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Abstract. Let F be a finite field, an algebraically closed field, or the field of real numbers.
Consider the vector space V = F3 ⊗ F3 of 3 × 3 matrices over F, and let G ≤ PGL(V ) be the
setwise stabiliser of the corresponding Segre variety S3,3(F) in the projective space PG(V ). The
G-orbits of lines in PG(V ) were determined by the first author and Sheekey as part of their
classification of tensors in F2⊗V in the article “Canonical forms of 2×3×3 tensors over the real
field, algebraically closed fields, and finite fields”, Linear Algebra Appl. 476 (2015) 133–147.
Here we solve the related problem of classifying those line orbits that may be represented by
symmetric matrices, or equivalently, of classifying the line orbits in the F-span of the Veronese
variety V3(F) ⊂ S3,3(F) under the natural action of K = PGL(3,F). Interestingly, several of the
G-orbits that have symmetric representatives split under the action of K, and in many cases
this splitting depends on the characteristic of F. Although our main focus is on the case where
F is a finite field, our methods (which are mostly geometric) are easily adapted to include the
case where F is an algebraically closed field, or the field of real numbers. The corresponding
orbit sizes and stabiliser subgroups of K are also determined in the case where F is a finite field,
and connections are drawn with old work of Jordan and Dickson on the classification of pencils
of conics in PG(2,F), or equivalently, of pairs of ternary quadratic forms over F.

1. Introduction

1.1. Set-up and summary of our results. Consider the vector space V = F3⊗F3 of 3×3
matrices over a field F, and recall that the corresponding Segre variety S3,3(F) in the projective
space PG(V ) ∼= PG(8,F) is the image of the map taking (〈v〉, 〈w〉) ∈ PG(F3) × PG(F3) to
〈v⊗w〉. Let G denote the setwise stabiliser of S3,3(F) inside the projective general linear group
PGL(V ). The classification of G-orbits of lines in PG(V ) was obtained by the first author and
Sheekey [15] as a consequence of their classification of tensors in F2⊗F2⊗F3 for F a finite field,
F an algebraically closed field, and F = R. This led to the classification [16] of all subspaces of
PG(F2 ⊗ F3), and of the tensor orbits in F2 ⊗ F3 ⊗ Fr for every r ≥ 1.

Here we study the symmetric representation of the line orbits in PG(V ), by which we mean
the following. Let O be a G-orbit of lines in PG(V ), and consider the subspace Vs 6 V of
symmetric 3× 3 matrices over F. If O happens to contain a line L in PG(Vs), then L is called a
symmetric representative of O. If O has two symmetric representatives that are not in the same
orbit under the natural action of K = PGL(3,F), whereby a symmetric matrix M is mapped
by D ∈ GL(3,F) to DMD>, then we say that the G-orbit O splits (under this action of K).

We address the following natural problems concerning the G-orbits of lines in PG(V ):

(i) We determine which G-orbits of lines in PG(V ) have a symmetric representative.
(ii) We classify those orbits that have symmetric representatives, under the action of K.

(iii) In the case where F is a finite field, we determine for each K-orbit the corresponding
stabiliser subgroup of K and the orbit size.

Note that problem (ii) is equivalent to the classification of K-orbits of lines in the F-span
〈V3(F)〉 of the Veronese variety, or quadric Veronesean, V3(F) ⊂ S3,3(F), namely the image of
the Veronese map ν3 : PG(2,F)→ PG(5,F) induced by the mapping taking u ∈ F3 to u⊗ u.
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Our main results are the solutions to problems (i) and (ii) for the case of a finite field F.
These are addressed in Section 3 and summarised in Table 2. There are 14 orbits of lines in
PG(V ) under G, arising from the tensor orbits o4, . . . , o17 in F2 ⊗ V , in the notation of [15],
which we adopt here for consistency. Of these 14 orbits, only three do not have symmetric
representatives, namely those arising from the tensor orbits o4, o7 and o11. Moreover, the line
orbits (corresponding to the tensor orbits) o5, o6, o9, o10 and o17 do not split for any value of
the characteristic char(F) of F, while o14 and o15 split for odd characteristic but not for even
characteristic, o12 and o16 split for even characteristic but not for odd characteristic, and o8 and
o13 split for all values of char(F). We note that no G-line orbit splits into more than two K-line
orbits. For algebraically closed fields and F = R, problems (i) and (ii) are handled in Section 5.
The situation is overall somewhat simpler than in the finite case, but we note in particular that
the results for an algebraically closed field F do depend on whether or not char(F) = 2.

Problem (iii) is addressed in Section 4, with the results summarised in Table 3. As noted
above, the splitting (or not) of a G-orbit under K sometimes depends on whether char(F) = 2
or not. Moreover, the structures of the corresponding line stabilisers inside K can also depend
on char(F). It seems remarkable, therefore, that the number of symmetric representatives of any
given G-orbit turns out to be independent of char(F) (see Table 4).

1.2. Historical context and commentary on our results. Because our results imply
the classification of lines in 〈V3(F)〉 under the natural action of PGL(3,F), when char(F) 6= 2 they
also imply the classification of pencils of conics in PG(2,F), namely, one-dimensional subspaces
of ternary quadratic forms over F. We refer the reader to Section 6 for details about this
correspondence. The latter classification problem goes back to old work of Jordan [12, 13]
and Dickson [6]. The classification over the reals and the complex numbers was obtained by
Jordan [12, 13] in 1906–1907; there are 13 and 8 orbits, respectively (in accordance with our
results in Section 5). This classification was later extended to algebraically closed fields using
the theory of matrix elementary divisors (due to Weierstrass). For example, Wall [18] refers
to Segre’s classification of pencils of quadrics, pointing out that it was well known at the time
Wall’s paper was published (1977), and remarking that it appears in various standard textbooks,
including those of Gantmacher [7] and Hodge and Pedoe [11]. However, as we explain below,
this approach does not adequately treat the finite field case. Another approach which seems
to work exclusively over the complex numbers is that due to Artamkin and Nurmiev [1], who
appeal to connections with the theory of Lie algebras.

The history of the problem of classifying pencils of conics over finite fields seems to be
somewhat more complicated. In the odd characteristic case, the classification was obtained by
Dickson [6] in 1908. The even characteristic case was studied two decades later by Campbell [3],
who provided a list of inequivalent classes of pencils of conics in PG(2,Fq), q even. However,
unlike Dickson, Campbell did not obtain a full classification. Campbell was aware of this, stating
on the first page of his paper that: “If there is an arbitrary coefficient in the typical pencil we
say this pencil represents a set of classes, whenever different values of this coefficient may give
nonequivalent pencils and so represent distinct classes.”. These “sets of classes” are listed on
[3, p. 406] as Set 10, Set 14, Set 15, Set 16 and Set 17. This also explains why Campbell’s
paper is so short: the main difficulties in what would have been be a complete classification are
not addressed. In particular, the pencils without binary forms, which in the odd characteristic
case correspond to our aforementioned case o17, are not classified (see also Dickson’s comment
from his paper [6], quoted below). Although a full classification in the even characteristic case
is alluded to in the literature, we have not been able to find an explicit list of orbits with
an accompanying proof anywhere. In particular, Hirschfeld states the classification in full as
Theorem 7.31 of his book [9], but attributes the result to Campbell [3], who, as explained above,
neither stated nor proved the complete classification. We intend to complete the classification
in a forthcoming paper.

We now explain why the elementary divisor method used for algebraically closed fields by
C. Segre and others (as explained above) is inadequate to treat the finite field case. Hodge and
Pedoe work over an algebraically closed field F and prove [11, Theorem I of Chapter XIII] that
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two n × n matrices A and B, with B non-singular, can be simultaneously transformed via a
change of coordinates to matrices C and D, with D non-singular, respectively, if and only if
the linear combinations A− λB and C − λD (where λ is a variable) have the same elementary
divisors. Note here that, when char(F) is odd, a change of coordinates of the quadratic form
associated with the matrix A, say, corresponds precisely to a mapping of A to ZAZ> for some
non-singular matrix Z, and hence to the natural action of PGL(n,F). This result is certainly
false when F is finite. For example, if we take F = Fq, q even, and

B = D =

0 0 1
0 1 0
1 0 0

 , A =

0 0 0
0 0 1
0 1 0

 , C =

0 0 0
0 0 1
0 1 1

 ,
then the matrices A − λB and C − λD have the same elementary divisors, namely 1, 1 and
λ3. However, there is no non-singular matrix Z = (zij) such that ZAZ> = C, because the

(3, 3)-entry of ZAZ> is 2z32z33, which is 0 and hence not equal to the (3, 3)-entry of C in
characteristic 2. This example, which in fact illustrates that [11, Theorem I of Chapter XIII] is
false when char(F) = 2, arises from the o16 case of our classification: by Table 2, the line orbits
represented by the matrices Ax+By and Cx+Dy, where x and y are variables, are inequivalent
under the natural action of PGL(3,Fq) when q is even. It is also straightforward to find a
counterexample for finite fields of odd characteristic; in particular, one arises from the o8 case
of our classification. Hence, [11, Theorem I of Chapter XIII] does not imply a classification of
lines in PG(F3⊗F3) over finite fields. Gantmacher [7] takes a more refined approach, using both
finite and infinite elementary divisors (due to Kronecker), but this approach is still inadequate
for finite fields (for similar reasons).

We also remark on (what we feel are) some advantages of our approach as compared with
Dickson’s original proof, in the case of a finite field of odd characteristic. Dickson [6] determined
an exhaustive list of 15 equivalence classes of pairs of ternary quadratic forms over a finite field
Fq with q odd, consistent with our results in Table 2. In the first paragraph of his paper, he
anticipated that: “The main difficulty lies in the case in which the family contains no binary
forms, and that in which the binary forms are all irreducible. Neither of these cases occur when
the field is C or R, so that the problem is quite simple for these fields.” Indeed, 15 of the 18
pages of Dickson’s paper [6] are dedicated to the classification of these two cases. The proof
gives explicit coordinate transformations in order to reduce the families of quadratic forms to
canonical representatives of the associated equivalence classes, and can at times be quite tedious.
In particular, the cases q ≡ 0, 1 and 2 (mod 3) are treated separately in the proof of the case
in which the family contains no binary forms. This case also relies on knowledge of the number
of irreducible cubics of a given form and refers to Dickson’s treatise on linear groups [5]. Our
proof is quite different, and in particular we do not need to treat the cases q ≡ 0, 1 and 2
(mod 3) separately. In fact, our approach applies more or less uniformly for both even and odd
characteristic. (Moreover, as noted above, we compute stabilisers for all orbits, which do not
seem to have been recorded anywhere as far as we can tell.) We note, however, that despite the
differences between our approach and Dickson’s, there are cases in which we encounter similar
difficulties. In particular, in the case of pencils without binary forms, which correspond to
lines in PG(F3

q ⊗ F3
q) without points of rank 3 (namely those of type o17, treated at the end of

Section 3), both Dickson’s proof and our proof are based on counting arguments. This seems
unavoidable. Interestingly enough, the proof in [15, Section 3.3] of the fact that there is a single
orbit of constant rank-3 lines in PG(F3

q⊗F3
q) is also, seemingly unavoidably, based on a counting

argument. All three arguments are, however, counting different objects.
Finally, we remark that our proofs are largely geometric in nature, in contrast with those

of Dickson [6], and indeed with the aforementioned matrix elementary divisor arguments. This
geometric approach has been our starting point towards a classification of orbits of planes in
PG(F3 ⊗ F3) for F a finite field, which correspond to nets of conics, namely, three-dimensional
subspaces of ternary quadratic forms. This natural (and more complicated) next case was
investigated by Wilson [19] and Campbell [4], but a complete classification is still unknown.
(We also remark that the case F = R was treated by Wall [18].)
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Orbit Representative Condition Rank dist.

o0 0 [0, 0, 0]
o1 e1 ⊗ e1 ⊗ e1 [1, 0, 0]
o2 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) [0, 1, 0]
o3 e1 ⊗ e [0, 0, 1]
o4 e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e2 [q + 1, 0, 0]
o5 e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 [2, q − 1, 0]
o6 e1 ⊗ e1 ⊗ e1 + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e1) [1, q, 0]
o7 e1 ⊗ e1 ⊗ e3 + e2 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) [1, q, 0]
o8 e1 ⊗ e1 ⊗ e1 + e2 ⊗ (e2 ⊗ e2 + e3 ⊗ e3) [1, 1, q − 1]
o9 e1 ⊗ e3 ⊗ e1 + e2 ⊗ e [1, 0, q]
o10 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2 + ue1 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + ve2 ⊗ e1) (∗) [0, q + 1, 0]
o11 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3) [0, q + 1, 0]
o12 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e3 + e3 ⊗ e2) [0, q + 1, 0]
o13 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + e3 ⊗ e3) [0, 2, q − 1]
o14 e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e2 ⊗ e2 + e3 ⊗ e3) [0, 3, q − 2]
o15 e1 ⊗ (e+ ue1 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + ve2 ⊗ e1) (∗) [0, 1, q]
o16 e1 ⊗ e+ e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3) [0, 1, q]
o17 e1 ⊗ e+ e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3 + e3 ⊗ (αe1 + βe2 + γe3)) (∗∗) [0, 0, q + 1]

Table 1. Orbits of tensors in V = F2
q ⊗ F3

q ⊗ F3
q under the setwise stabiliser in

GL(V ) of the set of fundamental tensors in V , as per [15, p. 146]. Representatives

are given in terms of a basis {e1, e2, e3} of F3
q , with e =

∑3
i=1 ei ⊗ ei. The

final column shows the rank distribution of the first contraction space of each
representative. Condition (∗) is: vλ2 +uvλ−1 6= 0 for all λ ∈ Fq. Condition (∗∗)
is: λ3 + γλ2 − βλ+ α 6= 0 for all λ ∈ Fq.

2. Preliminaries

Here we collect some preliminary information for background and later reference.

2.1. Orbits of tensors in F2 ⊗ F3 ⊗ F3. Write

V1 = F2, V = F3 ⊗ F3 and V = V1 ⊗ V,

and let G be the setwise stabiliser in GL(V ) of the set of fundamental tensors in V , namely the
tensors of the form v1⊗ v2⊗ v3 with v1 ∈ F2 and v2, v3 ∈ F3. The G-orbits of tensors in V were
classified in [15, Main Theorem]. In particular, in the case where F is a finite field Fq, there are
precisely 18 orbits, with representatives given in terms of a basis {e1, e2, e3} for F3

q in the table
on [15, p. 146]. For convenience, the information in that table is included here in Table 1.

In this paper, we are interested in symmetric representatives of line orbits in the projective
space PG(V ). The line orbits themselves can be obtained by considering the first contraction
spaces of tensors in V . As per [15, p. 136], the first contraction space of a tensor A ∈ V is the
subspace

A1 = 〈w∨1 (A) : w∨1 ∈ V ∨1 〉
of V . Here V ∨1 is the dual of V1, and w∨1 (A) is defined by its action on fundamental tensors via
w∨1 (v1 ⊗ v2 ⊗ v3) = w∨1 (v1)v2 ⊗ v3. Recall also that the rank of a point in PG(V ) is the rank of
any (3×3) matrix representing that point (and that this does not depend on the choice of bases
for the factors of the tensor product). In geometric terms, a point has rank 1 if it is contained
in the Segre variety S = S3,3(F) ⊂ PG(V ), rank 2 if is not contained in S but is contained in
the secant variety of S, and rank 3 if it is not contained in the secant variety of S. Note that
the last column of Table 1 shows, for each orbit, the rank distribution of the first contraction
space of a representative A, namely a list [a1, a2, a3] where ai is the number of points of rank i
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in PG(A1). The first contraction spaces of the tensors in orbits o4, . . . , o17 are lines of PG(V );
in particular, their rank distributions satisfy a1 + a2 + a3 = q + 1.

2.2. Properties of the quadric Veronesean. Here we collect some facts about the
quadric Veronesean V3(F) which are used throughout the paper. Most of these properties belong
to the folklore of classical algebraic geometry. For proofs and/or further details, the reader may
consult a standard reference such as Harris [8, p. 23] or Hirschfeld and Thas [10, Chapter 4].
We restrict ourselves to those results that are frequently used in our proofs.

The quadric Veronesean has been studied for over a century and many interesting results
have been obtained. A remarkable characterisation of V3(C) was, for instance, given by Bertini
in 1923 [2]. This was extended by Mazzocca and Melone to V3(Fq). Their paper [17] also
contains an interesting list of references to some of the earlier works on the subject by Italian
geometers. For a longer list of references we refer the reader to the more general survey by
Havlicek [14] on Veronese varieties over fields of positive characteristic.

As noted in Section 1, V3(F) is the image of the map ν3 : PG(2,F) → PG(5,F) induced by
the mapping taking u ∈ F3 to u ⊗ u. The subgroup K of PGL(6,F), isomorphic to PGL(3,F),
with D ∈ GL(3,F) mapping a symmetric matrix M to MD = DMD>, is equal to the setwise
stabiliser of V3(F) unless F = F2, in which case K is a proper subgroup of the setwise stabiliser
(see e.g. [10, p. 148]). We also record the following facts, which are readily obtained from the
relevant definitions:

(F1) The image of a line of PG(2,F) under ν3 is a conic. A plane of PG(5,F) intersecting
V3(F) in the image of line of PG(2,F) is called a conic plane. Unless F = F2, each plane
intersecting V3(F) in a conic is a conic plane, while for F = F2 a conic consists only
of three points, and there are planes intersecting V3(F2) in three points which are not
conic planes. Note that this definition of conic planes of V3(F) is consistent with [10,
p. 148]. Similarly, we define conics in V3(F) as images of lines of PG(2,F).

(F2) Each two points P,Q of V3(F) lie on a unique conic C(P,Q) in V3(F), given by C(P,Q) =
ν3(〈ν−13 (P ), ν−13 (Q)〉).

(F3) Each rank-2 point R in 〈V3(F)〉 determines a unique conic C(R) in V3(F). The point R
is called an exterior point if it lies on a tangent to C(R), and an interior point otherwise.
When char(F) = 2, there are no interior points, because all the tangent lines of a conic
are concurrent; their common point is called the nucleus of the conic.

(F4) The quadrics of PG(2,F) are mapped by ν3 onto the hyperplane sections of V3(F).
A conic consisting of just one point (two distinct lines over the quadratic extension)
corresponds to a hyperplane intersecting V3(F) in one point. A repeated line of PG(2,F)
corresponds to a hyperplane meeting V3(F) in a conic; two distinct lines correspond to
a hyperplane meeting V3(F) in two conics; and a non-degenerate conic corresponds to
a hyperplane meeting V3(F) in a normal rational curve.

(F5) If char(F) = 2 then the nuclei of all of the conics contained in V3(F) form a plane, called
the nucleus plane of V3(F). In the representation of the points of V3(F) as symmetric
3 × 3 matrices of rank 1, the nucleus plane comprises the matrices with zeroes on the
main diagonal (with no restriction on the other three variables).

The K-orbits of points in 〈V3(F)〉 are well understood. For convenience, we note some facts
about these point orbits in the case where F is a finite field Fq:

• There is one K-orbit of points of rank 1: K acts transitively on the set of 4-tuples of
points of V3(Fq), no three of which are on a conic. This orbit has size q2 + q + 1 (the
number of points in PG(2,Fq)).
• There are two K-orbits of points of rank 2. In odd characteristic, one of these orbits

consists of all the exterior points, and the other consists of all the interior points.
Denoting these orbits by P2,e and P2,i respectively, we have |P2,e| = 1

2q(q+1)(q2+q+1)

and |P2,i| = 1
2q(q − 1)(q2 + q + 1). In even characteristic, one orbit consists of all the

points that lie on the nucleus plane of V3(Fq), and the other orbit consists of all the
other points of rank 2. Denoting these orbits by P2,n and P2,s respectively, we have
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|P2,n| = q2 + q + 1 and |P2,s| = (q2 − 1)(q2 + q + 1). Hence, regardless of the value of
q, the total number of points of rank 2 is q2(q2 + q + 1).
• Finally, there is a unique K-orbit of rank 3 points, of size

q6 − 1

q − 1
− (q2 + 1)(q2 + q + 1) = q5 − q2.

3. Line orbits in 〈V3(F)〉 for F a finite field

We now address problems (i) and (ii) of Section 1 in the case where F is a finite field Fq. Our
strategy is as follows. We consider each of the orbits o0, . . . , o17 of tensors in F2

q⊗F3
q⊗F3

q , which
are shown in Table 1. Given a representative of an orbit oi from the second column of Table 1,
we consider the corresponding first contraction space Mi, which is a subspace of V = F3

q ⊗ F3
q .

When i > 4 in Table 1, PG(Mi) is a line of PG(V ), comprising q+ 1 points, which we represent
by 3 × 3 matrices. For each i > 4, we first address problem (i) by checking whether PG(Mi)
can be mapped into 〈V3(Fq)〉 by the action of PGL(3,Fq)×PGL(3,Fq) induced by the action of

GL(3,Fq) × GL(3,Fq) taking a 3 × 3 matrix M to M (B,C) = BMC (where B,C ∈ GL(3,Fq)).
In other words, we check whether M

(B,C)
i can be a subspace of symmetric 3× 3 matrices. If it

cannot, then the G-line orbit arising from the tensor orbit oi is not represented in 〈V3(Fq)〉, that
is, it does not have a symmetric representative in the sense defined in Section 1. If it can, then
we address problem (ii) by determining the orbits of the group K = PGL(3,Fq) in the action

MD = DMD> for M a symmetric matrix and D ∈ GL(3,Fq).
Note also that when considering problem (i) as described above, we may take C to be the

identity matrix, because the line PG(BMiC) is equivalent under the action of K to the projective
space obtained from the vector subspace

(BMiC)(C
−1)> = (C−1)>(BMiC)C−1 = (C−1)>BMi.

This simplifies the proof of the fact that certain tensor orbits, namely o4, o7 and o11, do not yield
lines with symmetric representatives. The remaining tensor orbits oi (with i > 4) do yield lines
with symmetric representatives, and the representatives of the corresponding K-orbits are listed
in Table 2. It turns out that in each case there are at most two K-orbits of lines. The K-orbit in
the second column of the table arises for all values of q, and sometimes there is another K-orbit,
with representative shown in the third column if q is odd and in the fourth column if q is even.
The following notation is used for brevity in Table 2 (and in the proofs):

Definition 3.1. The matrices in Table 2 represent subspaces of symmetric matrices over
the finite field Fq. The subscript “x, y” indicates that the pair (x, y) ranges over all values in
F2
q , and the symbol · denotes 0. For example, in the first line of the table,x · ·

· y ·
· · ·


x,y

=


x 0 0

0 y 0
0 0 0

 : (x, y) ∈ F2
q

 ,

and the line orbit representative in 〈V3(Fq)〉 is the corresponding projective space. The symbol
� is used to denote the set of squares in Fq.

Tensor orbit o4. The tensor orbit representative from Table 1 is e1⊗ e1⊗ e1 + e2⊗ e1⊗ e2.
Its first contraction space is M4 = 〈e1 ⊗ e1, e1 ⊗ e2〉, and has rank distribution [q + 1, 0, 0].
Let B ∈ GL(3,Fq) and suppose that the line PG(BM4) is contained in 〈V3(Fq)〉. Then, in
particular, PG(BM4) is contained in the Veronese variety V3(F), a contradiction. Therefore, the
tensor orbit o4 does not give rise to any line with a symmetric representative.
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Tensor Line orbit representatives in 〈V3(Fq)〉 Conditions
orbit Common orbit (all q) Additional orbit

q odd q even

o5

x · ·
· y ·
· · ·


x,y

o6

x y ·
y · ·
· · ·


x,y

o8

x · ·
· y ·
· · y


x,y

x · ·
· y ·
· · γy


x,y

x · ·
· · y
· y ·


x,y

γ 6∈ �

o9

x · y
· y ·
y · ·


x,y

o10

vx y ·
y x+ uy ·
· · ·


x,y

(∗)

o12

 · x ·
x · y
· y ·


x,y

 · x ·
x x+ y y
· y ·


x,y

o13

 · x ·
x y ·
· · y


x,y

 · x ·
x y ·
· · γy


x,y

 · x ·
x x+ y ·
· · y


x,y

γ 6∈ �

o14

x · ·
· x+ y ·
· · y


x,y

x · ·
· γ(x+ y) ·
· · y


x,y

γ 6∈ �

o15

v1y x ·
x ux+ y ·
· · x


x,y

v2y x ·
x ux+ y ·
· · x


x,y

(∗), −v1 ∈ �−v2 6∈ �

o16

 · · x
· x y
x y ·


x,y

 · · x
· x y
x y y


x,y

o17

α−1x y ·
y βy − γx x
· x y


x,y

(∗∗)

Table 2. Representatives of line orbits in 〈V3(Fq)〉 under the action of K =
PGL(3,Fq) on subspaces of PG(F3

q ⊗ F3
q) induced by the action of GL(3,Fq) on

3×3 matrices M given by MD = DMD> (where D ∈ GL(3,Fq)). Notation is as
in Definition 3.1. For brevity, the corresponding vector subspaces M of F3

q ⊗ F3
q

are shown, so that the K-orbit representatives themselves are given by PG(M).
Condition (∗) is: vλ2 + uvλ− 1 6= 0 for all λ ∈ Fq, where v ∈ {v1, v2} in the case
o15. Condition (∗∗) is: λ3 + γλ2 − βλ+ α 6= 0 for all λ ∈ Fq.

Tensor orbit o5. Here we have tensor orbit representative e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2. The
first contraction space is M5 = 〈e1 ⊗ e1, e2 ⊗ e2〉, with rank distribution [2, q − 1, 0]. Note that
PG(M5) is contained in 〈V3(Fq)〉: it is the K-line orbit representative given in Table 2 (in the
second column).
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Given B ∈ GL(3,Fq) and i ∈ {1, 2, 3}, let Bi ∈ F3
q denote the ith column vector of B. If

PG(BM5) is contained in 〈V3(Fq)〉 for some B ∈ GL(3,Fq), then both of the matrices B1 ⊗ e1
and B2 ⊗ e2 must be symmetric and of rank 1. This forces B1 = αe1 and B2 = βe2 for some
α, β ∈ F×q = Fq \ {0}, and so

B =

α · ∗
· β ∗
· · ∗

 ,
where ∗ denotes an unspecified element of Fq (and · denotes 0, as per Definition 3.1). Therefore,

BM5 =

α · ∗
· β ∗
· · ∗

x · ·
· y ·
· · ·


x,y

=

αx · ·
· βy ·
· · ·


x,y

.

Since αx and βy range over all values in Fq as x and y do, we may relabel αx as x and
βy as y to see that BM5 = M5. That is, PG(BM5) is contained in 〈V3(Fq)〉 if and only if
PG(BM5) = PG(M5), and so the orbit containing PG(M5) is the only K-line orbit in 〈V3(Fq)〉
arising from the tensor orbit o5.

Tensor orbit o6. This tensor orbit has representative e1⊗ e1⊗ e1 + e2⊗ (e1⊗ e2 + e2⊗ e1).
The first contraction space is M6 = 〈e1 ⊗ e1, e1 ⊗ e2 + e2 ⊗ e1〉, with rank distribution [1, q, 0].
As in the previous case, we note that PG(M6) is contained in 〈V3(Fq)〉, and is the representative
given in Table 2. Now suppose that PG(BM6) is contained in 〈V3(Fq)〉 for some B ∈ GL(3,Fq).
Then B1 ⊗ e1 must be symmetric and of rank 1, so B1 = αe1 for some α ∈ F×q . Moreover,

B1 ⊗ e2 + B2 ⊗ e1 = αe1 ⊗ e2 + B2 ⊗ e1 must be symmetric and of rank 2, so B2 = βe1 + αe2
for some β ∈ Fq. Therefore,

BM6 =

α β ∗
· α ∗
· · ∗

x y ·
y · ·
· · ·


x,y

=

αx+ βy αy ·
αy · ·
· · ·


x,y

.

Again, we may relabel αx as x and βy as y to deduce that BM6 = M6. Hence, the orbit
containing PG(M6) is the only K-line orbit in 〈V3(F)〉 arising from the tensor orbit o6.

Tensor orbit o7. This tensor orbit has representative e1⊗ e1⊗ e3 + e2⊗ (e1⊗ e1 + e2⊗ e2).
The first contraction space is M7 = 〈e1 ⊗ e3, e1 ⊗ e1 + e2 ⊗ e2〉, with rank distribution [1, q, 0].
We claim that PG(BM7) is not contained in 〈V3(Fq)〉 for any B ∈ GL(3,Fq). If it were, then
B1⊗e3 would have to be symmetric and of rank 1, forcing B1 = αe3 for some α ∈ F×q . However,

then B1 ⊗ e1 +B2 ⊗ e2 = αe3 ⊗ e1 +B2 ⊗ e2 would not be symmetric, a contradiction. Hence,
the tensor orbit o7 does not give rise to any line with a symmetric representative.

Tensor orbit o8. Here the tensor orbit representative is e1⊗e1⊗e1+e2⊗(e2⊗e2+e3⊗e3).
The first contraction space is M8 = 〈e1⊗e1, e2⊗e2 +e3⊗e3〉, with rank distribution [1, 1, q−1].
We show that this yields two K-orbits of lines in 〈V3(Fq)〉.

Suppose that PG(BM8) is contained in 〈V3(Fq)〉 for some B ∈ GL(3,Fq). Then B(e1⊗e1) =
B1 ⊗ e1 must be symmetric and of rank 1, forcing B1 = αe1 for some α ∈ F×q . Moreover,

B2⊗ e2 +B3⊗ e3 must be symmetric and of rank 2, so B2 = β2e2 + γ2e3 and B3 = β3e2 + γ3e3,
with γ2 = β3 and β2γ3 − β23 = β2γ3 − γ2β3 6= 0. Therefore,

BM8 =

α · ·
· β2 β3
· β3 γ3

x · ·
· y ·
· · y


x,y

=

αx · ·
· β2y β3y
· β3y γ3y


x,y

.

We now claim that PG(BM8) is K-equivalent to either

(1) PG

αx · ·
· · βy
· βy ·


x,y

 or PG

αx · ·
· βy ·
· · γy


x,y

 for some β, γ ∈ F×q ,



THE SYMMETRIC REPRESENTATION OF LINES IN PG(F3 ⊗ F3) 9

according to whether β2 = γ3 = 0 or not. This is clear in the case where β2 = γ3 = 0, as we
simply relabel β3 as β. On the other hand, if γ3 6= 0 then

D

αx · ·
· β2y β3y
· β3y γ3y


x,y

D> =

αx · ·
· (β2 − β23γ

−1
3 )y ·

· · γ3y


x,y

, where D =

1 · ·
· 1 −β3γ−13
· · 1

 ;

and if β2 6= 0 then

D

αx · ·
· β2y β3y
· β3y γ3y


x,y

D> =

αx · ·
· β2y ·
· · (γ3 − β23β

−1
2 )y


x,y

, where D =

1 · ·
· 1 ·
· −β3β−12 1

 .
The claim follows upon appropriately relabelling the variables x and y. By relabelling the
constants in (1), we then see that PG(BM8) is K-equivalent to one of the lines

L = PG

x · ·
· · y
· y ·


x,y

 or Lγ = PG

x · ·
· y ·
· · γy


x,y

 with γ ∈ F×q .

We now show that L and Lγ represent the same K-orbit if and only if q is odd and −γ ∈ �
(that is, −γ is a square). Disregarding the first row and column, we have[

a b
c d

] [
0 1
1 0

] [
a c
b d

]
=

[
a b
c d

] [
b d
a c

]
=

[
2ab ad+ bc

ad+ bc 2cd

]
=

[
1 0
0 γ

]
if and only if 2ab = 1, ad + bc = 0 and 2cd = γ, a contradiction if q is even. If q is odd then
b = (2a)−1, d = γ(2c)−1 and −γ = (ca−1)2 for a 6= 0 6= c, so L and Lγ represent the same K-
orbit if and only if −γ ∈ �. Finally, if q is odd and −1 ∈ � then L represents the same K-orbit
as L1, whereas if −1 /∈ � then L represents the same K-orbit as Lγ with γ /∈ �. Hence, we have
the following two cases, as per Table 2: if q is even then there are two K-orbits, represented by
L and L1; and if q is odd then the two K-orbits are represented by L1 and Lγ with γ /∈ �.

Tensor orbit o9. This tensor orbit has representative

e1 ⊗ e3 ⊗ e1 + e2 ⊗ (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3).

The first contraction space is M9 = 〈e3 ⊗ e1, e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3〉, with rank distribution
[1, 0, q]. If PG(BM9) is contained in 〈V3(Fq)〉 then B3 ⊗ e1 must be symmetric and of rank 1,
forcing B3 = αe1 for some α ∈ F×q . Hence, B1⊗e1+B2⊗e2+B3⊗e3 = B1⊗e1+B2⊗e2+αe1⊗e3
must be symmetric and of rank 3. Writing B1 = α1e1+β1e2+γ1e3 and B2 = α2e1+β2e2+γ2e3,
it follows that we must have α1 = γ2 = 0, γ1 = α, α2 = β1 and β2 6= 0. Therefore,

BM9 =

 · β1 α
β1 β2 ·
α · ·

y · ·
· y ·
x · y


x,y

=

αx β1y αy
β1y β2y ·
αy · ·


x,y

.

Since β2 6= 0, we may set β2 = 1. Relabelling also β1 as β and x as α−1x yields

BM9 =

 x βy αy
βy y ·
αy · ·


x,y

.

We now see that PG(BM9) is K-equivalent to the representative shown in Table 2, because

D

 x βy αy
βy y ·
αy · ·


x,y

D> =

x · y
· y ·
y · ·


x,y

, where D =

1 · ·
· 1 −βα−1
· · α−1

 .
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Tensor orbit o10. This tensor orbit has representative

e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2 + ue1 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + ve2 ⊗ e1),

where vλ2 + uvλ − 1 6= 0 for all λ ∈ F, namely condition (∗) in Tables 1 and 2. The first
contraction space is M10 = 〈e1⊗e1 +e2⊗e2 +ue1⊗e2, e1⊗e2 +ve2⊗e1〉, with rank distribution
[0, q + 1, 0]. If we take

B =

1 · ·
u v−1 ·
· · ∗

 ,
then

BM10 =

1 0 ·
u v−1 ·
· · ∗

 x ux+ y ·
vy x ·
· · ·


x,y

=

 x ux+ y ·
ux+ y u2x+ uy + v−1x ·
· · ·


x,y

,

so PG(BM10) lies in 〈V3(Fq)〉. By relabelling ux+ y as y and v−1x as x, we see that PG(BM10)
is the K-line orbit representative given in Table 2. Now, this line is a constant rank-2 line of
2× 2 matrices, so is an external line to a conic. Since the group of a conic acts transitively on
the set of external lines to the conic, there is only one K-line orbit in 〈V3(Fq)〉 arising from the
tensor orbit o10.

Tensor orbit o11. This tensor orbit has representative

e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3).

The first contraction space is M11 = 〈e1⊗ e1 + e2⊗ e2, e1⊗ e2 + e2⊗ e3〉, with rank distribution
[0, q + 1, 0]. We claim that PG(BM11) is not contained in 〈V3(Fq)〉 for any B ∈ GL(3,Fq). If it
were, then B1⊗e1+B2⊗e2 would need to be symmetric, so in particular B1 and B2 would lie in
the span of e1 and e2. However, then B1⊗e2+B2⊗e3 would not be symmetric, a contradiction.
Hence, the tensor orbit o11 does not give rise to any line with a symmetric representative.

Tensor orbit o12. Here we have tensor orbit representative

e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e3 + e3 ⊗ e2).

The first contraction space is M12 = 〈e1⊗ e1 + e2⊗ e2, e1⊗ e3 + e3⊗ e2〉, with rank distribution
[0, q+1, 0]. If PG(BM12) is contained in 〈V3(Fq)〉 for some B ∈ GL(3,Fq), then B1⊗e1+B2⊗e2
must be symmetric and of rank 2, forcing B1 = α1e1 +β1e2 and B2 = α2e1 +β2e2, with α2 = β1
and α1β2 − β21 = α1β2 − α2β1 6= 0. Writing B3 = α3e1 + β3e2 + γ3e3, we then have

B1 ⊗ e3 +B3 ⊗ e2 = α1e1 ⊗ e3 + β1e2 ⊗ e3 + α3e1 ⊗ e2 + β3e2 ⊗ e2 + γ3e3 ⊗ e2,

which must also be symmetric and of rank 2, forcing α1 = 0, α3 = 0 and γ3 = β1. Hence,

BM12 =

 · β1 ·
β1 β2 β3
· · β1

x · y
· x ·
· y ·


x,y

=

 · β1x ·
β1x β2x+ β3y β1y
· β1y ·


x,y

.

Since β1 6= 0, we can relabel this as

BM12 =

 · x ·
x αx+ βy y
· y ·


x,y

for some α, β ∈ Fq.

If q is odd then PG(BM12) is K-equivalent to the line

L = PG

 · x ·
x · y
· y ·


x,y

 ,
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because  · x ·
x · y
· y ·


x,y

= D

 · x ·
x αx+ βy y
· y ·


x,y

D>, where D =

 1 · ·
−α

2 1 −β
2

· · 1

 .
Therefore, there is a single K-line orbit, with representative L, as per Table 2. Now suppose
that q is even. In this case we claim that PG(BM12) is K-equivalent either to L or to the line

L′ = PG

 · x ·
x x+ y y
· y ·


x,y

 ,

according to whether α = β = 0 or not. These two lines lie in different K-orbits, characterised
by the intersection of the line with the nucleus plane (see fact (F5) in Section 2.2): L is contained
in the nucleus plane, and L′ intersects the nucleus plane in a point. It remains to prove the
claim. If α = β = 0 then PG(BM12) = L. If α 6= 0 6= β then PG(BM12) is K-equivalent to
PG(M) for

M =

 · αx ·
αx αx+ βy βy
· βy ·


x,y

= D

 · x ·
x αx+ βy y
· y ·


x,y

D>, where D =

α · ·
· 1 ·
· · β

 ;

and PG(M) is, in turn, K-equivalent to L, by relabelling αx as x and βy as y. If β = 0 and
α 6= 0 then PG(BM12) is K-equivalent to PG(M ′) for

M ′ =

 · α(x+ y) ·
α(x+ y) αx αy
· αy ·


x,y

= D

 · x ·
x αx y
· y ·


x,y

D>, where D =

α · α
· 1 ·
· · α

 ;

and PG(M ′) is also K-equivalent to L, by relabelling α(x+y) as x and αy as y. The case where
α = 0 and β 6= 0 is analogous, and so the proof of the claim is complete.

Tensor orbit o13. This tensor orbit has representative

e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + e3 ⊗ e3).

The first contraction space is M13 = 〈e1⊗ e1 + e2⊗ e2, e1⊗ e2 + e3⊗ e3〉, with rank distribution
[0, 2, q−1]. Suppose that PG(BM13) is in 〈V3(Fq)〉 for someB ∈ GL(3,Fq). Then B1⊗e1+B2⊗e2
must be symmetric and of rank 2, so B1 = α1e1 + β1e2 and B2 = α2e1 + β2e2, with α2 = β1
and α1β2 − β21 = α1β2 − α2β1 6= 0. Writing B3 = α3e1 + β3e2 + γ3e3, we then have

B1 ⊗ e2 +B3 ⊗ e3 = α1e1 ⊗ e2 + β1e2 ⊗ e2 + α3e1 ⊗ e3 + β3e2 ⊗ e3 + γ3e3 ⊗ e3,

which must also be symmetric and of rank 2, forcing α1 = α3 = β3 = 0. Hence,

BM13 =

 · β1 ·
β1 β2 ·
· · γ3

x y ·
· x ·
· · y


x,y

=

 · β1x ·
β1x β2x+ β1y ·
· · γ3y


x,y

,

or, equivalently,

BM13 =

 · x ·
x αx+ y ·
· · γy


x,y

for some α ∈ Fq, γ ∈ F×q .

First suppose that q is odd. Then PG(BM13) is K-equivalent to

Lγ = PG

 · x ·
x y ·
· · γy


x,y

 ,
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because  · x ·
x y ·
· · γy


x,y

= D

 · x ·
x αx+ y ·
· · γy


x,y

D>, where D =

 1 · ·
−α

2 1 ·
· · 1

 .
We claim that the lines Lγ comprise two K-orbits, characterised by whether γ ∈ � or not,

as indicated in Table 2. If γ ∈ � then Lγ is K-equivalent to L1 because L1 = DLγD
> for

D = diag(1, 1, δ−1) with δ2 = γ. If γ, γ′ 6∈ � then we may write γ′ = γµ2 for some µ ∈ F×q ,

and so Lγ′ = DLγD
> for D = diag(1, 1, µ). It remains to show that if γ 6∈ � then Lγ is not

K-equivalent to L1. To see this, first consider the line Lδ for an arbitrary δ ∈ F×q , and let Pδ
denote the rank-2 point on Lδ obtained by setting x = 0. If −δ ∈ � then Pδ is an exterior point
(see fact (F3) of Section 2.2), and if −δ 6∈ � then Pδ is an interior point. Hence, if −δ ∈ � and
−δ′ 6∈ � for some δ′ ∈ F×q , then Lδ and Lδ′ are not K-equivalent. We now use this observation
to show that L1 and Lγ are not K-equivalent if γ 6∈ �, by considering separately the cases where
−1 ∈ � and −1 6∈ �. If −1 ∈ � then the point P1 on L1 is an exterior point, but −γ 6∈ � since
γ 6∈ � and −1 ∈ �, so the point Pγ on Lγ is an interior point. Similarly, if −1 6∈ � then P1 is
an interior point, but −γ ∈ � since γ 6∈ � and −1 6∈ �, and hence Pγ is an exterior point.

Now suppose that q is even. If α 6= 0 then, because γ ∈ F×q is a square, say γ = δ2,
PG(BM13) is K-equivalent to PG(M) for

M =

 · αx ·
αx αx+ y ·
· · y


x,y

= D

 · x ·
x αx+ y ·
· · γy


x,y

D>, where D =

α · ·
· 1 ·
· · δ−1

 .
Relabelling αx as x, it follows that PG(BM13) is K-equivalent to

L = PG

 · x ·
x x+ y ·
· · y


x,y

 .

If, on the other hand, α = 0, then PG(BM13) is K-equivalent to Lγ with γ = 1. It remains to
show that L and L1 are not K-equivalent. To see this, observe that L does not intersect the
nucleus plane, while L1 intersects the nucleus plane in a point.

Tensor orbit o14. This tensor orbit has representative

e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2) + e2 ⊗ (e2 ⊗ e2 + e3 ⊗ e3).

The first contraction space is M14 = 〈e1⊗ e1 + e2⊗ e2, e2⊗ e2 + e3⊗ e3〉, with rank distribution
[0, 3, q−2]. We see that PG(M14) is contained in 〈V3(Fq)〉 (it is the representative in the second
column of Table 2), and that in order for PG(BM14) to be contained in 〈V3(Fq)〉, we must have
B = diag(α, β, γ) for some α, β, γ ∈ F×q . Hence,

BM14 =

αx · ·
· βx+ βy ·
· · γy


x,y

.

Relabelling, we see that PG(BM14) is equal to the line

Lγ = PG

x · ·
· γ(x+ y) ·
· · y


x,y

 for some γ ∈ F×q .

The rest of the argument is essentially the same as in the o13 case. If q is even then every line
of the form Lγ is K-equivalent to L1 because every γ ∈ F×q is a square; that is, L1 = DLγD

>

for D = diag(1, δ−1, 1) with δ2 = γ. If q is odd then there are two K-orbits. Indeed, fixing some
γ 6∈ �, we find that PG(BM14) is K-equivalent to either L1 or Lγ , and that Lγ is K-equivalent
to Lγ′ for every γ′ 6∈ �. Moreover, L1 and Lγ are not K-equivalent, because for an arbitrary



THE SYMMETRIC REPRESENTATION OF LINES IN PG(F3 ⊗ F3) 13

δ ∈ F×q , the rank-2 points on the line Lδ that correspond to x = 0 and y = 0, respectively, are
exterior or interior points according to whether −δ ∈ � or not.

Tensor orbit o15. In this case the tensor orbit representative is

e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + ue1 ⊗ e2) + e2 ⊗ (e1 ⊗ e2 + ve2 ⊗ e1),
where vλ2 + uvλ − 1 6= 0 for all λ ∈ Fq, namely condition (∗) in Tables 1 and 2. The first
contraction space is M15 = 〈e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + ue1 ⊗ e2, e1 ⊗ e2 + ve2 ⊗ e1〉, with rank
distribution [0, 1, q]. Observe first that PG(B′M15) is contained in 〈V3(Fq)〉 for

B′ =

 · 1 ·
1 · ·
· · 1

 .
Let us therefore relabel B′M15 as M15, and also relabel (u, v) as (s, t), so that

M15 =

ty x ·
x sx+ y ·
· · x


x,y

.

Arguing as in previous cases, we find that in order for PG(BM15) to be contained in 〈V3(F)〉,
we must have

B =

α tβ ·
β α+ stβ ·
· · γ

 for some α, β, γ ∈ Fq.

In particular, γ 6= 0, and since the action is determined up to a non-zero scalar we may put
γ = 1. This yields PG(BM15) = PG(M), where

M =

ty′ x′ ·
x′ sx′ + y′ ·
· · x


x,y

, with x′ = βty + αx+ stβx and y′ = βx+ αy.

For the sake of presentation, let us now formally state (and prove) the following claim.

Claim 3.2. PG(BM15) is K-equivalent to the line

L(u, v) = PG

vy x ·
x ux+ y ·
· · x


x,y


for some u, v ∈ Fq satisfying condition (∗) in Tables 1 and 2.

Proof. First suppose that α 6= 0, and consider the matrix

D1 =

 1 · ·
−βα−1 1 ·
· · 1

 .
Then, with the vector subspace M defined as above, we have

D1MD>1 =

 ty′ δ′α−1x ·
δ′α−1x δ′α−1(α−1y′ + (s− 2βα−1)x) ·
· · x


x,y

, where δ′ = α2 + αβst− β2t.

Since tλ2 + stλ − 1 6= 0 for all λ ∈ Fq, we may take λ = βα−1 to verify that δ′ 6= 0, and hence
we may write δ−1 = δ′α−1 for some δ ∈ F×q . Setting D2 = diag(1, δ, 1), we therefore have

D2(D1MD>1 )D>2 =

ty′ x ·
x δ(α−1y′ + (s− 2βα−1)x) ·
· · x


x,y

.

If we now write u = δ(s − 2βα−1) and v = tαδ−1, and relabel δα−1y′ as y (noting that this is
not the same y as above), then we see that PG(BM15) = PG(M) is K-equivalent to L(u, v).
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We also see that condition (∗) holds: each matrix with x 6= 0 must have rank 3, so in particular
if we set x = 1 then the (3, 3) minor vy2 + uvy − 1 must be non-zero for each y ∈ Fq.

Now suppose that α = 0 and s 6= 0. Then

D1MD>1 =

s2tβx stβy ·
stβy βx− stβy ·
· · x


x,y

, where D1 =

 s · ·
−s 1 ·
· · 1

 .
Writing δ = s2t and relabelling stβy as y then shows that PG(BM15) is K-equivalent to PG(M ′),
where

M ′ =

βδx y ·
y βx− y ·
· · x


x,y

.

Noting that β 6= 0 (because B is non-singular) and taking

D2 =

 · 1 ·
β−1 β−1 ·
· · 1

 ,
we now find that

D2M
′D>2 =

−β2y′ x ·
x β−1(δ + 2)x+ y′ ·
· · x


x,y

, where y′ = β2y′ + βx,

and relabelling y′ as y shows that PG(BM15) is K-equivalent to L(u, v) with u = β−1(δ + 2)
and v = −β2.

Finally, suppose that s = α = 0. Then relabelling βty as y gives

M =

tβx y ·
y βx ·
· · x


x,y

.

Moreover, q must be odd, because if s = 0 then tλ2 6= 1 for all λ ∈ Fq, and if q is even then we
can take λ such that λ2 = t−1 to yield a contradiction. Similarly, t 6= 1, because having t = 1
would imply that λ2 6= 1 for all λ ∈ Fq. Now, we have D1MD>1 = M ′′, where

M ′′ =

β(1 + t)x− 2y β(1− t)x ·
β(1− t)x β(1 + t)x+ 2y ·
· · x


x,y

and D1 =

−1 1 ·
1 1 ·
· · 1

 .
Since t 6= 1 and β 6= 0, we may write δ−1 = β(1− t) for some δ ∈ Fq, so that

D2M
′′D>2 =

δ2(β(1 + t)x− 2y) x ·
x β(1 + t)x+ 2y ·
· · x


x,y

for D2 =

δ · ·
· 1 ·
· · 1

 .
Writing y′ = 2y − β(1 + t)x, we therefore see that PG(BM15) = PG(M) is K-equivalent to

PG

−δ2y′ x ·
x 2β(1 + t)x+ y′ ·
· · x


x,y

 .

Relabelling y′ as y shows that this is the line L(u, v) with v = −δ2 and u = 2β(1 + t). �

Let us now apply Claim 3.2. First suppose that q is odd. Then there are at least two
K-orbits of lines of the form L(u, v), because the unique point of rank 2 is either exterior or
interior depending on whether −v ∈ � or not. We claim that there are exactly two K-orbits,
as per Table 2. Consider two such lines 〈P2, P3〉 and 〈P ′2, P ′3〉, where P2 and P ′2 are of rank 2,
P3 and P ′3 are of rank 3, and P2 and P ′2 are either both exterior points or both interior points
with respect to the unique conic plane π in which they are contained (see facts (F1) and (F2) in
Section 2.2). We may assume that these two lines are L(u, v) and L(u′, v′), where either both
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−v,−v′ ∈ � or both −v,−v′ 6∈ �. One then sees that both of the points P3 and P ′3 lie on a
line through the point P1 corresponding to 〈e3 ⊗ e3〉, and a point of rank 2 in the conic plane
π. In fact, each of the planes 〈P1, P

′
2, P

′
3〉 and 〈P1, P2, P3〉 is a plane on the point P1 intersecting

π in an external line to the conic. Call the corresponding external lines L and L′. Since the
stabiliser of P1 and π inside K acts transitively on external lines to the conic in π (compare
with the case o10), we may assume that L = L′. Since the stabiliser of an external line M inside
the group of a conic also acts transitively on both the set of interior points on L and on the set
of exterior points on L, we may also assume that P2 = P ′2, and therefore v = v′ (these points
correspond to x = 0). Restricting our coordinates to the conic plane π corresponding to the
top–left 2× 2 sub-matrix, and verifying that the point with coordinates (0, 1, u′) lies on the line
L with equation −X0 − uvX1 + vX2 = 0, we obtain u = u′. We conclude that (u, v) = (u′, v′),
proving the claim.

If q is even then there is only one K-orbit. The proof is essentially the same as in the q
odd case, except that now the stabiliser of an external line L inside the group of a conic acts
transitively on the points of L.

Tensor orbit o16. This tensor orbit has representative

e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3).
The first contraction space is M16 = 〈e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3, e1 ⊗ e2 + e2 ⊗ e3〉, with rank
distribution [0, 1, q]. The line PG(BM16) is contained in 〈V3(Fq)〉 if and only if

B =

 · · α
· α β
α β γ


for some α, β, γ ∈ Fq with α 6= 0, and this yields

BM16 =

 · · αx
· αx βx+ αy
αx βx+ αy γx+ βy


x,y

.

After a suitable relabelling, we may write

BM16 =

 · · x
· x y
x y αx+ βy


x,y

.

If q is odd then PG(BM16) is K-equivalent to the representative

L1 = PG

 · · x
· x y
x y ·


x,y


given in Table 2, because · · x

· x y
x y ·


x,y

= D

 · · x
· x y
x y αx+ βy


x,y

D>, where D =

 1 · ·
β
2 1 ·

−1
2

(
α+ β2

4

)
−β

2 1

 .
Now suppose that q is even. If β = 0 then, because α ∈ �, PG(BM16) is K-equivalent to

L1 = PG

 · · x
· x y
x y ·


x,y

 .

We now claim that if β 6= 0, then PG(BM16) is K-equivalent to

L2 = PG

 · · x
· x y
x y y


x,y

 .
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To see this, first observe that

D

 · · x
· x y
x y αx+ βy


x,y

D> =

 · · β2x
· β2x βy

β2x βy αx+ βy


x,y

, where D =

β2 · ·
· β ·
· · 1

 ,
and then relabel to obtain

BM16 =

 · · x
· x y
x y δx+ y


x,y

, where δ = αβ−2.

If δ = 0 then the projective space obtained from the right-hand side above is equal to L2, so
assume now that δ 6= 0. Since BM16 is spanned by

P =

 · · 1
· 1 ·
1 · δ

 and Q =

· · ·· · 1
· 1 1

 ,
it is also spanned by Q and P + δQ. Therefore,

BM16 =

 · · x
· x δx+ y
x δx+ y y


x,y

,

and so PG(BM16) is K-equivalent to L2 because

D

 · · x
· x δx+ y
x δx+ y y


x,y

D> =

 · · x
· x y
x y y


x,y

, where D =

 1 · ·
−δ 1 ·
· · 1

 .
This completes the proof of the claim. It remains to show that L1 and L2 are not K-equivalent.
To see this, observe that the point of rank 2 on L1 lies in the nucleus plane of V(Fq), but the
point of rank 2 on L2 does not.

Tensor orbit o17. The lines corresponding to the tensor orbit o17 are constant rank-3 lines,
that is, they have rank distribution [0, 0, q+ 1]. We show that there is a unique K-orbit of such
lines (see Proposition 3.5). Throughout the proof, we refer to some results proved in Section 4;
the arguments used to prove those results do not in turn depend on any of the arguments
given here. In particular, we need the following lemma, which counts the number of symmetric
representatives of the line orbits arising from o13 and o14.

Lemma 3.3. The total numbers of symmetric representatives of the line orbits corresponding

to the tensor orbits o13 and o14 are, respectively, |K|q−1 and |K|6 .

Proof. See the arguments for o13 and o14 in Section 4, where (in particular) the stabilisers
inside K of lines arising from these tensor orbits are determined. �

Now, the tensor orbit o17 has representative

e1 ⊗ (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) + e2 ⊗ (e1 ⊗ e2 + e2 ⊗ e3 + e3 ⊗ (αe1 + βe2 + γe3)),

where λ3 + γλ2− βλ+α 6= 0 for all λ ∈ Fq, namely condition (∗∗) in Tables 1 and 2. Note that
α 6= 0, for otherwise taking λ = 0 would violate condition (∗∗). The first contraction space is

M17 =

 x y ·
· x y
αy βy x+ γy


x,y

,

with rank distribution [0, 0, q + 1] (as noted above). Setting

B =

α · ·
· −γ 1
· 1 ·
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gives

BM17 =

α−1x y ·
y βy − γx x
· x y


x,y

,

so that we can take PG(BM17) as a K-orbit representative of lines in 〈V3(Fq)〉, as in Table 2.
We now show that there is only one orbit.

Lemma 3.4. The number of constant rank-3 lines in 〈V3(Fq)〉 is |K|3 .

Proof. Assume that q > 2, and recall that |K| = |PGL(3,Fq)| = q3(q3− 1)(q2− 1). Fix a point
P of rank 3. Through P there are q2 + q + 1 lines that contain exactly one point of V3(Fq).
According to Table 1, the remaining lines through P have rank distributions [0, i, q + 1− i] for
i ∈ {0, 1, 2, 3}. Let n0, n1, n2, n3 denote the corresponding numbers of such lines through P .
Then

(2)
3∑
i=0

ni =
q5 − 1

q − 1
− (q2 + q + 1),

and counting pairs (R,L) where R is a point of rank 2 and L = 〈P,R〉 is a line disjoint from
V3(Fq), we obtain

(3)

3∑
i=1

ini = q2(q2 + q),

because by Lemma 4.1 there are q2 points of rank 2 on the lines through P and a point of V3(Fq).
The lines with rank distribution [0, 2, q − 1] are symmetric representatives of lines arising from

the tensor orbit o13. By Lemma 3.3, there are |K|q−1 such representatives. Let P3 denote the set of

rank-3 points in 〈V3(Fq)〉. Then |P3| = q5−q2, as noted in Section 2.2. Since K acts transitively
on P3, we have

|P3| · n2
q − 1

=
|K|
q − 1

,

which implies that n2 = q3 − q. The lines with rank distribution [0, 3, q − 2] are symmetric

representatives of lines arising from the tensor orbit o14. By Lemma 3.3, there are |K|6 such
representatives. Since we are assuming that q 6= 2, we have

|P3| · n3
q − 2

=
|K|
6
,

which implies that n3 = 1
6(q3 − q)(q − 2). Substituting the expressions for n2 and n3 into (2)

and (3), we obtain n1 = 1
2(q4 + q2 + 2q) and hence n0 = 1

3(q4 + q3 − q2 − q). The total number
of constant rank-3 lines is therefore

|P3| · n0
q + 1

=
q3(q3 − 1)(q2 − 1)

3
=
|K|
3
.

If q = 2 then the same proof works except that now there are no symmetric representatives of
lines corresponding to the tensor orbit o14 passing through P ; that is, n3 = 0 in this case. �

In Proposition 4.6, we determine the stabiliser inside K of a symmetric representative of a
line orbit arising from the tensor orbit o17. It turns out that this stabiliser has order 3. Together
with Lemma 3.4, this implies the following result.

Proposition 3.5. There is a unique K-orbit of constant rank-3 lines in 〈V3(Fq)〉.

Proof. Immediate from Lemma 3.4 and Proposition 4.6. �

This concludes the classification of the K-orbits of the symmetric representatives of lines
arising from the tensor orbits o4, . . . , o17. The results are summarised in Table 2. The number
of K-line orbits is 15 for all finite fields Fq. Three tensor orbits, namely o4, o7 and o11, do not
yield a symmetric line orbit representative, and so these are omitted from the table. Four orbits
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Tensor Stabilisers of line orbits in 〈V3(Fq)〉 under K = PGL(3,Fq)
orbit Common orbit (all q) Additional orbit

q odd q even

o5 E2
q : C2

q−1 : C2

o6 E1+2
q : C2

q−1

o8 Cq−1 ×O±(2,Fq), q ≡ ±1(4) Cq−1 ×O∓(2,Fq), q ≡ ±1(4)
Eq × Cq−1, q even Cq−1 × SL(2,Fq)

o9 E2
q : Cq−1

o10 E2
q : O−(2,Fq)

o12 GL(2,Fq), q odd
E2
q : GL(2,Fq), q even E2

q : Eq : Cq−1

o13 Cq−1 × C2, q odd Cq−1 × C2

Eq : Cq−1, q even Eq

o14 C2
2 : Sym3, q ≡ 1(4) C2

2 : C2, q ≡ 1(4)
C2
2 : C2, q ≡ 3(4) C2

2 : Sym3, q ≡ 3(4)
Sym3, q even

o15 C2
2 , q odd C2

2

C2, q even

o16 Eq : Cq−1, q odd
E2
q : Cq−1, q even E2

q

o17 C3

Table 3. The stabilisers of line orbits in 〈V3(Fq)〉 under K = PGL(3,Fq). The
layout of the table is consistent with that of Table 2, that is, the groups in each
column are the stabilisers of the orbit representatives shown in the corresponding
column of Table 2. For brevity, we write q ≡ ±1(4) to mean q ≡ ±1 (mod 4).

split under the action of K for q even but not for q odd, two orbits split for q odd but not for q
even, and two orbits split for both q even and q odd.

4. Line stabilisers for F a finite field

In this section we compute the stabilisers of each of the K-orbits of lines in 〈V3(F)〉 deter-
mined in Section 3. As in that section, we assume here that F is a finite field Fq. The line
stabilisers are shown in Table 3. The following (common) notation is used: Eq is an elementary
abelian group of order q, Ck is a cyclic group of order k, and Symn is the symmetric group on
n letters. Moreover, A×B denotes the direct product of groups A and B, while A : B denotes
a split extension of A by B, with normal subgroup A and subgroup B. The corresponding total
numbers of symmetric line-orbit representatives are readily deduced, and recorded in Table 4.

For the cases in which a line contains points of rank 2, we also determine for the q odd case
how many rank 2 points are exterior (or interior) points, and for the q even case we determine
how many rank 2 points lie in the nucleus plane. (Note that in some cases this information has
already been obtained as part of the arguments in Section 3.)

Tensor orbit o5. Here there is a single K-orbit, represented by the line

L = PG

x · ·
· y ·
· · ·


x,y

 ,

which has rank distribution [2, q − 1, 0]. The two points of rank 1 on L determine a conic in
V3(F3), and the stabiliser of L must either fix or swap these points. In the preimage under the
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Tensor ] symmetric line-orbit ] rank-2 ] exterior ] points in
orbit representatives points points nucleus plane

o5
1
2q(q + 1)(q2 + q + 1) q − 1 q−1

2 0
o6 (q + 1)(q2 + q + 1) q q q
o8 q4(q2 + q + 1) 1 0 or 1 (†) 0 or 1 (†)
o9 q(q3 − 1)(q + 1) 0 – –

o10
1
2q(q

3 − 1) q + 1 q+1
2 0

o12 q2(q2 + q + 1) q + 1 q + 1 1 or q + 1 (†)
o13 q3(q3 − 1)(q + 1) 2 1 or 2 (†) 0 or 1 (†)
o14

1
6q

3(q3 − 1)(q2 − 1) 3 1 or 3 (†) 0
o15

1
2q

3(q3 − 1)(q2 − 1) 1 0 or 1 (†) 0
o16 q2(q3 − 1)(q + 1) 1 1 0 or 1 (†)
o17

1
3q

3(q3 − 1)(q2 − 1) 0 – –

Table 4. The total number of line orbit representatives in 〈V3(Fq)〉 correspond-
ing to each tensor orbit in F2

q ⊗ F3
q ⊗ F3

q . Also shown is the total number of
rank-2 points on each line (third column), and the total number of these that are
exterior points (for q odd, fourth column) or lie in the nucleus plane of V3(Fq)
(for q even, fifth column). In some cases, indicated by (†), the data in the fourth
and/or fifth columns depends on the orbit and, for q odd, (possibly) the parity
of q modulo 4; in these cases, we refer the reader to the text for full details.

Veronese map ν3, this corresponds to the setwise stabiliser of two points, inside the stabiliser of
a line of PG(2,Fq) in PGL(3,Fq). This group is isomorphic to E2

q : C2
q−1 : C2 (as shown in the

second column of Table 3), and so there are

|K|
2q2(q − 1)2

=
q3(q3 − 1)(q2 − 1)

2q2(q − 1)2
=

1

2
q(q + 1)(q2 + q + 1)

lines in this K-line orbit (as shown in Table 4).

If q is odd, then the rank-2 points on L comprise q−1
2 exterior points and q−1

2 interior points;
if q is even, then all rank-2 points on L lie outside the nucleus plane (see Table 4).

Tensor orbit o6. Here there is a single K-orbit, represented by the line

L = PG

x y ·
y · ·
· · ·


x,y

 ,

which has rank distribution [1, q, 0]. If we consider the unique point P of rank 1 on L, and
any other point on L, then these two points determine a conic C. The stabiliser of L in K is
isomorphic to the stabiliser of the flag (ν−13 (P ), ν−13 (C)) in PG(2,Fq). This group is isomorphic
to E1+2

q : C2
q−1, where the group E1+2

q has centre Z ∼= Eq and E1+2
q /Z ∼= E2

q . In particular,

there are (q + 1)(q2 + q + 1) lines in this orbit.
Since L is a tangent of C, every point on L different from P is an exterior point for q odd.

If q is even, then every rank-2 point on L lies in the nucleus plane.

Tensor orbit o8. Lines arising from the tensor orbit o8 have rank distribution [1, 1, q − 1].
For q odd, the unique point of rank 2 can be an internal point or an external point to the
unique conic that it determines. The stabiliser of an external point (respectively, internal point)
inside the group of a non-degenerate conic has size 2(q − 1) (respectively, 2(q + 1)). Let L be
a symmetric representative of the tensor orbit o8, let P1 be the point of rank 1 on L, and let
P2 be the point of rank 2. The stabiliser of P1 inside the pointwise stabiliser of the conic plane
π = 〈C(P2)〉 in K has size q−1, as it corresponds to the group of homologies with common center
and axis in PG(2,Fq). The stabiliser of L is therefore isomorphic to one of Cq−1 × O±(2,Fq),
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and has size 2(q − 1)(q ∓ 1). Hence, the total number of lines in the two K-orbits arising from
the tensor orbit o8 is

|K|
2(q + 1)(q − 1)

+
|K|

2(q − 1)2
= q4(q2 + q + 1).

For q even, the two orbits are characterised by whether or not the unique point of rank
2 is the nucleus of the unique conic determined by it. The point of rank 2 corresponding to
(x, y) = (0, 1) in the orbit representative L shown in the fourth column of Table 2 is the nucleus
N of the unique conic C determined by N . The stabiliser KL is therefore equal to the stabiliser
of C and the unique point R of rank 1 on L. Note that R is not on C. In the preimage under
the Veronese map, this corresponds to the stabiliser of an anti-flag. Hence, KL is isomorphic to
Cq−1 × SL(2,Fq) and has size

q(q2 − 1)(q − 1).

The other orbit is represented by the line L1 shown in the second column of Table 2. The unique
point P of rank 2 on L1 is not the nucleus of the conic C(P ) that it determines, and so KL1

is equal to the stabiliser of C(P ), the unique point of rank 1 on L, and the point Q on C(P )
obtained by intersecting C(P ) with the unique tangent to C(P ) through P . If an element of
KL1 fixes a point Q′ on C(P ) \ {Q}, then it fixes the intersection of the line through Q′ and
P with C(P ), and therefore fixes C(P ) pointwise. Since the pointwise stabiliser of C(P ) inside
KL1 corresponds to the group of perspectivities with centre not on the axis in the preimage
under the Veronese map, it has size q − 1. This implies that KL1 has size q(q − 1). Specifically,
KL1

∼= Eq × Cq−1. The total number of lines in these two orbits is therefore

|K|
q(q − 1)

+
|K|

q(q2 − 1)(q − 1)
= q4(q2 + q + 1),

as in the q odd case.

Tensor orbit o9. Here there is a unique K-orbit, represented by the line

L = PG(

x · y
· y ·
y · ·


x,y

 ,

which has rank distribution [1, 0, q]. Before we determine the stabiliser of L in K, let us introduce
some terminology and prove two lemmas.

Lemma 4.1. A point of rank 3 in 〈V3(Fq)〉 lies on q2 lines with rank distribution [1, 1, q− 1]
and on q + 1 lines with rank distribution [1, 0, q].

Proof. It follows from the above treatment of the o8 orbit that there are in total q4(q2 + q+ 1)
lines with rank distribution [1, 1, q− 1]. Since there is just one orbit P3 of points of rank 3, each
such point is on the same number, say k, of such lines. Counting pairs (P,L) where P is a point
of rank 3 and L is a line with rank distribution [1, 1, q − 1] containing P , we obtain

|P3| · k = q4(q2 + q + 1)(q − 1),

which implies that k = q + 1. The result follows because V3(Fq) contains q2 + q + 1 points and
a line through a rank-3 point contains at most one point of V3(Fq). �

Given a point P of rank 3 in 〈V3(Fq)〉, we denote by N (P ) the set of points in V3(Fq) that
together with P span a line without rank-2 points. It follows from Lemma 4.1 that |N (P )| =
q+ 1. In the next lemma, we show that N (P ) is a normal rational curve (NRC). The definition
and properties of NRCs may be found in, for instance, [8, p. 10].

Lemma 4.2. If P is a point of rank 3 in 〈V3(Fq)〉, then the set N (P ) is a NRC for q odd (of
degree 4 for q > 3, and of degree 3 for q = 3), and a conic if q is even.
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Proof. Since K acts transitively on rank-3 points, we may assume without loss of generality
that P corresponds to the matrix with ones on the anti-diagonal and zeroes everywhere else.
Suppose first that q is odd, and consider the set SP of images under the Veronese map of the
points on the conic X0X2 + 1

2X
2
1 = 0 in PG(2,Fq). Then SP is a NRC, since it is the image

of a non-degenerate conic (see fact (F4) of Section 2.2). A straightforward calculation shows
that each of the lines spanned by P and a point of SP has rank distribution [1, 0, q]; that is,
N (P ) = SP is a NRC. For q even, consider the set SP of images under the Veronese map of the
points on the line X1 = 0. Then SP is a conic, and a straightforward calculation shows that each
of the lines spanned by P and a point of SP has rank distribution [1, 0, q]; that is, N (P ) = SP
is a conic. �

Now consider the line L (as defined above), and let R be the unique point of rank 1 on
L. Suppose that q is odd. The stabiliser of R inside KL acts transitively on the points of
rank 3 on L, since each point of rank 3 determines a NRC through R, each of these NRCs is the
image of a non-degenerate conic (see fact (F4) of Section 2.2) passing through ν−13 (R), and the

stabiliser of ν−13 (R) inside PGL(3,Fq) acts transitively on the non-degenerate conics containing

ν−13 (R). Next, consider a point P of rank 3 on L. Lemma 4.2 implies that the stabiliser of P
in K equals the stabiliser of N (P ) in K, which is isomorphic to PGL(2,Fq), since N (P ) is the
image of a non-degenerate conic under the Veronese map. The stabiliser of P inside KL fixes
P and R = L ∩ N (P ), and is therefore isomorphic to the stabiliser in PGL(2,Fq) of a point in

PG(1,Fq), which is Eq : Cq−1. Explicitly, we have DLD> = L if and only if D ∈ GL(3,Fq) has
the form

D =

d11 d12 d13
· d22 −d−111 d12d22
· · d−111 d

2
22

 .
The stabiliser of L in K = PGL(3,Fq) therefore has order q2(q − 1) and is isomorphic to
E2
q : Cq−1. Indeed, the same is true for q even, as can be seen from the explicit form of D given

above. In particular, the K-orbit of L has size q(q3 − 1)(q + 1) both for q even and for q odd.

Tensor orbit o10. A line L in the orbit o10 is a line in a conic plane π disjoint from the
conic C consisting of the rank-1 points in π. It follows that π and C are fixed by KL. The
pointwise stabiliser inside K of the plane π corresponds to the pointwise stabiliser of a line in
the projectivity group of PG(2,Fq), and has size q2(q − 1). The stabiliser in Kπ of an external
line L to a conic C has size 2(q + 1). We therefore have KL

∼= E2
q : O−(2, q). In particular,

|KL| = 2q2(q − 1)(q + 1), and so the number of symmetric representatives of lines arising from
the tensor orbit o10 is 1

2q(q
3 − 1).

Moreover, there are q+ 1 tangents to the conic C, and every tangent meets the external line
L. Since every point is on zero or two tangents, there are q+1

2 exterior points on L if q is odd

(and the other q+1
2 points on L are interior points). If q is even, then all points on L lie outside

of the nucleus plane.

Tensor orbit o12. Here, for every q, there is a K-orbit represented by the line

L = PG(M) where M =

 · x ·
x · y
· y ·


x,y

,

which has rank distribution [0, q+1, 0]. If q is odd then we have DMD> = M for D ∈ GL(3,Fq)
if and only if D has the form

D =

d11 · d13
· d22 ·
d31 · d33

 .
Modulo scalars, these matrices comprise a group isomorphic to GL(2,Fq), and so there are
|K|/(q(q2 − 1)(q − 1)) = q2(q2 + q + 1) lines in this K-orbit when q is odd. If q is even then
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DMD> = M if and only if

D =

d11 · d13
d21 d22 d23
d31 · d33

 .
Here there is no restriction on d21 or d23, so KL

∼= E2
q : GL(2,Fq) and the orbit size is q2 + q+ 1.

When q is even, all points on L lie in the nucleus plane of V3(Fq). For q odd, all points on
L are exterior points:

Proposition 4.3. If q is odd and L is a constant rank-2 line in 〈V(Fq)〉 not contained in a
conic plane of V(Fq), then every point on L is an exterior point.

Proof. LetX0, X1, X2 (respectively Y0, . . . , Y5) denote the homogeneous coordinates in PG(2,Fq)
(respectively PG(5,Fq)). There is a unique orbit of such lines, arising from the tensor orbit o12.
Each point Px,y on L is in the unique conic plane 〈ν3(Lx,y)〉, where Lx,y is the line with equation
yX0 − xX2 = 0 in PG(2,Fq). The image ν3(Lx,y) is the conic with equation Y0Y3 − Y 2

1 = 0 in
the plane πx,y with equation xY2 − yY0 = xY4 − yY1 = x2Y5 − y2Y0 = 0. The point Px,y is on
the tangents Y0 = 0 and Y3 = 0 in πx,y to C(Px,y). �

If q is even then there is a second K-orbit, represented by the line

Le = PG(Me) where Me =

 · x ·
x x+ y y
· y ·


x,y

.

One may check that DMeD
> = Me if and only if D has the form

D =

 d11 · d22 + d33
d21 d22 d23

d11 + d22 · d33

 .
The stabiliser of Le in K is therefore isomorphic to E2

q : Eq : Cq−1, which has order q3(q− 1), so

|LKe | = (q3 − 1)(q + 1). Hence, when q is even the total number of lines arising from the tensor
orbit o12 is

(q2 + q + 1) + (q3 − 1)(q + 1) = q2(q2 + q + 1),

which is the same as in the q odd case. A point on Le lies in the nucleus plane if and only if
x = y, so Le intersects the nucleus plane in one point.

Tensor orbit o13. First consider the case where q is odd. There are two orbits, each
represented by

PG

 · x ·
x y ·
· · γy


x,y

 for some γ ∈ F×q .

The rank-2 point corresponding to y = 0 is always exterior. If γ = 1, as in the second column
of Table 2, then the rank-2 point corresponding to x = 0 is exterior if −1 ∈ � (that is, if q ≡ 1
(mod 4)) and interior otherwise (if q ≡ 3 (mod 4)). If γ 6∈ �, as in the third column of Table 2,
then the situation is reversed: the rank-2 point corresponding to x = 0 is exterior if q ≡ 3
(mod 4) and interior if q ≡ 1 (mod 4). Now, let L be the line spanned by the points P1 and P2

of rank 2 corresponding to y = 0 and x = 0, respectively, in the above matrix. The conics C(P1)
and C(P2) (uniquely determined by P1 and P2) intersect in a point Q. The point P1 is on the
tangent line to C(P1) through Q. The subgroup of the stabiliser of C(P1) fixing Q and P1 also
fixes the other point of C(P1) on a tangent to P1, but acts transitively on the remaining points
of C(P1). It is isomorphic to Cq−1. On the other hand, the point P2 is on a secant through Q.
The subgroup of the stabiliser of C(P2) fixing Q and P2 has order 2 (this is independent of the
choice of γ). The stabiliser of L is therefore isomorphic to Cq−1 × C2, and so the total number
of lines arising from the tensor orbit o13 for q odd is

2 · |K|
2(q − 1)

= q3(q3 − 1)(q + 1).
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For q even, the first orbit is represented by the above line with γ = 1. The rank-2 point
P1 corresponding to y = 0 lies in the nucleus plane, and the other rank-2 point (P2, say,
corresponding to x = 0) does not. The point P1 is the nucleus of the conic C(P1) and so the
stabiliser of C(P1), Q and P1 is isomorphic to Eq : Cq−1. The stabiliser of C(P2), Q and P2 is
trivial since P2 is on a secant through Q. The other orbit is represented by

PG

 · x ·
x x+ y ·
· · y


x,y

 .

Neither rank-2 point lies in the nucleus plane. The point P3 corresponding to y = 0 is not
the nucleus of C(P3), but it is on the tangent through Q. The stabiliser of C(P3), Q and P3 is
therefore isomorphic to Eq. The stabiliser of C(P2), Q and P2 is trivial since P2 is on a secant
through Q. We conclude that the total number of lines arising from the tensor orbit o13 for q
even is

|K|
q(q − 1)

+
|K|
q

= q3(q3 − 1)(q + 1),

as in the q odd case.

Tensor orbit o14. Consider the K-orbit represented by the line

Lγ = PG(

x · ·
· γ(x+ y) ·
· · y


x,y

 for some γ ∈ F×q ,

with rank distribution [0, 3, q − 2].
First suppose that q is odd. The rank-2 point Pe obtained for (x, y) = (1,−1) is always an

exterior point, while the other two rank-2 points, namely P1 obtained for (x, y) = (1, 0) and
P2 obtained for (x, y) = (0, 1), are both exterior if −γ ∈ � and both interior otherwise. In
particular, if γ = 1, as in the second column of Table 2, then there are three exterior points
if q ≡ 1 (mod 4), and one exterior point if q ≡ 3 (mod 4). If γ 6∈ �, as in the third column
of Table 2, then the situation is reversed. Now, the conics C(Pe) and C(Pi) meet in a point Qi
(i = 1, 2), and the conics C(P1) and C(P2) meet in a point Q12. For each i ∈ {1, 2}, the point
Pi is on the secant through Qi and Q12, and the point Pe is on the secant through Q1 and Q2.
The subgroup of the group of a conic stabilising two points on the conic and a third point on
the secant through these two points has order 2. By considering two of the three conic planes,
this gives us a group of order 4. By considering the conics in the preimage of the Veronese map,
we obtain a triangle, from which one observes that the action on two of the sides determines the
action on the third side. This implies that the action on two of the conic planes determines the
action on the third conic plane. We conclude that the subgroup of KLγ stabilising the points
Pe, P1 and P2 has order 4. Taking into account the permutations of the points Pe, P1 and P2 in
the case where all three points are exterior, this amounts to a group of order 24, isomorphic to
(C2 × C2) : Sym3. In the other case, KLγ is isomorphic to (C2 × C2) : C2 and has order 8.

Now consider the case where q is even. Note that all points of rank 2 on Lγ lie outside the
nucleus plane. If P1, P2 and P3 denote the points of rank 2 on Lγ , then each point Pi is on the
secant to the conic C(Pi) passing through the intersection points of C(Pi) with the other two
conics C(Pj) and C(Pk), where {i, j, k} = {1, 2, 3}. The group fixing the conic C(Pi), two points
on C(Pi) and a point Pi on the secant passing though these two points is trivial, because for q
even this group also fixes the unique tangent through Pi. Taking into account the permutations
of the points P1, P2 and P3, we obtain KL

∼= Sym3 and |KL| = 6.

Since 1
24 + 1

8 = 1
6 , we conclude that the tensor orbit o14 yields |K|6 symmetric representatives

of lines for every q.
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Tensor orbit o15. Here every K-orbit is represented by a line

L = PG

vy x ·
x ux+ y ·
· · x


x,y

 ,

for some v. The rank distribution is [0, 1, q]. For q odd, the unique point of rank 2 is exterior
when −v ∈ � (as in the second column of Table 2) and interior when −v 6∈ � (third column);
for q even, the unique point of rank 2 lies outside the nucleus plane. Let π denote the plane
containing the conic C(R) uniquely determined by the point R of rank 2 on L. The group KL

fixing L also fixes the point P in V3(Fq) corresponding to e3⊗e3, and therefore also fixes the line
` obtained by projecting L from P on to π. This projection ` corresponds to the 2×2 sub-matrix
obtained by deleting the last row and the last column from the above matrix representation of
L, and is therefore a line through the point R that is external to the conic C(R). The group KL

is the stabiliser of P , C(R), ` and R. The linewise stabiliser of ` in KL must fix the set {P, P q}
of two conjugate points over the quadratic extension of Fq. This implies that the stabiliser KL

must fix R and {P, P q}, and must therefore have order twice the order of the pointwise stabiliser
of ` in KL, which has order 2 for q odd and is trivial for q even. We conclude that KL

∼= C2
2 if

q is odd, and KL
∼= C2 if q is even.

Since the G-line orbit arising from the tensor orbit o15 splits into two K-orbits for q odd,

there are in total |K|2 symmetric representatives of lines for both q even and q odd.

Tensor orbit o16. Here for every q, there is a K-orbit represented by the line

L = PG(M) where M =

 · · x
· x y
x y ·


x,y

.

The rank distribution is [0, 1, q], so if DMD> = M for D = (dij) ∈ GL(3,Fq) then the rank-2
point corresponding to (x, y) = (0, 1) must be fixed, so d12 = d13 = 0 and[

d22 d23
d32 d33

] [
· 1
1 ·

] [
d22 d23
d32 d33

]>
=

[
· α
α ·

]
for some α ∈ F×q .

This makes the (1, 2) entry of DMD> equal to d11d23, which forces d23 = 0 because D must be
invertible. In particular, D must be lower triangular. If q is odd then by considering again the
image of the unique rank-2 point on L, we deduce that d32 = 0. By considering the image of an
arbitrary point on L, we then see that d31 = 0 and d222 = d11d33, so that

D =

d11 · ·
d21 d22 ·
· · −d−111 d

2
22

 .
These matrices comprise a group of order q(q − 1)2, and upon quotienting out the centre of
GL(3,Fq) we see that the stabiliser of L in K has order q(q − 1), so that the orbit of L has size
q2(q3−1)(q+1). Now suppose that q is even, and consider the image of the point corresponding
to (x, y) = (1, 0) under a lower-triangular matrix D. The (3, 3) entry is 2d31d33 + d232 = d232,
so we again deduce that d32 = 0 (as in the q odd case), but we do not need d31 = 0. We also
have d222 = d11d33 in the q even case, so that D has the same form as above, except with no
restriction on d31. The stabiliser of L in K therefore has order q2(q − 1), and so the orbit has
size q(q3 − 1)(q + 1).

If q is even then we also have a second K-orbit, represented by the line

Le = PG(Me) where Me =

 · · x
· x y
x y y


x,y

.

If DMeD
> = Me for D = (dij) ∈ GL(3,Fq), then again the rank-2 point corresponding to

(x, y) = (0, 1) must be fixed. This forces D to be lower triangular with d33 = d22. By then
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considering an arbitrary point on Le, we deduce that D must have the form

D =

 d11 · ·
d−111 d

2
32 − d32 d11 ·
d31 d32 d11

 .
These matrices comprise a subgroup of order q2(q− 1) in GL(3,Fq), so the stabiliser of Le in K
has order q2 and hence the orbit has size q(q3 − 1)(q2 − 1).

Therefore, in total there are q2(q3 − 1)(q + 1) lines in 〈V(Fq)〉 arising from the tensor orbit
o16, whether q is even or odd. When q is odd, the unique rank-2 point is always exterior; when
q is even, the unique rank-2 point lies in the nucleus plane for the line L but not for the line Le.

Tensor orbit o17. For this final case, we show that the line stabiliser has order 3. Recall
that, by Lemma 4.2, each point P of rank 3 defines a NRC N (P ) contained in V3(Fq). The
following lemma is proved via a straightforward calculation.

Lemma 4.4. If q is odd then the map ρ : P3 → PG(5,Fq) given by ρ(P ) = 〈N (P )〉 defines
the polarity (y0, y1, . . . , y5) 7→ y0Y0 + y1Y1 + y2Y2 + 2y3Y3 + 2y4Y4 + 2y5Y5 = 0 in PG(5,Fq).

Lemma 4.5. If P and P ′ are two distinct points on a constant rank-3 line in 〈V3(F)〉, then
N (P ) and N (P ′) intersect in at most one point.

Proof. If q is even then the statement follows immediately from the fact that each two conics
on the quadric Veronesean intersect in a point. Now let q be odd and suppose that W =
N (P )∩N (P ′) contains two distinct points R and Q. Then 〈C(R,Q)〉 intersects 〈W 〉 in at least
one line, and there exists a hyperplane through W that contains two conics of the Veronesean.
Since the map ρ defined in Lemma 4.4 is a polarity, this hyperplane is the image of a point S
on the line through P and P ′. However, since the hyperplane Sρ contains two conics, it is not
a NRC, and therefore S does not have rank 3, a contradiction. �

Proposition 4.6. The linewise stabiliser in K of a constant rank-3 line has order 3.

Proof. The linewise stabiliser KL inside K of a constant rank-3 line L in 〈V3(Fq)〉 must fix the

set {P, P q, P q2} of three conjugate points of rank 2 on the line L defined over the cubic extension
of Fq. Also, no element of K can fix one of these three points unless it acts as the identity on

the line L. For instance, if g ∈ KL fixes P , then g must fix P q + P q
2

and P + P q + P q
2
, which

implies that g fixes a frame of L and must therefore fix every point of L. Next we prove that
the pointwise stabiliser of L is trivial. If q is odd then, by Lemmas 4.2 and 4.5, any projectivity
ϕ fixing L pointwise must fix q + 1 NRCs pairwise intersecting in a point. If q is even then the
same lemmas imply that ϕ must fix q + 1 conics pairwise intersecting in a point. In both cases,
the set of intersection points contains the image of a frame of PG(2,Fq) under the Veronese
map, and so ϕ is the identity. It follows that KL has order 3. �

5. Algebraically closed fields and the real numbers

In this section, we explain how the arguments from the case where F is a finite field can be
modified to treat algebraically closed fields and the case F = R. When F is algebraically closed,
the orbits o10, o15 and o17 do not occur in the classification of tensors in F2 ⊗ F3 ⊗ F3 given
in [15], and so in particular we do not obtain the corresponding K-line orbits in 〈V3(F)〉. On
the other hand, unlike in that classification, in the study of the symmetric representation of the
corresponding line orbits we need to distinguish between the cases char(F) = 2 and char(F) 6= 2.

Algebraically closed fields F with char(F) 6= 2. The orbits listed in the third column
of Table 2 (the ‘additional orbit, q odd’ column) do not arise, because these depend on the
existence of a non-square in F. The orbits in the fourth column also do not arise, because their
representatives are K-equivalent to the corresponding representatives in the second column for
char(F) 6= 2. Hence, the only tensor orbits that yield lines with symmetric representatives are
o5, o6, o8, o9, o12, o13, o14 and o16, and none of these eight orbits splits under K.
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Tensor Equivalence classes of pencils of conics in PG(2,Fq), q odd

o5 (X2, Y 2)
o6 (X2, 2XY )
o8 (X2, Y 2 + Z2) (X2, Y 2 + γZ2)
o9 (X2, Y 2 + 2XZ)
o10 (vX2 + Y 2, 2XY + uY 2)
o12 (2XY, 2Y Z)
o13 (2XY, Y 2 + Z2) (2XY, Y 2 + γZ2)
o14 (X2 + Y 2, Y 2 + Z2) (X2 + γY 2, γY 2 + Z2)
o15 (2XY + uY 2 + Z2, v1X

2 + Y 2) (2XY + uY 2 + Z2, v2X
2 + Y 2)

o16 (2XZ + Y 2, 2Y Z)
o17 ( 1

αX
2 − γY 2 + 2Y Z, 2XY + βY 2 + Z2)

Table 5. The equivalence classes of pencils of conics in PG(2,Fq), q odd, where
the parameters α, β, γ, u, v, v1, v2 ∈ Fq correspond to those in Table 2.

Algebraically closed fields F with char(F) = 2. In this case the representatives in the
fourth column of Table 2 do arise, because they essentially depend on the existence of a nucleus
of a non-degenerate conic in PG(2,F), a property that holds whenever char(F) = 2. We there-
fore obtain the same eight K-orbits from the char(F) 6= 2 case, plus the four extra K-orbits
corresponding to the representatives in the fourth column (for o8, o12, o13 and o16).

The real numbers. Finally, consider the case F = R. Observe first that the orbit o17
does not yield any lines with symmetric representatives, because every cubic polynomial with
real coefficients has at least one real root, and so condition (∗∗) in Table 2 cannot hold. The
line orbits corresponding to o8, o13 and o14 split, with representatives as in the second and
third columns of Table 2, as the existence of the representatives in the third column depends
only on the existence of a non-square γ ∈ R (so one can take γ < 0). However, the line orbit
corresponding to o15 does not split, because condition (∗) is equivalent to u2v2 +4v = v(u2v+4)
being negative, and this implies that v is negative, so the case −v 6∈ � does not occur. In
summary, we have a total of 13 K-line orbits: one arising from each of the tensor orbits o6, o9,
o10, o12, o15, and o16, with representatives as in the second column of Table 2; and two arising
from each of o8, o13 and o14, with representatives as in the second and third columns of Table 2.

6. The classification of pencils of conics in PG(2,Fq)

As mentioned in Section 1.2, our results imply the classification of pencils of conics in
PG(2,F) when char(F) 6= 2. This follows from the following observation. A pencil of conics is
a one-dimensional linear system of quadrics in PG(2,F). If b is the bilinear form associated to
the quadratic form f defining a conic C in PG(2,F), and B is the matrix of b with respect to
some basis of F3, then the conic C consists of points whose coordinate vectors v ∈ F3 satisfy
vBvT = 0. A projectivity of PGL(3,F) induced by the matrix A ∈ GL(3,F) mapping a point
with coordinate vector v to the point with coordinate vector vA maps the conic with equation
vBvT to the conic with equation vABAT vT . Hence, the equivalence classes of pencils of conics
under the projectivity group K = PGL(3,F) are equivalent to the K-orbits of lines in the
projective space of symmetric 3 × 3 matrices. If F is algebraically closed with char(F) 6= 2,
it therefore follows from Section 5 that there are 8 equivalence classes of pencils of conics;
similarly, there are 13 equivalence classes when F = R. This, of course, agrees with the results
of Jordan [12, 13]. For F = Fq with q odd, it follows from our classification of K-orbits on
lines in PG(5,Fq) that there are 15 equivalence classes of pencils of conics. Representatives of
each equivalence class of pencils are given in Table 5. This is in agreement with the results of
Dickson [6]. In addition to Dickson’s classification, we have also determined the stabiliser for
each equivalence classe, as well as the number of pencils in each class (see Tables 3 and 4).
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