the biproduct completion of NomLinList. In the sequel, we will restrict NomLinRel to its full

subcategory of well-typed objects.

Each element of a morphism of NomLinRel defines a set of axiom links, that is, a set-

function from the atomic literals on the domain to the codomain. For instance, an element

(a1.a2, a2.a1) of X ⊗ X → X ⊗ X defines the following set of axiom-links.

σ : A ⊗ A → A ⊗ A

In contrast to Rel, the category of sets and relations, NomLinRel is not monoidal closed,

notably due to the linear condition on the relations. Indeed, given a relation A → B, if the

category was closed there would be a corresponding “name” R ′ : I → A( B, and, as a result,

for all x in A ( B, if •R x then ν(x) = ν(•) = ∅. Hence the only elements of A ( B would

be lists of atomes of empty support. To solve this, we want to apply, as we did in the previous

section, the Int construction. Therefore, we first have to address its traced structure.

Just as its sibling NomLinList, tracing NomLinRel is not straightforward. For instance,

taking R as above, defined by (a1.a2)R (a2.a1). Then tracing trA2
A1,A1

(R ) (where A2 are the right

hand side A’s), requires us to equate a2 and a1, but the element (a1.a1, a1.a1) is not part of the

relation.
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3.4.1.1 Category of lax nominal relations

In order to bypass the above restriction, we close linear relations under strict substitutions be-

fore composing them. We define strict substitutions to be name substitutions of the form

[an/bn]...[a1/b1] where for each i, there is a type variable Xi such that ai, bi ∈ AXi . Similarly as

for nominal permutations, we write “·” for the action of strict substitutions on elements. We call

Ξ the set of strict substitutions, and often use the lowercase e to refer to one of its elements. The

composition of strict substitutions e1, e2 consists in concatenating their sequences, and is there-

fore written e1.e2. We devise several properties of strict substitutions and define them formally

in the appendix 9.4. We then have e1.e2 · x = e1 · (e2 · x). We also introduce the following nota-

tion. Given a well-typed set A of annotated name-distinct lists, we write Â for the corresponding

set of annotated lists, such that the name-distinct property is dropped. Formally, Â is defined as

follows by induction on the structure of A.

ÂX = AX {̂•} = {•}

̂A1 ? A2 = Â1 × Â2 Â ] B = Â ] B̂

That way, if an element x ∈ A, then the set x̂ = {e · x | e ∈ Ξ} ⊆ Â. For R : A a linear relation,

we write R̂ : Â for the closure under strict substitutions of R , that is:

R̂ = {e · r | r ∈ R , e ∈ Ξ}.

Proposition 3.17. ˆ(.) defines a symmetric monoidal functor from the category NomLinRel to

the category of nominal linear, non-separated, relations. We call this category LaxNomLinRel.

It has nominal sets of annotated lists as objects, and linear relations as morphisms.

To prove the property, we will use this following lemma of strict substitutions, that is

proven appendix 9.4.

Lemma 3.18. Let x an element of nominal set, and e ∈ Ξ. Then e · x = e′ · (π · x), where if

e′ = [an/bn]...[a1/b1], and, writing e′i for [ai/bi]...[a1/b1], then ai+1, bi+1 ∈ ν(e′i · (π · x)) and

where π is a nominal permutation.

Given an element x and e ∈ Ξ, we refer to the (e′, π) in the above lemma as a canonical

form of e given x. Equivalently, we say that e is in canonical form for x, if (e, id) is a canonical

form of e given x. The lemma basically says that the action of a strict substitution on an element

consists of two distinct actions: a name-permutation followed by a name-merging.

Proof of Proposition 3.17. Given R : A→ B and Q : B→ C, we need to prove that:

R̂ ; Q = R̂ ; Q̂ .
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First, we consider the left to right inclusion. Let u ∈ R̂ ; Q . Then ∃e ∈ Ξ,∃u′ ∈ R ; Q .u = e ·u′.

Furthermore ∃u′′ ∈ A× B×C such that u′′ � A× B ∈ R , u′′ � B×C ∈ Q , and u′′ � Â× Ĉ = u′.

Hence e · u′′ � Â × Ĉ = u and e · u′′ � Â × B̂ ∈ R̂ , e · u′′ � B̂ × Ĉ ∈ Q̂ , hence u ∈ R̂ ; Q̂ ,

that is, it belongs in the second set. Now let us prove the right to left inclusion. Formally, let

u′ ∈ R̂ ; Q̂ . It entails that there exist u ∈ Â× B̂×Ĉ such that u � Â× B̂ ∈ R̂ , u � B̂×Ĉ ∈ Q̂ , and

u � A × C = u′. Then let us, as above, use canonical forms for the strict substitutions and use

the fact that both R and Q are closed under nominal permutations. Hence u � Â × B̂ = e1 · u1,

u1 ∈ R and e1 is in canonical form for u1. Furthermore u � B̂ × Ĉ = e2 · u2, u2 ∈ Q and

e2 is in canonical form for u2. Let us call x = u1 � B and y = u2 � B. As there exists

strict substitutions that equate them, it entails that the lists have same length and same type.

Hence, thanks to the fact that the lists are separated, they are nominally equivalent, that is,

there exists a permutation π such that π · u1 � B = u2 � B. Now, by using the fact that

every permutation can be encoded as a strict substitution for a given specific element (property

refprop:permsubstitution), we write π−1 for the strict substitution that encodes π−1 for π · u1.

Hence e2·u2 � B = e1·(u1 � B) = e1.π−1·π·(u1 � B) = e1.π−1·(u2 � B). As ν(u2 � B) = ν(u2 � C),

e2 · u2 � C = e1.π
−1u2 � C. Let u′′ = e1.π−1 · (π · u1 |B u2), where |B indicates that we merge the

two B parts of the lists, that are equal. Therefore, as π ·u1 ∈ R , we can conclude that u′′ � A×C

belongs in R̂ ; Q , and moreover u′′ = u.

Also, one can prove that idÂ,LaxNomLinRel = idA,NomLinRel

∧
. The inclusion idA,NomLinRel

∧
⊆

idÂ,LaxNomLinRel is automatic, whereas the other consists in proving that any element of

idÂ,LaxNomLinRel can be obtained from an element of idA,NomLinRel by means of substitutions.

The monoidality comes from Â ? B = A × B by definition, and similarly on morphisms:

R̂ ? Q = R × Q . �

LaxNomLinRel is not an appropriate category to model morphisms of linear logic, as there

might be morphisms A ⊗ A → A or A → A ⊗ A. On the other hand, to relax the separated

condition will prove useful in the future to deal with tracing, and therefore, with composition

when dealing with the compactification of this category through the Int-construction.

3.4.2 Trace structure on NomLinRel

Given a relation R : A ⊗ U → B ⊗ U ∈ NomLinRel, let us define TrU
A,B(R) by:

TrU
A,B(R ) = {r � Â × B̂ | r ∈ R̂ ∧ r � Â × B̂ ∈ A × B ∧ r � Û × Û ∈ îdU}. (3.24)

The use of strict substitutions allows us to equate some names in the relation. However,

the part in B̂ × Ĉ must still have the property that the atomes are name-distinct on each

projection, condition that is enforced through r � B̂ × Ĉ ∈ B × C. One can see that NomLinList

is a subcategory of NomLinRel. We write I for the inclusion functor, each morphism of

NomLinList is sent by I to its graph, seen as a relation. We would like to prove that the trace
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defined in NomLinRel extends the one of NomLinList.

Proposition 3.19. Let φ : A ⊗ U → B ⊗ U ∈ NomLinList, then:

I(TrU
A,B, NomLinList(φ)) = TrU

A,B, NomLinRel(I(φ)) .

Proof. We first show that the inclusion TrU
A,B, NomLinRel(I(φ)) ⊆ I(TrU

A,B, NomLinList(φ)). Let x ∈

I(φ), and consider any y such that ∃e ∈ Ξ. y = e · x, y � Û × Û ∈ îdU , and y � Â × B̂ ∈ A × B.

Then, without loss of generality, we can look at a canonical form of e given x, use the fact that

I(φ) is closed under permutations, and consider that the only action of e is to equate names

present in x.

Now let us consider, that, as defined in Section 3.1.2.1 above, we attribute a number to each

location, and we will now compute the function ψ attributed to y � A × B. So let us consider

a location l in A, and the associated name yl in y, corresponding to xl in x. As e · x � Â =

y � Â, e · x � Â ∈ A, and A is separated, then this entails there is a π ∈ Perm(A) such that

(π · y) � A = x � A. Furthermore, applying a permutation to y does not change the function ψ

it defines. Hence one can assume without loss of generality that for all locations l in A, xl = yl.

We decompose x, y into x1, x2, y1, y2, where x1 = x � A ? U (respectively y1 = y � Â × Û),

x2 = x � A ? U (resp y2 = y � B̂ × Û).

Let l in A, and consider that φ(l) = l′ ∈ B. Then, as x1,l = x2,l′ and as y is obtained from x

by strict substitutions, then y2,l′ = y1,l. Therefore, if φ(l) ∈ B then ψ(l) = φ(l). Writing n for the

number of locations of A (and hence, B as well), this sums up to:

Given i ≤ n, ψ(i) = φ(i) if φ(i) ≤ n.

Now, let us suppose that φ(l) ∈ U. Then y1,l = y2,φ(l). But, as y � Û × Û ∈ îdU , we also have

that y2,φ(l) = y1,φ(l). As y2,φ(φ(l) = y1,φ(l), we obtain y1,l = y2,φ◦φ(l). Then, either y2,φ◦φ(l) is in B or

we repeat the routine. That is, if i > n, then ψ(i) = feedback(φ)(i), where:

feedback(φ)(i) =

φ(i) if φ(i) ≤ n

feedback(φ)(φ(i)) otherwise.

Therefore, ψ(i) = Tr(φ)(i), and TrU
A,B,NomLinPol(I(φ)) ⊆ I(TrU

A,B,NomLinList(φ)).

We now tackle the reverse inclusion. Let y ∈ I(TrU
A,B, NomLinList(φ)), let us show that this y

belongs in TrU
A,B, NomLinPol(I(φ)). So we start by picking an x ∈ I(φ), such that y � A = x � A.

We build a strict substitution in n-steps, corresponding to the n locations of A.

Given i ≤ n, let x1,i the ith element of x1. Suppose that φ(i) = j ≤ n, then ei = ε (the empty

substitution). On the other hand, suppose that φ(i) = j > n. Then we set ei = [x1, j/x1,i]. That

way, after applying ei to x, resulting in x̃, we get x̃1, j = x̃1,i = x̃2, j, and therefore x � l ∈ idl
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where l corresponds to the occurrence of the literal in the jth position of A ⊗ U. Inductively, if

φ( j) = k > n, we set ei ::= [x1,k/x1, j].ei. We repeat this process, until φ(l) = m ≤ n.

At this stage, one needs an important property of traces of permutations: each location l of

U is used at most once when tracing (see [1] proposition 1). That is, if ∃i ≤ n, such that ∃k ≥ 1

φk(i) = l and φ1(i), φ2(i), ..., φk−1(i) > n, then this i is unique. As a result, if a name xl such that

l in U is in one of the support of an ei, then this i is unique.

Now, let us consider all names whose locations are in U and that are not in the support of

any ei, 1 ≤ i ≤ n. Then we consider the substitution en+1 whose only action is to send all those

names to a fresh name d. Finally, we consider e = e1.e2. ... .en.en+1. Then e · x � A → B = y.

This can be checked as in the above part of the proof. Furthermore, e · x � U → U ∈ îdU . We

conclude that y ∈ TrU
A,B,NomLinRel(I(φ)). �

This property allows us to prove that tracing a linear relation indeed results in a linear

relation.

Proposition 3.20. Let R : A ⊗ U → B ⊗ U. Let x ∈ TrU
A,B(R ), then ν(x � A) = ν(x � B).

Proof. The proof is based on the above proposition 3.19. Let e · x an element that appears

as witness of the trace, and hence such that x ∈ R . Then let us consider φ the morphism of

NomLinList associated to x. Then e · x corresponds, as explained above, to tracing φ. Therefore,

e · x � A→ B belongs in a graph of a function ψ ∈ NomLinList(A→ B) and therefore has same

support in A and B. �

We can now state with confidence that this definition of trace seems appropriate, as it is

a simple extension of the one previously defined in the case without biproduct, and acts in

a compatible way with linear nominal relations. Only remains to prove that this family of

functions formally defines a trace.

Proposition 3.21. The family of functions TrU
A,B defined in 3.24 forms a trace of the symmetric

monoidal category NomLinRel.

Proof. We start the proof with the naturality of the trace. We treat only one of the three cases,

as the two others could be dealt with along the same lines. Let R : A ⊗ U → B ⊗ U and

Q : A′ → A. Then one must check that :

TrU
A,B(R ) ◦ Q = TrU

A′,B(R ◦ (Q ⊗ idU)).

The left-hand-side term unfolds to:
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{u � A′ × B | u ∈ A′ × Â × Û × B̂ × Û), u � A′ × Â ∈ Q , u � (Â × Û) × (B̂ × Û) ∈ R̂ , u �

Û × Û ∈ îdU , u � Â × B̂ ∈ A × B}

whereas the second can only be easily presented if we use the functoriality of (̂.), that is,

R̂ ; Q = R̂ ; Q̂ :

R̂ ; Q = {u � Â × Ĉ | u ∈ Â × B̂ × Ĉ | u � Â × B̂ ∈ R̂ , u � B̂ × Ĉ ∈ Q̂ }

as well as ̂Q ? idU = Q̂ × îdU , which follows from the monoidality of the functor (̂.) which is

proven in proposition 3.17. Using it, the second term unfolds to:

{w � A′ × B | w ∈ (Â′ × Û1) × (Â × Û2) × (B̂ × Û3),w � Â′ × Â ∈ Q̂ ,w � (Â × Û2) × (B̂ × Û3) ∈

R̂ ,w � Û1 × Û3 ∈ îdU ,w � Û2 × Û3 ∈ îdU ,w � Â′ × B̂ ∈ A × B}

In the second term, as w � Û1 × Û3 ∈ îdU and w � Û2 × Û3 ∈ îdU , one can devise that

u � Û1 × Û2 = u � Û2 × Û3 = u � Û1 × Û3. The two terms only differ by the presence, in

the second one, of U1 × U2, which is insignificant (as w � Û1 × Û2 ∈ îdU), and the fact that

w � Â′ × Â ∈ Q̂ whereas u � A′ × A ∈ Q in the first one. At this stage, it is useful to note the

following property. Let P : A → B a nominal linear relation. Suppose u ∈ P̂ and u � Â ∈ A.

Then u ∈ P. This is simply proven by noticing that as u � Â ∈ A, then no names have been

merged. We can apply this property in our case, as w � Â′ ∈ A′. As a result, w � Â′ × Â ∈ Q

and the two sets are equal.

Next, we check the first part of vanishing property, namely that

TrI
B,C(R ) = R

which translates into:

{u � B ×C | u ∈ R̂ × idI , u � B̂ × Ĉ ∈ B ×C} = {u ∈ R}

The right to left inclusion is straightforward. For the left to right one, we use the property that

r ∈ R̂ ∧ r � B̂ ∈ B⇒ r ∈ R , as explained above. This entails the left to right inclusion.

The second part of the vanishing property is consists in proving that given R : A⊗U ⊗V →

B ⊗ U ⊗ V , then TrU⊗V
A,B (R ) = TrU

A,B(TrV
A⊗U,B⊗U(R )). This first term can be described by:

{r � A × B | r ∈ R̂ , r � Â × B̂ ∈ A × B, r ∈ Û × V̂ × Û × V̂ ∈ ̂idU⊗V }

The second term unfolds in two steps. First, we consider TrV
A⊗U,B⊗U(R ).

TrV
A⊗U,B⊗U(R )) = {u � (A ? U) × (B ? U) | u ∈ R̂, u � (Â × Û) × (B̂ × Û) ∈

(A ? U) × (B ? U), u � V̂ × V̂ ∈ îdV }.
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Then we can consider its closure TrV
A⊗U,B⊗U(R )
∧

,

TrV
A⊗U,B⊗U(R )
∧

= {u � (Â × Û) × (B̂ × Û) | u ∈ R̂, u � V̂ × V̂ ∈ îdV }

in order to devise the whole second term.

TrU
A,B(TrV

A⊗U,B⊗U(R )) = {u � A × B | u ∈ TrV
A⊗U,B⊗U(R )
∧

, u � Â × B̂ ∈ A × B, u � Û × Û ∈ îdU}

= {u � A × B | u ∈ R̂, u � V̂ × V̂ ∈ îdV , u � Û × Û ∈ îdU , u � Â × B̂ ∈ A × B}

= {u � A × B | u ∈ R̂, u � (Û × V̂) × (Û × V̂) ∈ ̂idU?V , u � Â × B̂ ∈ A × B}

= TrU⊗V
A,B (R )

We now deal with superposing:

TrU
C⊗A,D⊗B(Q ⊗ R ) = Q ⊗ TrU

A,B(R ),

for R : A ⊗ U → B ⊗ U, and Q : C → D. This translates into:

{u � (C?A)× (D?B) | u ∈ Q ? R
∧

, u � Û × Û ∈ îdU , u � (Ĉ× Â)× (D̂× B̂) ∈ (C?A)× (D?B)}
?
= {w � (C ? A) × (D ? B) | w ∈ Q ? R̂ ,w � Â × B̂ ∈ A × B,w � Û × Û ∈ îdU}

The fact that the second set is included in the first one is the easiest inclu-

sion to prove. It follows from Q ? R̂ ⊆ Q ? R
∧

. Let us prove the reverse in-

clusion. As u ∈ Q ? R
∧

∧ u � Ĉ × D̂ ∈ C × D then u � C × D ∈ Q ∧ u ∈ idC × R̂ , how-

ever, nothing imposes that u ∈ idC ? R̂ , the names in the idC and R̂ part of u could

be the same. However, as u � (Ĉ × Â) × (D̂ × B̂) ∈ (C ? A) × (D × B), one gathers that

ν(u � (Â × Û) × (B̂ × Û)) ∩ ν(u � C × D) = ν(u � Û × Û) ∩ ν(u � C × D). Let us suppose that

this set is not empty, and let a be a name appearing in it. Then, by definition, this

name does not appear in u � Â × B̂. Therefore, by applying a permutation (a, c) to

u � (Â × Û) × (B̂ × Û), where c is fresh, we can remove the name a from the intersection.

That is, let u′ = (u � C × D) × ((a, c) · u � (Â × Û) × (B̂ × Û)). Then u′ � (Ĉ × Â) × (D̂ × B̂) =

u � (Â × Ĉ) × (B̂ × D̂), u′ � (Â × Û) × (B̂ × Û) ∈ R̂ , and u′ � Û × Û ∈ îdU . Furthermore,

ν(u′ � (Â × Û) × (B̂ × Û)) ∩ ν(u′ � C × D) = ν(u � (Â × Û) × (B̂ × Û)) ∩ ν(u � C × D) \ {a}.

Since the support of u is finite, we can repeat the procedure for every name in the intersection.

Finally, we obtain that an element u′′ such that u′′ � (Ĉ × Â × D̂ × B̂) = u � (Ĉ × Â) × (D̂ × B̂),

u′′ ∈ Q ? R̂ , and such that u′′ satisfies all the conditions of the second set. Hence the two sets

are equal.

Finally, we must prove the yanking property:

TrA
A,A(sA,A) = idA
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Let us remind that sA,A is the isomorphism coming from the symmetry of the monoidal category,

sA,A = {(u.v, v.u) | u, v ∈ A, u#v}. Hence

TrA
A,A = {(u,w) ∈ A × A | ∃(v, x) ∈ Â × Â.(u.v,w.x) ∈ ŝA,A.(v, x) ∈ îdA}

As (v, x) ∈ îdA, v = x. Furthermore, as (u.v,w.v) ∈ ŝA,A, u = v, and v = w. As a result:

trA
A,A(sA,A) = {(u, u) | u ∈ A} = idA

�

3.4.3 Nominal polarised linear relations

As the category NomLinRel is monoidal traced, one can define a compact closed category by

polarising the category as before. Let us expose that formally. The objects of NomLinRelPol

will be nominal sets of annotated, polarised and separated lists. Elements of the sets are defined

from the following grammar.

L := (a, p) | (•, p) | inl(L) | inr(L) | L1.L2

where a ∈ A, and p ∈ {−1, 1}, and L1#polL2

The p next to each atome is called the polarity of the atome. Given a list L, we define

by Pos(L) the restriction of L to its atomes of positive polarity, and Neg(L) its restriction to

the negative ones, where Pos(inl(L)) = inl(Pos(L)), Pos(inr(L)) = inr(Pos(L)), and similarly

for Neg. We write L1#polL2 if (Pos(L1)#Pos(L2)) ∧ (Neg(L1)#Neg(L2)), and note ?pol the

associated polarised separated concatenation operation:

A ?pol B = {L1.L2 | L1 ∈ A, L2 ∈ B, L1#polL2}.

We write L1 ?pol L2 as a shorthand for L1.L2 knowing L1#polL2. We furthermore define the

operation (.)⊥ on lists, that consists in inverting all polarities.

(a, p)⊥ = (a,−p) (•, p)⊥ = (•,−p)

inl(L)⊥ = inl(L⊥) inr(L)⊥ = inr(L⊥) (L1.L2)⊥ = L⊥1 .L
⊥
2

We extend this operation to sets : A⊥ := {L⊥ | L ∈ A}. Just as its seminal category,

the morphisms R : A → B of the category are relations. More precisely a nominal linear
polarised relation R : A → B is a nominal relation R ⊆ A⊥ ?pol B such that each element

is linear between negative and positive elements. That is, ∀x ∈ R , ν(Pos(x)) = ν(Neg(x)).

The identity idA : A → A is the identity relation L⊥.L ∈ A⊥ ?pol A. Note that the ?pol extends
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directly to morphisms, looking at them as subsets. Given two relations R 1 : A1 → B1, and

R 2 : A2 → B2, we define R1 ?pol R2 : A1 ?pol A2 → B1 ?pol B2 by:

R 1 ?pol R 2 = {LA1 .LA2 .LB1 .LB2 | L1 = LA1 .LB1 ∈ R1, L2 = LA2 .LB2 ∈ R 2, L1#polL2}

Note that actually, L1#L2, as ν(Neg(L1)) = ν(Pos(L1)) and similarly for L2. Hence R1?pol R 2 =

R 1 ? R 2.

Just as in the case of NomLinRel, the patterns inl, inr allow us to form coproducts, denoted

by ⊕:
• A ⊕ B = inl(A) ] inr(B).

• R 1 ⊕ R 2 = inl(R 1) ] inr(R 2)

where we remind that ] expresses the fact that the union is disjoint.

Finally, given a set A, we define the two following sets:

Pos(A) = {Pos(L) | L ∈ A}

Neg(A) = {Neg(L) | L ∈ B}.

One can then easily notice that A ⊆ Neg(A)×Pos(A), although the inclusion is strict in general.

That is, there is a injective function A→ Neg(A)×Pos(A), that maps a list L to (Neg(L),Pos(L)).

Through this inclusion, a nominal linear polarised relation R : A→ B lifts to a nominal linear

relation R ′ : Pos(A) ? Neg(B)→ Neg(A) ? Pos(B). Indeed, given an element L ∈ R , then

ν(Neg(L)) = ν(Pos(L)), and L ∈ A⊥?pol B. Hence Neg(L) = Pos(L � A).Neg(L � B), Pos(L) =

Neg(L � A).Pos(L � B) and furthermore Pos(L � A)#Neg(L � B), Neg(L � A)#Pos(L � B).

Just as functions in NomLinPol did not compose as set-functions, nominal linear po-

larised relations do not compose as relations. The composition is defined via the trace,

just as in the previous section 3.3. Let us consider two morphisms R : A → B and

Q : B → C, seen as nominal linear relations R ′ : Pos(A) ? Neg(B)→ Neg(A) ? Pos(B) and

Q ′ : Pos(B) ? Neg(C)→ Neg(B) ? Pos(C). Their composition is defined by taking their trace

along Neg(B) × Pos(B).

R ′; Q ′ = TrNeg(B)?Pos(B)
Pos(A),Neg(C),Neg(A),Pos(C)(idNeg(A) ? sPos(B),Neg(B) ? idPos(C)) ◦ (R ′ ? Q ′)

where we recall that s is the swapping morphism coming from the symmetry. This unfolds to:

R ′; Q ′ = {u � Pos(A) ? Neg(C) × Neg(A) ? Pos(C) | u ∈ R̂ ′ × Q̂ ′,

u � (Neg(B)
∧

× Pos(B)
∧

) × (Pos(B)
∧

× Neg(B)
∧

) ∈ sPos(B),Neg(B),
∧

u � (Pos(A)
∧

× Neg(C)
∧

) × (Neg(A)
∧

× Pos(C)
∧

) ∈ (Pos(A) ? Neg(C)) × (Neg(A) ? Pos(C))}

= {u � (Pos(A) ? Neg(C)) × (Neg(A) ? Pos(C)) | u ∈ R̂ ′ × Q̂ ′,

u � (Neg(B)
∧

× Pos(B)
∧

) = u � (Pos(B)
∧

× Neg(B)
∧

),

u � (Pos(A)
∧

× Neg(C)
∧

) × (Neg(A)
∧

× Pos(C)
∧

) ∈ (Pos(A) ? Neg(C)) × (Neg(A) ? Pos(C))}}
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As u ∈ R̂ ′ × Q̂′, u comes from the injection D → Neg(D) × Pos(D), where

D = A⊥ × B × B⊥ ×C. Therefore, it is possible to backtrack u to an element of D. Doing

so we get:

R ; Q = {u � A ?pol C | u ∈ Â⊥ × B̂1 × B̂⊥2 × Ĉ,

u � Â⊥ × B̂1 ∈ R̂ , u � B̂⊥2 × Ĉ ∈ Q̂ , (u � B̂1)⊥ = u � B̂⊥2 , u � Â × Ĉ ∈ A ?pol C}

= {u ∈ A ?pol C | ∃r1 ∈ R̂ , r2 ∈ Q̂ , (r1 � B̂)⊥ = r2 � B̂, r1 � Â = u � A, r2 � Ĉ = u � C}

Furthermore, as the composition of R ′; Q ′ corresponds to tracing nominal linear relations,

it results in a nominal linear polarised relation. That is, for each element u of R ′; Q ′, we

have that ν(u � Pos(A) ? Neg(C)) = ν(u � Neg(A) ? Pos(C)). Therefore, backtracking u into

an element of A ?pol C, we get that ν(Neg(u)) = ν(Pos(u)), that is, the relation R ; Q hence

defined is linear polarised. The closure under permutation follows straightforwardly from the

invariance under permutation of the definitions. Therefore R ; Q is indeed a morphism A → C

of NomLinRelPol.

To sum up, the paradigm for composition is: closure under strict substitutions + relational

composition + projections on “good” elements. Just as above, we restrict the objects to the

well-typed ones. We define I = {(•, 1)}, ~X� = {(a, 1) | a ∈ AX}, 0 = ∅, and present formally

NomLinRelPol in the following definition.

Definition 3.22. NomLinRelPol is the category that has as objects the smallest set such that

I, ~X�, 0 ∈ Obj(NomLinRelPol) and

A, B ∈ Obj(NomLinRelPol) ⇒ A ?pol B ∈ Obj(NomLinRelPol)

A, B ∈ Obj(NomLinRelPol) ⇒ A ⊕ B ∈ Obj(NomLinRelPol)

A ∈ Obj(NomLinRelPol) ⇒ (A)⊥ ∈ Obj(NomLinRelPol)

Hence objects of NomLinRelPol are nominal sets of polarised separated annotated lists. Mor-

phisms A→ B of NomLinRelPol are nominal polarised linear relations A⊥ ?pol B as described

above.

By construction, NomLinRelPol is a compact closed category, since it is equivalent to

Int(NomLinRel). We furthermore show that given two objects A, B, the object A ⊕ B is their

coproduct, and that 0 is the unit for it, that is, an initial object. Namely, we need to exhibit

two morphisms inl : A → A ⊕ B and inr : B → A ⊕ B, such that for every object C, for every

morphisms R A : A → C and R B : B → C, there exists a unique nominal polarised relation

Q : A ⊕ B → C such that inl; τ = R A and inr; Q = R B. The corresponding diagram is show-

cased in Figure 3.4. The morphism inl : A → A ⊕ B is defined to be the nominal polarised

relation inlA = {u⊥.inl(u) | u ∈ A} and inr : B→ A ⊕ B is built in a similar fashion. Finally, we

set Q as follows:

Q = {inl(u).v | u.v ∈ R A} ] {inr(u).v | u.v ∈ R B}
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A ⊕ BA B

C

inl inr

QR A R B

Figure 3.4: Coproduct diagram of A ⊕ B

Then one can straighforwardly check that inl; Q = R A, and similarly for inr. Furthermore, Q

is unique verifying this property. Hence A ⊕ B is the coproduct of A ⊕ B. 0 is initial since for

any object A, there is a unique morphism 0→ A, namely the empty relation. As the co-product

distributes over the tensor it is a bi-product, as established in [44]. Hence we can conclude this

paragraph with the following proposition.

Proposition 3.23. NomLinRelPol is a star-autonomous category with products, and therefore,

a model of MALL.

One could wonder what is the “canonical” logic associated with the nominal linear polarised

relations. In other terms, what is the sequent calculus associated with compact closed categories

with bi-products. Surely, one can present a collapsed version of MLL, where ⊗ = M and & =

⊕. However, as explained in [86], “it turned out that there is a counter-example to the cut-

elimination”. On the other hand, in the context of strongly compact closed category, Abramsky

and Duncan were able to define a notion of proof-net [4] that precisely define those morphisms

arising from the categorical structure, although no presentation was given in terms of sequent

calculus.

As a final remark, these relations are the relations that we should use in the second part of

the thesis devoted to nominal games to tensorial logic. Before moving to the next chapter, we

present a severe downside of nominal polarised relations, and show in Section 3.5 a model with

hypercoherences that overcomes it.

3.4.4 Nominal linear relations, a downside

Nominal relations suffer from that, even restricted to denotations of MLL formulas, they do not

define linkings properly. For instance, consider the following relation R : X ⊗ X → X ⊗ X

defined by:

R = {(u.v.v.u) | u, v ∈ AX} ∪ {(u.v.u.v) | u, v ∈ AX}. (3.25)

Then R implements two possible choices of axiom links for the sequent canonically as-
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sociated with the previous formula. As long as the category remains compact-closed, there is

no simple solution to this problem. For instance, let us implement a simple-minded criterion

that imposes that nominal relations implements at most a unique linking per additive resolution.

Given R : A → B, we write R ′ for the linear relation Pos(A) ? Neg(B) → Neg(A) ? Pos(B)

that canonically corresponds to R . Let us consider the following criterion:

xR ′y ∧ xR ′z ∧ y ' z⇒ y = z

It basically enforces that on a additive resolution (that is a choice, for each biproduct, of one of

its branches), the relation can only implement one set of axiom links.

This property is symmetric. That is, it automatically entails :

xR ′z ∧ yR ′z ∧ x ' y⇒ x = y

Indeed, take π such that x = π · y. Then xR ′z ∧ xR ′π · z as the relation R is closed under

permutations. So it directly entails that z = π · z. As the elements have strong support, it entails

π#z, and as ν(z) = ν(x) = ν(y), π · y = y and therefore x = y.

Unfortunately, this property does not compose. If we examine the relations associated with

the two following proof structures:

R 1 : (A ⊗ A) → (A ⊗ A) ⊕ (A ⊗ A)

R 2 : (A ⊗ A) ⊕ (A ⊗ A) → (A ⊗ A)

then we notice that the composition R 1; R 2 of these two leads to the problematic relation R

of 3.25, described at the beginning of this section.

3.4.5 Lax polarised nominal relations

In this section, we show that the lax polarised nominal relations form a compact-closed category

with products as well, although the separation property is dropped. This technical result will be

used later in the discourse of Section 3.5.
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Just as the closure under strict substitutions of separated nominal relations leads to a defi-

nition of a functor to a new category, called lax nominal relations, the closure under strict sub-

stitutions of separated, polarised nominal relations defines a functor from the compact closed

category to a new one of lax polarised nominal relations called LaxNomLinPol.

This category is similar to NomLinRelPol except that the lists are not “polarised and sepa-

rated” anymore. That is, the grammar for the lists is :

L = (•, p) | (a, p) | inl(L) | inr(L) | L1.L2

where a ∈ A, and p ∈ {−1, 1}.

The tensor product ⊗ is now simply the cartesian product, except that, as usual, we con-

catenate lists instead of pairing them. The ⊕ and the negation are similar to the ones of

NomLinRelPol. The morphisms are nominal linear polarised relations.

The functor (̂.) is defined by sending a relation to its closure under strict substitutions, and

on objects as follows :

ÂX = AX {̂•} = {•}

A1 ?pol A2

∧
= Â1 × Â2 A ⊕ B
∧

= Â1 ⊕ Â2 Â⊥ = Â⊥

In order to check that this is a functor, we again have to prove that R̂; Q = R̂; Q̂, given

R : A → B and Q : B → C. This follows from seeing R as a nominal linear relation:

R : Pos(A) ? Neg(B)→ Neg(A) ? Pos(B) (and the similar form for Q), and relying on the fact

that (̂.) indeed defines a monoidal functor when restricted to nominal linear separated relations.

Finally, one can see that LaxNomLinPol is the free compact closure of LaxNomLinRel. Just

as for NomLinRel, it results from a slight variation of the Int construction of LaxNomLinPol.

So we have the following diagram. Writing INomLinRel for the inclusion functor INomLinRel :

NomLinRel→ NomLinPol, and ILaxNomLinRel for its lax equivalent we have:

NomLinRel NomLinPol

LaxNomLinRel LaxNomLinPol

Int

ILaxNomLinRel

(̂.) (̂.)

INomLinRel

In particular, (̂.) defines a functor of compact closed categories between NomLinPol and

LaxNomLinPol. as it commutes with the negation.
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3.5 Nominal hypercoherence spaces

3.5.1 The category

To refine the previous model in order to avoid bad relations, one can use the notion of coher-
ence, developed by Girard in the so-called coherence spaces, to express the fact that the bad

relations, such as the R in equation 3.25 above, are incoherent. As this notion has since been

refined, in [27] into hypercoherence, we present the latter. Furthermore, coherence removes a

second downside of nominal linear polarised relations, their degeneracy. Nominal hypercoher-

ence spaces differentiate between ⊗ and M, and between ⊕ and &.

All the definitions are taken from [27], just being modified to take into account the fact

that our atomes are nominal, and polarised. More precisely, the elements of our nominal sets,

renamed to “webs”, are, as before, separated annotated lists of polarised atomes. We write

Pfin(A) for the set of finite subsets of any set A, and P∗fin(A), for the set of non-empty finite

subsets. Similarly, we write w ⊆∗fin A to mean w ∈ P∗fin(A).

Definition 3.24. A nominal hypercoherence space A = (|A|,Γ(A)) consists of:

• A nominal enumerable set |A|, called web, of annotated, polarised and separated lists.

• A nominal subset Γ(A) ⊆ P∗fin(|A|), such that all singletons are in Γ(A).

This structure on objects allows us to discriminate between relations, thanks to these

definitions.

Definition 3.25. Let (|A|,Γ(A)) be a hypercoherence space.

• A non-empty finite subset v ⊆∗fin |A| is coherent when v ∈ Γ(A).

• A set of elements R ⊆ |X| forms a clique when:

1. ∀v ⊆∗fin R , v is coherent.

2. R is closed under permutations.

3. R is linear: ∀x ∈ R , ν(Neg(x)) = ν(Pos(x)).

That is, a clique is a refinement of a nominal linear polarised relation. Cliques are the

underlying structure behind the morphisms of the category of hypercoherence nominal spaces,

that we shall define below. Given Γ(A) ⊆ P∗fin(A), we write Γ∗(A) for the subset of Γ(A) of sets

of cardinality greater than one, and say that such sets are strictly coherent. We write Γ⊥(A) for

the set of non-empty subsets that are incoherent: Γ⊥(A) = P∗fin(A) \Γ∗(A), and Γ⊥,∗(A) for those

that are strictly incoherent, meaning incoherent and of cardinality greater than one. Finally, we

set (Γ(A))⊥ = {w⊥ | w ∈ Γ(A)}, where w⊥ = {x⊥ | x ∈ w}.

The dual A⊥ of a hypercoherence space (|A|,Γ(A)) is defined as follows:

• |A⊥| = |A|⊥

• Γ(A⊥) = P∗fin(|A|⊥) \ (Γ∗(A))⊥
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We now give the interpretations of the connectives of linear logic. In the sequel, for simplicity,

we will write w � A for w � |A|. The tensor product of two hypercoherence spaces A ⊗ B is

defined as follows, where ?pol is the polarised separated product as defined in section 3.4.3.

• |A ⊗ B| = |A| ?pol |B|

• Γ(A ⊗ B) = {w ∈ P∗fin(|A| ?pol |B|) | w � A ∈ Γ(A) ∧ w � B ∈ Γ(B)}

The unit of the tensor product is I = ({(•, 1)}, {{(•, 1)}}). We can define A M B through the

De-Morgan duality (A M B) = (A⊥ ⊗ B⊥)⊥.

• |A M B| = |A| ?pol |B|

• Γ∗(A M B) = {w ∈ P∗fin(|A| ?pol |B|) | (w � A ∈ Γ∗(A) ∨ w � B ∈ Γ∗(B))}

M has almost the same unit as the tensor product, except the atom is negated:

⊥ = ({(•,−1)}, {{(•,−1)}}). As a result, we can define the connective(, with A( B = A⊥M B.

• |A( B| = |A|⊥ ?pol |B|

• Γ(A( B) = {w ∈ P∗fin(|A( B|) |(w � |A|⊥ ∈ Γ(A)⊥ ⇒ w � |B| ∈ Γ(B))

∧ (w � |A|⊥ ∈ (Γ∗(A))⊥ ⇒ w � |B| ∈ Γ∗(B)}

In the future, we will simply write w � A for w � A⊥, the fact that the polarities in A are reversed

being clear from the context. Finally, we define the additives. We start with A & B, writing ]

for the disjoint union.

• |A & B| = inl(|A|) ] inr(|B|)

• Γ(A & B) = {w ∈ P∗fin(|A & B|) | (w � inl(A) = ∅ ⇒ w � inr(B) ∈ inr(Γ(B)))∧ (w � inr(B) =

∅ ⇒ w � inl(A) ∈ inr(Γ(A)))}

We finish with A ⊕ B, that is the dual of A & B, in the sense that (A ⊕ B) = (A⊥ ⊕ B⊥)⊥

• |A ⊕ B| = inl(|A|) ] inr(|B|)

• Γ(A⊕ B) = {w ∈ P∗fin(|A⊕ B|) | (w � A = ∅∧w � B ∈ Γ(B))∨ (w � B = ∅∧w � A ∈ Γ(A))}

The empty set acts as units for the two additive connectives. We therefore have the following

denotation function:

• ~1� = I, ~⊥� = ⊥.

• ~>� = ~0� = (∅, ∅).

• We define the interpretation of an atomic type ~X� = (|X|,Γ(X)) as being the following

hypercoherence space:

– |X| = {(a, 1) | a ∈ AX}

– Γ(X) = {{(a, 1)} | a ∈ AX}

In the following, we simply write X for ~X�.

Definition 3.26. NomHypCoh is the category of nominal linear polarised hypercoherent re-

lations (often abbreviated nominal hypercoherent relations, or cliques) that has as objects the
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smallest set such that I, X, 0 ∈ Obj(NomHypCoh) and

A, B ∈ Obj(NomHypCoh) ⇒ A ⊗ B ∈ Obj(NomHypCoh)

A, B ∈ Obj(NomHypCoh) ⇒ A ⊕ B ∈ Obj(NomHypCoh)

A ∈ Obj(NomHypCoh) ⇒ (A)⊥ ∈ Obj(NomHypCoh)

Morphisms A→ B of NomHypCoh are cliques of A( B.

The composition of cliques in NomHypCoh comes from the composition of nominal linear

polarised relations. The rest of this section is devoted to check that the composition is well

defined. More precisely, we have to ensure that the resulting linear nominal polarised relation

is indeed a clique. To do that, we introduce the notation Γ̂(A), to denote the appropriate notion

of coherence when we close will close the cliques under strict substitution. That is, Γ̂(A) ⊆

P∗fin(|̂A|), and (|̂A|, Γ̂(A)) forms a hypercoherence space. Given a clique R , after closure, R̂ is

not a subset of A ( B anymore but a subset of Â( B, and we must consider a new notion of

coherence for this space. Given a formula F, Γ̂(F) is defined exactly as Γ(F), except that we

consider cartesian product instead of separated product. This is defined formally below.

Definition 3.27. The category LaxHypCoh is the category of lax nominal linear polarised hy-

percoherent relations (often abbreviated lax nominal hypercoherent relations, or lax cliques),

that has as set of objects the smallest set containing the elements (|̂A|, Γ̂(A)) subsequently de-

fined, and closed under the operations defined below.

• Î = INomHypCoh, ⊥̂ = ⊥NomHypCoh, 0̂ = 0NomHypCoh.

• X̂ = XNomHypCoh, X̂⊥ = X⊥NomHypCoh.

• Â ⊗ B = (|̂A| × |̂B|, Γ̂(A) × Γ̂(B))

• Â M B = (|̂A| × |̂B|, ̂Γ∗(A M B) = {w ∈ P∗fin(|̂A| × |̂B|) | w � |̂A| ∈ Γ̂∗(A) ∨ w � |̂B| ∈ Γ̂∗(B)}.

• ̂(A & B) = (inl(|̂A|) ] inr(|̂B|), {w ∈ P∗fin( ̂|A & B|) | w ⊆ inl(|̂A|)⇒ w ∈ inl(Γ̂(A))

∧ w ⊆ inr(|̂B|)⇒ w ∈ inr(Γ̂(|B|))}

• Â ⊕ B = (inl(|̂A| ] inr(|̂B|, inl(Γ̂(A)) ] inr(Γ̂(B)).

• Â⊥ = (|Â|⊥,P∗fin(|Â|⊥) \ {w⊥ | w ∈ Γ̂∗(A)})

The morphisms A→ B are cliques of A⊥ M B, where seeing A has a formula of linear logic, A⊥

is the lax hypercoherence space that corresponds to its negation.

Note that the definitions are compatible with the De-Morgan formula, that is Γ̂(A⊥) = Γ̂(A)
⊥

.

Indeed, these hold for the base cases, and the definitions of AMB and A⊕B are settled according

to this formula. The composition of cliques in LaxNomLinPol follows from the one of lax nom-

inal linear polarised relations. That is, it is simply their relational composition (while forgetting

polarities in the middle), and it hence follows that LaxHypCoh is simply a subcategory of the

category of lax nominal linear polarised relation. Notably, the identity morphism is simply the

identity relation.

In order to prove that the composition of separated relations is compatible with the definition

of cliques, we proceed by steps and start with this lemma.
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Lemma 3.28. • Let w ⊆∗fin |A|NomHypCoh, such that w ∈ Γ̂∗(A). Then w ∈ Γ(A).

• , Γ(A) ⊆ Γ̂(A).

Proof. The proof is done by induction on the structure of the formula A. For the first point, the

base cases X, I, 0,>,⊥ are immediate, as they are equal, and the inductive cases are automatic.

The first point is needed to prove the second. Just as in the first point, the proof is done

by induction on the structure of the formulas, the base case and the inductive cases for ⊗,M,⊕

being immediate. Remaining is the case for &, setting A = A1 & A2. If w � A1 ∈ inl(Γ̂(A1)),

then as w ⊆∗fin (A1), it entails, as proven in the first part of the proof, that w � A1 ∈ inl(Γ(A1)).

Therefore w � A2 ∈ inl(Γ(A2)) and by induction w � A2 ∈ Γ̂(A2). The second case is dealt with

on an equal footing, and therefore Γ(A1 & A2) ⊆ Γ(A1 & A2)
∧

. To conclude, Γ(A) ⊆ Γ̂(A). �

Lemma 3.29. Let R be a clique of A. Then R̂ is a clique of Â.

In other terms, this expresses that (̂.) acts seemingly as a functor from hypercoherent linear

nominal polarised relations to hypercoherent lax nominal polarised relations, assuming they

indeed form a category. The main property to prove is that for every finite subset w ⊆fin R̂ , then

w is lax coherent: w ∈ Γ(A)
∧

. For the proof we will rely on the following property, whose proof

is immediate.

Proposition 3.30. Let w,w′ ⊆∗fin (|A|), such that, for any occurrence of atomic formula X within

A we have:

• w � X , ∅ ⇔ w′ � X , ∅

• w � X ∈ Γ(X)⇔ w′ � X ∈ Γ(X).

• w � X ∈ Γ∗(X)⇔ w′ � X ∈ Γ∗(X).

• w � X ∈ Γ⊥(X)⇔ w′ � X ∈ Γ⊥(X).

• w � X ∈ Γ⊥,∗(X)⇔ w′ � X ∈ Γ⊥,∗(X).

Then w ∈ Γ(A) (respectively Γ∗(A),Γ⊥(A),Γ∗,⊥(A)) ⇔ w′ ∈ Γ(A) (respectively

Γ∗(A),Γ⊥(A),Γ∗,⊥(A)).

The proof of the proposition is a simple induction. The proposition is true in any category

with hypercoherence, such as NomHypCoh or LaxHypCoh.

Proof of lemma 3.29. Let R be a clique of ~A�. Let w ⊆fin R̂ and w = {e1 · x1, ..., en · xn}

where {x1, ..., xn} ⊆ R and e1, .., en ∈ Ξ. We do the proof by induction on the sum of the lengths

of the substitutions |e1| + ... + |en|. If the sum is 0, then w = {x1, ..., xn} ∈ R and therefore

w ∈ Γ(A) ⊆ Γ̂(A).

So suppose the sum is equal to n+1, and we proved the property up to n. Writing x′i for ei ·xi,

we know that w = {x′1, ..., x
′
n} ∈ Γ̂(A) ∩ P( R̂ ) and we want to prove that {[a/b] · x′1, ..., x

′
n} ∈

Γ̂(A). The first case to tackle is the case where b < ν(x′1). Then [a/b] · x′1 = (a, b) · x′1, and

(a, b) · (e1 · x1) = ((a, b) ·e1) · ((a, b) · x1). As R is closed under permutations, (a, b) · x1 ∈ R , and
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the set {(a, b) · x1, ..., xn} is a subset of R . Furthermore, w is now equal to {((a, b) · e1) · ((a, b) ·

x1), e2 · x2, ..., en · xn}. The length of the substitutions applied on this set being n, we conclude

by induction hypothesis that w is lax-hypercoherent: {[a/b] · x′1, ...., x
′
n} ∈ Γ̂(A).

The harder case is when b ∈ ν(x′1). Then let us consider a permutation (b, c), such that

c#{x′1, ..., x
′
n, a}. We know that {(b, c)·x′1, ..., x

′
n} ∈ Γ̂(A), as proven above. Finally, let us apply the

substitution [a→ c] to x′1. Applying it changes the lax coherence as much as a permutation (a, d)

when d is fresh. This follows from noticing that {[a/c] · (b, c) · x′1, ..., x
′
n} � X has same coherence

as {(a, d).(b, c) · x′1, ..., x
′
n} � X for every occurrence X of atomic formula in A (since both a, d

are fresh for x′2, .., x
′
n). As a result, if {(a, d).(b, c) · x′1, ..., x

′
n} belongs in Γ̂(A), then so does

{[a/d].(b, c)·x′1, ..., xn}. As the first member of the previous sentence indeed is lax hypercoherent

(for the same reasons as explained above), then {[a/c]·(b, c)·x′1, ..., xn} ∈ Γ̂(A). Finally, we apply

the permutation (b, c) back , noticing that (b, c).[a → c].(b, c) · x′1 = [a → b] · x′1, and therefore

as {[a/c].(b, c) · x′1, ..., x
′
n} ∈ Γ̂(A)∩P( R̂ ), this entails {(b, c).[a/c].(b, c) · x′1, ..., x

′
n} ∈ Γ̂(A)∩ R̂ ,

or, equivalently, w = {[a/b] · x′1, ..., x
′
n} ∈ Γ̂(A) ∩ P( R̂ )

�

Lemma 3.31. Let w ⊆fin Â( B such that w ∈ Γ(A( B)
∧

. If w ⊆fin A( B then w ∈ Γ(A( B).

The proof is straightforward.

Proposition 3.32. Let R : A ( B and Q : B ( C be two linear cliques. Then R ; Q is a

linear clique of A( C.

Proof. The linearity and nominal closure follows from the composition of nominal linear po-

larised relations. Therefore, in rest of this proof, we forget about the local polarities of the

lists. Let w ⊆∗fin R ; Q , and let v ⊆∗fin Â × B̂ × Ĉ a witness of interaction; that is, for all x

in w there exists a unique y ∈ v such that y ∈ R̂ ; Q̂ and y � A ( C = x. Then suppose

w � A ∈ Γ(A), then v � A ∈ Γ̂(A). As v � Â ( B̂ ⊆∗fin R̂ , then v � Â ( B̂ ∈ ̂Γ(A( B),

entailing v � Â ∈ Γ̂(A) ⇒ v � Γ̂(B). Hence v � B̂ ∈ Γ̂(B). Doing the same for v � B̂ ( Ĉ,

we conclude that v � Ĉ ∈ Γ̂(C). Now as w � C = v � Ĉ then w � C ∈ Γ(C). To sum up,

∀w ⊆∗fin R ; Q .w � A ∈ Γ(A) ⇒ w � C ∈ Γ(C). A similar reasoning holds for proving

∀w ⊆∗fin R ; Q.w � A ∈ Γ∗(A)⇒ w � C ∈ Γ∗(C).That is, ∀w ⊆∗fin R ; Q .w ∈ Γ(A( C). �

Therefore NomHypCoh forms a category, and the operation (̂.) defines a star-autonomous

functor from NomHypCoh to LaxHypCoh. This is a direct consequence of (̂.) being a functor of

compact closed categories between their underlying categories NomLinPol and LaxNomLinPol.
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3.5.2 Properties of nominal hypercoherence spaces

The hypercoherence condition is strong enough to ensure that, on an additive resolution, the

relation will define exactly one set of linkings. We make that clear in the following proposition.

In the sequel, ∆ denotes a sequent. Let us note that each element of a clique defines an additive

resolution, and a linking. For instance, a list of A ⊕ B (respectively A & B) is either a list of A,

or a list of B. Furthermore, as each element x comes from a nominal linear polarised relation,

and that the list is nominal separated, one can associate to it a function relating its negative

and positive literals, as done in Section 3.1.2.1. This one precisely checks the definition of a

linking. Note that two elements on the same additive resolution defines the same linking if they

are equivalent. This follows from the list being polarised separated.

Proposition 3.33. Let R : ~∆� a clique, and let us pick an element x of R . This one defines an

additive resolution on ∆, together with a set of linkings. Then every element y of R on the same

additive resolution is equivalent to x.

For the proof we rely on what we proved in the above lemma: if R is a clique, then R̂ is a

lax-clique.

Proof. We prove the property by contradiction, assuming that there is a y that implements a

different linking on the same additive resolution.

We write λx for the linking that x encodes, and ∆ � λx for the associated additive resolution

(and similarly for y). So let X⊥ be an occurrence of an atomic variable of ∆ � λx, such that

λx(X⊥) , λy(X⊥).

Now, let a the name that appears for X⊥ in x, and b the name that appears for X⊥ in y. We

apply a permutation (b, a) to y so that they share the same name a for this location. Furthermore,

let ci be a name such that ci has same sort as ai. We apply substitutions [ai/ci] to x for all names

ai ∈ ν(x) \a, and similarly for y. Hence in all locations l of ∆ � λx different than X⊥ and λx(X⊥),

x � l = c. Similarly, in all locations l of ∆ � λx different than X⊥ and λy(X⊥), we got y � l = c.

Furthermore, x � X⊥ = y � X⊥ = a. So basically, we obtain two elements (that we keep

on calling with their original names) x, y that are equal on all locations except λx(X⊥), λy(X⊥)

where they differ and are strictly incoherent.

We show that {x, y} < ̂Γ(~∆�) by induction on the structure of ∆, seen as a unique formula

(based on the equivalence between the interpretation of ` F1, .., Fn and ` F1 M ... M Fn) . We

prove the following intermediate property: if two elements x, y ∈ ~F� are strictly incoherent on

one or several locations and equal everywhere else, then they are strictly incoherent.

We call X the location where they are strictly incoherent. The base case consists in F being

this single location. Then they are incoherent in F by definition. So there are now two induction

cases to tackle : F = F1 ⊗ F2 or F = F1 M F2. In the first case if X is in F1, then {x, y} � F1 is



108 CHAPTER 3. SIMPLE NOMINAL MODELS

strictly incoherent and therefore, by definition of Γ(F1 ⊗ F2), {x, y} � F is. The other cases are

dealt with on an equal footing.

Finally, we observe that the {x, y} from the main proof satisfies the required hypotheses,

hence {x, y} is strictly incoherent. As R being a clique entails that R̂ is a lax-clique, this

implies that R is not a clique. This is a contradiction, and the two elements y, x ∈ R were

equivalent. �

Thus, the hypercoherence condition enables us to avoid bad relations, as presented in section

3.4.4. We now turn to study if they satisfy the condition (P1′) of MALL− proof structures 2.2.3.2,

namely that for each &-resolution, the relation defines a unique ⊕-resolution on it. We say that

an element x ∈ ~∆� is on a additive resolution of Ψ of ∆ if it is in the image of the natural

embedding ~∆ � Ψ�→ ~∆�.

Proposition 3.34. Given ∆ a sequent, R a clique of ~∆�, Ψ a &-additive resolution of ∆, and

x, y ∈ R such that x, y on Ψ. Then x, y are on the same additive-resolution.

Proof. The proof is done in a similar fashion as above. We take two lists x, y that are on the same

&-resolution, but on a different ⊕-resolution. We then use substitutions to equalise all names

in the list. Then there must some some sub-formulas F1 ⊕ F2 of F such that the x explores

F1 whereas y is on F2. Hence on these sub-formulas, the two lists are strictly lax-incoherent.

Thus, using the same reasoning as above, they are lax-incoherent. This is a contradiction, and

therefore on each &-resolution, the relation can define only one additive-resolution. �

However, nothing prevents the clique from being empty on a &-resolution. So in order for

a clique R ⊆ ~∆� to form a valid proof-structure, we have to add the condition that for any &-

resolution Ψ of ∆, there exists x ∈ R , such that x is on that Ψ. This condition will be explored

in more details in the last chapter 7.3.2, where we shall notably prove that it composes.

Even with this additive property, the clique might still fail to form a proper proof structure as

the property (P2) is not automatically verified. We recall that (P2) imposes that on each additive

resolution, the linking defines a MLL-proof net. However, the hypercoherence condition fails at

the MLL-level, allowing the mix-rule. For instance, the sequent ` A, A⊥, B, B⊥ with its unique

possible linking, has a valid encoding as a clique, despite being not provable.

As proven in [87] [83], hypercoherence is not strong enough for a completeness result for

MALL. However, the denotation of atomic formulas can be chosen such as a full completeness

result holds for MLL−+ mix. Furthermore, if the proof structure is (P2), then the hypercoherence

model can be strong enough to enforce full completeness, although with a different modelling

of atomic types than the one presented above. This will be further explored in the last chapter

of this thesis.
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Chapter 4

Nominal Structures for Asynchronous
Games

As nominal refinement of traditional static nominal models proved to be not fully complete

for linear logic, we take another direction, using the aforementioned link between tensorial and

linear logic as means to achieve full completeness. The goal of this section is to present nominal

structures that extend the current ones already established for games for tensorial logic, by

translating them within a nominal universe. Ultimately, this will allow us to project morphisms

onto nominal relations, and hence, denotations of proofs of linear logic.

Dialogue games were introduced in [69], as the objects supporting the game semantics of

tensorial logic, without proposional variables. We devise their nominal sibling, providing us

with the appropriate arenas, that let the strategies play with names. Therefore, we can enforce

them to capture the required linearity between negative and atomic type variables, and hence

extend the already established semantics of tensorial logic to include atomic variables.

We take advantage of this shift to deepen the relation between syntax, that is, terms, and

semantics. It was established in [22], that the linear head reductions of lambda-terms in normal

form produce look-alike strategies, that correspond to the denotations of the terms as strategies

in game semantics. This correspondence was later refined, establishing an analogy between the

“tree of views” of an innocent strategy, and the Böhm tree of the lambda-term. As we rely

on nominal constructions, we give a nominal structure to the tensorial lambda-calculus, and

characterise precisely alpha-equivalence. This permits the definition of nominal Böhm trees.

We relate those Böhm trees with the sub-graphs of our nominal arenas, that will correspond to

strategies, that we define in the next chapter 5. Therefore, although it was not the primary goal

of this work, our framework allows us to draw an almost perfect correspondence between our

strategies, and the set of nominal paths that arise as traces from the α-equivalence classes of

lambda terms. This correspondence fails primarily due to the greater symmetry our structures

enjoy compared to the lambda calculus, where the intermediate resources generated by player

are not taken into account.

111
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To sum up, the material presented here extends previous work on asynchronous game se-

mantics [69, 64, 65, 66] by enriching arenas with names, providing appropriate structures for a

clean semantics of atomic variables, while strengthening its relation with syntax. We start by

characterising graphs that form nominal trees 4.2. Equipping the tensorial lambda calculus with

names, we redefine Böhm trees as nominal graphs 4.3. Next, we introduce nominal dialogue

games, alongside exposing the denotation function from formulas of tensorial logic onto them

4.4. Dialogue games are the backbone behind arenas, however we still need to unravel some

nominal structure between the two. We set to define nominal event structures together with their

relation with nominal di-domains. We present the event structure associated with a dialogue

game, and characterise its set of positions 4.5. At this stage, we make a pause, and expose how

one can project maximal positions onto lists 4.5.6; projections that will later allow us to project

strategies onto nominal relations. Finally, we expose how one can see the set of positions as a

polarised nominal asynchronous graph 4.6. At last, the Böhm trees lead as well to asynchronous

graphs, that form sub-graphs of their respective arenas 4.7.

In the sequel, we add a new infinite enumerable set Acells of names, that will accommodate

the untyped cells. These will be a key element to describe our games, and notably the additive

units. The set A now becomes A = (
⊎

X∈TVar AX) ] Acells, and we write AT for
⊎

X∈Tvar AX , the

set of typed names. Furthermore, we set Perm(A) = Perm(AT )⊕Perm(Acells). We will refer to

the elements of Acells as untyped names, or cell-names. Finally, we write νT (x) for ν(x) ∩ AT

and νcells(x) for ν(x)∩Acells. Similarly, we will sometimes use notations 'T , (respectively 'cells)

meaning that there are permutations of AT (respectively Acells) equalising the two elements.

4.1 Fraenkel-Mostowski sets

Nominal sets suffer that they do not allow us to consider elements with non-empty support as

first-class objects. That is, given an element a of a nominal set, if a has non-empty support

then the set {a} does not form a nominal set. To make up for this, we introduce Fraenkel-

Mostowski set theory, that provides a model of set theory encompassing nominal sets. Notably,

as it is closed under ∈ precedence, each element of a Fraenkel-Mostowski set forms a set of the

Fraenkel-Mostowski model, abbreviated FM in the future.

The FM model of set theory is a model of set theory with atoms, that form the building

blocks of the model. The atoms are primitive elements: no set can belong to an atom. More pre-

cisely, the FM model of set theory VFM is built according to a cumulative hierarchy following

similar steps to those leading to the Von Neumann model of set theory. However, the starting

pointV0 for FM consists of the set of names A instead of the empty-set ∅ for the Von Neumann

model. At each iteration n of the construction, the action of nominal permutations on Vn is

well defined by ∈-recursion. Notably, all related notions, such as support, are well-defined for

elements ofVn. The inductive step consists in:

Vn+1 = {S ⊆ Vn | S has finite support}
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The resulting model VFM leads to sets that have finite support, and such that each element

of the set has finite support. Working within this model allows us to consider functionsVFM →

VFM, and reason about them. For instance, we will make use of the following proposition.

Proposition 4.1 ([32]). Let F an equivariant function. Then F(u) = v⇒ ν(F(v)) ⊆ ν(F(u))

Looking at general constructions on sets (such as ∪,∩, ...) as functions onVFM, this allows

us to deduce inequalities like ν(A ∪ B) ⊆ ν(A) ∪ ν(B) for instance.

As we will have some use of trees with non-empty support, we provide here some additional

terminology. Given A ⊆fin A, we say that an object T of FM is A-nominal if its support belongs

in A: ν(T ) ⊆ A. For instance, an A-nominal function between two A-nominal sets S → T

is a function such that ν( f ) ⊆ A. Given an A-nominal object T , properties in T hold up to

A-equivalence, that is, up to equivalence for permutations π such that π#A. For instance, an

A-nominal function f satisfies: ∀π#A. f (π · x) = π · f (x). A nominal set is an ∅-nominal set.

Finally, given an element x, or a subset S of an A-nominal set T , we write [x]A, [S ]A for their

A-orbits, [x]A = {π · x | π#A} ⊆ T and [S ]A = {π · x | x ∈ S , π#A} ⊆ T . Accordingly, we say that

two elements x, y are A-equivalent, written x 'A y, if [x]A = [y]A.

Definition 4.2. A-nominal sets and A-nominal functions form a category, called the category of
A-nominal sets, written NSetA.

We gather in the following proposition some relevant properties of A-nominal sets.

Proposition 4.3. • Given A ⊆ B ⊆fin A, there is a faithful functor F : NSetA → NSetB.

• Given any set S ofVFM with finite support, S is a ν(S )-nominal set.

• For all S ⊆ T, then [S ]ν(T ) ⊆ T.

The functor F is simply the functor that sends an object and a morphism to itself. The proof

of the proposition is straightforward. This new framework allows us to produce the following

definition.

Definition 4.4. An A-partially ordered set (S ,≤) is an A-nominal set together with a partial

order ≤ such that ν(≤) ⊆ A. That is, ∀v1, v2 ∈ S ,∀π#A,

v1 ≤ v2 ⇔ π · v1 ≤ π · v2.

For more on this, we refer to [88].

4.2 Nominal trees

Dialogue games form a special class of trees, or, more precisely, directed rooted trees. There-

fore, to be able to cope with nominal denotations of atomic variables within trees, one needs to
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define nominal trees. This is done by mimicking the set theoretic definitions that characterise

them as graphs within nominal set theory. This section is divided into three parts. First, we

present the definitions. Then, we explore the properties of the trees we obtained. Finally, we

present a way to quickly produce and denote nominal trees.

4.2.1 Definitions

For our setting, “finite” trees will be appropriate. We say that a A-nominal set T is orbit finite
if there is a finite (non-nominal) subset S ⊆ T , such that S is finite, and T = [S ]A.

Proposition 4.5. Let T be an A-nominal set which is orbit finite. Let B such that A ⊆ B ⊆fin A.

Then T is an orbit finite B-nominal set.

This corresponds to the theorem 3.3 of [17], where the proof can be found. All the sets used

along this section will be considered to be orbit finite. We rely our approach on the following

notion of tree, similar to the one used within proof nets.

Definition 4.6. Within the category of sets,a directed rooted tree (abbreviated directed tree, or

simply tree in the future) is a directed graph in which there exists a node u, called the root, such

that for any vertex v, there is exactly one path from u to v.

To start, we define A-nominal graphs. Let us remind that within the category of sets, an

oriented graph is a diagram E → V × V . As the first step of our shift, we consider the exact

same diagram within the category of A-nominal sets. We furthermore assume the function to

be injective. This is a quite strong property, expressing, in different terms, that there is at most

one edge e : v1 → v2. If we were to relax this condition, the graphs obtained would actually be

multigraphs.

Definition 4.7. An A-nominal graph (V, E, f ) consists of two orbit finite A-nominal sets V and

E, called vertices and edges, and an A-nominal injective function f : E → V × V (written

v1
e
−→ v2 for f (e) = (v1, v2)), that is, such that for all permutations π#A, v1

e
−→ v2 ⇔ π · v1

π·e
−−→

π · v2. The graph is directed if we assume a direction of the edge from v1 to v2, written v1
e
−→ v2.

Otherwise, it is undirected.

We will sometimes refer to the elements of V as nodes. With this definition, an A-nominal

graph is naturally oriented, and there is a natural forgetful operation that transforms it into an

undirected graph. We will refer to it as the underlying undirected graph. When forgetting about

the orientation, we will write v1
e
←→ v2 to denote an edge between v1 and v2.

Given an A-nominal graph, we recall the definition of walk, as being a finite sequence of

triples ((v1, e1, v′1), (v2, e2, v′2)......, (vn, en, v′n)) such that v′i = vi+1 and vi
ei
←→ v′i . A path is a

walk in which all vertices vi and all edges are distinct. In a directed A-nominal graph, a walk

(respectively path) is directed if we only allow triples (v, e, v′) where v
e
−→ v′ in it. Given a
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directed walk s, we write u
s
� v, or s : u � v, if v1 = u and v′n = v, or u

s
�� v (respectively

s : u�� v) in the case where the walk is undirected. The first simple observation to make is that

the sets of walks, and paths, are A-nominal in the following sense: if u
s
�� v then for any nominal

permutation π such that π#A we have π · u
π·s
�� π · v. Given two walks s : u�� v and s′ : v�� w,

one can compose them to form a new walk s.s′ : u �� w by concatenating them. However, the

concatenation of paths does not necessarily lead to a path. A subsequence of a sequence s is

a sequence t such that there exist two sequences s, s′ satisfying s = s′.t.s′′. Similarly, given a

sequence s, a pre-sequence, or prefix of s is a sequence t such that there exists u, s = t.u . This

leads straightforwardly to notions of pre-path, pre-walk and subpath, subwalk. A cycle is a

non-empty path whose first and last vertices are equal. A graph is acyclic if no paths in it are

cycles. It is connected if for every pair of vertices u, v there is a path whose ending points are

precisely u, v.

Definition 4.8. A directed A-nominal graph is an A-nominal tree if it is a directed rooted tree.

4.2.2 Properties of nominal trees

We investigate and present some properties of A-nominal graphs and trees. We notably relate

A-nominal trees and A-partially ordered sets.

Proposition 4.9. Let T = (V, E, f ) be an A-nominal graph (respectively tree). Let B such that

A ⊆ B ⊆fin A. Then, relying on the functor F : NSetA → NSetB, (that is, the trivial inclusion

functor) F(T ) = (F(V), F(E), F( f )) is a B-nominal graph (respectively tree).

We present some properties relating the names of V and those of E.

Lemma 4.10. Given an edge e : u→ v of an A-nominal graph , then (ν(e)\A) = (ν(u)∪ν(v))\A.

Proof. We start by proving the left to right inclusion. Let us suppose there exists a ∈ (ν(e) \

(ν(u) ∪ ν(v))) \ A, and let us consider a fresh b, b#e, u, v, a, A. We then have (a, b) · e = e, but

(a, b) ·u = u and (a, b) ·v , v. As the graph’s map f : E → V×V is injective, f ((a, b) ·e) , f (e).

On the other hand, by nominality f ((a, b) · e) = ((a, b) · u, (a, b) · v) = (u, v) = f (e). Hence, we

reach a contradiction and (ν(e) \ A) ⊆ (ν(u) ∪ ν(v)) \ A. The same reasoning works to prove the

reverse inclusion. �

Proposition 4.11. A-nominal trees are conservative. For any pair of nodes u, v such that there

exists an edge e : u→ v, then ν(u) \ A ⊆ ν(v) \ A. In particular, in a nominal tree ν(u) ⊆ ν(v).

Proof. Suppose that there is an a ∈ (ν(u) \ ν(v)) \ A, and pick a b fresh : b#u, v, A. Then, as

the graph is A-nominal, there is an edge (a, b) · e : (a, b) · u → (a, b) · v = v. Therefore v

has two predecessors (a, b) · u and u. Now, taking a path from the root r to u, and one from r′

to (a, b) · u, we obtain two paths from r to v, contradicting the definition of the graph being a

directed tree. �
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We present another definition of directed tree within set theory. A subset S of a partially

ordered set (T,≤) is well-ordered if ≤ ∩(S ×S ) is a total order on S . A tree could be defined as a

partially ordered set (V,≤) such that, for each element v ∈ V , its down-closure v↓ = {w | w ≤ v} is

well-ordered, together with the existence of a unique least element. This definition forgets about

any labelling E may bring, and hence is not equivalent to the first definition, though strongly

related. In this case, E is the subset of V×V embodying the successor relation ` coming from the

partial order ≤. This definition does translate smoothly in our case. We recall that the successor
relation is defined as the relation such that v ` w⇔ (v ≤ w∧(∀x.v ≤ x ≤ w⇒ (v = x∨w = x))).

Proposition 4.12. • Let T be an A-nominal tree. Then T gives rise to an A-partially or-

dered set (S ,≤) such that the down-closure of each element is well-ordered.

• Let (S ,≤) be an A-partially ordered set such that the down-closure of each element is

well-ordered. Then this one provides a description of an A-nominal tree.

Proof. We rely on the correspondence established within set theory. let T be an A-nominal

tree. Forgetting about its nominal structure, it leads to a partially ordered set such that the

down-closure of each element is well-ordered, that is, the restriction of the partial order to this

subset is a total order. By definition, it set V is A-nominal, and as the partial order relation

is coming from (E, f ), which are A-nominal objects, it is A-nominal. Therefore, it gives rise

to an A-nominal partially ordered set as expected. The reverse direction is proved on an equal

footing. �

The successor relation ` on V is characterised by u ` v if there exists an e ∈ E such that u
e
−→ v.

In that case, we say that u justifies v. Furthermore, we say that an element is initial if it is

justified by the root. Finally, we notice that the proposition 4.11 entails that any vertex in a

nominal tree must remember the history of names leading to it. That is, if there is a name in the

support of an element w ≤ v, then it must be in the support of v as well. Formally, for any vertex

v ∈ V , we have ν(v ↓) \ A = ν(v) \ A.

4.2.3 Structured nominal trees

In this section, we give our trees additional structure that help us handle them easily. More

precisely, as any node remembers the names of the nodes appearing in its downward closure,

we present nodes as lists, that reflect on their downward closures.

Definition 4.13. A structured A-nominal tree (V, E, f ) is an A-nominal tree such that:

• the vertices are finite lists of elements.

• the root is the empty list.

• if there is an edge e : v1 → v2, then v2 = v1.k, where k is a list of length 1, and e = (v1, v2).

Note that a structured tree is perfectly defined by its set V . Hence in the sequel, we will forget

about E. Furthermore, in a structured tree, the lengths of the lists correspond actually to the
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distances between the nodes and the root. In that case, to each vertex v, the well-ordered set

v↓ of vertices that appear before it is simply the set of pre-sequences of v. For simplicity, we

write pvq for the last element of the list. Therefore, pvq = v only if v is the root or is initial.

Similarly, we write peq for k, called its view. Let us note that an edge in a structured tree

is perfectly specified by its starting node and its view. Given an A-nominal tree, there is a

canonical structured A-nominal tree associated, by replacing each node v with v↓ structured as

a list, and by replacing E with the appropriate set of V × V

We present below a convenient way to construct structured nominal trees. We start with a

way to produce directed trees within set theory.

Proposition 4.14. Let T be a set of finite lists. We define its closure Clos(T ) by:

Clos(T ) = {l | ∃l2 ∈ T,∃l1, l.l1 = l2}

and equipping it with its natural partial order l1 ≤ l2 if l1 is a prefix of l2. Then (Clos(T ), `) is

a directed tree, where ` is the successor relation associated with ≤.

This follows straightforwardly from the characterisation of directed tree as poset having a

single minimal element, here the empty-list, and well-ordered downward closure for each of

their elements. This proposition provides a simple way to check if a set of lists T produces a

directed tree, one simply needs to check that T = Clos(T ).

Proposition 4.15. Given a set of lists T such that Clos(T ) = T, ν(T ) = A, then T is an A-

nominal tree.

Proof. We set V = T , E the required subset of V × V , and f being the injection function

E → V ×V . Writing A for ν(T ), we need to prove that E is A-nominal. This follows by noticing

that given (v1, v2) ∈ V × V , such as v2 = v1.k, and π#A then π · (v1, v2) ∈ V × V by definition of

V being A-nominal. Therefore, E is A-nominal, and the natural injection function is A-nominal

also. Therefore, (V, E, f ) is an A-nominal graph, forming an directed tree. �

The next theorem presents some constructions that will be useful to build structured nominal

trees. To start, we introduce the following definition, that allows us to see sets as lists. Given

n Ai nominal sets S i, we define S 1.S 2. ... .S n to be the set of lists l = l1. ... .ln such that li ∈ S i.

Finally, given a structured tree T , we say that an element l of T is maximal if it is maximal with

relation to the partial order. We write Max(T ) for the set of such lists.

Definition 4.16. Given T1,T2 two structured A1, A2-nominal trees respectively, we define T1.T2

as the following set of lists:

T1.T2 = T1 ∪ {l1.l2 | l1 ∈ Max(T1), l2 ∈ T2}

Given n Ai nominal trees Ti, we define their rooted sum
⊕

i∈[1,n] Ti, to be the set of lists⋃
i∈[1,n] ini(Ti) where ini(Ti) = {ε} ] {(inie).l | e.l ∈ T }, and e is a list of length 1.



118 CHAPTER 4. NOMINAL STRUCTURES FOR ASYNCHRONOUS GAMES

Theorem 4.17. In the following, we will consider Ti to be structured, orbit-finite, Ai-nominal

trees.

• T1.T2 ... .Tn is a structured (
⋃

i∈[1,n] Ai)-nominal tree.

•
⊕

i∈[1,n] Ti is a structured
⋃

i∈[1,n] Ai-nominal tree.

•
⋃

i Ti = {l | ∃i ∈ [0, n], l ∈ Ti} is a structured
⋃

i∈[0,n] Ai-nominal tree.

• Given n Ai nominal sets S i, Clos(S 1.S 2. ... S n) is a
⋃

i∈[1,n] Ai-nominal tree. For instance,

given an element a, then seeing a as a list of length 1, Clos{a} is a ν(a)-nominal tree.

Proof. The proofs of all these statements rely on proposition 4.15, following a similar reasoning.

Therefore, we only present the proof for the first. We start by noticing that Clos(T1.T2. ... .Tn) =

T1.T2. ... .Tn, and, by proposition 4.1, one gets that ν(T1.T2. ... .Tn) ⊆
⋃

i∈[1,n] ν(Ti). That allows

us to conclude the proof. �

Given a vertex v, we write vi for the ith element of v, subject that i ≤ length(v).

Definition 4.18. We define the relation of compatibility for equality, written C .

• Given two elements x, y of a nominal set without additional structure, we say that x, y are

compatible for equality, written x C y if x ' y⇒ x = y

• Given two vertices of a structured nominal tree v,w, we say that v,w are compatible for

equality, written v C w, if ∀i ≤ min(length(v), length(w)), (vi C vi).

There are a few interesting properties about the relation C that will prove useful in the future.

We present them below.

• if v C v′ and v ' v′ then v = v′.

• if v C v′ and w ≤ v,w′ ≤ v′ then w C w′.

• if ¬(u C v) and (v ≤ w) then ¬(u C w).

The last property merely states that Cc (the complement of C in V ×V) somehow behaves like a

conflict relation in an event structure. This will be relevant for the next section 4.5.

Proposition 4.19. If v C w then one can speak about v ∩ w = v1.v2...vi such that

i = max{ j ≤ min(length(v), length(w)) | v j = w j}.

The proof is straightforward. In the case where ¬(v C w), we will say, despite the fact that the

two elements might have a greatest lower bound, that the intersection is ill-defined. We do so to

avoid the intersection to be too dependent on the names chosen.

4.3 Böhm trees

Böhm trees are among the most famous nominal trees in the literature, although they have, to the

best of the author’s knowledge, never been presented from a nominal point of view. Accordingly,

the definition is presented for terms, not for their classes of α-equivalence.
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Given a game semantics for a pure functional programming language (that is, without ef-

fects), there is a strong relationship between the object denoting a type, and the Böhm trees of

the terms realising this type. This has been the subject of the investigation of [64, 22, 74, 21],

and we will give more details once the definition of arena for tensorial logic types is settled.

4.3.1 Nominal tensorial calculus

We enrich the terms of the lambda tensorial calculus with a nominal flavour, to make them in-

line with our framework. That is, we change the structure of terms in a suitable manner to relate

them to the nominal structures previously defined. In the sequel x, y, z ∈ A ⊕ {•}.

Types TY 3 T,U := X | I | ¬T | T ⊗ U

Terms TE 3 t, u := x | • | tu | ¬x.t | t ⊗ u | let z be x ⊗ y in t

Typing context Γ := ∅ | x : T,Γ

where X ∈ TVar

Γ is a typing context, that is, a set of variables together with a type. We write x : T,Γ for

{x : T } ∪ Γ, with x such that x#Γ. That is, the set of variables is separated. The typing rules of

our terms are as follows, where we write ⊥ for the type ¬I.

` • : I
Γ ` t : T

Γ, • : I ` t : T x : X ` x : X x ∈ AX

Γ, x : U ` t : ⊥
Γ ` ¬x.t : ¬U

Γ ` t : T
Γ, f : ¬T ` f t : ⊥

f ∈ Acells, f #Γ.

Γ ` t : T ∆ ` u : U
Γ,∆ ` t ⊗ u : T ⊗ U

Γ, t#∆, u Γ, x : T, y : U ` t : V
Γ, z : T ⊗ U ` let z be x ⊗ y in t : V

Acells 3 z #Γ.

We only present the fragment without cut, since cut-free proofs yields terms in normal form, in

the sense that no β-reduction steps can be applied to them. Note that we imposed t#u in the right

tensor rule to avoid term like ( let u be (x⊗ y) in x⊗ y)⊗ ( let v be (x⊗ y) in x⊗ y) which would

be, otherwise, perfectly valid.

We will simplify the terms and the typing system a bit, transforming it into an almost equiv-

alent one. This transformation is akin to the transformation of the original sequent calculus of

multiplicative tensorial logic to the focalised one. This will allow us to having terms with more

structure, and comes at a the price of some mild assumptions and restrictions on terms:

• Forgetting about terms whose open variables are of type T ⊗ U. That is, the variables of

our open terms are either atomic, or of negation type. One can easily transform a term

that got an open variable of type U ⊗ V into an somehow equivalent one having two open

variables of types U,V .
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• Considering that the ⊗ operation on types and terms is strictly associative: T ⊗ (U ⊗ V) =

(T ⊗ U) ⊗ V , and similarly for terms.

The terms and types now have the following forms:

Types TY 3 T,U := X | I | ¬T |
⊗

i

Ti

Terms TE 3 t, u := x | • |
⊗

i

ti | tu | ¬(x1, ...xn).t;

Typing context Γ := ∅ | x : T,Γ

where X ∈ TVar

where we assume that, when writing
⊗

ti, none of the ti were already tensor terms.

The typing rules for terms are as follows:

` • : I
Γ ` t : T

Γ, • : I ` t : T x : X ` x : X x ∈ AX

Γ, x1 : U1, ..., xn : Un ` t : ⊥
Γ ` ¬(x1, ..., xn).t : ¬(

⊗
i∈[1,n] Ui)

Γ ` t : T
Γ, f : ¬T ` f t : ⊥

f ∈ Acells, f #Γ.

Γ1 ` t1 : T1 ... Γn ` tn : Tn

Γ1, ...,Γn `
⊗

i∈[1,n] ti :
⊗

i∈[1,n] Ti
∀i , j ∈ [1, n].Γi, ti#Γ j, t j

We call terms coming from this typing system focalised terms.

We now define an equivalence relation on terms of the tensorial lambda-calcululs.

Definition 4.20. We define the σ-equivalence between terms of the tensorial lambda-calculus

of the same type as the smallest reflexive transitive relation such that:

let z be (x ⊗ y) in let w = (u ⊗ v) in t ∼σ let w = (u ⊗ v) in let z be (x ⊗ y) in t

( let z be (x ⊗ y) in t) ⊗ v ∼σ let z be (x ⊗ y) in (t ⊗ v)

t ⊗ ( let z be (x ⊗ y) in v) ∼σ let z be (x ⊗ y) in (t ⊗ v)

f ( let z be (x ⊗ y) in t) ∼σ let z be (x ⊗ y) in f (t)

let z be (x ⊗ y) in ¬w.t ∼σ ¬w. let z be (x ⊗ y) in t

t ∼σ t′ ⇒ C[t] ∼σ C[t′]

where C is any context coming from a formula of tensorial logic. Furthermore, we define the
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following rewriting system:

let z be (x ⊗ y) in let x be (u ⊗ v) in t → let z be (u ⊗ v ⊗ y) in t

let z be (x ⊗ y) in let y be (u ⊗ v) in t → let z be (x ⊗ y ⊗ v) in t

¬(v1, ..., x, ..., vn). let x be (u1 ⊗ ... ⊗ un) in t → ¬(v1, ...., u1 ⊗ ... ⊗ un, ..., vn).t

t ⊗ (u ⊗ v)→ t ⊗ u ⊗ v

(t ⊗ u) ⊗ v→ t ⊗ u ⊗ v

t → t′ ⇒ C[t]→ C[t′]

We denote by the reflexive transitive closure of the relation→.

Proposition 4.21. Every well-typed term t whose open variables are not of tensor types is σ-

equivalent to a well-typed term t′ such that t′  t′′ and t′′ is a focalised term of the same type

as t. Furthermore t′′ is unique satisfying this property.

The proof is similar to the proof that every proof of MLL is equivalent to a proof of the

focalised fragment of MLL, and hence will not be reproduced here. Indeed, the σ equivalence

rules are precisely the rules coming from the permutations of rules in proofs of tensorial logic.

Finally, the rewriting system giving rise to  encapsulates precisely the transformation to a

strictly associative terminology.

We define bound and open variables for terms of focalised tensorial logic.
bv(x) = ∅ fv(x) = x

bv(•) = ∅ fv(•) = ∅

bv(tu) = bv(t) ∪ bv(u) fv(tu) = fv(t) ∪ fv(u)

bv((¬(x1, ..., xn).t) = {x1, ..., xn} ∪ bv(t) fv(¬(x1, .., xn).t) = fv(t) \ {x1, .., xn}

bv(t ⊗ u) = bv(t) ∪ bv(u) fv(t ⊗ u) = fv(t) ∪ fv(u)

As our terms are based on names, one can define the action of a permutation on them.

• π · x = π · x ( that is, the action on the term x is the action on name x).

• π · • = •.

• π · (tu) = (π · t)(π · u)

• π · (¬(x1, ..., xn).u) = ¬(π · x1, ..., π · xn).(π · u)

• π · (t ⊗ u) = (π · t) ⊗ (π · u)

Writing (x, y) for the smallest permutation that switches x, y, the α-equivalence on terms is

defined as the smallest relation =α on terms such that:

• x =α x if x ∈ A ] {•}.

• tu =α t′u′ if t =α t′ and u =α u′.

• t ⊗ u =α t′ ⊗ u′ if t =α t′ and u =α u′.

• ¬(x1, ..., xn).t =α ¬(x′1, ..., x
′
n).t′ if:

∀(y1, ..., yn)#t, t′, (x1, y1)(x2, y2)...(xn, yn) · t =α (x′1, y1)(x′2, y2)....(x′n, yn) · t′.

We write [t]α for the equivalence class of t under α-equivalence. Formally:
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[t]α = {t′ | t =α t}

One can notice that t =α t′ ⇒ fv(t) = fv(t′). Furthermore, the support of [t]α is precisely fv(t),

hence it has finite support.

4.3.2 Böhm trees

A Böhm tree is a presentation of the α-equivalence class of a focalised λ-term in normal form,

under the shape of a tree. We present in the figure below the general shape of a Böhm tree,

and it should be clear from context how one can assign to an (α-equivalence class of a) term

its associated Böhm tree. Though Böhm trees are naturally typed, they are more general than

terms: to some Böhm trees might correspond no well-typed terms. Furthermore, in a Böhm

tree two additional constants are added. For each type T we introduce a constant of type ΩT ,

and a special constant f⊥ of type ⊥. ΩT reflects that we stop the exploration of the tree at this

stage. It has to be seen like a decision made by the environment, declaring that it does not wish

to explore the branch of the tree any further. On the other hand f⊥ reflects a failure from the

tree to provide a sub-tree of the appropriate type. From the game semantics point of view it

expresses the fact that term/strategy cannot answer a query from the opponent. These intuitions

will be made clearer later, in section 4.7.

A Böhm tree M on a simple type T of the form ¬(T1 ⊗ ... ⊗ Tm) is of the following shape:

ε

¬(x1, ...., xm) f
¬(x1, ..., xm) f

M1 M j Mn......

Figure 4.1: Structure of a Böhm tree of type ¬(T1 ⊗ ... ⊗ Tm)

It corresponds to an α-equivalence class of terms of the shape ¬(x1, ..., xm). f (t1 ⊗ ... ⊗ tn)),

where ti are the terms corresponding to the sub-trees Mi, themselves seen as Böhm trees. How-

ever, the Böhm trees Mi now have additional information: the bound names (x1, ..., xn) intro-

duced by the first edge, together with their types. Therefore, we introduce a finite typing context

Γ, that represents the names that have been disclosed to the tree. They correspond to the free

variables of a term.

We say that a type T is ⊗-irreducible if it cannot be decomposed into T = T1 ⊗ T2. A

⊗-irreducible type is either an atomic type or a negated type: T = ¬U. Therefore, the types of

the focalised tensorial calculus are of three sorts: negated types, atomic types, or types of the

shape T1 ⊗ ... ⊗ Tn (with n > 1). Finally, we impose that in the typing context Γ, the names of
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Acells have types negated types only, whereas the names of AT have types their corresponding

atomic types.

Definition 4.22. For Γ a typing context, writing S for ν(Γ), we define a Γ-Böhm tree M on the

type T to be a is a structured S -nominal tree, whose structure is depending on the structure of

the type.

If T is a negated type, T = ¬(T1 ⊗ ... ⊗ Tm), where each Ti is ⊗-irreducible, then a Γ-Böhm

tree M is in one of the following three forms:

1. A tree Clos([¬(x1, ..., xm) f ]S .Mx1,...,xn) such that:

• If Ti is not an atomic type, then xi ∈ Acells.

• if Ti is an atomic type X then xi ∈ AX .

• if Ti is the atomic type I, then xi = •.

• ∀i, j.i , j⇒ xi#x j and (x1, ..., xm)#S .

• Defining Γ′ = Γ ∪ (x1 : T1, ..., xm : Tm), f ∈ ν(Γ′) ∩ Acells and therefore is of type

U = ¬(V).

• Mx1,...,xm is a Γ′- Böhm tree of type V.

• Given (y1, ..., ym) ∈ [(x1, ..., xm)]S , and π permutation of minimal support such that

π · (x1, ..., xm) = (y1, ..., ym) then My1,...,ym = π · Mx1,...,xn .

2. Clos([¬(x1, ..., xm)f⊥]S ) where the xi have same constraints as above.

3. Clos({ΩT })

If T is an atomic type then a Γ-Böhm tree of type T is in one of the following forms:

• Clos({ΩT }).

• Clos({•}) if T = I.

• Clos([x]S ) for a given x ∈ AX if T = X ∈ TVar.

And finally we define a Γ-Böhm tree of type T1 ⊗ ... ⊗ Tn to be the a rooted sum of Γ-Böhm

trees M1, ...Mn of types T1, ...,Tn respectively.

Given an α-equivalence class of terms [t]α, one can assign its associated Γ- Böhm tree,

where Γ is its context set of free variables. Therefore, the Böhm tree associated with a term is a

structured fv(t)-nominal tree, and therefore, it is a structured nominal tree if and only if the term

is closed. For instance, the structured Böhm tree associated with the term x of type X consists

of one root and one initial element x. On the other hand, the Böhm tree associated with the term

¬( f , x). f x, of type ¬(¬X ⊗ X) is a nominal tree of empty support that consists of the closure of

a set of lists of length 2 Clos({¬( f , x) f .x | f ∈ Acells, x ∈ AX}).

We give some more examples below. The Böhm tree associated to the term

¬(x,w, f , g, h).h(x ⊗¬u.(g(w ⊗¬v.( f (u ⊗ v)))))), of type ¬(X ⊗ Y ⊗ (¬(Z ⊗W) ⊗ (¬(Y ⊗¬W)) ⊗

(¬(X ⊗ ¬Z))) is presented in the figure 4.2 below. Another interesting Böhm tree is the one of

the term presented in figure 4.3, whose associated Böhm tree is displayed in the next figure 4.4.

While displaying these structured trees, we denote each edge e by its view peq.
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ε

¬(x,w, f , g, h)h

¬(x,w, f , g, h)h.in1x ¬(x,w, f , g, h)h.in2¬u(g)

¬(x,w, f , g, h)h.in2¬(u)g.in1w ¬(x,w, f , g, h)h.in2¬(u)g.in2¬(v) f

¬(x,w, f , g, h)h.in2¬(u)g.in2¬(v) f .in1u ¬(x,w, f , g, h)h.in2¬(u)g.in2¬(v) f .in2v

¬(x,w, f , g, h)h x ∈ AA,w ∈ AB, f , g, h ∈ Acells

in1x in2¬(u).g u ∈ AC , g ∈ Acells

in1w in2¬(v). f v ∈ AD, f ∈ Acells

in1u in2v

Figure 4.2: Böhm tree associated with [¬(x,w, f , g, h).h(x ⊗ ¬u.(g(w ⊗ ¬v.( f (u ⊗ v))))))]α

u : X ` u : X
u : X, f : ¬X ` f (u) : ⊥

v : X ⊗ ¬X ` let v be (u ⊗ f ) in f (u) : ⊥
` ¬(u, f ). f (u) : ¬(X ⊗ ¬X)

w : Y ` w : Y
w : Y, g : ¬Y ` g(w) : ⊥

x : Y ⊗ ¬Y ` let x be (w ⊗ g) in g(w) : ⊥
` ¬(w ⊗ g).g(w) : ¬(Y ⊗ ¬Y)

` ¬(u, f ). f (u) ⊗ ¬(w ⊗ g).g(w) : ¬(X ⊗ ¬X) ⊗ ¬(Y ⊗ ¬Y)

Figure 4.3: A term of the tensorial lambda calculus

4.4 Nominal dialogue games

We now have all the background material necessary to begin to present the objects that will

be the interpretation of our formulas of tensorial logic. We approximately follow the presen-

tation given in [69], while carefully adapting it with names. We start by presenting the tree-

interpretation of formulas, though these trees will not be the final interpretation. In the following

section 4.6, we will equip them with additional structure, transforming them into asynchronous

graphs. Those will be precisely the arenas on which the strategies, defined in the next chapter 5,

will play.

We remind that in a structured tree, each vertex is a list l, and we write plq for the last element

of the list. Furthermore, we remind that a pattern is a sequence highlighting the position of an

element.

pattern ::= inl pattern | inr pattern | ε

Finally, given a structured nominal tree A, we write A for its set of lists that are non empty.

Definition 4.23. A dialogue game is a structured ∅-nominal tree A whose vertices, except for

the root, are either labelled cells or values (that is, with a function label : A→ {cells, values}),

and such that x ` y⇒ label(x) , label(y). Each cell c is such that pcq is of the shape pattern(α)

(often written α for short), where α ∈ A. Furthermore, this graph is equipped with a function
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ε

in1¬(u, f ) f in2¬(w, g)g

in1¬(u, f ) f .u in2¬(w, g)g.w

f ∈ Acells, u ∈ AX in1¬(u, f ) f

u

in2¬(w, g)g g ∈ Acells, g ∈ AY

w

Figure 4.4: Böhm tree associated with [¬(u, f ). f (u) ⊗ ¬(w ⊗ g).g(w)]α

λ : A→ {−1, 1}, called polarity, such that for each cell α and value v :

α ` v⇒ λ(α) = λ(v) v ` α⇒ λ(α) , λ(v)

We request that the initial vertices are cells that consists of a unique name members of Acells,

that is, all initial cells are equivalent. A dialogue game is said to be positive if all the initial

cells are of positive polarity, and negative if all the initial cells are of negative polarity.

The values and cells of positive polarity are those belonging to proponent, often called

player, whereas those of negative polarity are related to opponent. In this graph, each cell

represents a question, that is, a request of data. On the other hand, the values represent the

answer to the question, that is, they correspond to new data. For historical reasons, the polarity of

the cell does not correspond to the protagonist asking the question, but the protagonist answering

it. That is, proponent will asks questions, or bring cells, of polarity −1, but will answer questions

of polarity 1. We write that a cell is typed if the support of its last element belongs in AT , and

untyped if it belongs in Acells. If the name of a cell belongs in AX , we say that the cell is of type

X.

In our games, the only values we will encounter are products of patterned •, as the only

ground type we work with is I. In the case where one would like to implement a program-

ming language based on the tensorial lambda calculus extended with Booleans or integers, for

instance, then the values would range over these two sets. Furthermore, if one woud like to

implement a nominal language, such as the ν-calculus, then the values could be nominal. Sim-

ilarly, if one were to adapt them to cope with references, or other kind of resources, that are

encoded nominally (just as in [76] [77] for instance), then, in that case, our values would not

necessarily have empty support anymore.

4.4.1 Interpretation of formulas

The interpretation of formulas as dialogue games has been introduced in [69], but we slightly

modify it here. Indeed, in the original presentation, the dialogue games were forests, rooted
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at values, whereas here we forget the root and focus on the initial elements, that are cells. The

initial cells always have polarity +1 by definition. Therefore the polarity function is fully defined

for the whole tree from the two equations:

α ` v⇒ λ(α) = λ(v) v ` α⇒ λ(α) , λ(v).

Thus, in the future, we only present the set of nodes, as the polarity of each node can simply be

computed from its distance from the root. We request that all dialogue games that are denotation

of formulas have positive polarity. Negative dialogue games will be later used to denote the

arena on which the strategies play.

In the sequel, by abuse of notation and terminology, we will not make the distinction be-

tween the formula and its denotation as a dialogue game. For instance we write “dialogue games

A, B” instead of “dialogue games that are denotations of formulas A, B”. There is a nice graphi-

cal display for dialogue games tha was introduced in [69] that we recall below. In order to draw

the graphs, we only display one node for each equivalence class of nodes . Furthermore, we do

not display the root. The values are represented as filled circles :

v

Whereas the cells are drawn as smaller, plain circles.

α

By definition, the initial elements of the dialogue games are always cells of positive polarity.

For a value justifying multiple cells, we adopt the following drawing convention:

α

v

β ... γ S

=

α

v

S

The interpretation of formulas is given below. First, we define the sum of two dialogue games

A and B by merging their initial cell. This is a slight variant of the rooted sum.

α α

v

S

⊕ v’

S’

=

α

v v’

S S ′
A B A B

Formally, given two dialogue games A, B , we define A ⊕ B by:

Clos({α.inl(v).l | α.v.l ∈ A}) ∪ Clos({α.inr(v).l | α.v.l ∈ B})
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A dialogue game is simple if each initial cell justifies a unique value. That is, if it cannot be

written as a sum of two dialogue games.

The second step consists in defining the negation. First, given a dialogue game A, we define

A∗ as being just like A but with a reverse polarity function, λA∗ = −λA. A∗ is not a dialogue

game, as its initial elements have negative polarity. We solve this by lifting it, that is, adding a

couple (α, v) such that v justifies the initial cells of A∗, and α is an untyped cell.

β

¬ A =

α

•

β

A*

Formally, we set:

¬(A) = Clos(Acells.{•}).A

where we recall that the concatenation of structured trees is defined in 4.16.

The tensor product of two simple games A and B is defined by merging their initial cells and

their initial values. The associated picture is displayed below;

α α α

v

S

⊗ v’

S’

= (v, v′)

S S’

A B A B

Relying on the the distributivity of ⊕ over ⊗, we generalise the definition for any dialogue

game. For instance, we display the product in the case of two dialogues games having two initial

values.

α α α

S

v v’

S’

⊗ w

T’

w’

T

= (v,w)

S T

(v,w′)

S T’

(v′,w)

S’ T

(v′,w′)

S’ T’

So formally, for two games A, B, the list definition of the tree A ⊗ B is:

A ⊗ B = Clos({α.(v1, v2).inl(β).l. | α.v1.β.l ∈ A ∧ α.v2 ∈ B})

∪ Clos({α.(v1, v2).inr(β).l | α.v2.β.l ∈ B ∧ α.v1 ∈ A})

We now give the interpretation of the units. The game 1 consists of a unique value, justified by
a set of cells of Acells.
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α

•

Properly, we write :

~I� = Clos(Acells.{•})

The game for 0 is a 1-orbit set of equivalent untyped cells.

α

That is :

~0� = Clos(Acells)

The remaining units > and ⊥ are defined through the equations > = ¬0 and ⊥ = ¬1. Finally,

we give the interpretation of an atomic type X. We want it to be a typed resource brought by

proponent. Therefore, we define the denotation of X to be the nominal graph displayed below,

where χ ∈ AX .

α

•

χ

In terms of lists, this gives :

~X� = Clos(Acells.{•}.AX)

Finally, we extend our denotation to any formula of tensorial logic through ~A ⊗ B� =

~A�⊗ ~B�, ~¬A� = ¬~A� and ~A⊕B� = ~A�⊕ ~B�. Let us note here that the fact that the typed

names are brought in cells, and not values, is a choice that we made. We could certainly have

designed similar games where typed resources are values and obtained similar results. However,

as each atomic variable can be interpreted as a hole, that can be filled with any other formulas,

it made sense to put it into a cell. Moreover, this incorporation allows us to deal with them

through the sequentiality structure, defined in the course of the next chapter 5.3.2.

4.4.1.1 On negative dialogue games

In the next chapter, we will consider, following [69], that strategies A → B are sets of plays

in A . B = (A ⊗ ¬B)∗, where the (.)∗ denotes the function that inverses polarities. Given that
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A, B will be positive, A . B shall be a negative game. To refer to such structure, we name it

pre-dialogue game. We draw below how it looks like in the case where A, B are simple.

α

vA

S A β

vB

S B

Figure 4.5: Pre-dialogue game A . B

In order to deal with composition, we have to speak about global sequences in a structure

A . B . C, such that it has locally the structure of A . B on the left-hand side and B . C on the

right-hand side. More precisely, we define the structure A . B . C to be the dialogue game

A ⊗ ¬(B ⊗ ¬C) except that we do not endow it with a polarity function.

The shape of the dialogue game A . B . C is displayed in the picture below 4.6, whenever

A, B,C are simple.

Figure 4.6: Structure of A . B .C

α

vA

S A β

vB

S B γ

vB

S C
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4.4.1.2 Distributivity, normal form and dialogue games

Recalling that a dialogue game is simple if each initial cell justifies only one value, every dia-

logue game A can be decomposed as a finite sum of simple games: A =
⊕

i Ai. Furthermore,

any simple game can be written A =
⊗

i Ai where each Ai is simple and ⊗-irreducible, that is,

cannot be written Ai = B1 ⊗ B2. We characterise the ⊗-irreducibility of simple games by the

fact that the unique initial value justifies a set of cells such that all cells are equivalent. In other

terms, the set of cells justified by the initial value forms a 1-orbit set. Therefore, each game

can be decomposed as
⊕

i(
⊗

j|i Ai, j), where we write j | i to indicate that the set j ranges upon

depends on i.

Furthermore, if we were to forget some of the bureaucracy given by the patterns, there would

be a bijection between the positive dialogue games such that every typed cell is terminal (that

is, forms a maximal vertex of the structured tree), and the formulas of tensorial logic, up to

associativity-distributivity equivalence, as defined in section 2.3.2.1. More precisely, to each

positive dialogue game such that typed cells are terminals, looking only at its structure (that is,

forgetting about the additional data given with the ordering of patterns), a formula of tensorial

logic in normal form can be canonically associated, and reversely. Additionally, given a normal

form formula of tensorial logic, and its associated dialogue game, to each untyped cell of the

dialogue game corresponds a sub-formula of the initial formula, and reciprocally. Hence, the

dialogue game of a certain type can be seen as a variant of the syntactical tree of the formula of

this type.

4.5 Nominal event structures and linear di-domains

In this section, we present the definition of nominal event structures, and expose their corre-

spondence with nominal di-domains. This will enable us to associate to each dialogue game an

event structure, through the intermediate description of moves. Thanks to that correspondence,

we will be able to conclude that the set of positions associated with a dialogue game forms a

nominal di-domain. We start by laying the definition of nominal event structure.

Definition 4.24. A nominal event structure E = (|E|,≤,ˇ) consists of:

• A nominal set |E|.

• A nominal partial order relation ≤ .

• A symmetric irreflexive nominal conflict relation ˇ such that m ˇ n and n ≤ p⇒ m ˇ p.

A nominal event structure is linear if ∀e, e′ ∈ |E|.(e ' e′ ∧ e , e′) ⇒ e ˇ e′.

We restrict to orbit finite event structures, that are those whose nominal sets |E| are orbit

finite. We write ↑ for the complement of the conflict relation: e ↑ e′ ⇔ ¬(e ˇ e′). If e ↑ e′,

we say that e, e′ are compatible. In particular, if e ≤ e′ then e ↑ e′. Finally, we say that two

events are independent if they are compatible and not related by the partial order: e ↑ e′∧¬(e ≤
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e′)∧¬(e′ ≤ e). To simplify, we write e ∈ E for e ∈ |E|. For the orbit finite linear event structures,

the axiom of finite causes holds automatically:

∀e ∈ E.{e′ | e′ ≤ e} is finite.

The linearity hypothesis states that two equivalent events are in conflict, that is, they cannot

happen within the same configuration. This assumption has major consequences on the design

of the event structures.

Proposition 4.25. Let E be a linear event structure, and e, e′ ∈ E such that e ≤ e′. Then

ν(e) ⊆ ν(e′).

Proof. Suppose ∃a ∈ A such that a ∈ ν(e) \ ν(e′), and consider also b such that b#e, e′. As the

relation ≤ is nominal, (a, b) · e ≤ (a, b) · e′. On the other hand (a, b) · e′ = e′ and (a, b) · e , e.

From linearity, we know that e ˇ (a, b) · e. Therefore, as e ˇ (a, b) · e ≤ e′, by the axiom of

event structures, e ˇ e′. Finally, as e ≤ e′, this leads to e ↑ e′, contradicting e ˇ e′. To sum up,

ν(e) ⊆ ν(e′). �

Therefore, the nominal trees behave in a compatible manner with regards to linear nominal

event structures. Indeed, each nominal tree can be seen as a finite orbit nominal partial ordered

set. Furthermore, since they are conservative, they can be extended with a notion of conflict

that transforms them to linear event structures. That is, the relation ˇ defined by v1 ˇ v2 if

¬(v1 C v2) behaves like a conflict relation in a nominal event structure.

We introduce the notion of positions. We recall that in a partially ordered set P, given D ⊆ P,

we write D↓ for the downward closure of D, defined as being the following subset:

D↓ = {p ∈ P | ∃d ∈ D, p ≤ d}.

Definition 4.26. A position p of a nominal event structure is a finitely supported set of events

such that:

• p is conflict-free: ∀e, e′ ∈ p.e ↑ e′.

• p is downward closed: p = p↓

As a result, no two events in a position are in conflict. We write Pos(A) for the set of

positions of A. We define the actions of nominal permutations on Pos(A) as follows: π · p =

{π · e | e ∈ p}. In an orbit finite linear event structure, the positions have a useful representation.

Proposition 4.27. • Let S be a finitely supported subset of a nominal partially ordered set

E . Then ν(S ↓) ⊆ ν(S ).

• Let p be a position in an orbit finite linear event structure E. Then ∃e1, ..., en ∈ E such

that p = {e1, ..., en}↓.

Proof. Let π#S . Then for any e ∈ (S ↓), π · e ∈ (π · S )↓ = S ↓. Reversely, for any e ∈ π · (S ↓),

e ∈ S ↓. So π · (S ↓) = (S ↓), and therefore ν(S ↓) ⊆ ν(S ).
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We tackle the second bullet-point. We consider the set of elements that are maximal in p;

Max(p) = {e ∈ p | @e′ ∈ p, e ≤ e′}. As E is orbit finite, every chain of growing elements of p

is bounded by one of these elements, and p = Max(p)↓. Furthermore, as E is orbit finite and

linear, Max(p) is finite. Indeed, if it were infinite, there would be some equivalent elements, and

these would be in conflict, contradicting p being a position. Therefore, ∃e1, ..., en ∈ E such that

p = {e1, ..., en} ↓. �

On the other hand, the reverse inclusion ν(S ) ⊆ ν(S ↓) does not generally hold. Let E be

defined as follows:

E = ({⊥} ] inl(A) ] inr(A),⊥ < inl(A) < inr(A),ˇ= ∅}

Then, we have {inl(a), inr(b)}↓ = inl(A) ] {⊥, inr(b)}. Therefore, ν({inl(a), inr(b)}) = {a, b}, but

ν({inl(a), inr(b)}↓) = {b}.

We introduce some notions that will be relevant for the sequel. In the set of positions, we

say that two positions p1, p2 are compatible, written p1 ↑ p2, if the set {p1, p2} is bounded.

We will write ⊥E ( or simply ⊥) for the empty position, and Pos∗(E) for the set of non-empty

positions, that is Pos∗(E) = Pos(E) \ {⊥E}.

In ordinary set theory the set of positions of an event structure forms a di-domain. We

remind below some basic notions of domain theory, translated into nominal sets.

Definition 4.28. In this definition, all structures are assumed to be orbit finite.

• A nominal domain (D,vD,⊥D) is a nominal poset (D,vD) together with a least element

⊥D. Abusing notation, we refer to D for the whole structure.

• A nominal domain D is linear if for all x, y in D such that x , y and x ' y, then x, y have

no common upper bound.

• A nominal domain D is bounded complete if every finitely supported bounded subset X of

D has a least upper bound
⊔

X.

• A prime of a bounded complete domain D is an element p ∈ D such that for any finitely

supported subset X of D, p v
⊔

X ⇒ ∃x ∈ X.p v x. We denote Pr(D) the set of primes of

a domain.

• A nominal domain D is prime algebraic if it is bounded complete and

∀x ∈ D.x =
⊔
{p v x | p ∈ Pr(D)}.

We write di-domain for those nominal domains that are prime algebraic.

Proposition 4.29. In a bounded complete nominal domain, every finitely supported X ⊆ D has

a greatest lower bound, denoted
�

X.

Proof. We simply need to ensure that the set P = {y | ∀x ∈ X.y ≤ x} has finite support. More

precisely, we can prove in a similar manner as the proof of proposition 4.27 that ν(P) ⊆ ν(X).

Therefore,
⊔

P is well-defined and is obviously the greatest lower bound of X. �
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Just as for its non-nominal counterpart, there is an equivalence between nominal di-domains and

event structures, that relies on a correspondence between the primes of the di-domains and the

events in one direction, and the positions of the event structures and the elements of the domains

for the other direction. Before doing the proof, we introduce this lemma.

Lemma 4.30. In a di-domain D, the following hold:

• ∀p ∈ Pr(D),∀p′ ∈ [p].p′ ∈ Pr(D).

• If D is linear then ∀x ∈ D, ∀p, p′ ∈ Pr(D).p, p′ v x ∧ p ' p′ ⇒ p = p′.

Proof. Let p be a prime, and p′ = π · p, where π is any name permutation. Suppose p′ v tX,

where X ⊆ D. Then π−1 · p′ v π−1 · (
⊔

X) =
⊔

(π−1 · X). Now, as p = π−1 · p′ is prime, there is a

x such that p v π−1 · x and p′ v x. So p′ is prime. The second part of the proposition is obvious

by linearity. �

Proposition 4.31. • Let E = (|E|,≤,ˇ) be a nominal event structure. Then its set of posi-

tions ordered by inclusion form a di-domain. Furthermore, if the event structure is linear

then so is the di-domain.

• Let D = (D,vD,⊥D) be a nominal di-domain. Then its set of primes ordered by v forms

a nominal event structure, by setting p ˇ p′ if {p, p′} has no upper bound. Furthermore,

if the domain is linear then so is the event structure.

• The two transformations are inverse to each other.

Proof. We start with an event structure, and endeavour to show that its set of positions forms

a di-domain. We already know that Pos(A) is a nominal set. Inclusion is obviously a nomi-

nal partial order relation, and there is a least element, namely the empty position. Hence, the

positions form a domain. As the event structure is orbit-finite, so is this domain. Let us sup-

pose that there is a set X of positions such that X is bounded, and X has finite support. As X

consists of a set of positions, and each of them is downward closed, we already know that the

set
⊔

X = {e ∈ E | ∃x ∈ X, e ∈ x} is such that
⊔

X = (
⊔

X)↓, and therefore ν(
⊔

X) ⊆ ν(X)

is finite. Furthermore, as it is bounded, it entails, ∃p.∀x ∈ X.x v p. As a result, all events e

of
⊔

X are in p, and therefore are compatible. Therefore
⊔

X is a position. As a result, the

domain is bounded-complete. Finally, one can check that to each event e corresponds a prime

e↓ = {e′ | e′ ≤ e}. Then as p =
⋃
{e↓ | e ∈ p}, the domain is prime algebraic.

Now, we prove that if the event structure is linear, so is the di-domain. We consider two

positions p, p′ such that p ' p′ and p , p′. Then this entails that there are two elements

e, e′ ∈ p, p′ such that e ' e′ ∧ e , e′. As a result, e ˇ e′. Therefore, there is no position that

contains both e, e′, and therefore no position p′′ such that p, p′ ≤ p′′. Therefore, the domain is

linear.

We now focus on the reverse direction. By the previous lemma, we know that the set of

primes organises itself as a nominal set. As the set of primes forms a subset of the domain, the

nominal partial order relation v restricts straightforwardly to a nominal partial order relation on

the set of primes. Two primes are incompatible if their union is not bounded, and therefore the
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axiom required for ˇ is clearly satisfied. In the case where the di-domain is linear, then every

two equivalent but different primes are incompatible, and therefore so is the event structure. �

4.5.1 Structured event structures and operations

In this section, we refine the class of event structures we will be working with. This additional

structure will allow us to define more easily some operations on them.

Definition 4.32. A tree event structure is an event structure such that for each e, the position

e ↓ is well-ordered.

In other words, a tree event-structure is an event structure such that (E,≤) is a forest; a forest is

just like a tree, except that there might be several minimal elements.

Lemma 4.33. Every tree event structure is linear.

Proof. Let e an event, and f , f ′ such that f ' f ′ and f , f ′ ≤ e. As e ↓ is well-ordered, if f , f ′

this implies f < f ′ or f ′ < f . Let π be such that π · f = f ′, then ∃n ∈ N.πn = π. As π · f < f ,

< being a nominal partial order relation and < being transitive, this entails πn · f < f , that is,

f < f . This is a contradiction, implying that f = f ′. Hence the event structure is linear. �

Recycling terminology from game semantics, we say that an element of an event structure

is initial if it is minimal with regards to the partial order. We write IE for the set of initial events

of E, and IE for the set of non-initial ones. Formally, IE = |E| \ IE . In analogy with trees, we

defined structured tree event structures.

Definition 4.34. A tree event structure E is structured if:

• Every element e of |E| is a list.

• Given an element e ∈ E, then, if e is not initial, it has a unique predecessor e′, and

e = e′.peq.

• The initial elements are lists of length 1.

That is, each element of the event structure is a list that reflects on its downward closure. In

particular, in that case, E augmented with the empty list, acting as a bottom element, forms a

structured tree. Note that the partial order ≤ of a structured tree comes from the prefix ordering.

Therefore, when defining a structured event structure E, we only need to specify |E| and ˇ.

We present two operations on structured tree event structures. To do so, we introduce this

notation: given three nominal sets A, B,C, together with two (implicit) nominal functions $1 :

A→ B and $2 : B→ C, we write A ×C B for the fibred product of A, B over C:

A ×C B = {(x, y) ∈ A × B | $1(x) = $2(y)}.
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We will sometimes write x×C y for the elements of A×C B. Given two structured event structures

E1 = (|E1|,≤1,ˇ1), E2 = (|E2|,≤2,ˇ2), together with a nominal set C, and two projections

$1 : IE1 → C, $2 : IE2 → C, we define the following operations:

• E1 ⊕ E2 = (|E|,≤,ˇ), where :

1. |E| = {inl(e1).e2. ... .en | e1.e2. ... .en ∈ |E1|} ] {inr(e1).e2. ... .en | e1.e2. ... .en ∈ |E2|}.

We overload the notation inl, inr for describing the two natural injections |Ei| → |E|.

2. ˇ= inl(ˇ1) ] inr(ˇ2) ] inl(|E1|) × inr(|E2|) ] inr(|E2|) × inl(|E1|).

• E1 ⊗ CE2 = (|E|,≤,ˇ) :

1. IE = IE1 ×C IE2 .

2. IE = {(i1, i2).inl(e2). ... .en | i1.e2. ... .en ∈ |E1|, (i1, i2) ∈ IE)} ] {(i1, i2).inr(e2). ... .en |

i1.e2. ... .en ∈ |E2|, (i1, i2) ∈ IE}

3. ≤ is defined through the structure: e1 ≤ e2 if e1 is a prefix of e2.

4. For e = (i1, i2).inl(e2). ... .en, we write e � E1 for the event i1.e2. ... .en, and e � E2 =

i2. Similarly, we can define projections in the case e = (i1, i2).inr(e2). ... .en. Then,

e1 ˇ e2 if (e1 � E1 ˇ1 e2 � E1) ∨ (e1 � E2 ˇ2 e2 � E2)

Proposition 4.35. Given E1, E2 two structured tree event structures, then E1⊕E2 and E1⊗C E2

are tree event structures.

The proof is immediate. We endeavour to determine how these operations lift at the level of

positions. For the first one, we have Pos∗(E1 ⊕ E2) ' inl(Pos∗(E1)) ] inr(Pos∗(E2)). We write

] for the adequate binary operation, defined below:

inl(Pos(E1)) ] inr(Pos(E2)) = {⊥} ] inl(Pos∗(E1)) ] inr(Pos∗(E2))

And therefore, we conclude that:

Pos(E1 ⊕ E2) ' Pos(E1) ] Pos(E2).

The set Pos(E1 ⊗ CE2) is a bit harder to describe in the general case. However, for every event

structure we will consider in the future, each position has a unique initial move. That is, for any

i1, i2 ∈ IE , i1 ˇ i2. In that case, one can straightforwardly extend the functions $1, $2 from

initial events to positions.

• $1(p) is undefined if p is empty.

• $1(p) = $1(i1) if p , ⊥ and i1 is the unique initial event of p.

and similarly for $2. Therefore, we overload the operator ⊗ C to sets of positions:

Pos(E1) ⊗ CPos(E2) = (⊥1,⊥2) ] Pos∗(E1) ×C Pos∗(E2)

And straightforwardly, in these cases, Pos(E1 ⊗ CE2) ' Pos(E1) ⊗ CPos(E2).

In the case where we do consider a cartesian product instead of a fibred product, we will

simply write ⊗ , without specifying an additional set.
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4.5.2 Event structure of a dialogue game

Given a nominal set X, we call representative of X a minimal (not-nominal) subset S ⊂ X,

such that [S ] = X. Minimality entails that ∀β1, β2 ∈ S .(β1 , β2) ⇒ (β1 ; β2). An orbit

finite nominal tree is automatically locally finite, in the sense that for every node v, the set

Succ(v) = {v′ | v ` v′} is orbit finite, where we remind that ` denotes the successor relation.

We associate to each dialogue game of section 4.4.1 a structured tree event structure. Each

event roughly corresponds to either a player or opponent move. The conflict relation is designed

such that a position can only explore one side of the additive connective ⊕, while allowing the

exploration of both sides of the multiplicative one ⊗. The event structure is built around the

concept of moves: the event structure is a structured one, and each event is a list of moves. We

first start by defining a look-alike event structure based on moves.

Definition 4.36. Given a dialogue game A, MA = (MA,≤A,ˇA) is a nominal partially ordered

set with a relation ˇA on MA, called conflict.

• The set MA consists of all triples (α, v, S ), where α, v are nodes of A and α ` v, label(α) =

cells. S is a representative of Succ(v), and therefore is a set of cells. We will call moves
the elements of MA. Moves will be denoted by m and variants. Given a move m = (α, v, S )

we write pmq for (pαq, pvq, pS q) where pS q = {pcq | c ∈ S }.

• We define the justifying relation between moves by m = (α, v, S ) `A (α′, v′, S ′) = m′ if

α′ ∈ S . In this case we say that m justifies m′, written m ` m′. A move is initial if it is

not justified by any move. We write ≤ for the reflexive transitive closure of `, leading to a

partially ordered set (MA,≤).

• The relation of compatibility for equality, written C is stronger than in the case of trees

4.18. We define it first for moves:

(α, v, S ) C (α′, v′, S ′) if (v C v′) ∧ (∀c ∈ S .∀c′ ∈ S ′.c C c′)

• The conflict relation between two moves is defined by m ˇA m′ if ((m C m′)⇒ (label(v∩

v′) = cells)), where m = (α, v, S ) and m′ = (α′, v′, S ′).

A move (α, v, S ) answers the query α with the value v, and brings forth S as new questions.

We will expose the intuitions behind this definition below. However, to start, it is important to

notice that (MA,≤A,ˇA) is almost an event-structure, but not quite. To understand why, let us

consider the dialogue game > ⊗ ¬>, displayed below.
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α

v1

γ β

v2

S B

m1 −m2

m3

Figure 4.7: Dialogue game > ⊗ ¬>

Let us pick two initial moves m1 = (α, v1, {in1(c1), in2(c2)}) and m2 =

(α, v1, {in1(c′1), in2(c2)} such that c1 , c′1. Finally, we consider a third move m3 =

{(in2(c2), v2, {c3}). Then we have m1 ˇ m2 as they are not compatible for equality since

in1(c′1) , in1(c1). On the other hand m1 ` m3 and m2 ` m3. So m1 is compatible with m3

but m1 ˇ m2 and m2 ≤ m3. So the conflict relation does not satisfy the necessary axiom to form

an event structure.

So we turn this into an event structure by listing the moves that happen. This way, we obtain

a tree event structure.

Definition 4.37. Given a dialogue game A, and its associated set of moves (MA,≤A,ˇA), we

define the event structure Event(A) = (|EA|,≤A,ˇA) by overloading the notations ≤A, ˇA as

follows:

• A nominal event e ∈ EA is a list m1.m2. ... .mn where mi ∈ MA, m1 ` m2 ` ... ` mn, and

m1 is an initial move. We write peq for mn.

• Two events are compatible for equality if their moves are:

e1 = m1. ... .mn C e2 = n1. ... nk if ∀i ≤ n, k.mi C ni.

• Two events are in conflict e ˇ e′ if (e C e′)⇒ peq ˇ pe′q.
• As expected, e ≤ e′ if e is a prefix of e′.

Note that, as expected, e ' e′ ∧ e C e′ ⇒ e = e′. Let us remind that as the dialogue

game is a structured tree, every node encodes the nodes that happened before. Therefore, if

S , S ′ , ∅. S C S ′ ⇒ (v C v′ ∧ α C α′). However, it might be the case that S , S ′ = ∅, and that

is why one needs to add v C v′ to define properly this relation for moves. Note that two initial

moves that have not the same initial cells are in conflict, as they are not compatible for equality.

Therefore, each position is “rooted” in one single cell.

The underlying idea behind the definition of ˇA is that only one value can fill a cell. For

instance, when defining the interpretation ⊕ of two formulas, the two have same initial set of
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cells. Therefore, a position can only explore either the left or the right hand side of the ⊕, but

not both, otherwise, in such a position, the initial cell would justify two values. On the other

hand, it can explore both sides of a ⊗.

The relation of compatibility for equality C is designed in order to exclude moves that are

almost equivalent. For instance, let us consider the following structure:

α

vA

inl(α) inr(β)

Then the two moves m1 = (α, v, {inl(β), inr(β)}) and m2 = (α, v, {inl(β), inr(γ)}) are not equiv-

alent. However, they morally correspond to the same “move”, from an abstract point of view.

The relation C that we picked enforces that these two moves are not compatible for equality.

That is, ¬(m1 C m2) and consequently m1 ˇ m2.

Proposition 4.38. The triple Event(A) is a nominal structured tree event structure.

Proof. The only property we need to check is the one related to the the conflict relation. Let

e, e′ such that e ˇ e′ and e′ ≤ e′′. Then in the case where e C e′′, it entails that, writing peq =

(α, v, S ) (and similarly for e′, e′′), v∩v′′ = v∩v′ and therefore label(v∩v′′) = label(v∩v′) = cells,

thus e′′ ˇ e. In the case where ¬(e C e′) then ¬(e C e′′) and therefore e ˇ e′′ as well.

Furthermore, if e ' e′ and ¬(e = e′), then ¬(e C e′), which entails e ˇ e′ as expected.

Therefore, the event structure is linear. �

Therefore, the positions of Event(A) form a prime algebraic domain. We denote it

(Pos(A),vA,⊥A). Furthermore, let us note that the polarity function extends to the event struc-

ture. Given peq = m = (α, v, S ) , wet set:

λ(e) = λ(m) = λ(v) = λ(α)

leading to a polarised event structure.

Lemma 4.39. In a dialogue game, two different initial events are incompatible.

Proof. If two initial events are compatible for equality, for them to be different means they will

be rooted at the same initial cell and pick each a different value. But then the intersection of

these values will be an initial cell. �

One can notice that these games are actually fairly close to the nominal games from [31],

where a move was also defined as a triple whose first and final element were names. However,
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this time, because of the linearity, we restrict the amount of threads that can depart from a move.

The positions of the dialogue game A can be seen as (not-equivariant) subtrees of A, subject to

some additional properties, such as, the leaves of the sub-tree can be values only if they do not

justify cells in the original tree.

For technical purposes, we extend the relation C to positions: pC q if ∀e ∈ p,∀e′ ∈ q.e C e′.

In particular, p ' q ∧ p C q⇒ p = q. Let us note that two non empty compatible positions in a

dialogue game are rooted at the same cell. That is, their root cells have the same name. Finally,

as expected, p ↑ q⇒ p C q.

4.5.3 On moves and events

Despite the fact that the set of moves, together with its associated structure, does not form an

event structure, it nevertheless seems simpler to work with moves rather than events in the form

of lists. For instance, let us consider two positions p, q such that there exists an event e, p = q]e.

Then writing e = m1..mn.mn+1, the event e′ = m1...mn is in q, otherwise the position q would not

be downward closed. So, the additional data that p has compared to q is precisely peq = mn+1.

In that case, we write q = p ] {mn+1}, to highlight the move. Similarly, a position p is perfectly

described by the set of moves that happen in it, that is, by the set {peq | e ∈ p}. In that case,

we write m ∈ p as abuse of notation for, formally, ∃e ∈ p.m = peq. Furthermore, given two

positions p, p′ then p t p′ = {m | m ∈ p ∨m ∈ p′} and p u p′ = {m | m ∈ p ∧m ∈ p′}. Hence,

when dealing with positions, it is enough to deal with moves. This is sum up in the following

proposition.

Proposition 4.40. A position is perfectly defined by the set {peq | e ∈ p}.

In the sequel, we will establish some simple properties relating relations between moves and

relation between events.

Lemma 4.41. Given two moves m = (α, v, S ) and (α′, v′, S ′) = m′ the three properties are

equivalent:

• m ≤ m′.

• m C m′ and v ≤ v′.

• ∃e, e′ such that peq = m, pe′q = m′ and e ≤ e′.

Recalling that ≤ is the closure of the justifying relation ` under transitivity and reflexivity,

we simply have, for the proof, to consider a chain leading up to m, and see that we can extend it

to m′.

We remind that two moves m,m′ are compatible, written m ↑ m′ if they are not in conflict

¬(m ˇ m′). This translates into m ↑ m′ ⇔ m C m′ ∧ label(v ∩ v′) = value where v, v′ are the

values of m,m′ respectively.

Lemma 4.42. • m ↑ m′ ⇔ ∃e, e′ such that peq = m, pe′q = m′ and e ↑ e′.
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• m ˇ m′ ⇔ ∀e, e′.(peq = m ∧ pe′q = m′)⇒ e ˇ e′.

• m C m′ ⇔ ∃e, e′.peq = m. pe′q = m′ ∧ e C e′.

Proof. We consider two events e, e′ such that peq = m and pe′q = m′, and such that all cells

c that correspond to nodes that are not below m or m′, are such that c#m,m′. Then, let us

consider two cells c, c′ belonging to some moves in e, e′ such that c ' c′ ∧ c , c′. Then, this

cell does not correspond to a node below m,m′, otherwise they would be compatible. Hence we

can change the name of, for instance, c with a permutation π, such that it does not affect its last

move pπ · eq = m. �

Definition 4.43. • In an event structure, two events e, e′ are independent if they are com-

patible e ↑ e′ and not related by the partial order ¬((e ≤ e′) ∨ (e′ ≤ e)).

• By analogy, we say two moves m,m′ are independent, if m ↑ m′ ∧ (¬((m ≤ m′) ∨ (m′ ≤

m)).

Lemma 4.44. m,m′ are independent if and only if there exists e, e′ such that

m = peq,m′ = pe′q, and the events e, e′ are independent.

Proof. If there exists two events e, e′ such that peq = m, peq′ = m′, and e ↑ e′, then it implies

that m ↑ m′, and, in particular m C m′. As e is not a sublist of e′, and neither the other way

around, it implies that ¬(v ≤ v′)) ∧ ¬(v′ ≤ v), where v, v′ are the values appearing in m,m′.

Therefore, the moves are not comparable with ≤. The reverse direction is similar. �

Given a move m = (α, v, S ), we write pmq for (pαq, pvq, pS q), where pS q = {pcq | c ∈ S }.

The events e = m1...mn can be seen as e ' pm1q...pmnq, since the additional information that

ek+1 = m1...mk+1 has compared to ek is fully encoded in pmk+1q.

As a conclusion of this Section, when it comes to positions and operations on them, one

can work with moves instead of events. Furthermore, for a move m, we can often refer to it as

pmq = (α, pvq, {β1, ..., βn}), not mentioning the nodes happening before in the tree.

4.5.4 Lifting the operations to events and positions

The goal of this section is to lift the operations on dialogue games to event structures and po-

sitions. That is, we would like to characterise the set of positions corresponding to denotations

of formulas of tensorial logic. We deal with the three connectives ⊕,⊗,¬, but also tackle the

. operation. Finally, we introduce the notion of transverse positions on A . B, and prove that

transverse positions project well on A and B.

First, let us note that when we describe an event structure coming from a dialogue game,

we only need to specify the set |E|. Indeed, the partial order relation is the prefix relation, and

the conflict relation is structurally defined in the definition of dialogue game. Given a dialogue
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game A, we write Event(A) for its associated event structure. First, we give a description of the

events and positions of our building blocks, the dialogue games 0, 1 and X.

• Event(0) = ∅ and therefore Pos(0) = ⊥.

• Event(1) = {m | pmq = (α, •, ∅) α ∈ Acells} and therefore Pos(1) = ⊥ ] Event(1)

• Event(X) = {m | pmq = (α, •, {χ}), α ∈ Acells, χ ∈ AX} and therefore

Pos(X) = {⊥} ] Event(X).

We recall that Pos∗(A) denotes the set of non-empty positions of A. Similarly, given a set of

positions X ⊆ Pos(A), we define X∗ ⊆ Pos∗(A) for X \ {⊥}.

We start with the operation ⊕. We establish that Event(A ⊕ B) ' Event(A) ⊕ Event(B), and

give a description of the isomorphism.

• An event e ' pm1q. ... .pmnq of Event(A ⊕ B) where pm1q = (α, inl(v), S ) is sent to

e′ ' inl(pm′1q).pm2q. ... .pm′nq , where pm′1q = (α, v, S ).

• An event e ' pm1q. ... .pmnq of Event(A ⊕ B) where pm1q = (α, inr(v), S ) is sent to

e′ ' inr(pm′1q).pm2q. ... .pmnq where pm′1q = (α, v, S )

• Furthermore, given an event e = m1...mn, and e′ = n1...np, such that pm1q = (α, inl(•), S )

and pn1q = (α, inr(•), S ′), then if e C e′, calling v, v′ the values of m1, n1 respectively,

v ∩ v′ = α and hence label(v ∩ v′) = cell. Therefore, e ˇ e′. Thus, we can prove that

ˇA⊕B' inl(ˇA) ] inr(ˇB) ] inl(Event(A)) × inr(Event(B)) ] inr(Event(B)) × inl(Event(A)).

This is obviously a bijection. As a result:

Pos(A ⊕ B) ' inl(Pos(A)) ] inr(Pos(B))

We now tackle the ⊗ case. We prove that Event(A ⊗ B) ' Event(A) ⊗ AcellsEvent(B), where

the projections are:

$1 : Event(A)→ Acells : ((α,m, S ).m2. ... .mn) 7→ α

$′1 : Event(B)→ Acells : ((α,m, S ).m2. ... .mn) 7→ α

To simplify, we label both projections with the same name $1, since they act similarly.

• Let us consider an initial event e of Event(A ⊗ B), then to e corresponds an initial move,

that is, an element of the form (α, (v1, v2), inl(S 1) ] inr(S 2)). Thus e ' e1 ×Acells e2, where

e1 = (α, v1, S 1) ∈ Event(A) and e2 = (α, v2, S 2). So IA⊗B ' IA ×Acells IB.

• Given an event e ' pm1q.pm2q. ... .pmnq of Event(A⊗B), such that the cell α that justifies

m2 is of the shape inl(...), then e ' (pi1q ×Acells pi2q).inl(pm2q). ... .pmnq. Similarly, in

the case where the cell that justifies m2 is of the shape inr(...), then e ' (pi1q ×Acells

pi2q).inr(pm2q). ... .pmnq.

• This isomorphism preserves the ≤,ˇ structure. This comes from the fact that in a dialogue

game, two initial moves that are different are in conflict. Therefore, the conflict can only

come from the projections on A and B.
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Consequently, we get:

Pos(A ⊗ B) ' Pos(A) ⊗ AcellsPos(B).

Therefore, given p ∈ Pos(A ⊗ B), we can define p � A ∈ Pos(A) and p � B ∈ Pos(B).

Finally, we describe the event structure of Event(¬A), in function of Event(>) and Event(A).

We remind that Event(>) = {(α, v1, β) | α, β ∈ Acells}. Given pmq = (α, v1, β) an initial move,

we set $2(m) = β, and given e = (α, v2, c).m2. ... .mn ∈ Event(A), we set $1(e) = α as before.

We define the following operation:

Event(>) ×Acells Event(A) = {(i>, eA), eA = iA.m2. ... .mn ∧$2(i>) = $1(iA)}

where i> ∈ Event(>) and eA ∈ Event(A). Then Event(¬A) = Event(>) ] (Event(>) ×Acells

Event(A)). Therefore, writing Pos∗ for the non-empty positions, we have:

Pos(¬A) = Pos(>) ] (Pos∗(>) ×Acells Pos∗(A))

where the functions $1, $2 have been extended to non-empty positions straightforwardly as

before.

In this last paragraph, we interest ourselves in the structure of A . B = A⊗¬B. We start with

the events.

Event(A . B) = Event(A) ⊗ AcellsEvent(¬B)

= Event(A) ⊗ Acells(Event(>) ] Event(>) ×Acells Event(B))

This allows us to define the set of positions:

Pos(A . B) = Pos(A) ⊗ Acells(Pos(>) ] (Pos∗(>) ×Acells Pos∗(B))).

Definition 4.45. A position p of A . B is transverse if it is not of the form (eA, iB) where ea ∈ ĪA

and iB ∈ I¬B = Event(>). We denote Trans(A.B) the subset of transverse positions of Pos(A.B).

We would like to characterise the transverse positions of A . B = A ⊗ ¬B. We have the

following equations, where we write p = i.p′ to indicate that the unique initial move in the

position p is i:

Trans(A . B) ' Pos(A) ⊗ Acells(Pos∗(>) ×Acells Pos∗(B))

' {⊥} ] {((α, v, S ).p, (α, •, β).(β, v, S ′).p′) | (α, v, S ).p ∈ Pos(A), (β, v, S ′).p′ ∈ Pos(B)}

' {⊥} ] {((α, v, S ).p, (β, v, S ′).p′) | (α, v, S ).p ∈ Pos(A), (β, v, S ′).p′ ∈ Pos(B)}

= Pos(A) ⊗ Pos(B)
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Therefore, given x a transverse position of A . B, one can talk of x � A and x � B. Further-

more, given two positions of x ∈ Pos(A) and y ∈ Pos(B), such that x , ⊥A ⇔ y , ⊥B, one can

form the position x . y ∈ Trans(A . B).

4.5.5 A quick note on the removal of moves

In order to later define composition, given a position in x ∈ Pos(A .B .C), we have to be able to

speak of its A . B part, just as its B .C part, that is, define projections. Furthermore, if we want

to look only at its external part, that is, its part in A . C we have to forget its moves that belong

in B.

Thanks to the isomorphisms described above, these projections are well-defined. On the

other hand, in [30], where pointers are encoded through names just as we do here, projections

are defined through erasure of moves. However, this does not translate well in our setting. We

explain here why such a procedure fails. We denote by � the process of removing.

For instance, suppose that we try to remove the move m, as pictured below, where T1 has no

moves above, but T2 has.

α

v

βS 1 S 2

w

T2T1

m

⇒

α

v

S 1 S 2
T2

Suppose that the α in the above graph is a root, and consider the position (α, v, {S 1, β, S 2}).

It would be natural to imagine that we could consider its projection into the new arena where

we have removed m. In order to do that, we need to replace the β in it with a new set of cells T2.

But what names shall we choose for T2 ? There is no natural choice, hence the projection of a

position does not lead to a position, but to a set of positions.

4.5.6 Projecting positions into lists

The positions and arenas are designed with tensorial logic in mind. However, at the end we

would like to remove (by a quotient) the dynamic and project strategies onto an adequate model

of linear logic. That is, given a formula F of linear logic, and its translation (F)F in tensorial

logic (where we remind that (.)F denotes the focalised translation, defined in 2.4), we would

like to project the denotation (F)F onto a denotation of F. As already explained, the denotation
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targeted is the category of separated polarised nominal relations defined in 3.4.3, hence the

denotation of a formula would be a nominal set of polarised separated lists. We recall that (.)I is

the reverse translation from formulas, and proofs, of tensorial logic into formulas, and proofs,

of linear logic. It is defined such that ((A)F)I = A for any formula of A of linear logic.

Given a maximal position, seen as a subtree, we get its associated list by looking at its leaves.

A position p ∈ Pos(A) is maximal if there are no positions p′ ∈ Pos(A) such that p′ ≥ p. We

write PosMax(A) for the set of maximal positions of A.

Given F a formula of tensorial logic, we define

projF : PosMax(~F�)→ NomLinRelPol((F)I)
∧

by induction on F. projF sends a maximal

position to a list in the required set. However, this list is not necessarily separated nor linear.

We will later need to check that the lists arising from the projecting positions of the strategies

indeed project to relevant elements, that is, to nominal linear polarised relations. proj is a partial

function. Indeed, untyped cells correspond to the elements > or 0, denoted by the empty-set in

the category of polarised linear relations.

• If F = X then PosMax(~X�) = {(α, •, χ) | α ∈ Acells, χ ∈ AX}, then:

proj(α, •, χ) = (χ, 1)

This is in ~(X)I�NomLinRelPol

∧
, since (X)I = X.

• If F = 1 then PosMax(~I�) = {(α, •, ∅) | α ∈ Acells}, and:

proj(α, •, ∅) = (•, 1).

This is in ~(I)I�NomLinRelPol

∧
, since (I)I = I.

• If F = 0 then PosMax(~0�) = {⊥}, and we set:

proj(⊥) = ∅.

that is, it proj is undefined for ⊥. This is consistent since ~(0)I�NomLinRelPol

∧
= ∅.

• if F = F1 ⊗ F2 then PosMax(~F1 ⊗ F2�) = PosMax(F1) ⊗ AcellsPosMax(F2). So given

x ∈ PosMax(~F1⊗F2�), then x ' (x1, x2) ∈ PosMax(F1)⊗AcellsPosMax(F2). Then either

(x1, x2) = (⊥(F1),⊥(F2)), in which case it means either one of F1, F2 is 0 (suppose wlog

F1), and (F1 ⊗ F2)I = 0 ⊗ (F2)I . Either none of them is ⊥. In both case we have:

proj((x1, x2)) = (proj(x1), proj(x2))

This indeed belongs in ~(F1 ⊗ F2)I�NomLinRelPol

∧
as

~(F1 ⊗ F2)I�NomLinRelPol

∧
= ~(F1)I�NomLinRelPol

∧
× ~(F2)I�NomLinRelPol

∧
.
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• if F = F1 ⊕ F2 then PosMax(~F1 ⊕ F2�) ' inl(PosMax(F1)) ] inr(PosMax(F2)). Then:

x ' inl(xF1) ⇒ proj(x) = inl(proj(xF1))

x ' inr(xF2) ⇒ proj(x) = inr(proj(xF2))

In both cases these belong in ~(F1 ⊕ F2)I�NomLinRelPol

∧
as

~(F1 ⊕ F2)I�NomLinRelPol

∧
= inl(~(F1)I�NomLinRelPol

∧
] inr(~(F2)I�NomLinRelPol)
∧

, since

(F1 ⊕ F2)I = (F1)I ⊕ (F2)I .

• If F = ¬F1, then PosMax(~F�) ' Pos∗(¬) ×Acells PosMax(F1). Then given x ' i>.e,

where e ∈ PosMax(F1), we have:

proj(x) = proj(e)⊥.

Then as (¬F)I = ((F)I)⊥, we get proj(x) ∈ ~(F)I�NomLinRelPol

∧
.

The projection function could also has been defined by looking at a maximal position as a

sub-tree of the initial dialogue game. We give a brief example. Let us consider a position of a

dialogue game of type T = A ⊕ B, such that the position is on the left resolution A, and such

that A can be decomposed as T1 ⊗ U ⊗ I ⊗ T2 ⊗ T3 ⊗ I ⊗ V ⊗W. We examine such a position

in the figure below, where γ ∈ AU , ε ∈ AV , ζ ∈ AW , where AU = AX if U = X ∈ TVar, and

AU = Acells if U = ¬0 (and similarly for V,W)

proj( )

α

inl(•)

β γ δ η ε ζ

T1 T2 T3

= inl(proj(T1).proj(γ). • proj(T2).proj(T3). • .proj(ε).proj(ζ),

Furthermore, proj(γ) = γ if γ ∈ AT , and proj(γ) is undefined if γ ∈ Acells (and similarly for ε, ζ).

4.6 Nominal asynchronous games

4.6.1 On legal positions

We could straight away define a graph from the event structure having as nodes the positions

of the event structures, and edges the events, or moves. However, this graph is not totally well-

fitted for our setting. Indeed, in it, two untyped cells present in a position could share the same

name, which is an unwanted configuration. This would correspond to a term such that the same

name would appear under a λ-abstraction in two different places. To prevent that, we restrict the
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set of positions. We write v#cellsw if (ν(v) ∩ ν(w)) ∩ Acells = ∅. Given a set S of vertices of a

structured tree, we write pS q for the set {pvq | v ∈ S }.

Definition 4.46. • A move m = (α, v, S ) is legal if the untyped cells in it have different

names: ∀c, c′ ∈ pS q; c#cellsc′ and furthermore α#pS q.

• A position is legal if all the moves in it are, and furthermore, given m,m′ ∈ p, such that

m = (α, v, S ),m′ = (α′, v′, S ′), then m , m′ ⇒ pS q#cellspS ′q.

In the sequel we will only consider legal positions. That is, if we consider a position p or

a move m, we automatically assume that they are legal. Using the general domain of positions

might prove useful for some proofs, but then we will specify it. We write Legal(A) for the set

of legal positions of A. Working with legal positions also allows us to exclude some unwanted

behaviour from our strategies. Indeed, a strategy could react differently if some moves by oppo-

nent would introduce two equal names. However, this does not correspond to any proof. Names

are simply here to represent the different resources, or hypotheses, available at a certain point in

the proof, and equality between names does not make sense in this context.

The restriction to legal positions might be troublesome when defining union of positions.

That is, one might find two positions p, q ∈ Legal(A), p ↑ q but such that p t q < Legal(A).

Indeed, the union might not be legal if the two positions use the same name for different cells.

To ensure that two positions are name compatible for union, we introduce a “post-compatible”

relation Cpost, that selects those legal positions whose joints are legal.

• m Cpost m′ if m C m′ ∧ ((m , m′) ⇒ pS q#cellspS ′q) where m = (α, v, S ) and

m′ = (α′, v′, S ′)

• p Cpost q if ∀m ∈ p,∀m′ ∈ q. m Cpost m′.

As expected, p, q ∈ Legal(A), p Cpost q ⇒ (p C q ∧ ( p ↑ q ⇒ p t q ∈ Legal(A))). It is

worth noticing that if p, q ∈ Legal(A), and p ↑ q, then there is a permutation π of Acells such that

p Cpost π ·q, and {p, π ·q} is bounded in Legal(A). This is proven below. Stated otherwise, if two

legal positions are compatible in Legal(A), then it is possible to change their untyped names

in such a way such that they remain compatible and their join becomes legal. We introduce

the following terminology: we say that a move m brings a name a if, writing (α, v, S ) then

a ∈ ν(pS q). Similarly, we say that an event e brings a name a if peq brings a.

Lemma 4.47. Let p, q be two legal positions of A such that p C q. Then there exists p′ ' p

such that p′ Cpost q.

Proof. We split the names of p ∩ Acells into two parts, calling them p1, p2. We set p1 = ν(p ∩

q) ∩ Acells, and p2 = (ν(p) ∩ Acells) \ p1. As p is legal, p2 corresponds precisely to the set of

cell-names brought by the moves in p \ q, seeing p, q as set of moves. Let π a permutation such

that ν(π) ⊆ p2 ∪ z where z # q, p1, and such that ∀a ∈ p2. π · a ∈ z. Then π · p2 # q and

by definition of π, π · p1 = p1 as ν(p1) ⊆ ν(q). Furthermore, legal positions are stable under

permutation. Therefore, π · p is legal, and π · p Cpost q. �
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Remark 4.48. All the moves within a legal position are automatically post-compatible to one-

another.

Typed names are dealt with differently than untyped names. Indeed, the typed names will be

repeated in the play, to incorporate the fact that the strategy will establish axiom links between

literals of opposite polarities. Therefore, it does not make sense to impose a condition similar as

legality for typed names. To cope with the possibility that repetitions might occur, we will work

up to closure under typed substitutions. ΞT denotes the set of strict substitutions of AT , called

typed substitutions . We therefore define a new relation, written �, called congruence.

x � y ⇔ ∃π ∈ Perm(Acells), e ∈ ΞT . π · (e · x) = y.

We create two new relations Ccells and Cpost, cell, that are the restrictions of C, Cpost to cells that

are untyped.

• m = (α, v, S ) Ccells m′ = (α′, v′, S ′) if α ' α ⇒ α = α′ and ∀c ∈ S ,∀c′ ∈ S ′.ν(c) ⊆

Acells, ν(c′) ⊆ Acells ⇒ c C c′.

• p Ccells q if ∀m ∈ p,∀m′ ∈ q.m Ccells m′

• e Ccellse′ if e↓ Ccells e′↓.

• m Cpost, cell m′ if m Ccells m′ and writing m = (α, v, S ), m′ = (α′, v′, S ′), then m , m′ ⇒

pS q#cellspS ′q.

• p Cpost, cell q if ∀m ∈ p.∀m′ ∈ q. m Cpost, cell n,

• e Cpost, cell e′ if e↓ Cpost, cell e′↓.

The extend straightforwardly to plays. Two plays s : ? � x, t : ? � y satisfy s Ccells t if

x Ccells y. We prove the following properties:

Proposition 4.49. • If p ↑ q and p Cpost, cell q then p Cpost q.

• If m � n and m Cpost, cell n then m Cpost n.

Proof. The first property is straightforward, since p ↑ q entails p C q. The second property

follows from the fact that we consider m, n legal. Therefore, m � n implies that they are not,

essentially, the same move with different names. Hence, we automatically got m C n. �

In the case where we forgot the condition p ↑ q, then it becomes harder to create elements

that become compatible.Finally, we prove that given two elements, we can use permutations to

make them post compatible regarding untyped cells, and use substitutions to make them post

compatible. We rely on the lemma 4.50.

Lemma 4.50. Let f be a bijection between two finite subsets of A. Then f can be completed

into a permutation of A of finite support.

Proof. Let us name X,Y the two subsets such that f sends X onto Y . As f is a bijection, the

cardinality of X and Y is the same, and so is the cardinal of Y \ (X ∩ Y) and X \ (X ∩ Y). So



148 CHAPTER 4. NOMINAL STRUCTURES FOR ASYNCHRONOUS GAMES

consider g a function such that g : Y \ (X ∩ Y) → X \ (X ∩ Y) is a bijection. The union (in the

sense union of graph) of f and g hence leads to a bijection X ∪ Y → X ∪ Y . We can simply

complete it into a full permutation π of A by letting π acting like the identity outside X ∪ Y .

Furthermore, as X and Y are finite, π has finite support. �

At last, we present the last property that we will need regarding the Cpost relation.

Proposition 4.51. • Let p, q be two legal positions. Then there exists p′, q′ such that p′ �

p, q′ � q and p′ Cpost q′.

• Let p, q be two legal positions. Then there exists a permutation π of Acells such that

π · p Cpost, cell q.

Given a move m = (α, v, S ) we write pS (m)q for pS q.

Proof. We prove the two points at once. Let p1 = {m | m ∈ p,∃m′ ∈ y.m � m′}. As p is

legal, every event in it brings different untyped names, distinct from the initial cell of p, and

similarly for q. That is, given m1,m2 ∈ p.m1 , m2 ⇒ pS (m1)q#cellspS (m2)q. Let us note

that either the initial move of p is in p1, or it is empty. In the case where it is not empty,

ν(p1) = {α}
⊎

m∈p1 ν(pS (m1)q), where α is the name of the initial cell of p. We can define a

function f : ν(p1) ∩ Acells → Acells such that for all m ∈ p1, given π exhibiting the equivalence

π · pS (m)q ∩ Acells = pS (m′)q ∩ Acells from the definition of p1, f � ν(pS (m)q) ∩ Acells = π �

ν(pS (m)q) ∩ Acells. We complete it into f (α) = β, where β is the name of the initial cell of

p2. Furthermore, as y is legal, each m′ in the definition p1 brings different names as well, and

and hence f establishes a bijection between ν(p1) ∩ Acells and a subset of Acells. Therefore, by

applying the above lemma, we get a permutation π such that π · p Ccells q. Furthermore, doing

the same reasoning as in the proof of 4.47, we can find a π′ such that π′ · (π · p) Cpost, cell q.

As a consequence of the axioms of group actions (π′ ◦ π) · p Cpost, cell q. Now, let us take two

typed substitutions e1, e1, such that, for all X ∈ TVar, e1, e2 send all names of p, q of type X to a

unique name cX ∈ AX . Then e1 · (π′ ◦ π) · p Cpost e2 · q. �

4.6.2 Nominal asynchronous games

Finally, we obtain a new graph from Event(A) by seeing its set of legal positions as a graph.

Definition 4.52. Given a dialogue game A, and its associated event structure Event(A), the

nominal graph graph(A) is defined as:

• having vertices the legal positions of A.

• having edges x
e
−→ y every time there is a move m such that y = x ] {m}. In that case, we

write peq = m.

Note that then there is a slight difference between moves and edges. That is, there might be

two legal positions x, y such that x , y, and a single move m such that x ] m, y ] m are legal
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positions. That is, a single move can correspond to several edges. However, given a position x

and a move m, such that x ] m is legal, then m denotes a single edge. Therefore, we can write

x
m
−→ y. Therefore, we might speak about moves to refer to edges of the graph, and this should

be clear from the context. Given a path s, we will write m ∈ s for e ∈ s, peq = m.

In the graph(A) we can establish some basic definitions about paths.

Definition 4.53. A path s is legal if it joins legal positions,

x
s
� y and x, y ∈ Legal(A).

and alternating if it alternates between O − P move:

vn
m1
−−→ vn+1

m2
−−→ vn+2 ⇒ λ(m1) = −λ(m2)

Proposition 4.54. A path s is legal if and only if it starts at a legal position x, and satisfies:

• ∀m ∈ s, m is legal and pS (m)q#cellsx.

• ∀m.m′ ∈ S .pS (m)q#cellspS (m′)q

The proof is straightforward.

Definition 4.55. A play in a simple dialogue game is a path in its graph such that its starting

node is the empty position, written ?.

We denote by Play(A) the set of plays of the graph graph(A). We furthermore write

Legal(Play(A)) for the set of legal plays, and Alt(Play(A)) the set of alternating plays.

Proposition 4.56. A path s = m1.m2. ... .mn is a play if:

• m1 is a initial move and the unique one of the sequence.

• for every i ∈ [1, n], there exists a sub-sequence of s written mα.mβ. ...mγ.mi such that

mα ` mβ ` ... ` mγ ` mi.

• Each mi is unique.

Proof. The proof is done by induction on the length of s. If s is of size 1, then s = m1, m1

corresponds to an initial edge, and thus indeed to a path from the root. So let us suppose that

s≤n (the restriction of s to its nth first moves) reach a position p. Then by the third point, mn+1

does not appear in p. By the second point, there is a move of p that justifies mn+1. Therefore,

p ]mn+1 is a position, and s is a play. �

Finally, we say that a legal position is balanced if it can be reached by an alternating play.

We furthermore would like to endow our graph with a notion of homotopy between paths,

to emphasise when their differences are bureaucracy. A prominent feature of innocence is that

two paths that are co-initial and co-final, that is, paths having same initial and final positions,
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are homotopic. This might not be always the case. For instance, in the case of a programming

language with control, the order in which the arguments are interrogated matters. Therefore the

two paths that correspond to two programs interrogating the two arguments in different orders

are not homotopic. We introduce nominal asynchronous graphs below.

Definition 4.57. A nominal asynchronous graph is a pair (G, �) consisting of a nominal graph

G together with permutation tiles � of between co-initial and co-final paths of length two. We

furthermore require that the homotopy relation is nominal: f � g ⇔ π( f ) � π(g).

From these tiles, we can define a notion of homotopy between paths in the graph.

Definition 4.58. We establish the homotopy relation, written ∼, between co-initial and co-

final directed paths, as being the symmetric, reflexive and transitive closure of the intermediate

relation �̃, where �̃ is the binary relation between co-initial and co-final paths of length greater

than two defined as follows:

u.s′.v �̃ u.t′.v if and only if s′ � t′.

where s′, t′ are paths of length two.

So, given our graph graph(A), we add to it a relation � such that it becomes a nominal

asynchronous graph. We define � to be such that every two moves that are independent have a

tile. Or, more formally, we establish the diamond relation between edges e, e′ such that peq =

m, pe′q = m′ and m,m′ are independent.

Definition 4.59. We define � as the smallest relation between every co-initial and co-final paths

of length 2. That is, f � g if:

f : x
m
−→ y

m′
−−→ z � g : x

m′
−−→ y′

m
−→ z.

We denote this permutation property by a tile in the graph :

x

y y’

z

m m′

m′ m

∼

Definition 4.60. We say that two moves are strongly compatible, written m ⇑ m′ if there is

a tile that permutes them. That is, there is one legal position x, such that x ] m ∈ Legal(A),

x ]m′ ∈ Legal(A), x ]m ]m′ = x ]m′ ]m ∈ Legal(A).

We present a characterisation of strong compatibility in our framework. Basically, two legal

moves are strongly compatible if they are independent, and their cell names are different.
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Lemma 4.61. Given two moves m,m′ of MA, if ¬(m ≤ m′) ∧ ¬(m′ ≤ m) ∧ m ↑ m′ and m,m′

are post-compatible m Cpost m′ then m ⇑ m′.

Proof. Let e, e′ such that peq = m, pe′q = m′, e Cpost e′ ∧ e ↑ e′. Then let f = e \ m, and

f ′ = e′ \ m′ . Then f Cpost f ′. So ( f↓) t ( f ′↓) is a legal position. As ¬(m ≤ m′), m < ( f ′↓).

Similarly, m′ < ( f↓). Thus, by definition, (( f↓) t ( f ′↓)) ] m is a position, and similarly for

(( f↓) t ( f ′ ↓)) ]m′, just as p = ( f↓) t ( f ′↓) ]m ]m′. Furthermore, p = (e↓) t (e′↓), and, as

e ↑ e′, e Cpost e′, it entails p ∈ Legal(A). Hence, we have a tile permuting those two moves. �

We define Async(A) as the asynchronous graph whose graph is Graph(A) and whose tiles

are the relations � defined above. Given the fact that our graph is coming from an event structure,

we can establish that two paths are homotopic in it if and only if they are co-initial and co-final.

For completeness sake, one can find the proof below. Consequently, a path will be uniquely

determined, up to homotopy equivalence, by its initial and final positions, and hence by its

set of moves. In particular, this implies that the homotopy relations is entirely defined by the

relation ⇑ on moves. That is, given two co-initial and co-final paths of length four, e.e′ : x� y

and f.f′ : x � y, then setting m = peq = pf′q and m′ = pe′q.pf′q, there is a tile between the two

paths if and only if m ⇑ m′.

Proposition 4.62. In Legal(A), s ∼ t if and only if they are co-initial and co-final.

Proof. Let s, t : p � q. LetM = p \ q, where p, q are being seen as two sets of moves. Then

s, t correspond to two total orderings of the events ofM. The proof is done by induction on the

length of s, t (note that they have equal length). If the length is null, then the two paths are equal

and hence homotopic. Let s = m1....mk and t = n1...nk. Then there is a j such that n j = m1. If

j = 1 then, writing p′ for the position such that p
m1
−−→ p′, we can apply the induction hypothesis

on the paths m2...mk and n2...nk; p′ � q. If j , 1, then we can apply a sequence of homotopy

steps n j−1.n j � n j−1.n j, since n j−1, n j are not related by the partial order, are compatible, and

furthermore are such that they lead to legal positions. We then hit a path t′ : p � q that is

homotopic to t and such that n j appears as the first move : t′ = n j.n1...n j−1.n j+1..nk. At this

stage, we do exactly as above, considering the position p′, the paths p′ � q and applying the

induction hypothesis. �

Similarly, the following proposition ensues.

Proposition 4.63. Let m1,m2 two moves such that m1,m2 appear in different orders in some

paths. Then m1 ⇑ m2.

Definition 4.64. Given a dialogue game A, we will speak of the arena A for the asynchronous

graph Async(A).
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4.7 Asynchronous Böhm graph

In this last section, we will examine how the Böhm trees produce asynchronous graphs, and how

these ones relate to the former arenas. This follows closely the steps of [64], simply examining

it through a nominal perspective. This section is not needed for the next chapters. Its primary

use is to introduce the strategies of the next section, how they relate to terms, and gives some

indication on how to deal with atomic types. Therefore, we will stay at an informal level.

Just as we have defined some asynchronous graphs starting from the dialogue games, that

were structured nominal trees, one can define asynchronous Böhm graphs from the Böhm trees

(see [64] for more on that). This is what we set out to do in this section. We furthermore notice

that these can be seen as subgraphs of the graphs coming from the dialogue games.

We start by defining a operation on asynchronous graphs. Given two asynchronous graphs

G1 = (V1, E1, �1), and G2 = (V2, E2, �2) we define the asynchronous graph G1 ⊗ G2 as follows:

• VG1⊗G2 = {v1 ⊗ v2 | v1 ∈ V1, v2 ∈ V2}.

• EG1⊗G2 ' V1 × E2 ] E1 × V2. That is, it has edges v1 ⊗ v2
e
−→ v′1 ⊗ v2, whenever there is an

edge v1
e
−→ v′1 in E1, and v1 ⊗ v2

e
−→ v1 ⊗ v′2 whenever there is an edge v2

e
−→ v′2 in E2.

• There is a tile between co-initial and co-final paths of length two in three cases:

1. Firstly, between paths u1⊗v2
e1
−→ v1⊗v2

e2
−→ w1⊗v2, and u1⊗v2

f1
−→ v′1⊗v2

f2
−→ w1⊗v2,

whenever there is a tile in G1 between the two paths: u1
e1
−→ v1

e2
−→ w1 �1 u1

f1
−→

v′1
f2
−→ w1

2. Secondly, between paths as above with the role between E1 and E2 being reversed.

3. Finally, between paths u1⊗u2
e1
−→ v1⊗u2

e2
−→ v1⊗v2, and u1⊗u2

e2
−→ u1⊗v2

e1
−→ v1⊗v2.

In this paragraph, we set out to define a way to play the Böhm tree, through an alternating

sequence of “moves”, akin to the moves coming from the dialogue games. To each Γ− Böhm

tree M of negated type T , that is, T = ¬(T1 ⊗ ... ⊗ Tn), we associate the transitional following

rooted asynchronous graph G′(M):

• Its root is labelled ΩT .

• For each transition edge ¬(x1, ..., xn) f starting from the root, there is a transition (O,ΩT →

¬(x1, ..., xn).f⊥). These are called opponent-transitions.

• If the node ¬(x1, ..., xn) f justifies l+m new Böhm trees Mi, of types (T1, ...,Tl, A1, ..., Am),

where Ti are simple non atomic types, and Ai are atomic types, then there are

edges ¬(x1, ..., xn).f⊥
P
−→ ¬(x1, ..., xn). f (ΩT1 ⊗ ... ⊗ΩTn ⊗ α1 ⊗ ... ⊗ αm), whenever they

are edges ¬(x1, ..., xn) f → ¬(x1, .., xn) f .in jαi, where αi is a initial element of Ai, and

¬(x1, ..., xn). f (ΩT1 ⊗ ... ⊗ΩTn ⊗ α1 ⊗ ... ⊗ αm) is seen as the root of G(M1)⊗ ....⊗G(Mn),

where Mi is the subtree of M of type Ti.

And finally, given a Γ-Böhm tree M of any type T = T1⊗ ...⊗Tn⊗A1...⊗Am, where each Ai

is an atomic type, and where Ti is ⊗-irreducible, we associate to it the following asynchronous

graph G(M), defined as follows:
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• Its root is f⊥
• There is a P-transitionf⊥ → (Ω1⊗...⊗Ωn⊗α1⊗....⊗αn) whenever α1, αn are initial nodes

of Mi, the subtree of M of type Ai. This node is the root of the graph G′(M1)⊗ ...⊗G′(Mn),

where Mi is the sub-graph of M of simple type Ti.

For instance, the asynchronous graph associated with the η-long Böhm tree term

¬(x,w, f , g, h).h(x ⊗¬u.(g(w ⊗¬v.( f (u ⊗ v)))))), of type ¬(X ⊗ Y ⊗ (¬(Z ⊗W) ⊗ (¬(Y ⊗¬W)) ⊗

(¬(X ⊗ ¬Z))) is presented in the figure 4.8, where we forget about the patterns to make it look

simpler.

f⊥

ΩT

P,f⊥ → ΩT

¬(x,w, f , g, h).f⊥

¬(x,w, f , g, h).h(x ⊗Ω⊥)

¬(x,w, f , g, h).h(x ⊗ ¬u.f⊥)

¬(x,w, f , g, h).h(x ⊗ ¬u.g(w,Ω⊥))

¬(x,w, f , g, h).h(x ⊗ ¬u.g(w,¬v.f⊥))

¬(x,w, f , g, h).h(x ⊗ ¬u.g(w,¬v. f (u, v)))

(O,ΩT → ¬(x,w, f , g, h).f⊥)

(P,f⊥ → h(x ⊗Ω⊥))

(O,ΩT → ¬u.f⊥)

(P,f⊥ → g(w ⊗Ω⊥))

(O,ΩT → ¬v.f⊥)

(P,f⊥ → f (u ⊗ v))

Figure 4.8: Asynchronous Graph for [¬(x,w, f , g, h).h(x ⊗ ¬u.(g(w ⊗ ¬v.( f (u ⊗ v))))))]α

More interesting is the Böhm graph associated with the term ¬(u, f ). f (u) ⊗ ¬(w ⊗ g).g(w)

of type ¬(X ⊗ ¬X) ⊗ ¬(Y ⊗ ¬Y), which is presented in figure 4.7.

The Böhm asynchronous graphs have to start with a proponent move due to the potential

presence of free variables. For instance, the Böhm asynchronous graph associated with the

{x : X}-Böhm tree coming from the term x, simply consists of the graph f⊥ → x.

4.7.1 On arenas and Böhm trees

We present in figure below 4.10 the dialogue game associated with the type: ¬(X ⊗ Y ⊗ (¬(Z ⊗

W) ⊗ (¬(Y ⊗ ¬W)) ⊗ (¬(X ⊗ ¬Z))). Forgetting the values, and putting emphasis on the moves,

it can be presented in a simpler fashion, displayed in figure 4.11.

Now the asynchronous Böhm graph associated with the α-equivalence class of the term
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f⊥

ΩT1 ⊗ΩT2

P,f⊥→ΩT1⊗ΩT2

(¬(u, f ).f⊥) ⊗ΩT2

¬(u, f ).f⊥ ⊗ ¬(w, g).f⊥

¬(u, f ). f (u) ⊗ ¬(w, g).f⊥

¬(u, f ). f (u) ⊗ ¬(w, g).g(w)

¬(u, f ). f (u) ⊗ΩT2

Ω1 ⊗ ¬(w, g).f⊥

Ω1 ⊗ ¬(w, g).g(w)

¬(u, f ).f⊥ ⊗ ¬(w, g).g(w)

O,ΩT1→¬(u, f ).f⊥

O,ΩT1→¬(u, f ).f⊥

O,ΩT1→¬(u, f ).f⊥

P,f⊥→ f (u)

P,f⊥→ f (u)

P,f⊥→ f (u)

O,ΩT2→¬(w,g).f⊥

O,ΩT2→¬(w,g).f⊥

O,ΩT2→¬(w,g).f⊥

P,f⊥→g(w)

P,f⊥→g(w)

P,f⊥→g(w)

∼

∼

∼∼

Figure 4.9: Asyncronous graph associated with [¬(u, f ). f (u) ⊗ ¬(w ⊗ g).g(w)]α

¬(x,w, f , g, h).h(x ⊗ ¬u.(g(w ⊗ ¬v.( f (u ⊗ v)))))) presented in figure 4.8, can be seen as a sub-

graph of the asynchronous graph of the arena as follows:

• each opponent move Ω→ ¬(x1, ..., xn).f⊥ in the asynchronous Böhm graph corresponds

to moves m such that pmq = (α, v, {x1, ..., xn}), where α is a name brought by proponent

in a position corresponding to Ω in the arena.

• each player move move f⊥ → f (x1, .., xn,f⊥, ...,f⊥) in the asynchronous Böhm graph

corresponds to proponent moves m such that pmq = ( f , v, {x1, ..., xn, α1, .., αn}), where

α1, .., αn are names of Acells in the arena.

The main difference between the both structures is that the f⊥ and the Ω⊥ have been re-

placed by names in the arena. This reflects on the symmetry of the arenas, and the asymmetry of

the λ-calculus. The λ-term puts emphasis on the names brought by opponent, and reflects how

the player is going to behave with those names. On the other hand, it does not highlight the fact

that the player, in a symmetric setting, would also need to bring new names, that correspond to

the different cells opponent could play in.

Furthermore the asynchronous Böhm graph defines a partial order on the moves of the arena:

P1 < O1 < ¬r,1P < ¬r,2O < ¬l,1P < ¬l,2O < ¬3P, with certain conditions on the moves, such as

the equality of the names ω = ρ and φ = µ.

Similarly, we can carry an similar analysis on the type ¬(A⊗¬A)⊗¬(B⊗¬B), whose arena

is presented below 4.12. Simplifying its move-structure by forgetting the values we get a graph

as in figure 4.13.
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α

•

P
β

•

χ λ η

•

ρ µ

γ

•

υ ε

•

φ

δ

•

ψ ι

•

ω

O

P P P

OO

Figure 4.10: Dialogue game of the type: ¬(X ⊗ Y ⊗ (¬(Z ⊗W) ⊗ (¬(Y ⊗ ¬W)) ⊗ (¬(X ⊗ ¬Z)))

Now the Böhm tree associated with the term ` ¬(u, f ). f (u)⊗¬(w, g).g(w) corresponds to the

partial order on the moves O1 ≤ P1 and O2 ≤ P2, together with the conditions on names λ = µ

and ρ = χ. Similarly, it can be seen as a set of sequences respecting the partial order. Among

them, the alternated sequences, are enough to faithfully represent the partial order. For instance,

in that case, the sequences {P0.O1.P1.O2.P2, P0.O2.P2.O1.P1}. The goal of the next chapter 5

is to precisely characterise those sets of sequences that originate from a term, or, equivalently,

from a proof.

Let us note that the legal plays are not perfectly fit to describe all elements coming from

the λ-calculus. Indeed, the same name might be bound at different locations in the term if

the binders have different scopes. For instance, the term (¬( f , x). f x) ⊗ (¬( f .x) f x) is a well-

formed term of type ¬¬X ⊗¬¬Y . However, a strategy associated with the α-equivalence of this

term would be playing plays that correspond to [¬( f , x). f x ⊗ ¬(g, y).gy], as the legal condition

enforces that the cells introduced have all different names. This limitation is harmless and does

not prevent the strategies from perfectly modelling the proofs.
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α : Acells

β : Acells

χ : AX , λ : AY , η, γ, δ : Acells

ν ∈ AY , ε : Acells

φ : AW

ψ : AX , ι : Acells

ω : AZ

ρ : AZ , µ : AW

P1

O1

¬l,1, P;

¬l,2,O

¬r,1, P

¬r,2,O

¬3, P

Figure 4.11: Dialogue game of the type: ¬(X ⊗ Y ⊗ (¬(Z ⊗W) ⊗ (¬(Y ⊗ ¬W)) ⊗ (¬(X ⊗ ¬Z))),
simplified version

α

•

β

•

λ ∈ AX η

•

µ ∈ AX

δ

•

ρ ∈ AYε

•

χ ∈ AY

O

P

O

P

P

Figure 4.12: Dialogue game of the type:¬(X ⊗ ¬X) ⊗ ¬(Y ⊗ ¬Y)
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α : Acells

β, γ : Acells

δ : AA, ε : Acells

ζ ∈ AA

η : cells, δ : AB

b′ : AB

P0

O1

P1

O2

P2

Figure 4.13: Dialogue game of the type:¬(A ⊗ ¬A) ⊗ ¬(B ⊗ ¬B), simplified version
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Chapter 5

Strategies for Tensorial Logic

We embark on the adventure of defining our category of games and morphisms. Along this

chapter we will define several categories that are all based on the following recipe.

• The objects are positive dialogue games.

• The morphisms A→ B are strategies on the negative pre-dialogue games A . B.

Strategies are abstract representations of sets of traces canonically associated with the α-

equivalence classes of λ-terms. Similarly, they are abstract representations of proofs of tensorial

logic. As such, they must satisfy a number of properties already presented before in the lit-

erature, chief among them is innocence [64]. Innocence was firstly exposed in the context of

game semantics of programming languages [7, 49], though its presentation differs between the

different papers. In the work of Abramsky, Jagadeesan and Malacaria, innocence appears as a

property on strategies, stating that the way proponent will answer to a play will only depend on

its last opponent move. This is called history-freeness, though the term is a bit confusing since

opponent encodes, thanks to an index mechanism, a part of the history of the play in its last

move. In the work of Hyland and Ong, these mechanisms were made more visible. Some view

functions are defined, and these made clear exactly the history that the strategies are allowed to

look at in order to produce a move. Finally, it was noticed in [64], that these functions actually

state that the strategies are positional: the sets of plays can be seen as forming a graph, and the

strategies answers depend only on the positions, not the “history”, that is, the way the positions

are reached. Furthermore, innocent strategies are perfectly described by the sets of positions

they reach in a graph. So one can forget about the dynamic, that is, sequences of moves seen

as interactions, and precisely characterise the way the strategies behave through their associated

sets of positions.

This discovery is to be related of a long-standing logical paradox, the “staticity” of linear

logic. Indeed, one notable feature of linear logic is its decomposition of the intuitionistic arrow

(A → B = !A ( B), that allows one to encode intuitionistic and therefore, the simply typed

lambda-calculus, inside linear logic. Hence, it must possess a dynamic flavour; that is, a dy-

namic process, such that the lambda-calculus forms a sub-system of it. However, the models of

159
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linear logic are static, that is, they can be seen as relations, as, for instance, in section 3. This

conflictual point of view was the point of departure of numerous works trying to relate static

and dynamic semantics [12, 18, 29, 28, 68].

This chapter is mainly an adaptation of the work that Melliès carried in [64, 69] for the

nominal structures defined in Chapter 4. The reader acquainted with his work will recognise

a similar development, similar definitions and similar properties. Our strategies differ to those

presented in these works in several ways. First, as nominal strategies they shall be closed under

equivariance and the condition of determinacy is relaxed into the weaker condition of nominal

determinacy. Furthermore, additional conditions shall be added for the strategies to be “logical”.

The equality between names does not translate in any logical property, therefore the strategies

should not be able to act on it. This is imposed by closure under typed substitutions. We enable

the strategies to deal with the axiom-links between propositional variables (so that they form

a model of the free dialogue category over the discrete category VAR) by encoding the links

through names: Opponent introduces typed names for negative literals, and Proponent repeats

them in positive literals. Two literals are linked if Proponent played the same name as Opponent.

As such, the strategy should not be able to produce a move corresponding to a positive atomic-

variable on-demand, this one has to be linked to a negative one. This is imposed by the semi-

linearity condition, that prevents the strategy from introducing new typed names. As, each typed

name played by opponent corresponds to an occurence of a negative litteral, these ones should

all be different. This is the frugality condition, introduced in Section 5.3.1.1. This one however

should be however dealt with carefully, since it does not compose. Composition is recovered

by closing the strategies under typed substitutions, just as in the case of separated relations.

Finally, coherence is obtained through sequentiality structures, that were introduced in [69], and

slightly adapted here to care for axiom-links and the nominal nature of our strategies. This way,

we are able to project the strategies onto “external” positions, and recover nominal relations of

the nominal polarised model of linear logic of Section 3. Moreover, this operation allows us to

precisely select those relations that come from denotations of proofs. This will the subject of

the next section 6.

The strategies are defined the usual way for nominal games. As fully complete strategies for

tensorial logic they shall be innocent, total, and transverse. We will see that innocent strategies

define families of functions, called sequentiality structures, that inform us of the dynamics of

the strategies at a certain point of the interaction. We strengthen those in two ways. First, we

force them to take into account all the context, and not only a part of it. This enforces them to be

"linear", and not only affine. Furthermore, we encode the behaviour of axiom-links inside these

sequentiality structures. That is, we impose that the strategy establishes axiom-links between

opposite occurrences of literals. This gives us the perfect candidate for a full-completeness

proof.

To start, we introduce the definition of nominal strategy.

Definition 5.1. Given a negative dialogue game A, a strategy σ : A is a non-empty set of legal

plays of even lengths of the arena (that is, the asynchronous legal graph) associated to A such
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that:

• the plays are alternating.

• the strategy is closed under prefix. If s.m.n ∈ σ and then s ∈ σ.

• the strategy is nominal deterministic :

∀s1.m1.n1, s2.m2.n2 ∈ σ. s1.m1 ' s2.m2 ⇒ s.m1.n1 ' s2.m2.n2.

• the strategy is equivariant : ∀s ∈ σ, s ' t ⇒ t ∈ σ.

In our case, since we expect our strategies to be “logical”, that is, denotations of proofs, we

will also enforce them to be typed coherent.

Definition 5.2. A strategy is typed coherent if it satisfies the two following conditions:

• (Closure under typed substitutions): ∀s ∈ σ.∀e ∈ ΞT . e · s ∈ σ.

• (semi-linearity): The strategy does not introduce typed names:

s.m.n ∈ σ⇒ νT (s.m) = νT (s.m.n)

In the sequel, we will only consider typed coherent strategies, and therefore will often omit

to specify typed coherency. The typed coherency we only be dropped once we start speaking

about frugal strategies, in Section 5.3.1.1, and this will be clearly written.

Remark 5.3. In a typed coherent strategy, if we have two moves s.m.n1, s.m.n2 such that both

belong to the strategy, then s.m.n1 Ccells s.m.n2 entails n1 = n2. Indeed, by nominal deter-

minacy s.m.n1 ' s.m.n2, and, as the two positions are compatible with relation to untyped

cells, s.m.n1 'T s.m.n2. Particularly, there exists a permutation π of AT such that π lets s.m

invariant, and π · n1 = n2. As s.m has strong support, this entails π#ν(s.m). In particular, as

νT (n1) ⊆ νT (s.m), this leads to π · n1 = n1 and n1 = n2.

Let us remind that given two legal positions x, y then there exists a permutation π of Acells

and two typed substitutions e1, e2 such that π · (e1 · x) Cpost e2 · y. As the strategies are closed

under substitutions, given s, t ∈ σ, there is s′, t′ ∈ σ such that s′ � s, t′ � t and s′ Cpost t′

(where the relation Cpost is straightforwardly extended to plays by: s : ?� x Cpost t : ?� y if

and only if x Cpost y).

We remind that given a play, or path s we write |s| for the length of the sequence s.

5.1 Innocent strategies and their structures

There are two definitions of innocence that are equivalent [64], one by defining a notion of view

in asynchronous games and then redefining innocence in a similar way as for “non-asynchronous

games”, or one in a diagrammatic way that we prefer and present below. These definitions are

almost similar to the ones from [64], except that we must take care that the legal positions are

compatible when taking the union.
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All the definitions and proposition in this chapter are simple adpations of those presented in

[64] adapted to our new nominal structures. Due to the subtle differences between them, proofs

are repeated. We also folow a similar development as in the original paper. Note that in [64]

the event structure does not have a conflict relation (that is, only the multiplicative case is dealt

with), although the general case has been already examined in [74].

Let us remind that given two moves m, n if m � n and m Ccells n then m Cpost n, as

proven in 4.49. Consequently, given two plays s.m1.n1 and s.m2.n2 belonging to a strategy σ,

if m1 � m2, n1 � n2, then there exists a permutation of π ∈ Perm(Acells) such that π · s.m1.n1 =

s.m′1.n
′
1 and s.m′1.n

′
1 Ccells s.m2.n2, entailing s.m′1.n

′
1 Cpost s.m2.n2. We remind that m1 ↑ m2 if

m1 C m2 ∧ label(v1 ∩ v2) = value, where v1, v2 are the values of the moves m1,m2 respectively.

Definition 5.4. A (typed coherent) strategy is forward consistent if ∀s ∈ σ and m1,m2, n1, n2

such that s.m1.n1, s.m2.n2 ∈ σ, m1 , m2, m1 ↑ m2 then n1 � n2 . Moreover, if m1, n1 are such

that s.m1.n1 Cpost s.m2.n2 then we have:

s.m1.n1. ↑ s.m2.n2 and s.m1.n1.m2.n2 ∈ σ.

This can be translated to the following diagram :

s.

.

.

.

.

.

m1

n1

m2

n2
∼

∈ σ

Cpost

⇒

s.

.

.

.

.

.

.

.

.

m1

n1

m2

n2

m2

n2

m1

n1

∼

∼

∼

∼ ∈ σ

A strategy is backward consistent if:

∀s.m1.n1.m2.n2.t ∈ σ, such that ¬(m1 ` m2) and ¬(n1 ` m2) then

¬(m1 ` n2), ¬(n1 ` n2) and s.m2.n2.m1.n1.t ∈ σ.

This translates into :
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s

t

.

.

.

.

.

.

.

m1

n1

m2

n2

m2

∼

∼ ∈ σ
⇒

s

t

.

.

.

.

.

.

.

.

.

m1

n1

m2

n2

m2

n2

m1

n1

∼

∼

∼

∼ ∈ σ

Finally, a (typed coherent) strategy is innocent if it is both backward and forward consistent.

These definitions are standard and orginated from [64]. We check that their main properties

remain unchanged within this nominal framework, and provide the proofs.

The sub-sections below are devoted to this. First, we prove that the way an innocent strategy

responds to an opponent move depends only on the position reached. Then, we strengthen this

property, demonstrating that actually, the strategy can be recovered from the set of positions it

reaches. Based on this result, we seek a characterisation of the sets of positions that correspond

to innocent strategies. Remaining is to prove that relational and sequential compositions are

well-behaved towards each other, or, more precisely, that it is equivalent to relationally compose

their sets of positions or to use the classic parallel and hide paradigm on their sets of plays. In

order to tackle the proof, we introduce an important property of innocent strategies; they produce

a function between accessible cells of their reached positions that tells where a future play might

trigger a response. We call this weak sequentiality structure, and explain why it is necessary to

strengthen it in order to achieve full completeness. This sequentiality structure can also been

encoded as payoffs on positions and paths of the strategies, as done in [66].

5.1.1 Structure of the innocent strategies: positionality

A strategy is said to be positional if the way it reacts depends only on the position reached, and

not on the path followed to reach it.

Definition 5.5 ([64]). A strategy is positional if for all s, s′ : ? � x ∈ σ, such that s ∼ s′, for

all t : x�y such that s · t ∈ σ, then s′.t : ?
s′.t
� y ∈ σ. This is drawn as follows.
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?

x

s ∼ s′

y

t

∈ σ ⇒

?

x

s’

y

t

∈ σ

Proposition 5.6. Every nominal innocent strategy is positional.

The rest of this section is devoted to proving this. To start, we introduce, for a strategy σ,

the set σ• defined to be the set of positions it reaches:

σ• = {x ∈ Legal(A) | ∃s : ?
s
� x ∈ σ}.

Second, let us note � the relation on paths s � t if there is a s′ such that s.s′ ∼ t. We

furthermore refine the homotopy relation into a second one, called ∼OP that acts by permuting

only pairs of OP moves, we construct ∼OP in a similar way as we constructed ∼, but this time

focussing on permutations between alternating paths of length 4, permutating pairs of O − P

moves.

Definition 5.7 ([64]). We define the �OP relation between co-initial and co-final paths of length

4 as follows:

m1.n1.m2.n2 �OP m2.n2.m1.n1 ⇔ (m1.n1.m2.n2) ∼ (m2.n2.m1.n1) and λ(mi) = −λ(ni) = −1.

We say that this permutation of moves correspond to a single OP-homotopy step. We then define

the intermediate ˜�OP to be the augmented relation from �OP between paths of lengths more than

four.

s.u.t ˜�OP s.v.t ⇔ u �OP v

We define ∼OP as the reflexive, transitive and symmetric closure of ˜�OP.

As the sequences of the strategies are alternating, and strategies are deterministic, this

seems to be an appropriate notion for dealing with homotopy between paths of a strategy. Note

however that two alternating paths can be ∼ homotopic without being ∼OP homotopic. One can

draw a parallel between history freeness and the ∼OP relation: two ∼OP homotopic plays will

have same player moves after same opponent moves. Finally, we write s �OP t if there exists s′

such that s.s′ ∼OP t.

Proposition 5.8. Let σ be an innocent strategy and s, t ∈ σ such that s � t. Then s �OP t.
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Proof. For a given path u, we write u≤n for the pre-sequence of u consisting of its n-first moves,

and u>n for the path such that u≤n.u>n = u. Furthermore, let us write s′ for a path such that

s.s′ ∼ t. We will prove the existence of a sequence of plays t0 ∼OP t1 ∼OP t2 ∼OP t3... ∼OP t|s|/2,

such that t0 = t, and ti ∈ σ, ti ∼OP t, and satisfying for each i, (ti)≤2∗i = s≤2∗i. This way, t|s|/2
will satisfy the following equality t|s|/2 = s.t′ ∼OP t, entailing s �OP t.

The required conditions are obviously satisfied for t0, so let us assume they are true for tn
and we try proving the existence of tn+1, assuming 2 ∗ n < |s|. To simplify notations, we write

u for the path s>2∗n, and v for tn,>2∗n (that is, such that tn = tn,≤2∗n.v. Notably, as s≤2∗n = tn,≤2∗n,

u, v are co-initial. In particular, this entails u.s′ ∼ v since these are both co-initial and co-final.

As s, tn are inσ, they are alternating. Let us write m for the moves of u and n for the moves of

v. Formally, u = m1....mn, and v = n1...no. Let us consider the first opponent move m1 of u. As

u.s′ ∼ v, m1 is also a move of v. If it is the first one, then as s≤2∗n.m1.m2 ∈ σ, tn,≤2∗n.n1.n2 ∈ σ,

σ is deterministic, and s≤2∗n.m1 = tn,≤2∗n.n1, this entails m2 ' n2. Now as s.s′ and t reach the

same position, they are in compatible mode for equality, that is, ∀i, j. mi ' ni ⇒ mi = ni. So

n2 = m2, and tn+1 = tn.

We deal with the case where m1 is not the first move of v. We write v = v0 =

v′.o1.o2.m1.m2.v′′. As m1 appears before o1 in u.s′, and after in v, it entails m1 ⇑ o1. In

particular, there is a tile m1.o1 � o1.m1. By backward consistency, tn,≤2∗n.v ∼OP tn,≤2∗n.v1 ∈ σ,

where v1 = v′.m1.m2.o1.o2.v′′. So, by a sequence of backward consistency steps, we can push

m1.m2 as the start of v as we did from v0 to v1. This is represented in figure 5.1. This way, we

obtain a v f inal such that tn,≤2∗n.v f inal ∈ σ, and tn,≤2∗n.v f inal ∼OP tn. We deduct, as above, that

the two first moves of v f inal are equal to those of u, and set tn+1 = tn.v f inal. This concludes the

proof. �

We also need a second lemma before proving the proposition, that states that strategies are

closed under ∼OP homotopy.

Lemma 5.9. Let s ∈ σ, σ innocent strategy, and s ∼OP t. Then t ∈ σ. Equivalently, an innocent

strategy is closed under OP-homotopy.

Proof. We do the proof by induction on the number of OP-homotopy steps needed to go from s

to t. If it is 0, then s = t and hence the property holds naturally. All we have to prove is that if s

is in σ, and s
OP
−−→ s′, where

OP
−−→ is a single OP-homotopy step, then s′ is in σ.

Suppose s = s1.m1.n1.m2.n2.s2 and s′ = s1.m2.n2.m1.n1.s2. Then by definition there is a

tile m1 ⇑ m2 and n1 ⇑ m2, and using the backward consistency, we deduct that s.m2.n2.m1.n1.s2

is in σ. �

We are now in position to prove the positionality of the strategy, that is, proposition 5.6.
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Figure 5.1: Sequences of OP-homotopy steps following backward consistency
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Proof. Let s, s′ ∈ σ, s ∼ s′ : ? � x, and t : x → y, such that s.t ∈ σ. Then, s′ � s and hence,

as both plays belong to the strategy, s′ �OP s. Furthermore, the length of the two plays being

the same s′ ∼OP s. As this relation is closed under post-composition, s′.t ∼OP s.t and finally, as

σ is stable under ∼OP homotopy s′.t ∈ σ. �

5.1.2 Structure of the innocent strategies: strong positionality

Innocent strategies satisfy a stronger property than positionality, they are relational. This means

they are entirely determined by the set of positions they reach. This property allows us to see

them simply as a subset of the set of positions. So a strategy A→ B can alternatively be seen as

a relation between some positions of A and some positions of B.

Given a subset X ⊆ Legal(A) we write X for the set of plays defined by X.

X = {s = m1.m2....mn−1.mn ∈ Legal(Plays((A)) | n even,

and ∀i ≤ n.(i even and m1.m2....mi−1.mi : ?� x)⇒ x ∈ X}.

Definition 5.10. A strategy is strongly positional (or relational) if σ = (σ•) .
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In other terms, a relational strategy is a strategy that is both static and dynamic. It can be

characterised dynamically as a set of sequences, or statically as a set of positions.

Proposition 5.11. Every innocent strategy is strongly positional.

Proof. The inclusion σ ⊆ (σ•) is clear, so we only need to focus on the reverse inclusion,

that we prove by induction on the length of the plays. We pick a play s ∈ (σ•) . If the play

is of length 0, then there is nothing to prove. So imagine the length of s is now n + 2, and all

the plays of length n of (σ•) have been proven to belong to σ. So s can be decomposed as

s = s1.m.n : ? � y, such that s1 : ? → x, and as x ∈ (σ•), together with s1 is of length n, we

already know that s1 ∈ σ. As y ∈ (σ•), we know that there is a path t : ?� y ∈ σ. In particular

as s1.m.n and t reach the same position, s1.m.n ∼ t and s1 � t. As s1 and t are in σ, we can use

proposition 5.8 and infer that s1 �OP t. In particular, there are m′, n′ two moves such that m′ is

an O-move, n′ a P-move and s1.m′.n′ ∼OP t. As m′, n′,m, n ∈ t \ s1, we can gather that m = m′,

n = n′ and s1.m.n ∼OP t, and thus s = s1.m.n ∈ σ as σ is closed under ∼OP homotopy. �

One can easily prove that relational, or strongly positional, entails positional.

Thanks to strong positionality, we can now characterise the strategies as sets of positions,

and hence use it to prove compositionality, as well as the associativity of composition. In order

to do that, we have to give a precise characterisation of those sets X such that there is a strategy

σ that makes the following equality holds: X = σ•.

5.1.3 Innocent strategies as sets of positions

We give a characterisation of definable sets, that are, sets X that correspond to sets of positions

reached by innocent strategies.

Definition 5.12. A subset X of Pos(A) is definable if there exists a typed-coherent innocent

strategy σ such that σ• = X.

The description of definable sets is laid down in the following theorem. We say that a

position y dominated by a set of positions X, if there is an x ∈ X, and a path s : y � x. In this

case we say that y is dominated by x (that is, y ≤ x), or x (and X) dominates y. Similarly, we

speak of under-domination in the case where ∃x ∈ X, x ≤ y (that is, there exists a path s : x� y).

Theorem 5.13. A set X of positions is definable if and only if:

1. (Root): ⊥ ∈ X.

2. (Legality): X ⊆ Legal(A).

3. (Nominal closure): X is nominal closed, and closed under strict typed substitutions. That

is, ∀x ∈ X,∀y.y � x⇒ y ∈ X.

4. (Closure under intersection): ∀x, y ∈ X, x C y ∧ x ↑ y ⇒ x u y ∈ X.
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5. (Closure under union): ∀x, y ∈ X, x Cpost y ∧ x ↑ y ⇒ x t y ∈ X.

6. (Preservation of compatibility): Let x ∈ X, and two moves m,m′ such that x
m
−→ y and

x
m′
−−→ y′, satisfying y ↑ y′, y Cpost y′ and y, y′ are dominated in X. Then yty′ is dominated

in X.

7. (Forward confluence 1): For all x ∈ X, if there is an opponent move m : x → y and y

is dominated in X then there is a unique z ∈ X, up to equivalence, such that there is a

P-move n satisfying x
m.n
� z, and furthermore νT (n) ⊆ νT (y).

8. (Forward confluence 2) For all x ∈ X, if there is an opponent move m : x → y and y is

dominated in X by w then there is a unique P-move n, such that x
m.n
� z, and z ∈ X, z ≤ w,

and furthermore νT (n) ⊆ νT (y).

9. (Mutual attraction) : For all x, y in X such that y dominates x, either x = y or there is an

opponent move m : x→ x′ and a player move n : y′ → y such that y′ dominates x′.

To do the proof we rely on an additional property, namely reverse consistency, presented

below. First, note that the dialogues games we have defined are intuitionistic in the following

sense:

• For every occurrence of move n : y→ z, there is at most one move m that justifies it.

• When there is one, λ(m) = −λ(n).

Consequently, a strategy which is backward and forward consistent satisfies automatically

an additive property called reverse consistency, and described below.

Definition 5.14. A strategy is reverse consistent if for all s.m1.n1.m2.n2.t ∈ σ, if |s| is even and

n1 ⇑ m2, n2 then m1 ⇑ m2, n2, and s.m2.n2.m1.n1.t ∈ σ.

This is displayed diagrammatically in figure 5.2.
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Figure 5.2: Reverse innocence
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Proposition 5.15. Every innocent strategy is reverse consistent.

Proof. Let s.m1.n1.m2.n2.t as in the definition. From prefix closure of σ, we devise that

s.m1.n1.m2.n2 is part of the strategy. We need to prove that m2 ⇑ m1. We already know

that m2 ⇑ n1. As the game is intuitionist, an opponent move cannot justify another one. That is

¬(m1 ` m2). So the only possible chain of moves between m1 and m2 would be m1 ` n1 ` m2.

But as ¬(n1 ` m2) it entails ¬(m1 ≤ m2). On the other hand, ¬(m2 ≤ m1) as m2 appears after

m1 in the play, and ¬(m2 ˇ m1) , m2 Cpost m1. So, m1 ⇑ m2. By backward consistency,

s.m2.n2.m1.n1 belongs to σ and by positionality, s.m2.n2.m1.n1.t ∈ σ as required. �

We now prove the theorem.

Proof. We first show that there is an innocent strategy σ such that X = σ•. We then show that

given any innocent strategy τ, its set τ• satisfies the properties of a definable set.

We start by showing that there is a set of plays σ, (σ = X ), such that X = σ•. Formally,

we need to prove that (X )• = X. We will prove that σ is an innocent strategy afterwards. By

definition, (X )• ⊆ X, as the target of every play of X is an element of X. So it remains to prove

the reverse inclusion. Let us prove that every element of X is the target of an alternating path,

such that each even-length subpath reaches an element of X. This is true for the root by (1). Let

x ∈ X, and let us suppose that we proved the property for every element y of X with y ≤ x, and

we note that, as ⊥ ∈ X, the set of such y is never empty. Then let y be maximal in X under x. We

apply the last property, mutual attraction (9), and hence know that there in an opponent move

m : y → y′ and a player move n : x′ → x such that x′ dominates y′. Now either x′ = y′, in

which case we conclude using the induction hypothesis. Or, using forward confluence (2), there

is a player move n′ : x′ → y′′, and y′′ < x is in X. This brings a contradiction as y was supposed

to be maximal in X under x.

In this paragraph, we prove that the set of plays X forms a typed-coherent strategy. As

the root is an element of X, the empty play is part of X , as expected. Moreover, thanks to the

definition of  , the closure under prefix follows. The closure under nominal permutations comes

from the fact that X is itself closed under permutations, and similarly for typed substitutions.

The remaining property is nominal determinacy. Let s : ?
s
� x, s′ : ?

s′
� x′ two plays of

X such that s ' s′, and hence x ' x′. Let m : x
m
−→ y, m′ : x′

m′
−−→ y′ two opponent

moves such that s.m ' s′.m′, and thus y ' y′. Let n : y → z, n′ : y′ → z′ such that s.m.n

(resp s′.m′.n′) ∈ X . We must prove that z ' z′. Let us consider π a nominal permutation

such that π · s′.m′ = s.m. Then by forward consistency (1) there exists a unique, up to nominal

permutation, z′′, such that there exists a P-move n′′ satisfying s.m.n′′ : ? � z′′ ∈ X. In other

terms, π · z′ ' z′′ ' z and therefore z ' z′′, that is, s.m′.n′ ' s.m.n, and the strategy is nominal

deterministic. Furthermore, ν(n′) ⊆ ν(s.m) entails that the strategy is semi-linear, and hence,

typed-coherent.
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This leads us to prove that the strategy X satisfies the 2 diagrams of innocence. We start

with forward consistency.

Let x ∈ X, and m1 : x→ y1 an opponent move, such that y1 is dominated in X. We also pick

m2 : x → y2 such that m2 ↑ m1, m2 , m1, y2 is dominated in X and y2 Cpost y1 . As y1 and y2

are compatible and dominated in X, so is their union y1t y2 (by (6)). So let us call w an element

of X such that w dominates y1 t y2 and w minimal among those. Then y1 is dominated by {w},

and therefore there is a single move n1 such that y1
n1
−−→ z1 and z1 is dominated by w. Similarly,

we can conclude that there is a single move n2 : y → z2, such that X 3 z2 ≤ w. Furthermore,

z1 is dominated by w, and so is z1 ] {m2}, and similarly for z1 ] {m1}. Therefore, we conclude

the existence of two additional moves n′2, n
′
1 such that z1 ] {m2} ] {n′2}, z2 ] {m1} ] {n′1} both

lead to positions in X dominated by w. As these positions are both dominated by w, there are

compatible, and, their intersection belong in X. We deal with different cases:

• if n′1 , n1, n′2 , n2 then their intersection is y1 t y2, which cannot be in X since it is an

unbalanced position.

• If n′1 = n1, n′2 , n2, then their intersection is y1 t y2 ] {n1}, which cannot be in X for the

same reason as above.

• If n1 , n1, n′2 = n2, then this is a similar case as above.

• If n1 = n′1 = n2 = n′2, then similar case as above once again.

So we conclude that n1 = n′1, n2 = n′2, n1 , n2, and furthermore n1 ⇑ n2, since they appear

at different orders in different plays. At this stage we have not finished the proof since the n1, n2

were picked in accordance to w, and we shall prove that the proof can be made to work for any

o1, o2 chosen such that s.m1.o1 Cpost s.m2.o2, and s.m1.o1, s.m2, o2 reach positions in X. By

nominal determinacy, we automatically have s.m1.o1 ' s.m1.n1, and similarly for o2, n2. We

first do the proof in the “easy” case, where o1#cellsn1, n2 and o2#cellsn1, n2. Note that o1#cellss.m2

as enforced by the relation Cpost. In this case, we pick π1, π2 ∈ Perm(Acells) of minimal support

such that π1s.m1.n1 = s.m1.o1, and similarly for o2. In particular, as ν(π1) ⊆ ν(n1) ∪ ν(o1), and

similarly for π2, we got π1#π2. We then have s.m1.o1 ≤ π1 · w, and π2(s.m1.o1) = s.m1.o1 ≤

(π2◦π1) ·w. Similarly, s.m2.o2 ≤ (π2◦π1) ·w. Notably, as π1, π2 have disjoint support, (π1◦π2) =

(π2 ◦ π1), and we have found a common bound for s.m1.o1, s.m2.o2, namely (π1 ◦ π2) · w. We

can then apply the proof as above. To finish the proof, we need to tackle the “hard” case, where

the propositions o1#cellsn1, n2, o2#cellsn1, n2 might not be true. In that case, we use intermediate

p1 ' n1, p2,' n2 such that p1, p2#o1, o2, n1, n2, s.m1.p1, s.m2.p2 reach positions in X, and

s.m1.p1 Cpost s.m2.p2. Relying on the pi, we can apply the easy case, and obtain an upper

bound w′ ' w for the positions reached by s.m1.p1, s.m2.p2. Next, we can go from pi to oi,

noticing that this corresponds once again to the easy case. Eventually, we reach a w′′ ' w′ ' w

such that w′′ ∈ X, and w′′ is an upper bound for s.m1.o1, s.m2.o2. This allows us to deduce the

proposition as above.

We prove the backward consistency. Let s.m1.n1.m2.n2.t : ? � w ∈ X such that ?
s
�

x
m1.n1
� y

m2.n2
� z

t
� w, and suppose that s.m2 is legal, and m2 ⇑ m1, n1. Furthermore, s.m2 is

dominated by z ∈ X. Then let n′ be the move such that s.m2.n′ ∈ X and s.m2.n′ : ? � y′ is
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dominated by z. Therefore, n′ = n1 or n′ = n2. Note that y′ ↑ y since they are both dominated

by z. If n′ = n1, then as X is closed under compatible intersection, y′uy is in X. However, in that

case, yuy′ = x]{n1}, which is a unbalanced position. So n′ = n2, and s.m2.n2 ∈ X . Finally, we

devise that s.m2.n2.m1.n1 is in X by forward consistency. Finally, noticing that s.m2.n2.m1.n1

and s.m1.n1.m2.n2 reach the same position, we can conclude that s.m2.n2.m1.n1.t ∈ X by

definition of  , which concludes the proof.

At last, reverse consistency follows from the proposition 5.15

Subsequently, we now have to prove the reverse direction. Let σ be an innocent strategy,

and consider the set X = σ•. The condition (1) (⊥ ∈ X) comes from the fact that the empty play

is always part of a strategy. The second condition (2) (X ⊆ Legal(A)) is by definition just as the

condition (3): its nominal and typed substitutions closure follows directly from the one of σ.

Harder to prove are the conditions of closure under intersection (4) and union (5). We start with

the first.

Let x, y ∈ X, such that x ↑ y (and hence x C y), and let s : ? � x ∈ σ, and t : ? � y ∈ σ.

Consider z = x u y, our goal is to show that there is u : ? � z such that u �OP s, t. As σ is

closed under �OP, this will prove that u ∈ σ and hence z ∈ σ•. We call M the set of moves that

s, t have in common. M is the set of moves that appear in xu y. As both s, t are plays, and hence

closed under down-closure, so is M. Therefore, the restriction of s to the moves that appear in

M define a play (see proposition 4.56), in the sense that is defines a path starting from the root.

We call it u. We prove that u �OP s, t, by induction on the pre-sequences v of u of even length.

That is, we prove that for every pre-sequence of even length v of u, v �OP s, t, and furthermore

u is of even-length. Firstly, we notice that the empty sequence ε obviously satisfies the property.

For the next step, consider it true for an arbitrary pre-sequence of even length v of s′. Then let

m the move after v in s′, and suppose that m is an O-move. As v �OP s, ∃n1. v.m.n1 �OP s,

and, equivalently, ∃n2. v.m.n2 �OP t. Now, by nominal determinacy, n1 ' n2, and as x, y are

compatible for equality, n1 = n2. Hence v.m.n1 is a prefix of u and v.m.n1 �OP s, t. On the other

hand, let us consider that the next move n after v in s is a P-move. Then there exists m1, s1, t1
such that v.s1.m1.n �OP s, v.t1.m2.n �OP t and m1 , m2. Now, we apply a permutation π of

Acells to x such that π · x Cpost y. Let us note that this let xu y (that is, xu y = π · xu y), invariant,

and hence we assume without lost of generality that x Cpost y. As x ↑ y, x C y, and t1 ∩ s1 = ∅

(in the sense that they have no common moves), we can apply forward consistency, and push

s1 along t1, obtaining a play v.s1.t1 ∈ σ. At this stage, we can perform a final step of forward

consistency on v.s1.t1.m1.n and v.s1.t1.m2.n, relying on m1 ↑ m2, m1 , m2, m1 Cpost m2. This

one tells us that the after m1 is non-congruent to the move after m2, that is n � n. Hence this is

a contradiction, and this case is excluded. As a result, for all pre-sequences (of even-length) v

of u, v �OP s, and y is of even-length. Consequently, u �OP s and u ∈ σ. As u reaches x u y,

this entails x u y ∈ σ•.

Let x, y be two post-compatible positions in X and s, t two plays of σ that target them. Let

u be a play of σ that targets x u y. We write s ∼OP u.s′ and t ∼OP u.t′ and do the induction on

the length of s′. If it is null, then x ≤ y and t : ? � x t y = y is the witness play. Otherwise,
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consider u.m.n.s′′ ∼OP s. Then m is independent of t′ as it is not in conflict, not related by

the partial order with the moves of t′ and post-compatible with t′. Therefore, by pushing the

forward consistency diagram of innocence, u.m.n.t′ ∈ σ. Then let z such that ?
u.m.n.t′
� z. It is

easily seen that z ≥ y, and z t x ≤ y t x. As a result, z t x = y t x, and we can work with the

new play t′′ = u.m.n.t′. Thus, we can intersect z and x, and consider the play u′ = u.m.n that

targets this position in σ. However, this time, we consider s′′ such that u′.s′′ ∼OP s and, as s′′

is two moves shorter than s′, we apply the induction hypothesis on it.

The sixth condition, preservation of compatibility, is a simple consequence of the forward

consistency of σ•. Let x a position reached by σ (by a witness play s), and two compatible

opponent moves m,m′ played from σ, x
m
−→ y, x

m′
−−→ y′, y Cpost y′, such that s.m.n, s.m′.n′ ∈ σ.

Then n, n′ can be chosen such that n Cpost n′, entailing n ⇑ n′. By forward consistency,

s.m.n.m′.n′ ∈ σ and reaches a position that dominates y t y′ = x ⊕ {m,m′}.

Remaining is to prove the forward confluence properties (7)(8) of X. Let x be a position of

the strategy, x ∈ σ•, and let m be an O-move such that x
m
−→ y ∈ Legal(A), and let w ∈ σ•

that dominates y. Then, by definition, there is a path t : ? � w ∈ σ. Let σ 3 s : ? � x.

Then as x ≤ w, s � t and by proposition 5.8 s �OP t. So we write t ∼OP s.t2, and we know

that m ∈ t2. Hence there is a unique n such that s.m.n �OP s.t2. So there exists a player move

n and a position z such that σ• 3 z = x ⊕ {m, n}, and z ≤ w. Furthermore, if there were two,

then by nominal determinacy there would be equivalent, and as both dominated by w, there

would be compatible for equality, and hence, equal. So the n, z are unique. Finally, (7) follows

straightforwardly from the nominal determinacy of strategies.

We finish with the last property (9) of mutual attraction. Let x, y ∈ σ•, such that x ≤ y. Then

let us prove that there exists a path x � y such that s begins with an O-move. To do that, let

consider a path s : ?� y ∈ σ, and let t : ?� x ∈ σ. As x ≤ y then t � s. Then by proposition

5.8, t �OP s, and s ∼OP t.s′ ∈ σ. Hence, s′ : x � y is either empty, or starts with an O-move

and finishes with a P-move, which finishes the last case of this proof. �

5.1.3.1 On backward confluence

Definable sets for innocent strategies defined originally in [64], satisfied an additional property,

namely backward confluence, that we present below:

• For all x ∈ X, if there is a P-move n : y
n
−→ x, and y is under-dominated by w ∈ X, then

there is a unique O-move m such that z
m
−→ y, z ∈ X and furthermore w ≤ z.

This property is still satisfied by our strategies.

Proposition 5.16. Every innocent strategy is backward confluent.

Proof. Let x,w ∈ σ•, such that w ≤ x. Let n a P-move, n : y → x such that w ≤ y. We must

prove that there exists an unique m O-move, m : z → y such that z ∈ σ• and furthermore w
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under-dominates z. We start by proving that there exists a s ∈ σ, s : ? � x and the last move

of s is n. Let us pick a random s : ? � x in σ, then s = s′.m.n.s′′. If s′′ is empty, the proof

is over. Otherwise as for any pairs of OP-moves m′.n′ ∈ s′′ we have m′, n′ ⇑ n, by reverse

consistency we deduct that m′, n′ ⇑ m, and we can push the path s′′ down m.n. Finally, we get

s′.s′′.m.n ∈ σ. Furthermore, consider σ 3 t : ? � w, then as w ≤ x, t � s. As both s, t belongs

in σ, it entails t �OP s. As n < t, this leads to m < t, and t �OP s.s′′. This is equivalent to

w ≤ z. We conclude by proving the uniqueness. It they were two possible m, call them m,m′,

then, as they reach the same position, there exists two plays σ 3 s.m.n ∼ t.m′.n ∈ σ. Therefore,

s.m.n ∼OP t.m′.n and as a result, m = m′ (as n = n). �

Alternatively, we provide a direct proof in the appendix 9.3 that the properties of definable

sets entail backward confluence.

5.1.4 Innocent strategies and weak sequentiality structures

Sequentiality structures have been introduced in [69], as a way to strengthen innocent strategies,

and most of the properties-definition presented here are directly adapted from this paper. These

consists of a set of total functions, relating negative and positive cells. We here introduce weak

sequentiality structures, that corresponds to these “partial functions” that an innocent strategy

naturally produce. Those will be pivotal in our proof that sequential and relational composition

are equivalent.

We say that a cell α justifies a move m, written α ` m, if m = (α, v, S ). We say that a cell α

is accessible from a position x ∈ Legal(A) in a dialogue game if:

∃m ∈ x.m = (β, v, S ), α ∈ S , and ¬(∃m′ ∈ x.m′ = (α, v′, S ′)) .

In other terms, the cell α justifies no move in the position. Recalling the fact that the dialogue

game is almost the syntactical tree of the formula, the accessible cells correspond to those sub-

formulas that are yet to be explored by the position. We denote Ax the set of accessible cells of

the position x. We divide Ax into two subsets, A+
x the subset of Ax of cells of positive polarity

and A−x those of negative polarity. Those of negative polarity are brought by a move of positive

polarity and justify moves of negative polarities, and inversely for those of negative polarities.

Definition 5.17. Let σ be an innocent strategy, and x ∈ σ•. Let α, β ∈ A−x two different opponent

cells. Let σ |x α be defined as follows:

σ |x α = {s : x� y | ∃s′ : ?� x. s′.s ∈ σ ∧ ∀m ∈ s.¬(∃α′ ∈ A−x \ {α}.α
′ ` m)}

σ |x α is the restriction of σ above α.
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σ |x α is the part of the strategy above x that corresponds to a trigger by opponent of the cell

α. Given a move m, we say that m ∈ σ |x α, if there is a sequence s ∈ σ |x α such that m is a

move of s.

Lemma 5.18. The following property holds:

m ∈ σ |x α ⇒ ∀n ∈ σ |x β.m � n.

This lemma is quite a strong property, also called the “separation of contexts”. It says that

the strategy above two different cells explores two distinct sub-trees.

Proof. We consider a move $ of σ |x α (we use a Greek letter to distinguish it from the other

moves), and let s ∈ σ |x α such that $ ∈ s. Now, let t a sequence of σ |x β, with β , α. As

we could consider s′ � s, t′ � t such that s′ Cpost t, we assume without lost of generality that

s Cpost t. In that case $ � n ⇒ $ = n. We will prove that for all moves m ∈ s, n ∈ t.m ⇑ n.

As the first move m1 of s is justified by α, and the first one n1 of t by β, we already know that

m1 ⇑ n1. By forward consistency ∀i, j ≤ 2.mi ⇑ n j. So we proved the property for the paths of

length 2. The proof is done by induction on the lengths of the paths s and t.

We consider that the length of s is n + 2, t is of length m, and that we proved the property

hold for (n,m). We write s′ for the subpath of s that consists of its nth first moves. By using

the forward consistent diagram of innocence and the inductive hypothesis, we can push the path

t along the s′. We now need to prove that mn+1 ⇑ n for every move n of t. As mn+1 is an

opponent move, its departure cell is brought by a player move. By definition of s, its departure

cell cannot be a cell available at x. Hence it is brought up by a player move in s′. As s′, t are

independent (in the sense that ∀m ∈ s, n ∈ t′.m ⇑ n), the move mn+1 is not related by the partial

order, not in conflict with the moves of t, and is post-compatible. Therefore, mm+1 ⇑ t (meaning

it is strongly compatible with every move of t). Hence, by repetitive applications of forward

consistency nn+1 ⇑ t, finishing the inductive case.

If t is of length m + 2, the induction is strongly similar, as the role being played by s, t are

interchangeable. �

There is a direct corollary to this lemma, that highlights why we speak about separation of

contexts.

Corollary 5.19. Let x a position of σ•, and α ∈ A−x . Then there is a set, called dominionx(α) ⊆

A+
x defined by:

dominionx(α) = {β ∈ A+
x | ∃m ∈ σ |x α.β ` m}

such that σ |x α takes place above α t dominionx(α) and such that α , β ⇒ dominionx(α) ∩

dominionx(β) = ∅.
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This corollary enables the following definition.

Definition 5.20. Given an innocent strategy σ, there exists a family partial function {φx : A+
x →

A−x | x ∈ σ
•}, called weak sequentiality structure, such that:

φx(α) = β⇔ ∃m ∈ σ |x α, β ` m.

A function φx is partial as it is undefined on cells without move above (that is, cells corre-

sponding to ¬0), or even on cells above whom the strategy does not explore. Given a cell α ∈ A−x ,

we say that dominion(α) is the context captured by α. Using the correspondence between un-

typed cells and formulas of tensorial logic, this corollary is the game semantics counterpart of

the following (wrong) logical rule:

Γ1 ` A Γ2 ` B
Γ1,Γ2,Γ3 ` A ⊗ B

.

Indeed, the formulas on the right hand side of the sequents correspond to negative cells, the

ones on the right to positive ones. Now, the corollary tells us that the strategy splits in two

independent parts, depending on the cell (formula) chosen by opponent. However, as one can

clearly notice, the main problem is that the context is affine, there might be some parts of the

context (that is some positive cells), that might not be explored. This will be targeted in Section

5.3.2.

We introduce an invariant of the sequentiality structure.

Lemma 5.21. Let s : ?� x
t
� y ∈ σ, and α ∈ A−x ∩ A−y . Then dominionx(α) = dominiony(α),

In other terms, let x, y ∈ σ• such that x ≤ y. Then if α ∈ A−x ∩ A−y , it holds that

dominionx(α) = dominiony(α).

Proof. We do the proof in the case where t = m.n. This proof generalises straight away in the

general case.

Consider the set of plays s that belongs to σ |x α. As α is an accessible cell of both x and

y, it means that the play m.n belongs to σ |x β for β , α. We proved above (in the proof of

5.18) that this entails m.n ⇑ σ |x α. Consequently, the plays of σ |x α can be pushed above m.n

(assuming they satisfy the necessary conditions of Cpost), and σ |y α = {s ∈ σ |x α | s Cpost y}.

Given a path s ∈ σ |x α, there exists a path s′ such that s′ ' s, s′ Cpost y and s′ ∈ σ |x α.

Consequently, if a cell of x justifies a move in σ |x α, it also justifies one in σ |y α. �

One of the key points of sequentiality structures is this simple property, that states that if

φ(α) = β, then β has appeared after α in the sequence. This will turn to be a central point to later

prove compositionality.
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Definition 5.22. Let σ be an innocent strategy, s : ? � x ∈ σ, and let α ∈ Ax. We define ‖s‖α
as the length of the minimal prefix s′ : ?� y of s such that α ∈ Ay.

Proposition 5.23. Let σ be an innocent strategy, s : ? � x ∈ σ and α, β ∈ Ax such that

α ∈ dominion(β). Then ‖s‖α ≤ ‖s‖β.

Note that, one can equivalently write α ∈ dominionx(β) or φx(α) = β. Hence φx(α) = β ⇒

‖s‖α ≤ ‖s‖β.

Proof. Let s, α, β as before. Let s′ : ? � y the smallest even prefix of s that reaches a position

where β is available. Then, as φ−1
y (β) = φ−1

x (β), it entails that α ∈ A+
y . Now, as β is a negative

cell, is has been brought by a player move. This one has to be the last move of s′. Similarly, as

α is a positive cell, it has been brought by an opponent move, and therefore has to be already

available before the last move of s′. That is, ‖s′‖α < ‖s′‖β. Finally, as for any given cell

γ ∈ Ax ∩ Ay, we naturally have ‖s‖γ = ‖s′‖γ, we conclude. �

For instance, let us suppose that α appears at a position y in s. As α ∈ A+
x , it is introduced

by an opponent move m, and we consider the positions σ• 3 x
m
−→ y

n
−→ z ∈ σ• right below and

above y in s. Suppose that φz(α) = β points to a cell available at x. This situation is pictured in

the figure below:
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This entails there is a sequence in σ |x β that contains a move m above α. Consequently, there

is a sequence in σ |x β that contains a move above λ (as α is above λ), which is in contradiction

with the definition of σ |x β. Therefore, the cell that φ(α) points to appears after α; it is brought

up by n in z.

We end up this section with a final technical lemma.

Lemma 5.24. Let σ an innocent strategy, and x, y ∈ σ• such that x < y. Let Ax<y ⊆ Ax be the

subset of cells α available at x such that ∃m.α ` m and x
m
−→� y. Then φx � Ax<y is a total,

surjective function A+
x<y → A−x<y
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Proof. We focus on totality. Let α ∈ A+
x<y. Then let s′ : x � y ∈ σ. This path has a move m

such that α ` m. Therefore, ∃ β ∈ A−x<y such that m ∈ σ | β. Then φx(α) = β and hence φ is

total. �

5.2 On composition of innocent strategies

5.2.1 Transverse strategies

We remind that our goal is to have a category, whose objects are the dialogue games, seen as

arenas, and whose morphisms A→ B are strategies on A . B. In order to make it work, we have

to constrain ourselves to strategies that are transverse. They are those whose positions in A . B

are transverse, as defined in section 4.5.4.

Definition 5.25. • A play s of A . B = (A ⊗ ¬B)∗, of length more than 2 is transverse if the

second move of s belongs in the arena B.

• A strategy is transverse if every play in it is transverse.

Equivalently, a play is transverse if it reaches a transverse position, and a position is trans-

verse if it is reached by a transverse play. Let us remind here the structure of A . B, in the easy

case where A, B are simple.

α

vA

S A β

vB

S B

m

n

Then any transverse play of length greater than 2 starts with m.n (or any congruent moves).

Finally, let us remind that in section 4.5.4, we established a bijection:

Trans(A . B) ' Pos(A) ⊗ Pos(B).

However, if we restrict to legal positions, then:

Legal(Trans(A . B)) ; Legal(A) ⊗ Legal(B).
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since in the right hand side term, a name of Acells might belong to both A and B. Hence, the

bijection is as follows:

Legal(Trans(A . B)) ' {(x, y) | (x, y) ∈ Legal(A) ⊗ Legal(B), x#Acellsy}.

5.2.2 Relational and sequential compositions

We are in possession of two descriptions of innocent strategies. One is based on the set of

positions they reach, the second on the set of sequences that realise them. We now address

composition, and prove that relational and sequential composition are equivalent.

5.2.2.1 Sequential composition

We consider interaction of sequences. Given σ, τ define σ | τ by :

σ | τ = {s ∈ Legal(A . B .C) | s � A . B ∈ σ, and s � B .C ∈ τ}.

We might want to prove the projection of s � A . C leads to a legal, alternating sequence. Un-

fortunately, it does not necessarily hold, as the play might be non-alternating. Indeed, consider

the following case, where we write O/P to indicate that the polarity of the move is O from the

left arena point of view, and P from the right arena point of view:

A B C

O
P/O

P
O

O/P
P
O

P/O
O/P

O
P

P/O
O

By projecting this play on A .C, we reach a non-alternating O− P−O− P−O−O− P− P

sequence. So we have to select the alternating plays, leading to the following definition.

Definition 5.26. Given two strategies σ : A → B and τ : B → C we define their sequential

composition by:

σ; τ = {s ∈ Alt(A .C) | ∃t ∈ σ | τ. t � A .C = s}.
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5.2.2.2 Relational Composition

In this paragraph, we briefly recall the definition of relational composition. Given a transverse

innocent strategy σ : A . B, its set of positions σ• forms a subset of Legal(A) ⊗ Legal(B).

Similarly, if we consider a second transverse innocent strategy τ : B . C, its set of positions

τ• forms a set of positions in Legal(B) ⊗ Legal(C). Using the fact that Legal(A) ⊗ Legal(B) ⊆

Legal(A)×Legal(B), one can see the setσ• as a relation Legal(A)→ Legal(B). We are interested

in making use of the relational composition. The only property that needs to be checked is that,

given σ and τ as above, does σ•; τ• ⊆ Legal(A) × Legal(C) correspond to a subset of positions

of Legal(Trans(A . C)). Unfortunately, this is not the case, as the name separation condition is

not invariant under composition. For instance, if we compose a . b with b . a, we obtain a . a,

where the name a is reused across the . operator.

To cope with these minor difficulties, given two subsets R ⊆ A × B and R ′ ⊆ B × C we

define a new ;Rel for the remaining of this section as follows :

R ;Rel R
′ = {(x, z) | x#cellsz,∃y, (x, y) ∈ R , (y, z) ∈ R ′}

Finally, we write R |Rel R
′ for the subset of A × B ×C defined below:

R |Rel R
′ = {(x, y, z) | (x, y) ∈ R , (y, z) ∈ R ′, x#cellsz}.

Finally, given a position (x, y) of Legal(A).Legal(B), such that x#Acellsy, we will indifferently

deal with it as an element of either the original set or Legal(Trans((A . B)). Sometimes, as

analogy with the theorem 5.13 we will write X for a definable set of positions.

5.2.2.3 The correspondence

Proposition 5.27. Let (x, y, z) ∈ σ• |Rel τ
•. Then there is a sequence s : ?� (x, y, z) ∈ σ |Rel τ.

In the sequel, we write conflict-freeness for the property that given a play s : ? � x ∈ σ,

if there exists a y ∈ σ• such that y ≥ x, given any opponent move m : x → x′ such that

x′ ≤ y, there exists a path s′ such that σ 3 s.m.s′ : ? � y. This is a reformulation of forward

confluence, and hence every innocent strategy is indeed conflict-free. We also write (σ | τ)• for

the set of positions reached by sequences in (σ | τ). Moreover, we shall write P-cell, P-move

for proponent cell, proponent move, and respectively for O and opponent.

Proof. Suppose this is not the case and let s : ? � (x′, y′, z′) ∈ σ | τ be an even alternating

sequence that reaches a maximal position under (x, y, z) in (σ | τ)•. Then s � A . B ∈ σ, and, as

σ is conflict free, let s′ be a sequence such that (s � A . B).s′ : ?� (x, y) ∈ σ. Furthermore, let
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t′ be its counterpart in B .C. Now, if either s′ or t′ has its first move in either A or C (let us say,

s′), then we add to s the two first moves of s′. Either the two are in A, in which case we have

reached a higher position of (σ | τ)• under (x, y, z). Or, one is in A and the other in B. In this

case, the move in B appears as opponent move for τ. Furthermore, the B . C part is still under

y . z, hence by conflict freeness, we can complete the sequence by the reaction from τ. Then

if this move is in C, we stop, and have reached a new position of σ• |Rel τ
•. If it is in B, then

by conflict-freeness, we can extend the sequence with a reaction from σ, and so on. This whole

process terminates, as any position of B can only have a finite number of moves. Furthermore,

the newly created play has alternating projection on A . C. Therefore, in the case where either

s′, t′ has its first move in A or C, then we can reach a higher position under (x, y, z) contradicting

the maximality of (x′, y′, z′).

So let suppose that for all sequences s′, t′ as above, the first moves of s′ and t′ are in B. By

conflict-freeness of σ and τ, it means that every path x′ � x (respectively z′ � z) starts with a

P-move, and hence there are only P-cells below x in x′ (respectively below z in z′). That is, all

paths from (x′, y′) to (x, y) in σ (respectively from (y′, z′) to (y, z) in τ) begin with an O-move

from y′. We will see that there is a contradiction.

Let φ be the sequentiality structure associated with σ, and ψ the sequentiality structure

associated with τ . Consider α a available cell of Ay′<y that has been introduced last in s. Then

suppose that α is an O-cell of B, then it is a P-cell of B . C. Then as α ∈ A+
(y′,z′)<(y,z), ψ(y′,z)′(α)

is well defined. Furthermore, as only P-cells are available at z′, β = ψ(y′,z′)(α) is a cell of y′.

But then β must have been introduced after α, by proposition 5.23. Furthermore, β belongs in

Ay′<y by 5.24. However, α was, by definition, a latest cell of Ay′≤y to be introduced, we reach

a contradiction. Thus, we can conclude that α is a P-cell of B. In that case, we can repeat the

reasoning using φ instead of ψ, and get a similar contradiction.

Overall, we reach the conclusion that there exist sequences s′ or t′ that start with an O-

move in A or C, and (x′, y′, z′) is not the highest position under (x, y, z). And therefore, by

contradiction, there is a sequence s : ? � (x, y, z) ∈ σ |Rel τ. Furthermore, as the position is

legal, the sequence leading to it is legal. �

The reverse direction is straightforward. If there is a sequence s : ?� (x, y, z) then (x, y, z) ∈

σ• |Rel τ
•, as (x, y) ∈ σ•, (y, z) ∈ τ•, and legal interaction sequences lead to legal positions.

Therefore, there is a correspondence between the two compositions. We now investigate briefly

some properties about the witness of interaction.

5.2.2.4 Some additional properties

Before studying more in depth the relation between sequential and relational composition, we

prove this simple proposition.

Proposition 5.28. Let (x1, z1) and (x2, z2) in X ;Rel Y, such that (x1, z1) Cpost, cell (x2, z2). Then,
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there exists y1, y2 such that X |Rel Y 3 (x1, y1, z1) Cpost, cell (x2, y2, z2) ∈ X |Rel Y.

Proof. Given any position (x, y) of X in Pos(A) ⊗ Pos(B), then the position (x, y) ∈ X is

legal and therefore x#cellsy. Therefore, picking π ∈ Perm(Acells) such that π#cellsx then

π · (x, y) = (x, π · y). Furthermore, as X is closed under permutation, (x, π · y) ∈ X. So let

us consider (x1, y1, z1), (x2, y2, z2) ∈ X |Rel Y witnessing (x1, z1), (x2, z2) respectively. Apply-

ing appropriate permutations of Acells if necessary, we assume y1, y2#cellsx2, z2, x1, z1. Then

we simply apply the proposition 4.51 on the positions y1, y2 to conclude the existence of

π ∈ Perm(Acells) such that such that π · y1 Cpost, cell y2. Furthermore, π could be chosen such

that π#x1, z1, and π · y1#cellsx1, z1. This way, we obtain π · (x1, y1, z1) = (x1, π · y1, z1), and

(x1, y1, z1) Cpost, cell (x2, y2, z2) as expected. �

The properties proven in this section will be useful in order to prove that the composition

of innocent strategies results in innocent strategies. The first goal is to establish that there is a

unique witness of interaction, and then to prove that this one behaves well with regard to com-

patibility. We prove below that the strategy “preserves the compatibility”: the incompatibility

between different positions of the strategy has to originate from the opponent. That is, it must

be opponent that introduces first a move incompatible with future positions.

Recall that we write (m ˇ n) for the conflict relation, defined by m ˇ n⇔ ¬(m ↑ n). Given

a path t = n1. ... .nk and a move m, we write m ˇ t if ∃n ∈ t.m ˇ n. This extends to paths; s ˇ t

if ∃m ∈ s, n ∈ t.mcon f litn. Similarly, given a position x, we write m ˇ x if, seeing x as a set of

moves, ∃n ∈ x.m ˇ n.

Lemma 5.29. Let x, y ∈ σ• such that x Cpost, cell y and x ˇ y, then given any path σ 3 s : ? �

x, the first move m of s such that m ˇ y is an opponent move.

Proof. Let x′ be the greatest member of σ• under x such that x ↑ y. Namely, we define:

x′ =
⊔
{z ∈ σ• | z ≤ x, z ↑ y}.

By noticing that the set {z ∈ σ• | z ≤ x, z ↑ y} is stable under union (since σ• is closed

under compatible union 5.1.3, we conclude that x′ belongs to it. Similarly, we define y′ for

y. As σ• is closed under compatible union, x′ t y′, x t y′, x′ t y ∈ σ. Now let us consider

two paths σ 3 s : x′ t y′ � x t y′ (meaning that there exists s′ : ? � x′ t y′ such that

s′.s ∈ σ) and σ 3 t : x′ t y′ � x′ t y. Such paths exists since x′ t y′ ≤ x t y and σ is

conflict-free. These paths are non-empty, as x ˇ y so x′ , x and y′ , y. Let us name m

the moves of s (s = m1.m2. ...), and n the moves of t ( t = n1.n2. ...). Then we shall have

m1.m2 ˇ n1.n2, otherwise this would contradict the maximality of x′ and y′ as parts of x, y

that are not in conflict. It should be noted that if m1 ⇑ n1 (respectively m1 = n1), then, by

the forward consistency of innocence, (respectively by nominal determinacy and compatibility)

m1.m2 ↑ n1.n2 (respectively m1.m2 = n1.n2), and therefore, m1 ˇ n1.
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So let us consider a play and a m such as in the lemma, and assume for contradiction that it

is a player move. Then, in the play, it belongs to an OP-pair m′.m, and this one does not belong

in x′. Therefore, there is a path of the strategy from x′ t y′ � x t y′ that starts with m′.m, and

m′ ˇ y as explained above, contradicting that m is the first move of the play to be in conflict

with y. �

The previous lemma will help us prove the following proposition, stating the unicity of the

witness of interaction.

Proposition 5.30. Let (x, y, z) ∈ σ• |Rel τ
•, and (x, y′z) ∈ σ• |Rel τ

•, such that y Ccells y′, then

y = y′.

Proof. We already proved earlier in lemma 5.29 that if there were two distinct y, such that

y Cpost, cell y′, then they must be in conflict. According to the previous lemma, from the σ point

of view, opponent must initiate the conflict in B, that is, proponent from the τ point of view. On

the other hand, from the τ point of view, it must be the opponent that initiates conflict, that is,

the proponent from the σ point of view. This is a dead-end, and there is a unique y.

Finally we note that requiring y Ccells y′ instead of y Cpost, cell y′ is enough. Indeed, let us

pick two y, y′ such that y Ccells y′, and π such that π · y Cpost, cell y′. Then, in the lemma above,

this would imply π · y = y′. Therefore y 'cells y′, and, as y Ccells y′, y = y′. In particular,

given (x, y, z), (x, y′, z) ∈ σ• |Rel τ
•, then taking π ∈ Perm(Acells) such that π · y Ccells y′ entails

π · y = y′. That is, y 'cells y′. �

The witness of interaction preserves compatibility, as formulated in the below proposition.

This lemma is a consequence of the preservation of compatibility by the strategy.

Proposition 5.31. Let (x1, z1), (x2, z2) ∈ σ• ;Rel τ
• such that (x1, z1) ↑ (x2, z2). Let y1, y2 such

that y1 Cpost, cell y2 and (x1, y1, z1), (x2, y2, z2) ∈ σ• |Rel τ
•. In that case y1 ↑ y2, and, in

particular, y1 Cpost y2.

Proof. Suppose y1 ˇ y2. Let σ | τ 3 s1 : ? � (x1, y1, z1), and let n be the first move of s1

such that n ˇ y2. Then by the lemma above 5.29 it has to be an opponent from the σ point of

view, and an opponent from the τ point of view. So we reach a contradiction, and y1 ↑ y2. In

particular, by proposition 4.49, y1 Cpost y2. �

5.2.3 Innocent strategies are stable under composition

We find it easier to handle composition through the relational composition of strategies as sets

of positions. Our goal is to prove that the composition of two innocent strategies leads to an

innocent strategy. For sets of positions, this translates into the following proposition.

Proposition 5.32. The relational composition of two definable sets leads to a definable set.
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Proof. To begin, let us properly define the notations used along the proof. We consider two

definable sets X ⊆ Legal(Trans(A . B)) and Y ⊆ Legal(Trans(B . C)). If needed, we might

consider the strategies σ and τ associated respectively to X and Y . We look at X,Y as sets of

positions in Legal(A) ⊗ Legal(B) and Legal(B) ⊗ Legal(C).

The first condition (1) to check is ⊥ ∈ X ;Rel Y . This comes from (⊥A,⊥B) ∈ X, (⊥B,⊥C) ∈

Y , and hence ⊥ = (⊥A,⊥C) ∈ X ;Rel Y , as (⊥A,⊥B) ;Rel (⊥B,⊥C) = (⊥A,⊥C).

Next, we need to ensure (2) that X ;Rel Y ∈ Legal(A . C). This follows from the definition

of ;Rel , that ensures that the resulting positions are indeed legal.

We now investigate the nominal closure (3) of X ;Rel Y . Given an element x, z ∈ X ;Rel Y ,

and y ∈ B such that (x, y, z) ∈ X |Rel Y , then for all π ∈ Perm(A), (π · x, π · y, π · z) ∈ X |Rel Y as

X,Y are closed under permutation. Therefore π · (x, y) = (π · x, π · z) belongs in X ;Rel Y . Closure

under typed substitutions is dealt with on a equal footing.

The two following properties are closure under compatible intersection (4) and union (5).

We tackle both at once. Let (x1, z1), (x2, z2) ∈ X ;Rel Y such that (x1, z1) ↑ (x2, z2). For the union,

we also assume that (x1, z1) Cpost (x2, z2). Then let y1, y2 such that (x1, y1, z1) Ccells (x2, y2, z2) ∈

X |Rel Y (respectively (x1, y1, z1) Cpost, cell (x2, y2, z2) ∈ X |Rel Y for the union). As proven in the

lemma 5.31, y1 ↑ y2, and consequently (x1, y1, z1) ↑ (x2, y2, z2). In particular, y1 Cpost y2. As

X,Y are closed under compatible union and intersection, the element (x1 u x2, y1 u y2, z1 u z2)

belongs in X |Rel Y , just as (x1t x2, y1t y2, z1t z2) (in the case where they are post compatible).

So (x1 u x2, z1 u z2) ∈ X ;Rel Y , (x1 t x2, z1 t z2) ∈ X ;Rel Y , and therefore X ;Rel Y is closed

under compatible union and intersection.

The sixth property (6) focuses on conservation of compatibility after two opponent moves.

This corresponds to the first part of forward consistency, namely that given two opponent moves

m,m′ starting from a position x of an innocent strategy and such that m ⇑ m′, if the strategy

reacts by playing two moves n, n′ then, taking n, n′ such that n Cpost, cell n′, it entails n ⇑

n′. So let (x, y, z) be a position of σ• |Rel τ
•. Let m,m′ two moves starting either from x

or z, and (x1, y1, z1) (respectively (x2, y2, z2)), the first position of σ• ;Rel τ
• above (x, y, z) ] m

(respectively (x, y, z) ] m′), and such that, furthermore, (x1, y1, z1) Cpost, cell (x2, y2, z2). As,

as proven in the lemma 5.29, both σ, τ preserve compatibility, and as m ⇑ m′, this entails

(x1, y1, z1) ↑ (x2, y2, z2). In particular, using permutations of Acells, these could be chosen to be

post-compatible. Then, using the compatibility under union, we get that (x1, z1)t (x2, z2) forms

a common bound for (x, z) ] {m} and (x, z) ] {m′}.

Before proving the next properties, we introduce the following remark. Let x = (xA, xC), y =

(yA, yC) two positions of X ;Rel Y such that x < y, and let us take two positions x′ = (xa, xB, xC)

and y′ = (yA, yB, yC) in X |Rel Y such that x′ Ccells y′. Then x′ < y′. Indeed, by preservation

of compatibility, x′ ↑ y′ and in particular x′ C y′. By stability under compatible intersection,

(xA u yA, xB u yB) ∈ X, and (xB u yB, xC u yC) ∈ Y . As yA ≥ xA and yC ≥ xC , this entails

(xA, xB u yB, yC) ∈ X |Rel Y . Furthermore, xB u yB Ccells xB by definition. Consequently, by
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proposition 5.30, xB u yB = xB. This entails yB ≥ xB, and hence x′ < y′.

On the seventh point, we tackle the stability of forward confluence (7)(8). Let x ∈ X ;Rel Y

such that there is an opponent move x
m
−→ y and y is dominated in X ;Rel Y by w. One needs to

prove that there is a unique P-move n such that x
m.n
� z, z ∈ X ;Rel Y , z ≤ w and furthermore

νT (n) ⊆ νT (x) ∪ νT (m). We suppose (without lost of generality) that m is in A. We use the

property of the unique witness of interaction 5.30. Let x = (xA, xC), then there is a unique

(up to cells permutation) xB such that (xA, xB, xC) ∈ X |Rel Y . As w ∈ X ;Rel Y , there exists

a unique, up to cells permutation, w′ ∈ X |Rel Y such that w′ � A . C = w. Furthermore,

w′ can be chosen such that w′ C (xA, xB, xC). Suppose that X answers to m in A, then we

conclude easily. In the case where X answers m with a move n1 in B, then it will answer it

uniquely such that it reaches a position dominated by w′ Furthermore, this move will respect

the type condition on its support. Now, however, it is Y’s turn, and for the same reason, Y will

answer uniquely by a n2 whose target position that will remain dominated w′. Furthermore,

νT (n2) ⊆ νT (x′) ∪ νT (m) ∪ νT (n1) = νT (x′) ∪ νT (m). This way we can build an alternated

sequence of moves alternating between σ and τ, until one of the strategy moves into either A

or C. Then the position reached still remains dominated by w′. Projecting it on A . C, we get

a desired P-move reaction in A . C. Furthermore, following the uniqueness of the sequence

that leads to this P-move, one can gather that this P-move is unique satisfying the conditions.

Finally, the type condition follows from νT (x′) = νT (x), since each move in B is a P-move from

either the left or the right point of view. (7) is proven on an equal footing.

Remaining is the proof of mutual attraction (10). Let s : ?� y′ ∈ σ |Rel τ and t : ?� x′ ∈

σ |Rel τ, such that x′ ≤ y′. We set x′ = (xA, xB, xC), x = x′ � A . C = (xA, xC), y′ = (yA, yB, yC)

and y = y′ � A .C = (yA, yC) as above. Let s′ = s \ x′ defined by induction as follows:

s = ∅ ⇒ s′ = ∅ s = m.s′′ ∧m ∈ x′ ⇒ s′ = s′′ \ x s = m.s′′ ∧m < x′ ⇒ s′ = m.(s′′ \ x)

The resulting s′ is simply a sequence of moves. It is not a play, as it does not necessarily start

from the root. We consider the sequence t.s′. Our goal is to show that it is in σ |Rel τ. First of

all, we need to check that t.s′ is a play. We check the 3 conditions of proposition 4.56. If x = ⊥,

this is straightforward. In the case where x , ⊥, the first move of t is an initial move, and this

is the only one of t.s. Furthermore, no moves are repeated in t.s. Finally, we need to check the

down-closure. Let m be a move in t.s. Either this move belongs to t, and, as t is a play, the

predecessor of m is in t. Either it belongs to s′. Then either its predecessor belongs in s′ as well,

and, as s is a play, it appeared before it in the sequence. Or it does not belong to s′, in which

case we can conclude it belonged to x′. In that case, it appeared in t, and hence before it. So

this sequence forms a play. Furthermore, it reaches the position y′, which is legal. Therefore the

sequence is legal. Now, let us look at t.s′ � A . B. We already know that t � A . B ∈ σ. We will

prove that t.s′ � A . B ∈ σ by even induction on the length of s′. So let s′ = s1.m.s2, s2 being

(at this stage), possibly an empty sequence, such that we already know that t.s1 � A . B ∈ σ. To

start, we establish that m is an O-move. Suppose m is a P-move. Then there is a m′, O-move

such that m′ appears right before m in s � A . B ∈ σ. As σ is closed under ∼OP homotopy,
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s � A . B can be reorganized (s � A . B 'OP u1.u2), such that u1 : ?� (xA, xB). As m does not

belong in u1, it belongs in u2. From the ∼op property, we deduct that m′ ∈ u2 as well. Hence m′

does not belong in (xA, xB). So m′ is in s′ � A . B, and appears before m. Applying a similar

reasoning to s1 � A . B �OP s we can deduct that m′ is not in s1 � A . B, otherwise so would be

m. Hence the first move after s1 should be m′, not m. From this contradiction, we gather that

the first move m after s1 in s′ � A . B is an O-move. Using the same decomposition as before

(s � A . B ∼OP s1 � A . B.m.u2), we can deduct that there is a player move n appearing after m

in s′ such that s1.m.m′ �OP s � A . B). Therefore, t.s1.m.n ∈ σ.

Eventually, we conclude that t.s′ � A . B is in σ, and, symmetrically, that t.s′ � B .C is in τ.

So t.s′ ∈ σ |Rel τ. By projecting on A . C, we get a sequence (xA, xC)� (yA, yC). Remaining is

simply to prove that this sequence starts with an O-move and finishes with a P-move. Let us look

at the sequence t.s′ ∈ σ |Rel τ. If the first move of s′ would be in B, then from the σ perspective,

it would have to be an opponent move, that is, a P-move from the τ perspective, and similarly

for τ. Therefore, it is a move in A or C. If it is in A, it would have to be a O-move of A . B, and

therefore an O-move of A .C. The same can be said if the first move is in C. On the other hand,

if we suppose the last move is in B, we obtain a similar kind of contradiction. Therefore, the

last move would be in A, or C, and a P-move from the A . C perspective. Therefore, s′ � A . C

starts with an O-move and finishes with a P-one. This concludes the proof. �

Corollary 5.33. Innocent, transverse, typed coherent strategies are stable under composition.

Innocent strategies form the ground structure behind denotation of tensorial logic proofs.

However, they do not form a fully complete model. We will have to select those strategies that

satisfy additional conditions to achieve the final result. Before presenting those, we examine

how the weak sequentiality structures that come with innocent strategies behave with composi-

tion.

5.2.3.1 The category Inn

In order to conclude that the innocent, transverse, typed-coherent strategies form a category,

we simply need to present strategies that act as identity morphisms. These are called copy-cat
strategies.

Given an arena A, we define the transverse, innocent strategy typed-coherent copycatA : A.A

as follows, where we tag the two occurrences of A in A . A as A1, A2 respectively.

copycatA = Alt(Legal({s ∈ Play(A1 . A2) | s � A1 'cells s � A2}))

where we recall that we write 'cells to signify that there must exist π ∈ Perm(Acells) such that

π · s � A1 = s � A2. The copycat strategy can also be described through its set of positions:

copycat•A = Legal({(x, y) ∈ (Trans(A1 . A2)) | x 'Acells y})
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Indeed, every position (x, y) such that x ' y can be reached by an alternating sequence.

Proposition 5.34. copycatA is a transverse, typed-coherent, innocent strategy.

Proof. We work with copycatA as a set of sequences. By definition copycatA is closed under

nominal equivalence and strict substitutions. Furthermore, given s ∈ copycatA, and m in, let us

say, A1 such that s.m is legal, then s.m.n ∈ copycatA with n 'cells m in A2. Hence, s.m.n is legal,

and copycatA is closed by even prefix obviously. Furthermore, the condition s � A1 'cells s � A2

ensure that all the sequences in it are even-length, and that the strategy is nominal deterministic.

To simplify thinks, given a move m in A1, we write mc for its equivalent one in A2, and

reversely. That is, (mc)c = m. Finally, given s in copycatA, and m1,m2 such that m1 ⇑ m2 and

s.m1, s.m2 are legal and post compatible, then s.m1.(π1 · mc
1).m2.(π2 · mc

2) ∈ copycatA, (where

π1, π2 ∈ Perm(Acells) are picked such that the sequence is legal), and therefore the strategy is

forward consistent.

Similarly, if a sequence s.m1.m2.n1.n2.t is in copycat, then so is s.n1.n2.m1.m2.t and there-

fore the strategy is backward and forward consistent, that is, innocent. �

Finally, it is straightforward, especially by looking as copycat as a set of positions, that

copycat acts as the identity: σ; copycat = σ and copycat;σ = σ. So overall, we got this final

proposition.

Proposition 5.35. Inn is a category,

• whose objects are positive dialogue games that arise as denotations of formulas of tenso-

rial logic.

• whose morphisms are transverse, innocent, typed-coherent strategies of negative dialogue

games of the form A . B.

5.2.4 Composition of weak sequentiality structure

We now address the composition of weak sequentiality structure. Let (x, y) be a position of

Trans(A . B), seen as Pos(A)⊗Pos(B). A weak sequentiality structure ϕ(x,y) is a partial function

ϕ(x,y) : A−x ] B+
y → A+

x ] B−y where we remind that A−x are the O-cells of A available at x (and

respectively for the other ones). Then, given two innocent transverse strategies σ : A → B and

τ : B→ C, let assume ϕ and ψ are their assigned weak sequentiality structure. Then one might

wonder if the weak sequentiality structure of σ; τ can be computed directly from φ, ψ.

Let w = (x, y, z) ∈ (σ• ;Rel τ
•), then to compute (ϕ;ψ)(x,z) : A−x ] C+

z → A+
x ] C−z , we can

rely on:

ϕ(x,y) : A−x ] B+
y → A+

x ] B−y
ψ(y,z) : B−y ]C+

z → B+
y ]C−z
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We prove the following theorem.

Proposition 5.36. Let ϕ, ψ,w, x, y, z as before. Then the sequentiality structure of σ; τ at w is a

subset of:

Tr
B+

y ]B−y
A−x ,C+

z ,A+
x ,C−z

((ϕ(x,y) ] ψ(y,z)); (idA+
x
] sB−y ,B+

y
] idC−z )) : A−x ] B+

y ] B−y ]C+
z → A+

x ] B+
y ] B−y ]C−z

where the trace is taken from the traced symmetric monoidal category (pSet,], ∅) of sets and

partial functions, with monoidal product the disjoint union of sets, and unit the empty set. The

morphism sB−y ,B+
y

: B−y ] B+
y → B+

y ] B−y is the morphism coming from the symmetry. That is,

denoting χx;z the weak sequentiality structure of σ; τ,

χ(x,z)(α) = β ⇒ Tr
B+

y ]B−y
A−x ,C+

z ,A+
x ,C−z

((ϕ(x,y) ] ψ(y,z)); (idA−x ] sB−y ,B+
y
] idC+

z
))(α) = β

We remind below what is the canonical trace in the category of partial functions. Given

f : A ×C → B ×C, we compute TrC
A,B( f ) as follows :

• if i ∈ A and f (i) is defined, f (i) ∈ B then TrC
A,B( f (i)) = f (i).

• if i ∈ A, and f (i) is undefined, then TrC
A,B( f )(i) is undefined.

• If i ∈ A, f (i) is defined and f (i) ∈ C then TrC
A,B( f )(i) = feedback( f )(i).

• Given i ∈ C we get feedback( f )(i) =


feedback( f )( f (i)) if f (i) is defined ∧ f (i) ∈ C

f (i) if f (i) is defined ∧ f (i) ∈ B

is undefined if f (i) is undefined

.

Proof. Let α ∈ A−x ] C+
z , such that there exists β ∈ A+

x ] C−z satisfying α ∈ dominionσ;τ,(x,z)(β).

Suppose without lost of generality that β is in A+
x , the case where β is in C+

z is dealt with on a

equal footing. Let w = (x, y, z) witnessing (x, z). α ∈ dominionσ;τ,(x,z) means that there exists a

path s : w → w′ ∈ σ |Rel τ, with s � A . B ∈ σ, s � B . C ∈ τ, s starts from the cell β, with

α ` m ∈ s, and such that ∀γ ∈ (A+
x ]C−z \ {β})¬(∃m ∈ s.γ ` m). Suppose that α is in C+

z , the case

where α ∈ A+
x being dealt with on a equal footing. Then, by the fact that s � B . C is above no

O-cell of z, we can deduct the fact that ψ(y,z)(α) = α2 is in B+
y . Now, the O-move that triggered

m, such that α2 ` m and m ∈ s, is actually a P-move from the σ point of view. This P-move has

been triggered by a O-move from the cell ϕ(x,y)(α2) = α3. Now α3 is either a in B−y or in A+
x . If it

is in A+
x then this is automatically β as β is the only cell in A+

x that is explored by s. If it is in B−y ,

then we redo the same reasoning, and conclude that this is triggered from the τ point of view

from a O-move above ψ(y,z)(α3) and ψ(y,z)(α3) is in B+
y . Going on like this we obtain a sequence:

α1 = α

αi+1 = ψ(αi) if i is odd

αi+1 = ϕ(αi) if i is even

sequence that stops when ϕ(x,y)(αi) = β. Now, let f : Aw → N defined by f (α) = ‖s‖α. Then f

is strictly decreasing along φ(x,y) and ψ(y,z). That is, given (α) such that φ(x,y)(α) is defined then
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f (φ(x,y)(α)) < f (α) ( and equivalently for ϕ(y,z)). This ensures us that the sequence above is finite

and eventually stops. So we can conclude that β = Tr
B+

y ]B−y
A−x ,C+

z ,A+
x ,C−z

(ϕ(x,y) ] ψ(y,z); (idA−x ] sB−y ,B+
y
]

idC+
z
))(α) = β. �

Unfortunately the reverse inclusion might not be true. Suppose that there exists a cell α in

A+
x such that α has three different cells in its dominionσ,(x,y): two in A−x and only one in B+

y . The

strategy reacts to a move in α by playing a player move in B−y , and depending on the reaction

of the opponent, it explores one of the two cells of dominion(α) located in A, or the other.

Then as the context explored depends on the reaction of opponent, when post-composed with

another strategy, it will never explore one the cells that was in dominion(α), (as the reaction

of the opponent in B is now encoded into τ, that is deterministic). Hence the dominion of the

composite strategy is now restricted to one of the two original cells of A.

This is related to the difficulty of modelling the sequence ⊗−& by a strategy in linear logic.

For instance, consider the sequent ` Γ, (A&B)⊗> . The strategy, playing the tensor ⊗, will bring

two cells; one corresponding to the & on the left hand side (call it α), and one corresponding

to >. Now, calling Γ′ the context explored by σ | α, and Γ′′ = Γ \ Γ′, it would be tempting to

conclude that the strategy corresponds to the rule :

` Γ′, A & B ` Γ′′,>
` Γ, (A & B) ⊗ >

Equivalently, in tensorial logic, this would be :

Γ′, A ⊕ B ` ⊥
Γ′ ` ¬(A ⊕ B) ` Γ′′,>

` Γ,¬(A ⊕ B) ⊗ >

However, the problem is that the context explored might depend whether the strategy decides

to explore the left hand side, or the right hand side of the formula A & B. That is, the context

explored by the set of plays of the strategy whose first moves (at this stage) belong in A might be

different to the one explored by the set of plays of the strategy whose first moves (at this stage)

lie in B. That would lead to the following sequent deduction,

` Γ′1, A ` Γ′2, B
` Γ′, A & B

where Γ′ = Γ′1 ∪ Γ′2, or, equivalently

Γ′1, A ` ⊥ Γ′2, B, ` ⊥
Γ′, A ⊕ B ` ⊥

in tensorial logic. However, in both logics, it is required that Γ1 = Γ2.
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5.3 Refining innocent strategies

Innocent strategies suffer defects that prevent them from forming a fully complete for tensorial

logic. First, they are affine, meaning that a part of the context might not be explored and there-

fore might be discarded. For instance, there is an innocent strategy A ⊗ A . A. This problem

is also apparent in the confusion between 1 and >. From the game perspective, they are equal

(both accepts only one move), whereas they fundamentally differ from the logical point of view.

The second problem comes from the fact that on every type there is a strategy, namely, the triv-

ial one whose only play is the empty play. In order to exclude those cases we must focus on

strategies that are able to answer every opponent query. Those are called total.

Therefore, we add two properties to our strategies. They shall be total, and with strong

sequentiality structures that prevent them from being affine and that encode well the structure of

the atomic types.

5.3.1 Totality

A strategy is total if it can always answer an opponent move.

Definition 5.37. A strategy is total if for all s ∈ σ and for all m such that λ(m) = −1 ∧ s.m ∈

Legal(A) then ∃n. s.m.n ∈ σ.

Similarly, this property can be encoded on definable sets.

Definition 5.38. A definable set X is total if ∀x ∈ X.∀m.(λ(m) = −1 ∧ x ] {m} ∈ Legal(A)) ⇒

x ] {m} is dominated in X.

There is a straightforward equivalence between the sequential definition of totality and its

static one. More important is to prove that the total strategies are stable under composition. This

relies on our arenas being finite in the sense that any play on them can only have a finite number

of moves.

Proposition 5.39. The total strategies of Inn form a sub-category of Inn. That is, the composite

of two total strategies is total and the identity strategy is total.

Proof. Consider two strategies σ : A.B and τ : B.C such that both are total. Let s : A.C ∈ σ; τ.

Let m a O-move of A . C such that s.m is legal. Consider t a sequence of σ | τ such that

t � A . C = s. Suppose, without lost of generality, that m ∈ A. Then, as σ is total, there is

a m2 such that t � A . B.m.m2 ∈ σ. If m2 ∈ A, we conclude that s.m.m2 ∈ σ; τ. Otherwise,

m2 ∈ B, where from τ point of view, it appears as a opponent move. Then τ reacts to it with

m3. If m3 ∈ C, the s.m.m3 ∈ σ; τ. Otherwise, it is in B where it appears as an O-move from σ

point of view. Following this reasoning, we obtain a sequence m1. ... .mn of moves in B, until
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one of the strategies decides to play in A,C. As there are only finite chains in B, such a sequence

always terminates, and one of the strategy σ, τ always reacts in A,C with mn+1 leading to a play

s.m.mn+1 ∈ σ; τ. Finally, the copycat strategy is obviously total. �

Therefore, total strategies form a sub-category of Inn.

Definition 5.40. The category TotInn has same objects as Inn and morphisms total, typed-

coherent, transverse, innocent strategies.

It should however being noted that totality and maximality are two different notions. A total

strategy might not reach a maximal position. For instance, let us consider the arena associated

with the sequent ¬1 ` ¬0, whose simplified tree is displayed below:

?

.

> 1

O,m1

P, n> P, n1

This sequent has a proof, namely:

00,¬1 ` ⊥ Right ¬
¬1 ` ¬0

This proof corresponds to the total strategy {∅,m1.n>}, where the n> move is the denotation

of the triggering of the 0-rule. However, this strategy does not reach the maximal position

{m1, n>, n1}. In linear logic, this would correspond to a proof of the sequent ` 1,>.

5.3.1.1 On frugality

A play is frugal if opponent never introduces twice the same name. In particular, it never intro-

duces twice the same typed name. As typed cells are maximal (they never justify another move),

this can be formalised by focussing on cells available at the target of the play and of positive

polarities.

Definition 5.41. A play s : ?� x is frugal if it is legal and furthermore :

∀α, α′ ∈ A+
x .α , α

′ ⇒ α#Tα
′ .
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This notably entails:

∀mi,m j ∈ s.(i , j ∧ λ(mi) = λ(m j) = −1)⇒ pS (mi)q#pS (m j)q.

Concerning the cell names, the legality condition already ensures that each move by op-

ponent brings different names. So the frugality only constraints the strategy regarding typed

names. Given a strategy σ, we call frugal(σ) its set of frugal sequences.

frugal(σ) = {s : ?� x | ∀α, α′ ∈ A+
x .α , α

′ ⇒ α#Tα
′ }

Equivalently, we say that a position is frugal if it is the target of a frugal sequence. Given

X = σ•, we write frugal(X) for its set of frugal positions.

Just as we can project a proof of tensorial logic into a proof of linear logic, we would like

to project our strategies to morphisms coming from a categorical model of linear logic. More

specifically, we would like to project our strategies to the linear polarised nominal relational

model. In it, the tensor is modelled by the polarised separated product, that does not let the

same name appears twice in two different occurrences of atomic type of same polarity.

The reason why we do not enforce frugality at the level of strategies is that it does not

compose well. This has to be put in relation with section 3.4.3, where we showed that the com-

position of separated polarised relations could not be defined as the usual relational composition.

As example, let us consider the composition of the strategies corresponding to the following cut.

X ` X
¬X, X ` ⊥
¬X ⊗ X ` ⊥

1 ` ¬(¬X ⊗ X)

X ` X

X ` X
¬X, X ` ⊥
¬X ` ¬X

X,¬X ` X ⊗ ¬X
X ⊗ ¬X ` X ⊗ ¬X
X ⊗ ¬X,¬(X ⊗ ¬X

¬(X ⊗ ¬X) ` ¬(X ⊗ ¬X)
Cut1 ` ¬(X ⊗ ¬X)

First, let us display the structure of the dialogue game corresponding to ¬(X ⊗ ¬X).
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α

v

β

w

γλ

x

χ

P

O

P

where λ, χ have type AX . The idea is that the proponent will copy the name introduced by

opponent to display a copycat link. So if we look from the (1 . ¬(X ⊗ ¬X)) point of view, that

corresponds to the left hand side of the cut, player will simply copy the λ passed by opponent.

On the other hand, in the arena (¬(X ⊗¬X)) . (¬(X ⊗¬X)), as player will also follow a copy-cat

strategy, it will copy back and forth the λ. So from its point of view, it seems like opponent

has played twice the same name, hence breaking the frugality condition. The play is displayed

below, where the arrow between move emphasize the relation ` between them, and where the

typed names are bold and underlined.

1 ¬(X ⊗ ¬X) ¬(X ⊗ ¬X)

(µ, ?, α),O
(α, •, {β, α′}), P | O

(α′, •, β′), P
(β′, •, {λ, γ′}),O

(β, •, {λ, γ}),O | P
(γ, •, λ), P | O

(γ′, •, λ), P

To solve this issue, we have adopted the same technique as for linear relations: we have

considered from the start strategies that are closed under typed nominal substitutions. Given σ

be a set of plays, we define σ̂ by:

σ̂ = {e · s | e ∈ ΞT , s ∈ σ}

and equivalently, given X a set of positions, we define:

X̂ = {e · x | e ∈ ΞT , x ∈ X}.
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One can easily check that (σ̂)• = (̂σ•). The first important lemma of this section states that

our strategies are well-defined by their subset of frugal plays. We remind that a play is semi-

linear if proponent never introduces a typed name in it, and a strategy is semi-linear if all the

plays in it are. Semi-linearity is a sub-property of typed-coherency 5.2.

Proposition 5.42. Let σ be an innocent, typed-coherent, total strategy. Then σ = ̂frugal(σ).

Proof. We start by the left to right inclusion. The proof is done by induction on the lengths

of the plays s of σ. Suppose s = s′.m.n, and s′ = e1 · t′, where t′ ∈ frugal(σ), and the only

action of e1 is to merge names of t′. That is ν(s′) ⊆ ν(t′), and ν(e1) ⊆ νT (t′). Furthermore, let

us assume that (νT (t′) \ νT (s′)) ∩ νT (m) = ∅ without loss of generality (one can always do this

assumption since if there were some names in this set, one could get rid of them by applying

a typed permutation to t′). In the case where t′.m.n is frugal, then, as the only action of e1 is

to map names of νT (t′) to names of νT (s′), and (νT (t′) \ νT (s′)) ∩ νT (m) = ∅, we can conclude

that e1 · m = m. Furthermore, by typed-coherence, νT (n) ⊆ (νT (s′) ∪ νT (m)). Therefore,

e1 · νT (n) = n. Finally, let us assume that t′.m.n is not frugal. Then this entails that m brings

names appearing in t′, or brings several cells filled with the same name. In either case, we pick a

m′ such that m′ is frugal as a move, m′#T s, t, and such that there is a typed substitution e2 such

that e2 ·m′ = m, and ν(e2) ⊆ νT (m)∪ νT (m′). Finally, let us consider a n1 such that t.m′.n1 ∈ σ.

Such a move n1 exists since σ is total. Now, e1.e2 · (t.m′.n1) = s.m.(e1.e2) · n1 ' s.m.n by

nominal determinacy. Let us consider π ∈ Perm(A) such that π · (s.m.(e1.e2) · n1) = s.m.n.

As σ is semi-linear νT (e1.e2 · n1) ⊆ νT (s.m). Moreover, as n1, s.m have strong support, we

deduce that ν(π)#νT (s.m) and we conclude that π is a permutation of Acells. As π and e1, e2 have

different supports they commute. Finally, calling n′ = π · n, we got t.m′.n′ ∈ frugal(σ) and

e1.e2 · (t.m′.n′) = s.

The reverse inclusion is automatic, since frugal(σ) ⊆ σ, and σ is closed under typed substi-

tutions. �

One now can define a category with nominal positive games as objects and innocent, semi-

linear, total, frugal strategies as morphisms, where the composition is defined through closure

under typed substitutions as in section 3. Given a typed-coherent innocent strategy, its frugal

restriction is not innocent anymore, but almost. To remedy for that, we introduce frugal inno-

cence.

Definition 5.43. A strategy is frugal forward consistent, if ∀s ∈ σ and m1,m2, n1, n2 such

that s.m1.n1, s.m2.n2 ∈ σ, m1 , m2, m1 ↑ m2 then n1 � n2 . Moreover, if m1, n1 are

such that s.m1.n1 Cpost s.m2.n2 and m1.n1#m2.n2 then we have s.m1.n1 ↑ s.m2.n2 ∈ σ and

s.m1.n1.m2.n2 ∈ σ. A strategy is frugal innocent if it is frugal forward consistent and backward

consistent.

We then have the following straightforward property.

Proposition 5.44. A strategy σ is typed coherent innocent if and only if frugal(σ) is semi-linear

frugal innocent. Furthermore, σ is transverse, total if and only if frugal(σ) is.
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The proof is obvious. This allows us to define the following category.

Definition 5.45. Frugal is the category with objects positive dialogue games and morphisms

frugal innocent, semi-linear, total, transverse, frugal strategies. The composition of morphisms

is defined as follows:

σ; τ = frugal(σ̂; τ̂)

or, equivalently,

X; Y = frugal(X̂ ;Rel Ŷ)

For completeness, we prove below that the above definition makes sense.

Proposition 5.46. Frugal is well-defined, that is, if σ, τ are frugal innocent, semi-linear, total,

transverse, frugal strategies, then so is σ; τ.

Proof. As σ, τ are frugal innocent, semi-linear, total, transverse, frugal strategies, then σ̂, τ̂

are morphisms of TotInn. Therefore, σ̂; τ̂ is a morphism of TotInn and frugal(σ̂; τ̂) is a frugal

innocent, semi-linear, total, transverse, frugal strategy. �

Associativity of composition follows from the one of typed-coherent innocent strategies, and

the identity morphisms are defined to be idA = frugal(copycatA). Equivalently, a direct method

can be proposed, by relating arenas to lists, strategies with semi-linear nominal relations, and

the closure under nominal permutations with tracing of partial injective functions. More about

this is given in the appendix 9.2.

Therefore, in the next paragraph, we focus on strategies of Frugal.

5.3.2 Innocent strategies and strong structures of sequentiality

Sequentiality structures have been introduced in [69], and we simply adapt them to take care

of our alternative nominal structure, notably through the “well-typed condition”, that is our

main contribution. Similarly, the properties to be found here are mostly adaptations of the ones

presented in the original paper.

The key to definability for strategies lies in their sequentiality structures. Indeed, each move

by player will correspond to a sequence
⊕⊗

of global positive connectives, and in particular,

the
⊗

splits the formulas on the left hand side of the sequent into a partition. The division of

context taking place at the level of formulas in the proof corresponds to the division of context

taking place at the level of cells by the strategy. However, the problem with innocent strategies

is that their sequentiality structures are weak: their functions are partial. Notably, given a cell

with no move above, (corresponding to a unit), there is no way to establish what part of the
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context will be captured by it. Another way to state it, is that there is no difference between

¬0 and 1 from the strategy point of view, both are interpreted by a single player move. There

is no indication for the fact that ¬0 might capture a context, while 1 cannot. Equivalently, we

have to enforce the fact that a proponent move in X can only capture a context of type X. In

order to solve that, we extend the notion of innocent strategy to equip them with a “strong”

sequentiality structure, that is not partial anymore. If the innocence of the strategy captures the

underlying structure of the proof, then the sequentiality structure makes sure it stays logical,

and, in particular, captures the structure of the leaves (axiom and 0-rule). .

Let us recall that we work within the category Frugal, as defined in the above section.

Therefore, the strategies are not closed under typed substitutions anymore.

Definition 5.47. A strategy with sequentiality structure (σ, φ) is an innocent strategy σ together

with a family of sequentiality functions φ = {φx : A+
x → A−x | x ∈ σ

•} such that :

• φ is closed under permutations: φπ·(x) = π · φx.

• φx is a total function.

• ∀s : ?� x
m
−→

n
−→ y ∈ σ, for all α ∈ A−x ∩ A−y .φ

−1
x (α) = φ−1

y (α).

This definition of strong sequentiality structure is coherent with the definition of weak se-

quentiality structure given in the context of innocent strategies. We recall that the action of name

permutations on functions is defined by:

(π · φ)(x) = π · (φ(π−1 · x))

Proposition 5.48. Let (σ, φ) be an innocent strategy with sequentiality structure, and ψ the weak

sequentiality structure canonically associated to σ. Then ψ ⊆ φ (where the inclusion takes place

at the level of partial functions).

Proof. Let x be a position of σ•, α a negative cell available at x, and m an opponent move

above α. Moreover, let us consider β, a positive cell available at x, such that there is a play in

σ |x α that contains a move n above β. That is, ψ(β) = α. Let s = m.s′n a play of σ |x α

that starts with m and finishes with n. Consider all the negative cells available at x but α. By

definition of σ |x α, they are not explored by the play s, and therefore remain available all along

it. Consequently, the set of cells φ−1
x (A−x \ α) is still present at y, the target position of m.s′.n.

As n explores above β, β is not available at y and therefore β < φ−1
x (A−x \ α). As the function is

total, this entails β ∈ φ−1
x (α), that is, φx(β) = α. �

Since our new sequentiality structure is an extension of the canonical one imposed by the

innocence of the strategy, it approximately satisfies the same properties. Among them, Propo-

sition 5.23 remains true. That is, given s : ? � x ∈ σ, if φx(α) = β, (where α, β ∈ Ax), then

‖s‖α < ‖s‖β. The proof is exactly the same as the one of the original proposition 5.23.
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We furthermore need to make sure that the context captured by a cell is coherent. That is,

an untyped cell can capture any context, but a typed cell can only capture a context of the same

type, and, by linearity, only a single cell. We therefore impose the following conditions.

Definition 5.49. Given (σ, φ) a strategy with sequentiality structure, we say that φ is well-typed
if:

• ∀x ∈ σ•, ∀α ∈ A+
x , ν(pαq) ∈ AT ⇒ (∀π ∈ Perm(AT ).ν(pφπ·x(π · α)q) = π · ν(p(φx(α))q)).

That is ν(pφx(α)q) ∩ AT ⊆ ν(pαq) ∩ AT .

• ∀x ∈ σ•, ∀α ∈ A−x .(ν(pαq) ∩ AT , ∅ ⇒ |φ
−1
x (α)| = 1).

One important consequence of this definition is that player cannot play a move in an atomic

formula X if opponent has not played in another X before. Then, player will play the same

name α as opponent played before, establishing a copy-cat link. In other terms, the copy-cat

links are oriented, from negative to positive literals. The strategies with well-typed sequentiality

structures are automatically semi-linear. Indeed, if player plays a cell with a name of AT , then

from the first condition, it points to a positive cell of same type through φ, and this cell has the

same name. Finally, as we know that sequentiality structures are such that if φ(α) = β then α

appears before β, then we can devise that if proponent plays a typed name, then this one was

brought by opponent before. Finally, as the strategy is frugal, opponent never plays twice the

same name. Now, if player would want to play twice the typed same name, then it would mean

that there would be two positive cells that point to it through φ. However, that is prevented

thanks to the second condition.

Note that, as in a vertex v, only the final cell pvq can be a typed cell, then it is equivalent to

require ν(pαq) ∩ AT , ∅ and ν(α) ∩ AT , ∅. This entails this small simplification.

Lemma 5.50. The well-typed conditions are equivalent to the following ones:

• ∀x ∈ σ•.∀α ∈ A+
x .ν(φx(α)) ∩ AT ⊆ ν(α) ∩ AT .

• ∀x ∈ σ•.∀α ∈ A−x .(ν(α) ∩ AT , ∅ ⇒ |φ
−1
x (α)| = 1).

5.3.2.1 Composition of sequentiality structures

To start this section, let us recall that weak sequentiality structures compose through tracing,

but not exactly. That is, the composition of two weak sequentiality structures φ and ψ along a

position of interaction (x, y, z) is defined at the level of the strategy, and is included in:

Tr
B+

y ]B−y
A−x ,C+

z ,A+
x ,C−z

((ϕ(x,y) ]ψ(y,z)); (idA+
x
] sB−y ,B+

y
] idC−z )) : A−x ] B+

y ] B−y ]C+
z → A+

x ] B+
y ] B−y ]C−z )

the inclusion being, in the general case, strict. After a brief discussion, it was highlighted that

the reason for this strictness might be pointed to a wrong logical behaviour with regard to the

&-rule by innocent strategies :

Γ1 ` A Γ2 ` B
Γ1 ∪ Γ2 ` A & B
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in linear logic, or

Γ1, A ` ⊥ Γ2, B ` ⊥
Γ1 ∪ Γ2, A ⊕ B ` ⊥

in tensorial logic.

This behaviour follows from the fact that a definition of sequentiality structure only through

“what is explored” is not strong enough. Our new definition does not encounter this problem,

what is explored by the strategy on the left or on the right might differ, but this is not taken into

account by the structure.

As expected, composition of sequentiality structures is defined through tracing. One

already knows that this is coherent with their restriction to weak sequentiality structure. That

is, given φ, ψ sequentiality structures associated with two strategies σ : A → B and τ : B → C,

we already know that the weak sequentiality structure associated with σ; τ is a family of

sub-functions of Tr(φ ] ψ; id ] s ] id).

Definition 5.51. Let (σ, ϕ) : A → B and (τ, ψ) : B→ C two strategies with sequentiality struc-

tures. We define their composition (σ, ϕ); (τ, ψ) by (σ; τ, ϕ;seq ψ), where given a legal position

(x, y, z) of σ• |Rel τ
• ⊆ Pos(A . B .C):

(ϕ;seq ψ)(x,z) = Tr
B+

y ]B−y
A−x ,C+

z ,A+
x ,C−z

(ϕ(x,y) ] ψy,z; (idA+
x
] sB−y ,B+

y
] idC−z )) : A−x ] B+

y ] B−y ]C+
z →

A+
x ] B+

y ] B−y ]C−z

We need to prove that this leads to a sequentiality structure, that is, that the thus defined

function is total. Furthermore, we prove that if the two sequentiality structures are well-typed,

then so is their composition. Finally, it is necessary to check that two distinct witnesses of

interaction lead to the same final sequentiality structure.

Lemma 5.52. The function

Tr
B+

y ]B−y
A−x ,C+

z ,A+
x C−z

(ϕ(x,y) ] ψy,z; (idA+
x
] sB−y ,B+

y
] idC−z )) : A−x ] B+

y ] B−y ]C+
z → A+

x ] B+
y ] B−y ]C−z

is total.

Proof. We simply need to show that the partial function ϕx,y]ψy,z � B−y ]B+
y ; sB−y ,B+

y
is nilpotent.

It is true since, given s : ? � (x, y, z), and the function ‖.‖ that to each cell α in B gives the

length of the minimal subsequence s′ � s ↑ B such that s′ introduces α, then ‖ϕx,y(α)‖ < ‖α‖,

and equally for ψ. Therefore, given any cell of By, there is no infinite chain following repetitive

applications of the function φx,y ] ψy,z � B−y ] B+
y ; sB−y ,B+

y
. �

Lemma 5.53. If φ, ψ are well-typed, then so is their composition.
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Proof. We only need to show that the two properties defining well-typedness are stable under

iterated applications of φ and ψ (as given any cell α ∈ A+
(x,z), there is a sequence of alternating

φ, ψ such that (φ;seq ψ)(α) = ..φ◦ψ◦...(α)). Let us assume without loss of assumption that the last

function of the previous sequence is φ. Then ν(α)∩AT ⊇ ν(φ(x,y)(α))∩AT ⊇ ν(ψ(y,z)◦φ(x,y)(α))∩

AT ⊇ ... ⊇ (φx,y;seq ψ(y,z)(α). We proceed similarly to show that |φ(x,y);seq ψ
−1
(y,z)(α)| = 1 when

α ∩ AT , ∅. �

Finally, before being able to conclude, we need a final lemma.

Lemma 5.54. Let y , y′ such that (x, y, z), (x, y′, z) ∈ σ• |Rel τ
•. Then:

Tr
B+

y ]B−y
A+

x ,C−z ,A−x ,C+
z
((ϕ(x,y) ] ψy,z); (idA+

x
] sB−y ,B+

y
] idC−z ))

= Tr
B′+y ]B′−y
A+

x ,C−z ,A−x ,C+
z
((ϕ(x,y′) ] ψy′,z); (idA+

x
] sB′−y ,B′+y ] idC−z ))

Proof. We know that there is a unique witness of interaction, up to cell nominal permutations.

Hence y 'cells y′. Furthermore, as (x, y) is legal, x#cellsy, and similarly y#cellsz. So it follows that

there exists a permutation π such that π · (x, y, z) = (x, y′, z). Then the lemma follows from φ, ψ

being nominal, as well of the trace operator. That is, given f : y × x→ z × x a generic function:

Trx
y,z( f )(α) = (π · Tr)x

y,z( f )(α)

= π · (Trπ
−1·x
π−1·y,π−1·z(π

−1 · f ))(α)

= π · (Trπ
−1·x
π−1·y,z(π

−1 · f )(π−1 · α))

In our case,

f = ϕ(x,y) ] ψ(y,z); (idA+
x
] sB−y ,B+

y
] idC−z )

π−1 · f = ϕπ−1·(x,y) ] ψπ−1·(y,z); (idA+

π−1 ·x
] sB−

π−1 ·y
,B+

π−1 ·y
] idC−

π−1 ·z
)

So let us pick π such that π · (x, y, z) = (x, y′, z). Then as α is a cell of (x, z) and π · (x, z) = (x, z),

we got π−1 · α = α. Finally, to simplify, writing Trx,y,z(φx,y | ψy,z) for Tr
B+

y ]B−y
A−x ,C+

z ,A+
x ,C−z

((ϕ(x,y) ]

ψy,z); (idA+
x
] sB−y ,B+

y
] idC−z )) we got:

Trx,y′z(φ(x,y′) | ψ(y′,z))(α) = Trπ·(x,y,z)(φπ·(x,y) | ψπ·(y,z)))(π · α)

= Trπ·(x,y,z)(π · φ(x,y) | π · ψ(y,z))(π · α)

= π · (Trx,y,z(φ(x,y) ] ψ(y,z))(α))

= Try(φ(x,y) ] ψ(y,z))(α)

where the last equality holds since Trx,y,z(φ(x,y) ] ψ(y,z))(α) is a cell of (x, z). �

So finally we can conclude that we have a category of arena games and transverse, innocent,

total, frugal strategies with well-typed sequentiality structures as morphisms. These strategies

will prove to be sound and fully complete for tensorial logic. We name this category TTSFInn.
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Definition 5.55. TTSFInn is the category with objects positive dialogue games and morphisms

transverse, total, semi-linear, frugal, innocent strategies with well-typed strong sequentiality

structures on negative dialogue games A . B. We will call such strategies brave.

We will explore this category in the next section. We will notably present the associated

copycat morphisms, and will expose its categorical structure.
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Chapter 6

Full Completeness

Full completeness was first introduced in [5] for multiplicative linear logic (with mix rule). A

model is fully complete if it is sound and every morphism corresponds to a proof. This amounts

to a full functor from the category of proofs (modulo equivalence) to the categorical model

investigated, such that every object in the categorical model lies in the image of the functor.

However, in that seminal paper, just as in many others [60, 50, 24], the functor was not only

full but also faithful. That is, there was an equivalence of categories. In that case, there is a one

to one correspondence between proofs modulo equivalence and the morphisms of the category.

These results were all obtained following the same recipe. They relied on known canonical

representations of proofs modulo equivalence for several fragments of linear logic, all under the

form of proof nets. This was discussed in 2.2.3. One can then establish an equivalence between

the proof nets and the morphisms of the category. In this case, the model is an instance of a free

category on the discrete category VAR. In our case, we will deal with tensorial logic, and we

will rely on TENSfoc−glob to distinguish between classes of equivalence of proofs. We recall that

TENSfoc−glob is the focalised fragment of tensorial logic with global connectives, introduced in

2.3.2.1.

In the first section of this chapter, we present the interpretation of tensorial logic into our

category TTSFInn, defined at the end of the previous chapter in definition 5.55, and prove that

TTSFInn is a sound model for it. Furthermore, we prove that there is a one-to-one correspon-

dence between the morphisms of TTSFInn and the proof invariants of tensorial logic. That is,

TTSFInn is an instance of the free dialogue category with sums on the discrete category VAR.

Following this result, we recall that tensorial logic and linear logic are strongly linked, es-

pecially at a syntactic level. As each proof of tensorial logic can be seen as a proof of linear

logic (and reversely), we want to use the category TTSFInn to interpret linear logic. Once done,

we define a mapping from this interpretation to the nominal relations. This allows us to prove a

full completeness result for MALL, based on a refinement of linear nominal polarised relations.

However, the final model obtained this way is unfortunately not the free star-autonomous cate-

gory with products on VAR. That is, the functor from the proofs to the categories of relations is

201



202 CHAPTER 6. FULL COMPLETENESS

only full, but not faithful: two proofs might be the interpreted by the same morphism.

Once again, this work is mainly an adaptation of the work that Melliès carried in [66, 69,

73]. In [66], Melliès did introduce a full-completeness for linear logic without axiom-links fol-

lowing a similar recipe, however relying on a notion of payoff instead of sequentality structures.

This one also ecompassed exponentials, whereas we don’t consider them here. In [69], the re-

sult was re-established using sequentiality structures (this time, without exponentials) instead

of payoff. In [73], a model of the free-multiplicative dialogue category (hence, corresponding

to axiom-links in the case of VAR) was presented, however this one did not include the additive

fragment. Here, we display the free dialogue (with additive structure) category over VAR, and

prove that the projection extends indeed the original full-completeness result for multiplicative-

additive linear logic to include axiom-links.

6.1 Interpretation of proofs and soundness

In order to prove that we can soundly interpret tensorial logic in TTSFInn, we need to prove

that TTSFInn forms a dialogue category with sums, with the ability to model the axiom rule on

literals. We remind that A . B = (A ⊗ ¬B)∗. We present below the pre-arena X . X, where X is

an atomic variable.

α

•

λ β

•

χ

m

n

φ

Figure 6.1: Dialogue game of X . X

Then the strategy σ interpreting the axiom is the strategy with maximal plays m.n,

pmq.pnq = (α, •, {inl(λ), inr(β)}).(inr(β), •, {λ}), and with sequentiality structure φ(λ) = λ. It

is a transverse, total, frugal strategy with strong sequentiality structure. We recall that such a

strategy is called brave. We remind that a frugal play is legal. That is, frugality entails legality.

More generally, we present the copy-cat strategy, that acts as the identity in the TTSFInn

category. Given an arena A, we define the brave strategy copycatA : A1 . A2 as follows:

copycatA = {s ∈ Play(A) | s frugal, alternated, even-length and s � A1 'cells s � A2}.

The semi-linearity and totality are automatic. The copycatA strategy can also be described
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through its set of positions:

copycat•A = {(x, y) ∈ Frugal(Trans(A . A)) | x 'Acells y}

Finally, its structure of sequentiality is described as the identity function between negative and

positive cells. That is, given (x, y) ∈ copycatA, and π ∈ Perm(Acells) such that π · x = y, then

φx,y : A+
y ] A−x → A+

x ] A−y is defined as follows:

α ∈ A−y ⇒ φx,y(α) = π−1 · α ∈ A+
x

α ∈ A+
x ⇒ φx,y(α) = π · α ∈ A−y

Then given σ : A . B, we have σ; copycatB = σ and copycatA;σ = σ.

We deal in the sub-sections below with the categorical structure. Several distinct steps are

needed. First, we prove that the category is monoidal. Then, we establish the existence of a

natural isomorphism between C(A ⊗ B,⊥) and C(A,¬B), allowing us to conclude that it is a

dialogue category. Finally, we tackle the coproduct. We also take advantage of this presentation

to expose the denotation function from proofs to strategies.

6.1.1 TTSFInn is monoidal

The monoidal functor is, of course, defined by ⊗ on objects. Given two morphisms σ : A → C

and τ : B→ D, that is, two strategies σ : (A . C) and τ : (B . D), one needs to define a strategy

σ⊗ τ : (A⊗ B . (C ⊗D)). We present in figure 6.2 the structure of the arena (A⊗ B⊗¬(C ⊗D)),

using the standard decomposition of each of the arena A, B,C,D into a sum of simple games;

A =
⊕

Ai for instance. We denote by ai (resp bi, ci, di) the initial values of Ai (resp Bi,Ci,Di).

α

(ai, b j)

Ai B j β

(ck, dl)

Ck Dl

... ...

... ...

Figure 6.2: Structure of A ⊗ B .C ⊗ D.

Then, one can see that, as the strategy σ ⊗ τ is transverse, the two first moves will be of
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the shape (α, (aibi), S Ai ] S B j ] β).(β, (ci, di), S Ck ] S Dl), so are isomorphic to (m1,m2).(n1, n2),

where m1.n1 ∈ σ and m2.n2 ∈ τ. Furthermore, after two moves, the cells available are S Ai ]

S Bi ] S Ci ] S Di , and the sequentiality structure yields a function φ{m1]n1} ] ψ{m2]n2}, where φ

is the sequentiality structure associated with σ, and ψ the one associated with τ. Furthermore

φm1.m2 has domain of definition and image in S Ai ] S Ck , whereas ψn2.n2 acts upon S B j ] S Dl .

We make that precise using the equations from section 4.5.4.

Trans(A ⊗ B .C ⊗ D) ' Pos(A ⊗ B) ⊗ Pos(C ⊗ D)

' (Pos(A) ⊗ AcellsPos(B)) ⊗ (Pos(C) ⊗ AcellsPos(D))

' (Pos(A) ⊗ Pos(C)) ⊗ (Acells×Acells) (Pos(B) ⊗ Pos(D))

' Trans(A .C) ⊗ (Acells×Acells) Trans(B . D)

So given σ : A . C, τ : B . C, we define σ ⊗ τ first by looking at its set of positions, where we

remind that $1 is the function on positions that to a position returns the cell it is rooted on.

(σ ⊗ τ)• ' Frugal(Legal((σ• ⊗ (Acells×Acells)τ
•))

= (⊥A.C × ⊥B.D) ] Frugal({((xA, xC), (yB, yD)) | $1(x1) = $1(yB), $1(xC) = $1(yD),

(xA, xC) ∈ σ• \ {⊥}, (yB, yD) ∈ τ• \ {⊥}, (ν(xA, xC) \ ν($1(xA), $1(xC))#Acells(yB, yD)})

Equivalently, it can be presented by the set of plays:

σ ⊗ τ = {s ∈ A ⊗ B .C ⊗ D | s frugal, even-length, alternated, s � A .C ∈ σ, s � B . D ∈ τ}

Finally, any position of (σ ⊗ τ) being isomorphic to a position (x, y), where x ∈ σ• and y ∈ τ•,

one can describe the structure of sequentiality straightforwardly by :

φσ⊗τ, (x,y) ' φσ,x ] φτ,y.

The strategy hence obtained is frugal by definition, transverse and with a strong sequentiality

structure. Innocence can be straightforwardly checked following innocence of σ, τ, and relying

on the property that every two moves, except the two initial ones, that happen in A . B and C .D

respectively, are independent when projecting in A ⊗ B .C ⊗ D.

As the arena for A ⊗ (B ⊗ C) is the same as the one for (A ⊗ B) ⊗ C (by associativity of

⊗ Acells), the monoidal product satisfies associativity as required. What remains is to tackle the

units. Given an arena A, we have to give description of the morphisms A→ A⊗ I and A⊗ I → A

satisfying the required equations. However, A ⊗ I, I ⊗ A and A are isomorphic arenas. Hence,

the strategies λ, ρ are simply copy-cat like strategies.

For instance, we give below the interpretation of the introduction rule of I. The sequent ` I
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is interpreted by I . I. The unique non-empty play in the strategy interpreting it consists of the

sole possible couples of moves m.n as in Figure 6.3. That is ~πI� = {∅,m.n} where ∅ is the

empty sequence.

α

•

β

•

m

n

Figure 6.3: Dialogue game of I . I.

The monoidal product allows us to interpret the right tensor rule. The proof:

π1
Γ ` A

π2
∆ ` B

Γ,∆ ` A ⊗ B

is interpreted by ~π1� ⊗ ~π2� : ~Γ� ⊗ ~∆�→ ~A� ⊗ ~B�.

6.1.2 TTSFInn is a dialogue category

The goal is to prove that there is a natural isomorphism between the two following hom-set

functors:

TTSFInn(A ⊗ B,⊥) ' TTSFInn(A,¬B).

In that case, this translates into:

strat((A ⊗ B ⊗ (¬¬I))∗) ' strat((A ⊗ ¬¬B)∗)

where strat(C) denotes the set of appropriate strategies on the arena C.

We display how those two arenas look like. We start with (A⊗ B⊗ (¬¬I))∗, whose dialogue

game is presented in figure 6.4.
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α

(ai, b j)

Ai B j β

•

δ

•

... ...

m

¬1

mI

Figure 6.4: Dialogue game for (A ⊗ B ⊗ (¬¬I))∗.

The transverse plays of this arena start with a move m, with pmq ' (α, (ai, b j), S Ai ] TB j ] {β}).

Then, as the play is transverse, it has to answer by the unique (up to nominal equivalence)

proponent move justified by β, which is a negation move pm¬q = (β, •, δ). Finally, it is the

opponent’s turn to play, and opponent plays in the unique negative cell available, δ, playing

the unique possible move pmIq = (δ, •). At this stage, the β branch of the dialogue tree, that

corresponds to ¬¬I is full, and the proponent must play a move above S Ai ] TA j .

We now turn to (A ⊗ ¬¬B)∗, whose dialogue game is drawn in Figure 6.5.

•

α

ai

Ai β

•

δ

b j

B j

... ...

... ...

m1

¬1

m2

Figure 6.5: Dialogue game for (A ⊗ (¬¬B))∗
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A transverse play of A . ¬B starts with a move m1, with pm1q ' (α, ai, S Ai ] β). Then, as

the play is transverse, the next move must be the unique (up to equivalence) move justified by

β, that is a negation move p¬q = (β, •, {δ}). Now, opponent answers with an initial move of B,

of the shape pm2q = (δ, b j,TB j). Finally, it is proponent’s turn to play, and it must play a move

above one of the cell of TB j ] S Ai .

Therefore, the isomorphisms between strategies must relate plays of the shape

{(m1,m2).¬1.mI .s} and the ones of the shape {m1.¬1.m2.s}. However, we must pay attention

to the legality. Formally, given σ ∈ TTSFInn(A ⊗ B,⊥) we define τ ∈ TTSFInn(A,¬B) the

corresponding strategy by:

τ = Legal({∅,mA.¬1,mA.¬1.m′B.s | (mA,mb).¬1.mI .s ∈ σ, m′B 'cells mB})

And, we present the reverse direction:

σ = Legal({∅, (mA ×Acells mB).¬1, (mA ×Acells mB).¬1.mI .s | (mA.¬1.m′B.s) ∈ τ, mB) 'cells mB})

Furthermore, let us give a brief description of the two sets of positions of the different arenas:

Trans((A ⊗ B) . ⊥) ' Pos(A ⊗ B) ⊗ Pos(⊥)

Trans(A . ¬B) ' Pos(A) ⊗ Pos(¬B)

Trans∗(A . ¬B) ' Pos∗(A) ×Acells (Event(>) ×Acells Pos(B))

We recall that we write ×Acells for the following variant of the fibred product between moves:

(¬ ×Acells m) denotes the product of moves (¬,m) imposing that the final cell of ¬ is the initial

cell of m, where ¬ denotes an event of Event(>), that is, a move of the form (α, v, {β}) where

α, β ∈ Acells. This was introduced in Section 4.5.4. For every position of x of Trans(A ⊗ B . ⊥)

reached by a play of length strictly more than 2 belonging to a strategy σ, then writing x =

(xA, xB, x⊥), every cell available at x belongs in (xA, xB). Furthermore, a play of length more

than 4 of a strategy τ : A . ¬B will reach a position (xA,¬ ×
Acells xB) (where we write ¬ for the

events of Event(>)), where xB is not the empty position. We write f : A(xA,¬×
Acells xB) → A(xA,xB)

for the canonical bijection between the available cells of (xA,¬ ×
Acells xB) and those of (xA, xB).

Now, giving a position (xA,¬ ×
Acells xB) a position of τ, and (xA, xB, x⊥) a position of σ, we

define ψ the sequentiality structure of ψ, in function of φ, the sequentiality structure of σ, as

follows:

ψ(xA,¬×
Acells xB)(α) = f −1(φ(xA,xB,x⊥)( f (α)))

And straightforwardly, we could express the reverse direction:

φ(xA,xB,x⊥)(α) = f (ψ(xA,¬×
Acells xB)( f −1(α)))
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As the sequentiality structures φ, ψ are equivariant, the choice of x⊥ in one case, or the move ¬

in the other does not change their behaviour, and therefore these functions are well-defined.

Overall, we obtain a bijection between the set of brave strategies of A⊗B.⊥ and A.¬B. Note

that in similar way we could have obtained a bijection between the strategies of TTSFInn(A ⊗

¬B,⊥) and the morphisms of TTSFInn(A, B).

This allows us to define the denotation of the right negation. Given a proof π as below:

π′

Γ, A ` ⊥
Γ ` ¬A

then the interpretation of π is also g(~π′�), with g being the isomorphism TTSFInn(
⊗

Γ ⊗

A,⊥)
g
−→ TTSFInn(

⊗
Γ,¬A).

The left negation case is dealt with on an equal basis noticing that there is an injection:

strat(A ⊗ ¬B)∗ ' strat(A ⊗ ¬B ⊗ ¬¬I)∗

This injection is not a bijection since the second move of a transverse strategy of A . B must be

in B, whereas a strategy of (A⊗¬B) .⊥ can, after playing one move in A⊗¬B, and two in ¬¬I,

start exploring A and ignore ¬B. Given a proof π as follows:

π′

Γ ` A
Γ,¬A ` ⊥

then, calling g the injection TTSFInn(
⊗

Γ, A)
g
−→ TTSFInn(

⊗
Γ⊗¬A,⊥), the interpretation of

π is g(π′).

6.1.3 TTSFInn has finite coproducts

Finally, let us study the sum structure of TTSFInn. As expected, given A, B objects of TTSFInn,

the object corresponding to their coproduct is A⊕B. We need to prove that A⊕B indeed satisfies

the universal property of the coproduct. Namely, that there exist two morphisms inl : A→ A⊕B

and inr : B → A ⊕ B, such that for every object C, for every pair of morphisms σA : A → C

and σB : B → C, there exists a unique morphism τ : A ⊕ B → C such that inl; τ = σA and

inr; τ = σB. We display in figure 6.6 below the associated diagram.

So let us consider two strategies σA : A .C and σB : B .C, and let us look at the structure of

A⊕ B .C, displayed in Figure 6.7. It is clear that either the first move is going to be played in A,

and then the strategy will follow σ, or it will be played in B, and then the strategy will play as

τ. More precisely, we study formally the correspondence, establishing a isomorphism between
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A ⊕ BA B

C

inl inr

τσA σB

Figure 6.6: Coproduct diagram of A ⊕ B

α

ai

Ai

b j

B jβ

c j

C j

β

c j

C j

... ... ......

...... ... ...

Figure 6.7: Dialogue game of A ⊕ B .C
.

the set of transverse positions of (A ⊕ B) . C, and the appropriate sum of the sets of transverse

positions of A . B and A .C.

Trans((A ⊕ B) .C) ' Pos(A ⊕ B) ⊗ Pos(C)

' (inl(Pos(A)) ] inr(Pos(B))) ⊗ Pos(C)

' (inl(Pos(A)) ⊗ Pos(C)) ] (inr(Pos(B) ⊗ Pos(C))

' inl(Pos(A) ⊗ Pos(C)) ] inr(Pos(B) ⊗ Pos(C))

' inl(Trans(A .C)) ] inr(Trans(B .C))

Therefore, using the above isomorphism, the strategy σA ⊕ σB is defined by:

(σA ⊕ σB)• ' inl(σ•A) ] inr(σ•B)

The strategy thus defined is innocent, total, frugal, and transverse, since the two original strate-

gies are. Finally, defining inl : A . A ⊕ B to be the identity strategy between A and the A part of

A⊕B, and similarly for inr, one can straightforwardly see that τ = (σA⊕σB) makes the diagram
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of figure 6.6 commutes.

Furthermore, given a strategy σ : A ⊕ B .C, then σ• ' (σ• � inl(A .C))] (σ• � inr(B .C)),

and hence there is a decomposition of σ into two strategies. Furthermore, these two strategies

satisfy straightforwardly all the necessary conditions.

Finally, we study the unit of the addition. As Pos(A ⊕ 0) ' Pos(A), since Pos(0) has only

one position, namely the empty one, one can define two isomorphisms A . A ⊕ 0 and A ⊕ 0 . A,

that essentially act as the copy-cat strategy.

For instance, let us give the denotation of the proof π:

Left 0
Γ, 0 ` C

Let us write Γ = F1, ...Fn. This proof will be interpreted as a strategy in the pre-arena (F1 ⊗ ...⊗

Fn ⊗ 0 ⊗ ¬C)∗ ' 0∗. Hence this proof will be interpreted by the strategy that has as unique play

the empty sequence.

The sum allows to define the denotation of the two right ⊕-rules, and the left ⊕-rule. For

instance, let us consider the proof π below:

π′

Γ ` A right-⊕1
Γ ` A ⊕ B

Then, ~π� = ~π′�; inl, where inl : A → A ⊕ B. Similarly, the right ⊕2 rule is interpreted by

post-composition with inr. Likewise, the left ⊕-rule, is interpreted by the sum. For instance, the

proof π below:

π1
Γ, A1 ` B

π2
Γ, A2 ` B

Γ, A1 ⊕ A2 ` B

is interpreted as follows. Let us write β the associativity morphism:

β : ~Γ� ⊗ (~A1� ⊕ ~A2�)→ (~Γ� ⊗ ~A1�) ⊕ (~Γ� ⊗ ~A2�). Then ~π� = β; (~π1� ⊕ ~π2�),

We conclude this section by recapitulating that all the points we proved along this section

together allow us to conclude that TTSFInn organises itself as a category that can soundly

interpret axiom-links and forms a dialogue category with sums. Therefore, it is a sound model

of tensorial logic with propositional variables.

6.2 Full completeness for propositional tensorial logic

The goal of this section is to prove that the category TTSFInn is the free dialogue category with

products on VAR. This is the content of the proposition below.
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Proposition 6.1. There is a correspondence between the equivalence classes of proofs of Γ ` A

and the morphisms of TTSFInn(~Γ�, ~A�).

This entails strong completeness, and more. That is, the functor from the proof invariants of

tensorial logic to TTSFInn is not only full, but also faithful. The proof of the proposition relies

on the following lemma.

Lemma 6.2. Let ¬B1,¬B2, ...,¬Bn ` ¬A a sequent. Then there is a one to one correspondence

between :

• The equivalence classes of proofs of the sequent focussing on one Bi and the transverse

strategies of (~¬B1� ⊗ ~¬B2�.... ⊗ ~¬Bn� ⊗ ~A�)∗.

• The equivalence classes of proofs of the sequent and the strategies of (~B1� ⊗ ~¬B2�... ⊗

~¬Bn� ⊗ ~A�)∗.

What we meant by focussing on one Bi is that, taking a focalised proof in the equivalence

class, it will behave by focussing on one of the Bi at the beginning of its first synchronous phase,

as displayed in the proof below.

π
¬B1, ...,¬Bi−1,¬Bi+1, ...,¬Bn, A′1, .., A

′
m ` Bi

¬B1,¬B2, ...,¬Bn, A′1, .., A
′
m ` ⊥

¬B1,¬B2, ...,¬Bn, A ` ⊥
¬B1,¬B2, ...,¬Bn ` ¬A

Now, there is a syntactic equivalence between the focalised proofs of B1, ..., Bn ` A and the

focalised proofs of ¬A ` ¬(B1 ⊗ ... ⊗ Bn), that will be focussing on A, as displayed below:

π′

B′1, ..., B
′
m ` A

¬A, B′1, ..., B
′
m ` ⊥ Asynchronous phase

¬A, B1, ..., Bn ` ⊥
⊗

¬A, B1 ⊗ .... ⊗ Bn ` ⊥

¬A ` ¬(B1 ⊗ ... ⊗ Bn)

∼

π′

B′1, ..., B
′
m ` A

Asynchronous phase
B1, .., Bn ` A

Therefore, following the lemma, there is a one-to-one correspondence between the equiva-

lence classes of proofs of ¬A ` ¬(B1 ⊗ ...⊗ Bn) and the transverse strategies of (~B1 ⊗ ...⊗ Bn�⊗

~¬A�)∗ that is, the transverse strategies of ~Γ� . ~A�, where Γ = B1, ..., Bn. Hence proving the

lemma 6.2 entails proving the proposition 6.1.

We work with proofs in TENSfoc,glob. We remind that within this fragment, two proofs are

equivalent if and only if they are equal.

Proof of lemma 6.2. We tackle the two points of the lemma at once. The proof is done by

induction on the maximal length of the sequences of σ. Let us note that since σ is equivariant

and frugal, the names chosen on the moves of the sequent we pick to deal with the induction
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case will not matter. So let us start with the case where σ simply has the empty sequence.

Then, as the strategy is total, this implies that the whole pre-arena has no moves. Hence the

pre-arena’s dialogue game consists of a set of untyped cells, and hence is 0. So we need to solve

the following arena equation:

(¬B1 ⊗ ... ⊗ ¬Bn ⊗ A) = 0.

that has solutions (n+1)-tuples (B1, .., Bn, A) of the form (B1, ..., Bn, 0) for any B1, .., Bn. This

corresponds to a sequent :

¬B1, ....,¬Bm ` ¬0

which has the unique following proof:

Right 0
¬B1, ...,¬Bn, 0 ` ⊥
¬B1, ...,¬Bn ` ¬0

This settles the base case.

We now move to the inductive case. So suppose s ∈ σ is a sequence of maximal length,

s = m.n.s′. We adopt the following notation convention: given two indices i, j, we write i | j to

say that the set from which i ranges depends of the index j, and we will explicit the ranging sets

only when necessary. For instance, we would write
⊕

i

⊗
i| j for

⊕
i∈I

⊗
j∈I j

. Furthermore,

as indices range through downward closed sets of positive natural numbers, we write with an

uppercase the upper bound to which they range. That is, j ranges from 1 to J.

Each Bl is either isomorphic to 0, or a sum Bl =
⊕

m|l(
⊗

n|m,l ¬Bn,m,l
⊗

o|m,l Yo,m,l
⊗

u|m,l I)

where Yo,m,l are atomic types, and A =
⊕

i(
⊗

j|i ¬A j,i
⊗

k|i Xk,i
⊗

v|i I), or is isomorphic to 0.

The totality of the strategy prevents the case where there is a unique B, and this one is 0, as

player would not be able to answer to the opponent move. This would correspond to the case

¬0 ` ¬A, and, in essence, to A ` 0. That is, totality of the strategy is the counterpart of the

absence of right induction rule for 0. In the following, to make it more readable, we denote each

cell by the sub-formula it encompasses.

The structure of the two first moves of s will be as follows, in the transverse case:

α

A1 .... Ai .... AI

B1 ... Bl ... BLB1 ... Bl ... BLB1 ... Bl ... BL

m1 mi mI

n1 nl nL n1 nl nL n1 nl nL

where each mi.nl move has the following structure :
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α

ini(vi)

¬B1 ... ¬Bl ... ¬BL A1,i ... A j,i ... AJ,i X1,i ... Xk,i ... XK,i

inm(vm)

B1,m,l ... Bn,m,l ... BN,m,l Y1,m,l ... Yo,m,l ... YO,m,l

However, in the non transverse case, the move nl can also be above one of the A j,i. Then,

writing A j,i =
⊕

n(
⊗

m ¬Cn,m
⊗

o Yo,n), we can get two moves as displayed in the drawing

below.

α

ini(•)

¬B1 ... ¬Bl ... ¬BL A1,i ... A j,i ... AJ,i X1,i ... Xk,i ... XK,i

inm(•)

C1,m ... Cn,m ... CN,m Y1,m ... Yo,m ... YO,m

As the two cases are similar, we focus on the transverse one.

The opponent is going to play a value with cells {¬Bl | l ∈ L} ∪ {A j,i | j ∈ Ji} ∪ {α | α ∈

Xk,i, k ∈ Ki} for a given i that he would have chosen, and writing α ∈ Xk,i for α ∈ AXk,i . As the

strategy is transverse, the player will answer in one of the cells Bl, and will play a value with

cells {Bn,m,l | n ∈ Nm,l} ∪ {α | α ∈ Yo,m,l, o ∈ Om,l} for a given m, l that he will pick. He will

furthermore play a sequentiality function from the opponent cells just introduced to his own

cells. This corresponds to a set of global focalised rules in the proof, sets out in Figure 6.2,

where the four first negative rules starting from the root (Right ¬, Left
⊕

, Left
⊗

, Left I), are

bound to the opponent move m, and the four next together with the axiom-links to the proponent

move n (Left ¬, Right
⊕

, Right
⊗

, Right I, axioms).
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Each Γn corresponds to the dominion of the negative cell that represents Bn,m, j, or Yo,m,l.

Now the only cell that can match a cell coming from Yo,m,l on the right hand side is one of the

same type, so the Γk are of the form Xk, j, with Xk, j = Yo,m,l, and each Xk, j ` Yo,m,l corresponds

to the application of an axiom rule. Note that if one of the Bl is 1, then it cannot capture any

context. This would then be an application of the right unit rule.

By the lemma of separation of contexts 5.18, one can now focus on each of the branch

individually. Furthermore, one can see that every sequence above the cells α∪dominion(α) cor-

responding to Γn = ¬C1, ...,¬Cb, X1, ..., Xc ` ¬Bn,m,l in the strategy can be faithfully translated

as a sequence in ¬C1⊗ ...⊗¬Cb⊗X1⊗ ...⊗Xc⊗Bn,m,l, and hence can be seen as an interpretation

of a proof ¬C1 ⊗ ... ⊗ ¬Cb ⊗ X1 ⊗ ... ⊗ Xc ` ¬Bn,m,l. Indeed, let us look at the structure of the

first move of the arena ¬C1 ⊗ ... ⊗ ¬Cb ⊗ X1 ⊗ ... ⊗ Xc ⊗ Bn,m,l. To simplify things, we assume

Bn,m,l =
⊕

i(
⊗

j Di, j).

α

ini(•)

¬C1 ... ¬Cb ... ¬CB X1 ... Xc ... XC D1,i ... D j,i ... DJ,i

Then the sequences of σβ can translated as sequences in ¬C1⊗ ...⊗¬Cb⊗X1⊗ ...⊗Xc⊗Bn,m,l,

with the first move of opponent in ¬C1 ⊗ ... ⊗ ¬Cb ⊗ X1 ⊗ ... ⊗ Xc ⊗ Bn,m,l filling the cells of

C1, ..,Cb, X1, .., Xc with the cells of dominion(β).

Therefore, we can apply the induction hypothesis, and conclude that the sequences of σ

define a unique global focalised proof, that is, a proof of TENSfoc−glob. �

Overall, we have obtained a perfect abstract representation and characterisation of the proofs

of tensorial logic through nominal strategies in sequential, asynchronous games.

6.3 The case for MALL

6.3.1 Interpretation

We remind here that every proof of tensorial logic can be translated into a proof of linear logic,

and reversely. Namely, we remind the proposition 2.10 below. In this property, P denotes a set

of positive formulas of linear logic, N a set of negative ones, and X a set of negative atomic

formulas.
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Proposition 6.3. Every proof of ` P,N ,X; (respectively ` P,N ,X; P) in weakly focussed

linear logic induces a proof of the sequent ¬(P)F , (N⊥)F ,X⊥ ` ⊥ (resp ¬(P)F , (N⊥)F ,X⊥ `

(P)F) in tensorial logic, and reciprocally, where P is the subset of positive formulas of Γ, X

its subset of negative atomic formulas, N its subset of negative formulas that are not in X.

Furthermore (Π)F = ⊥ if (Π) is empty, (P)F in the case where (Π) = P is positive, and ¬(M⊥)F

in the case where Π = M is negative.

To simplify things, given a weakly focalised linear logic sequent ` Γ; Π, we write (Γ)F `

(Π)F for the appropriate translation into tensorial logic, where Π is either a single positive

formula or the empty sequent. Then let π be a proof of linear logic. We can translate it into

a proof (π)F of tensorial logic. This proof (π)F can be given a interpretation ~π�TTSFInn ∈

TTSFInn. However, we remind that this interpretation is not a categorical functor, as we night

have two proofs π, π′ of linear logic such that π ∼ π′, but ~(π)F�TTSFInn , ~(π′)F�TTSFInn.

Therefore, the right translation from linear to tensorial logic should be along the following

lines:

~π� = {~(π′)F�TTSFInn | π
′ ∼ π}

Therefore, one needs to define an equivalence relation of strategies of tensorial logic, relat-

ing strategies that denote the same proof of linear logic.

Definition 6.4. Two strategiesσ,σ′ : A are equivalent, writtenσ ∼1 σ
′ if there exists π, π′ : (A)I

such that ~(π)F�TTSFInn = σ, ~(π′)F�TTSFInn = σ′ and π ∼ π′.

At this point, one should look for an invariant, that is, a function f together with a set S ,

such that the image of f lies in S , and π ∼1 π
′ ⇒ f (~(π)F�TTSFInn) = f (~(π)′F�TTSFInn). More

precisely, we look for a categorical invariant, that is, a functor F from the category TTSFInn to

a star-autonomous category, such that (σ ∼1 σ
′) ⇒ F(σ) = F(σ′). Such a functor yields the

ground of a fully complete denotational semantics of proofs of linear logic.

6.3.2 About the quotient

The difference between tensorial and linear logic lies in the non-involutive negation. As each

negation is interpreted by a move in the category of games, one would like to project moves

onto a flat domain. The basic idea is to project onto maximal positions. Indeed, one can notice

that, given a strategy σ : F, and the same strategy double-lifted with two negation moves

¬¬σ : ¬¬F, then the two will reach the same maximal positions. This is coherent with the fact

that the negation is involutive in linear logic, thus (¬¬F)I = F⊥,⊥ = F, and the strategy ¬¬σ

and σ should correspond to the same proof of linear logic. That is (¬¬σ)I = (σ)I .
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However, we present below an example highlighting why we sometimes should identify

strategies that do not reach the same set of maximal positions. For instance, let us consider the

following two proofs of linear logic :

`,>, A, A⊥ ⊗ B⊥ ` 1
` > ⊗ 1, A, A⊥ ⊗ B⊥

and

` A⊥, A
` >, B⊥ ` 1
` > ⊗ 1, B⊥

` > ⊗ 1, A, A⊥ ⊗ B⊥

Let us display below the underlying structure of the dialogue-game associated with the con-

clusion formula.

?

.

> A .

A B

O,m1

P, n> P, nA

O,mA O,mB

P, n⊗

The strategy corresponding to the second proof has two maximal plays associated with it,

namely m1.n⊗,mA.nA.mB.n> and m1.n⊗.mB.n>.mA.nA. These two reach the same maximal po-

sition. On the other hand, the strategy associated with the first proof has a unique maximal

play m1.n>. As a result, we have two different strategies reaching two different sets of maximal

positions. However, they correspond to two proofs that are equivalent.

Indeed, if we suppose that they are not equivalent, this would imply that there are (at least)

two morphisms 1 → (> ⊗ 1) M A M A⊥ ⊗ B⊥. But as > ⊗ 1 ' >, and, for any formula F,

> M F ' >, this would imply that there are (at least) two distinct morphisms 1 → >. Or, as >

is terminal, there is only one.

The reason behind it is to be looked for in the time where the proof decides to use the >

rule. In tensorial logic, as the model is dynamic, the moment when we decide to use it makes

a difference. On the other hand, in linear logic, the model being flat, these two proofs will be

confounded. Therefore, we have to focus only on those maximal positions that are significant.
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Definition 6.5 ([69, 66]). An external position is a position such that no untyped cells are

available.

Therefore, no move can happen from an external position, and it is maximal. Given a

strategy σ of TTSFInn, we write σexternal for its set of external positions.

Definition 6.6. We define the equivalence relation σ2 between strategies by relating strategies

having the same set of external positions:

σ ∼2 τ ⇔ σexternal = τexternal

The proj function is designed with external positions in mind. Indeed, proj is undefined

on >, 0, and, by extension, on maximal non-external positions. This has to be put in relation

with relations, where the unit is also interpreted by ∅, and hence any multiplicative formula

with a additive unit in it has denotation the empty-set. Likewise, for every set of positions x ,

proj(>).proj(x) = ∅ (where here > denotes the set of maximal positions of the dialogue game

interpreting >). Hence, the above equation translates formally as proj(σ) = proj(τ). That is:

σ ∼2 τ⇔ proj(σ) = proj(τ)

The purpose of the next section 6.3.3 is to make sure that this invariant is a sound one. That is,

σ ∼1 τ⇒ σ ∼2 τ.

6.3.3 Quotient and star autonomy

Proposition 6.7. Given a formula A of linear logic, the function projA : ~(A)F�TTSFInn →

~A�NomLinRel, defined in section 4.5.6 is an invariant of the interpretations of proofs. That is, the

following diagram commutes.

π : A (π)F : (A)F

~π�NomLinRelPol ~(π)F�TTSFInn

(.)F

~.�NomLinRelPol ~.�TTSFInn

projA

The demonstration is a proof by induction on the last rule of π. This could also have been

proven by categorical means, relying on proj forming a functor of dialogue categories with sums.

Indeed the translation (.)F has been conceived such that for every functor of dialogue categories
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F : Dial → Star, where Star is a star-autonomous category seen as a dialogue category, for

every denotation function ~.� : Tens → Dial, then F ◦ ~(.)F� : MALL → Star is a denotation

function for linear logic proofs, that is, a star-autonomous functor. The proof is along the same

lines as the proof of the proposition, and this property entails σ ∼1 τ⇒ σ ∼2 τ.

Proof. We start the proof by treating the leaves cases. We first tackle the axiom, then the I-rule.

For convenience, we deal with the ⊥-rule straight after. At last, we present the >-rule.

The axiom proof of π :` X⊥; X is sent to the relation {(a,−1).(a, 1) | a ∈ AX}. On the other

hand (π)F is the axiom proof of tensorial logic (π)F : X ` X. It is interpreted as in section 6.1,

and one can clearly see that proj(~(π)F�) = {(λ,−1).(λ, 1) | λ ∈ AX}, as expected.

If the proof only consists of a I rule, introducing ` I, then it is translated as the relation

(•,−1).(•, 1) : ~I� → ~I�. This proof is translated into tensorial logic as the proof ` I as well,

that is interpreted as the game of figure 6.3, reaching the unique maximal position x of I ⊗ ¬I.

Hence, this position is sent by proj onto (•,−1).(•, 1).

The other multiplicative unit is ⊥. Let us consider a proof π whose last rule is a ⊥-rule

introduction:

π′

` Γ, ; A
` Γ,⊥; A

Then the interpretation of π is {xΓ.(•,−1).xA | xΓ.xA ∈ ~π
′�NomLinRelPol}. Now let us consider

the translation of π into tensorial logic.

(π′)F

(Γ)F ` (Π)F

(Γ)F , I ` (Π)F

The first move of the strategy σ interpreting π is the same as the strategy σ′ interpreting

π′, but the projection now differs, and takes the left I into account. That is, we now have

proj(~(π)F�•TTSFInn) = {(xΓ.(•,−1).xA | xΓ.xA ∈ ~(π′)F�NomLinRelPol} as expected.

If the last rule of the proof of π is a Foc rule:

π′

` Γ; P
Foc

` Γ, P;

The proof π is translated into the same relation as π′, plus a atom on the right hand side that

would correspond to the unit of theM, that is ⊥; ~π�NomLinRelPol = ~π′�NomLinRelPol.(•,−1). Then

it is translated into:
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(π′)F

ΓF ` (P)F
Left ¬

ΓF ,¬(P)F ` ⊥

Hence, written σ = ~(π)F�TTSFInn and σ′ = ~(π′)F�TTSFInn, proj(σ•) = proj(σ′•).(•,−1), as we

could see from the interpretation of the negation in terms of strategies, given in Section 6.1.2.

The case for unfoc is similar to the foc case.

π′

Γ,M;
unfoc

Γ; M

The the proof of π is detonated as follows:

~π�NomLinRelPol = {(xΓ.xM) | (xΓ.xM.(•,−1)) ∈ ~π′�NomLinRelPol}

It is translated by (.)F into:

(π′)F

ΓF , (M⊥)F ` ⊥
Right ¬

ΓF ` ¬(M⊥)F

whose interpretation is again given in section 6.1.2. Then again, one can notice that proj acts as

follows:

proj(σF) = {(xP.xN .xN) | (xP.xN xM.xX, (•,−1)) ∈ proj(σ′•)}

hence making the diagram commutes.

If the last rule of π is a M on the left hand side, then its interpretation as a sequent remains

unchanged. That is, ~π� = ~π′�. On the other hand, it is translated as the application of a left

⊗-rule on (π′)F , that also leaves the strategy, and the arena, unchanged. So σ = σ′ and hence

proj(σ) = proj(σ′). We remind the rule and its translation in the table below.

π′

` Γ,M,N; Π
M

` Γ,M M N; Π

(π′)F

ΓF , (M⊥)F , (N⊥)F ` (Π)F
Left ⊗

ΓF , (M⊥)F ⊗ (N⊥)F ` (Π)F

since ((M M N)⊥)F = (M⊥ ⊗ N⊥)F = ((M⊥)F ⊗ (N⊥)F))

π′

` Γ, P,Q; Π
M

` Γ, P M Q; Π

(π′)F

ΓF ,¬(P)F ,¬(Q)F ` (Π)F
Left ⊗

ΓF ,¬(P)F ⊗ ¬(Q)F ` (Π)F

since ((P M Q)⊥)F = (P⊥ ⊗ Q⊥)F = (¬(P)F ⊗ ¬(Q)F)

We now deal in the case where the last rule of π is a ⊗ rule. Then it is invariably translated
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by (.)F into a ⊗-rule. We remind here the rule and its translation:

π1
` Γ; Q

π2
` Γ; P

⊗
` Γ,Γ′; P ⊗ Q

(π1)F

(Γ)F ` (P)F
(π2)F

(∆)F ` (Q)F
Right ⊗

(Γ)F , (∆)F ` (P)F ⊗ (Q)F

since (P ⊗ Q)F = PF ⊗ QF .

π1
` Γ; M

π2
` ∆; N

⊗
` Γ,∆; M ⊗ N

(Γ)F ` ¬(M⊥)F (∆)F ` ¬(N⊥)F
⊗

(Γ)F , (∆)F ` ¬(M⊥)F ⊗ ¬(N⊥)F

since (M ⊗ N)F = (¬(M⊥)F ⊗ ¬(N⊥)F).

Therefore, the interpretation of π is ~π1� ⊗ ~π2�. That is:

~π� = {(xΓ.x∆.xP.xQ) | (xΓ.xP) ∈ ~π1�, (x∆.xQ) ∈ ~π2�, (xΓ, xP)#pol(x∆, xQ)}

Furthermore, the strategy σ = σ1 ⊗ σ2, will reach the maximal positions σ• ?pol τ
•, as σ• '

Frugal(σ•1 ⊗ Acellsσ
•
2), therefore:

proj(σ) = {(xΓ.x∆.xP.xQ) | (xΓ.xP) ∈ proj(σ1), (x∆.xQ) ∈ proj(σ2), (xΓ.xP)#pol(x∆.xQ)}

The case where the formula on the right hand side is M,N is dealt on a equal footing. We

now treat the case where the last rule of π is a &.

π1
` Γ, P; Π

π2
` Γ,Q; Π

&
` Γ, P & Q; Π

(Γ)F ,¬(PF) ` (Π)F (Γ)F ,¬(QF) ` (Π)F
Left ⊕

(Γ)F ,¬(PF) ⊕ ¬(QF) ` (Π)F

since ((P & Q)⊥)F = (P⊥ ⊕ Q⊥)F = ¬(PF) ⊕ ¬(QF)

π1
` Γ,M; Π

π2
` Γ,N; Π

&
` Γ,M & N,X; Π

ΓF , (M⊥)F ` (Π)F ΓF , (N⊥)F ` (Π)F
Left ⊕

(Γ)F , (M⊥)F ⊕ (N⊥)F ` (Π)F

since ((M & N)⊥)F = (M⊥ ⊕ N⊥)F = (M⊥)F ⊕ (N⊥)F

Then the proof of π1 & π2 is interpreted as the union between both:

~π1 & π2� = {(xΓ.inl(xP).xΠ) | (xΓ.xP.xΠ) ∈ ~π1�}

] {(xΓ.inr(xQ).xΠ) | (xΓ.xQ.xΠ) ∈ ~π2�}

Similarly, looking at the strategy σ interpreting the proof π, then σ• ' inl(σ1) ] inr(σ2). De-

pending on which side of the ⊕ the opponent is going to play its first move, the strategy is going
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to react according to σ1 or σ2. Therefore :

proj(σ•) ={(xΓ.inl(xP).xΠ) | (xΓ.inl(xP).xΠ) ∈ proj(σ•1)}

] {(xΓ.inr(xQ).xΠ) | (xΓ.xQ.xΠ) ∈ proj(σ•2)}

Finally, we address the ⊕-rule. If the last rule of π is an ⊕-rule, then it is interpreted in (π)F

as an ⊕-rule as well. We treat the case where the last rule of π is ⊕1. For instance, we present

the translation where the formulas are both positive or negative.

π′

` Γ; P
⊕1

` Γ; P ⊕ Q

(π′)F

(Γ)F ` PF
Right ⊕1

(Γ)F ` PF ⊕ QF

since (P ⊕ Q)F = PF ⊕ QF

π′

` Γ; M
⊕1

` Γ; M ⊕ N

(π′)F

(Γ)F ` ¬(M⊥)F
Right ⊕1

(Γ)F ` (¬(M⊥)F) ⊕ (¬(N⊥)F)

since (M ⊕ N)F = (¬M⊥)F ⊕ (¬(M⊥)F)

The nominal relation interpreting π will be the left injection of the one interpreting π′, that is :

~π�NomLinRelPol = {(xΓ.inl(xP) | (xΓ.xP) ∈ ~π′�NomLinRelPol}

Similarly, the strategy σ interpreting (π)F will act as σ′ = ~(π′)F�TTSFInn, but going on the left

branch of the ⊕ in its first P-move. Therefore, the following holds:

proj(σ) = {(xΓ, inl(xP)) | (xΓ, xP) ∈ proj(σ′)}

This is coherent with the interpretation of π through ~.�NomLinRelPol, as it satisfies the same

equality. �

We remind the ~.�NomLinRelPol is a functor, that is, is respects the equivalence of proofs of

linear of linear logic (π ∼ π′ ⇒ ~π�NomLinRelPol = ~π′�NomLinRelPol). Therefore, the interpreta-

tion:

π
(.)F

−−−→ (π)F ~.�TTSFInn
−−−−−−−→ ~(π)F�TTSFInn

proj
−−−→ proj~(π)F�TTSFInn

is a denotation function that respects the equivalence of proofs of linear logic. That is, if π ∼ π′

then proj~(π)F�TTSFInn = proj~(π′)F�TTSFInn. Furthermore, one should ensure that it acts as a

functor. That is:

proj~(π; π′)F�TTSFInn = proj~(π)F�TTSFInn;NomLinRelPol proj~(π′)F�TTSFInn
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If follows from proj~(π; π′)F�TTSFInn = ~π; π′�NomLinRelPol = ~π�NomLinRelPol; ~π′�NomLinRelPol.

6.3.4 Full completeness for linear logic

We are now in position of presenting the full completeness result for linear logic. We work

within the category of nominal annotated polarised separated relations. Given some objects

A, B, where A, B are seen as formulas of linear logic, we can translate them as formulas of

tensorial logic (A)F , (B)F . Now each strategy in TTSFInn((A)F , (B)F) is a denotation of a proof

of tensorial logic π : (A)F ` (B)F . To this one corresponds a proof (π)I : (A)F ` (B)F , which

has, as denotation proj((π)F). Therefore, we can select precisely those nominal relations that do

correspond to proofs, and obtain a full completeness result.

Definition 6.8. The category NomMall is the star-autonomous category that has same objects

as NomLinRelPol and morphisms nominal linear polarised relations that arise as projections

of strategies of TTSFInn.

Proposition 6.9. NomMall is fully complete for multiplicative additive linear logic.

In NomMall, a map A → B is a nominal polarised relation R such that there exists σ ∈

TTSFInn(AF , BF), with R = proj(σ). We proved in the section above that this forms a category,

and, by definition, each morphism in it is the denotation of a proof of linear logic. NomMall

is precisely the sub-category of NomLinRelPol that corresponds to the image of the functor

~.� : MALL→ NomLinRelPol . As this functor is a star-autonomous one, so is NomMall. More

precisely, NomMall is a sound and fully complete model of MALL.

Finally, one might wonder, if, as in the case of TTSFInn, the category obtained is the

free star-autonomous category with products. Unfortunately, the answer is negative. A sim-

ple counter-example is formed by these two proofs together with their denotations:

I
` I

⊥
` ⊥1, I1

I
` I2

⊥
` ⊥2, I2

⊗
` ⊥1 ⊗ ⊥2, I1, I2 Exchange
` ⊥1 ⊗ ⊥2, I2, I1

M
` ⊥1 ⊗ ⊥2, I2 M I1

I
` I1

⊥
` ⊥1, I1

I
` I2

⊥
` ⊥2, I2

⊗
` ⊥1 ⊗ ⊥2, I1, I2

M
` ⊥1 ⊗ ⊥2, I1 M I2

Let us name π1 the left one, π2 the other. Then ¬(π1 ∼ π2). This is notably proved in [47]. On

the other hand, they are both denoted by the same relation:

~π1� = ~π2� = {(•,−1).(•,−1).(•, 1).(•.1)}

This mismatch proves that the the nominal relations are too simple, too flat, to fully distin-

guish between distinct proofs of linear logic. Furthermore, this full completeness is obtained

through the medium of tensorial logic: we do not have a direct characterisation of nominal

relations that are denotations of proofs of linear logic.
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Part III

Static Full Completeness and
Conclusion
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Chapter 7

Revisiting the Concurrent Model

7.1 Concurrent nominal games

At the end of the second part, we did not succeed to provide a characterisation of nominal

relations that arise from proofs of linear logic directly. Therefore, in this section, we explore a

different approach, whose starting point relies on concurrent games similar to those desribed in

[10]. Those games differ vastly from those presented in the previous sections, since the tensor

acts by putting the arenas in parallel, and the negation is modelled by changing an abstract notion

of polarity, and not adding any additional moves. Consequently, they offer an ideal candidate

for a full completeness result without relying on quotient.

Therefore, we start this section by reformulating the original definitions of concurrent games

within the nominal model, modifying them slightly in passing. We present them as a refinement

of nominal polarised relations. We then sharpen the model by adding some constraints our

strategies must obey. One to ensure they define proof structures properly, the second being the

winning condition of the original model, that is, totality. However, we prove that this is not

enough for a full completeness result. Indeed, the original model makes full use of di-natural

transformations, on which it relies, to reach full completeness. Di-natural transformations en-

able one to model the atomic types by a variety of different arenas, and, by choosing them

appropriately, one can enforce certain properties. On the other hand, our model relies on a fixed

arena for each atomic type, and this one is not appropriate for imposing all the needed properties.

We take the point of view that the arena chosen for the atomic type is the right one, as it is

seemingly the same as in the previous model of tensorial logic, and therefore attempt to change

the model accordingly in order for it to be fully complete. We analyse why the original model

fails, and explain how to patch it. That leads to an entirely new model, where polarities are

strictly taken into account, but such that not all positions have fully defined polarity. We then

characterise those relations that behave well, and prove that they form a fully complete model

of MLL−.

227
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This is, to our knowledge, the first full completeness result obtained for MLL− not based on

2-categorical tools, neither quotient, nor proof structures. The closest result we are aware of is

a result of full completeness for MLL− + MIX via experiments on coherence spaces [26] [83].

This result refines it in two ways: experiments are now encoded in a categorical approach, and

we dispose of the MIX-rule. The final model could be presented directly without any reference

to the original concurrent games model. However, as it resulted from a careful study of the

behaviour of concurrent strategies, we believe it is only fair to briefly present it, and show how

we reasoned about it.

Finally, we enrich our model with a notion of hypercoherence. This allows us to enrich

our model with additive connectives, and model MALL−. We notably prove that the way the

hypercoherence model deals with the additives is reminiscent of the concurrrent games model,

by proving each hypercoherence gives rise to a concurrent operator. Finally, we revisit a former

result established by Blute in [16], that proved that di-natural transformations over a category of

double glued hypercoherence spaces lead to a fully complete model of MALL−. We translate the

work done in our setting, allowing us to prove that the final model we obtain is fully complete

for MALL−. Again, this is the first model we are aware of that is fully complete for MALL−, and

does not rely on 2-categorical tools, proof structures, or quotient.

7.1.1 Polarised nominal qualitative domains

As explained in the end of Section 7.2.3, nominal relations are not fully complete since they are

too “flat”. Indeed, two non equivalent proofs of ` ⊥⊗⊥, I, I were modelled by the same relation

R = {(•,−1).(•,−1).(•, 1).(•, 1)}, this one not taking into account the dynamics that happens

in the proofs: i the first proof the left ⊥ is linked to the left I, whereas in the second proof the

left ⊥ is linked to the right one. Therefore, we would like to establish a more local control on

the relation. That is, we would like to consider only certain parts of the formula and disregard

others (for instance, in the above case, the left ⊥ without the right one). This could solve the

problematic case above by discriminating between the two relations, highlighting which ⊥ is

linked to which I. Consequently, we consider concurrent games, where the opponent will bring

the negative primes, and the proponent the positive ones. This allows us to consider elements

of the relation where only some negative formulas have been provided while others are missing,

highlighting the dependencies between negative and positive occurrences. We first focus on

MLL−.

We will be adding a bottom element⊥ to the denotation of each atomic formula of Chapter 3,

creating a nominal ordered set with a minimal element. This ⊥ element intuitively corresponds

to the “diverging computation” coming from the partiality monad [75]. We remind some basic

definitions of nominal domain theory. These were already presented in Section 4.5. Let us

remind that we work with orbit-finite nominal sets, and hence every set presented is deemed to

have only a finite number of orbits. A nominal poset (D,v) is a nominal set whose partial order

relation is nominal. A nominal domain is a nominal poset with a minimal element ⊥. A finitely
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supported set of elements S is compatible, written ↑ S if the subset S is bounded. A domain

is bounded complete if every compatible S has a least upper bound, denoted
⊔

S . A bounded

complete domain automatically has meets, written u. A prime of a bounded complete domain

is an element p ∈ D such that p ≤
⊔

S ⇒ ∃x ∈ S .p v x. Pr(D) stands for the nominal subset of

primes of D. Furthermore, D is prime algebraic if it is bounded complete and any element can

be written as a finite join of primes.

Definition 7.1. • A domain (D,v,⊥) is qualitative if it is prime algebraic and no distinct

primes are related by v.

• A qualitative domain is a coherence domain if, given two elements x, y, written as set of

primes x = tipi, y = t jq j, then ∀i, j.pi ↑ qi ⇒ x ↑ y.

• A polarised qualitative domain (D,v,⊥, λ) is a qualitative domain (D,≤,⊥) together with

a nominal polarity function λ : Pr(D)→ {−1, 1}.

• A coherence domain is polarised if it is polarised as a qualitative domain and furthermore

λ(p) , λ(q)⇒ p ↑ q, where p, q ∈ Pr(D).

In a qualitative domain, all primes are directly above ⊥. A qualitative domain that is a

coherence domain is perfectly described by its set of primes together with a binary nominal

coherence relation between them, that displays which primes are compatible. As each element

of a qualitative domain can be seen as a set of primes, we sometimes write p ∈ x for p v x.

We work with polarised coherence domains, where each prime p is given a polarity. We write

Pos(p) if the prime p is positive (that is, λ(p) = 1), Neg(p) if it is negative. Similarly, we write

Pos(x) if x is a finite union of P-primes, and Neg(x) if x is a finite union of negative primes.

Proposition 7.2. Let S ,T bounded set of negative and positive primes respectively in a polarised

coherence domain. Then S ∪ T is bounded.

The proof is immediate. We assign to each atomic formula a polarised coherence domain as

described in the introduction:

~X�Qual = (AX ] {⊥}, {⊥} @ AX ,⊥, λ(a) = 1)

~I�Qual = ({⊥}, {(⊥,⊥)},⊥, λ = ∅)

Note that Pr(~X�Qual) = AX . It would have been more consistent to define ~I�Qual =

({⊥,>}, {⊥} @ {>},⊥, λ(>) = 1), however, as we restrict our interest to MLL− (that is, with-

out units) for the moment, a “strict” unit as presented above is perfectly adapted. There is a

straightforward negation for polarised qualitative domains, consisting in inverting the polarity

of primes.

(D,v,⊥, λ)⊥ = (D,v,⊥,−λ).
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Notably the negation is involutive. It allows us to define the denotations to X⊥ and⊥ as expected.

~X⊥�Qual = ~X�⊥Qual ~⊥�Qual = ~I�⊥Qual = ~I�Qual

Given an element x of a qualitative polarised domain, there is a unique decomposition of x into

primes: x =
⊔
{p ∈ Pr(D) | p v x}. We write pos(x) for

⊔
{p ∈ Pr(D) | p v x,Pos(p)}, and

neg(x) for its negative counterpart. We hence have ∀x ∈ D.x = neg(x) t pos(x).

Lemma 7.3. • Given x, y ∈ D a qualitative polarised domain, x ↑ y ⇒ pos(x t y) =

pos(x) t pos(y) and similarly neg(x t y) = neg(x) t neg(y).

• pos(x u y) = pos(x) u pos(y) and similarly neg(x u y) = neg(x) u neg(y).

The tensor product of two nominal domains is given by their cartesian product. In particular,

note that Pr(D1×D2) = (Pr(D1)×{⊥2})] ({⊥1}×Pr(D2)) ' Pr(D1)]Pr(D2), and that the disjoint

union is the coproduct in the category of sets and functions. We can then form the function

λ1 ⊕ λ1 : Pr(D1 × D2)→ {−1, 1}. Formally, we reach:

(D1,v1,⊥1, λ1) × (D2,v2,⊥2, λ2) = (D1 × D2, (v1 × v2), (⊥1,⊥2), λ1 ⊕ λ2).

In particular, this allows us to assign to each formula of MLL its associated qualitative polarised

domain:

~A ⊗ B�Qual = ~A�Qual × ~B�Qual

~A M B�Qual = (~A�⊥Qual × ~B�⊥Qual)
⊥ = ~A�Qual × ~B�Qual

7.1.2 Finite supported relations

We introduce here some terminologies that will be useful for the sequel.

Let us suppose that we consider a relation R : ~(X1 ⊗ X2) M X⊥1 M X⊥2 �Qual and we want to

look at how a “strategy” (that is morally a relation) reacts if it is fed an input in X⊥1 but not in

X⊥2 . To model this case, we will consider a “counter strategy” that plays a name in X⊥1 but not

in X⊥2 , corresponding to a relation of the form {(⊥,⊥, a,⊥)}. However, this one does not have

empty support.

To remedy this issue, we will, in the rest of this section, often work within the category

FinRel of nominal sets and finitely supported relations between them. If NomLinRelPol is

obviously a subcategory FinRel, they do not share the same monoidal product. Indeed, imagine

two relations I → A with same support. Then we cannot form a product tensor of these in

I → A ? A. On the other hand, it certainly works if we take the cartesian product as tensor

product.

Definition 7.4. FinRel is the category which has:

• Nominal sets as objects.
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• Finitely supported relations as morphisms

(FinRel,×, 1) is a category with products, where × is the cartesian product and 1 is a singleton.

More precisely, FinRel is star autonomous with products, the tensor product being the carte-

sian product, the product being the disjoint union, and the negation the identity.

In addition, we recall that there is a faithful functor of star-autonomous category from

NomLinRelPol to FinRel, namely the .̂ previously defined in section 3, together with forget-

ting the polarities. .̂ was originally defined as a functor NomLinRelPol → LaxNomLinPol, and

this one naturally forms a sub star-autonomous category of FinRel. This way the morphisms

of NomLinRelPol can be projected into morphisms of FinRel. We know that the morphisms

of NomLinRelPol behave well, in the sense that they define sets of axiom links on the formulas

they relate. Therefore, in the future, we shall relate our morphisms with those of NomLinRelPol.

7.1.3 Closure operators

Given a nominal qualitative domain D, we call D> its lattice completion. It consists in adding

an element > to D, such that ∀x ∈ D, x @ >. This turns it into a nominal complete lattice.

Definition 7.5. A nominal complete lattice (L,v) is a nominal poset (L,v) such that every

finitely supported subset of L has a greatest lower bound and a least upper bound.

In particular, a nominal complete lattice has a minimal element
⊔
∅ and a maximal element�

∅.

Definition 7.6. Given a nominal partially ordered set (D,v), we call D> its completion by

maximal element. D> = (D ] {>},v>) where v> is defined by x v> y if:

• y , > and x v y.

• y = >.

Proposition 7.7. Given a qualitative domain D, then D> is a lattice.

Proof. First we show that every finitely supported subset S has a least upper bound. If S ⊆ D

and S ↑, then it follows the definition of bounded completeness of D. If not, then > is an upper

bound of S . By definition, it is the only one, and hence, the least one. To show that each finitely

supported subset has a greatest lower bound, we consider the set of elements below it. This

set of elements is bounded, finitely supported, and has a least upper bound, that provides the

greatest lower bound of the original set. �

We write D ↪→ D> for the natural injection of D into D>. Given two completed partially

ordered sets D>,F>, we define their product as follows:

D> × F> = (D × F)>
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Given x ∈ D>, y ∈ F>, we will write (x, y) ∈ (D×F)> for its natural element if x , >, y , >,

and for > if x = > or y = >. Similarly, we define the projections πD> : (D × F)> → D> by

πD>(x, y) = x if (x, y) , > and πD>(>) = >. Therefore, πD>(x, y) might be different than x if

y = >.

Definition 7.8. A closure operator on a lattice L, written σ : L, is a function with finite support

σ : L→ L that satisfies the following properties:

• σ2(x) = σ(x)

• σ(x) w x

• x ≥ y⇒ σ(x) w σ(y)

Furthermore, a closure operator on D>, where D is a polarised qualitative domain, is positive,

written Pos(σ), or P-closure operator if:

• ∀x ∈ D.σ(neg(x)) , >.

• ∀x ∈ D.σ(x) , > ⇒ (∀p ∈ Pr(D).(p v σ(x) ∧ ¬(p v x)) ⇒ Pos(p))

• ∀x ∈ D, σ(x) = σ(neg(x)) t pos(x).

Alternatively, we also speak of P-strategy (or simply strategies) for positive closure operators.

The concept of O-strategy , or counter-strategy , is defined along the same lines, substituting

Neg for Pos, and neg for pos. The idea behind the definition is that σ intuitively acts like a

strategy in a game. Given a position x, it will play some (maybe none, maybe several) player

moves, embodied here by positive primes, until it reaches a position σ(x). Then, once it lacks

the information (opponent-primes) to move further, it stops. The more information σ is given

the more moves it will be able to perform. Note that the second condition could be rewritten by

σ(x) , > ⇒ neg(σ(x)) = neg(x), and as σ(x) = σ(neg(x)) t pos(x), and σ(neg(x)) , >, this

could be further simplified as ∀x.neg(σ(neg(x))) = neg(x).

We will now speak about composition of closure operators, and some of their properties.

As these have already been studied in [10, 3, 74], most proofs will be skipped. Given a closure

operator σ : D> × F> and an element x ∈ D>, we write σ(x, _) for the function F> → F>

defined by y 7→ πF>(σ(x, y)), and similarly for σ(_, z) : D>. These are closure operators [10].

For σ, τ : D>, we write 〈σ, τ〉 ∈ D> for the element:

〈σ, τ〉 =
⊔
{(σ ◦ τ)n(⊥) | n ∈ N}.

As the domain we are working on are orbit-finite, there is no infinite chain. Therefore, the

closure operators are automatically continuous, entailing the existence of the limit of the chain

defining 〈σ, τ〉.

Remark 7.9. 〈_, _〉 is commutative: 〈σ, τ〉 = 〈τ, σ〉.

Lemma 7.10. If σ is positive, τ is negative, then 〈σ, τ〉 , >.

Proof. The proof is done by induction on the growing chain yn defined as follows:
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• y0 = ⊥.

• yn+1 = σ(yn) if n is even.

• yn+1 = τ(yn) if n is odd.

We prove by induction that for each n in the chain σ(yn) = σ(neg(yn)) and τ(yn) = τ(pos(yn)).

This is true for the case case n = 0. We do the induction case, dealing first with σ. If n is even

then σ(yn+1) = σ(σ(yn)) = σ(yn), making the induction straightforward. In the case where n is

odd, σ(yn+1) = (σ(τ(yn)). As σ is positive, σ(yn+1) = pos(yn+1) t σ(neg(yn)). As τ is negative,

and τ(yn) , > by induction, pos(τ(yn)) = pos(yn). Therefore, σ(yn+1) = σ(neg(yn+1))tpos(yn).

On the other hand, σ(yn) = σ(neg(yn)). Therefore, pos(yn) ⊆ σ(yn) ⊆ σ(yn+1). Consequently,

σ(yn+1) = σ(neg(yn+1)) as required. The proof for τ is done on an equal footing. In particular,

this leads to σ(yn) , >, τ(yn) , >, and hence yn , >. Consequently, 〈σ, τ〉 , >. �

Lemma 7.11. Let σ : D> be a positive closure operator, and y such that Pos(y). Then σ(x)ty =

σ(x t y).

Proof. Since Pos(y), it entails y = pos(y) and neg(y) = ⊥. If x ↑ y we have σ(x) t y =

σ(neg(x))t pos(x)t y = σ(neg(xt y))t pos(xt y) = σ(xt y). In the case where ¬(x ↑ y) we

have σ(x) t y = > = σ(x t y). �

We will now address composition of closure operators, and display some well-known prop-

erties from the literature about them. Given three lattices L,M,N and σ : L × M, τ : M × N,

then given (x, z) ∈ L × N, we define y ∈ M, the witness of interaction, by y = 〈σ(x, _), τ(_, z)〉.

It provides us the key to define their composition at x, z.

σ; τ(x, z) = (πL(σ(x, y)), πN(τ(y, z)))

A quite puzzling fact about closure operators is that they are relational. More specifically,

writing σ• for their sets of positions:

σ• = {x | σ(x) = x}

= {x | ∃y.σ(y) = x}

then σ is entirely defined by its set σ• through the following equation [64]:

σ(x) =
�
{y ∈ σ• | y w x}.

Furthermore, their relational composition is equivalent to their dynamic one.

(σ; τ)• = σ• ;Rel τ
•

Finally, seeing them as sets of positions, we can give an alternative definition of 〈σ, τ〉.
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〈σ, τ〉 = min(σ• ∩ τ•).

More on them can be found in [10, 3, 74, 64].

Definition 7.12. The category QualClo is defined as having :

• Polarised coherence domains as objects.

• As morphisms: D→ F, equivariant P-closure operators σ : (D⊥)> × F>.

• As identities id :

(x, y) 7→ (x t neg(y), y t neg(x)) if x , >, y , >

> 7→ > .

We add the full proof that this forms a category below. Note that as the morphisms are equiv-

ariant, they have empty support and therefore cannot raise a name: ν(σ(x)) ⊆ ν(x). Furthermore,

as x v σ(x), this implies ν(x) = ν(σ(x)).

Proposition 7.13. QualClo forms a category.

Proof. We already know from the literature that the closure operators compose, and form a cat-

egory. We simply need to specialise in the case of P-closure operators. We prove the following:

• The composition of P-closure operators leads to a P-closure operator.

• The morphism id is positive and indeed behaves as an identity.

We consider three domains D,F,G, and their associated lattice completions D>,F>,G>, and

σ : D> × F>, τ : (F>)⊥ × G> (to be consistent we should have picked σ : (D⊥)> × F>, however

we find it more convenient to work with the non-negated form). Before tackling the proof, we

prove that given x ∈ D such that Neg(x), then σ(x, _) : F> is a P-closure operator.

• σ(x, _)(neg(y)) = πF>(σ(x, neg(y)) = πF>(σ(neg(x), neg(y))) = πF>(σ(neg(x, y))) , >F>

as σ(neg(x, y)) , >D>×F> by positivity of σ.

• We consider y ∈ F and p ∈ Pr(F) such that p v σ(x, _)(y) and p @ y and σ(x, y) , >.

Then by positivity of σ, Pos(p) as expected.

• σ(x, _)(y) = πF>(σ(neg(x, y)) t pos(x, y)) = σ(x, _)(neg(y)) t pos(y).

So σ(x, _) satisfies the three properties of positivity and hence is a positive closure operator.

Similarly, τ(_, z) is a positive operator of (F>)⊥, that is, a negative closure operator on F>.

We start with the first point of positivity. Let (x, z) ∈ D × G, such that Neg(x),

Neg(z). Then σ(x, _) is a positive operator of F>, and τ(_, z) a negative one. Consequently,

y = 〈σ(x, _), τ(_, z)〉 , >F> . Furthermore, as σ(x, y) = σ(neg(x), neg(y)) t pos(x, y) =

σ(neg(x), neg(y)) t (⊥, pos(y)). Therefore, as σ(neg(x), neg(y)) = (x′, y′) , >, we have

σ(x, y) = (x′, y′) t (⊥, pos(y)) = (x′, y) , > (since σ(x, y) = (x′, y) by definition). We can

similarly prove that τ(y, z) , >, and finally σ; τ(x, z) , >.

Let (x, z) ∈ D×G, and y the witness of interaction. Let us suppose that σ; τ(x, z) , >. Then

for any p ∈ Pr(D) such that p < x ∧ p ∈ πD>(σ(x, y)) , Pos(p) as σ is positive, and similarly

for any p ∈ Pr(G) such that p < z ∧ p ∈ πG>(τ(y, z)) by positivity of τ. So the second property
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of positivity is preserved. Now, let us consider the element σ; τ(neg(x), neg(z)). The first thing

we prove is that the witness of interaction y is the same for neg(x), neg(z) and (x, z). This is

proven by induction on the chains of wi, yi defined below such as y = 〈σ(x, _), τ(_, z)〉 =
⊔

i yi

and w = 〈σ(neg(x), _), τ(_, neg(z))〉 =
⊔

i wi.

• y0 = w0 = ⊥F> .

• yn+1 = πF>(σ(x, yn)), wn+1 = πF>(σ(neg(x),wn)) if n is even.

• yn+1 = πF>(τ(yn, z), wn+1 = πF>(τ(wn, neg(z)) if n is odd.

We prove ∀i.wi = yi. The base case holds as w0 = y0 = ⊥M. Now suppose we proved it up to an

even n, and do the induction step to n + 1 odd, as presented in the following equations:

yn+1 = πF>(σ(x, yn))

= πF>(σ(neg(x), neg(yn)) t pos(x) t pos(yn))

= πF>(σ(neg(x), neg(yn))) t pos(yn)

= πF>(σ(neg(x), yn))

= wn+1

The even n + 1 case is dealt with similarly. So finally :

πD>(σ; τ(x, z)) = πD>(σ(x, y))

= πD>(σ(neg(x), neg(y)) t pos(x) t pos(y))

= πD>(σ(neg(x), y)) t pos(x)

= πD>(σ(neg(x),w)) t pos(x)

= πD>(σ; τ(neg(x), neg(z))) t pos(x),

and similarly for πG>(σ; τ(x, z)). That is, σ; τ(x, z) = σ; τ(neg(x), neg(z))tpos(x)tpos(z) and

therefore σ; τ is positive.

We now focus on the identity. We recall that as id has to be a positive closure operator, it

cannot be the identity relation. We consider id : (F⊥1 )>×F>2 . id : (x, z)→ (xtneg(z), ztneg(x)).

Let us start by showing that id is positive.

• id(neg(x), neg(y))) = (neg(y) t neg(x), neg(x) t neg(y)). Now, one should recall that

x ∈ A⊥, that is, in A⊥ we get Pos(neg(y)) and in A we get Pos(neg(x)). Therefore, as

the domain is polarised coherent, and neg(x), neg(y) are of opposite polarities, we get

neg(x) t neg(y) , >. Therefore, id(neg(x), neg(y)) , >.

• The second point is straightforward.

• id(x, y) = id(neg(x), neg(y)) t pos(x) t pos(y) as expected.

Now we consider τ : (D⊥)> × F>1 , our goal being to prove that τ; id = τ. Let (x, z) ∈

(D⊥)> × F>2 . Let us compute y the witness of interaction, assuming we start the chain with id.

In the case where τ(x,⊥) = > then τ; id(x, z) = > as expected. So we deal with the case where

τ(x,⊥) , >.
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1. y0 = ⊥

2. y1 = neg(z).

3. y2 = πFt
1op(τ(x, neg(z))) = neg(z) t w, where Pos(w) in F>1 , and therefore Neg(w) in

(F⊥1 )>.

4. y3 = (neg(z) t w) t neg(z) = y2.

Therefore, the witness of interaction is y = y2. We now have the following sequence of equa-

tions.

π(D>)⊥(τ(x, y)) = πD>(τ(x, neg(z) t w))

= π(D>)⊥(τ(x, neg(z)) t w)

= π(D>)⊥(τ(x, neg(z)))

= π(D>)⊥(τ(x, neg(z)) t (⊥, pos(z)))

= π(D>)⊥(τ(x, z))

Similarly, on the right hand side we get, noticing that w = neg(y) in F>1 .

πF>2 (id(y, z)) = (z t neg(y))

= (z t πF>1 (τ(x, neg(z))))

= (z t πF>q (τ(x, z)))

= πF>1 (τ(x, z))

Similarly, given id : D1 → D2 and τ : D2 → F>, then, given (x, z) ∈ (D⊥1 )> × F>, we

compute y the witness of interaction: y = πD>2 (τ(neg(x), z)). The proof that id; τ(x, z) = τ(x, z)

follows the same lines as above. �

QualClo is almost a subcategory of the category of nominal relations, the only problem

being that they do not share the same identities. Just as its parent category, it is star autonomous.

More precisely, the category is compact closed.

Proposition 7.14. QualClo is a compact closed category, with monoidal product ⊗ the cartesian

product, and negation the negation of Qual on objects and simple symmetry on morphisms.

That is, given σ : D→ F (that is σ : (D⊥)> × F>) then σ⊥ : (F⊥)> × (D⊥⊥)> = (F⊥)> ×D>,

is defined to be σ⊥ = sF>,D> ◦ σ ◦ sD>,F> (where we confound (F>)⊥ and F>, and similarly for

D>).

Proof. We start by showing the monoidal closure. A morphism τ : D⊗ F→ G is an equivariant

P-closure operator ((D × F)⊥)> × G>. Equivalently, it is a positive closure operator τ : (D⊥)> ×

((F⊥)>×G> or (D⊥)>×(F⊥×G)>. Hence the category is monoidal closed, with F( G = F⊥×G.

The unit of the( functor is the domain⊥Qual = IQual. Now, given a coherence polarised domain
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D, D ( ⊥Qual ( ⊥Qual = D × IQual × IQual ' D, therefore the category is star-autonomous.

Furthermore (D ⊗ F)⊥ = D⊥ ⊗ F⊥, therefore the star-autonomy of this category is degenerated.

Thus, QualClo is compact closed. �

As closure operators compose relationally, given τ : D> × F>, and σ : D>, we can talk

about σ;D> τ : F> defined by (σ; τ)• = {y ∈ F> | ∃(x, y) ∈ τ•, x ∈ σ•}. Furthermore, if τ is a

P-closure operator, σ is an O-closure operator, then σ;D> τ is a P-closure operator. Similarly, if

τ : D> × F> is a P-closure operator, σ : F> is an O-closure operator, then τ;D> σ is a P-closure

operator. The proof is done seeing σ as a P-closure operator F→ I, and τ : D→ F.

When restricting the category QualCLo to its full sub-category that consists of objects that

are denotations of formulas of MLL− (that we still denotes QualClo for simplicity), there is a

forgetful functor from the category QualClo to the category of lax nominal relations NomReL.

We recall that NomReL has objects nominal sets and morphisms nominal relations. We deemed

them lax since we do not impose the “separated” condition. This one consists in projecting on

maximal elements. We name it Max. We say that an element of a domain d ∈ D is maximal if

¬(∃e ∈ D.d < e). Given an element d of D>, we write max(d) if d , > and d is maximal in D.

• Max(D) = {d ∈ D | max(d)}

• Given σ : (D × F)>, Max(σ) = {(x, y) ∈ σ• | max(x, y)}

Furthermore, this functor can be refined by taking into account the polarity. Its image category

becomes the category of polarised lists and lax nominal relations1. Indeed, as the monoidal

product is cartesian the separated condition is dropped. Similarly, given σ a P-closure operator,

and R = Max(σ), then nothing forces the relation R to be linear, that is, given x ∈ R that

ν(neg(x)) = ν(pos(x)), neither even ν(pos(x)) ⊆ ν(neg(x)). However, if the x comes from an

interaction with a counter strategy, that is, there exists a O-closure operator τ such that x =

〈σ, τ〉, then ν(pos(x)) ⊆ ν(neg(x)) since σ is equivariant, and hence, unable to raise a name by

itself (ν(σ(x)) = ν(x)) and τ can only raise names whose corresponding primes are of negative

polarity (since it is a O-strategy). Note that Max is a functor of compact closed categories, since

Max(σ × τ) = Max(σ) ×Max(τ), and Max(σ⊥) = Max(σ)⊥.

The concurrent games used in [10] were based on a double glueing construction. The objects

of the category were triples (D, SD, S ⊥D), where D was a prime algebraic domain, S a set of

strategies on D>, and S ⊥ a set of counter strategies on it. Furthermore the morphisms were

total, in the sense that given a morphism σ : I → D then ∀τ ∈ S ⊥D, 〈σ, τ〉 reaches a maximal

position. Finally to achieve full completeness, one needed to consider dinatural transformations

over this category. Here, we keep working with the morphisms of the first-order category and

this condition is replaced by a “linearity” condition on names used by the morphisms.

Definition 7.15. The category GQualClo has as objects triples (D, SD, S ⊥D) where D is a nomi-

nal polarised coherence domain, SD (respectively S ⊥D) nominal sets of P-closure (respectively O-

closure) operators with finite supports on D. A morphism (D, SD, S ⊥D) → (F,UF,U⊥F ) is a mor-

1This category is just like the category of lax nominal polarised relations LaxNomLinPol defined in 3.4.5, except
that the linearity condition is dropped.
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phism of QualClo, σ : (D⊥)> × F> such that ∀τ ∈ SD.τ;(D⊥)> σ ∈ UF and ∀τ ∈ U⊥F .σ;F> τ ∈ S ⊥D.

Furthermore, it must obey the following conditions:

• (totality): For each τ ∈ SD × U⊥F , 〈σ, τ〉 , > is a maximal element of D⊥ × F.

• (linearity): There exists a relation R ∈ NomLinRelPol such that Max(σ) = R̂ .

Notably, the empty support condition prevents σ from introducing names:

∀x ∈ D.ν(σ(x)) = ν(x). The linearity condition prevents the strategy to react differently if

opponent happens to bring two equal names.

We will prove that GQualClo is star autonomous, with monoidal tensor:

(D, SD, S ⊥D) ⊗ (F,UF,U⊥F ) = (D × F, SD × UF,Z)

Z = {τ : (D × F)> | τ is an O-closure operator and

(∀σ ∈ SD, σ;D τ ∈ U⊥F ∧ ∀σ ∈ UF.τ;F σ ∈ S ⊥D)}

and negation:

(D, SD, S ⊥D)⊥ = (D⊥, S ⊥D, SD)

where in the right hand side of the equation, the closure operators of S ⊥D, SD are seen as closure

operators of D⊥.

Proposition 7.16. GQualClo is a star-autonomous category.

Proof. We start by briefly showing that it indeed forms a category. We focus on totality and

linearity, since the double-glueing conditions are coming from the literature, where they have

already been studied. Identity is obviously total, and Max(idGQualClo) = ̂idNomLinRelPol. Given

two morphisms σ : D → F and τ : F → G then σ; τ remains total since τ acts like a counter-

strategy to σ on F, and respectively for σ and τ. Furthermore, the composite remains linear

since Max acts as a functor.

Secondly, since Max acts as a functor of compact-closed category, the linearity conditions

remains stable under tensor and negation. It is quite straightforward to prove that this is equally

the case for the totality one. Therefore, GQualClo forms a star-autonomous category. �

Finally, we describe the denotation function from formulas of MLL to the category

GQualClo.

• ~X� = (~X�Qual, S X = {σ | σ(⊥) = a, a ∈ AX}, S ⊥X = {id})

• ~I� = (~I�Qual, S I = S ⊥I = {id})

And, as usual, we restrict the objects of our category to those that are freely generated from ~X�,

~I� and the operations (.)⊥,⊗. GQualClo is star-autonomous. The double glueing condition

prevents the category from being degenerated, that is, it is not a compact closed category.
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Unfortunately, these morphisms are too lax to be potential representations of MLL proofs:

two morphisms can be different though establishing the same axiom links, preventing the cat-

egory for being a candidate for full completeness. Therefore, we establish an equivalence

relation between strategies. Two strategies σ, τ : D → F are equivalent, written τ ∼ σ if

Max(σ) = Max(τ). This equivalence is compatible with the star-autonomy structure. That is, if

σ1 ∼ σ2 and τ1 ∼ τ2 then:

• σ1; τ1 ∼ τ1; τ2 (if the types of σ, τ are compatible).

• σ1 ⊗ σ2 ∼ τ1 ⊗ τ2.

• σ⊥1 ∼ τ
⊥
1 .

All these equivalences relies on Max being a functor of star-autonomous categories.

Therefore, we can refine the category so that morphisms are equivalence classes of mor-

phisms. This remains a star-autonomous category, and this way, we can define the denotation of

a proof π as being the equivalence class of P-closure operators such that Max(σ) = ~π�NomLinRel

∧
.

We denote by ExtGQualClo this category. Of course, we get the following proposition whose

proof remains solely on the preservation of equivalences displayed above.

Proposition 7.17. ExtGQualClo is a star-autonomous category.

7.1.4 Failure of full completeness

The morphisms of ExtGQualClo lead to properly defined MLL− proof structures. That is, they

define a unique set of axiom links that encompasses all literals, by definition of the linearity

condition we impose on them. Furthermore, if we orient the axiom links from A⊥ to A, then

the conditions imposed by ExtGQualClo exclude proof structures with directed cycles. More

precisely, each morphism of ExtGQualClo is the denotation of a proof structure without di-

rected cycles. This has been studied in [10, 74, 70]. For instance, consider the following proof

structure, together with its unique oriented cycle:

σ : A⊥1 ⊗ A2 , A3 ⊗ A⊥4

⊗ ⊗

We furthermore consider a counter-strategy τ that acts as follows. τ waits for A2 to be

maximal before playing in A1. Similarly, it will wait for A3 to be maximal before playing in

A4. On the other hand, a strategy σ that implements this proof structure needs the name in A1

or A4 before being able to move himself. Hence, we reach a deadlock 〈σ, τ〉 = ⊥, and σ is not

total. Therefore, there are no strategies σ of GQualClo such that Max(σ) is the nominal relation

corresponding to this proof structure. This is linked to the fact that the cycle is oriented. On the

other hand, if we consider this new proof structure, whose cycle cannot be given an orientation:
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σ : A⊥1 ⊗ A⊥2 , A3 ⊗ A4

⊗ ⊗

then a counter strategy will always start by bringing the names in A1, A2, since it is of the form

τA⊥1 ⊗A⊥2
× τA3⊗A4 . Therefore, a P-closure operator can simply wait for a counter strategy to bring

those names, and answer in A3, A4. Hence there is a P-closure operator associated with this

proof structure that is total, linear, and therefore a morphism of GQualClo.

Somehow, the opponent “is forced” to move simultaneously on A1 and A2, whereas they

are, from the opponent point of view, two different threads. Therefore, we would like to attach

some kind of information to the positions, that would make it clear that a position (a1, a2) in

A⊥1 ⊗ A⊥2 corresponds to two threads, whereas its player answer (a3, a4) in A3 ⊗ A4 corresponds

to a unique one, leading to a mismatch.

7.2 Partial nominal relations and Chu-conditions

7.2.1 Partial nominal relations

To start, we have to gain finer control on the way the strategy acts. This will also allow us to

forget about the quotient.

To achieve that, we focus on a structure possibly underlying σ, an output function f , that

is a monotone nominal function f : D → D such that σ(x) = x t f (x). Working with output

functions allows us to achieve finer control on our strategies. Therefore, from now on, we forget

about σ, the closure operator, and focus on f , while keeping in mind that the function x t f (x)

should form a morphism of GQualClo.

First, we expect this function to be equivariant. Just as in [10], we require that this output

function is stable, that is, such that ∀x, y ∈ D, x ↑ y ⇒ f (x u y) = f (x) u f (y). We want f to

satisfy this condition, and we furthermore require f to be additive. That is :

x ↑ y⇒ f (x t y) = f (x) t f (y)

A monotone function that is both additive and stable is said to be linear. Since f is stable, it is

entirely defined by its trace:

tr( f ) = {(x, p) | p ∈ Pr(D), x ∈ D minimal s.t p v f (x)}.

The reverse operation being:

f (y) =
⊔
{p | (y, p) ∈ tr( f ), y ≤ x}
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Furthermore, since it is linear, ∀(x, p) ∈ tr( f ), x is a prime. We enforce f to be polarised,

that is, for each element of its trace, its left hand side is an O-prime, and its right hand side a

P-prime. This notably entails this simple lemma.

Lemma 7.18. • ∀x ∈ D. f (x) = f (neg(x)).

• Pos( f (x))

• Neg(x)⇒ x t f (x) , >

Proof. We start with the first property.

f (x) =
⊔
{p | (p′, p) ∈ tr( f ), p′ ≤ x}

=
⊔
{p | (p′, p) ∈ tr( f ), p′ ≤ neg(x)}

= f (neg(x))

Where we used on the following property: p′ ≤ x ∧ neg(p′) ⇔ p′ ≤ neg(x), on which we can

rely since, as, since f is polarised, neg(p′).

The second property is straightforward and the third follows from our domains being po-

larised coherent, and, therefore, negative and positive elements are always compatible with one

another. �

Furthermore, since we require that the maximal positions project linearly to denotations of

proofs, we also impose the two following properties, called separation conditions.

• ∀(p1, p′1), (p2, p′2) ∈ tr( f ).p′1 , p′2 ⇒ p1 , p2 that is, tr( f ) is an injective partial function

from negative to positive primes.

• ∀p ∈ Pr(D).Neg(p)⇒ ∃p′.(p, p′) ∈ tr( f ), that is, this function is total.

• ∀p ∈ Pr(D).Pos(p)⇒ ∃p′.(p′, p) ∈ tr( f ), that is, this function is surjective.

This basically states that the trace, and therefore f establishes a nominal bijection between

the negative and positive primes.

Proposition 7.19. Let π be a nominal bijection between negative and positive primes of a nom-

inal coherent domain. Then f , defined as follows:

f (x) =
⊔
{p | π−1(p) v x}

is a linear monotone function, whose trace is indeed {(p, π(p)}.

The proof is immediate. It entails that the separation conditions are indeed compatible with

the definition of trace.

We call positions of interactions the positions that can be reached through an interaction

against a supposedly given opponent. That is, given an output function f , we write f • for the
set of positions of interactions, that is defined to be the closure under finite compatible union

of the following set:
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{a t f (a) | (a, f (a)) ∈ tr( f )}

As we restrict to finite unions, each element of f • has finite support, and f • is a nominal

set. Furthermore, as we only consider compatible union > < f • and ⊥ =
⊔
∅ ∈ f •. Finally,

∀x ∈ f •.x t f (x) = x. Now given a pair (σ, f ) such that σ(x) = x t f (x), we straightforwardly

have f • ⊆ σ•. That is, f • selects those positions of σ• that are relevant.

The output functions compose through the Kahn semantics of dataflow [55, 6]. Given f :

A × B and g : B × C, then f ; g(a, c) = (a′, c′) ∈ A × C where (a′, c′) is defined to be the least

solution of the following equations:

• f (a, b) = (a′, b′)

• g(b′, c) = (b, c′)

Note that b′ can be computed as the limit of the growing chain
⊔

i∈N((πB; f (a, _)) ◦

(πB; g(_, c)))i(⊥). As the domain only admits finite chains, f , g are automatically continuous,

and hence b, b′ always exists and are well defined. Just as their closure operator counterparts,

we will prove ( f ; g)• = f • ;Rel g•. These functions form a category, called category of partial

nominal relations.

Definition 7.20. A Partial Nominal Relation on D, where D is a polarised coherent domain, is

a nominal relation R : D such that there exists f : D → D nominal, linear, polarised function

subject to the separation conditions ( f establishes a bijection between negative and positive

primes), satisfying R = f •.

The category ParNomRel has objects nominal polarised qualitative domains and morphisms

A→ B partial nominal relations in A⊥ × B. The identity is the identity relation and the mor-

phisms compose as relations.

Proposition 7.21. • f • forms a lattice.

• ∀x ∈ f •, ν(neg(x)) = ν(pos(x)).

• Working with polarised coherent domains D that arise as denotations of formulas of

MLL−, f preserves the compatibility: ∀x, y ∈ D.x ↑ y⇒ f (x) ↑ f (y).

• ParNomRel forms a category, and ( f ; g)• = f • ;Rel g•.

Proof. To show that f • forms a lattice, we have to prove it is stable under finite union and

intersection. The stability under finite union follows from its definition. Now, given a finite

family of xi in f •, xi =
⊔

j(p j t f (p j)), then
�

xi =
⊔
{pk t f (pk) | ∀i.pk ≤ xi}, (this follows

from a simple computation using that tr( f ) is a bijection between negative and positive primes),

and hence
�

xi ∈ f •.

The second point is immediate, just as the third, noticing that in domains two elements are

conflicting if they have two equivalent primes in it.

We now start to prove that linear functions compose, and that the additional criteria are

respected.
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Let us consider two functions f : A × B and g : B × C, together with (a, c) ∈ A × C. We

assume that f ; g(a, c) = (a′, c′), that is (a′, c′) is the minimal pair solution of the equations:

• f (a, b) = (a′, b′)

• g(b′, c) = (b, c′).

In that case, we say that (a, b), (b′, c) satisfy the equational system for the composition.

To tackle the proof, we will use an additional property of our functions, namely their stability

under the complement operator , denoted \. Given x, y two elements of the qualitative domain,

seen as sets of primes, we write x \ y for the element
⊔
{p | p ∈ Pr(D), p v x ∧ p @ y}. Then our

functions satisfy the following property:

f (x \ y) = f (x) \ f (y).

This is straightforward to prove, seeing tr( f ) as a bijection between negative and positive primes.

The composite is stable: Let us compare f ; g(xuy) versus f ; g(x)u f ; g(y). Let x = (xA, xC),

and y = (yA, yC) be compatible. Let x1
B, x2

B the minimal elements of interaction, that is, such that

f (xA, x1
B) = (x′A, x

2
B) and g(x2

B, xC) = (x1
B, x
′
C). Similarly, we introduce y1

B, y
2
B. As f , g preserve

the compatibility, seeing x1
B, y

1
B as upper lowest bound, we got x1

B ↑ y1
B, and respectively for

x2
B, y

2
B. As f , g are stable, we have:

f (xA u yA, x1
B u y1

B) = (x′A u y′A, x
2
B u y2

B)

g(x2
B u y2

B, xC u yC) = (x1
B u x2

B, x
′
C u y′C).

Therefore, (xA u yA, x1
B u y1

B), (x2
B u y2

B, xC u yC) satisfy the equational system. However, they

might not be minimal. Therefore, we already know that:

f ; g(xA u yA, xC u yC) v f ; g(xA, xC) u f ; g(yA, yC).

Let suppose there is some lesser v1, v2 such that f (xA u yA, vB) = (wA, v2) and g(v2, xC u yC) =

(v1,wC) and v1 v x1
Bu y1

B, v2 v x2
Bu y2

B (where at least one of the inequalities is strict). We write

z1 for x1
B u y1

B, and z2 for x2
B u y2

B. The following equations hold:

f (⊥, z1 \ v1) = f (xA u yA, z1) \ f (xA u yA, v1) = (z′A, z
2 \ v2)

and

f (z2 \ v2,⊥) = f (z2, xC u yC) \ f (v2, xC u yC) = (z1 \ v1, z′′C).

Therefore, (⊥, z1 \ v1) and (z2 \ v2,⊥) satisfy the equational system. But therefore, so does

(xA, x1
B\(z

1\v1)) and (x2
B\(z

2\v2), xC). Or, x1
B and x2

B are minimal. This implies xB
1 u(z1\v1) = ∅

(and similarly for x2
B, z

2, v2). Or, as z1 = x1
B u y1

B, this entails that z1 v v1. Or v1 was chosen to
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be minimal so z1 = v1. So x1
B \ (z1 \ v1) = x1

B ⇒ z1 = v1. A similar pattern leads us to conclude

that z2 = v2. So, overall, z1, z2 are minimal. As a result, this entails:

f ; g(x1
A u x2

B, x
1
C u x2

C) = f ; g(x1
A, x

1
C) u f ; g(x2

A, x
2
C),

that is, the composite function is stable.

The composite is additive: Composition of additivity is proven as follows. Given (xA, x1
B),

(x2
B, xC) and (yA, y1

B), (x2
B, yC) satisfying the equational system, we get (xA t yA, x1

B t y1
B), (x2

B t

y2
B, xCtyC) satisfying it as well, following the additivity of f . This proves that f ; g(xAtyA, xCt

yC) v f ; g(xA, xC) t f ; g(yA, yC). Now as f ; g is monotone, then f ; g(x t y) w f ; g(x) t f ; g(y)

and by combining the two inequalities we get the result.

The separation conditions compose: We prove the proposition by analysing how f ; g acts

on a negative prime. Suppose p ∈ A and Neg(p). Then f (p,⊥) will trigger exactly one positive

prime p′. Either this prime is in A, in which case f ; g(p) = p′, or this prime is in B. Now, this

prime p′, that is negative from the g point of view, will trigger, through g, a unique positive

prime p′′. This chain of p continues through f , g, playing new primes on B. As there is only

a finite number of primes (compatible with each other) in B the process ends, that is, either f

finishes the chain by playing in A, or g finishes it by playing in C. Therefore, each negative

prime triggers one and only one positive prime through f ; g. Furthermore, this one is unique.

Finally, by backtracking, one can see that every positive prime is triggered through f ; g by a

single negative prime.

Polarised function do compose: We need to prove that for each couple (p, p′) ∈ tr( f ; g) then

Neg(p),Pos(p′). This is straightforward.

Equivalence sequential -relational composition: Let (xA, xC) ∈ ( f ; g)•. This implies that

there exist y1
B, y

2
B, such that f (neg(xA), y1

B) = (pos(xA), y2
B), g(y2

B, neg(xC)) = (y1
B, pos(xC)).

Furthermore, as f , g is polarised then Neg(y1
B) and Pos(y2

B). Therefore, (xA, y1
B t y2

B) in f •,

(y2
B t y1

B, xC) ∈ g•. Thus, (xA, xC) ∈ f • ;Rel g•, and ( f ; g)• ⊆ f • ;Rel g•. Now, let us consider

(xA, xB) ∈ f •, (xB, xC) ∈ g•. Then, let us consider the set of those xi such that (xA, xi) ∈

f •, (xi, xC) ∈ g•. This set is closed under compatible intersection. Therefore, we can take a

least element. We rename this element xB. Now, f (neg(xA), neg(xB)) = (pos(xA), pos(xB))

and g(pos(xB), neg(xC)) = (neg(xB), pos(xC)). Furthermore, neg(xB), pos(xB) are minimal

satisfying this set of equations. Hence (xA, xC) ∈ ( f ; g)•, and ( f ; g)• = f •; g•. �

Note that, as our the traces of our functions act as bijections, the composition through de

Kahn semantics of data-flow is equivalent to the composition of permutations trough tracing, as

defined in 3.3.

Proposition 7.22. ParNomRel is star-autonomous, the monoidal product being the cartesian

product, and the negation consists in reversing polarities on objects, together with taking f⊥ as
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being the monotone linear function whose trace arise from the bijection tr( f )−1 on morphisms.

Finally, the unit of the monoidal product is the qualitative domain with no primes I.

There is a functor F : ParNomRel → QualClo, and this functor is a functor of star-

autonomous categories. It lets the objects invariant, and maps a function f to σ = id t f .

7.2.2 Chu conditions

Working with partial nominal relations allows us to have a greater control on the relations. Now,

we wish to gain control of a notion of O and P positions. In order to do that, we took inspiration

from the simplest instance of the Chu-construction, that we remind below.

Proposition 7.23. Let C be a symmetric monoidal closed category with products (written ∗

here). Then Cd = C × Cop is a star-autonomous category. The tensor product is :

(U, X) ⊗ (V,Y) = (U ⊗ V,U ( Y ∗ V ( X)

The unit for the tensor is (I, 1), and the negation (U, X)⊥ = (X,U).

Hyland and Schalk [51] used this construction in order to establish a functor from the cat-

egory of tree-games into the star-autonomous category Reld. The functor sent an arena to its

sets of P and O-positions respectively. That way, one saw an object of Reld as a pair (PA,OA),

composed of sets of P and O positions respectively. Finally, a strategy σ : A → B of the

standard category of tree-games was sent to a pair of relations (σ+ : PA → PB, σ
− : OB → OA).

This functor effectively detemporised the games.

We will apply the same idea here for our domains. The starting point is to consider that the

objects of our category are now 3-tuples A = (DA, PA,OA), where D is an object of ParNomRel,

or, equivalently QualClo, and PA,OA ⊆ DA are the sets of P and O-positions. Note that we

expect PA ∩OA = ∅. However, it might not be the case that PA ]OA = DA (where we see DA as

its underlying set). Some positions of the domain might belong to neither player nor opponent.

The tensor and negation are defined according to the Chu-construction.

A ⊗ B = (DA ⊗ DB, PA⊗B = PA × PB,OA⊗B = OA × PB ] PA × OB)

A⊥ = (D⊥A ,OA, PA).

where we remind that the tensor product of objects of Qual is defined as the cartesian product

of the underlying domain, together with the coproduct of their polarity functions.

Finally, we require that our morphisms somehow respect the Chu-condition as well. Given

a morphism f of ParNomRel, f : A→ B, we expect that f • establishes two relations :
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f • : PA → PB

f • : OB → OA.

That is, written QA = PA ] OA and similarly for QB, we expect that (PA; f •) ∩ QB ⊆ PB, and

( f •; OB)∩QA ⊆ OA, where we remind that given a relation R : A × B and a relation Q : A, we

write Q ;A R for the set {y ∈ B | ∃(x, y) ∈ R , x ∈ Q }. Furthermore, we want to make sure that

these two relations are not empty. To do that, we define this simple variant of the double-glueing

construction.

We introduce two new sets TD ⊆ Pfinsup(PD) and T⊥D ⊆ Pfinsup(OD), where Pfinsup denotes

the operator that to a set gives its subsets of finite support. The objects of our new category

ChuLinNom will be 5-tuples (D, PD,OD,TD,T⊥D ). OD and PD will be the sets of O and P

positions respectively, and TD and T⊥D the sets of P and O relations respecting the Chu and

double glueing conditions.

There is a monoidal tensor on ChuLinNom objects defined through the usual double glueing

structure. Given a relation R : A × B, we denote R � B the set {y ∈ B | ∃(x, y) ∈ R }. The

monoidal product is defined as follows:

A ⊗ B = {DA × DB, PA × PB,OA × PB ] PA × OB,TA⊗B,T⊥A⊗B}

TA⊗B = { R ⊆ Pfinsup(PA⊗B) | R = R A × R B ∧ R A ∈ TA ∧ R B ∈ TB} = TA × TB

T⊥A⊗B = { R ∈ Pfinsup(OA⊗B) |

∀ Q ∈ TA.Q ;A R ∈ T⊥B ∧ ∀Q ∈ TB.R ;B Q ∈ T⊥A }

The unit I is defined by:

IChuLinNom = (~I�Qual, PI = {⊥},OI = ∅,TI = {{⊥}},T⊥I = ∅)

Similarly, there is a negation defined by:

(D, PD,OD,TD,T⊥D )⊥ = (D⊥,OD, PD,T⊥D ,TD)

where we see OD as a subset of D⊥, and similarly for the other elements of the negated 5-

tuple. The objects of ChuLinNom are built freely out of the two following objects by tensor and

negation:

~X� = (~X�Qual, PX = AX ⊆ ~X�Qual,OX = {⊥},

TX = {x ∈ Pfinsup(PX), x , ∅} T⊥X = {{⊥}})

~I� = IChuLinNom

It is important to note that the concept of O-positions is unrelated to the one of O-primes,

or O-strategies (as defined in the section 7.1.3 about closure operators) For instance, (a,⊥) is

an O-position of A ⊗ A, as a is a P-position and ⊥ an O one. Hence, by raising a P-prime (the
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name a), the strategy would have actually created an O-position. This might be explained by

the fact that a strategy is supposed to play simultaneously in a tensor. Hence, the real position a

P-strategy should reach is (a, a′), which is indeed a P-position. Note that there are functions f

of ParNomRel that are denotations of valid proof structures, and such that there exists x ∈ f •

with x < PD. Indeed, some positions of f • might lie outside the set of positions that are given a

polarity. For instance, consider a maximal position (a, a, a, a) of (A⊥ ⊗ A⊥) M A M A, that is a

valid formula of MLL.

We would like our morphisms A → B to be maps f ∈ ParNomRel(A, B) such that f • ∩

QA(B ∈ TA(B, where we remind that QA(B = PA(B ] OA(B, and that A ( B is the monoidal

closure, defined as A ( B = (A ⊗ B⊥)⊥. However, at this stage, it turns out we have not been

able to prove composition with such morphisms. We will explain why in the next paragraph,

and expose a slightly weaker criterion.

Let us consider two morphisms of ParNomRel as follows f : A ( B and g : B ( C that

satisfy the desired criterions, that is, f • ∩ QA(B ∈ TA(B and similarly for g. Then, in order to

establish composition, we must prove that ( f •; g•)∩QA(C ∈ TA(C . By definition of the double

glueing construction, ( f • ∩QA(B) ;Rel (g• ∩QB(C) ∈ TA(C . The difficulty comes from the fact

that there might be some b such that (a, c) ∈ QA(C , (a, b) ∈ f •, (b, c) ∈ g• but b < QB. We have

not found an example where such a b exists, however we have not been able to rule it out either.

In other terms, if such a b exists this would entail ( f • ∩ QA(B); (g• ∩ QB(C) , ( f •; g•) ∩ QA(C .

On the other hand, ( f • ∩ QA(B); (g• ∩ QB(C) ⊆ ( f •; g•) ∩ QA(C . Therefore, we settle for a

slightly lesser property, that we expose in the below definition.

Definition 7.24. ChuLinNom is the category with objects the 5-tuples A = (DA, PA,OA,TA,T⊥A ),

where DA is an object of Qual, PA ⊆ DA, OA ⊆ DA, TA ⊆ Pfinsup(PA), and T⊥A ⊆ Pfinsup(OA)

that are freely generated from ~X� by tensor, and negation. The morphisms A → B are maps

f : ParNomRel(DA,DB) such that:

• ∃R ∈ TA(B satisfying R ⊆ f • ∩ QA(B

• f • ∩ QA(B ⊆ PA(B

This way, we will be able to prove that composition is well defined. Each object of

ChuLinNom is the denotation of a formula of MLL−, that is, we forget about the multiplica-

tive units ⊥, I. Indeed, the proof of composition we have only works while restricting to this

case. Furthermore, this subcategory is enough as we aim for a full completeness result for MLL−,

the case with units is left open.

In order to tackle the proof of this property we introduce the function I that generalises the

concept of O and P-position. The function I : D → Z \ {0} (set that we refer to as Z∗ in the

future ) sends any position to a number, that is supposed to represent a generalised notion of

polarity. It it sound in the sense that it sends P-positions to 1 and O-positions to −1. We will

refer to I(x) as the payoff of x.
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The function I is defined by induction as follows:

• For ~X�, I(⊥) = −1 and I(a) = 1.

• Given any formula F, IF⊥(x) = −IF(x).

• Given two formulas A and B, I is computed according to the following table , where

given an element (x, y) ∈ ~A ⊗ B�, we write p, q for IA(x) and IB(y) respectively, and

distinguish between the cases where p (respectively q) are positive and negative:

⊗ p > 0 p < 0

q > 0 p + q − 1
if q > |p| then p + q

if q ≤ |p| then p + q − 1

q < 0
if p > |q| then p + q

if p ≤ |q| then p + q − 1
p + q

Another way of presenting this table is by introducing two new functions:

• η : Z→ Z∗ :

n 7→ n if n > 0

n 7→ n − 1 if n ≤ 0

• ι : Z∗ → Z :

n 7→ n if n > 0

n 7→ n + 1 if n < 0

This is not hard to see that η, ι are inverse to one another. Then the above table could be

synthesised into p ⊗ q = η(ι(p) + ι(q) − 1). This allows us to conclude about the associativity of

the ⊗:

p ⊗ (q ⊗ r) = η(ι(p) + ι(η(ι(q) + ι(r) − 1)) − 1) = η(ι(p) + ι(q) + ι(r) − 2) = (p ⊗ q) ⊗ r.

By duality, we obtain the associativity for M as well. We will also make use of the following

property in a future proof.

Lemma 7.25. • ∀m ∈ Z∗.m M 1 = m ⊗ 2.

• ∀m ∈ Z∗.m ⊗ −1 = m M −2.

Proof. We only need to prove the first point by duality. That is, −(−m ⊗ −1) = (m ⊗ 2).

• if m > 0 then m ⊗ 2 = m + 2 − 1 = m + 1. On the other and (−m ⊗ −1) = (−m − 1) as

expected.

• if m = −1 then m ⊗ 2 = 1, and (−m ⊗ −1) = 1 − 1 − 1 = −1 as expected.

• if m < −1 then m ⊗ 2 = 2 + m − 1 = m + 1, and (−m ⊗ −1) = −m − 1.

�

Lemma 7.26. Let A ∈ Obj(ChuLinNom) :

• Let x ∈ PA. Then I(x) = 1.

• Let x ∈ OA. Then I(x) = −1.

• Let x ∈ QA = PA ] OA. Then I(x) = 1⇒ x ∈ PA, I(x) = −1⇒ x ∈ OA.



7.2. PARTIAL NOMINAL RELATIONS AND CHU-CONDITIONS 249

Proof. The third point is a direct consequence of the two first ones. We prove the two first points

together. The proof is by induction on the structure of the formula. If it is atomic, then it is by

definition. In the case of A = A1 ⊗ A2, then I(x1 ⊗ x2) = I(x1) ⊗ I(x2) = 1 ⊗ 1 = 1 since

x1 ∈ PA1 , x2 ∈ PA2 by definition of PA1⊗A2 . Finally, if A = A1 M A2, then I(x) = I(x1) M I(x2),

and I(x1) = −1,I(x2) = 1, or the other way around I(x1) = 1,I(x2) = −1, by definition of

PAMB. Then −1 M 1 = 1, and we conclude that I(x) = 1. The proof for the OAMB and OA⊗B is

dealt with similarly. �

We will also need the following lemma.

Lemma 7.27. • ∀F formula of MLL−.TF , ∅ ∧ T⊥F , ∅,

• ∀F formula of MLL−, ∀R ∈ TF .R , ∅ and ∀R ′ ∈ T⊥F .R
′ , ∅.

Proof. This is proven by mutual induction along the structure of the formula F. For the first

point, the atomic case is by definition. In the case F = A⊗B, then we simply consider a relation

R A × R B ∈ TA⊗B and a counter-strategy PA × τB ] τA × PB, where τA ∈ TA⊥ , and τB ∈ TB⊥ . The

case A M B is dealt with similarly.

For the second point the atomic case is by definition. For the elements of T , the inductive

case ⊗ is automatic. For T⊥A⊗B, given a relation R ∈ T⊥A⊗B, then given Q ∈ TA, Q ;A R ∈ T⊥B .

Hence Q ;A R , ∅ by inductive hypothesis and hence R , ∅. The case for relations in AM B is

proven along the same lines. �

Proposition 7.28. Let f ∈ ParNomRel(A, B) such that ∃R ∈ TA(B.R ⊆ f •. Then for any

x ∈ f •,I(x) = 1.

Proof. Instead of working with A⊥MB, we work with a general formula of MLL−. So let f • : D

where D is the qualitative polarised domain ~F�Qual for a formula F of MLL−. As there exists

R in TF such that R ⊆ f • ∩ QF , this implies, by the lemma above 7.27 that there exists some

x ∈ f • such that x ∈ PF . Consequently I(x) = 1.

Now we prove the following property: let us assume x such that I(x) = 1, and primes p, p′

such that p O-prime, p′ P-prime, p, p′ ↑ x, and both p, p ∈ x or p, p′ < x. Then I(x]{p, p′}) = 1

or I(x \ {p, p′}) = 1. That is, if we start from a position x of payoff 1, and do, or undo, a pair of

OP primes, then we reach a new position of payoff 1. As every position of f • can be obtained

from one another by adding or removing pairs of OP-primes (this follows from the definition of

f •) this will allow us to conclude that every position y of f • satisfies I(y) = 1.

In order to establish that, we simply need to prove that given a position x of payoff n, then

if we add an opponent prime to it, or remove a player prime from it, we reach a position n⊗−1.

By duality, if we add a player prime, or remove an opponent prime to a position of payoff n,

then we reach a position of payoff n M 1. Therefore, if we start from a position of payoff 1, and

add, or remove, a couple of OP primes then we will reach a position of payoff 1 ⊗ −1 M 1 = 1.
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The proof is done by induction on the structure of the formula F. If x is a position of an

atomic formula X, then if x is a prime a, x has payoff 1. Then if we remove a prime from x we

end up in the position ⊥, that has payoff −1 = 1 ⊗ −1. Similarly, if x has payoff −1 then if we

add a P-prime to it, we reach a position of payoff 1 = −1 M 1. The same reasoning works for

X⊥. We now focus on the induction case. Imagine that x is a position of a qualitative polarised

domain denotation of a formula A = A1 ⊗ A2, and I(x) = 1. Then let us imagine we add a

O-prime to x, and we consider without loss of generality that this O prime is in A1. Then setting

n1 = I(x � A1), n2 = I(x � A2), we reach a position of payoff (n1⊗−1)Mn2 = (n1M−2)Mn2 =

(n1 M n2) M −2 = (n1 M n2) ⊗ −1. The other cases are dealt similarly.

So we can conclude that ∀x ∈ f •.I(x) = 1. �

This was the last missing element needed to prove composition. As we proved composition

only for morphisms of MLL−, we have to work in the category without units. It was studied

in [25] how to characterise unitless star-autonomous categories. It resulted in the following

definition.

Definition 7.29. A symmetric semi-monoidal closed category is described by the following

data:

• A category C.

• Two functors ⊗ : C × C → C and(: Cop × C → C.

• Three natural isomorphisms corresponding to the following properties:

1. (symmetry) A ⊗ B ' B ⊗ A.

2. (associativity) A ⊗ (B ⊗C) ' (A ⊗ B) ⊗C.

3. (closure) C(A ⊗ B,C) ' C(A, B( C).

• A functor J : C → Set together with a natural isomorphisms C(A, B) ' J(A( B).

A semi star-autonomous category is a symmetric semi-monoidal closed category with a full and

faithful functor (.)⊥ : C → Cop and a natural isomorphism:

• C(A ⊗ B,C⊥) ' C(A ⊗ B⊥,C).

Proposition 7.30. ChuLinNom is a semi star-autonomous category.

Actually, it is a sub semi star-autonomous category of ParNomRel. That is, the tensor, and

negation operation lift from ParNomRel to ChuLinNom.

Proof. We start by proving that the morphisms compose. We consider two morphisms f : A→

B and g : B→ C of ChuLinNom. Given R ∈ TA(B such that R ⊆ f • ∩ QA(B, and Q ∈ TB(C

such that Q ⊆ g• ∩ QB(C , then R ; Q ⊆ ( f ; g)• ∩ QA(C , and, by definition, R ; Q ∈ TA(C .

To finish, we simply need to prove that ( f •; g•) ∩ QA(C ⊆ PA(C . As ∃R ∈ TA(C such that

R ⊆ f •, we know by proposition 7.28 that ∀x ∈ f •.I(x) = 1. In particular, by lemma 7.26, we

can conclude that ∀x ∈ f • ∩ QA(B.x ∈ PA(B as expected.

We tackle monoidality, that is, that ⊗ indeed acts as a functor. The definition of TA⊗B as

TA × TB is coherent with PA⊗B = PA × PB. That is, given two relations R 1, R 2 ∈ TA,TB,
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then by definition R A × R B ⊆ PA⊗B. Finally, given two morphisms f : A, g : B, and given

R 1 ⊆ f • ∩QA, R 2 ⊆ g• ∩QB, then R 1 × R 2 ⊆ f • × g• ∩QA⊗B. Indeed, as f • ∩QA ⊆ PA, and

respectively g• ∩ QB ⊆ PB, it automatically entails that f • × g• ∩ QA⊗B = f • ∩ QA × g• ∩ QB ⊆

PA × PB = PA⊗B as expected. The symmetry and associativity natural isomorphisms are the

ones of ParNomRel.

We now prove monoidal closure. Let f ∈ ChuNomLin(A ⊗ B,C), that is

f : (A ⊗ B)⊥ MC = A⊥ M (B⊥ MC). Then there exists R : T(A⊗B)(C such that R ⊆ f • ∩

Q(A⊗B)(C . However, as (A ⊗ B)⊥ M C = A ( (B ( C), then one can see f • as a morphism

A→ B( C, and similarly, one can see R as belonging in TA((B(C), with R ∈ f •∩QA((B(C).

Moreover, the definition of J is obvious setting J(A) being the set of morphisms of

ParNomRel(I, A) that satisfy the desired conditions. Finally, the negation provides the desired

functor required for characterising semi star-autonomous categories. �

7.2.3 Full completeness

MDNF stands for multiplicative disjunctive normal form. It is the form for formulas of MLL−

that results from applying the transformations (AM B)⊗C → AM (B⊗C), and its right variant,

in order to dispose of the M that are not at the bottom level in a formula.

Definition 7.31. A sequent Γ of MLL is MDNF if Γ is a multiset of formulas Fi and each

Fi = ⊗ jXi, j where Xi, j is a literal.

A model is MDNF-fully complete if it is fully complete for every MDNF-sequent. That

is, given a MDNF sequent Γ, then every morphism σ : I → ~Γ� is the denotation of a proof.

Proving MLL− full-completeness relying on MDNF formulas, and sequents, is an argument

drawn from [84], itself taking inspiration from [5]. The proof structures, and proof nets, of

MLL−-MDNF formulas are much simplified compared to the ones of MLL−. Indeed, as there is

no M, there is no need to consider switchings anymore. We use the term “block” to refer to a

formula Fi of Γ = F1, F2, ..., Fn.

Proposition 7.32. ChuLinNom is MDNF fully-complete. That is, given a MDNF sequent Γ of

MLL− , then any morphism I → ~Γ� is the denotation of a proof π :` Γ.

Given a morphism f of ParNomRel, there is a canonical proof structure of MLL− associated

to it, since a proof structure of MLL consists of a bijection between negative and positive litterals.

We recall that the argument for full completeness is in two steps. Given the proof structure

canonically associated with f , we first have to prove that the proof structure is acyclic, and then

connected.

Proof. We start by showing that there is no cycle inside a block. Let us assume that there is one,

and we name the block F1. We call R the relation of TΓ such that R ⊆ f •∩QΓ. Then let us pick
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G1⊗ l11⊗ l21 G2⊗ l12⊗ l22 G3⊗ l13⊗ l23 .... Gm⊗ l1m⊗l2m

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

Fm+1 .. Fn

Figure 7.1: A cycle inside a proof structure corresponding to a MDNF sequent

a counter strategy Q ∈ T⊥F2M....MFn
, and, making it interact with R through R ;F2M...MFm Q = S,

we get that S is a strategy of F1: S ∈ TF1 . Let us assume that the block is of the shape

F1 = Y1⊗Y2⊗...⊗Yl⊗X⊗X⊥, and the strategy establishes an axiom link between X and X⊥. Then

let us pick a position x of S. As x � X⊥ = x � X, this entails that x � X⊥ ∈ PX⊥ ⇔ x � X ∈ OX

and x � X⊥ ∈ OX⊥ ⇔ x � X ∈ PX . Therefore, x � X ⊗ X⊥ ∈ OX⊗X⊥ , and x < PF1 . This is a

contradiction. So there is no cycle inside a block.

So let us assume there is a cycle that goes through several blocks, and let us pick one of

minimal length. As the cycle is of minimal length, it only goes at most once through each block,

passing through two literals. Therefore, given a block Fi on the cycle, we write Fi = Gi⊗ l1i ⊗ l2i ,

where l1i , l
2
i are the literals that belong in the cycle. We then consider that the Fi have been

rearranged in the order of the cycle, starting from l11. This is drawn in the figure 7.1.

Let us pick a counter-strategy of Q of F2M ...MFmMFm+1M ...MFn. That is, Q ∈ T⊥F2M..MFn
.

Then, writing S = R ;F2M...MFn Q , we get S ∈ TF1 , In particular, S is non-empty and therefore

∃x ∈ S, x ∈ PF1 , ∃y ∈ OF2M...MFm such that (x, y) ∈ R and in particular (x, y) ∈ f • ∩ QΓ. This

implies y � Fi ∈ OFi for all i greater than 1. As x is a P-position, this implies that x � l11 ∈ Pl11
and x � l21 ∈ Pl21

. As y � F2 is an O-position, it implies that there is exactly one literal l of F2

in it, such that y � l ∈ Ol. This has to be l12, as x � l21 is a P-position, and the polarity of y in

l21 must be the opposite. This implies that y � l22 is positive. Following the same reasoning, it

implies that y � l13 is negative, and y � l23 positive. Repeating this, we finally obtain that y � l1m
is negative and y � l2m is positive. But the polarity of y � l2n is the opposite of the one of x � l11
that is positive. Hence y � l2m is positive and negative, bringing a contradiction. We deduct the

acyclicity.

Proving the connectedness is just as simple. Note that every literal of a block belongs to

the same connected component. Suppose that there are two connected components (the re-

sult generalises straightforwardly for more), that we split into two sets of blocks F1, ..., Fk and

Fk+1, ..., Fm. We pick a random block in the first connected component, and name it F1. We

consider a counter-strategy Q ∈ T⊥F2MF3M....MFm
. Let us consider a position (x, y) such that y ∈ Q

and x ∈ R ;F2⊗...⊗Fm y as above. Then by definition, x is a player position, and all positions y � Fi

are O-positions. In particular, y � Fk+1 M ...M Fm ∈ OFk+1M...MFm . On the other hand, we already

know that the part of the relation in Fk+1 M ... M Fm corresponds to an acyclic proof structure.

Furthermore, as it is connected, it corresponds to a proof. Therefore it is a denotation of a proof
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and belongs in PFk+1M...MFm by soundness. Consequently, y ∈ PFk+1M...MFm ∩ OFk+1M...MFm = ∅.

This is a contradiction, and the structure is connected. �

Finally, we simply note that MDNF full completeness entails MLL− full completeness in

any semi star-autonomous category. This has already been devised in [5, 84]. We repeat the

argument here.

Suppose that F is a formula such that there is a morphism f : I → F whose correspond-

ing proof structure is cyclic (and, or, disconnected) for a given switching S . First, we handle

acyclicity. Let us select an occurrence M such that the cycle passes through it. Then either the

M is at a lowest level, in which case we do nothing. Or there is a ⊗ that appears before in the

parse-tree. That is, it occurs in a context of the form (A⊗ (BMC)). Then if the switching selects

the formula B, we post-compose f with the morphism that is identity almost everywhere but

transforms (A ⊗ (B M C)) into ((A ⊗ B) M C). Then there is still a cycle in the newly obtained

proof structure corresponding to the new morphism. By doing so repeatedly, we eventually ob-

tain a MDNF formula that has a cycle in it. However, such a morphism is rejected by the model.

Therefore, there is no cycle in the original formula. The connectedness proof works on a similar

basis.

This allows us to conclude this section with the expected theorem.

Theorem 7.33. ChuLinNom is fully-complete for MLL−.

7.2.4 ChuLinNom, a new definition

This fully complete result allows us to redefine slightly ChuLinNom, by replacing the condition:

∃R ∈ TA(B.R ∈ f • ∩ QA(B

in the definition, with:

f • ∩ QA(B ∈ TA(B.

We recall that the problem with the second condition was that we were not able to prove the

composition. However, now, we can rely on the full-completeness result in order to establish that

the second condition composes. Indeed, two morphisms being denotation of proofs of MLL−,

they will compose just as their proof compose.

Proposition 7.34. ChuLinNom can be presented as the category having:

• Polarised coherence objects equipped with Chu-structure as objects: A =

(DA, PA,OA,TA,T⊥A ), where OA, PA ⊆ DA, TA ⊆ Pfinsup(PA), T⊥A ⊆ Pfinsup(OA), such

that each object is the denotation of a MLL− formula.

• As morphisms A→ B morphisms f : ParNomRel(DA,DB) such that f • ∩ QA(B ∈ TA(B.
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Proof. To differentiate, we name ChuLinNom2 the latest construction, and ChuLinNom1 the

former. The identities are morphisms of ChuLinNom2. Furthermore, given morphisms f , g of

ChuLinNom2, f ⊗ g is a morphism of ChuLinNom2, just as is f⊥. Therefore, any cut-free mor-

phism of MLL− can be modelled within ChuLinNom2. Furthermore, (forgetting that the compo-

sition is not yet defined), ChuLinNom2 is a sub-semi-star-autonomous category of ChuLinNom1

(in the sense that every morphism of ChuLinNom2 is a morphism of ChuLinNom1 and they share

the same tensor and negation). As ChuLinNom1 is fully-complete, so is ChuLinNom2, that is,

every morphism of ChuLinNom2 is the denotation of a proof. Therefore, the composition of

two morphisms of ChuLinNom2 results in a morphism that is the denotation of a proof. This

one is then a morphism of ChuLinNom2. That is, ChuLinNom2 is a category.

Therefore, ChuLinNom2 is a sub-semi-star-autonomous category of ChuLinNom1 able to

faithfully model axioms, and, as ChuLinNom1 is fully-complete for MLL−, ChuLinNom2 =

ChuLinNom1. �

Let us note that as this stage, we do not make use of names. That is, we could present an

even simpler category, if our goal was limited to MLL−. This one consists in an almost similar

definition as ChuLinNom, but relying on a simplified ParNomRel category.

Definition 7.35. We define ParRel as the category:

• whose objects are coherence polarised domains obtained by tensor and negation from the

labelled Sierpinski domain, that is the 2-elements lattice domain OX with ⊥ v >X , whose

only prime is positive. Of course, we set ~X� = OX . We set label(>X) = X. Each object

is then a denotation of a MLL− formula.

• whose morphisms of ParRel(A, B) are linear monotone functions of A( B subject to the

separation conditions and such that (p, p′) ∈ tr( f )⇒ label(p) = label(p′).

Relying on this simpler category, we can define ChuLin. The objects of ChuLin are construct

inductively from ~X�, defined as follows:

~X�ChuLin = (OX , PX = {>X},OX = {⊥},TX = {{>}},T⊥X = {{⊥}})

We now have the necessary ingredients to define the category.

Definition 7.36. ChuLin is the category having:

• Polarised coherence objects equipped with Chu-structure as objects: A =

(DA, PA,OA,TA,T⊥A ), where OA, PA ⊆ DA, TA ⊆ Pfinsup(PA), T⊥A ⊆ Pfinsup(OA), such

that each object is the denotation of a MLL− formula.

• As morphisms A→ B morphisms f : ParRel(DA,DB) such that f • ∩ QA(B ∈ TA(B.

Proposition 7.37. ChuLin is a star-autonomous category and is fully complete for MLL−.

The proof follows the exact same argument as presented before for ChuLinNom.



7.2. PARTIAL NOMINAL RELATIONS AND CHU-CONDITIONS 255

7.2.5 A connection to graph games

There is a way of seeing f • as a strategy of QD seen as a graph. This bears a central connection

to the graph games developed by Hyland and Schalk [51, 52], even though our games and

strategies are fundamentally different.

Given a qualitative polarised domain D, we look at QD as the graph defined as follows:

• Its set of vertices are the elements of QD, split into its set of player positions PD, and its

set of opponent positions OD.

• An edge e between two positions x
e
−→ y, x , y, corresponds to a prime p such that

xtp = y or x\p = y. In that case we can see that y ∈ PD ⇔ x ∈ OD and x ∈ OD ⇔ y ∈ PD.

We write ED for its set of edges.

We call such a graph a qualitative polarised graph.

To make clear the direction in which we travel a prime, we write x
p
−→ if we add it, and x

p
←−

if we remove it. Therefore, we refer to moves for the data of a prime, together with a direction

(adding, removing). We usually use the lowercase m to refer to them. A move is an O-move

if the edges corresponding to it start from P-positions and target O-positions, and a P-move if

they start from O-positions to target P-positions. Equivalently, a move is an O-move if it is an

O-prime that is added, or a P-prime that is removed. Similarly, it is a P-move if it is a P-prime

that is added, or an O-prime that is removed. We define O-edges and P-edges accordingly.

Let us note that when restricted to one direction (that is, either add or remove), then the graph

Q D is acyclic (that is, a dag), but might contain several roots (that are, minimal elements). So

if it certainly might be seen as an asynchronous graph, this one does not come from an event

structure.

In the work of Hyland and Schalk the strategies for graphs were defined as partial functions

α from O-positions to P-positions, such that, for all O-positions x in the domain of α, there is

a move m satisfying x
m
−→ α(x). In our case, this definition does not work, since we take into

account the dynamics. That is, given x
p
−→ y, such that y ∈ OD, then this corresponds to adding

an O-prime, and the strategy should answer by adding the associated P-prime. On the other

hand, considering z
p
←− y ( and y ∈ OD), then this corresponds to removing a P-prime, and the

strategy should remove the associated O-prime. Note that given a position x and a prime p (

such that p ↑ x), then there is a unique direction p can be travelled starting from x. Therefore,

we might refer to this edge (respectively move) as e(x, p) (respectively m(x, p)).

Definition 7.38. A strategy on a qualitative polarised graph QD is defined as follows:

• A set of Υ ⊆ PD of P-positions.

• A partial function α : ED → ED defined as follows. Given an edge e(x, p) such that

x ∈ Υ, and x
p
−→ y (respectively x

p
←− y), then, if there exists p′ such that y

p′
−→ z ∈ PD ∩ Υ

(respectively y
p′
←− z ∈ PD ∩ Υ), then this pair (z, p′) satisfying the property is unique and

we write α(e(x, p)) = e(y, p′).
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The data of α is redundant: α is perfectly defined from Υ. In our case, the strategy corre-

sponds to a morphism of f of ChuLinNom, and f is a bijection between primes. So what matters

is not the position, but only the prime. That is, the strategy is history-free (in the sense of [7]).

Definition 7.39. A strategy on a qualitative polarised graph is history-free if there exists a

function β : Pr(D) → Pr(D) such that ∀(x, y, p) ∈ PD × OD × Pr(D) with x
e(x,p)
−−−−→ y, then

α(e(x, p)) = e(y, β(p)).

Finally, we want the strategy to be total.

Definition 7.40. A strategy on a qualitative polarised graph is total if it is not empty and ∀x ∈ Υ,

∀p such that x
e(x,p)
−−−−→ y, e(x, p) being an O-edge, β is defined on p and x

e(x,p)
−−−−→ y

e(y,β(p))
−−−−−−→ z ∈ PD.

The fact that our morphisms behave that way is demonstrated below.

Proposition 7.41. Let us consider a function f : D of ChuLinNom, where D is the qualitative

polarised domain denotation of a MLL− formula. Then f • leads to a strategy that is history-free

and total.

The fact that it leads to a history-free strategy is straightforward. However, the totality is a

real property, and the proof is not elementary. Let x ∈ f • ∩ QD. By definition, x ∈ PD. Let p be

an O-prime, seen as an O-move, x
p
−→ y, y ∈ OD. Then, by definition of f , this prime is mapped

to a P-prime p′. Hence the strategy associated with f reacts in D, by playing a P-move y
p′
−→ z.

What we need to prove is that z ∈ PD. Indeed, at this stage we have no proof that z lies in QD.

Proof. We rely on full completeness. We prove by induction on the rules of MLL− that the

strategy denoting the proof is total. First, we introduce some terminology. Let D be a polarised

coherent domain denotation of a formula F of MLL−, and we consider a position x ∈ PD. We

say that x is ready to move in l, where l is a literal of F, if x � l ∈ Pl and if an element y ∈ D,

which is equal to x on all literals except l, where y � l ∈ Ol, is in QD (and hence y ∈ OD). We

say that y is the result of switching x in l. Similarly, we say that y ∈ OD is ready to move in l, if

the element x, which is equal to y on all literals except l, where x � l ∈ Pl, is in QD (and hence

x ∈ PD).

We prove the following intermediate property, which straightforwardly entails that f • is

total. Let x ∈ f • ∩ QD. Let l, l⊥ linked by an axiom-link in the proof whose denotation is f .

Then if x is ready to move in l, then given y as above, y is ready to move in l⊥. The proof is

done by induction on the structure of the proof. For the axiomatic case, this is straightforward.

So let us suppose that we have the following rule:

` Γ, A ` ∆, B
⊗

` Γ,∆, A ⊗ B

Let us note that if we pick a literal l of a formula F, such that x � l ∈ Pl and x is ready

to move in l, then it automatically entails that x � F ∈ PF . Indeed, swapping the polarity of a
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literal from P to O entails a downward change of the global polarity function I(x � F). Hence,

the only possible case is x � l ∈ Pl, and once the swap happens, leading to y, one has y � F ∈ Ol.

We deal with the different cases, though restricting our study to the cases where the axiom

link happens in the Γ, A part of the sequent. The cases where it belongs to the ∆, B are symmetric.

We always assume x � l⊥ ∈ Pl⊥ . The case x � l ∈ Pl is dealt with similarly.

1. l, l⊥ ∈ Γ. Then let x as above, and x � l⊥ ∈ Pl⊥ ready to move in Γ. This means x � Γ ∈ PΓ,

and, consequently, x � A ∈ OA. This entails x � B ∈ PB and thus x � ∆ ∈ O∆. So suppose

we switch x � l from O to P, getting y. Then projecting on Γ, A, we see that y � Γ ∈ OΓ,

and y is ready to switch in l⊥. Hence we can switch from O to P in l⊥, and reach a position

z where z � Γ ∈ PΓ, z � ∆ ∈ O∆, z � A ∈ OA, z � B ∈ PB, which is a proponent position as

expected.

2. We tackle the case l ∈ Γ, l⊥ ∈ A. As x is ready to switch in l⊥, and x � l⊥ ∈ Pl⊥ , we

get that x � A ∈ PA, and, similarly x � A ⊗ B ∈ PA⊗B so x � B ∈ PB. Hence, we get

x � Γ ∈ OΓ and x � ∆ ∈ O∆. Therefore, doing the two switchings in l⊥ in A⊗B, and in l in

Γ, will get us a final position z having local polarities z � A ∈ OA, z � B ∈ PB, z � Γ ∈ PΓ

and y � ∆ ∈ O∆. Therefore z ∈ PΓ.

3. The third case is l⊥ ∈ Γ, and l ∈ A. This time, we get x � Γ ∈ PΓ, x � ∆ ∈ O∆, x � A ∈ OA,

x � ∆ ∈ P∆. After swapping x in both l, and l⊥, we get z � Γ ∈ OΓ, z � ∆ ∈ O∆,

z � A ∈ PA, z � B ∈ PB, hence this results in a successful switch.

4. The last case is l⊥ in A and l ∈ A. With this we have x � A ∈ PA, x � B ∈ PB,

x � Γ ∈ OΓ, x � ∆ ∈ O∆. Once we switch x in l, l⊥ resulting in a position z, we have

z � A ∈ PA, and the others local polarities remained unchanged. So the final element

remains in PΓ.

The case of an M rule is straightforward as it is interpreted as identity, hence it does not

change the local, and hence global, polarities.

Therefore, the property holds for any f denotation of a proof. By full completeness, this is

the case for any f satisfying the Chu-conditions. �

Within the work of graph-games, a property often expected from strategies is conflict-

freeness. However, in our case, one has to fix an orientation to define it properly. For this

paragraph, we suppose we have fixed an orientation. We write x ≤ z if there is an oriented path

x � z. Suppose x, z ∈ X such that x ≤ z. Then the strategy is conflict-free, if given an O-move

x
m
−→ y, such that y ≤ z, then the strategy answers with a move y

n
−→ w, and w ≤ z. This holds

straightforwardly for strategies coming from morphisms of ChuLinNom.

We believe that this topic is worth being a subject for further investigation. We leave

open the questions of characterising precisely the strategies that arise from morphisms of

ChuLinNom, or, equivalently, from proofs.
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7.3 Hypercoherences and MALL full completeness

The goal of this section is to enrich the former model with an additive structure and prove a

MALL full completeness result. The former model has a natural additive structure, that consists

in:

A ⊕ B = {inl(DA) ] inr(DB), inl(PA) ] inr(PB), inl(OA) ] inl(OB), inl(TA) ] inr(TB), inl(T⊥A ) × inr(T⊥B )}

A & B = {inl(DA) ] inr(DB), inl(PA) ] inr(PB), inl(OA) ] inl(OB), inl(TA) × inr(TB), inl(T⊥A ) ] inr(T⊥B )}

Unfortunately, we have not been able to prove full completeness with this definition of additives,

and hence relied on an alternative one. We will first decorate the morphisms of ParNomRel with

a notion of hypercoherence, and prove some properties about the thus obtained category. Then,

we will add the Chu-conditions, refining the previously obtained category. This detour through

ParNomRel is needed in order to establish some properties, and to precisely describe what

properties the hypercoherence enforces.

7.3.1 Polarised coherence hypercoherence spaces

Originally, concurrent games were enriched with a a weak coproduct, where the proponent could

choose with two additional moves whether he would like to pick the left or right component.

These additional moves were part of the reason why one needed to use a quotient eventually.

Indeed, for instance, in that case (A⊕ B)⊕C and A⊕ (B⊕C) are not denoted by the same arena,

allowing morphisms to act differently on these two. Here, we choose a different route. What

used to be dynamic is now presented in a static way thanks to hypercoherences.

Therefore, the objects we will now work with are pairs (A,Γ(A)) where A is a sum of po-

larised coherence domains, and Γ(A) ⊆ DA its set of coherence. Formally, given two polarised

coherence domains A, B we define their sum as follows:

A ⊕ B = (DA ] DB,vA ] vB, λA⊕B = λA ] λB : Pr(A) ] Pr(B)).

A ⊕ B is not a polarised coherence domain, as it does not have a unique minimal element. We

call the resulting element a polarised coherence object.

Definition 7.42. A polarised coherence object is an object of the form ]iDi, where each Di is a

polarised coherence domain.

The tensor product lifts straightforwardly to polarised coherence objects: given two po-

larised objects ]Di and ]D j, then (]iDi) ⊗ (]D j) = (]iDi) × (]D j) ' ]i, jDi × D j. Similarly,

the negation is defined by negating all objects (]iDi)⊥ = ]iD
⊥
i . This lifting from domains to

objects via sums is analogous to the family construction [8].

We remind that, given a formula F of MALL, we call a &-resolution (respectively ⊕-
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resolution, additive-resolution) the choice, for each & (respectively for each ⊕, for each & and

⊕) of one of its premises. Given Ψ a &−, or a ⊕−, or an additive resolution of F, F being a

MALL formula, we write F � Ψ for the formula arising by selecting the sub-formulas of F ac-

cording to Ψ. We enlarge our definition of resolutions to polarised coherence objects, by seeing

them as denotations of formulas of MALL. We define D � Ψ similarly as for formulas of MALL.

That is, if D is a denotation of a formula F of MALL, Ψ a resolution of F, then D � Ψ is the

denotation of F � Ψ. Given a polarised coherence object D, an element x ∈ D, and Ψ a &, or

⊕, or additive-resolution of D, we say that x is on Ψ if x is coming from the canonical injection

from D � Ψ into D. Similarly, given R a relation of D, (that is, a subset of D), we write R � Ψ

for the restriction of R to D � Ψ. When working with elements, or relations, we may slightly

abuse notation in the following way: given an element x of D (respectively R ⊆ D), and Ψ a

resolution of D such that x (respectively R ) is coming from the injection D � Ψ ↪→ D, then we

might consider that x = x � Ψ ( or R ⊆ D � Ψ).

We define a new category by describing morphisms between polarised coherence objects

enriching with a notion of hypercoherence. We write Pfin for the finite subsets operator, and P∗fin

for the non-empty finite subsets operator.

Definition 7.43. A polarised coherence hypercoherence space is a pair (A,Γ(A)) where A is a

polarised coherence object and Γ(A) ⊆ P∗fin(DA) is its set of hypercoherence.

We furthermore write Γ∗(X) for the subset of Γ(X) of elements that are not singletons. We

define the category HypGraph as having (some, not all) qualitative coherence hypercoherence

spaces as objects.

~X�HypGraph = {~X�Qual,Γ
∗(X) = {x ] ⊥ | x ⊆ Pfin,>1(AX)}}

~I�HypGraph = {~I�Qual,Γ(1) = {>}},

where we denote Pfin,>1(AX) the set of finite subsets ofAX of cardinal more than 1. That is, Γ(X)

is the set of singletons, together with the sets {a1, ..., an,⊥}. The way to think about it is that the

⊥ switches the hypercoherence. That is, for instance, {a} ∈ Γ(X) and {a,⊥} ∈ Γ⊥(X). Similarly,

{a1, ..., an} ∈ Γ⊥(X), and {a1, ..., an,⊥} ∈ Γ(X). For the remaining objects, it is defined by

repeated applications of the required rules associated with the connectives. These were already

defined in 3.5, and we briefly remind them below.

Γ(A ⊗ B) = {w ∈ P∗fin(DA × DB) | w � DA ∈ Γ(A) ∧ w � DB ∈ Γ(B)}

Γ(A ⊕ B) = {w ∈ Pfin(DA ] DB) | w ∈ Γ(A) ∨ w ∈ Γ(B)}

Γ(A⊥) = P∗fin(DA) \ Γ∗(A)

Definition 7.44. The category HypGraph is the category that has:

• as objects polarised coherence hypercoherence spaces (A,Γ(A)) generated by induction

from ~X�HypGraph, ~I�HypGraph using ⊗,⊕ and (.)⊥.

• as morphisms A→ B the nominal relations R : DA(B such that:
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1. (P1) For each &-resolution Ω of A( B, there is an additive resolution Ψ on Ω such

that R � Ψ ∈ ParNomRel(A( B � Ω)

2. ∀s ∈ P∗fin(R ), s ∈ Γ(A( B).

For a morphism R : A→ B, the condition (P1) translates as: for each ⊕-resolution of ΨA of

A, for each &-resolution ΨB of B there exists a &-resolution ΦA on A � ΨA and a ⊕-resolution

ΦB on B � ΨB such that ΨAΦA � R � ΨBΦB is a partial nominal relation (A � ΨAΦA) → (B �

ΨBΦB).

In order to prove that HypGraph forms a category, the main difficulty is to establish that the

condition (P1) composes. To our knowledge, it has never been proven before. An attempt was

made through characterising the proof-structures that are hypercoherent in [87], but the author

noticed the difficulty in proving that these compose with this method. The property could have

followed a good correspondence between game-semantics and hypercoherence, as attempted in

[28, 18]. However, as the games they were working with were sequential, this conflicted with

the non-sequential, and non-polarised aspect of linear logic.

We present below a proof that this condition composes. This is done by establishing that

the hypercoherences give rise to concurrent operators, as originally defined in [10]. As we have

not proven that HypGraph forms a category at this point, we will speak about the pre-category

HypGraph.

7.3.2 Projecting hypercoherences on concurrent games

In this section we establish that each (P1) hypercoherence, that is, a morphism of HypGraph,

produces a concurrent operator on the arena of additive-resolutions (that we define later); the

exact same arena that was used by Abramsky and Melliès in their seminal paper on concurrent

games [10]. More precisely, we establish that each hypercoherence gives rise to a concurrent

operator that is civil, and total. These are the same properties that were used in [10] to pro-

vide the proof of full completeness. Establishing this allows us to prove that morphism of

HypGraph composes. Given two morphisms R : HypGraph(A, B), and Q : HypGraph(B,C),

a ⊕-resolution ΨA of A, a &-resolution ΨC of C, the goal is to prove that there is an ad-

ditive resolution ΦB of B, that can also be seen as an additive resolution of B⊥, such that

ΨA � R � ΦB , ∅, and ΦB � Q � ΨC , ∅. That is, there is an additive resolution on

which R and Q meets. As a result, there exists a &-resolution ΦA on A � ΨA such that

ΨA.ΦA � R � ΦB ∈ ParNomRel(A � ΨA.ΦA, B � ΦB). Furthermore, we prove that this additive

resolution is unique.

We start by defining an arena for each formula of linear logic. Each arena is a polarised

di-domain, where each prime corresponds to the left or right branch of an additive resolution.

We furthermore transform it into a polarised di-domain, by giving a polarity to each prime.

• ~X� = ({⊥},v= {(⊥,⊥)},⊥) for each literal X.

• ~A ⊗ B� = ~A M B� = ~A� × ~B�
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• ~A ⊕ B� is defined as follows:

⊥

inl(A) inr(B)

l, P r, P

Formally, DA⊕B = (DA ] DB ] {⊥},v=vA ] vB ]⊥ × DA ] ⊥ × DB,⊥), and the two new

primes hence created have polarity +1.

• ~A⊥� = ~A�⊥, where the (.)⊥ operation consists in swapping the polarity of the primes.

Consequently, ~A & B� = ~A⊥ ⊕ B⊥�⊥.

Note that these arenas are not alternated. There might be two moves of the same polarity

right after another. For instance, in the arena (A ⊕ (B ⊕ C)), there are two succesive moves

of polarity P (for instance (r, P).(l, P), picking up the formula B). This interpretation is the

same as the one of [10], with instantiation ~X� = {⊥} for each literal. This domain was also

studied in more depth in [2], in an attempt to redefine Girard and Hugues and Van Glabbeek’s

proof structures and their correctness criteria in the context of di-domains. Let us note that

each position of the domain corresponds to a partial additive-resolution of the formula, and the

maximal positions correspond precisely to total additive resolutions.

First of all, we define a polarity for each position of our domain. This time, the polarity is

going to range over a three-elements set: {O, P,N}. We define the polarity of the unique element

⊥ of ~X�, ~X⊥� to be N. The polarity of the the root of ~A⊕B� is O (seen as opponent winning),

and P for the root element of ~A & B�. For the multiplicative case, we devise the polarity as

follows:

⊗ O P N

O O O O

P O P P

N O P N

For the M, we have, as expected K M L = (K⊥ M L⊥)⊥ where O⊥ = P, P⊥ = O, and N⊥ = N.

That is:

M O P N

O O P O

P P P P

N O P N

At the level of each prime, seen as a position, the polarity is going to behave as follows: a

prime-position is P if all the primes starting from the position are O-primes. It is N if neither

opponent nor proponent can play. Respectively, it will be O if all the primes from it are P.
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Given R a relation of HypGraph(A, B), we strip it by forgetting all the names that happen

in it. That is, we focus on the elements of the relations that consist solely of sequences of ⊥. To

put it formally, we define:

R̃ = {x ∈ R | ν(x) = ∅}.

Of course, R̃ ⊆ R , and furthermore R̃ is finite so R̃ ∈ Γ(A ( B): it is hypercoherent, and a

clique (every subset of R̃ is hypercoherent). Note that for any relation R in ParNomRel, the

bottom element ⊥ belongs to R . Therefore, R̃ will map each subset of R that is a relation of

ParNomRel to a single element. Respectively, each element in R̃ corresponds to a ParNomRel

relation.

Definition 7.45. We define SimpleHypGraph, as the full sub-pre-category of HypGraph that

consists of the freely generated class of objects from I = ({⊥},Γ(I) = {{⊥}}) under the opera-

tions ⊗,⊕,¬. The morphisms of SimpleHypGraph are those of HypGraph between the relevant

objects.

As there are no primes in the domains of this category, we forget about polarities. Given R ∈

HypGraph(A, B), R̃ ∈ SimpleHypGraph(Ã, B̃), where the ˜(.)-operation sends a formula A to the

same formula where each occurrence of atomic variable has been replaced by an occurrence of

I. That is, ˜(.) acts as a functor HypGraph → SimpleHypGraph. The goal of this section is

to prove that each morphism of SimpleHypGraph(Ã, B̃) defines a civil, concurrent, total, P-

operator on its associated arena ~A⊥ M B�. Given R ∈ HypGraph(A), (or more generally,

any morphism Q ∈ SimpleHypGraph(Ã)), then R̃ (resp Q ) projects naturally into a set of

maximal positions of the domain ~A�. We define the corresponding closure operator σR on

~A�>, the lattice completion of ~A�, as follows:

σR (x) =
�
{y ∈ R̃ | y w x}

Similarly, given a &-resolution Ψ on A, one can associate a closure operator to it. It can

be described syntactically, as being the O-operator that chooses the left or right branch of each

occurrence of & following Ψ. Similarly, given the set of maximal positions y of ~A�> that

correspond to those additive resolutions that are on Ψ (simply written y on Ψ), it can be given

the following description:

τΨ(x) =
�
{y | y w x, y on Ψ}

Then let us consider a relation R ∈ SimpleHypGraph(A, B) and Q ∈

SimpleHypGraph(B,C), and a pair of &-resolutions (ΨA,ΨC) of (A⊥,C). Then in order to

prove composition, one must prove that the following element:

〈τΨA ;A σR , σQ ;C τΨC 〉
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is maximal. This element then corresponds to an additive resolution such that both relations

have elements in this additive resolution. First, we prove the following property.

Proposition 7.46. Let R ∈ SimpleHypGraph(A, B), and ΨA a ⊕-resolution of A. Then there

exists Q ∈ SimpleHypGraph(I, B) such that ΨA � R � B = Q . Furthermore, given σR , τΨA ,

and σQ their closure-operator counterparts, τΨA ;A σR = σQ

Proof. Let R ∈ SimpleHypGraph(A, B), ΨA a ⊕-resolution of A. Then for all &-resolutions

ΦB of B, there is a unique element x ∈ R such that x on ΨAΦB. So for every &-resolution of

ΦB, there is an element x ∈ (ΨA � R � ΦB), and this element is unique. So R � ΨA � B is

(P1). Furthermore, one needs to prove that for every subset Q ⊆ (ΨA � R ) � B then Q ∈ Γ(B).

Either there is only one element in ΨA � Q � A, and therefore this element is both incoherent

and coherent. Then as ΨA � Q ⊆ Γ(A⊥ M B), this entails (ΨA � Q ) � B ∈ Γ(B). Either there

are two or more elements. In this case, they are in the same &-resolution of A⊥, but on different

⊕-ones. This would entail (ΨA � Q ) � A⊥ ∈ Γ⊥∗(A⊥), and therefore (ΨA � Q ) � B ∈ Γ∗(B).

One can note that the only possible elements of (σ•
R
� A) ∩ τ•

ΨA
are the maximal elements

that correspond to the ΨA � R . Therefore, τΨA ;A σR = σ(ΨA�R )�B = σQ , where Q = ΨA �

R � B ∈ SimpleHypGraph(I, B). �

And finally, we prove the required property.

Proposition 7.47. Let R ∈ SimpleHypGraph(A), Q ∈ SimpleHypGraph(A⊥). Then 〈σR , τQ 〉

is maximal, that is R ∩ Q , ∅

To establish this proposition given two simple hypercoherences as above, we prove that the

interaction between their associated concurrent operators never reach a deadlock. This follows

from the following lemma.

Lemma 7.48. Given R ∈ SimpleHypGraph(A), and σR the associated closure operator, then

σR satisfies the following:

• σR is positive.

• σR is total: ∀x ∈ σ•, either x has polarity P, or N.

In particular, being positive entails that σ is civil, meaning that for every counter-strategy τ,

〈σ; τ〉 , >. This was established in lemma 7.10. We call the second condition totality as it will ,

as proven below, entails that the element reached through a interaction with a counter-opponent

is maximal, and hence implies totality as defined in the original paper on concurrent games [10].

Assuming the lemma, we prove the proposition.

Proof. Let us note that if we reach a N-position, then this position is maximal and the proposi-

tion is proven. As σ and τ are O and P-closure operators respectively, 〈σ, τ〉 , >. Furthermore,

as σ is total, 〈σ, τ〉 is either a P or N position. Similarly, as τ is total (but negative), 〈σ, τ〉 is

either a O or N-position. Hence 〈σ, τ〉 is a N-position, and hence it is maximal. �
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We now endeavour to prove the lemma.

Proof. We start by proving positivity. Given a partial additive resolution x seen as an element

of the domain, and considering its sub-partial &-resolution neg(x), as R is (P1), there are some

elements of R above every &-resolution and in particular above neg(x). Hence σR (neg(x)) ,

>. Given any element x ∈ ~A�, either x is incompatible with R , that is, σR (x) = >, or there

are some positions of R above it. We write A � x for A � Ψ where Ψ is the partial additive

resolution corresponding to x. Let us consider the set of &-occurrences of A � x. As R is (P1),

for each partial &-resolution of it, there is an element on it. In particular, each O-prime p starting

from x correspond to selecting the direct left or right sub-formula of a direct sub-formula C & D

of A � x. Consequently, there is a position y1 ∈ R such that y1 � C , ∅ and a position y2 ∈ R

such that y2 � D , ∅. Hence p @ y1 u y2 and σR will not bring it. So, as a result, x
P
� σ(x),

establishing the second point of positivity. The proof thatσR (neg(x))tpos(x) = σR (x) follows

the same lines, establishing that the P-primes from x brought by σR depend solely on neg(x).

Now, let us focus on totality. Totality is immediate once we notice the following property: O

corresponds to strict incoherence, P to strict coherence, and N to a position that is both coherent

and incoherent. More precisely, given a set of maximal positions {xi} such that
�
{xi} : O,

(respectively P, N), then {xi} is strictly hyper-incoherent (respectively strictly hypercoherent,

respectively hyper-coherent and hyper-incoherent, that is, a singleton). That is, there is an

equivalence between the polarity of the intersection and the hyper-coherence.

This is proven by induction on the formula A. If A = X, then there is only a N-position, that

is both coherent and incoherent. If A = B & C, then if
�
{xi} is in B, or C, the property follows

by induction. Otherwise it is ⊥A, and hence it implies that there are some xi in B and some in C.

So by definition of hypercoherence {xi} ∈ Γ∗(A), and ⊥A : P as expected. A similar reasoning

works for the ⊕-case. For the multiplicative cases, we first deal with ⊗. Let us consider a set

{pi} such that the intersection in A ⊗ B is P. It means that
⋂
{xi} � A =

⋂
{xi � A} is P or N, and

similarly for B, with at least one of the both being P. By induction hypothesis, {pi � A} ∈ Γ(A),

and {pi � B} ∈ Γ(B), with at least one of them in Γ∗. Henceforth, {xi} ∈ Γ∗(A ⊗ B). The other

cases are proven similarly.

Therefore, given a partial additive resolution x, either σ(x) is incompatible with x, in which

case σ(x) = >. Or σ(x) corresponds to the intersection of the set of elements of R that are

above x. And these ones are, by definition, hypercoherent. Hence σ(x) : P if there is more than

one element above it, and σ(x) : N is there is exactly one. �

Finally, we conclude the section with the desired property to prove that HypGraph forms a

category.

Proposition 7.49. Let R ∈ HypGraph(A, B), Q ∈ HypGraph(B,C), then given ΨA a ⊕-

resolution of A, ΨC a &-resolution of C, there exists a unique additive resolution ΦB such that

R � ΨAΦB , ∅, and Q � ΨCΦB , ∅.
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That is, R � ΨAΦB is a partial nominal relation, and so is Q � ΦBΨC . The proof of this

property is a simple combination of all the results of this section. The unicity simply comes from

noticing that if there were two, then there would be two maximal elements in the set σ•
R̃
∩ τ•

Q̃
,

which would contradict 〈σ R̃ , τ Q̃ 〉 being minimal.

7.3.3 The category HypGraph

The goal of this section is to prove that every morphism of MALL can be soundly interpreted in

HypGraph. We prove that HypGraph is a sound model of MALL by establishing that it forms a

star-autonomous category with products.

Lemma 7.50. HypGraph forms a category.

Proof. First, we shall explicit what is the identity. A &-resolution A ( A = A⊥ M A, is the

data of a &-resolution Φ on A, and a &-resolution Ψ on A⊥, that is a ⊕-resolution on A. Let us

note that a &-resolution together with a ⊕-resolution give rise to a unique additive-resolution,

and this additive resolution is on these both partial resolutions. The identity morphism on this

&-resolution is the identity partial nominal relation on the unique additive resolution coming

from Φ,Ψ on A.

We prove that this morphism indeed acts as the identity. We do the proof only for the right-

action, the left-one being dealt with symmetrically. We consider a morphism R : A → B1,

and the identity relation idB : B1 → B2. We shall prove that R ; idB = R . Let us pick a

&-resolution Ψ on B2, and a ⊕ resolution Υ of A. The set of ⊕-resolutions {Φi} on B⊥1 such

that idB : B1 � Φi → B2 � Ψ , ∅ is exactly {Ψ} by definition. Therefore, the composition

Υ � R ; idB � Ψ is equal to Υ � R � Ψ; Ψ � idB � Ψ. There is a unique ⊕-resolution Λ of

A � Υ ( B1 � Ψ such that Υ � R � Ψ is on A � ΥΛA ( B � ΨΛB. Completing arbitrarily ΛB

as a ⊕-resolution of B, then ΛB � idB � Ψ : B1 � ΛB → B2 � Ψ is the identity partial nominal

relation ΛBΨ � id � ΛBΨ : B1 � ΛB1Ψ → B2 � ΛBΨ. Therefore, we have the following

sequence of equations:

Υ � R ; idB � Ψ = Υ � R � Ψ; Ψ � R � Ψ

= ΥΛA � R � ΨΛB; ΛBΨ � id � ΛBΨ

= ΥΛA � R � ΨΛB

= Υ � R � Ψ

Therefore, on each &-resolution R and R ; idB agree. As R is perfectly determined by its

nominal partial relation on each &-resolution, following the (P1) condition, we conclude that

R = R ; id.

We now deal with composition more generally. We need to prove that given two partial

nominal relations R : A → B and Q : B → C satisfying (P1), namely, that on each &-
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resolution they give rise to a non-empty partial nominal relation, then so does their composite.

This was proven in the previous section. Furthermore, we need to prove that R ; Q is a clique

(that is, each subset of it is hypercoherent). This follows from the definition of Γ(A( B).

�

Lemma 7.51. HypGraph is star-autonomous with products.

The star-autonomy follows from the one of hypercoherences and the one of ParNomRel.

The product follows from A & B being a product of A, B in the category of hypercoherences.

Therefore, HypGraph forms a sound model of MALL. We will establish some properties of

the morphisms of HypGraph in the next sections. First, we prove strong softness. This allows

us to prove that HypGraph is fully compete for a fragment of MALL, and allows us to map a

proof-structure to each morphism of HypGraph.

7.3.4 Strong softness

In the next two sections, we would like to characterise precisely how the hypercoherence condi-

tion shapes partial nominal relations. Our first step is to prove that the morphisms of HypGraph

are strongly soft. This is what we target in this section. We will see in the next section that this

will allow us to prove a full-completeness result for HypGraph for a lax fragment of MALL.

Definition 7.52. Suppose l1, ..., ln are literals. We say that a morphism R ,

R : I → l1 M ...M lm M (A1,1 ⊕ A1,2) M ...M (An,1 ⊕ An,2)

is strongly soft if it exists k that is such that 1 ≤ k ≤ n such that R factors through one of the

injection ink, j : Ak, j → Ak,1 ⊕ Ak,2, j = 1, 2. That is:

R = R ′ ; idl1 M ...M idln M idA1,1⊕A1,2 M ...M ink, j M ...M idAn,1⊕An,2 .

where R ′ : I → l1 M ...M lm M (A1,1 ⊕ A1,2) M ...M Ak, j M ...M (An,1 ⊕ An,2).

Proposition 7.53. Every morphism R : 1→ l1 M ...M lm M (A1,1 ⊕ A1,2)M ...M (An,1 ⊕ An,2) in

HypGraph is strongly soft.

Proof. We assume that R is not strongly soft and prove a contradiction. This means that for

every Ai,1, and Ai,2, there are two elements xi,1, xi,2 ∈ R such that xi,1 � Ai,1 , ∅, and xi,2 �

Ai,2 , ∅. Furthermore, we pick xi,1, xi,2 such that ∀ j, if 1 ≤ j ≤ m then we have xi,1 � l j = xi,2 �

l j = ⊥. Let us consider the set R ⊇ s = ∪i{xi,1, xi,2}, then for every M block ∆i = Ai,1 ⊕ Ai+2,

s � ∆i ⊇ {xi,1, xi,2} � ∆i and therefore is strictly incoherent. Now among the literals, we have

s � l1, ..., lm ∈ Γ(l1, ..., lm)∩Γ⊥(l1, ..., lm), that is, they project onto a singleton. Therefore, ∀li.s �

li ∈ Γ⊥(li), and ∀∆i.s � ∆i ∈ Γ⊥∗(∆i). Hence s ∈ Γ⊥,∗(l1M...MlmM(A1,1⊕A1,2)M...M(An,1⊕An,2)).
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Hence ∃s ⊇ R such that s is strictly incoherent. This is a contradiction, and R factors through

one of the ⊕. �

7.3.5 Full completeness for PALL−

Hypercoherences obey a rule that is rejected by linear logic, namely the mix rule. Although it

does not hold in linear logic, for this section it is helpful to use it. We say that a categorical

model accepts the mix rule if for all objects A, B there is a morphism mixA,B : A ⊗ B→ A M B.

Logically, the mix rule behaves as follows :

` Γ ` ∆ MIX
` Γ,∆

We write PALL− for the fragment of MALL− without the ⊗-rule and PALL− + MIX for this

fragment extended with the MIX-rule. The first full completeness theorem we establish is for

the PALL− + MIX fragment.

Theorem 7.54. HypGraph is fully complete for PALL− + MIX.

The key of the proof is the softness of hypercoherences, that we proved in the above section

7.3.4. With this in mind, we prove the theorem.

Proof. We do the proof for HypGraph(I, ~Γ�), where Γ is a sequent, by induction on the number

of additives. If there is none, then as it is a partial nominal relation, it is of the form:

` X1, X⊥1 , X2, X⊥2 , ..., Xn, X⊥n

And this can be obtained as the denotation of a sequence of axioms and MIX-rules.

If there is a conclusion C that is of the form C = C1 & C2. That is, the sequent can be

written:

` Γ,C1 & C2

Then the let us write R 1 for the elements x ∈ R , x � C1 , ∅ and R 2 for the elements x ∈ R , x �

C2 , ∅. Then R 1∩ R 2 = ∅ and R = R 1∪ R 2. Furthermore, R 1, R 2 are morphisms made out

of partial nominal relations, are cliques (any finite subset of them is hypercoherent), and satisfy

the (P1) property on &-resolutions. Therefore, R 1 ∈ HypGraph(Γ,C1), and similarly for R 2.

Therefore, R is the denotation of the following proof, where ~π1� = R 1, ~π2� = R 2. :

π1
` Γ,C1

π2
`,Γ,C2 &

` Γ,C1 & C2
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Similarly, if R is a morphisms of HypGraph(1,Γ), and there is a M at the bottom-level in

the sequent, we just can forget about it, since it will not change the denotation of Γ.

` Γ, A, B
M

`,Γ, A M B

By applying the two above rules, we can progressively decompose the relation R by dis-

posing of the &-connectives and the M-connectives at the bottom level of the sequent. We then

obtain a relation R that is in the denotation of a sequent of the form:

` l1, ..., lm, A1,1 ⊕ A1,2, ..., An,1 ⊗ An,2

As HypGraph is strongly soft, there is a i such that R factors through one of the injection, that

is, R is derived from the following ⊕-rule, where the ⊕ is either a ⊕1 or a ⊕2. We present the

⊕1 case above:

` l1, ..., lm, A1,1 ⊕ A1,2, ..., Ai,1, .., An,1 ⊕ An,2
⊕1

` l1, ..., lm, A1,1 ⊕ A1,2, ..., Ai,1 ⊕ Ai,2, .., An,1 ⊕ An,2

We now have dealt with all the cases, and are able to interpret R as the denotation of a proof

of PALL−. This concludes the full completeness proof. �

7.3.6 The category ChuHypGraph

It has been studied and proven that hypercoherences themselves are not strong enough to provide

a fully complete of MALL [87]. Their main flaw is that they allow the MIX-rule, just as the

coherence spaces. This leads to unexpected problems when studying their proof structures. To

solve that, we will refine HypGraph by adding the Chu-conditions. This way, the top level

morphisms are fully complete for MLL, so they reject the mix rule.

ChuHypGraph is defined the same way as the category HypGraph, except that the Chu-

conditions have been added. We define the ⊕ of two objects of ChuLinNom to be:

A⊕B = {inl(DA)]inr(DB), inl(PA)]inr(PB), inl(OA)]inl(OB), inl(TA)]inr(TB), inl(T⊥A )∪inr(T⊥B )}.

where DA, DB are their underlying polarised coherence domains. A Chu-coherence polarised
object is a finite sum of polarised coherence objects equipped with the Chu-structure. We call

ChuLinNomA the class of Chu qualitative polarised objects obtained from ~X�ChuLinNom and the

operations ⊗,⊕ and (.)⊥.

Definition 7.55. A hypercoherence on an object of ChuLinNomA (called Chu-hypercoherence

space) is a couple (A,Γ(A)) where A ∈ ChuLinNomA and Γ(A) ⊆ P∗fin(DA) is its set of hyperco-

herence.
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We furthermore write Γ∗(X) for the subset of Γ(X) of elements that are not singletons.

~X�ChuHypGraph = (~X�ChuLinNom,Γ
∗(X) = {x ] ⊥ | x ⊆ Pfin,>1(AX)})

= (~X�HypGraph + Chu-conditions)

where we remind that we denote Pfin,>1 the set of finite sets of cardinal more than 1. To each

formula of MALL− a Chu-hypercoherence space can be assigned by repeated applications of the

⊗, (.)⊥ and ⊕ rules.

Definition 7.56. The category ChuHypGraph is defined as follows:

• The objects (A,Γ(A)) are Chu-hypercoherence spaces built by induction from

~X�ChuHypGraph using ⊗,⊕ and (.)⊥.

• The morphisms A→ B are those relations R : DA(B such that:

1. (P1) For each &-resolution Ω of A( B, there is an additive resolution Ψ on Ω such

that R � Ψ ∈ ChuLinNom(A( B � Ω)

2. ∀s ∈ P∗fin(R ), s ∈ Γ(A( B).

Proposition 7.57. ChuHypGraph is a sub-semi-star-autonomous category of HypGraph.

Proof. The composition of morphisms follows from the ones of HypGraph and the ones of

ChuLinNom. Furthermore, the tensor product, the ⊕, and the (.)⊥ are similar to those of

HypGraph. �

There is an obvious injection ChuHypGraph → HypGraph, therefore the properties we es-

tablished about morphisms of HypGraph lift straightforwardly to ChuHypGraph. For instance,

the morphisms of ChuHypGraph are fully complete for PALL−, since they originate from mor-

phisms of HypGraph but reject the MIX-rule.

7.3.7 Full completeness

The goal of this section is to established that ChuHypGraph is fully complete for MALL−. The

proof we develop here is a copycat of the proof provided in [16] by Blute, Hamano and Scott

for their category of double glued hypercoherences. The whole idea is that hypercoherence

encapsulates well the additive conditions, but fails at the multiplicative level by allowing the

MIX-rule. Therefore, we shall rely on some additive constructions to make them well-behaved

at the multiplicative level. Just as we use ChuLinNom morphisms in order to be fully complete

at the multiplicative level, their use of the double glueing allows them to reject the MIX-rule.

One of the key elements of the proof of [16] is the full-completeness arguement for PALL−+

MIX established for HypGraph . Indeed, this enables us, as we will explain below, to assign

to each morphism of HypGraph (and therefore, each morphism of ChuHypGraph) a Girard

MALL− proof structure. Another direction was taken in [10] with concurrent games, where a

proof-structure was built on top of the domain on which the strategies were acting. It is however
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a bit stretchy to adapt the proof of [10] in our case (even if the hypercoherence condition gives

rise to concurrent games), since their strategies encapsulate two kinds of dependencies within

one unifying framework: the ones between the ⊕ and the &, and the ones between the litterals

of oppositve polarities arising from axiom-links. However, in our case, the hypercoherence

condition allows us to capture only the dependencies between ⊕ and & , and the dependencies

arising fom axiom-links are forced upon by an additive condition (that the above morphisms

belong in ParNomRel). On the other hand, the proof of [16] fits well our morphisms.

We expose in broad terms the plan for the full completeness proof. Let us consider a mor-

phism R : I → A in ChuHypGraph, seen as a morphism of HypGraph. Then we replace it,

using numerous time the mix-rule, by a morphism I → A
mix
−−→ ..

mix
−−→ B, where B is a formula of

PALL−. Then as HypGraph is fully complete, this give rise to a proof of PALL−+ MIX. This one

generates one (or several) Girard proof structure(s) (whose definition is given in the appendix

9.1.1.1). Now, we notice that in a Girard proof structure, occurrences of ⊗/M can be switched

(more on this on appendix 9.6). That is, given a Girard proof structure with some occurrences

of ⊗, if we replace them by M, it remains a Girard proof structure, and reversely. Therefore,

by backtracking the mix, we can establish that there is one (or several) proof-structure(s) corre-

sponding to the original morphism R : I → A.

Now, the goal is to prove that these proof structures satisfy the criteria for being proof nets.

In order to do that, we establish that we can focus on certain proof structures that are canonical

(whose definitions are provided in 9.1.1.4), and such that manipulations on morphisms translate

well to manipulations on the proof structures (more on that is developed in appendix Section

9.1.1.5). Using them, we can transform the morphism, and the proof structure, to an appropriate

form (presented in Section 9.1.4 of the appendix). We give all the necessary details in the

Appendix 9.1. Although the necessary work done in the Appendix relies on the morphisms

belonging in ChuHypGraph (notably, as ChuHypGraph is fully-complete for MLL, the proof

structures are connected, and hence we can conclude that the possible cycles have a particular

form), for the final argument we forget their Chu-structure, looking at them as morphisms of

HypGraph, in order to be able to apply to them a series of mix-rule.

Assuming that there is a proof structure coming from a morphism of ChuHypGraph with

a cycle, we get, after many steps, to the final argument (presented in 9.1.4) where we have

obtained a morphism of HypGraph encoding a proof structure of the type :

` F1, ..., Fn

and Fi = αi,m ⊗ (Bi
1 & Bi

2),Ni[α⊥i+1,1, α
⊥
i+1,1], αi+1,1 ⊗ α

⊥
i+1,2, ...., αi+1,m−1 ⊗ α

⊥
i+1,m,Ξi

Where Ξi = Ei11 ⊕ Ei12, ..., Eim−1 ⊕ Eim, li1, ..., lir and Ni is a context made out exclusively of

literals, ⊕ andM, and such that the two α⊥i do not appear simultaneously in an⊕- resolution. That

is, Ni = Mi[Ci,1[α⊥i ] ⊕Ci,2[α⊥i ]]: the first α⊥i appears in C1, and the second in C2. Furthermore,

the linking is such that the choice of B1 by the opponent entails the choice for proponent of

an additive resolution that selects the left α⊥i , and respectively for B2 and the right one, while
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otherwise letting the the other links that appear in the cycle (defined later) intact. Locally, the

linking is as follows:

αi,m−1 ⊗ α⊥i,m αi,m ⊗ (Bi1&i Bi2) Mi[Ci,1[α⊥i,1]⊕Ci,2[α⊥i,1]] αi,2 ⊗ α⊥i,2 ... αi,m−1 ⊗ α⊥i,m Ξ Fi+1

axi,1

axi,2

and therefore leads to a cycle as displayed in Figure 7.2, where the cycle is displayed in red, and

the axiom-links that are not part of the cycle in black. So one can see that there are 2n additive

resolutions on which the cycle belongs (by switching the n &is).

We define Gi to be the part of the sequent:

Gi = (Bi
1 &i Bi

2), αi+1,1 ⊗ α
⊥
i+1,2, αi+1,2 ⊗ α

⊥
i+1,3, αi+1,n−1 ⊗ α

⊥
i+1,n, αi1,n,Ξi

We assume for contradiction that there is a nominal partial hypercoherent relation R that en-

codes this proof-structure. We consider a set S of n3 elements S = {(x)l} of R , indexed by lists

l = (l1, ..., ln) such that li ∈ {1, 2, 3}. Furthermore, these elements are such that:

• x(....,li,...) is on the &-additive resolution that picks Bi,1 (and hence picks the axi,1) if li ∈

{1, 3}

• x(....,li,...) is on the &-additive resolution that picks Bi,2 (and hence picks the axi,2) if li = 2

All these x′s will be ⊥ on all literals, except precisely those that appear in the cycle, that are

those written αi, j. We refer to Figure 7.2 for a better understanding. We write x...,i:k,... to indicate

that we speak about an element whose index-list is such that its ith position is k. The elements

x’s are chosen such that for every two lists l, l′ that agree on the ith element, li = l′i then xl �

αi, j = xl′ � αi, j. Therefore x....,i:k,.... � αi, j is a singleton and we write xi:k � αi, j.

In this paragraph, we will be working within the context Gi, and will simply write xi:k, to

speak broadly about all those elements xl � Gi such that li = k. Formally, xi:k = {xl | li = k} �

Gi, and we can write xi,k � A for any sub-formula A of G to design the projection of this family to

A. The family of sets xi:1, xi:2,, xi:3 will be designed such that xi:1 ∪ xi:2 ∪ xi:3 � αi,n ∈ Γ⊥,∗(αi,n).

Furthermore, we remind that xi:1, xi:3 choose the left &-resolution on &i, (and hence, the left

⊕ one as well on Mi) and xi:2 the right one. Furthermore, the only literals l of Gi such that

xi:1, xi:2, xi:3 � l , ⊥ are related by axiom-links to other literals appearing in Gi. So the elements

of xi:1 will be of the following form:

⊥Bi,1 ,⊥Mi[⊥Ci,1[ai,1]], ai,1 ⊗ ai,2, ..., ai,m−2 ⊗ ai,m−1, ai,m−1 ⊗ ai,m, ai,m,⊥Ξi .

where we write ⊥B11 for a minimal ⊥ element of ~B11�, and ⊥M[⊥C1[a11]] for an element of

~M� that is ⊥ everywhere except in αi,m where it is a11, and picks the ⊕-resolution that chooses

C1. We recall that xi:2 is picking the right resolution, and furthermore we settle to make them

select different names than xi:1. That is, the elements of xi:2 are of the following form, where
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N1[α⊥1,1, α
⊥
1,1] α1,1 ⊗ α1,2 α⊥2 ⊗ α1,3 ... α⊥1,m−1⊗ αi,mΞ1 α⊥1,m ⊗ (B1,1&1B1,2)

N2[α⊥2,1, α
⊥
2,1] α2,1 ⊗ α2,2 α⊥2,2 ⊗ α2,3 ... α⊥2,m−1⊗ α2,mΞ1 α⊥2,m ⊗ (B2,1&2B2,2)

Ξ3 N3[α⊥3,1, α
⊥
3,1] α3,1 ⊗ α3,1

...

α⊥i−1,m ⊗ (Bi−1,1&i−1Bi−1,2)

Ni[α⊥i,1, α
⊥
i,1] αi,1 ⊗ αi,2 α⊥2 ⊗ αi,3 ... α⊥i,m−1⊗ αi,mΞi α⊥i,m ⊗ (Bi,1&iBi,2)

Ξi+1 Ni+1[α⊥i+1,1, α
⊥
i+2,1] αi+1,1⊗αi+1,1

...

α⊥n,m ⊗ (Bn,1&nBn,2)

Figure 7.2: Global cycles in the final proof-structure
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∀ j.1 ≤ j ≤ m, bi, j , ai, j.

⊥Bi2 ,⊥Mi[⊥Ci,2[bi,1]], bi,1 ⊗ bi,2, ..., bi,m−2 ⊗ bi,m−1, bi,m−1 ⊗ bi,m, bi,m,⊥Ξi

Finally, the third elements xi:3 are designed to make the whole set xi:1 ∪ xi:2 ∪ xi:3 strictly

incoherent on all direct sub-formulas of Gi, except in Bi,1 & Bi,2 where we are unable to prevent

it from being coherent. Formally, if αi,k is positive, then we take ci,k ∈ ~αi,k� to be a third

name. That is, writing X for the atomic formula such that αi,k = X, then ci,k ∈ AX \ {ai,k, bi,k}.

Otherwise, we take ci,k = ⊥. That way, {ai,k, bi,k, ci,k} ∈ Γ⊥,∗(αi,k). Then the elements of xi:3 are

as follows:

⊥Bi:1 ,⊥Mi[⊥Ci,1[ci,1]], ci,1 ⊗ ci,2, ..., ci,m−2 ⊗ ci,m−1, ci,m−1 ⊗ ci,m, ci,m,⊥Ξi

In this paragraph, we study the local coherences of the set S i = xi:1 ∪ xi:2 ∪ xi:3 on the

sub-formulas of Gi. As the elements x are designed so that xi:k � αi, j is a unique element,

we then get that xi:1 � αi, j = {ai, j}, xi:2 � αi, j = {bi, j} and xi:3 � αi, j = {ci, j}. Therefore

S i � αi,k ∈ Γ⊥∗(αi, j) by design, and consequently S i � α
⊥
i, j ∈ Γ∗(α⊥i, j). On the first formula

of Gi we have S � (Bi,1 & Bi,2) ∈ Γ∗(Bi,1 & Bi,2) since the S � Bi,1 , ∅ and S � Bi,2 , ∅.

At last we deal with the Mi part. Here, the reader should remember that xi:k � Mi is, in the

general case, not a singleton. Indeed, nothing prevents taking two elements x...,i:k,.. and x′...,i:k,...
from choosing different additive resolutions in Mi, except for the distinguished ⊕, in which they

have to agree by choosing either Ci,1 or Ci,2 by definition. However, the key point is that M

is a context made exclusively of M and ⊕. Therefore, two different ⊥ elements in it are auto-

matically hypercoherent. Furthermore S i � Ci,1[α⊥i,1] ⊕Ci,2[α⊥i,1]] ∈ Γ⊥,∗(Ci,1[α⊥i,1] ⊕Ci,2[α⊥i,1])

since S i � Ci,1[α⊥i,1] , ∅ and S 2 � Ci,2[α⊥i,1] , ∅. Finally, we get to

S i � Mi[S i � Ci,1[α⊥i,1] ⊕Ci,2[α⊥i,1]] ∈ Γ⊥,∗(M[[Ci,1[α⊥i,1] ⊕Ci,2[α⊥i,1]]). A similar reasoning leads

us to conclude that S i � Ξi ∈ Γ⊥(Ξi), although it might be that S i is not strictly incoherent on

Ξi.

So, we get the following figure 7.3, displaying local coherence (or incoherence) of S i, where

we write P for Γ∗, O for Γ⊥∗, and N for Γ ∩ Γ⊥,

(Bi1 & Bi2) Mi[C1[α⊥i,1] ⊕ C2[α⊥i,1]] αi,2 ⊗ α⊥i,2 ... αi,m−1 ⊗ α⊥i,m αi,m Ξi

P O O P O P O N/O

O O

Figure 7.3: Local coherence for S i on Gi

So now let us look at the global picture by studying the coherence of the family {xl} on each

sub-formula of Fi. Let us remind that (xl) � Ai = S i � Ai for every sub-formula Ai of Gi, by
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definition of S i. This leads us to the following figure 7.4.

αi−1,m ⊗ (Bi−1,1 &Bi−1,2) M[C1[α⊥i,1] ⊕ C2[α⊥i,1]] αi,2 ⊗ α⊥i,2 ... αi,m−1 ⊗ α⊥i,m Ξi αi,m ⊗ (Bi,1&Bi,2)

O P O O P O P N/O O P

O O O O

Figure 7.4: Local coherences of S in Fi

That is, for all formulas A of the sequent Γ, we got S � A ∈ Γ⊥(A), and, for some formulas

A, S � A ∈ Γ⊥,∗(F). And therefore, as each xl ∈ R , there is a set S , such that S ⊆ R and

S ∈ Γ⊥,∗(Γ). Consequently, the relation R is not a clique, and such a proof structure is rejected.

It entails that to all our morphisms can be associated a valid proof net of MALL−, as summed up

in the following proposition.

Proposition 7.58. ChuHypGraph is a fully complete model of MALL−.

Let us note that for the proof we make full use of the structure of ~X�, that is, our proof

would not work if we limited ourselves to the Sierpinski domain. The simplest domain we

could have work with would be a three-elements domain (with one ⊥ and two non-compatible

primes, as the one presented in [14]), however, we find it more natural to work with names, as it

gives some intentional meaning to the elements of the domain.

We are furthermore in position to make a stronger claim.

Theorem 7.59. There is a one-to-one correspondence between the morphisms of ChuHypGraph

on MALL− and the equivalence classes of MALL− proofs of linear logic.

As we do not deal with the units, it is a bit dubious to speak about a free-category at this

stage, and that is the reason why we refrain from doing so. To do it we would need to define what

is a star-autonomous category without units and with binary products but no final elements. The

theorem is based on the following propositions, all proven by Dominic Hughes and Rob Van

Glabbeek in their paper on proof-nets for MALL− [46, 40], and transposed verbatim here.

Proposition 7.60. Each linking is a proof-net if it is the denotation of a proof.

Proposition 7.61. Two MALL− proofs translate to the same proof net if and only if they can be

converted into each other by a series of rule commutations.

Proof of theorem 7.59. Let us consider a morphism of ChuHypGraph(A, B). It denotes a unique

linking on A⊥ M B. This linking is the denotation a proof, by full-completeness. Hence this

linking leads to a proof net by 7.60. Furthermore, the morphisms of ChuHypGraph are precisely

defined by their linkings. That is, two morphisms are equal if and only if they have same
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linking, and consequently, same proof net. Therefore, there is a bijection between the set of

morphisms of ChuHypGraph(A, B), where A, B ∈ MALL− and the proofs nets of ` A⊥, B and,

by the proposition 7.61 the equivalence classes of proofs of MALL− of ` A⊥, B. �

This concludes our thesis.
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Chapter 8

Conclusion

8.1 Summary

The objective of this essay was to develop a suitable model of linear logic, that would enjoy

being fully-complete whilst dealing with atomic variables without relying on 2-categorical

tools. Inspired by the work on nominal games semantics, we developed categorical models

where denotations of objects and morphisms relied on nominal sets, that provide an elegant

formalism to carry properly the vision of linear logic as logic of resources. Using names

provides an intensional account to the elements of the category, whilst enabling us to define

the nature of the atomic elements of our models, such as the “particles” of the geometry of

interaction or the elements of the webs.

The vision of type variables as typed resources allows for a natural nominal semantics,

relying on sorted nominal sets. This framework enabled the construction, in chapter 3, of

simple instances of categories suitable to model linear logic. The formalisation of the notion

of resources permitted a neat tracking of them. Notably, the linear use of resources could be

enforced in an effective manner thanks to minimal nominal techniques.

On the second part, we embarked on the adventure of establishing full completeness. To

that purpose, we introduced nominal asynchronous games semantics. This brought forth an

unifying framework for semantics and syntax of tensorial logic 4. Exposing the handling of

atomic resources within the lambda-terms, we defined the strategies accordingly. The resulting

model yielded a sound interpretation of the proofs of tensorial logic with atomic variables 5,

and was fully-complete. Projecting them on the category of nominal relations, we characterised

precisely those that arised as denotations of proofs of MALL 6. However, the resulting model

was not free, nominal relations being too “flat” to capture all the subtleties of the proofs.

277
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Finally, we considered a more complex relational model in the third part 7, that took in-

spiration from concurrent games. We established a criterion characterising precisely those that

denote MLL proofs. We then showed how the extensional content of concurrent strategies can be

encoded into hypercoherence, and concluded with a full-completeness result for MALL without

units. This model achieved the intended purpose of the thesis, though failing short of handling

the units.

8.2 Further directions

This work is the first step towards the best possible result, that would consists in having a

perfect syntax-free, quotient-free, 1-categorical model of linear logic. However, the final model

of chapter 7 brings a solid working base for smaller intermediate results:

• A single condition: A relevant small step would be to unveil the relation between the

handling the additives via hypercoherence, and the one that the Chu-conditions provide

natively. If both agree, then it would allow us to present a simpler model, only relying on

the Chu-conditions, and that would be fully-complete.

• Graph game: Another direction could be to further refine the graph games explored in

the last chapter, and find the appropriate conditions that would make strategies on graph

games fully complete. Furthermore, extensions to additives and units could be considered.

• The units: An important obstacle to overcome is the units. For both the additives or

multiplicatives the challenge is strongly related, as it consists in incorporating positions

that would correspond to untyped cells within the model. For the multiplicative units,

a second possible way would be to generalise the notion of polarity, to account for the

position corresponding to 1M1 for instance. I have began some research in this direction.

• The exponentials: The second challenge are the exponentials. All the constructions that

underline the model (hypercoherence [27], Chu-spaces, double-glueing [53]) have well-

built exponentials, except for the nominal relations, that we need to further develop. One

needs to make sure all these function well alongside another. An other possible approach

would be to define them through pure categorical means [72].

• Session types: A deep correspondence between linear logic and session types was exhib-

ited [92, 19], relating cut elimination steps and process reductions. Therefore, a model

of linear logic should carry the necessary properties to form a model of session types.

As the model we have found is fully-complete, it is hoped it can be adapted to form a

fully-abstract model of the session types. Of course, the first step consists in restricting

the study to the core of linear logic, the multiplicatives.

• A new model of PCF: Most of the current denotational fully-complete models of PCF

rely on games [49, 7, 80]. As tensorial logic appears as the logic of games, it seems that

they arise as a byproduct of the decomposition of the intuitonistic arrow into tensorial

logic, and not the classical decomposition A ⇒ B =!A ( B of linear logic. As a first

step, it would be interesting to make that intuition clear. Secondly, the discovery of a static

fully-complete model of linear logic might lead to a static fully-abstract model of PCF.
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Of course, this relies on achieving step 2: a successful incorporation of the exponentials.

• Relating static and dynamic model: Finally, inline with the research relating games

(or sequential algorithms) and hypercoherences [18, 29, 28, 68], it would be relevant to

examine how our model of chapter 7 interconnects with the model of part 2. Establishing

a formal equivalence should be particularly revealing, and a significant step towards a

comprehensive model with units.
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Chapter 9

Appendix

9.1 Appendix 1: Girard proof structures and hypercoherent rela-
tions

9.1.1 Hypercoherent nominal partial relations and proof structures

The whole point of this section is to repeat the arguments of [16] and check that they adapt

smoothly within the context of hypercoherent partial nominal relations (that is, the category

HypGraph), instead of di-natural transformations. We start by recalling the definitions of Girard

proof structures. We then proceed to show that to each hypercoherent partial nominal relation

a set of proof structures can be associated, and that this set can be narrowed down to a subset

of canonical proof structures that satisfy additional desirable properties. We use these to reduce

the cases that are relevant to prove a full completeness property.

As noted above, this section is a clear plagiarism from [16], simply replacing di-natural

transformations with morphisms of HypGraph when needed. We present it for sake of com-

pleteness. Some proofs will be omitted.

9.1.1.1 Girard proof structures

The original definition of Girard proof structure can be found in [36]. The goal of the original

paper was to find a suitable characterisation of proof structures that arise as denotations of

MALL− proofs.

Definition 9.1. A proof structure Θ consists of the following :

• Occurrences of formulas and links. Each occurrence of link takes its premise(s) and

conclusion(s) among the set of occurrences of formulas.

• A set of eigenweights {p1, ...., pn} associated to L1, ..., Ln where L1, ..., Ln is the list of

occurrences of &-links appearing in Θ. Each pi is a boolean variable, that is, it can take

281
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value in the set {0, 1}.

• For each occurrence of formula A or occurrence of link L a weight w(A) (or w(L)), where

the weight is a non-zero element of the boolean algebra generated by the pi.

Furthermore, the proof structure has to satisfy the following conditions.

• Conditions on Links:
Link L premise(s)

Lconclusion(s)
weights of L and its premises

Axiom Link
(.)

ax
A A⊥

M-link A B
MA M B w(L) = w(A) = w(B)

⊗-link A B
⊗

A ⊗ B w(L) = w(A) = w(B).

&-link A B &iA & B w(A) = pi.w(L) w(B) = (¬pi).w(L)

⊕1-link A ⊕1A ⊕ B w(A) = w(L)

⊕2-link B ⊕2A ⊕ B w(B) = w(L)

• We require that for each occurrence of a formula A, w(A) =
∑

k Lk where (Lk) is the family

of links with conclusion A.

• Moreover, if L1, L2 are two distinct links sharing the same conclusion A, then

w(L1).w(L2) = 0.

• Given an occurrence A of a formula that is not the premise of any link (that is, a conclu-

sion of the proof structure), then w(A) = 1.

Furthermore, a proof structure satisfies the two following conditions :

• dependency: Every weight appearing in the proof structure is monomial, that is, is a

product of eigenweights and negations of eigenweights.

• technical : For every weight v appearing in Θ, if v depends on pi then v ⊆ w(Li) (and the

weight of Li does not depend on pi).

A formula occurrence is a conclusion of Θ if it is not a premise of any link. A link L

is terminal if it has one conclusion, this conclusion is a conclusion of Θ, and if furthermore

w(L) = 1. If a link is terminal, it might be removed, leading to one or two new proof structures.

The removal of terminal links for proof structures is defined below. Let Θ be a proof structure.

We denote CL(Θ) the set of conclusions of Θ.

• If L is a terminal ⊗-link with conclusion A ⊗ B, and premises A, B. Then the removal

of ⊗ (when possible) consists in partitioning the formula occurrences of Θ \ {A ⊗ B} into

two sets X,Y , such that A ∈ X and B ∈ Y . The partitioning must be done in such a

way that whenever a link L′ has a conclusion in X (respectively Y), then all the premises

and conclusions of L′ belong to X (respectively Y). It therefore leads to two new proof
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structures X and Y , that have A for X, B for Y among their conclusion(s).

• If L is aM-link with premises A, B and conclusion AMB, then the removal of L consists in

removing A M B and the link L from θ. It leads to a new proof structure with conclusions

CL(θ) \ {A M B} ] {A, B}.

• If L is a ⊕1-link with premise A and conclusion A ⊕ B, then the removal of L consists in

removing L together with its conclusion A ⊕ B, leading to a proof structure with conclu-

sion(s) CL(Θ) \ {A ⊕ B} ] {A}.

• If L is a ⊕2-link with premise B and conclusion A ⊕ B, then the removal of L consists in

removing L together with its conclusion A ⊕ B, leading to a proof structure with conclu-

sion(s) CL(Θ) \ {A ⊕ B} ] {B}.

• If L is a &-link (call it Li) with premises A, B and conclusion A& B, then the removal of Li

consists in removing the link Li together with its conclusion A & B, and then forming two

proof structures ΘA and ΘB. The proof structure ΘA is formed by making the replacement

pi = 0 and keeping only those formulas and links whose weights are non 0. Respectively,

ΘB is formed by taking pi = 1 and keeping only those formulas and weights that are non

0.

• In the case where we consider the MIX rule, then there is a 0-removal, that removes no

link, but splits the proof structure into two new ones. That is, let us suppose that Θ can be

partitioned into two proof structures Θ1,Θ2 such that whenever a link L has a conclusion

in Θ1 (resp Θ2), then all its premises and conclusions belong in Θ1 (resp Θ2), then the

MIX splitting consists in splitting the proof structure Θ into Θ1,Θ2.

Definition 9.2. A proof structure is MALL− sequentialisable if it can be reduced to a set of

axiom links by an iteration of link-removals. Furthermore, it is MALL− + MIX sequentialisable

if it can be reduced to a set of axiom links by an iteration of link removals and MIX-splittings.

By definition, if a proof structure is sequentialisable, then there is a proof π that can be

canonically associated to it, as each link-removal basically corresponds to a rule of MALL−, and

the MIX-splitting corresponds to the use of the MIX rule. On the other hand, to each proof π of a

MALL− sequent, one can associate a proof structure. However, this proof structure is not unique.

9.1.1.2 The criterion

Just as when dealing with MLL− proof structures, we look at switchings in order to establish if a

MALL− proof structure is sequentialisable, though the notions of switchings differ between the

two cases. We define switchings for MALL− proof structures.

Definition 9.3. • A switching for a MALL− proof structure consists in:

1. A choice of a valuation φS which is a function {p1, ..., pn} → {0, 1}. Therefore φS

defines a function from weights to the boolean, that we also note φS by abuse of

notation. The slice of the proof structure sl(φS (Θ)) corresponds to the restriction of

Θ to those formulas and links such that φS (w) = 1.

2. For each M-link L of sl(φS (Θ)), the choice S (L) ∈ {L,R}.
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3. For each &-link Li of sl(φS (Θ)), the choice of a formula S (Li) in sl(φS (Θ)), called

jump of L. This jump must depend on pi in the sense that it must be the conclusion of

a link L such that pi ⊆ w(L). A jump is normal if S (L) is a premise of L. Otherwise,

it is proper.

• A normal switching is a switching without proper jumps.

• For a proof structure Θ together with a switching S , we define the undirected graph ΘS

as follows:

1. The vertices of ΘS are the formulas of sl(φS (Θ)).

2. For each axiom link in sl(φS (Θ)), one draws an edge between the corresponding

literals conclusions of the link.

3. For each ⊗-link, one draws two edges from the conclusion A ⊗ B of the link onto its

premises.

4. For a M-link, one draws an edge from its conclusion to its occurrence chosen by

the switching. That is, if the conclusion of the M-link L is A M B, and S (L) = l

(respectively S (L) = r), then one draws an edge from A M B to A (respectively B).

5. For a ⊕1-link, one draws an edge between its premise occurrence A and its conclu-

sion A ⊕ B.

6. For a ⊕2-link, one draws an edge between its premise occurrence B and its conclu-

sion A ⊕ B.

7. For a &-link Li, one draws an edge between its conclusion A& B and its jump S (Li).

With this definition, we are in position of establishing the correctness criterion. We define a

proof net as a proof structure that is sequentialisable.

Theorem 9.4. [36]

• A proof structure Θ is MALL− sequentialisable if and only if for all switchings S the graph

ΘS is connected and acyclic.

• A proof structure Θ is MALL− + MIX sequentialisable if and only if for all switchings S

the graph ΘS is acyclic.

In our case, we would like to use a slightly different characterisation, that will turn out to be

more adapted for us.

Proposition 9.5. [16] A proof structure Θ is MALL− sequentialisable if for all switchings S the

graph ΘS is acyclic, and for all normal switchings S the graph ΘS is connected.

Indeed, the graph of a normal switching is approximatively the same graph as the one of a

multiplicative switching (that is, the graph coming from a switching of a MLL− proof structure).

Hence, while working with a relation R ∈ ChuHypGraph, the fact that for all &-resolutions Ψ

we get that R � Ψ ∈ ChuLinNom, and the Chu nominal partial relations are MLL complete, will

entail that for each normal switching S the graph ΘS (where Θ is a proof structure associated

with R ) is acyclic and connected. Therefore, what will remain to be proven is the acyclicity of

the proof-structure for all proper switchings.
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9.1.1.3 HypGraph and proof structures

The gal of this section is to attribute to each morphism of HypGraph a non-empty set of proof

structures.

Lemma 9.6. In a Girard proof structure:

• if we replace an occurrence of a ⊗-link with a M-link, and we replace every occurrence of

⊗ in vertices (formulas) hereditarily below it in the proof structure with the corresponding

M, then it remains a valid proof structure.

• if we replace an occurrence of a M-link with a ⊗-link, and we replace every occurrence of

⊗ in vertices hereditarily below it in the proof structure with the corresponding ⊗ , then it

remains a valid proof structure.

We write MIX the operation on proof structure that replaces an occurrence of ⊗ with a M as

defined in the above lemma.

We recall that PALL− is the fragment of MALL− without ⊗. Each proof structure of PALL−,

that is, without ⊗-link, is PALL− + MIX sequentialisable. That is, to each proof structure of

PALL− can be associated a proof of PALL− + MIX. This follows from the following lemma, that

was first proven in [42].

Lemma 9.7. [42] Softness of MALL-proof structure: Let Θ be a MALL proof structure, such

that Θ has at least, one occurrence of a &-link. There there is, at least, one &-link that has

weight 1.

Corollary 9.8. Each proof structure of PALL− is sequentialisable.

The proof of the corollary follows approximatively the same lines as the proof of PALL− full

completeness for morphisms of HypGraph 7.54. The full proof can be found in [42].

Therefore, one can devise a way to associate some Girard proof structures to each morphism

of HypGraph. First, we compose it with all the necessary mix rules to remove all the ⊗, and

obtain a morphism of type PALL−. This is the denotation of a morphism π of PALL− + MIX

(since HypGraph is fully complete) and we associate to it a set of proof structures. In these

proof structures, we replace all the necessary M with ⊗ in order to fit the type of the original

relation. This remains a proof structure, this time of MALL−. We define this procedure properly

in the next paragraphs.

To do that formally, we first have to define the other direction, namely that to each MALL−+

MIX sequentialisable proof structure Θ, then Θ gives rise to a unique morphism of HypGraph.

That follows also from the fact that HypGraph is a star-autonomous category with products

(that accepts the mix-rule), and hence soundly model MALL + MIX. For recreational purposes,

we re-prove it here in the context of proof-structure.
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Proposition 9.9. Let π be a MALL−+MIX sequentialisable proof structure Θ. Then Θ determines

a unique morphism of HypGraph, [Θ], such that [Θ] is the denotation of a MALL + MIX proof.

Therefore we have a mapping:

[ . ] : MALL− + MIX sequentialisable proof Structures of type Γ ⇒ HypGraph(I,Γ),

where the type of a proof structure is theM-tensored type of its conclusion(s), seen as a list of

formulas. That is, the type of Γ isMCL(Γ), where we assume there is a canonical ordering on

the formulas of CL(Γ).

Proof. The proof is done by induction on the number of &-links. If there is none, then Θ can be

identified with a proof of M⊕LL+MIX, and then therefore it is simply a set of axiom links. These

can be faithfully interpreted within the category of hypercoherent partial nominal relations. In

case there is a &-link, then in particular, by softness of proof structures, there is one with weight

1. Name it Li. Therefore, it corresponds to its namesake in the sequent. Consider the two proof

structures obtained by taking wi = 0, 1 respectively. Then to each of them can be assigned a

unique hypercoherent partial nominal relation by induction hypothesis. Then, by combining

them following the sequentialisation of the proof structure, one obtains a hypercoherent partial

nominal relation associated with π. �

We extend this mapping to a wider class of proof structures. We call extension of a partial

function, another function that has greater or equal domain of definition, and such that the two

functions agree on their common domain.

Given [ . ]k a function from proof structures to partial nominal relations, we define [ . ]k+1

as follows:

• If Θ < Dom([ . ]k) but there is a ⊗-link in Θ such that MIX ◦ Θ ∈ Dom([ . ]k), where MIX

is applied to that occurrence of an ⊗-link .

• If, furthermore, given a nominal relation R such that R is of type Θ, and such that

mix ◦ R = [MIX ◦ Θ]k, (where, again, mix is applied to the nominal relation R in accor-

dance with the MIX from the first point), then Θ ∈ Dom([ . ]k+1).

• Since mix is monic (in our case, it is actually the identity), this R is uniquely defined and

we set [ Θ ]k+1 = R .

• Since the applications of mix are commutative, the mapping [ . ]k is well-defined.

Note that in the case of hypercoherent partial nominal relations, mix is the identity. In

the following, we take [ . ]1 = [ . ], the function from proof structures to nominal relations

previously defined. Note that [ . ]k+1 is indeed an extension of [ . ]k. We denote [ . ]∗ = ∪k[ . ]k.

Lemma 9.10. Lifting property. Let R , R ′ two relations such that R ′ = mix ◦ R . Let Θ,Θ′

be proof structures such that Θ′ = MIX ◦ Θ. Then if [Θ′]∗ = R ′ and Θ, R are of the same type

(that is, the mix, MIX are applied to the same part of the formula), then [Θ]∗ = R .
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Given a morphism R of HypGraph, we can speak of its weakly assigned proof structures

to be :

WPS (R ) = {Θ | [Θ]∗ = R }.

Our goal is to show that this function [ . ]∗ is surjective, that is, that to each morphism R

of HypGraph its set WPS (R ) is non-empty. Consider a nominal hypercoherent relation R ,

of type ∆. Then replace all the ⊗ in ∆ by M, leading to a new type ∆M. Then R can also be

seen as a morphism of type ∆M. As the nominal hypercoherent relations are fully complete for

PALL− + MIX, there exists a proof π such that ~π� = R , and therefore a proof structure ΘM such

that [ΘM] = R . Now, we apply back the MIX-rules and we obtain a proof structure Θ of type ∆

such that [Θ]∗ = R , by the lifting property.

Corollary 9.11. Given R a morphism of HypGraph, WPS (R ) , ∅.

Lemma 9.12. A nominal relation R denotes a MALL−-proof net, and hence, a proof, if and

only if the set of weakly associated proof structures WPS (R ) contains a proof net Θ.

Proof. The only if part is direct, as if R is a denotation of a proof, then there exists a proof net

Θ such that [Θ] = R . So let us tackle the other direction, and assume there is a Θ ∈ WPS (R)

such that Θ is a proof net. Then R = [Θ]∗ by definition. In that case, Θ is in the domain of [ . ]

since Θ is a proof net. Therefore R is the denotation of a MALL− proof by soundness. �

9.1.1.4 Strongly canonical proof structures

We add certain requirements to the domain of [.]∗, in order to obtain a subset PS (R ) ⊆

WPS (R ) that enjoys some desirable properties.

Definition 9.13. Semantical splitting of a hypercoherent partial nominal relation. Given a

hypercoherent partial nominal relation R of MALL−-type we define a {⊗,M,&,⊕,mix}-splitting

as follows:

• A ⊗ (respectively &,mix) splitting of R is written R 1 ⊗ R 2 (respectively R 1 & R 2,

R 1mixR 2), when R of type ∆1,∆2, A1 ⊗ A2 (respectively ∆, A & B, and ∆1,∆2) is split

into R 1⊗ R 2 (respectively R 1 & R 2, and R 1mixR 2) with R i of type ∆i, AI (respectively

∆, Ai and ∆i).

• A M-splitting (respectively ⊕1, ⊕2) of R of type Γ, A M B (respectively Γ, A ⊕ B, and

Γ, A ⊕ B) is a relation R 1 of type Γ, A, B (respectively Γ, A and Γ, B) such that R = R 1

(respectively R = inl(R 1) and R = inr(R 1)).

Each splitting corresponds to a MALL + MIX rule.

A total splitting is a sequence of splittings such that no further splitting can be done. A total

splitting terminates if the final relations obtained after the splittings are identities on literals. A
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total splitting is represented as a tree, where the root is the original relation, the binary nodes

are the binary splittings and the unary nodes the unary ones.

Definition 9.14. A total splitting α is legal if for every &-splitting appearing in α, the &-

splitting happens provisio that it was impossible to execute any {⊗,mix,M,⊕1,⊕2}-splitting to

the relation at this stage.

That is, a legal splitting happens to split the transformation with a &-splitting only when

no other splitting is possible. Then of course, if a hypercoherent partial nominal relation has

a total splitting that terminates, then it has a total legal splitting that terminates. Notably, each

denotation of a proof has a total legal splitting.

Definition 9.15. A proof structure is said to satisfy the :

• Unique Link Property (UL): If L in θ is either a ⊗-link,M-link or a &-link with conclusion

an occurrence D, then it is the only link whose conclusion is that occurrence of D.

• No duplicate axiom-link property (NDAL): There occurs in Θ no distinct axiom links

ax1, ..., axn whose two conclusions coincide and whose sum of weights is 1.

We try to rely on legal splittings to relate morphisms of HypGraph and proof-structures that

satisfy UL and NDAL. For that, we rely on the following lemmas, that have been first proven in

[42].

Lemma 9.16. Suppose that a MALL− + MIX proof π is obtained from proof(s) πi by means of

a MALL− + MIX-rule α. Then for any UL proof structure Θi whose sequentialisations are πi,

one can construct a canonical proof structure Θ such that its sequentialisation is π, its splitting

corresponding to α (that is, removing of the terminal link corresponding to α), yields the proof

structure(s) Θi, and furthermore Θ satisfies the UL.

Lemma 9.17. Given a proof structure, one can replace sets of axioms links sharing the same

conclusions and such that the sums of their weights is 1 with unique axiom links. This process is

confluent, terminates, and gives rise to a new proof satisfying the NDAL. Furthermore, calling

Θ the original proof, and Θ̄ the newly obtained one, if [Θ] = R then [Θ̄] = R .

Proposition 9.18. Let R be a morphism of HypGraph. Then every terminating total legal

splitting α of R can be canonically interpreted by a unique MALL + MIX proof net Θα that

satisfies UL and NDAL and such that [Θα] = R .

The proof relies heavily on propositions 9.16 and 9.17.

Proof. The proof is done by induction on the size of α. We simply do it when the last rule of α is

a &. Then there is two total splitings αi for two nominal relations R i such that R = R 1 & R 2.

By induction hypothesis, this leads to two proof structures Θi that are proof nets satisfying the

UL and NDAL. So we can get a proof structure Θ1 &Θ2, such that it satisfies UL following 9.16.

Furthermore, following the lemma 9.17, as Θi is sequentialisable, so is Θ̄ = Θi & Θ2. Finally,

we replace possible sets of axiom links with same conclusions as in lemma 9.17 until we get a

proof structure Θα that satisfies NDAL. Following lemma, [Θα] = R . �
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Given a total legal splitting α of a morphism R of HypGraph we write Θα for its associated

proof structure.

Let denote the function [ . ]− defined by:

[ . ]− : Proof structures→ Nominal relations

such that [ . ] is an extension of [ . ]−.

Θ ∈ Dom([ . ]−) if Θ = Θα for some legal splittings of α of [Θ].

Let R be in the image of [ . ]. Then R is a denotation of a proof. Hence there exists a

terminating legal splitting α. Therefore, one can associate to R a proof structure Θα as in the

proposition above. Finally, R = [Θα]. What it tells us is that the image of [.] and [.]− is the

same. We define [ . ]∗− from [ . ]− the exact same way we defined [ . ]∗ from [ . ]. Then once

again [ . ]∗− has the same image as [ . ]∗, but every proof structure in its domain satisfies UL and

NDAL.

As a result, we define:

PS (R ) = {Θ | [Θ]∗− = R }

Then PS (R ) ⊆ WPS (R ) and WPS (R ) , ∅ ⇒ PS (R ) , ∅. In particular, to each hyperco-

herent partial nominal relation, one can assign to it a non-empty set PS (Θ) of proof structures

satisfying UL and NDAL.

These proof structures can be built almost the exact same way as described in the paragraph

above 9.1.1.3. We start with an hypercoherent nominal relation R . We replace all the ⊗ by M

in the type of R . By full completeness, it is the denotation of a proof π of PALL− + MIX. This

proof π leads to a sequentialisation α. This sequentialisation can be chosen to be legal. Hence

we can assign a proof structure Θα as in proposition 9.18. This proof structure satisfies the UL

and the NDAL. Now, we replace the appropriate M-links with ⊗-links, in order to get back a

proof structure of the appropriate type.

Proposition 9.19. A nominal relation R denotes a MALL− proof if and only if there is a Θ ∈

PS (R ) such that Θ is a proof net.

The proof is the exact same as the one of proposition 9.12.

9.1.1.5 Canonical splitting

The goal of this section is to strengthen the above proposition. We would like to prove that a

relation R denotes a proof if and only if all the proof structures in PS (R ) are proof nets. That

way, one can consider any of them.
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Proposition 9.20. Suppose that a hypercoherent partial nominal relation R is such that PS (R )

is not empty, and R can be split via a @-splitting, @∈ {⊗,mix,M,⊕1,⊕2,&}. Then every

Θ ∈ PS (R ) has the corresponding @-splitting.

The proof is exactly the same as in [16], simply replacing the word dinatural transformation

by partial nominal relation.

Definition 9.21. We say that a proof structure Θ has a cycle C if there is a switching S such

that C appears in ΘS . We say that a partial nominal relation R yields a cycle if PS (R ) , ∅

and ∃Θ ∈ PS (R ) such that Θ has a cycle.

The next corollary is fundamental.

Corollary 9.22. Suppose that a HypGraph morphism R can be split into hypercoherent partial

nominal relation(s) R i. Then if R yields a cycle, then so does R i, for at least one of the i.

Proof. Suppose that a relation R can be split by @ into Ri. Suppose moreover that R yields

a cycle, that is, there is a Θ ∈ PS (R ), such that Θ has a cycle. Then Θ can also be split via @

into Θi. Hence if Θ has a cycle, then one of Θi must have it as well. Since Θi ∈ PS (R i), we

conclude. �

Theorem 9.23. Let R be a Chu partial nominal hypercoherent relation, that is R ∈

ChuHypGraph. Then R denotes a proof if and only if ∀Θ ∈ PS (R ), Θ is a proof net.

Proof. We only need to prove the only if part. Let R be a nominal relation that is the denotation

of a proof, and suppose that there exists Θ ∈ PS (R ) such that Θ is not a proof net. As R is

the denotation of proof, every additive resolution of Θ (that is, every normal switching of Θ),

is connected. Hence, Θ is not a proof net only if Θ yields a cycle. Let @ be a splitting of R ,

then it is also a splitting of Θ and this splitting yields proof structure(s) with cycle. So let α be a

total splitting of R such that α terminates (it exists since R is the denotation of a MALL proof).

We can apply α to Θ, and we obtain a set of proof structure(s), and at least one of them has a

cycle. But each of this proof structure is an axiom on literals, and hence is acyclic. This is a

contradiction. �

Corollary 9.24. Let R be a morphism of ChuHypGraph. Then R is the denotation of a proof

if and only if ∀Θ ∈ PS (R ), Θ yields no cycle.

The proof follows from the theorem above.

9.1.2 Narrowing down the cycles

This section aims at summing up the results obtained in [16] on cycles in proof structures.

Unless deemed relevant for the understanding of the chapter, no proofs will be given. We start
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by laying some definitions. The canonical orientation of jump edges is from their conclusion

A &i B to their jump S (Li). A cycle in a graph ΘS is oriented if there is an orientation of the

whole cycle that respects the orientation of the jumps.

Lemma 9.25. Let Θ be a proof structure that is connected for every normal switching S 0. Then

given a switching S , every cycle of ΘS can be transformed into an oriented cycle of ΘS̄ , where

S̄ is another switching that has same valuation as S .

A cycle is furthermore canonical if:

• Every proper jump on the cycle is the conclusion of an axiom-link

• If A, B formulas on the cycle are nested in the syntactic formula tree, then the orientation

of C induces a directed path from A to B or vice-versa. Then the unique path from A to

B (or from B to A) in the cycle is the one corresponding to their nesting in the syntactic

formula tree.

Lemma 9.26. For an arbitrary proof structure Θ and a switching S , every cycle of ΘS can

be transformed into a canonical circle of ΘS ′ , for some switching S ′. If the cycle of ΘS was

oriented, then so is the new canonical cycle.

Therefore, it is enough to consider canonical oriented cycles. Given a canonical cycle, we

denote &i, 1 ≤ i ≤ n the occurrences of &-links on which the cycle properly jump, and axi+1

the jump of &i.

We go on narrowing down the class of cycles one should consider. A cycle C in a graph ΘS

is called simple if, for every link K whose conclusion is a proper jump S (Li) lying on C (so K is

an axiom in the case of canonical cycles), then w(K) = ε.pi.v, where ε ∈ {1,¬}, pi is the weight

associated with Li, and v does not depends on any eigenweight associated with a &-link whose

conclusion lies on C. In particular, a canonical cycle C is simple if for all i such that axi+1 is the

axiom whose conclusion is a jump from Li lying in C, then w(axi+1) = ε.pi.v where v does not

depend on pi (1 ≤ i ≤ n).

Lemma 9.27. • For a simple cycle C ∈ ΘS , let &k (1 ≤ k ≤ m) denotes the list of all

&-links whose conclusions lie on C. Then w(&k) does not depend on pi, 1 ≤ i ≤ n.

• Every oriented cycle C of ΘS can be transformed into a simple oriented cycle C′ of ΘS .

Furthermore, if C is canonical, then so is C′.

9.1.2.1 Global cycles

We add a final characterisation to the cycles. We want them to be “global”. Unfortunately, a

proof-structure might have a cycle without having a global one. However we will prove that if

the category has relations that yield cyclic oriented proof-structures, then it has some that yield

global oriented cycles. First, we fix some terminology. A cycle C passes trough L, (where L is

a link), means that the conclusion(s) of L lie(s) in C. A cycle is global if it passes through all

the &-links whose weights are 1.
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Lemma 9.28. Given a simple canonical oriented cycle C, C global entails:

• For all &i occurrences of &-links that cause proper jumps on C, w(&i) = 1.

• For the weights w(axi+1) = ε pi.vi, if the vi depends on a eigenweight pr, then w(&r)

depends on pi.

• Given 1 ≤ i , j ≤ n, if w(axi+1) = ε pi.vi and w(ax j+1) = ε p j.v j then the sets of

eigenweights on which vi and v j depends are disjoint.

We are interested in proving some properties about the way axiom-links behave in global

cycles.

Definition 9.29. Let Θ be a NDAL proof structure and α a literal in Θ. We say that a valuation φ

yields two distinct axiom-links with relation to an eigenweight p and a literal α if the following

property holds. Let φ′ be the same as φ for all eigenweights except for p where φ′(p) = ¬φ(p).

Then α ∈ sl(φ(Θ)), α ∈ sl(φ′(Θ)), and the axiom links L ∈ sl(φ(Θ)) and L′ ∈ sl(φ′(Θ)) that have

conclusion α are different (that is, they have different conclusions).

That entails that the two axiom links L, L′ depends on p.

One can prove this fundamental property for global cycle.

Proposition 9.30. Suppose a proof structure Θ has a global simple oriented cycle C living in

a valuation w such that ∀i.1 ≤ i ≤ n.w(αi+1) = 1, where αi+1 is the conclusion of axi+1 that

lies on the cycle. Then there exists a switching S such that C ∈ ΘS and φS yields two distinct

axiom-links with respect to pi and αi+1 for all i ∈ {1, ..., n}.

9.1.3 Reduction to &-semi-simple sequents

Definition 9.31. A context is a sequent generated from distinguished holes, noted ?i, literals

and MALL connectives, such that each hole appears at most once within the sequent. It is

denoted Γ[?1, ..., ?n]. A hole has a multiplicative occurence in the context if all the connectives

in the parse tree from a root to this hole are multiplicative.

We may substitute any hole with a formula in the context. This substitution is written

Γ[A1, .., An]. A M⊕ LL context is a context where all the connectives are restricted to the M⊕ LL

fragment of MALL, that is, without &.

Definition 9.32. A M⊕LL sequent ∆ is semi-simple if it can be written ∆ = Γ[l11⊗...⊗l1k, ..., ln1⊗

... ⊗ lnm] and Γ is a M ⊕ LL context without ⊗ (that is, a M ⊕ LL-context).

A MALL sequent ∆ is &− semi-simple if it can be written ∆ = Γ[A11&....&A1k, ...., An1&...&Anm]

and Γ is a M⊕ LL semi-simple context (that is, if we replace holes by literals, it is a semi-simple

sequent).

Proposition 9.33. Suppose Γ is a M⊕LL sequent. Then there exists a list of M⊕LL semi-simple

sequents ` Γ1, ..., ` Γn such that ` Γ is provable (within M⊕LL + MIX) if and only if for all i then

Γi is provable (within M ⊕ LL + MIX).
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This follows from two observations .

Lemma 9.34. Let Γ := Γ[A ⊗ (B M C)] a MALL sequent. Let Γ1 = Γ[(A ⊗ B) M C] and

Γ2 = Γ[(A ⊗ C) M B]. Then Γ is provable if and only if Γ1 and Γ2 are provable. Furthermore,

Γ[(A ⊕ B) ⊗ (C ⊕ D)] is provable if and only if Γ[(A ⊗ C) ⊕ (A ⊗ D) ⊕ (B ⊗ C) ⊕ (B ⊗ D)] are

provable.

Proposition 9.35. Suppose Γ is a MALL sequent. Then there exists a list of MALL semi-simple

sequents ` Γ1, ..., ` Γn such that ` Γ is provable within MALL if and only if for all i Γi is provable.

The proof is the exact same as the one of the proposition before, but by replacing literals

with & formulas.

9.1.3.1 &-semi-simple sequents and global cycles

The goal is to prove that one can consider only oriented canonical global cycles.

Proposition 9.36. Consider the set of hypercoherent partial nominal relations R of &-semi-

simple types such that there is a Θ ∈ PS (R ) such that Θ has a oriented cycle. If this set is

non-empty, then there is one hypercoherent partial nominal relation R such that there exists

Θ ∈ PS (R ) such that every oriented cycle in Θ is global.

Proof. Let take R of T type minimal such that R has a oriented cycle, where the order on types

is defined as follows:

(number of ⊗ , number of {M,&,⊕})

Then R cannot be split using any rule of MALL (otherwise, its proof structure would split

as well, and one of them would have a oriented cycle). The resulting R ′ would have a lesser

type in the above hierarchy, contradicting the minimality of R . Therefore, ∀Θ ∈ PS (R ), Θ has

no terminal ⊗-splitting link, no terminal {&,M,⊕1,⊕2}-link and is not the union of two proof

structures.

Let us consider a Θ ∈ PS (R ), and a &-link L within it such that w(L) = 1. Then there is no

&-link below it (otherwise its weight would not be 1). Now, if all links below it would be ⊕,M,

then the proof structure would split. Hence there exists a ⊗-link below it. Now suppose that ⊗ is

not directly below the &-link. If a ⊕ is below the &-link, then it has weight 1, and therefore the

R comes from an injection, which is excluded. On the other hand, if a M is just below the &, it

means that there is a M above the ⊗ in the parse tree, which contradicts the &-semi-simplicity

of R (since the &-link L is minimal).

We know that Θ has a oriented cycle. Let us assume for contradiction that it has a non-

global cycle. So there is a oriented cycle C ∈ Θ, and a &-link L of weight 1 such that C does not

pass through L. By the discussion above, this link has a ⊗ right below it. Since the cycle does
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not pass through L, this ⊗ can be replaced by a M in Θ (and all occurrences below it), and the

proof structure Θ′ hence obtained still have the oriented cycle. Now note that the corresponding

R ′ has a type lesser than R . Finally, we note that pushing the newly created connective M

above using lemma 9.34 in order to obtain a semi-simple sequent does not change its number of

connectives, hence we obtain a semi-simple sequent of lesser type, contradicting the minimality

of the type of R . �

9.1.4 Final form for the decisive argument

We start by assuming that the category of Chu hypercoherent nominal partial relations is not

fully complete. Therefore, this entails the existence of a morphism R 1 of ChuHypGraph that

has a canonical proof structure with a cycle. As explained above, we can reduce it to another

morphism R 2 of ChuHypGraph of &-semi-simple type. Now, as every normal switching of

ΘR 2 is connected, it can be transformed into an oriented cycle. Therefore, seeing it as a proof-

structure coming from a morphism of HypGraph, proposition 9.36 entails that there is a mor-

phism R 3 of HypGraph, whose canonical associated proof structure ΘR 3 has a oriented cycle,

and such that every oriented cycle of it is global. In particular, it has a simple, oriented canonical

global cycle.

So, as explained in [16], the shape of the cycle around the &i is as follows:

αi,mα⊥i,m

Wi

⊗i

&i

α⊥i+1,1 αi+1,1

Wi+1

We each Wi is shaped as below, without any &-jump.

α⊥i,1 αi,1

⊗i,1

α⊥i,2 αi,2

⊗i,2

α⊥i,3 αi,m−1

⊗i,m−1

α⊥i,m αi,m

Furthermore, the Wi path does not contain any proper jump, and bounces on ⊗-links oc-

currences. Furthermore, by semi-simplicity, all the links between αi,k and ⊗i,k are ⊗-links, and

therefore w(αi,k) = w(⊗i,k). Finally, note that there are also only ⊗-links between αi
1 and ⊗i+1.

Also there are only ⊗-links between ⊗i+1 and &i+1. As the cycle is global, w(&i+1) = 1. This

entails that w(⊗i+1) = 1, and finally w(αi
1) = 1. Finally, we obtain that w(αi

k) = 1 for all k and i.
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However, if we change the valuation of φ we can make the axiom axi, between (αi
m)⊥ and

αi
m disappears. On the other hand, as w(αi

m) = 1, it stays within the proof structure. So in the

proof structure there must exists two axioms whose conclusions are αi
m. One is axi, of weight

pi−1 (or ¬pi−1 but we pick pi−1 without loss of generality), and the other one ax′i has weight

¬pi−1.vi. Let us show that ax′i has weight exactly ¬pi−1. Let us note that we can draw a jump

from &i−1 to ax′i . Now, with a new valuation only changing pi−1, all the & j−1 and ax j remain

present (for j , i), hence the simple oriented cycle remains almost unchanged. Furthermore,

this cycle is global and w(ax′i) = ¬pi. Therefore, it looks like as displayed in the following

figure.

αi,mα⊥i,m

Wi

⊗i

&i

α⊥
′

i+1,1 α⊥i+1,1 αi+1,1

Wi+1

Furthermore, picking a different & j, the cycle remains unchanged between the two valu-

ations. That is, for the two different valuations switching pi, the cycle around & j remains as

follows:

α j,mα⊥j,m

W j

⊗ j

& j

α⊥j+1,1 α j+1,1

W j+1

Now, since the hypercoherent partial nominal relations satisfy the mix rule, we apply mix

to all the ⊗ occurrences in the type of R that do not appear on the cycle. Furthermore, by

associativity and commutativity, we may assume that ⊗ appears just below the two literals.

Hence the cycle remains. We then obtain a sequent of the following form :

` F1, ..., Fn

where Fi = αi,m ⊗ (Bi
1 & Bi

2),Ni[α⊥i+1,1, α
⊥
i+1,1], αi+1,1 ⊗ α

⊥
i+1,2, ...., αi+1,m−1 ⊗ α

⊥
i+1,m,Ξi

where m depends on i, where Ni[?1, ?2] is either Ni,1[?1] ⊕ Ni,2[?2] or (Ni,1[?1] ⊕ N
′

i,1) M

(Ni,2[?2] ⊕ N
′

i,2), with all the connectives in Ni being M. Ξi represents the remaining formulas
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after having apply the mix transformations to every ⊗ that were not part of the cycle. That is

Ξi = E11 ⊕E12, ..., Em1 ⊕Em2, l1, .., lk where li are literals, and all connectives in Ei j being ⊕ and

M.

So we have 2n global circles whose structures are displayed in figure 7.2 of page 272, where

the cycles are displayed in red, and the axiom links not part of the cycle in black.

So to conclude about full-completeness, one only needs to prove that there is no morphism

of HypGraph of this form.

9.2 Appendix 2: Composition of frugal strategies

The goal of this section is to prove directly that the innocent, frugal, semi-linear strategies frugal

form a category. The main property to target is the associativity of composition.

frugal(frugal(X̂;Rel Ŷ)
∧

;Rel Ẑ) = frugal(X̂ ;Rel frugal(Ŷ ;Rel Ẑ)
∧

This is tackled by projecting arenas, and strategies, into a category analogous to the nominal

separated polarised relations. In this category, only names ofAT are looked at as names. That is,

we work within the nominal universe whose set of names is simply AT . In it, the names of Acells

are simply elements of empty support. Then, we restrict to a certain class of strategies, called

pre-linear. They are those such that a name cannot be played by proponent before opponent

introduces it. Furthermore, proponent cannot play a name introduced by opponent more than

once. These strategies project via a projection function that we will later define onto nominal

relations R such that ∀x ∈ R .ν(Pos(x)) ⊆ ν(Neg(x)). Then the construction done with nominal

polarised separated relations, traces, and substitutions lifts straightforwardly to this case. This

allows us to ensure that they form a category. Finally, we make use that the projection function

from arenas and pre-linear strategies to set of separated lists and nominal pre-linear relations

commutes with every construction defined, and therefore we conclude that pre-linear strategies

forms a category.

We give the details below.

9.2.0.1 Technical details

Each arena projects into a set of annotated, polarised and separated lists. To make it clear, we

introduce a linearisation of the partial order of vertices coming from the tree. More precisely,

we introduce a function f : VA → N, such that f is equivariant (v ' v′ ⇒ f (v) = f (v′)), f is

almost injective (v ; v′ ⇒ f (v) , f (v′)), and v ≤ v′ ⇒ f (v) ≤ f (v′). Such a function is defined

for instance below:
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• Given a tree A with root v, fA(v) = 1.

• If the root of A is justifying n equivalence classes of vertices v1, ..., vn that are roots of

subtrees B1, ..., Bn, then writing |Bi| for the number of equivalence classes of vertices in

Bi, and taking a w ∈ B j, fB(w) = fB j(w) +
∑

i< j |Bi| + 1.

Given a vertex v, we define xvy as the triple (ppvqq, pol(v), f (v)). We define the function

projlist from positions to lists as the function that, given a position, returns its unique list of xvy,

for all vertices v present in the position, ordered increasingly. For a position p, we write V(p) for

the set of all vertices that appear in p. Then, for a position p, we have projlist(p) = l1...lk.lk+1..ln
such that:
• ∀v ∈ V(p), ∃i ≤ n.li = xvy.

• ∀i ≤ n.∃v ∈ V(p).li = xvy.

• ∀i ≤ n − 1, given v, v′ such that xvy = l1 and xv′y = li+1 then f (v) < f (v′).

And finally, given an arena A, we define projlist(A) = {projlist(p) | p ∈ Frugal(A)}. We

want to show that projlist is a faithful functor from the category of semi-linear frugal innocent

strategies to the category of semi-linear polarised annotated relations. We name this category

SemNomLinPol. It has objects orbit-finite nominal sets of polarised, annotated, separated lists:

L := (a, p, n) | inl(L) | inr(L) | L1.L2

where a ∈ A ∪ {•}, p = {−1, 1}, n ∈ N, and L1#pol,T L2. We write L1#pol,T L2 to indicate

that our lists are polarised separated only with regard to names in AT . In this category, only

the names of AT are dealt with as names, those are Acells are simply considered as elements

of empty support. That is, each element of type (a, p, n), a ∈ Acells is dealt with as a (•, p) in

the category NomLinPol. The morphisms of SemNomLinPol are nominal (with regards to AT )

relations R such that, for each element x of R , νT (pos(x)) ⊆ νT (neg(x)). That is, they are not

linear anymore, but only semi-linear.

Just as in section 3, where it was made clear that the composition of nominal polarised rela-

tions was ultimately relying on tracing of permutations, the composition of semi-linear polarised

relations ultimately relies on tracing of injective partial functions. Injective partial functions

form a category, whose objects are finite sets. Its trace is the one of partial functions, defined in

5.2.4, which is itself a simple adaption of the one of permutations to partial functions.

The category SemNomLinPol organises itself as a category whose composition is defined

similarly than the one of NomLinPol. That is, given two semi-linear nominal polarised relations

R : A→ B and Q : B→ C we get :

R ; Q = {r ∈ A⊥ ?pol C | ∃r1 ∈ R̂ , r2 ∈ Q̂ , r � A = r1 � Â, r1 � B̂ = (r2 � B̂)⊥, r2 � Ĉ = r � C}.

Equivalently, in analogy with what was defined above, writing Frugal for the partial function

that discriminates the elements of D̂ that can be seen as separated polarised lists of D , we get:
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R ; Q = Frugal(R̂ ;Rel Q̂ ).

Given a morphism σ• : A . B, then the positions of σ• projects into lists projlist(A) ×

projlist(B), and therefore projlist(σ•) : projlist(A) → projlist(B). Furthermore, one can see

straightforwardly that projlist(σ̂) = ̂projlist(σ). Finally, as composition is defined similarly for

innocent and frugal strategies seen as relations and their lists counterparts, one can devise that :

projlist(frugal(X̂ ;Rel Ŷ)) = frugal(projlist(X̂); projlist(Ŷ)).

This amounts to:

projlist(σ; τ) = projlist(σ); projlist(τ)

Now, using the fact that SemNomLinPol is a category, we get:

projlist((σ; τ); ς) = projlist(σ; τ); projlist(τ)

= (projlist(σ); projlist(τ)); projlist(ς)

= projlist(σ); (projlist(τ); projlist(ς))

= projlist(σ; (τ; ς))

And, using the fact that projlist is faithful, we obtain (σ; τ); ς = σ; (τ; ς).

Moreover, in the case of identity:

σ; id = frugal(σ̂ ;Rel îd) = frugal(σ̂) = σ.

And similarly for identity acting on the left.

Therefore, the frugal-innocent, pre-linear frugal strategies compose as in the category of

semi-linear nominal relations, and therefore form a category.

9.3 Appendix 3: Backward confluence

Proposition 9.37. The nine properties of definable sets entail backward confluence.

Proof. Let x ∈ X, we consider y maximal in X strictly below x. Then by mutual attraction, there

is an O-move y
m
−→ y′ and a player move x′

n
−→ x such that y′ ≤ x′. If, supposedly, y′ , x′, then,

as y′ ≤ x, there is a player move y′
n′′
−−→ x′′ such that x′′ ≤ x. If x′′ = x, then there would be two

paths from y′ to x, one by is n′′, and the second is a path to x′ followed by a move n. As the

graph is acyclic, we conclude that x′′ , x and therefore x′′ < x. Thus, we get a chain y < x′′ < x
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whose three elements belong in X. Or, y was supposed to be maximal under y. Therefore, there

is no such x′′ and y is only two moves away from x.

Let x ∈ X, p : x′ → x a player move, and we consider y maximal below x′ in X. Then

y ≤ x′ < x and by mutual attraction there is an O-move y
m
−→ y′ and a player move n : x′′ → x

such that y′ < x. Let us suppose that y′ , x′. Hence y′ < x′. We seek a contradiction. By

forward confluence, there is a second player move n′ : y′ → y′′ such that y′′ ≤ x. We draw

about this case below :

y

x

x′ x′′

y′

y′′

≤ ≤ .

.

m

n′

p n

q

q′

≤

Then, by assumption, ¬(y′′ ≤ x′), as y is supposed to be maximal in X under x′. However,

y′′ ≤ x. Therefore, n′ = p. Furthermore, assume that y′′ < x′′, and therefore x′ , y′. Then let

us consider an O-move above y′′ such that q : y′′ → z and z below x. From the assumption that

every position of X is reached by an alternative play, such a move exists. Now, as x′ is a legal

position, this move q is not justified by p = n′, and neither by m since they are both O-moves.

Therefore, the position y ] q is legal, and below x, x′. By forward confluence there is a player

move q′ above y ] q such that y ] q ] q′ ∈ X and lies below x. By maximality of y under x′,

q′ = p. Furthermore, as they are both under x, (y]q]p) ↑ y′′. Therefore, their intersection y]p

belongs in X. However, this is a unbalanced position, and therefore contradicts the definition

of X. Finally, we conclude that y′′ = x, that is, the maximal position of X below x′ is only one

O-move below x′.

Finally, let us assume that there are two O-moves below x′ that reach two different positions

of X. That is, two moves m : y → x′ and m : y′ → x′, such that y, y′ ∈ X, and y , y′. Then, as

they are both under x, so is their intersection. Or this one is 3-moves away from x, so either x,

or the intersection cannot be reached by an alternating play, which is, a contradiction.

So finally, given x ∈ X, and a player move p : x′ → x, there is a unique O-move m : y→ x′,

such that y ∈ X.

Remaining is to prove that given X 3 z ≤ x′, then z ≤ y. If it were not the case, it would

mean m ∈ z. Then by compatibility under union, X 3 zt y is below x′, and above y]m. Hence
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it is x′, which is, once again, a contradiction. So finally z ≤ y, which concludes the proof.

�

9.4 Appendix 4: Substitutions

We recall that for an element x, given A ⊆fin A, we write [x]A for its A-orbit, that is, its set of

renamed variants under permutations fixing atoms in A.

[x]A = {π · x | π#A}

If A is empty, [x]∅ is simply the orbit of x. Given an element x and a name a, we define the

atom-abstraction 〈a〉x by:

〈a〉x = [(a, x)]ν(x)\{a}

In particular, note that ν(〈a〉x) = ν(x) \ {a}. The following definintion of substitutions orig-

inates from [32]. We recall that VFM is the Fraenkel-Mostowski model of set theory, whose

objects are recursively finitely supported sets and elements. This is presented with more details

in Section 4.1 of the thesis.

Definition 9.38. [32] A nominal substitution is a set-theoretic nominal function onVFM writ-

ten [a → x] · z, expressed in the language of nominal set theory, such that for all z, x (sets or

elements) and atoms a:

• b#z.[a/x] · z = [b/x] · ((b, a) · z)

• a#z.[a/x] · z = z

• [a/x] · a = x

• [a/a] · z = z

• c#x⇒ [a/x] · (〈c〉z) = 〈c〉([a/x] · z)

• a#y⇒ [b/y] · ([a/x] · z) = [a/([b/y] · x] · ([b/y]/z)

In our case, we will restrict all along to strict substitutions.

Definition 9.39. A substitution is strict if it only substitutes sorted atoms a ∈ AX with other

atoms b ∈ AX of the same sort. More generally, we call strict substitution the composition of a

sequence of strict subsitutions.

In the following, we will write [an/bn][an−1/bn−1]...[a1/b1] for the strict substitution [an/bn]·

([an−1/bn−1] · (...([a1/b1] · _)...)).

Lemma 9.40. Let [a/b] be a strict substitution such that a#b. Then ∀x.a#[a/b] · x.
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Proof. Given a subset A ⊆ A, and two atomic elements a, b, define A(a 7→ b) by (A \ a) ∪ b

if a ∈ A, or just A otherwise. We prove that ν([a/b] · x) ⊆ ν(x)(a 7→ b). As the substitution

function is equivariant, we know that :

ν([a/b] · x) ⊆ ν(x) ∪ ν(a) ∪ ν(b).

Now let us pick c fresh, c#x, a, b. From the first axiom of substitutions, we get:

[a/b] · x = [c/b] · ((c, a) · x)

and using again the fact that the substitution is an equivariant function:

ν([c/b] · ((c, a) · x)) ⊆ ν((c, a) · x) ∪ ν(c) ∪ ν(b)

and as c#x, it entails ν((c, a) · x) = (c, a) · ν(x) = ν(x)(a 7→ c) since c is fresh. So we know that

ν([a/b] · x) lives at the intersection of both sets. By noticing that c is not in the first one, neither

that is a in the second, we conclude that :

ν([a/b] · x) ⊆ (ν(x) \ a) ∪ ν(b)

Furthermore, in the case where a < ν(x), by the axiom (2) of substitution, ν([a/b] · x) = ν(x).

Putting together the case a ∈ ν(x) and the case a < ν(x) we obtain:

ν([a/b] · x) ⊆ (ν(x))(a 7→ b),

which is the required property. This entails a#[a/b] · x. �

Corollary 9.41. • If b , a then [a/c][a/b] · x = [a/b] · x.

• [b/c][a/b] · x = [b/c][a/c] · x

• if b#z then [a/b] · z = (b, a) · z.

Proof. The first bullet follows from the property (2) of substitutions, the second from prop-

erty (6), and the last from the conjunction of the axioms (2) and (4) that entails the following

sequence of equations [a/b] · z = [b/b] · ((b a) · z) = (b, a) · z. �

Lemma 9.42. Let e be a strict substitution. Then there exists n a natural number, and

(ai)i=1..n, (bi)i=1..n two families of names such that ai ∈ AX ⇒ bi ∈ AX and:

• e = [an/bn]..[a1/b1]

• ∀i ≥ j ∈ [1, n].ai , b j

• ∀i , j ∈ [1, n].ai , a j
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Proof. Let [c j/d j]...[c1/d1] be any strict sequential substitution. We do the proof by induction

on j, the length of the sequence. If j = 0 then every property stated above trivially hold. So

let us consider the case e j+1 = [c j1/d j+1][c j/d j]...[c1/d1]. By applying the induction hypothesis

on e j = [c j/d j]...[c1/d1], we get a number n and two families (ai)i≤n, (bi)i≤n such that e j =

[an/bn]...[a1/b1]. From there, e j+1 = [c j+1/d j+1][an/bn]...[a1/b1]. Either this is the required

form and the result holds at this stage, or at least one of the two remaining properties fail. That

is, either ∃i.bi = c j+1 or ∃i, ai = c j+1. We show that in both cases we can push [c j+1/d j+1] along

the sequence until it hits the [ai/bi] with whom there is a conflict without creating additional

conflict.

So let us assume we have successfully push [c j1/d j+1] down the se-

quence (maybe modifying some bl in it in passing), so that now e j+1 =

[an, b′n]...[ak+1/b′k+1][c j+1/d j+1][ak/bk]...[ai/bi]...[a1/b1] and the only conflict remains be-

tween [c j+1/d j+1] and [ai/bi]. We deal with the different cases:

• if {ak, bk} ∩ {c j+1, d j+1} = ∅ then [ak/bk][c j+1/d j+1] = [c j+1/d j+1][ak/bk].

• If {ak, bk} ∩ {c j+1, d j+1} , ∅ then the cases c j+1 = ak and c j+1 = bk are excluded since

they correspond to the conflictual case. So remaining is either bk = d j+1, in which case

they permute as above, or ak = d j+1 then [c j+1/d j+1][ak/bk] = [c j+1/d j+1][ak/d j+1] (by

the second point of 9.41)

By doing this procedure we have changed the occurrences {bk} hence possibly breaking the

second condition. If ∃l ≥ k, al = d j+1, then this would have been in conflict with [c j+1/d j+1] in

the first place, which is a contradiction. Therefore we can continue this series of permutations

until we hit [ai/bi] which is conflicting. We deal with the three possible different conflicts.

• The first case is c j+1 = bi, corresponding to the condition (1) being broken. In that

case [c j+1/d j+1] · [ai/bi] = [bi/d j+1][ai/bi] = [bi/d j+1][ai/d j+1] (this is the point (2) of

corollary 9.41). In that case the conflict is solved, and this transformation does not create

additional conflicts.

• The second case is c j+1 = ai. In that case we have [c j+1/d j+1][ai/bi] = [ai/d j+1][ai/bi] =

[ai/bi] (this is the point (1) of corollary 9.41). Once again, this transformation does not

create additional conflicts.

• The third case would be a conjunction of the previous cases, that is: c j+1 = bi and c j+1 =

ai. However, in that case ai = bi, which is excluded.

Therefore, by doing this procedure we have resolved the left most conflict, without creating

additional ones. Following the same procedure we can resolve additional conflicts in a finite

number of steps, leading to a final form without conflicts. This one hence satisfies the required

properties.

�

Lemma 9.43. Let e a subsitutial strict substitution such that e = [a1/b1]...[an/bn] =

[a′1/b
′
1]...[a′n′/b

′
n′], and the families {(ai, bi)}, {(a′i , b

′
i)} satisfy the conditions of the lemma above.

Then n′ = n and there is a permutation σ ∈ S n such that a′σ(i) = ai, b′σ(i) = bi.
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Proof. If we apply e to ai then because of the conditions on the family {(ai, bi)}, e ·ai = bi. So as

e does not let ai invariant, there must be a k such that ai = a′k. Now, because the same condition

holds for the family {(a′i , b
′
i)}, e · ak = b′k = bi. Therefore, there is a injection inj; [1, n]/[1, n′]

such that ai = a′inj(i) and bi = b′inj(i). By doing the reverse direction, we can conclude of a reverse

injection, and therefore n′ = n and inj ∈ S n. �

Therefore, the families (ai), (bi) are canonical, and one can speak of canonical form as well

as length of a strict sequential substitution.

Lemma 9.44. Let x an element of nominal set, and e a strict sequential substitution. Then e · x =

e′ · (π · x), where e′ = [an/bn]...[a1/b1] a canonical form, and, writing e′i for [ai/bi]...[a1/b1],

then ai+1, bi+1 ∈ ν(e′i · (π · x)) and π is a nominal permutation.

Proof. We write e = [an/bn]...[a1/b1] for a canonical form of e. We do the proof by induction

on the length i of e. So let us consider ([ai+1/bi+1][ai/bi]...[a1/b1]) · (π · x). Then either ai+1 <

ν(e′i · (π · x)) and [ai+1/bi+1].ei · (π · x) = ei · (π · x). So suppose ai+1 ∈ ν((ei · (π · x)), then either

bi+1 ∈ ν(ei · (π · x)) as in the lemma, or [ai/bi+1] · (ei · (π · x)) = (ai+1, bi+1) · (ei · (π · x)) =

((ai+1, bi+1) · ei) · ((ai+1, bi+1) ◦ π) · x, allowing us to conclude. �

This lemma allows us to conclude that the action of a strict substitution on a element consists

of a permutation followed by a name-merging. For instance, note that ν(ei · (π · x)) ⊂ ν(π · x) for

all i. This is established by simple induction.

Corollary 9.45. Let e as above, such that e · x = e′ · (π · x), and e′ = [an/bn]...[a1/b1] as above

Then the following properties hold:

• ∀i, j. ∈ [1, n].i , j⇒ ai , a j.

• ∀i, j ∈ [1, n].ai , b j

• ∀σ ∈ S n.e′ = [aσ(1)/bσ(1)]...[aσ(n)/bσ(n)]

Proof. The first property follows from the first condition on normal forms. The third is a direct

consequence of the two first. So we need to focus on the second one. Suppose there exist i, j

such that ai = b j. The case i ≥ j is forbidden by the canonical form conditions, so we restrict

ourselves to the case i < j, and we consider for contradiction the smallest j greater than i such

that ai = b j. Then, by lemma 9.40, we know that ai < ν(ei · (π · x)). Furthermore, as j is the

smallest number such that b j = ai, e j−1 · (π · x)#ai. As b j = ai, this contradicts the fact that

b j ∈ ν(e j−1 · (π · x)). We conclude. �

To end-up this paragraph, we introduce this lemma that clarifies the relation between sub-

stitution and permutations.

Proposition 9.46. Let x an element of a nominal set, and π a nominal permutation. Then ∃e ∈ Ξ

such that π · x = e · x
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Proof. Let Z ⊆ A be a finite subset of same cardinal of ν(π) and such that Z#π, x. Let f be a

bijection between Z and ν(π), and consider ρ the associated permutation, such that ν(ρ) = ν(π)t

Z, defined by ρ(a) = f (a) if a ∈ ν(x), ρ(a) = f −1(a) if a ∈ Z, ρ = id otherwise. Consequently, ρ

is an involution : ρ ◦ ρ = id. We define % = π ◦ ρ. Hence % ◦ ρ = π. We define the associated

substitutions. Let {ai | i ∈ [1, n]} be any numbering of ν(x). We first define e = [ai/ f (ai) =

ρ(ai)]i=1..n. Then as f (ai) is always fresh for ai, x, then [ai/ f (ai)] · x = (ai, f (ai)) · x and therefore

e · x = ρ(x). We define equally e′ for %. Then e′ · e · x = % ◦ ρ(x) = π(x). �
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