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Abstract 

 

Test data has increased enormously owing to the rising on-chip complexity of integrated circuits. It further 

increases the test data transportation time and tester memory. The non-correlated test bits increase the issue of 

the test power. This paper presents a two-stage block merging based test data minimization scheme which 

reduces the test bits, test time and test power. A test data is partitioned into blocks of fixed sizes which are 

compressed using two-stage encoding technique. In stage one, successive blocks are merged to retain a 

representative block. In stage two, the retained pattern block is further encoding based on the existence of ten 

different subcases between the sub-block formed by splitting the retained pattern block into two halves. Non-

compatible blocks are also split into two sub-blocks and tried for encoded using lesser bits. Decompression 

architecture to retrieve the original test data is presented. Simulation results obtained corresponding to different 

ISCAS’89 benchmarks circuits reflect its effectiveness in achieving better compression. 

 

Keywords: Test data reduction; Block merging; Code-based testing; Adaptive Block Merging; Data 

Compression 

1. Introduction 

 

The Integrated Circuit (IC) design and fabrication approaches have gone through tremendous advancements 

leading to the creation of a complex two and three-dimensional System on chip (SoC) designs. Such SoCs may 

also be equipped with on-chip networks (NoC) to ease out the on-chip interconnectivity. However, the 

tremendously growing on-chip complexity has led to new test challenges (Wang, L. T. et al 2006). One of the 

biggest challenges faced by test engineers is the enormously increasing test data volume which is required for 

fault-free delivery of the product to the market. Pre-generated test sets stored in the memory of the Automatic 

Test Equipment (ATE) are delivered to the Circuit Under Test (CUT) using scan-based test approach (Wu et al. 

2003). The serial transportation of a large number of test bits between the ATE and CUT pins at low ATE clock 

increases the test application time. The test bits being uncorrelated lead to occurrence of very high switching 

activity at various scan cells which in turn increase the test power. Hence, a reduction of the amount of test data, 

test power and test application time are very crucial to reduce the overall test cost of a system. Meanwhile, it is 

important that the on-chip test infrastructure (decoder etc.) required should not pose an unbearable overhead. 

 

1.1 Analysis of Existing Literature  

 

Various techniques have been proposed in the last three decades which try to reduce the test data by 

appropriately reusing the unspecified bits in the test data. Such techniques can be broadly classified as a) Linear 

decompressors and broadcast scan-based techniques and b) Code based techniques (Wang et al. 2012). The 

categorization between the two majorly depends upon the fact that the former ones require the structural 

knowledge of the circuit under test while the code based don’t. Linear decompressor-based techniques utilize 

on-chip hardware to compress the test data by efficiently utilizing don’t care bits of the test data. Approaches 

like Linear feedback shift registers based reseeding (Krishna and Touba, 2002; Koenemann, 1991), scan-based 

concealment (Bayraktaroglu, and Orailoglu, 2001), and ring counters  (Mrugalski 2004), etc. fall under the 

category of the linear decompressors. Broadcast scan based (Lee et. al 1998) approaches have utilized single 

channel of the tester to feed in other tester channels. Such approaches reduce the amount of test data which 
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needs to be transported which in turn reduces the test time.  Another scan-based approaches namely 

reconfigured scan forest (Xiang, et al. 2007) and reconfigurable scan architecture with weighted scan enables for 

determinitic BISTs reduces the test data even more. However, the use of such approaches is discouraged in 

scenarios like embedded core-based designs wherein the structural details of CUT are not known to the test 

engineers (Correa and David, 2018). Code based techniques, on the other hand, can be applied directly on the 

test data to reduce the number of the test bits. An off-chip compressor can compress the test data to obtain an 

encoded test stream which can be decoded/decompressed using on-chip decompressor hardware. Minimal on-

chip test infrastructure and immunity to the underlying structural details have made the code based test data 

compression to be a promising solution. 

   

Various code-based test data compression techniques (Touba 2006; Vohra, 2018) have been developed so far 

that attempts to compress the test data on the basis of the run lengths of the various types of test bits (Gill, 

2019). Such techniques can be differentiated as statistical code based and run-length based. The statistical 

techniques like Huffman encoding (Jas et. al. 2003; Mehta, et al. 2010), Run-Length (RL) Huffman encoding 

(Nourani, Tehranipour, 2005) and optimal selective Huffman encoding (Kavousianos et al 2007) compress the 

data depending upon the rate of occurrence of various patterns. Run length code based techniques exploit the 

various combinations of test bits to shrink the overall test data length. The test data dedicated for digital on-chip 

testing consists of three types of data values: LOW (0), HIGH (1) and don’t care (X). These values are present in 

various combinations like continuous runs of the same value (0/1/X), a mix of LOWs (0s), HIGHs (1's) and 

don’t cares (X's) values etc. Based on the various test vector deterministic approaches for combinational designs, 

it can be concluded that the consecutive test patterns normally differ in a few number of bits; making 80 to 90% 

of the total test data of a circuit to consist of don’t care bits. The appropriate filling of such bits has been used in 

the various techniques to compress the test data.  

  

The Golomb Code (Chandra and Chakrabarty, 2001) works on the compression by encoding the continuous runs 

of all zeroes. The approach initially generates a difference vector by taking the exclusive OR of the successive 

patterns.  Owing to the fact that only a few bits differ at various bit positions among the successive test vectors, 

the EX-OR operation helps to increase the lengths of zeroes in different vectors. The codewords are produced 

on the basis of group prefix and tail selection. However, the compression efficiency suffered in cases of shorter 

run length of zeroes. Such cases lead to an expansion of data instead of compression. It is resolved in the 

Frequency directed Run-length (FDR) code (Chandra, Chakrabarty, 2003) which makes use of variable group 

sizes based on different run lengths. An extended FDR code (El-Maleh, A.H. 2008a) works on the achievement 

of even better compression by encoding runs of recurrent zeroes/ ones. Such techniques provide a reasonably 

fair amount of test data compression. Even better compression was achieved when the researchers started 

viewing the test data to consist of combinations of continuous zeroes/ ones or unique patterns. A Unique 

combination needs to be retained as it is to avoid any loss of information. The approaches which utilize 

encoding of block combinations fall under block encoding techniques. The nine coded compression technique 

(Tehranipoor et al. 2005) considers the unique combinations along with the runs of zeroes and ones. The blocks 

of fixed length on comparison can be encoded according to the existence of nine different cases: all zeroes (00), 

all ones (11) all zeroes followed by all ones (01), all ones followed by all zeroes (10), all zeroes followed by a 

unique  combination (0U), all ones followed by unique  combination (1U), unique  combination followed by  all 

zeroes (U0), unique  combination followed by  all ones (U1),  unique  combination followed by its compatible 

sub-block (UU). Nine Coded compression technique can be categorized as fixed-length 9C and variable length 

9C depending upon the block length chosen (Tehranipoor et al. 2005). Later, it was found that the successive 

blocks of different lengths can be merged together to obtain a merged block on the basis of existence of 

compatibility (inverse compatibility). Two bits are said to be compatible (inverse compatible) if they are same 

(compliment) or either of them is don’t care. Hence, two blocks will be compatible if all the bits at same bit 

positions are compatible with each other. Block merging codes like BM (El-Maleh, A.H.  2008b), Block 

Merging and Eight Coding (BM-8C) (Wu, 2013), Variable Prefix Run Length (VPRL) (Yuan et al. 2014), 

Count Compatible Pattern Run-Length (CCPRL) (Yuan et al. 2014), Optimal Selective Count Compatible Run 

Length (OSCCPRL) (Vohra and Singh. 2016), Hierarchical Block Merging Technique (HBMT) (Vohra and 

Singh 2018) increase the efficiency by compressing Compatible blocks of fixed sizes. BM-8C (Wu, 2013) 

integrates the compatibility-based block merging and eight codes based intra-block merging techniques.   

 

As stated earlier, rising test power is another threat for test engineers. Due to concurrent activation of multiple 

circuit elements, the power dissipation during test mode turns out to be much higher in comparison to that of the 

normal operation. The non-correlation between the consecutive bits of the test data increases the scan-in and 

scan-out switching power at the boundary of the circuit under test.  Various techniques have been developed to 

reduce the test vector peak and average values of the scan-in and scan-out powers. Optimum don’t care filling 

and vector reordering approaches have been successfully used to reduce the test power. Alternative Statistical 
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Run Length (ASRL) (Haiying Y. et al. 2016) and Low Power Switched Capacitor (LPSC) (Sivanantham S. et 

al., 2014b), Variablelength input Huffman coding (VIHC) (Gonciari et al. 2002), Alternating frequency-directed 

equal-run-length (AFDER) and runlength based Huffman coding (RLHC) (Sivanantham et al. 2014) techniques 

are examples of approaches that help in achieving a reduction in the test power in addition to test data 

compression.  

 

In this paper, a new encoding technique for test data compression is proposed which utilizes the block merging 

approach for achieving test data compression. The design of the associated test data decompressor is also 

presented.  The proposed technique achieves higher compression ratio for precomputed test sets (independent of 

the structural details of the circuit under test) resulting in minimization of test application time and memory 

requirement for the test data.  

 

The paper is structured as follows: Section 2 briefly highpoints the shortcomings of the previous test data 

compression techniques. Description of proposed Adaptive block merging technique and the associated 

decompression architecture are given in section 3 and section 4 respectively. Section 5 contains simulation 

results for the test data compression, Test application time and scan-in power estimates for different ISCAS’89 

benchmark circuits. Finally, section 5 presents the conclusions and future directions.  

 

2. Gaps in the Previous Schemes  

Literature review reveals that 9C approach brought a kind of breakthrough in the run-length encoding technique 

as nine different cases were being considered for test data encoding. However, limitation of merging only two 

blocks at a time hampers the achievable compression efficiency. BM-8C technique emerged to be an efficient 

approach as it reduces the number of bits by merging subsequent blocks to form a merged block which is further 

compressed using eight different codes. However, it lags encoding the special cases like all zeroes (00), all 

ones(11), a sub block of all zeroes followed by another sub block of all ones (01) and one sub block of all ones 

followed by another sub block of all ones (10) using lesser number of bits.  Another issue associated with the 

BM-8C technique is that it considers merging the compatible blocks till first inversely compatible block is found 

ignoring the scope of compatibility with successive block. A codeword is generated and a new search is started 

on the subsequent blocks to perform further merging. Techniques like CCPRL and VPRL provide better 

compression by efficiently merging both compatible and inverse compatible blocks. CCPRL technique excels 

VPRL in terms of test data volume reduction by removing the unnecessary end bits. However, it has a limitation 

of adding extra bits corresponding to a representation of unique blocks. At the same time, both CCPRL and 

VPRL don’t utilize the possibility of compression at the sub-block level. The OSCCPRL scheme works on the 

short comings of CCPRL and enhances the compression efficiency technique by utilizing the compression at the 

block and sub-block levels. It also reduces the redundant bits used to represent the unique blocks.  

 

3. Adaptive Block Merging Based Test Data Compression Technique 

The proposed Adaptive Block Merging based Test data Compression (ABMTC) technique works on the 

improvement of BM-8C compression efficiency by employing two-stage encoding approach. In the first-stage, it 

attempts to merge both compatible (inverse) blocks to improvise the compression at the block level. The 

information about the number of blocks being merged and the type of compatibility between retained pattern 

block and the ones being merged is preserved in the form of count_code and relation bits respectively. In second 

stage, the retained pattern is further compressed at the sub-blocks level. Finally, if a pattern cannot be merged 

with its subsequent block, it is treated as unique (UV). It is also examined for compression at the sub-block 

level. An inter/Intra bit is used to signify if the block can be merged with its subsequent blocks or not. If the 

block can be merged, the inter/intra block bit is set to high ‘1’ else, it is set to low ‘0’’ to represent uniqueness. 

The overall scheme can be explained with reference to the flowchart shown in fig1. The detailed description of 

the encoding process is as follows:   

 

3.1 Stage One Encoding  

As shown in Figure 1, a pattern block (b bit long) is initialized and compared with its subsequent block. 

Codeword used to encode the inter-block merging consists of the retained pattern (pattern_code), count_code 

and the relation code (compatibility code). Out of these, the retained pattern is the representative block obtained 

after merging the subsequent blocks, count_code represents the count of blocks being merged and the relation 

code (compatibility code) consists of an array of length equal to the decimal count held in count_code and its 

values is defined by the type of compatibility between the retained pattern and block being merged (successor). 
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The relation bit is chosen to ‘1’ or ‘0’ to show the existence of compatibility or inverse compatibility between 

the retained pattern and the successor.  

 

3.2 Stage Two Encoding 

The retained pattern block so formed, is partitioned into two halves (of length to b/2 each) to form two Half-

Length Blocks (HLBs) which are further compared against each other. The two HLBs are compared against 

each other to examine for the existence of one of ten subcases, namely: U0/U1/0U/1U/01/00/10/11/ half_comp/ 

half_invComp. The categorization between various subcases is done using three bits called 

unique_intra_merge_prefix bit (UIMP) and tail bits. The UIMP bit is set to ‘0’ and ‘1’ corresponding to 

subcases U0/U1/0U/1U/01/00/10/11 and half_comp/ half_invComp respectively. The tail bits are further utilized 

to encode the various subcases as shown in Table 1.  

 
Figure 1: Flow chart of working of ABMTC 

 

The compression efficiency can be improved further by selecting different block lengths while merging the 

blocks. This is done as follows: Each time inter block merge length has to be selected, block lengths of different 

values are iteratively tried to find the compression efficiency. The best value is chosen and saved as the 

preamble code. It represents the length of the block being chosen for the codewords. The criteria for selecting 

the pattern lengths are as follows: a) it has to be below five bits as the frequency of occurrence of compatibility 

among the pattern blocks of length more than 32 is very less; b) pattern blocks of larger sizes need larger buffer 

lengths in the decoder design which increases their area and c) Block length chosen should be an even value so 

that it can be subdivided into two equal sub-blocks easily. To ensure the test length to be a multiple of the 

chosen block length, extra zeroes are appended at the end of the test data without hampering the test 

information. Once the blocks are encoding as per the inter/ intra block merging, the leftover don’t care bits (if 

any) are filled with the same value as that of their preceding bits to reduce the switching activity. 

 
Table 1: Encoding scheme of ABMTC scheme 

 
Inter/ 

Intra 

UIM

P 

Tail Codeword  Sub-

cases 

Inference 

0 

(Unique 

Block) 

0 100 0_0_100_ b/2 bits U0 unique HLB followed by all zeroes  

101 0_0_101_ b/2 bits U1 unique HLB  followed by all ones 

110 0_0_110_ b/2 bits 0U all zeroes  followed by a  unique HLB  

111 0_0_111_ b/2 bits 1U all ones  followed by a  unique HLB  

0 000 0_0_000  00 all zeroes  

001 0_0_001   01 all zeroes  followed by  all ones  

010 0_0_010  10 all ones   followed by   all zeroes  
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011 0_0_011  11 all ones   

1 10 0_1_10_  b/2 bits UU Unique Compatible HLBs  

11 0_1_11_ b/2 bits UU’ Unique Inverse Compatible HLBs  

1 0 0_1_0_ b bits UV Unique block  (No compatibility at HLB level) 

1 

(Block 

level 

mergin

g) 

0 100 1_0_100_ b/2 bits _count-

code_relation bits 

U0 Block merging with U0 subcase at HLB  level 

101 1_0_101_ b/2 bits _count-

code_relation bits 

U1 Block merging with U1 subcase at HLB level 

110 1_0_110_ b/2 bits _count-

code_relation bits 

0U Block merging with 0U subcase at HLB level 

111 1_0_111_ b/2 bits _ count-

code_relation bits 

1U Block merging with 1U subcase at HLB level 

0 000 1_0_000 _ count-code_relation bits 00 Block merging with 00 subcase at HLB level 

001 1_0_001_  count-code_relation bits 01 Block merging with 01 subcase at HLB level 

010 1_0_010 _ count-code_relation bits 10 Block merging with 10 subcases at HLB level 

011 1_0_011 _ count-code_relation bits 11 Block merging with 11 subcases at HLB level 

1 1 

 

10 1_1_10_ b/2 bit _ count-code_relation 

bits 

UU Block merging with UU subcase at HLB level 

11 1_1_11_ b/2 bit _ count-code_relation 

bits 

UU’ Block merging with UU’ subcase at HLB level 

1 0 1_1_0_ b bits_ count-code_relation 

bits 

UV Block merging with unique UV retained 

pattern 

 

An example to show the implementation of ABMTC code, a random test sequence of 110 bits: 

‘00XX00000X1010100111X111X11X10X111X11X111011101011XXX1101XXX01XXXXX100XXX1101XXXXXX

1101XXXXXX1101XXX000XX11111’ is chosen. To ease out the explanation, the block length has been fixed to 

be 10 bits resulting in the formation of 10 blocks (as shown in column 2 of table 2).  The codewords so 

developed are shown in second column of Table 2.  

 

Table 2: Example of ABMTC 

 
BLOCKS Bit pattern (TD) 

 

Codeword and length  

Using ABMTC (TE) 

TE_ABMTC 

(bits)  

Codeword and length  Using 

BM-8C 

TE_BM-8C 

(bits) 

1 00XX0-0000X 0_0_000 

Unique block with 00 bit 

pattern 

5 0_11_00000 

Unique block with Half_c  bit 

pattern 

8 

2 10101_00111 0_1_0_ 1010100111 

Unique block with UV bit 

pattern 

13 0_00_1010100111 

Unique block with UV bit pattern 

13 

3 X111X_11X10 0_0_111_ 11X10 

Unique block with 1U bit 

pattern 

10 0_01101_11X10 

Unique block with 1U bit pattern 

11 

4 X111X_11X11 0_0_011 

Unique block with 11 bit 

pattern 

5 0_11_11111 

Unique block with Half_c bit 

pattern 

8 

5 10111-01011 1_1_0_10111-

01011_101_01001 

Six blocks merge with UV 

bit pattern 

21 10_0_00_1011101011 

Two block merge with unique bit 

pattern 

15 

6 XXX11-01XXX 

7 01XXX-XX100 10_1_010 

Two inverse block merge 

6 

8 XXX11-01XXX 

9 XXX11-01XXX 10_0_11101_01XXX 

Two block merge with 1U bit 

pattern 

13 

10 XXX11-01XXX 

11 000XX-11111 0_0_001   

Unique block with 01 bit 

pattern 

5 0_10_11111 8 

TOTAL BITS AFTER 

ENCODING  

59 

 

82 
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For better illustration of outperformance of ABMTC over BM-8C, outcomes of both the schemes have been 

shown in columns 3 and 4 respectively. As evident from row number 13, the sequence of 110 bits has been 

reduced to 59 and 82 bits after application of ABMTC and BM-8C are 59 respectively. In the above example 

(Table 2), Preamble width used to denote the block length has been chosen to be 4 bits here, which justifies the 

use of any block length (even value strictly) ranging from 1 to 24-1. To get better compression, variable block 

lengths can be selected based on the best possible compression at each attempt to decompress the test data.  Fig. 

2 shows the statistics of the occurrence of eleven different subcases for the benchmark circuits for the bit length 

of 10 bits. It may be noted that the statistics will vary depending on the different bit lengths. 

 

 

Figure 2: Frequency of occurrence of ten sub cases at intra block level for various benchmark circuit. 

 

Also, it may be observed that the use of the bits for the count_code and relation bits become more beneficial 

wherein the occurrence of the successive compatible / inverse compatible blocks is more. Fig 3. shows the 

occurrence of the inter block merging for 3, 4 and 5 bit count_code’s, or in other words occurrence of merging 

1-7, 1-15 or 1-23 number of  blocks being merge.  
 

 

Figure 3: Statistics of various sub cases among the inter block merging for different count_code (CC) 

values. 

4. Decompression Architecture  

The decompression design for the retrieving the original test stream is quite straightforward. Herein, the CUT is 

considered to be single scan chain based testable design. Its conceptual view is shown in Figure 4.  It comprises 

of an FSM, two counters, a 32-bit buffer register, 4-bit MUXes (one for each bit of the block length) and a shift 

register. A 32 bit is chosen as the maximum buffer size to limit the possibility of overhead. The whole design is 

fed with four incoming signals: TestClk, SoCClk, TestData_in, Sync and outgoing signal: TestData_out. The 

compressed data stream TestData_in is provided to the decompressor at the ATE frequency (TestClk), which 

after decompression is delivered to the CUT (SOC) at its functional clock SoCClk through TestData_out. The 

function of the Sync signal is to synchronize the ATE and SOC clocks. The circuit has two counters: counter1: 

used to receive the block/sub-block length and counter 2: used to extract the relation bits with its count specified 

by the count code (used for inter-block merging case). The working of each block is as described below:  
 

FSM generates the necessary control signals depending upon the status of the received codewords. Quite 

straightforward from its working point of view, it gets disintegrated into two categories on the basis of 

inter/intra bit. A partial diagram of the FSM is shown in Figure 5.  If the value of inter/intra is set to high and 

low, it reflects the existence of inter-level block merging and unique block respectively.   
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Based on the control signals generated by the FSM signifying, the scratch register is fed with b bit data  (UV 

case), b/2 bit length (UU/UU’/U0,U1,0U and 1U sub cases) through the TestData_in signal. The sel[1:0] bits 

received from the FSM further specify whether the shift register has to be fed with  0/1/b/compliment of b. It 

may be noted that the 4- bit MUX shown in the Fig. 4 signify group of Muxes dedicated for each bit to be filled 

in the shift register to complete the test block information. 

  
 

Figure 4: Decompressor architecture 

 

In case of the intra block (HLB) merging, the status of the group code and UIMP bits determines the status of 

the sel[1:0] bits which in turn control the working of MUX and counters used in the decompressor design. The 

sel[1:0] bits are set to 10 levels to signify the occurrence of  inverse compatible case.  

 

 
Figure 5: FSM of Decompressor 

 

The decompression process is initiated by receiving the preamble (block length). The moment it is done, a value 

is held internally. The upcoming bits signify the occurrence of different cases and subcases (as shown in table 

1). The FSM generates the respective select/control signals. For the cases of UU/UU’/U0/U1/0U/1U, the counter 

1 is enabled to count till Half the block.  The signal done1 is set to remain in Low state from the start of the 

counting process to the end. Until a High on the done1 signal of the counter1 is not received, the data on the 

TestData_in is forwarded to the scratch register. This fills the value of the unique bits of the HLB while the rest 

of the bits and their placement in the scratch register are specified based on the appropriate signals generated by 

the FSM. In the case of Interblock merging, counter 2 is made to count down from the count_code value 

received. Meanwhile, at each count pulse (from the start of the countdown to the occurrence of High on done2 

signal), the status of the relation code bits decides whether the value of the scratch register or its complement 

has to be forwarded to the circuit under test. In case of the fixed block length the preamble bits once received 

are expected to represent its block length else, the moment the counter2 gets decremented to zero, a reset is 

generated for FSM leading to a scan in of a new block length. The test data so retrieved is applied to the circuit 
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under test using the TestData_out signal, SoCclk, and scan_en signal. In case of non-occurrence of any 

compatibility among the sub-blocks of the pattern, the counter1 helps to retrieve the original data packet held 

intact in the encoded stream. 

 

5. Experimental Results 

 

In order to validate the efficiency of the proposed technique, comparisons are done with previous techniques 

using benchmark circuits. The test sets generated by Mintest Automatic Test Pattern Generator (ATPG) 

(Hamzaoglu, 2009) for Six large ISCAS’ 89 benchmark circuits are taken as input and fed to the various 

compression algorithms.  

 

5.1 Compression efficiency 

 
The compression efficiency (in %age) of an encoding scheme can be calculated by using Equation 1.  

 

The compression efficiency (ƞ) = 
uncompressed data (TD)− compressed (TE)

uncompressed data (TD)
*100             (1) 

 

The value of ƞ obtained for different benchmark circuits is shown in Table 3. To show the performance of the 

ABMTC, results of other schemes like Golomb (Chandra and Chakrabarty, 2001), FDR (Chandra and 

Chakrabarty, 2003), Enhanced False Discovery Rate (EFDR) (El-Maleh, 2008a), 9C (Tehranipoor et al. 2005), 

BM (El-Maleh, 2008b), CCPRL (Yuan et al. 2014), 2n-PRL (Pattern Run-Length) (Chang et al. 2012), BM-8C 

(Wu, 2013) have also been included in Table 3. The uncompressed test data as per the Mintest ATPG are shown 

in column1. By comparing the columns 2-8, it can be stated that the ABMTC outperforms other techniques in 

most of the cases. It may be noted that the block length was chosen to be of five bits which can support variable 

block lengths (as explained in section 3) and is best suitable for achieving higher compression.   

 

5.2 Comparison of the decoder area  

 
The hardware overhead of the decoder of ABMTC (modelled using Verilog HDL and synthesized using 

Encounter Register Transfer Language (RTL) compiler from Cadence with 1.8 V, TSMC 180 nm CMOS 

standard cell library) is presented in Table 4. The full-scan ISCAS’89 benchmark circuits are synthesized with a 

single scan chain. The decoder area overhead can be calculated using equation 2. 

 

Area Overhead=
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑑𝑒𝑐𝑜𝑑𝑒𝑟

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑐𝑖𝑟𝑐𝑢𝑖𝑡
∗ 100          (2) 

 

By analysing the results obtained, it is apparent that the decoder overhead of ABMTC is close to CCPRL. 

Though, it is larger than 9C but, the advantage of increased compression efficiency advocates its application. 

 
5.3 Comparison of Test Application Time (TAT) 

 
As explained in section 4, the compressed data is delivered to the SoC periphery at ATE clock frequency 

(TestClk). The decompressor helps to retrieve the original test stream which is applied to the circuit under test at 

SoCClk. To ensure the synchronization between the two clocks, SoCClk is chosen to be an integer multiple of 

TestClk. Let the frequency ratio be α = SoCClk / TestClk as given in Equation 3. Assuming the compressed test 

data has M code words C(1)−C(m) and each codeword has a length of W(i) (i = 1, 2, ……,m).  

 

Let αmax=max2<𝑖<𝑀(𝐻(𝑖 − 1) /𝑊(𝑖) )                                                                                                                              (3)  

 

where H(i-1) is the length of decompressed test data for the codeword C(i-1). If α ≥ αmax, minimum TAT can 

be calculated as (Yuan et al. 2014, Wu, 2013). 

 

TATmin = ∑ W(i)    + ([max(H(M) − (α − 2)])/αM
i          (4) 

 

If α < αmax, the ATE will be stalled several cycles to wait for the SoC to apply the decoded test data, which 

occurs when the time consumed for ATE to send the codeword C(i) to Finite State Machines (FSM) is shorter 

than the time consumed for the CUT to apply the decoded test data of the previous codeword C(i-1). Then, the 

total TAT will be calculated as: 
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𝑇𝐴𝑇 = 𝑇𝐴𝑇𝑚𝑖𝑛 + ∑ {max (𝐻(𝑖 − 1) − 𝑤(𝑖) ∗ 𝛼, 0}/𝛼𝑀
𝑖=2               (5) 

 

The TAT values calculated as per equations 4 and 5 for different benchmark circuits and α values are presented 

in Table 5. Results are compared with the TAT obtained for other compression techniques like FDR, EFDR, 

BM, BM-8C, as evident from the table, proposed ABMTC offers much-reduced Test application time.  The 

process of parallel delivery of test data from ATE and its application to the CUT helps in the reduction of the 

test application time.   

 

5.4 Comparison of switching power dissipation 

 
One common metric used to estimate the test power is the Weighted Transitions Metric (WTM). The WTM is 

strongly correlated to the switching activity in the internal nodes of CUT during scan-shift operation. Chandra, 

and Chakrabarty, 2003b showed experimentally that scan vectors with higher WTM dissipate more power in 

CUT. Let us say that a scan chain of length t is being dealt with and a scan vector lj = lj,1lj,2…….lj,t, and lj,1 is 

scanned before lj2. The value of the WTM can be calculated for inputs as well as their responses by the 

following equation 

 

WTMj=∑ (t − i)(lj,i
t−1
i=1 ⨁ lj,i+1)                       (6) 

 

With the help of the above equation, we can also calculate the peak (Ppeak) and the average (Pavg) power as 

follows: 

 

Pavg =
∑  n

j=1 ∑ (t−i)(lj,i
t−1
i=1 ⨁ lj,i+1)

n
                         (7) 

 

Ppeak=maxj∈(1,2..n){∑ (t − i)(lj,i
t−1
i=1 ⨁ lj,i+1}                 (8) 

 

Equations 6-8 can be used to calculate the average and peak power for four different benchmark circuits. To 

results of the scan in peak and average power as obtained for different benchmark, circuits have been compared 

with other schemes like FDR (Chandra and Chakrabarty, 2003), EFDR (El-Maleh, 2008a), LPSC (Sivanantham 

S. et al., 2014b) as shown in Table 6. It may be noted that reduction in the switching power has occurred by 

filling don’t care bits with 00/01/10 and 11 patterns thereby reducing the unnecessary transitions. Also, don’t 

care bits left after performing the block merging are filled with same status as that of neighbouring bits to avoid 

extra switching.  It may be noted that the peak and average power consumption, however, suffers in comparison 

to what has been achieved using LPSC. Better results could have been achieved if test vectors were initially re-

arranged on the basis of occurrence of don’t care bits such that run lengths of all zeroes or all ones could be 

increased. However, for that one needs to ensure that the order of test vectors dedicated for sequential circuits is 

not altered else, the fault coverage may suffer.   

Table 3: Comparison of compression efficiencies (in percentage) achieved between ABMTC 
compression schemes and the various other techniques 

 

 

Table 4:  Comparison of decompression area overhead for ABMTC with other compression techniques 
 

 

  Test data compression technique 

Benchmark 

circuit 

Mintest Golomb FDR EFDR 9C B.M 2n-

PRL 

B.M-8C ABMTC 

S5378 23754 37.11 48.02 53.67 51.64 54.98 54.94 58.56 59.47 

S9234 39273 42.25 43.6 48.66 50.94 51.19 57.72 57.49 61.28 

S13207 165200 79.74 81.3 82.49 82.31 84.89 88.1 87.52 86.49 

S15850 76986 62.82 66.22 68.66 66.38 69.49 64.29 73.69 74.57 

S38417 164736 28.37 43.26 62.02 60.63 59.39 58.33 59.92 62.12 

S38584 199104 57.17 60.93 64.28 65.53 66.86 72.44 71.66 74.25 

Average  51.24 57.22 63.29 62.38 64.46 65.97 68.14 69.69 

Benchmark circuit  FDR BM-8C 9C CCPRL HBMTC OSCCPRL ABMTC 

S5378 7.8 12.8 8.2 9.6 12.5 10.7 10.1 

S9234 5.9 9.7 6.2 7.3 9.2 8.3 8.3 

S13207 3.5 5.8 3.7 3.5 5.10 4.2 3.8 
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Table 5: Comparison of Test application time achieved for ABMTC with other compression techniques 

 
Circuits  α FDR EFDR BM BM-8C ABMTC 

S5378 

  

  

  

2 24,933 17,075 16,018 15,088 14,780 

4 16,803 13,172 12,239 11,191 11,334 

6 15,259 12,096 11,183 10,348 10,040 

8 14,039 11,652 10,899 10,089 9,780 

S9234 

  

  

  

2 42,039 26,129 26,336 24,281 22,266 

4 29,206 21,424 20,828 18,410 17,986 

6 26,675 20,557 19,762 17,278 16,870 

8 24,086 20,318 19,436 16,921 15,666 

S13207 

  

  

  

2 1,16,101 88,487 88,045 87,319 86,845 

4 70,361 52,711 50,784 49,730 48,670 

6 57,089 41,898 39,177 38,138 36,226 

8 48,358 36,946 33,768 32,326 31,320 

S15850 

  

  

  

2 65,020 46,076 46,076 44,110 43,910 

4 42,270 32,517 32,084 29,553 28,234 

6 36,732 28,798 28,216 25,522 24,234 

8 32,362 27,172 26,518 23,673 23,673 

S38417 

  

  

  

2 1,86,261 1,04,569 1,09,180 1,06,725 1,06,100 

4 1,23,700 75,614 80,273 79,074 78,556 

6 1,13,451 68,212 73,286 71,564 70,443 

8 1,10,521 65,509 70,202 69,069 68,566 

S38584 

  

  

  

2 1,79,530 1,19,849 1,18,844 1,13,821 1,12,661 

4 1,18,628 86,320 83,255 76,161 74231 

6 1,04,630 78,066 73,953 66,048 65336 

8 93,260 74,955 70,692 61,908 60,234 

 

Table 6. Scan-in peak-power (Ppeak) and average-power (Pavg) transitions: Comparison with other 
compression methods. 

 Mintest FDR EFDR LPSC ABMTC 

Benchmark 

circuit 

Ppeak Pavg Ppeak Pavg Ppeak Pavg Ppeak Pavg Ppeak Pavg 

S9234 17494 14630 12994 5692 12062 3469 12102 3512 12200 3524 

S13207 135607 122031 101127 12416 97613 8016 97685 7849 97780 7888 

S15850 100228 90899 81832 20742 63494 13394 63586 13498 63760 13834 

S38417 683765 601840 505321 172665 404654 117834 404676 112235 405447 112244 

S38584 572618 535875 234233 136634 479547 89138 479748 89428 478468 89650 

Average 301942 273055 187101 69630 211474 46370 211559 45304 211531 45428 

 

6. Conclusions and Future Scope  

The test data compression is a very promising technique to reduce the test data volume and challenges of test 

application time. This paper proposed an adaptive block merging technique for test data compression.  It 

improves the test data compression efficiency being immune to the underlying structural details of the circuit 

under test. As per the simulation results of the application of the ABMTC on various ISCAS’89 benchmark 

circuits, it can be seen that the average compression efficiency is increased by 2-20% in comparison to the 

previously proposed techniques. The average and peak test powers can also be reduced by employing this 

technique. Being very small, it seems to be feasible at the deep submicron level. As evident from the 

experimental results, the test application time is also reduced by 20% using this scheme. Although, ABMTC 

helps achieves better data compression but, it can still be worked upon to enhance its ability to reduce test 

power. Based on the fact that test power is dependent on the switching activity, the test vectors can be divided 

into two categories. First category includes the test vectors which can help in saving power by increasing run 

lengths of zeroes and ones while the second helps in reduction of test data. Statistical and Code based 

approaches can be amalgamated to enhance the power saving and data compression.  

 

 

S15850 3.6 5.9 3.8 3.7 4.5 3.9 3.9 

S38417 1.4 2.3 1.5 1.8 2.2 2.2 2.3 

S8584 1.5 2.5 1.6 1.9 2.5 2.5 2.6 
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