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Abstract. The size of publicly available music data sets has grown
significantly in recent years, which allows training better classification
models. However, training on large data sets is time-intensive and cum-
bersome, and some training instances might be unrepresentative and
thus hurt classification performance regardless of the used model. On
the other hand, it is often beneficial to extend the original training data
with augmentations, but only if they are carefully chosen. Therefore,
identifying a “smart” selection of training instances should improve per-
formance. In this paper, we introduce a novel, multi-objective framework
for training set selection with the target to simultaneously minimise the
number of training instances and the classification error. Experimen-
tally, we apply our method to vocal activity detection on a multi-track
database extended with various audio augmentations for accompaniment
and vocals. Results show that our approach is very effective at reducing
classification error on a separate validation set, and that the resulting
training set selections either reduce classification error or require only a
small fraction of training instances for comparable performance.

Keywords: Vocal detection · Evolutionary multi-objective training set
selection · Data augmentation.

1 Introduction

The goal of music classification is to assign music data to categories such as music
genres, emotions, harmonic properties, and instruments. To build a model for
classification, a training set containing music examples with manually annotated
labels is normally required. The size of this training set is crucial – if it is too
small, overfitting occurs, and generally prediction performance tends to increase
with more training data. While the available music data has grown in recent
years (for example from 215 music tracks for genre recognition [10] to 106,574
pieces in the Free Music Archive [8]), labels are still often not available in great
quantity, since annotation requires too much human effort. This is also the case
for vocal activity detection [28].
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Because of this label scarcity problem, data augmentation is often used to in-
crease the number of annotated music examples [13]. In data augmentation, new
training instances are created from existing ones by introducing variations, but
keeping the already existing annotation. For example, annotated music tracks
for genre classification can be amplified to different loudness levels, which should
not affect the genre labelling, and all variants included in the training set. Due to
its popularity, frameworks for music data augmentation such as the MATLAB-
based Audio Degradation Toolbox [16] and the muda Python package for Mu-
sical Data Augmentation [18] were developed to allow for an easy application
of various perturbations like adding noise or pitch shifting. However, data aug-
mentation can also hurt performance when the wrong assumptions about the
classification problem are made and as a result, the augmentation rules are set-
up incorrectly [27].

The arrival of big data to music data analysis also exacerbated another prob-
lem: Complex classification models that work well with very large data sets,
such as deep neural networks, are often hard to interpret for musicologists and
users, who may wish to understand the defining properties of the different mu-
sical categories the model is operating with. Model prototyping also becomes
more difficult, since feedback regarding model performance is obtained only in-
frequently due to long training times. Most importantly, corrupted or otherwise
unrepresentative instances in the training set common in large datasets can un-
knowingly impact performance negatively, which are hard to find in these large
datasets. Usually, models are trained on the full dataset, assuming instances
are independent and identically distributed, so that the presence of such outlier
instances effectively imposes an upper bound on the attainable performance,
regardless of model choice.

Instead of training from more and more data regardless of its quality and
applying a fixed set of augmentations, one may thus consider to focus on the
identification of smart data, i.e., observations which are particularly useful to
extract the most relevant properties of the target class. In this paper, we therefore
propose a novel multi-objective evolutionary framework, which optimises the
selection of the training instances and augmentations for a dataset to find the
best solutions trading off the number of required training instances and the
resulting classification performance.

As an application scenario to validate our approach, we have selected vocal
detection as a prominent and well-researched task in music classification, and
previous methods for the task are discussed in Section 2.1. Related work on train-
ing set selection is addressed in Section 2.2. In Section 3, we briefly introduce the
backgrounds of multi-objective optimisation and outline our approach. Section
4 deals with the setup of our experimental study. The results are discussed in
Section 5. We conclude with the most relevant observations and discussion of
future work in Section 6.
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2 Related Work

We review related work in the field of vocal activity detection and in evolutionary
optimisation for training set selection in Sections 2.1 and 2.2.

2.1 Vocal Detection

Earlier approaches for singing voice detection mostly involve heavy feature engi-
neering to enable classification [17, 25, 24], which yields moderate performance.
However, attempting to further improve accuracy by refining the features suffers
from diminishing returns, since it becomes harder to manually specify exactly
which aspects of the audio data are relevant for classification.

More recently, approaches based on neural networks [27, 26] have been pro-
posed that promise to reduce the required feature engineering and instead learn
the relevant features directly from the data. While this avoids performance bot-
tlenecks due to suboptimal feature design and can theoretically deliver high
accuracy, it typically requires larger amounts of labelled data. Since publicly
available, labelled data for singing voice detection are limited [28], ways to pre-
vent overfitting were proposed alongside these models: Schlüter [26] applied a
convolutional neural network (CNN) on weakly labelled audio excerpts in an
attempt to extend the amount of usable data for training, obtaining improved
performance compared to previous work, but also finding that the network also
classifies simple sinusoids with pitch fluctuations as singing, which indicates the
concept of a singing voice was not learned correctly. Similarly, a joint vocal sep-
aration and detection was employed by [28] aiming to exploit both singing voice
separation datasets for vocal activity detection. Schlüter et. al [27] explored the
benefit of different data augmentation techniques that among other aspects vary
pitch and tempo of the audio excerpts. The results were mixed – some augmen-
tations were helpful, but some were also detrimental to performance, suggesting
that both data augmentation and feature extraction require prior knowledge to
decide what the classifier outputs should be invariant to, and performance de-
pends on the accuracy of this knowledge. Furthermore, all mentioned approaches
can suffer from outliers in the training data. We thus aim to automate the selec-
tion of representative training instances as well as helpful data augmentations to
increase vocal detection performance, which enables more robust classification
models.

2.2 Multi-Objective Evolutionary Optimisation and
Training Set Selection

Multi-objective optimisation evaluates solutions with regard to several optimisa-
tion criteria (see Section 3.1). In that case, many solutions become incomparable.
As an example, consider a classification model which is fast but has a higher clas-
sification error, and another one which is slow, but has a lower error. The first
one is better with regard to runtime, the second one with regard to classifica-
tion error. However, it is still possible to create models which are both faster
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and have higher classification performance, but it becomes harder to identify
the set of trade-off solutions. In this context, evolutionary algorithms (EA) [2]
were considered [7]. EAs are often applied for such complex optimisation tasks,
where a large search space makes it challenging to find a sufficiently good solu-
tion in acceptable time, and where other methods such as gradient descent can
not be applied (e.g. for objective functions which are not differentiable or are
multi-modal and have many local optima).

In music research, EAs were applied for instance for music composition [20]
or feature selection [9]. A multi-objective EA with the target to minimise the
number of selected features and the classification error was presented in [29].
EAs have proven their ability to generate new features for music classification
by exploring nearly unlimited search spaces of combinations of different trans-
forms and mathematical operations [22, 19, 15]. EAs have also been successfully
applied for training set augmentation in bioinformatics, where the generation of
new training data may be very expensive [11, 32], and for training set selection
(TSS) [6]. In [1], TSS was explicitly formulated as a multi-objective problem of
simultaneously maximising the classification accuracy and the reduction in train-
ing set size. Although training set selection was already applied for classification
of acoustical events [21], we are not aware of any studies on multi-objective TSS
for classification of music data.

3 Approach

Our approach consists of leveraging an evolutionary, multi-objective optimisa-
tion method, which is described in Section 3.1, and applying it to training set
selection, as shown in Section 3.2.

3.1 Multi-Objective Evolutionary Optimisation

In the following, we formally introduce the problem of multi-objective optimi-
sation with a focus on evolutionary methods. Let X be the decision or search
space and f : X 7→ Rd the vector-valued objective function with d ≥ 2. F =
{f(x) : x ∈ X} is called the objective space. The goal of multi-objective optimi-
sation is to simultaneously minimise all d dimensions f1, ..., fd of f (we provide
here a short definition without constraints, for the latter see [33]).

A solution x1 ∈ X dominates another solution x2 ∈ X (denoted with x1 ≺
x2), iff3

∀i ∈ {1, ..., d} : fi(x1) ≤ fi(x2) and

∃k ∈ {1, ..., d} : fk(x1) < fk(x2).
(1)

Solutions x1 and x2 are incomparable, when neither x1 ≺ x2 nor x2 ≺ x1.
Incomparable solutions, which are not dominated by any other solution found
so far, are called the non-dominated front.

3 For simplicity, we describe only the minimisation of objective functions, since max-
imisation can be achieved by minimising the function with its sign reversed.
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When a multi-objective optimisation algorithm outputs the non-dominated
front x1, ...,xN , it may be still required to evaluate solutions individually, for
example, to select better solutions after evolutionary mutation. This can be done
by means of the dominated hypervolume, or S-metric [34], which is estimated as
follows. Let r ∈ F be a reference point in the objective space, which corresponds
to the worst possible solution (e.g., 1 for the dimension which corresponds to
the classification error). Then we define the dominated hypervolume as:

H(x1, ...,xN ) = vol

(
N⋃
i=1

[xi, r]

)
, (2)

where vol(·) describes the volume in Rd, and [xi, r] the hypercube spanned
between xi and r. Generally speaking, the dominated hypervolume of a given
front consists of an infinite number of all theoretically possible solutions which
are always dominated by solutions in this front. An individual hypervolume
contribution of a solution xi is then estimated as the dominated hypervolume of
the front without this solution:

∆H(xi) = H(x1, ..,xN )−H(x1, ..xi−1,xi+1, ..,xN ). (3)

S-metric selection evolutionary multi-objective algorithm (SMS-EMOA) [3]
generates exactly one solution in each iteration. Then, all solutions are assigned
to a hierarchy of non-dominated fronts, and the solution from the worst front
with the smallest ∆H(xi) is removed from the population. For more details, we
refer to [3].

3.2 Application to Training Set Selection

In this study, we apply SMS-EMOA to evolutionary multi-objective training
set selection (EMO-TSS): We simultaneously minimise a) the ratio fir := N

I
between the number of selected instances N from the training set and its total
number of instances I and b) the balanced classification error fe achieved with a
classification model trained on the given selection of instances which is computed
on a separate validation set as the average of misclassification rates for positive
and negative instances in binary classification. Each TSS solution is represented
by a binary vector of length I called representation vector, where a one at the i-
th position means that the i-th instance is used to train the classification model.
Note this also supports optimising the selection of data augmentations when
they are included as additional instances in the training set.

In the beginning of the evolutionary loop, the instances are selected for each
individual with a given probability p. Using all instances (p = 1) would decrease
the diversity of the initial population and thus increase the optimisation time.
Additionally, selecting too few instances for each individual would increase the
danger that “smart” instances not initially contained in the population are never
found, so we set p = 0.5. To encourage the search for solutions with few training
instances, we set a higher probability to remove ones than to add ones during
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mutation. For each position i of a new offspring solution, the i-th bit is flipped
from 1 to 0 with probability w1/N . The bit is flipped from 0 to 1 with probability
w2 · (w1/N). We set these parameters so that solutions with only few training
instances are explored more thoroughly (see Section 4.3).

4 Experimental Setup

In the following, we experimentally validate our proposed multi-objective train-
ing data selection algorithm for music classification tasks for the example of
vocal activity detection.

4.1 Data Sets

We have selected MedleyDB [4] as a data set for vocal detection, as it con-
tains multitrack audio recordings allowing for the application of individual data
augmentation strategies for vocals and accompaniment. From the original 122
multi-track recordings, we removed 8 tracks due to source interference in the
recordings4.

To accelerate feature extraction and classification, we extracted 10 snippets5

of 3 seconds duration from each track, equally distributed along the track length.
Based on the instrument activation labels, three variants of each snippet were
created that contain only vocals, only accompaniment, and a mix of both in case
vocals and accompaniment were available, respectively. For each accompaniment
snippet, we additionally created 4 versions whose signal amplitude was reduced
to 80%, 60%, 40% and 20% and 8 further variants by applying the following
degradations from the Audio Degradation Toolbox [16]: live recording, strong
compression, vinyl recording, four noises with signal-to-noise ratio (SNR) of 20
dB (pink, blue, violet, white), and adding a sound ‘OldDustyRecording’ with a
SNR of 10 dB. For vocal snippets, we also created 4 quieter, but no degraded
versions, because we restricted the focus of this study to recognise “clean” vo-
cals along varied accompaniment sounds. For audio snippets from time intervals
which contained both accompaniment and vocals, we created mixes of the vocal
snippet with the original accompaniment snippet and all augmented variants of
accompaniment snippets. Together with non-mixed vocal and accompaniment
snippets, this strategy leads to an overall number of 22,953 snippets with an-
notations. Naturally, the search space for EMO-TSS can be almost arbitrarily
extended using further augmentations, but the above augmentations serve to
demonstrate the potential of our approach.

4 Grants-PunchDrunk contained vocals in the “sampler” stem, and for the follow-
ing tracks, vocals could be heard in non-vocal stems: ClaraBerryAndWooldog-
TheBadGuys, Debussy-LenfantProdigue, Handel-TornamiAVagheggiar, Mozart-
BesterJungling, Mozart-DiesBildnis, Schubert-Erstarrung, Schumann-Mignon.

5 As data instances are represented by audio snippets in our study, we use both terms
synonymously throughout this paper.
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In our experimental setup, we distinguish between three data sets. A training
set is used by EMO-TSS to create a representation vector (see Section 3.1) and
to choose the snippets used for training the vocal activity classifier. A validation
set is used to evaluate solutions (trained classification models) created by EMO-
TSS. A test set is used for the independent evaluation of the best solutions found
after the evolutionary optimisation. From 114 MedleyDB tracks, one fourth was
used as a training set, one half as a validation set, and one fourth as a test
set. This partitioning was done three times similarly to a 3-fold cross-validation
approach to estimate the variability of results depending on dataset selection.

As the goal of our training set selection was to identify the most relevant
snippets and their augmentations for the detection of vocals in “usual” non-
augmented recordings, augmented snippets were used only in the training set
and not in validation and test sets. To evaluate the impact of the set of auto-
matically selected data augmentations, we introduce two selections as a baseline
for comparison: the first one (“pure snippets”) uses all original snippets of the
training set without augmentations, and the second one (“all snippets”) uses all
snippets including their augmented variants.

4.2 Features

As a first step before feature extraction, we convert the input audio to mono
sampled at 22050 Hz.

As the first feature set, we use a vector of 13 Mel Frequency Cepstral Coef-
ficients (MFCCs) [23], which were developed for speech recognition and should
therefore facilitate vocal detection well. These features were computed individ-
ually for the middle of the attack interval, onset frame, and the middle of the
release interval (extracted with an onset detection function from MIR Tool-
box [12]), leading to a 39-dimensional feature vector for each snippet. We dis-
tinguish between these three time periods, because instrument and vocal timbre
may significantly change during the time a note is played; for example, in [14] it
was shown that non-harmonic properties in the attack phase may be very helpful
to identify instruments, and the frames with a stable sound between two onsets
performed well for genre recognition in [31].

As the second feature set, we use a Log-Mel-Spectrogram (LMS). We compute
the magnitude spectrogram resulting from a 1024-point FFT with a hop size
of 512, which is then converted to a Mel-frequency spectrogram using a Mel
filterbank with 40 bands ranging from 60 to 8000 Hz. Finally, we normalise the
features x by applying log-normalisation: x → log(1 + x). To reduce feature
dimensionality, we then downsample the spectrogram using mean-pooling across
time frames with a non-overlapping window of size four, after discarding time
frames at borders so that the number of time frames is divisible by four. The
result is a F ×T feature matrix with F = 40 frequencies and T = 32 time frames
for a total of 1280 features.

We omitted the usage of larger audio feature sets, since they could lead to
stronger overfitting to the validation set, especially when exploring extremely
sparse solutions that use only a few instances for training. However, given a
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sufficiently large validation set and training time, we expect our method to work
in these cases as well. Furthermore, instances important for vocal recognition
performance should still be preferred over others rather independently of the
feature set used.

4.3 Classification Models and Training Set Selection

We applied a random forest (RF) [5] as our classification method, as it is fast,
has only few parameters, and is robust to overfitting, which keeps the meta-
optimisation feasible with regards to computing time. For the same reasons, we
refrained from the use of deep neural networks in this study.

However, we investigated to which extent the optimised training set selection
obtained when using the simple RF classifier can also improve classification
performance when it is used to train more complex classifiers. For this, we first
optimised the training set selection using the RF classifier, serving as a fast
surrogate model for a larger neural network we reimplemented from previous
work for vocal detection [27]. This network is trained with the same settings on
all, pure and the optimised EMO-TSS training set obtained using the RF, using
the downsampled Log-Mel-Spectrogram features from Section 4.2.

However, we did not achieve improvements in classification performance com-
pared to simply using pure snippets. We hypothesise that this is because of the
drastically different approach neural networks employ for classification compared
to RF, and that the EMO-TSS optimisation adapts closely to the behaviour of
the used classification model. However, note that, in principle, our EMO-TSS
approach can still be used to potentially improve the performance of this neu-
ral network by using it directly as part of the evolutionary meta-optimisation,
although this significantly increases the required computing time. We leave inves-
tigations with larger models and suitable smaller surrogate models that behave
sufficiently similar during evolutionary optimisation for future work.

For SMS-EMOA, we found the following parameters to work well after a pre-
liminary study: initialisation with approximately one half of randomly selected
instances, a population size of 40, w1 = 0.05, and w2 = 0.2. The number of gen-
erations was set to 3000, and each experiment was repeated 15 times for each
fold. Please note that an exhaustive search for the optimal settings was not the
target of this study and could be addressed in future work.

5 Results and Discussion

We analyse the results of training selection in Section 5.1 and investigate the
properties of the chosen instances and augmentation strategies in Section 5.2.

5.1 Number of Selected Snippets and Classification Performance

Figure 1 plots the optimisation progress for the first cross-validation fold, av-
eraged across 15 statistical experiment repetitions. In Fig. 1 (a), we observe
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a strong increase in hypervolume over 3000 generations for the validation set.
This is due to starting with a rather “poor” solution with approximately half of
all instances, so that there is enough room for improvement by removing many
training instances. In Fig. 1 (b), the hypervolume for the test set also strongly
increases, but remains below the hypervolume for the validation set because of
higher test classification errors. In Fig. 1 (c), the progress of the lowest error f̂e
among non-dominated solutions for the validation set is plotted, again averaged
across 15 repetitions. Similar to the change of hypervolume with an increasing
evaluation number, the optimisation progress is faster at the beginning and slows
down significantly around the second third of evaluations. Fig. 1 (d) presents the

progress of f̂e for the test set. As expected, the test error does not fall as rapidly
as the validation error; the difference in values for the first generation is ex-
plained by a varying distribution of music tracks between the validation and
test sets. Importantly, we do not observe significant overfitting on the validation
set, which would be visible as an increasing test error.

Figure 2 shows the non-dominated front after all EMO-TSS experiments for
fold 1. For the validation set, the solutions are marked with rectangles. Diamonds
correspond to the same solutions evaluated for the test set: the ratio of selected
instances remains the same, but the classification error increases slightly due to
overfitting to the validation set. This increase is much more variable for smaller
ratios, because the model parameters can then vary more strongly depending on
the particular training set selection. Note that we assign a classification error of
1 to extremely sparse training set selections with only vocal or only non-vocal
snippets and do not show them here. The solution with the smallest validation
error fe = 0.2055 contains 11.73% of all snippets (714 snippets), but when we
further reduce the number of selected snippets to 434 snippets, fe increases only
moderately to 0.2125, indicating diminishing returns when adding more snippets
and an effective optimisation on the validation set.

Table 1 lists the results after optimisation. To measure the effect of EMO-
TSS, we compare the results to two baselines “pure snippets” and “all snippets”,
cf. Section 4.1. With “all snippets”, the ratio of selected instances f̂ir = 1, and
with “pure snippets” f̂ir is equal to the number of non-augmented training snip-
pets divided by the number of all snippets (including augmented ones). The
complete training set with all augmentations contains 6088 snippets for fold 1,
5477 snippets for fold 2, and 5494 snippets for fold 3. We make several observa-
tions in the following.

Observation 1–comparison of baselines: Extension of pure snippets
with all augmentations leads to an increase of the error in all cases: for both
validation and test sets and both feature vectors. In other words, uncontrolled
extension of the training set does not lead to an increase of classification per-
formance, but even to its reduction. That not every augmentation is equally
useful was also noted in work on manually selected augmentation strategies for
singing voice detection [27] and demonstrates the data augmentation is not al-
ways straightforward to apply correctly.
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Fig. 1. Optimisation progress and 95% confidence intervals over 3000 evaluations for
all statistical experiment repetitions: mean dominated hypervolume for the validation
set (a) and the test set (b); mean of the smallest achieved error on the validation set (c)
and the test set (d).

Observation 2–EMO-TSS reduces classification error or the num-
ber of selected instances: For all folds and features, our approach either im-
proves the test performance f̂e(T ) compared to baseline methods (e.g., f̂e(T ) =
0.2667 for the 1st fold using MFCCs, smaller than 0.2848 with pure snippets
and 0.3489 with all snippets), or reaches similar performance, but using 39.5%
less instances than the “Pure” baseline on average. This supports our initial
hypothesis that many training instances can be unrepresentative or do not pro-
vide much new information to the classifier. A reduction in training instances
can be beneficial for gaining an understanding of the classification problem and
for example when using non-parametric models (e.g. k-nearest neighbour) whose
storage space grows with the amount of training data.



Multi-Obj. Selection of Data Instances & Augmentations for Vocal Detection 11

Fig. 2. Non-dominated front for the first fold, on the validation set (rectangles) and
on the test set (diamonds).

Observation 3–comparison of validation errors: Using our proposed
method, both the number of selected instances and the validation error is con-
sistently reduced across all features and folds compared to the baseline methods,
e.g., from {0.2411, 0.2843} to 0.2055 for fold 1 using MFCCs and from {0.1572,
0.1916} to 0.1334 using LMS. This means that EMO-TSS is very effective at
optimising the training set selection to achieve good validation performances.

Observation 4–comparison of EMO-TSS validation and test er-
rors: When applying TSS, the most critical risk is that its selection might lead
to a model with good validation performance, but worse test set performance
due to overfitting. Indeed, test errors sometimes increase slightly in comparison,
but always remain approximately as good as the baseline test errors. To further
reduce overfitting towards the validation set in the future, we suggest using a
larger and more representative validation set by integrating multiple databases
with vocal annotations.

Observation 5–comparison of f̃e(T ) after EMO-TSS to baselines: From
all non-dominated solutions returned by EMO-TSS for an individual fold, we
identified the one with the smallest test error f̃e(T ). Among all combinations of

folds and features, this error is lower than the test error f̃e(T ) of the best baseline
in almost all cases. This means that it is possible to obtain reduced test errors
also after long-iterated TSS for the validation set. However, it is not possible to
directly identify this “oracle” solution when the annotations of the test set are
unseen, because the solution with the smallest test error is not the same as the
solution with the smallest validation error, so this is a more theoretical result.
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Table 1. Impact of our approach on classification performance. F corresponds to
the fold, f̂ir to the ratio of selected instances for the non-dominated solution with
the smallest classification error across all statistical repetitions, f̂e(V ) and f̂e(T ) to

the classification error of the same solution on the validation and test set, and f̃e(T )
denotes the smallest test error across all final non-dominated solutions. Note that
f̂e(T ) = f̃e(T ) for baseline methods “Pure” and “All” without training set selection.
The best validation and test errors for each fold are marked with bold font.

F Features Snippets f̂ir f̂e(V ) f̂e(T ) f̃e(T )

1

Pure 0.0907 0.2411 0.2848 0.2848
MFCCs All 1.0000 0.2843 0.3489 0.3489

EMO-TSS 0.1173 0.2055 0.2667 0.2433
Pure 0.0907 0.1572 0.1322 0.1322

LMS All 1.0000 0.1916 0.1903 0.1903
EMO-TSS 0.0866 0.1334 0.1679 0.1281

2

Pure 0.0893 0.2752 0.3265 0.3265
MFCCs All 1.0000 0.2867 0.3297 0.3297

EMO-TSS 0.0416 0.2127 0.3166 0.2959
Pure 0.0893 0.1860 0.1971 0.1971

LMS All 1.0000 0.2609 0.3028 0.3028
EMO-TSS 0.0310 0.1339 0.2199 0.2023

3

Pure 0.0885 0.2937 0.2592 0.2592
MFCCs All 1.0000 0.3068 0.2782 0.2782

EMO-TSS 0.0220 0.2506 0.2700 0.2265
Pure 0.0885 0.1642 0.1800 0.1800

LMS All 1.0000 0.2495 0.2049 0.2049
EMO-TSS 0.0284 0.1432 0.1801 0.1562

Observation 6–comparison of folds: The errors are fairly different across
all folds, for instance, the smallest test errors are achieved for fold 3. This is ex-
plained by a rather small size of MedleyDB: test sets contained snippets of 28
tracks (one fourth of 114 tracks).

5.2 Properties of Selected Instances

A further analysis may be done with regards to categories of selected snippets
in solutions with the smallest classification errors. Can we recommend applying
some particular augmentations generally, not just to specific instances? For this
we use a measure describing the “popularity” of a set of snippets, obtained by
dividing the frequency of their occurrence in the optimised training set selection
by the frequency of their occurrence in the full training set. Table 2 shows this
measure for different snippet categories computed for solutions with the smallest
fe. For vocal snippets on fold 1 with MFCCs as an example, this yields 1.028 ≈
0.1149
0.1117 , because the proportion of vocal snippets is 0.1117 in the complete training
set (680 of 6088 snippets) and 0.1149 for the training set selection with the
smallest fe(V ) in the first fold (82 out of 714 snippets). Numbers greater than 1
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Table 2. Share of different snippet categories in relation to the share of these snippets
in the complete training set for the three folds.

MFCCs LMS
Snippet category F=1 F=2 F=3 F=1 F=2 F=3

Main categories

Vocals 1.028 1.179 1.234 1.087 1.640 1.208
Accompaniment 0.998 0.907 0.836 0.930 0.773 0.826
Mix 0.994 1.183 1.356 1.111 1.363 1.394

Applied augmentations

Ampl. reduct. 80% 1.081 1.081 1.215 0.879 0.922 0.951
Ampl. reduct. 60% 1.128 0.884 0.747 0.858 0.857 1.207
Ampl. reduct. 40% 0.958 1.130 1.215 1.130 1.384 0.878
Ampl. reduct. 20% 1.020 1.032 0.654 1.109 0.857 1.427
Live 1.004 0.634 0.830 0.889 0.935 0.789
Compression 0.963 0.951 0.356 0.972 1.360 1.439
Vinyl recording 0.922 1.078 1.067 0.972 0.850 0.975
Noise: pink 1.127 0.761 1.186 0.916 0.680 0.418
Noise: blue 1.086 0.761 1.067 1.055 0.935 1.021
Noise: violet 0.963 1.141 1.067 0.916 0.340 0.882
Noise: white 0.840 0.824 0.474 0.972 1.615 0.696
Old dusty 0.943 1.014 1.423 1.277 0.850 1.300

show that the proportion of a given snippet category is larger in the optimised
set than in the complete set, indicating its importance for high performance.
Numbers lower than 1 suggest a lower importance.

Results show that vocal snippets are rather relevant, with their measures
above 1 for all folds and both features. This reveals it is helpful to train vocal
detection models not only with music mixtures, but also solo vocal tracks as
positive examples. However, the numbers are not significantly higher than 1 for
some folds. Generally, no category of snippets appears to be very important or
very harmful to include; all categories contribute to models with the lowest error
to some extent. Interestingly, the effect of augmentations seems to be somewhat
dependent on the used features: for MFCCs, the most valuable augmentation
seems to be the reduction of signal amplitude to 80% (ratios greater than 1 for
all folds), while for LMS it appears harmful (ratios below 1 for all folds). Some
values vary strongly across the folds. For instance, white noise degradation is
less important for all folds using MFCCs and two of three LMS folds, but has a
rather high value of 1.615 for the second LMS fold. Further investigations with
larger data sets and also tracks from different music genres are necessary to
potentially provide more conclusive findings about the relevance of individual
augmentation methods.
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6 Conclusions

In this work, we have proposed a multi-objective evolutionary framework for
training set selection, which simultaneously minimises the number of training
instances and the classification error. This approach was applied for the problem
of vocal detection, together with training set augmentation by means of loudness
reduction and various audio degradations. The results show that, compared to
classification with a complete training set, it is possible to strongly reduce the
training set size while approximately maintaining the classification performance.
Using our optimised selection of training instances and augmentations, we obtain
a strong performance increase on the validation set compared to using all or no
augmentations for training, which mostly translates to an independent test set,
albeit sometimes to a lesser degree due to over-optimisation on the validation
set.

To improve the generalisation performance and make validation sets more
representative, one can integrate further databases with vocal annotations in
our proposed framework. It would be interesting to explore the performance of
our proposed training set selection when using more feature sets, classification
methods and augmentation methods and other parameters for the tested aug-
mentation methods, and even applying it to other tasks in music information
retrieval. Also, we may compare the performance of evolutionary optimisation to
other training set selection techniques, like clustering or n-gram statistics [30].

Finally, for the application to larger classification models such as neural net-
works, it appears promising to investigate the use of surrogate classifier models
that are fast to train and behave similarly to the large model of interest, so
that the computation time for evolutionary optimisation remains feasible, and
the optimal training set selection found for the surrogate model also helps the
performance for the large classification model.
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