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Summary
Background Host responses during sepsis are highly heterogeneous, which hampers the identification of patients at 
high risk of mortality and their selection for targeted therapies. In this study, we aimed to identify biologically relevant 
molecular endotypes in patients with sepsis.

Methods This was a prospective observational cohort study that included consecutive patients admitted for sepsis to two 
intensive care units (ICUs) in the Netherlands between Jan 1, 2011, and July 20, 2012 (discovery and first validation cohorts) 
and patients admitted with sepsis due to community-acquired pneumonia to 29 ICUs in the UK (second validation 
cohort). We generated genome-wide blood gene expression profiles from admission samples and analysed them by 
unsupervised consensus clustering and machine learning. The primary objective of this study was to establish endotypes 
for patients with sepsis, and assess the association of these endotypes with clinical traits and survival outcomes. We also 
established candidate biomarkers for the endotypes to allow identification of patient endotypes in clinical practice.

Findings The discovery cohort had 306 patients, the first validation cohort had 216, and the second validation 
cohort had 265 patients. Four molecular endotypes for sepsis, designated Mars1–4, were identified in the discovery 
cohort, and were associated with 28-day mortality (log-rank p=0·022). In the discovery cohort, the worst outcome 
was found for patients classified as having a Mars1 endotype, and at 28 days, 35 (39%) of 90 people with a Mars1 
endotype had died (hazard ratio [HR] vs all other endotypes 1·86 [95% CI 1·21–2·86]; p=0·0045), compared with 
23 (22%) of 105 people with a Mars2 endotype (HR 0·64 [0·40–1·04]; p=0·061), 16 (23%) of 71 people with a Mars3 
endotype (HR 0·71 [0·41–1·22]; p=0·19), and 13 (33%) of 40 patients with a Mars4 endotype (HR 1·13 [0·63–2·04]; 
p=0·69). Analysis of the net reclassification improvement using a combined clinical and endotype model 
significantly improved risk prediction to 0·33 (0·09–0·58; p=0·008). A 140-gene expression signature reliably 
stratified patients with sepsis to the four endotypes in both the first and second validation cohorts. Only Mars1 was 
consistently significantly associated with 28-day mortality across the cohorts. To facilitate possible clinical use, 
a biomarker was derived for each endotype; BPGM and TAP2 reliably identified patients with a Mars1 endotype.

Interpretation This study provides a method for the molecular classification of patients with sepsis to four different 
endotypes upon ICU admission. Detection of sepsis endotypes might assist in providing personalised patient 
management and in selection for trials.

Funding Center for Translational Molecular Medicine, Netherlands.

Introduction
Sepsis remains a remarkable adversary to medicine, 
characterised by poor prognosis and high mortality 
rates.1,2 Despite the burden on patients, their families, 
and the health-care system, treatment remains mainly 
non-curative.1 Unrecognised population substructures 
and the heterogeneity in the host response complicate 
the identification of high-risk patients who would benefit 
from specific adjuvant therapy.3

Blood transcriptional profiling has led to substantial 
advances in sepsis treatment.4 Although promising new 
diagnostic biomarkers have emerged from the 
application of blood genomics to sepsis,5–7 patient 
selection for interventional trials and prediction of 
patient outcomes in sepsis continue to be driven by 
clinical signs. Although supervised analyses of patients 
with sepsis who are discordant for survival (ie, those 

who survive and those who do not) have identified 
candidate protein and gene expression prognostic 
markers,8,9 substantial heterogeneity remains un
explained. Unsupervised learning coupled with adequate 
validation metrics have been successfully applied in the 
field of oncogenomics to analyse the tumour 
heterogeneity in patients with cancer,10,11 which revealed 
important patient endotypes that would have otherwise 
remained unknown. A comprehensive assessment of 
the heterogeneity in the adult host response to all-cause 
sepsis in consecutive intensive care unit (ICU) 
admissions has not previously been done.

The primary objective of this study was to identify 
subgroups (endotypes) of patients with sepsis on the 
basis of whole-blood RNA expression profiles. To achieve 
this aim, we used unsupervised consensus clustering 
and machine learning in a discovery cohort of patients 
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admitted to the ICU with sepsis, and subsequently tested 
the robustness of our results across two independent 
validation cohorts from different hospitals. Furthermore, 
we established candidate blood genomic biomarkers for 
sepsis endotype classification and assessed them in our 
cohorts.

Methods
Study design and participants
This study was done within the wider context of the 
Molecular Diagnosis and Risk Stratification of Sepsis 
(MARS) project (NCT01905033), a prospective observational 
cohort study in the mixed ICUs of two tertiary teaching 
hospitals (Academic Medical Center in Amsterdam, 
Netherlands, and University Medical Center in Utrecht, 
Netherlands).5,12,13

All patients older than 18 years admitted to the two 
ICUs between Jan 1, 2011, and July 20, 2012, with an 
expected length of stay longer than 24 h were included 
via an opt-out method approved by the medical ethical 
committees of the participating hospitals.5,12,13 For every 
patient admitted, the plausibility of an infection was 
assessed retrospectively using a four-point scale 
(ascending from none, possible, probable, to definite) 
using the Centers for Disease Control and Prevention14 
and International Sepsis Forum consensus definitions15 
as previously described.12 Our study comprised 
consecutive patients admitted to the ICU with sepsis 
defined as probable or definite infection (for site-specific 

criteria, see Klein Klouwenberg and colleagues12), 
accompanied by at least one additional general, 
inflammatory, haemodynamic, organ dysfunction, or 
tissue perfusion variable described in the report from 
the 2001 International Sepsis Definitions Conference 
(appendix p 6).16 Patients admitted to hospital in 
Amsterdam were used as the discovery cohort and those 
admitted to hospital in Utrecht were the first validation 
cohort. Healthy controls were also enrolled from the 
Academic Medical Center and De Drecht home for the 
elderly (both Amsterdam, Netherlands) after providing 
written informed consent. Criteria for inclusion in the 
healthy control group was age of at least 18 years. The 
second validation cohort was from the UK Genomic 
Advances in Sepsis (GAinS) study17 of adult patients 
with sepsis resulting from community-acquired 
pneumonia. Additionally, paediatric patients with sepsis 
from a prospective observational study18 of children 
aged 10 years or younger admitted to multiple paediatric 
ICUs in the USA were used as a comparative cohort (for 
GAinS and paediatric cohort inclusion criteria, see 
appendix p 3).

Procedures
From patients enrolled in MARS, we collected blood 
specifically for this study in PAXgene blood RNA tubes 
(Becton-Dickinson, Breda, Netherlands) within 24 h of 
ICU admission. We also collected blood from the healthy 
controls in PAXgene blood RNA tubes. We generated 

Research in context

Evidence before this study
Pronounced heterogeneity in the host response to sepsis 
complicates the identification of patients who are critically ill 
and at high risk of mortality and those who would benefit from 
specific adjuvant therapy. We searched for blood genomic 
studies of critically ill patients with sepsis published in any 
language before Jan 31, 2017, using the following search terms: 
(“sepsis” OR “severe sepsis” OR “septic shock”) AND (“genomics” 
OR “gene expression profiling” OR “microarray”) AND (subtype 
OR endotype OR subclassification OR cluster OR subgroup OR 
prospective cohort). We subsequently added “patient” to a 
second search field. We identified 38 studies of peripheral blood 
leucocytes in patients. Of these 38 studies, three applied 
genome-wide blood transcriptional profiling coupled with 
clustering techniques showing the existence of population 
substructures, also known as endotypes, in paediatric patients 
with sepsis, adult patients with sepsis, and patients with sepsis 
caused by community-acquired pneumonia.

Added value of this study
To the best of our knowledge, ours is the first study to 
comprehensively investigate the occurrence of patient endotypes 
in a consecutively enrolled population of patients with all-cause 
sepsis and validate the results in multiple independent datasets. 

We identified four blood gene expression endotypes in patients 
from the UK and the Netherlands, one of which (Mars1) was 
consistently significantly associated with acute (28-day) and late 
(1-year) mortality. Furthermore, combining Acute Physiology 
and Chronic Health Evaluation IV scores and endotype 
significantly improved patient risk stratification. The four 
endotypes could not be predicted by demographic or clinical 
covariates. We also showed that the blood transcriptomes of 
these four endotypes had distinct host response signatures, 
including endotypes attuned to immunosuppression, 
hyperinflammation, or adaptive immune functions, showing 
great potential for more targeted patient management and 
clinical trial design.

Implications of all the available evidence
The substantial heterogeneity in the host response to sepsis has 
hindered patient management and therapeutic discoveries. 
Our study and others have shown that using the concepts of 
unsupervised blood genomic analysis, patients can be classified 
into molecular endotypes with important prognostic and 
pathophysiological value. The distinct host response signatures 
between the four endotypes have important implications that 
include development of precision therapeutics and practices of 
clinical trial design.

See Online for appendix
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gene expression profiles of patients and healthy 
participants for this study using Human Genome U219 
96-array plates and the GeneTitan instrument 
(Affymetrix; Santa Clara, CA, USA) as described.5,13 
MARS gene expression data are available in the Gene 
Expression Omnibus, accession number GSE65682. We 
obtained publicly available gene expression data of UK 
GAinS (ArrayExpress accession number E-MTAB-4421) 
generated by Illumina Human-HT-12 version 4 
Expression BeadChips (San Diego, CA, USA).17 We also 
obtained publicly available gene expression data of 
paediatric patients with sepsis (GSE13904) that were 
generated by the Affymetrix Human Genome U133 
Plus 2.0 Array.18

We analysed gene expression data from the discovery 
cohort using a previously developed unsupervised 
consensus clustering method (appendix p 3).19–21 For 
endotype discovery (appendix p 3), we ranked probes by 
median absolute deviation across 306 patient samples 
(discovery cohort). We selected and analysed the 
top 5000 ranked probes using the consensus clustering 
method.19,20 We selected the agglomerative hierarchical 
clustering algorithm on 1 minus Pearson correlation 
distances, 99% item (sample) resampling, 1000 iterations, 

and cluster range k=2–12. To estimate k (number of 
endotypes), we combined cumulative distribution 
functions,19,20 silhouette width analysis22 available in the 
cluster package,23 and cophenetic distance correlation 
analysis to assess clustering stability.24 To construct the 
k endotype classifier, we selected patient samples with 
positive silhouette widths, representing core patients per 
endotype.19,22 We subsequently ranked the 5000 probes by 
non-parametric significance (Kruskal-Wallis rank sum 
test). We filtered 2994 unique gene probes by selecting for 
the highest significance. Using a random forest classifier25 
(supervised classification with high dimensional data 
methods),26 we assessed sepsis endotype classification 
with ten-fold cross-validation of stepwise increments in 
gene numbers. We settled on the number of genes that 
yielded a cross-validation misclassification error rate of 
less than 10%. We then used the sepsis endotype classifier 
gene set to do random forest prediction of endotypes in 
the validation cohorts. We used the healthy individuals 
solely for comparing gene expression profiles with those 
of patients in the MARS project classified into endotypes 
(herein termed Mars endotypes). See appendix (pp 3–4, 14) 
for further description of clustering methodology 
and differential gene expression analysis. Endotype 

Figure 1: Patient cohorts, samples, and analysis
CAP=community-acquired pneumonia. GAinS=Genomic Advances in Sepsis cohort. MARS=Molecular Diagnosis and Risk Stratification of Sepsis cohort.
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biomarkers were assessed5,6 and differential gene 
expression and ingenuity pathway analysis was done 
using previously described methods (appendix pp 3–4).

Outcomes
The primary objective of this study was to establish 
endotypes for patients with sepsis, and assess the 
association of these endotypes with clinical traits and 
survival outcomes. We also investigated biomarkers for 

the endotypes, which could allow identification of patient 
endotypes in clinical practice.

Statistical analysis
Statistical analysis was done using the R statistical 
computing environment (version 3.1.2). The Cramér’s 
V measure of effect size was used for a χ² goodness-of-
fit test. Correlation analysis of continuous data was 
done using Spearman’s rank correlation coefficient. 
Survival analysis was done by Kaplan-Meier estimation 
(log-rank test) and Cox proportional hazards regression 
implemented in the survival method (R package, 
version 2.37). Hazard ratios (HRs) and 95% CIs were 
calculated for each endotype with reference to all other 
endotypes. Net reclassification improvement was 
assessed by means of a continuous model using 
the predictABEL method (version 1.2-2).27 One 
model encompassed only Acute Physiology and 
Chronic Health Evaluation (APACHE) IV scores28 
(clinical), whereas a second model encompassed both 
APACHE IV scores and sepsis endotype stratification 
(clinical plus molecular). Results were considered 
significant at p<0·05.

Role of the funding source
The funders of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
From the MARS project, we included 306 patients in our 
discovery cohort and 216 in the first validation cohort 
(figure 1, table). We included 265 patients from the 
GAinS study17 as the second validation cohort. We also 
enrolled 42 healthy controls (median age 35 years 
[IQR 30–63]; 24 [57%] of 42 were men) between Jan 1, 
2011, and Dec 22, 2012.

Patient cohorts were characterised by various 
comorbidities, organ failure, and shock on admission in 
about a third of the patients (table). These baseline 
patient characteristics exemplify the marked hetero
geneity in the clinical presentation of critically ill patients 
with sepsis.1,3

Considering cluster (endotype) quality and stability,22,24 
we reached a consensus in partitioning at four molecular 
endotypes, designated Mars1–4 (appendix p 15) in the 
discovery cohort. In the discovery and first validation 
cohorts, most patients were white (table) and we 
found no association between ethnicity and endotype 
(appendix pp 7–10). In the discovery cohort, patients who 
had positive silhouette widths22 (81 [90%] of 90 patients 
with the Mars1 endotype, 94 [90%] of 105 with Mars2, 
63 [89%] of 71 with Mars3, and 29 [73%] of 40 with Mars4), 
indicative of their high intra-endotype similarity,19,21,22 were 
used for gene classifier derivation (39 patients without 

Discovery cohort, 
Amsterdam, Netherlands 
(N=306)

First validation cohort, 
Utrecht, Netherlands 
(N=216)

Second validation 
cohort, UK (N=265)

Demographics

Male sex 166 (54%) 131 (61%) 145 (55%)

Age, years 63 (52–72) 63 (55–71) 64 (52–75)

White ethnicity 241 (79%) 208 (96%) ··

Chronic comorbidity

None 124 (41%) 37 (17%) ··

Cardiovascular 
compromise

53 (17%) 55 (25%) 118 (45%)

COPD 39 (13%) 30 (14%) 62 (23%)

Diabetes 54 (18%) 45 (21%) 51 (19%)

Hypertension 66 (22%) 76 (35%) ··

Malignancy 36 (12%) 74 (34%) 17 (6%)

Renal insufficiency 41 (13%) 36 (17%) 28 (11%)

Respiratory insufficiency 47 (15%) 33 (15%) 128 (48%)

Charlson comorbidity 
index

4 (2–5) 5 (3–6) ··

Lung 130 (42%) 96 (44%) 265 (100%)

Abdominal 79 (26%) 51 (24%) ··

Urinary 25 (8%) 24 (11%) ··

Skin 24 (8%) 6 (3%) ··

Cardiovascular 11 (4%) 7 (3%) ··

CNS 5 (2%) 4 (2%) ··

Other* 32 (10%) 28 (13%) ··

Severity at time of admission to ICU

APACHE score 77 (60–97)† 85 (69–103)† 18 (14–22)‡

SOFA score 8 (6–10) 6 (4–9) 6 (4–9)

Shock 108 (35%) 73 (34%) 79 (30%)

Acute kidney injury 132 (43%) 55 (25%) 52 (20%)

Acute lung injury 101 (33%) 52 (24%) ··

Outcome

Length of stay, days 4 (2–9) 6 (2–12) 7 (4–15)

ICU mortality 58 (19%) 37 (17%) 49 (18%)

Hospital mortality 100 (33%) 57 (26%) 68 (26%)

14-day mortality 73 (24%) 36 (17%) 40 (15%)

28-day mortality 87 (28%) 46 (21%) 56 (21%)

90-day mortality 113 (37%) 70 (32%) ··

1-year mortality 139 (45%) 97 (45%) ··

Data are n (%) or median (IQR). ··means data were unavailable. COPD=chronic obstructive pulmonary disease. ICU=intensive 
care unit. APACHE=Acute Physiology And Chronic Health Evaluation. SOFA=sequential organ failure assessment. *Includes 
bone and joint infection, endocarditis, mediastinitis, myocarditis, ear infection, oral infection, pharyngitis, postoperative 
wound infection, and lung abscess. †APACHE IV score. ‡APACHE II score.

Table: Baseline characteristics and mortality of patients in the discovery and validation cohorts

For the R project software see 
http://www.R-project.org/

http://www.R-project.org/
http://www.R-project.org/
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positive silhouette widths were excluded; figure 1). We 
identified 140 genes that classified the Mars1–4 endotypes 
(appendix pp 15, 22–25).

In the discovery cohort, sepsis endotypes did not show 
an association with any comorbidities, APACHE IV score, 
or acute lung injury at admission to the ICU (appendix 
pp 7–8); however, septic shock prevalence and sequential 
organ failure assessment (SOFA) scores29 were signifi
cantly associated with endotype classification (figure 2A, B). 
The estimated effect size (Cramér’s V) of septic shock was 
0·23, indicating a moderate association. Kaplan-Meier 
analysis showed an association between endotype and 
28-day mortality (log-rank p=0·022; figure 2C). The worst 
survival outcome at 28 days was seen for patients with the 
Mars1 endotype (HRs given vs all other endotypes grouped 
as one): mortality occurred in 35 (39%) of 90 people with 
the Mars1 endotype (HR 1·86 [95% CI 1·21–2·86]; 
p=0·0045), 23 (22%) of 105 with Mars 2 (HR 0·64 
[0·4–1·04]; p=0·061), 16 (23%) of 71 with Mars3 (HR 0·71 
[0·41–1·22]; p=0·19), and 13 (33%) of 40 with Mars4 
(HR 1·13 [0·63–2·04]; p=0·69). The multivariate HR 
(incorporating Charlson comorbidity indices) for death 
within 28 days of Mars1 classification was 1·79 (95% CI 
1·16–2·75; p=0·0084). The patients with Mars1 endotype 
had the worst survival outcome at 1 year of patient 
follow-up (log-rank p=0·023; appendix p 16).

To test whether the combination of a molecular and 
clinical scoring system might be of benefit to patient 
risk stratification, we assessed the net reclassification 
improvement and integrated discrimination improve
ment27,30 using a combined APACHE IV score (clinical) 
and sepsis endotype classification (molecular) model. 
This clinicomolecular model significantly improved 
28-day mortality risk prediction compared with 28-day 
mortality risk prediction by APACHE IV scores alone 
(net reclassification improvement, continuous 0·33 
[95% CI 0·09–0·58], p=0·008; integrated discrimination 
improvement 0·015 [0·0002–0·03], p=0·047; appendix 
p 16). The Hosmer-Lemeshow test showed proper 
model calibration (appendix p 16).

In the first validation cohort of patients with all-cause 
sepsis (n=216), applying the 140-gene classifier clearly 
identified four sepsis endotypes (appendix p 17). 
Consistent with the discovery cohort, SOFA scores and 
septic shock were significantly associated with sepsis 
endotype (figure 3A, B), with a moderate association with 
septic shock (Cramér’s V=0·29). APACHE IV scores were 
not associated with endotype classification, whereas 
Kaplan-Meier analysis showed a significant association 
with 28-day mortality (figure 3C; appendix pp 9, 17). The 
highest mortality was also found for patients classified as 
Mars1 in this cohort, and 19 (32%) of 60 patients had died 
at 28 days (HR 1·97 [95% CI 1·11–3·54]; p=0·024 vs 
Mars2–4). However, risk stratification by Mars2–4 showed 
more variance than in the discovery cohort, especially in 
Mars4. At 28 days, 18 (23%) of 79 patients with the Mars2 
endotype (HR 1·12 [0·62–2·03]; p=0·69), eight (14%) of 

Figure 2: Association with clinical characteristics and outcome in the 
discovery cohort
Endotypes were evaluated for their association to clinical severity indices, septic 
shock (A; the proportions of patients with septic shock within each endotype are 
shown at the top of each bar), SOFA scores (B; black horizontal line shows 
median score, top and bottom of box shows upper and lower quartiles, whiskers 
show extremes, and squares show outliers), and Kaplan-Meier survival analysis 
up to day 28 (C). SOFA=sequential organ failure assessment. *Dunn’s post-hoc 
test p<0·01 vs Mars3.
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58 with Mars3 (HR 0·55 [0·25–1·17]; p=0·097), and 
one (5%) of 19 with Mars4 (HR 0·21 [0·03–1·55]; p=0·092) 
had died. The multivariate HR (incorporating Charlson 

comorbidity indices) for death within 28 days of Mars1 
classification equated to 1·91 (95% CI 1·05–3·47, 
p=0·034). The association with mortality was also evident 
at 1-year follow-up (log-rank p=0·0031), with Mars1-
classified patients having the worst outcome 
(appendix p 17). Combining clinical (APACHE IV) and 
molecular (sepsis endotype classification) data 
significantly improved 28-day mortality risk prediction 
(net reclassification improvement, continuous 0·38 
[95% CI 0·01–0·66], p=0·008; integrated discrimination 
improvement 0·028 [0·0018–0·055], p=0·036) compared 
with APACHE IV scores alone. The Hosmer-Lemeshow 
test showed proper model calibration (appendix p 17).

In the second validation cohort of patients with sepsis 
caused by community-acquired pneumonia (n=265),17 we 
also detected four endotypes (appendix p 18) with 
favourable stability. Consistent with the discovery and 
first validation cohort, SOFA scores, septic shock, and 
mortality were significantly associated with endotype 
(figure 4A–C). Patients with the Mars1 endotype had the 
worst prognosis, and 12 (34%) of 35 Mars1 patients had 
died at 28 days (HR 2·02 [95% CI 1·07–3·82]; p=0·031). 
Risk stratification by Mars2–4 was not fully consistent 
with the discovery cohort at 28 days: 26 (22%) of 
117 patients with the Mars2 endotype (HR 1·12 [0·66–1·9]; 
p=0·66), 13 (13%) of 97 with Mars3 (HR 0·47 [0·25–0·88]; 
p=0·018), and five (31%) of 16 with Mars4 (HR 1·65 
[0·66–4·13]; p=0·29) had died (figure 4C). No associations 
were seen between endotype and age, sex, or APACHE II 
score (appendix p 11).

Notably, APACHE IV scores were collected in the 
discovery and first validation cohort, whereas APACHE II 
scores were collected in the second validation cohort. 
Considering that the second validation cohort only 
consisted of patients with community-acquired 
pneumonia, and that Mars endotypes were associated 
with abdominal and lung site of infection in the discovery 
and first validation cohorts (appendix pp 7–10), we 
combined patients from the two all-cause sepsis cohorts 
(discovery and first validation cohort) to show that the four 
endotypes were present irrespective of the primary site of 
infection. For this analysis, we separately assessed the 
patients with the two most common causes of sepsis: 
pneumonia (n=215) and peritonitis (n=123). We detected 
four sepsis endotypes in both subgroups with favourable 
stability (appendix p 18); however, we detected different 
proportions of patients classified to each endotype. 
A greater proportion of patients were classified as Mars3 
or Mars4 in the pneumonia cohort than in the abdominal 
sepsis subgroup (appendix p 18). This suggests that 
although the four endotypes were clearly present in 
patients with both sites of infection, Mars3 and Mars4 
endotypes might be more common in patients with 
pneumonia than in those with peritonitis.

In an exploratory cohort of paediatric patients with 
sepsis (GEO accession number GSE13904, n=81;18 
appendix p 12), we found three endotypes (Mars1, Mars2, 

Figure 3: Assessment of sepsis molecular endotypes in the first validation 
cohort
Mars sepsis endotypes were assessed for the association with total SOFA scores 
(A; black horizontal line shows median score, top and bottom of box shows upper 
and lower quartiles, whiskers show extremes, and squares show outliers), septic 
shock (B; the proportions of patients with septic shock within each endotype are 
shown at the top of each bar), and Kaplan-Meier survival analysis up to day 28 (C). 
SOFA=sequential organ failure assessment. *p<0·01 vs Mars3. †p<0·05 vs Mars4.
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and Mars4) with favourable stability (appendix p 19). In 
this cohort, Mars3 was not reliably detected and 
assessment of 28-day mortality and paediatric risk of 
mortality scores31 showed no significant associations with 
sepsis endotype classification (appendix p 19).

To understand the biological underpinnings of the 
molecular endotypes we analysed the association of 
sepsis endotypes with leucocyte counts and differentials. 
Monocyte count was significantly associated with 
endotype in both the discovery and first validation cohorts 
(appendix pp 7–10), with a small overall effect size (η²) 
equating to 4·3%. Total leucocyte count was associated 
with sepsis endotypes only in the discovery cohort, 
whereas lymphocyte count was associated with endotypes 
only in the first validation cohort. No significant 
associations were found between neutrophil counts and 
endotypes.

Differential gene expression analysis and biological 
pathway inference were done for the four endotypes. Each 
endotype in the discovery cohort showed substantial 
alterations relative to the healthy cohort (figure 5A), with 
77% of the gene expression responses common to all 
endotypes and Spearman’s ρ more than 0·7 (appendix p 20). 
Gene expression signatures specific to each endotype were 
also evident, most particularly in the high-risk Mars1 
endotype (appendix p 20). The Mars1 endotype was 
characterised by a pronounced decrease in expression of 
genes corresponding to key innate and adaptive immune 
cell functions such as Toll-like receptor, nuclear factor κB 
(NFκB1) signalling, antigen presentation, and T-cell 
receptor signalling, concomitant with increased expression 
of specific metabolic pathway genes that included haem 
biosynthesis pathways (figure 5B; appendix p 20). The 
Mars2 endotype was characterised by increased expression 
of genes involved in pattern recognition, cytokine, cell 
growth, and mobility pathways, including NF-κB, 
interleukin 6, inducible nitric oxide synthase, and 
N-formyl-methionyl peptide signalling. The Mars4 
endotype was also associated with increased expression of 
genes involved in pattern recognition and cytokine 
pathways, specifically interferon signalling, RIG1-like 
receptor and TREM1 signalling (figure 5B; appendix p 20). 
Finally, the Mars3 endotype was predominantly associated 
with increased expression of adaptive immune pathway 
genes, which included T-helper cell, natural killer cell, IL-4 
signalling and B-cell development pathways (figure 5B; 
appendix p 20). The Mars3 endotype, which was associated 
with a low risk compared with that of Mars1, showed a 
significant association with the previously described low-
risk sepsis response signature (SRS)2 group in the UK 
sepsis cohort (appendix p 20).17

To facilitate potential translation to clinical practice, we 
established sepsis endotype scores using a previously 
described and validated combinatorial approach.5,6 We 
assessed 77 840 combinations of genes in the 140-gene 
classifier for classification of the four molecular endotypes 
and identified eight genes that, in specific combinations, 

reliably stratified patients from the discovery cohort as 
sepsis molecular endotypes (figure 6). Gene expression 
ratios were used to classify patients as Mars1, 

Figure 4: Assessment of sepsis molecular endotypes in the second validation 
cohort
Mars sepsis endotypes were assessed for the association with total SOFA scores 
(A; black horizontal line shows median score, top and bottom of box shows 
upper and lower quartiles, whiskers show extremes, and squares show outliers), 
septic shock (B; the proportions of patients with septic shock within each 
endotype are shown at the top of each bar), and Kaplan-Meier survival analysis 
up to day 28 (C). SOFA=sequential organ failure assessment. *p<0·05 vs Mars3. 
†p<0·001 vs Mars3.
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bisphosphoglycerate mutase (BPGM): transporter 2, ATP 
binding cassette subfamily B member (TAP2); Mars2, 
growth arrest and DNA damage inducible alpha 
(GADD45A): polycomb group ring finger 5 (PCGF5); 
Mars3, AHNAK nucleoprotein (AHNAK): programmed 
cell death 10 (PDCD10); and Mars4, interferon induced 
protein with tetratricopeptide repeats 5 (IFIT5): glioma 
tumour suppressor candidate region gene 2 (GLTSCR2; 
also known as NOP53 ribosome biogenesis factor 
[NOP53]) endotypes (appendix p 21). These candidate 
biomarkers for Mars endotype membership also 
accurately classified patients in the two validation cohorts 
(appendix p 21). Collectively, these findings provide 
evidence for these gene combinations as candidate 
molecular biomarkers for the identification of sepsis 
molecular endotypes at ICU admission.

Discussion
We identified four endotypes (Mars1–4) in three hetero-
geneous cohorts of patients with sepsis on the basis of 
blood leucocyte genome-wide expression profiles at ICU 
admission. These sepsis endotypes had pathophysiological 
implications, and were not easily discernible by clinical 
characteristics. Common and distinct biological signatures 
characterised the four sepsis endotypes. The Mars1 
endotype was consistently associated with the highest 
mortality, and the poor prognosis was associated with a 
notable decrease in expression of genes involved in innate 
and adaptive immune functions. By contrast, the relatively 
low-risk Mars3 endotype had increased expression of 
adaptive immune or T-cell functions. Eight genes were 
established as candidate biomarkers for the identification 
of sepsis endotypes at ICU admission, with BPGM and 

Figure 5: Biological interpretation of sepsis molecular endotypes
(A) Volcano plot of differential gene expression in the Mars1–4 groups of the discovery cohort compared with healthy individuals (n=42). Plots integrate differential 
gene expression (discovery cohort vs healthy participants; x-axis) and multiple-comparison adjusted p values for endotypes versus healthy controls (y-axis). Within 
plots, pie charts show the extent of gene expression changes: red slices show significantly overexpressed genes (adjusted p<0·05 and expression more than 1·5 times 
that of the healthy cohort), blue slices show significantly underexpressed genes (adjusted p<0·05 and expression more than 1·5-times decreased compared with the 
healthy cohort), and grey slices show significantly different gene expression (adjusted p<0·05 less than 1.5-times increased or decreased compared with the healthy 
cohort). (B) Ingenuity pathway analysis of unique canonical signalling gene sets per endotype. Canonical signalling pathways were grouped into super pathways. 
Heatmaps show over-representation Fisher’s test probabilities (considering multiple comparison adjusted p<0·01).
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TAP2 transcripts denoting the Mars1 endotype. BPGM 
encodes a small molecule, 2,3-diphosphoglycerate, which 
binds to haemoglobin in red blood cells thereby decreasing 
the oxygen affinity of haemoglobin.32 TAP2 is a member of 
the superfamily of ATP-binding cassette transporters 
involved in antigen presentation.33

Our results provide robustness to the classification of 
adults with poor-prognosis sepsis as Mars1 endotype. 
Risk stratification of patients as Mars2–4 might not be as 
clinically relevant for prognosis, especially the Mars4 
endotype, which had variable mortality occurrence in the 
different cohorts. Furthermore, these findings suggest 
Mars1–4 endotype classification is only partially 
applicable to children with sepsis; only Mars 1, 2, and 4 
groups are applicable to this population.

Improvements in the precision and breadth of omics 
data that can be observed in patients with sepsis have set 
the stage for sophisticated methods to better understand 
these sources of high-dimensional data, especially in 
relation to clinical traits. Through the use of consensus-
based clustering techniques, important substructures in 
disease populations have been identified.10,11,19,21 An 
overarching observation of patient endotypes was their 
association with varying degrees of disease severity and 
mortality. Our findings showed a consistent association 
of the Mars1 sepsis endotype with high mortality across 
the cohorts. These results support those of previous 
studies17,34 in patients with and without sepsis. The study 
by Maslove and colleagues34 investigated neutrophil 
transcriptional profiles from patients with and without 
sepsis and the UK GAinS study17 enrolled patients with 
sepsis due to community-acquired pneumonia, and both 
studies identified two sepsis endotypes with prognostic 
value. Our analysis of the GAinS cohort, applying an 
ensemble of methods for rigorously measuring quality 
and stability of sample partitioning, as well as 
classification by machine learning, showed that a four-
endotype model was favourable in this cohort. Of note, 
the low-risk SRS2 endotype17 was highly correlated to the 
low-risk Mars3 sepsis endotype, both characterised by 
heightened expression of genes predominantly involved 
in adaptive immune functions (mainly T cell). The 
underdeveloped nature of adaptive immunity in 
children,35,36 possibly together with the high proportion of 
shock cases enrolled in the paediatric sepsis cohort we 
analysed,18 might explain, at least in part, the unstable 
classification of paediatric patients with sepsis to the 
Mars3 sepsis endotype.

Although we identified all four endotypes in patients 
with either pneumonia or peritonitis, Mars3 and Mars4 
were much more common in patients with pneumonia 
than those with peritonitis. We did not establish a 
conclusive explanation for this finding. Surgical 
interventions directly before or after ICU admission, 
which are common in patients with peritonitis but not in 
those with pneumonia, could partially influence endotype 
classification.
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Our study has limitations. We enrolled only patients 
with an expected length of ICU stay longer than 24 h, 
mainly to exclude elective (cardiopulmonary) surgical 
patients who routinely stay on the ICU from a few hours 
up to one night. Nonetheless, this selection might impair 
the generalisability of our findings. For the discovery and 
first validation cohorts, only patients with an infection 
likelihood of definite and probable were included. In the 
second validation cohort, infection likelihood was not 
scored, and inclusion of patients with an infection 
likelihood of possible in the discovery cohort might have 
yielded different results. The discovery cohort was 
admitted to a single ICU in the Netherlands, which could 
affect the generalisability of the results. We countered 
this by validating the results in two other cohorts from 
30 different hospitals. The clinical value of the candidate 
endotype biomarkers was only assessed by receiver 
operating characteristic analysis using microarray gene 
expression data. Further analysis of the candidate 
biomarkers with other methods such as reverse 
transcription quantitative PCR in additional cohorts is 
warranted.

Classification of heterogeneous sepsis populations 
into molecular endotypes might in the future provide 
clues for targeted therapies for specific subgroups. The 
poor prognosis sepsis endotype, Mars1, was char
acterised by decreased expression in genes that function 
in both innate and adaptive immune mechanisms 
concomitant to high expression of specific cellular 
metabolic pathways, including haem biosynthesis. 
Glycine accumulation, biosynthesised by serine 
derived from the glycolysis pathway intermediate 
3-phosphoglycerate, fuels haem biosynthesis and in turn 
modulates ATP synthesis via oxidative phosphorylation 
in mitochondria.37 Defects in immunometabolic circuits, 
including glycolysis and oxidative phosphorylation, have 
been shown to underlie immunoparalysis in sepsis.38 
Therefore, these findings suggest that Mars1 might be 
an endotype that is characterised by immunoparalysis 
and poor prognosis. The Mars2 and Mars4 endotypes 
were characterised by high expression of genes involved 
in pro-inflammatory (eg, NF-κB signalling) and innate 
(eg, interferon signalling) immune reactions. Thus, 
Mars2 and Mars4 might be distinct hyperinflammatory 
endotypes. Genes with increased expression in the 
lowest-risk Mars3 endotype were mostly involved in 
adaptive immune or T-cell pathways, supporting the 
hypothesis that intact T-cell functions improve sepsis 
outcome.39

Clinical trials for sepsis seeking to modify the host 
immune response have thus far yielded no beneficial 
effect on outcome.40 A growing body of evidence supports 
the reassessment of clinical trial designs41 to include 
biomarkers reflecting the status of the host response.40,42 
We envisage that endotype classification might provide 
more homogeneity to the notoriously heterogeneous 
population of patients with sepsis: the molecular 

endotypes described here show that sepsis presents 
a heterogeneous syndrome with distinct pathophysio
logical profiles in patients that are not clinically 
distinguishable. By deriving two-gene biomarkers for 
each endotype we provided evidence that molecular 
subtyping of patients with sepsis (using rapid bedside 
PCR-based tests) is feasible in clinical practice, and the 
technology to produce such tests with automated 
generation of results within several hours already 
exists. Future research is required to identify targetable 
pathways within these endotypes that could be 
modulated as part of personalised therapies in subgroups 
of patients with sepsis. This research should involve 
prospective validation and longitudinal analyses of 
biomarkers during the course of the disease to establish 
whether patients can switch endotypes. The next step for 
implementation of personalised medicine in clinical 
sepsis management is to combine the measurement of a 
biomarker set that provides insight into the activity of an 
immunological pathway with a specific intervention 
targeting that pathway. This approach, which has been 
named theranostics, would allow the use of molecular 
biomarkers both for selection of patients for a specific 
therapy and for monitoring thereof.
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