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Abstract

Knowledge distillation is effective to train small and generalisable network mod-
els for meeting the low-memory and fast running requirements. Existing offline
distillation methods rely on a strong pre-trained teacher, which enables favourable
knowledge discovery and transfer but requires a complex two-phase training pro-
cedure. Online counterparts address this limitation at the price of lacking a high-
capacity teacher. In this work, we present an On-the-fly Native Ensemble (ONE)
strategy for one-stage online distillation. Specifically, ONE trains only a single
multi-branch network while simultaneously establishing a strong teacher on-the-
fly to enhance the learning of target network. Extensive evaluations show that
ONE improves the generalisation performance a variety of deep neural networks
more significantly than alternative methods on four image classification dataset:
CIFAR10, CIFAR100, SVHN, and ImageNet, whilst having the computational
efficiency advantages.

1 Introduction

Deep neural networks have gained impressive success in many computer vision tasks [1; 2; 3; 4; 5;
6; 7]. However, the performance advantages are often gained at the cost of training and deploying
resource-intensive networks with large depth and/or width [8; 4; 2]. This leads to the necessary
of developing compact yet still discriminative models. Knowledge distillation [9] is one generic
meta-solution among the others such as parameter binarisation [10; 11] and filter pruning [12]. The
distillation process begins with training a high-capacity teacher model (or an ensemble of networks),
followed by learning a smaller student model which is encouraged to match the teacher’s predictions
[9] and/or feature representations [13; 14]. Whilst promising the student model quality improvement
from aligning with a pre-trained teacher model, this strategy requires a longer training time, significant
extra computational cost and large memory (for heavy teacher) with the need for a more complex
multi-stage training process, all of which are commercially unattractive [15].

To simplify the distillation training process as above, simultaneous distillation algorithms [16; 15]
have been developed to perform online knowledge teaching in a one-phase learning procedure.
Instead of pre-training a static teacher model, these methods train simultaneously a set of (typically
two) student models which learn from each other in a peer-teaching manner. This approach merges
the training processes of the teacher and student models, and uses the peer network to provide the
teaching knowledge. Beyond the original understanding of distillation that requires the teacher model
larger than the student, they allow to improve any-capacity model performance, leading to a more
generically applicable technique. This peer-teaching strategy sometimes even outperforms the teacher
based offline distillation, with the plausible reason that the large teacher model tends to overfit the
training set and finally provides less information additional to the original training labels [15].
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However, existing online distillation has a number of drawbacks: (1) Each peer-student may only
provide limited extra information and resulting in suboptimal distillation; (2) Training multiple
students significantly increases the computational cost and resource burdens; (3) It requires asyn-
chronous model updating with a notorious need of carefully ordering the operations of prediction and
back-propagation across networks. We consider that all the weaknesses are due to the lacking of an
appropriate teacher role in the online distillation processing.

In this work, we propose a novel online distillation method that is not only more efficient (lower
training cost) and but also more effective (higher model generalisation improvement) as compared
to previous alternative methods. In training, the proposed approach constructs a multi-branch
variant of a given target network by adding auxiliary branches, creates a native ensemble teacher
model from all branches on-the-fly, and learns simultaneously each branch plus the teacher model
subject to the same target label constraints. Each branch is trained with two objective loss terms: a
conventional softmax cross-entropy loss which matches with the ground-truth label distributions, and
a distillation loss which aligns to the teacher’s prediction distributions. Comparing with creating a set
of student networks, a multi-branch single model is more efficient to train whilst achieving superior
generalisation performance and avoiding asynchronous model update. In test, we simply convert the
trained multi-branch model back to the original (single-branch) network architecture by removing
the auxiliary branches, therefore introducing no test-time cost increase. In doing so, we derive an
On-the-Fly Native Ensemble (ONE) teacher based simultaneous distillation training approach that
not only eliminates the need for pre-training the teacher model in an isolated stage as the offline
counterpart and further improves the quality of online distillation.

Experiments on four benchmarks (CIFAR10/100, SVHN, and ImageNet) show that the proposed
ONE distillation method enables to train more generalisable target models in a one-phase process
than the alternative strategies of offline learning a larger teacher network or simultaneously distilling
peer students, the previous state-of-the-art techniques for training small target models.

2 Related Work

Knowledge Distillation There have been a number of attempts to transfer knowledge between
varying-capacity network models [17; 9; 13; 14]. Hinton et al. [9] distilled knowledge from a
large pre-trained teacher model to improve the learning of a small target net. The rationale behind
distillation is the introduction of extra supervision from teacher model in target model training,
beyond a conventional supervised learning objective such as the cross-entropy loss subject to labelled
training data. The extra supervision were typically obtained from a pre-trained powerful teacher
model in the form of classification probabilities [9], feature representation [13; 14], or inter-layer
flow (the inner product of feature maps) [18]. Recently, knowledge distillation has been exploited
to distil easy-to-train large networks into harder-to-train small networks [14]. Previously methods
based on knowledge distillation is normally offline training, which requires at least two phases of
training. The recently proposed deep mutual learning [16] overcomes this limitation by conducting
online distillation in one-phase training between two peer student models. Anil et al. [15] further
extended this idea to accelerate large scale distributed neural network training. However, existing
online distillation methods lacks a strong “teacher” model which limits the efficacy of knowledge
discovery and transfer. Like offline counterpart, multiple nets are needed to be trained and therefore
computationally expensive. We overcome both limitations by designing a new variant of online
distillation training algorithm characterised by simultaneously learning a teacher on-the-fly and the
target net and performing batch-wise knowledge transfer in a one-phase procedure.

Multi-branch Architectures Multi-branch based neural networks have been widely exploited in
computer vision tasks [3; 19; 4]. For example, ResNet [4] can be thought of as a category of two-
branch networks where one branch is the identity mapping. Recently, “grouped convolution” [20; 21]
has been used as a replacement of standard convolution in constructing multi-branch net architectures.
These building blocks are often utilised as templates to build deeper networks for achieving stronger
modelling capacity. Whilst sharing the multi-branch principle, our ONE method is fundamentally
different from these above existing methods since our objective is to improve the training quality of
any given target network, rather than presenting a new multi-branch building block. In other words,
our method is a meta network learning algorithm, independent of specific network architectures.
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Figure 1: Overview of online distillation training of ResNet-110 by the proposed On-the-fly Native
Ensemble (ONE). With ONE, we reconfigure the network by adding m auxiliary branches which
share the low-level layers with the target net. Each branch with shared layers makes an individual

model, and their ensemble is used to build the teacher model. During a mini-batch training process,
we employ the teacher to collect knowledge from individual branch models on-the-fly, which in turn

is distilled back to all branches to enhance model learning in a close-loop form. In test, auxiliary
branches can be either discarded or kept based on the deployment efficiency requirement.

3 Knowledge Distillation by On-the-Fly Native Ensemble

We formulate an online distillation training method based on a concept of On-the-fly Native Ensemble
(ONE). For understanding convenience, we take ResNet-110 [4] on CIFAR100 dataset as an example.
It is straightforward to apply ONE to other network architectures. For model training, we often
have access to n labelled training samples D = {(xi, yi)}ni with each belonging to one of C classes
yi ∈ Y = {1, 2, · · · , C}. The network θ outputs a probabilistic class posterior p(c|x,θ) for a sample
x over a class c as:

p(c|x,θ) = fsm(z) =
exp(zc)∑C
j=1 exp(z

j)
, c ∈ Y (1)

where z is the logits or unnormalised log probability outputted by the network θ. To train a multi-class
classification model, we often adopt the Cross-Entropy (CE) measurement between the predicted and
ground-truth label distributions as the objective function:

Lce = −
C∑

c=1

δc,y log
(
p(c|x,θ)

)
(2)

where δc,y is Dirac delta which returns 1 if c is the ground-truth label, and 0 otherwise. With
the CE loss, the network is trained to predict the correct class label in the principle of maximum
likelihood. To further enhance the model generalisation, we concurrently distil extra knowledge from
an on-the-fly native ensemble (ONE) teacher in the training process.

On-the-Fly Native Ensemble Overview of the ONE architecture is depicted in Fig 1. The ONE
consists of two components: (1) m auxiliary branches with the same configuration (Res4X block and
an individual classifier), each of which serves as an independent classification model with shared
low-level stages/layers. This is because low-level features are largely shared across different network
instances which allows to reduce the training cost. (2) A gate component which learn to ensemble all
(m+ 1) branches to build a stronger teacher model. It is constructed by one FC layer followed by
batch normalisation, ReLU activation, and softmax, and uses the same input features as the branches.

Our ONE method is established based on a multi-branch design specially for model training with
several merits: (1) Enable the possibility of creating a strong teacher model without training a set of
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networks at a high computational cost; (2) Introduce a multi-branch simultaneous learning regulari-
sation which benefits model generalisation (Fig 2(a)); (3) Avoid the tedious need for asynchronous
update between multiple networks.

Under the reconfiguration of network, we add a separate CE loss Li
ce to all branches which simulta-

neously learn to predict the same ground-truth class label of a training sample. While sharing the
most layers, each can be considered as an independent multi-class classifier given that all of them
independently learns high-level semantic representations. Consequently, taking the ensemble of all
branches (classifiers) can make a stronger teacher model. One common way of ensembling models is
to average individual predictions. This may ignore the diversity and importance variety of member
models in the ensemble. We therefore learn to ensemble by the gating component as:

ze =

m∑
i=0

gi · zi (3)

where gi is the importance score of the i-th branch’s logits zi, and ze is the logits of the ONE teacher.
In particular, we denote the original branch as i = 0 for indexing convenience. We train the ONE
teacher model with the CE loss Le

ce (Eq (2)) same as the branch models.

Knowledge Distillation Given the teacher logits for each training sample, we distil knowledge
back into all branches in a closed-loop form. For facilitating knowledge transfer, we compute soft
probability distributions at a temperature of T for individual branches and the ONE teacher as:

p̃i(c|x,θi) =
exp(zci /T )∑C
j=1 exp(z

j
i /T )

, p̃e(c|x,θe) =
exp(zce/T )∑C
j=1 exp(z

j
e/T )

, c ∈ Y (4)

where i denotes the branch index, i = 0, · · · ,m, θi and θe refer to the parameters of branch and
teacher models respectively. Higher values of T lead to more softened distributions.

To quantify the alignment between individual branches and the teacher in their predictions, we use
the Kullback Leibler divergence written as:

Lkl =

m∑
i=0

C∑
j=1

p̃e(j|x,θe) log
p̃e(j|x,θe)
p̃i(j|x,θi)

. (5)

Overall Loss Function We obtain the overall loss function for online distillation training by the
proposed ONE method as:

L =

m∑
i=0

Li
ce + Le

ce + T 2 ∗ Lkl (6)

where Li
ce and Le

ce are the conventional CE loss terms associated with the i-th branch and the ONE
teacher, respectively. The gradient magnitudes produced by the soft targets p̃ are scaled by 1

T 2 ,
so we multiply the distillation loss term by a factor T 2 to ensure that the relative contributions of
ground-truth and teacher probability distributions remain roughly unchanged. Following [9], we set
T = 3 in our all experiments.

Model Training and Deployment The model optimisation and deployment details are summarised
in Alg 1. Unlike the two-phase offline distillation training, the target network and the ONE teacher
are trained simultaneously and collaboratively, with the knowledge distillation from the teacher to
the target being conducted in each mini-batch and throughout the whole training procedure. Since
there is only one multi-branch network rather than multiple networks, we only need to carry out the
same stochastic gradient descent through (m + 1) branches, and training the whole network until
convergence, as the standard single-model incremental batch-wise training. There is no complexity
of asynchronous updating among different networks which is required in deep mutual learning [16].

Once the model is trained, we simply remove all the auxiliary branches and obtain the original
network architecture for deployment. Hence, our ONE method does not increase test-time cost.
However, if there is less constraint on computation budget and model performance is more important,
we can deploy it as an ensemble with all trained branches. We denote this ensemble deployment as
ONE-E.
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Algorithm 1 Knowledge Distillation by On-the-Fly Native Ensemble
1: Input: Labelled training data D; Training epochs τ ; Auxiliary branch number m;
2: Output: Trained target CNN model θ0, and auxiliary models {θi}mi=1;
3: /* Training */
4: Initialisation: t=1; Randomly initialise {θi}mi=0;
5: while t ≤ τ do
6: Compute predictions of all individual branches {pi}mi=0 (Eq (1));
7: Compute the teacher logits (Eq (3));
8: Compute the soft targets of all branches and teacher (Eq (4));
9: Distil knowledge from the teacher to all branches (Eq (5));

10: Obtain the final loss function (Eq (6));
11: Update the model parameters {θi}mi=0 by SGD.
12: end
13: /* Testing */
14: Single model deployment: Use θ0;
15: Ensemble deployment: Use {θi}mi=0.

4 Experiments

Datasets. We used four multi-class categorisation benchmark datasets in our evaluations. (1)
CIFAR-10 [22]: A natural images dataset that contains 50,000/10,000 training/test samples drawn
from 10 object classes (in total 60,000 images). Each class has 6,000 images sized at 32×32 pixels.
(2) CIFAR-100 [22]: A similar dataset as CIFAR10 that also contains 50,000/10,000 training/test
images but covering 100 fine-grained classes. Each class has 600 images. (3) SVHN: The Street
View House Numbers (SVHN) dataset consists of 73,257/26,032 standard training/text images and
an extra set of 531,131 training images. We used all the training data without data augmentation
as [23; 24]. (4) ImageNet: The 1,000-class ImageNet dataset from ILSVRC 2012 [25] provides 1.2
million images for training, and 50,000 for validation.

Performance metric. We adopted the common top-n (n=1, 5) classification error rate. For
computational cost of model training and test, we used the criterion of floating point operations
(FLOPS). For any network trained by ONE, we report the average performance of all branch outputs
with standard deviation.

Experiments setup. We implemented all networks and model training procedures in Pytorch. For
all datasets, we adopted the same experimental settings as [26; 20] for making fair comparisons. We
used the SGD with Nesterov momentum and set the momentum to 0.9, following a standard learning
rate schedule that drops the rate from 0.1 to 0.01 halfway (50%) through training, and to 0.001 at
75%. For the training budget, CIFAR/SVHN/ImageNet used 300/40/90 epochs respectively. We use
three-branch ONE (m = 2) design unless stated otherwise.

Method CIFAR10 CIFAR100 SVHN Params
ResNet-32 [4] 6.93 31.18 2.11 0.5M
ResNet-32 + ONE 5.99±0.05 26.61±0.06 1.83±0.05 0.5M
ResNet-110 [4] 5.56 25.33 2.00 1.7M
ResNet-110 + ONE 5.17±0.07 21.62±0.26 1.76±0.07 1.7M
ResNeXt-29(8×64d) [20] 3.69 17.77 1.83 34.4M
ResNeXt-29(8×64d) + ONE 3.45±0.04 16.07±0.08 1.70±0.03 34.4M
DenseNet-BC(L=190, k=40) [27] 3.32 17.53 1.73 25.6M
DenseNet-BC(L=190, k=40) + ONE 3.13±0.07 16.35±0.05 1.63±0.05 25.6M

Table 1: Evaluation of our ONE method on CIFAR and SVHN. Metric: Error rate (%).

4.1 Evaluation of On-the-Fly Native Ensemble

Results on CIFAR and SVHN. Table 1 compares top-1 error rate performances of four varying-
capacity state-of-the-art network models trained by the conventional and our ONE learning algorithms.

5



Method Top-1 Top-5
ResNet-18 [4] 30.48 10.98
ResNet-18 + ONE 29.45±0.23 10.41±0.12

Method Top-1 Top-5
ResNeXt-50 [20] 22.62 6.29
ResNeXt-50 + ONE 21.85±0.07 5.90±0.05

Table 2: Evaluation of our ONE method on ImageNet. Metric: Error rate (%).

We have these observations: (1) All different networks benefit from the ONE training algorithm,
particularly for small models achieving larger performance gains. This suggests the generic superiority
of our method for online knowledge distillation from the on-the-fly teacher to the target model. (2) All
individual branches have similar performances, indicating that they have made sufficient agreement
and exchanged respective knowledge to each other well through the proposed ONE teacher model
during training.

Results on ImageNet. Table 2 shows the comparative performances on the 1000-classes ImageNet.
It is shown that the proposed ONE learning algorithm still yields more effective training and more
generalisable models in comparison to vanilla SGD. This indicates that our method can be generically
applied to large scale image classification settings.

Target Network ResNet-32 ResNet-110
Metric Error (%) TrCost TeCost Error (%) TrCost TeCost
KD [9] 28.83 6.43 1.38 N/A N/A N/A
DML [16] 29.03±0.22∗ 2.76 1.38 24.10±0.72 10.10 5.05
ONE 26.61±0.06 2.28 1.38 21.62±0.26 8.29 5.05

Table 3: Comparison with knowledge distillation methods on CIFAR100. “*”: Reported results.
TrCost/TeCost: Training/test cost, in unit of 108 FLOPs. Red/Blue: Best and second best results.

4.2 Comparison with Distillation Methods

We compared our ONE method with two representative distillation methods: Knowledge Distillation
(KD) [9] and Deep Mutual Learning (DML) [16]. For the offline competitor KD, we used a large
network ResNet-110 as the teacher and a small network ResNet-32 as the student. For the online
methods DML and ONE, we evaluated their performance using either ResNet-32 or ResNet-110 as
the target model. We observed from Table 3 that: (1) ONE outperforms both KD (offline) and DML
(online) distillation methods in error rates, validating the performance advantages of our method over
alternative algorithms when applied to different CNN models. (2) ONE takes the least model training
cost and the same test cost as others, and therefore leading to the most cost-effective solution.

Network ResNet-32 ResNet-110
Metric Error (%) TrCost TeCost Error (%) TrCost TeCost
Snopshot Ensemble [28] 27.12 1.38 6.90 23.09∗ 5.05 25.25
2-Net Ensemble 26.75 2.76 2.76 22.47 10.10 10.10
3-Net Ensemble 25.14 4.14 4.14 21.25 15.15 15.15
ONE-E 24.63 2.28 2.28 21.03 8.29 8.29
ONE 26.61 2.28 1.38 21.62 8.29 5.05

Table 4: Comparison with ensembling methods on CIFAR100. “*”: Reported results. TrCost/TeCost:
Training/test cost, in unit of 108 FLOPs. Red/Blue: Best and second best results.

4.3 Comparison with Ensembling Methods

Table 4 compares the performances of our multi-branch (3 branches) based model ONE-E and
standard ensembling methods. It is shown that ONE-E yields not only the best test error but also
allows for most efficient deployment with lowest test cost. These advantages are achieved at second
lowest training cost. Whilst Snapshot Ensemble takes the least training cost, its generalisation
performance is unsatisfied with a notorious drawback of highest deployment cost.
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Configuration Full W/O Online Distillation W/O Sharing Layers W/O Gating
ONE 21.62±0.26 24.73±0.20 22.45±0.52 22.26±0.23
ONE-E 21.03 21.84 20.57 21.79

Table 5: Model component analysis on CIFAR100. Network: ResNet-110.

It is worth noting that ONE (without branch ensemble) already outperforms comprehensively 2-Net
Ensemble in terms of error rate, training and test cost. Comparing 3-Net Ensemble, ONE is able to
approach the generalisation performance whilst having even larger model training and test efficiency
advantages.
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Figure 2: Effect of online distillation. Network: ResNet-110.

4.4 Model Component Analysis

Table 5 shows the benefits of individual ONE components on CIFAR100 using ResNet-110. We have
these observations: (1) Without online distillation (Eq (5)), the target network suffers a performance
drop of 3.11% (24.73-21.62) in test error rate. This performance drop validates the efficacy and
quality of ONE teacher in terms of performance superiority over individual branch models. This can
be more clearly seen in Fig 2 that ONE teacher fits better to training data and generalises better to test
data. Due to the closed-loop design, ONE teacher also mutually benefits from distillation, reducing
its error rate from 21.84% to 21.03%. With distillation, the target model effectively approaches
ONE teacher (Fig 2(a) vs. 2(b)) on both training and test error performance, indicating the success
of teacher knowledge transfer. Interestingly, even without distillation, ONE still achieves better
generalisation than the vanilla algorithm. This suggests that our multi-branch design brings some
positive regularisation effect by concurrently and jointly learning the shared low-level layers subject
to more diverse high-level representation knowledge. (2) Without sharing the low-level layers
not only increases the training cost (83% increase), but also leads to weaker performance (0.83%
error rate increase). The plausible reason is the lacking of multi-branch regularisation effect as
indicated in Fig 2(a). (3) Using average ensemble of branches without gating (Eq (3)) causes a
performance decrease of 0.64%(22.26-21.62). This suggests the benefit of adaptively exploiting the
branch diversity in forming the ONE teacher.

Branch # 1 2 3 4 5
Error (%) 31.18 27.38 26.68 26.58 26.52

Table 6: Benefit of adding branches in ONE on CIFAR100. Network: ResNet-32.

The main experiments using 3 branches in ONE. Table 6 shows that ONE scales well with more
branches and the ResNet-32 model generalisation improves on CIFAR100 with the number of
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branches added during training hence its performance advantage over the independently trained
network (31.18% error rate).
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Figure 3: Robustness test of ResNet-110 solutions found by ONE, DML, and vanilla training
algorithms on CIFAR100. Each curve corresponds to a specific perturbation direction v.

4.5 Model Generalisation Analysis

We aim to give insights on why ONE trained networks yield better generalisation. A few previous
studies [29; 30] show that the width of a local optimum is related to model generalisation. The
general understanding is that, the surfaces of training and test error largely mirror each other and
it is favourable to converge the models to broader optima. As such, the trained model remains
approximately optimal even under small perturbations in test time. Next, we exploited this criterion
to examine the quality of model solutions θv, θm, θo discovered by the vanilla, DML and ONE
training algorithms respectively. This analysis was conducted on CIFAR100 using ResNet-110.

Specifically, to test the width of local optimum, we added small perturbations to the solutions as
θ∗(d,v) = θ∗ + d · v, ∗ ∈ {v,m, o} where v is a uniform distributed direction vector with a unit
length, and d ∈ [0, 5] controls the change magnitude. At each magnitude scale, we further sampled
randomly 5 different direction vectors to disturb the solutions. We then tested the robustness of all
perturbed models in training and test error rates. The training error is quantified as the cross-entropy
measurement between the predicted and ground-truth label distributions. We observed in Fig 3 that:
(1) The robustness of each solution against parameter perturbation appears to indicate the width of
local optima as: θv < θm < θo. That is, ONE seems to find the widest local minimum among three
and therefore more likely to generalise better than others. (2) Comparing with DML, vanilla and
ONE found deeper local optima with lower training errors. This indicates that DML may probably
get stuck in training, therefore scarifying the vanilla’s exploring capability for more generalisable
solutions to exchange the ability of identifying wider optima. In contrast, our method further improves
the capability of identifying wider minima over DML whilst maintaining the original exploration
quality. (3) For each solution, the performance changes on training and test data are highly consistent,
confirming the earlier observation [29; 30].

5 Conclusion

In this work, we presented a novel On-the-fly Native Ensemble (ONE) strategy for improving deep
network learning through online knowledge distillation in a one-stage training procedure. With ONE,
we can more discriminatively learn both small and large networks with less computational cost,
beyond the conventional offline alternatives that are typically formulated to learn better small models
alone. Our method is also superior over existing online counterparts due to the unique capability of
constructing a high-capacity online teacher to more effectively mine knowledge from the training
data and supervise the target network concurrently. Extensive experiments show that a variety of
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deep networks can all benefit from the ONE approach on four image classification benchmarks.
Significantly, smaller networks obtain more performance gains, making our method specially good
for low-memory and fast execution scenarios.
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