
1 

A Generalised Landau-Lifshitz Fluctuating Hydrodynamics model for concurrent 

simulations of liquids at atomistic and continuum resolution 

 

I.A. Korotkin and S.A. Karabasov 

School of Engineering and Materials Science, Queen Mary University of London 

 

Abstract 

A new implementation of the hybrid molecular dynamics – hydrodynamics methods based on the 

analogy with two-phase flows is developed that takes into account the feedback of molecular dynamics 

on hydrodynamics consistently. The consistency is achieved by deriving a discrete system of 

fluctuating hydrodynamic equations which solution converges to the locally averaged molecular 

dynamics field exactly in terms of the locally averaged fields. The new equations can be viewed as a 

generalisation of the classical continuum Landau-Lifshitz Fluctuating Hydrodynamics model in 

statistical mechanics to include a smooth transition from large-scale continuum hydrodynamics that 

obeys a Gaussian statistics to all-atom molecular dynamics. Similar to the classical Landau-Lifshitz 

Fluctuating Hydrodynamics model, the suggested Generalised Landau-Lifshitz Fluctuating 

Hydrodynamics equations are too complex for analytical solution, hence, a computational scheme for 

solving these equations is suggested. The scheme is implemented in a popular open-source molecular 

dynamics code GROMACS and numerical examples are provided for liquid argon simulations in 

equilibrium conditions and under macroscopic flow effects. 

 

Keywords: molecular dynamics, multiscale modelling, hybrid molecular dynamics – continuum 

mechanics, two-phase flow analogy 
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1. Introduction 

Many fluid mechanics problems comprise multiple scales in space and time with applications ranging 

from stellar dust dynamics in astrophysics and cloud formation in atmospheric sciences to high-speed 

jet flows in aircraft engine exhausts and flows in micro and nanofluidic devices.1 For solving 

macroscopic flow problems, continuum fluid mechanics provides a well-established set of 

computational methods that are commonly branded as Computational Fluid Dynamics (CFD). For 

example, for large space and time scales relevant for Navier-Stokes equations, using constitutive 

approximations assumed at the microscopic level, relevant fluid dynamics properties can be 

approximated by macroscopic Lagrangian parcels of fluids using Smooth Particle Hydrodynamics 

(SPH)2,3 and Lattice Boltzmann Method (LBM)4,5 as well as represented on the Eulerian grid using 

finite-difference (FD), finite-volume (FV), and finite-element (FE) methods.6–9 However, the 

continuum approximations break down when the smallest characteristic size of the problem 

approaches the microscopic scale.10 On the other hand, there are methods of computational mechanics 

of discontinua such as Direct Simulation Monte Carlo (DSMC)11 for solving rarefied gas flow 

problems and all-atom Molecular Dynamics (MD)12 for dense fluid flows which are suitable for 

simulating the flow properties at the microscale. However, the cost of these simulations quickly grows 

with the system size so that such simulations are typically limited to microscopic-size systems.13 

If the fidelity of simulations is sacrificed for the sake of the computational speed, there are various 

methods of coarse-graining, upscaling, or averaging which exist. For example, instead of all-atom MD 

simulations another option is to agglomerate several atoms as one effective particle governed by some 

effective force potential at the mesoscopic level. At the next fidelity level, the effective particles can 

be further averaged into macroscopic particles and the unresolved thermal fluctuations interactions are 

modelled statistically using Dissipative Particle Dynamics and Fluctuating Hydrodynamics 
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models14,15, which mesoscale models can be viewed as an intermediate step between the 

Computational Fluid Dynamics and the discrete particle models. 

Compared to the coarse-grain methods, which operate with a single scale, there is a distinct family of 

multiscale methods which operate at variable resolution. Such methods attempt to provide an all-atom 

resolution of the process of interest in a certain (small) part of the computational domain while 

concurrently treating the rest of the domain based on some continuum hydrodynamics approximation. 

In comparison with “single-scale” simulations, the multiscale simulations are very challenging because 

they require a coupling of models consisting of very different numbers of degrees of freedom. On the 

other hand, once a suitable coupling is achieved, the multiscale models can not only accelerate the 

modelling without a notable loss of the model fidelity16 but also serve to reduce the unnecessary data 

complexity in comparison with all-atom molecular dynamics simulations. There are many examples 

of computationally effective multiscale models which are based on the sequential approach. In this 

approach, the microscale part of the model is only loosely coupled with continuum fluid dynamics and 

run ahead of time to provide constitutive relations required for the macroscopic simulation, e.g. in the 

form of “look-up” tables.17,18 

However, this approach requires a significant scale separation between the microscopic and the 

macroscopic parts of the model for its validity. In comparison with the sequential models, the so-called 

concurrent models, where the interaction between all parts of the multiscale model is treated 

concurrently, are very challenging to develop to the state when they reach the same computationally 

efficiency. On the other hand, the concurrent models are applicable to a more general class of problems 

since they have a less strict requirement on the scale separation in comparison with the sequential 

models. This explains the continuing efforts for development of efficient concurrent multiscale models 

in the literature. 

Since the 1990s, various attempts to couple the molecular dynamics and continuum hydrodynamics 

(CH) started to appear in the multiscale literature.19,20 In many approaches, the MD model is connected 
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to continuum models by a continuum-atomistic overlap region which acts as a boundary separating the 

two sub-domains of different resolution. In the state variables schemes19,21–23, the MD and CH regions 

are connected through a finite zone that keeps the conservation of bulk mass and momentum fluxes. 

In the flux coupling schemes15, a control interface is used to exchange the conservation fluxes between 

the hydrodynamic and atomistic parts of the solution. For the coupling, it is important to satisfy 

macroscopic conservation laws such as mass and linear momentum as well as to prevent the artificial 

phase separation between the models of different resolutions which correspond to different free 

energies. Ideally, the all-atom resolution and the continuum part of the model should be smoothly 

connected so that the atomistic scales gradually transition to large continuum scales. Typically, a finite 

overlap region between MD and hydrodynamic part of the solution is needed to avoid sharp oscillations 

in density and pressure between different representations of the same chemical substance.24 To ensure 

smoothness of the transition from all-atom molecular dynamics to coarse-grained particles, the concept 

of particle scale bridging was introduced and implemented in the Adaptive Resolution Scheme 

(AdResS).24 In the subsequent work25, a concurrent triple scale model was suggested that combines 

the AdResS with Navier-Stokes equations through a hybrid molecular-continuum hydrodynamics 

scheme (Hybrid MD). Because of the flux coupling scheme, the concurrent AdResS-Hybrid MD 

method treats the multi-scale particle AdResS part and the continuum Navier-Stokes part as two 

different fields separated by an interface. However, it can be noted that such separation may not be 

ideal from the viewpoint of a sufficiently smooth transition from one part of the multiscale model to 

the other. 

Following the state-variable coupling framework that avoids the need of an interface boundary, a two-

phase flow analogy method for smoothly coupling the Landau and Lifshitz Fluctuating 

Hydrodynamics equations (LL-FH) with MD was suggested in Ref.26 and further developed in a series 

of subsequent works27,28. Rather than attempting to propose an ad-hoc modified Hamiltonian function 

to use it to subsequently derive the equations of motion of a hybrid molecular dynamics – continuum 
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mechanics system, the analogy method considers a set of equations of motion of an atomistic-particle 

and a continuum representation of the same liquid. 

Within the analogy approach, the equations of motion of hybrid molecular dynamics are treated as a 

“low-order” model for reducing the MD complexity to continuum hydrodynamics, which equations 

are defined in accordance with analogy to some physical macroscopic flow model of choice. In 

continuum fluid dynamics, this type of modelling approaches has been used for several decades. One 

notable example of these hybrid approaches is Lighthill’s acoustic analogy method that was developed 

for modelling of sound generated by turbulence.29 

In the current work, the hybrid model based on a hydrodynamic analogy with two-phase flows is 

adopted where the equations of motion are postulated as mass and momentum conservation laws of a 

nominally two-phase fluid. Concentration of each “phase”, which would be the unknown variable in 

the conventional two-phase hydrodynamics model, is selected as a user-defined function of the analogy 

that controls resolution of the hybrid multiscale model. To avoid the artificial phase separation and 

preserve the continuity of variances of macroscopic density and velocity quantities across the different 

“phases”, forcing terms are introduced as sources and sinks of the nominally two-phase flow equations 

without affecting the conservation of mass and momentum fluxes. The forcing terms are applied to 

force the MD part of the model to the continuum representation that is based on the Landau-Lifshitz 

Fluctuating Hydrodynamics (LL-FH) equations.30 The LL-FH equations use stochastic fluxes to model 

the effect of the Brownian motion at the smallest scale and reduce to the standard Navier-Stokes 

equations for large control volumes. For the discrete state of the fluid, the classical molecular dynamic 

equations are used at all-atom resolution. For simple molecular systems in 2D, the hybrid method is 

shown to produce a converged solution that correctly captures macroscopic parameters such as 

standard deviation of thermal fluctuations and the mean flow velocity.26 This is achieved without 

introducing any ad-hoc treatment of MD particles such as “rescaling” of the MD solution or artificial 

“walls” and “barriers”. In a further work31–33 of the authors a simplified, one-way coupled version of 
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the original hybrid method was implemented for 3D simulations in GROMACS34,35, a popular open-

source MD software. The implemented model assumes no feedback from the microscopic MD part of 

the solution on the macroscopic hydrodynamic part and also uses discrete particles in the entire 

computational domain so that the computational saving comes from skipping the calculation of 

particle–particle interactions in the hydrodynamic part of the solution domain. Despite these 

drawbacks, the model shows promise for simulations of a PCV2 virus capsid in water. In particular, 

the hybrid model is shown to correctly reproduce a stable capsid in a small computational domain and 

capture the relevant macroscopic transport characteristics of water and ions through the virus capsid 

compared to the reference all-atom simulation. On the model development front, recently, a triple-

scale one-way coupled scheme that combines the two-phase hydrodynamic analogy approach with 

multi-resolution molecular dynamics simulations (AdResS) is developed.36 By accounting for a 

smoother transition between the multi-atom water molecules to hydrodynamic particles in the flow, 

the triple-scale scheme is shown to lead to a reduced sensitivity to the model parameters while 

achieving an improved accuracy in test problems in comparison with the baseline MD-FH algorithm. 

The one-way coupling assumption which ignores the feedback of the molecular scales on the 

continuum has been a significant simplification of the previous models based on the two-phase analogy 

method. Hence, in the current publication, a fully two-way coupled implementation of the method is 

developed and implemented for 3D simulations in GROMACS. Thanks to a consistent feedback effect 

from the discrete particles on the continuum flow, the molecular dynamics particles are localised in a 

small part of the continuum solution domain to drastically reduce the computational cost in comparison 

with the previous implementations. The two-way coupled formulation of the hybrid method that allows 

a seamless separation of the molecular dynamics particle zone and the pure continuum mechanics 

domain is a distinct novelty of the current hybrid multiscale model based on the two-phase flow 

analogy. 
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The rest of the paper is organised as the following. In section 2, the governing two-phase analogy 

equations from Refs.26,37 are considered and new Generalised Landau-Lifshitz Fluctuating 

Hydrodynamics (GLL-FH) equations are derived. These equations can be viewed as an extension of 

the classical continuum LL-FH model in statistical mechanics to smoothly couple the continuum 

hydrodynamics with all-atom molecular dynamics simulations. The GLL-FH equations are formulated 

in a discrete form and in comparison with the classical LL-FH model include auxiliary time-dependent 

solution variables to describe the difference between the locally averaged fields of the molecular 

dynamics solution and the continuum hydrodynamics solution. In comparison with the standard LL-

FH model, the solution of the new generalised LL-FH equations converges to the locally averaged 

solution obtained on-the fly from all-atom molecular dynamics. Importantly, the locally averaged 

fields of the GLL-FH solution may not necessarily satisfy to the Gaussian statistics of the classical LL-

FH equations in the hybrid part of the model where 1s  . 

Similar to the classical LL-FH model, the GLL-FH equations are too complex for analytical solution, 

hence, a finite-volume computational scheme for solving these equations numerically is introduced in 

Appendix. In the computational implementation of these equations in GROMACS, the molecular 

dynamics calculation is limited to a small part of the computational domain while the GLL-FH 

equations are solved in the entire domain. For high-performance computing, the new scheme is 

implemented with the same vectorization approach as used in the original GROMACS algorithms. In 

section 4, numerical examples are provided for simulations of a liquid argon system at multiple 

resolution, which include the application of hydrodynamic forcing for Couette flow conditions and 

high-frequency acoustic wave propagation. 
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2. Theory 

2.1. Conservation laws of the two-phase flow 

 

Following26, let us consider the computational domain filled with a nominally two-phase fluid (fig. 1), 

which contains a region of pure molecular dynamics (MD), a region of pure fluctuating hydrodynamics 

(FH), and a hybrid continuum-particle region (MD-FH). The two phases are a Lagrangian and an 

Eulerian representation of the same chemical substance. The phases are immersed into each other as 

‘fine grains’, the surface tension effects are irrelevant, and both phases are assumed to simultaneously 

occupy the same control volume. The partial concentrations of the MD ‘phase’ and the pure 

hydrodynamic ‘phase’ are equal to s and 1−s, respectively, where s is a parameter of the model, 

0 1s  . In general, s is a user-defined scale function of space and time, which controls how much 

atomistic information is required in a particular region of the simulation domain. 

 

 

Fig. 1. A schematic of the hybrid particle-continuum computational domain which is divided into 

elementary control volumes V. 
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Let us assume that this two-phase substance is isothermal and electrically neutral as well as 

corresponds to adiabatic heat ratio approaching unity. In this case, the mass and momentum equations 

of the continuum hydrodynamic equations can be solved separately from the energy equation.38 Then, 

following the standard approach in two-phase modelling,39 the dynamics of such two-phase system is 

governed by the conservation of mass of the continuum hydrodynamic (HD) “phase”: 

 ( ) ( )
6

1

1

t sm s d t J t



   
=

+   =  u n  (1) 

and that of the mass of the molecular dynamic (MD) “phase”: 

 ( ) ( )
6

1

1 1 1

1 1

NN

t p p p p p

p p

s m s d t J t






   
= = =

  
   − + −   = −      

   
   u n  (2) 

Here m and 
m

V
 =  are the mass and the density of the HD “phase”, 

pm  and 
p

p

m

V
 =  are the particle 

mass and the effective particle density, V is the cell volume, N is the number of particles in the volume 

V, u  is the velocity of mixture and 
pu  is the MD velocity of the particle p, N

 is the number of 

particles crossing the  th cell face with the normal d 
n  (which has the units of area), 

( ), ,p p p ps s x y z=  is a particular value of the user-defined function s  in the location occupied by 

particle p  at time t. 

The cell volume V is defined as one of the non-overlapping elementary control volumes, or cells, which 

the hybrid computational domain is divided into (fig.1). The size of each cell is adjusted so that it 

contains a sufficient number of MD particles for statistical averaging, which for liquid argon 

simulations corresponds to about 100 atoms per control volume.37 It can be noted that in the limit of 

small macroscopic cell volumes, which at the same time should remain macroscopically large so that 

the particulate fields can be approximated by continuum distributions, the governing conservation laws 
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(1) and (2) can be replaced by the corresponding system of partial-differential equations of two-phase 

flow type as discussed by Ref.26. 

The cell-averaged value of the s-function is defined so that ( )
1 1

N N

p p p

p p

s s  
= =

=  . For a linear 

reconstruction of the s-function inside the cell volume, it is equal to the s value in the geometrical 

centre of the cell. 

Finally, 1J  is the mass source/sink term which describes the transformation of mass between the 

“phases” and t  describes the change of a quantity over time t . 

Density of the two-phase mixture is defined so that: 

 ( )
1

1
N

p p

p
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=

 = + −
   (3) 

which expression can be re-arranged to: 

 ( )
1 1 1 1 1

1
N N N N N

p p p p p p

p p p p p

s s s s s s        
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Velocity of the mixture is defined with taking into account density averaging so that: 

 ( )
1

1
N

i i p p ip

p

u s u s u  
=

 
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The momentum equation of the continuum hydrodynamic “phase” is considered next: 

 ( ) ( )
6

2

1
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where iF  represents the stress per unit volume, which includes the deterministic and the stochastic 

parts: 

 
i i iF F F= +  
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The force, iF  is directly related to the stress tensor in accordance with the standard continuum 

mechanics relation, ( )i j ij ijF Π Π= + , and the stresses ,ij ijΠ Π  are modelled in accordance with the 

Landau Lifshitz Fluctuating Hydrodynamic Navier-Stokes equations,30 which are briefly summarised 

below: 

 

( )

( )
( ) ( )

0,

i

i j ij ij

div
t

u
div u Π Π

t






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+ =


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+ = +



u

u

 (6) 

Here ( )p p =  in accordance with the isothermal fluid equation of state, the stress tensor 
ijΠ  and its 

fluctuating component 
ijΠ  are defined so that 
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 (7) 

Here   and   are shear and bulk viscosity coefficients. 
ijΠ  is modelled as a random Gaussian matrix 

with zero mean and covariance: 

 ( ) ( ) ( ) ( ) ( ) ( )1

1 1 2 2 1 2 1 2, , 2 2 .ij kl B ik jl il jk ij klΠ t Π t k T D t t          − = + + − − −
 

r r r r  (8) 

Following Ref.30, the stochastic stress tensor is represented explicitly so that 

  ( )
2

2 /SB
ij ij ij

k T
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t V
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where G  is a random Gaussian matrix with zero mean and covariance 
ij kl ij klG G  = , 

[ ]
2

T

ij ijS

ij ij

G G
G tr E D

+
= − G , is a random symmetric matrix with zero trace, E  is the identity matrix, 

and [ ]tr G  is the trace of the matrix G . 
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It can be noted that the LL-FH equations (6)-(9) are a limiting case of discrete conservation laws 

Eqs.(1)-(5) for a sufficiently large control volume in case s  equal to 1. 

The equation for momentum of the MD “phase” is considered next: 
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2

1 1 1 1

1 1 1

NN N
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s m u s u d t s F V t J t
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From comparing Eqs.(1),(2) and Eqs.(5),(10), it can be seen that the two-phase fluid system preserves 

conservation fluxes of mass and momentum. That is, the two-phase model leads to the conservation of 

mass and momentum in case of no external forces applied in the system. 

The above two-phase analogy equations are written in a compact form which is useful for 

understanding of physical flow analogy behind this hybrid model. However, this formulation is not 

most suitable for a practical implementation since equations (1),(2),(5), and (10) are not closed. They 

contain unknown variables such as the particle fields as well as the forcing source and sink terms which 

are required to smoothly transition from one representation to another. Moreover, the s and ( )1 s−  

functions inside the time derivatives and fluxes of these equations tend to zero in the liming cases of 

s = 0 or s = 1, which makes the corresponding parts of the equations to degenerate. For example, in 

the continuum limit of very large control volumes where a partial-differential equations description 

apply, this would be equivalent to a change of the equation type from parabolic to elliptic, which is 

not ideal from the viewpoint of numerical solution. Hence, in the following sections the governing 

system of equations (1)-(10) will be re-arranged to a more suitable form which will also include an 

appropriate differential constraint to prevent the “phase” separation. 

 

2.2. Differential constrains to prevent the phase separation 

To prevent the phase separation, a phase mixing, or binding, process is imposed in accordance with 

the forcing source and sink terms in the analogy equations (1),(2),(5), and (10). For efficiency, the 
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forcing terms implicitly include the difference between the molecular dynamic “phase” and the 

continuum fields. 

The forcing terms can be determined a-posteriori so that the difference between the molecular dynamic 

“phase” and the mixture field decays in time exponentially: 

 ( )
D

f s
Dt

   = −    and  ( )i i

D
q f s q

Dt
 = −   (11) 

where   and   are some positive relaxation parameters, D Dt  is the material derivative with a 

conservative convective part, and the differences between the molecular dynamics and continuum 

fields are defined so that 
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Here ( )f s  is a user-defined function defining the decay rate of the differences so that it is equal to 0 

in the MD zone (s = 0) and tends to a constant in the continuum region (s = 1) so that the difference 

between the two phases decays to zero with time, for example: 

 ( ) ( ) 01f s s s s= − + ,  0 0   

A numerical method for solving equations (11) will be discussed in Section 3 with the computational 

scheme details being provided in Appendix of the article. 

Let us now consider the following modified MD equations: 
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where 
ipx  is the i-th coordinate component of particle p, whose momentum equation is given by 
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 (15) 

For a sufficiently large control volume, the last equation can be written in the equivalent differential 

form as 
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where 0x  is the centre of mass (or geometrical centre) of the pure MD zone (s = 0). The integral is 

assumed to be taken over the particle/continuum zone. The latter zone includes the pure MD region 

and the boundaries that separates particles from continuum where s ~ 1 and a periodic boundary 

condition is applied for particles.  

The above equations (14) and (15) describe the dynamics of MD particles in the presence of a 

collective hydrodynamic field, which, in turn, is affected by the particles, as it will be discussed in 

detail in the following sections. 

It should be remarked that the above modified MD particle velocity equation (15), which corresponds 

to a modification of Newton’s second law for particle interactions by addition of some effective 

“coarse-grained” force, resembles many existing coarse-grained MD formulations. For example, it can 

be compared with the constrained particle dynamics, Non-Equilibrium MD (NEMD) methods as well 

as with the AdResS method,24 which was already mentioned in the introduction, and which also uses 

some weighting function for a linear interpolation of the force field in the hybrid zone. 
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Despite the apparent similarity, the role of the s-function in the suggested two-phase analogy method, 

which provides controllers of density and momentum in Eqs (14) and (15), is different. Indeed, an 

important difference of the present hybrid approach from the existing hybrid MD methods in the 

literature is the strict conservation of mass and momentum in the entire multiscale system that includes 

not only the two limiting MD and continuum hydrodynamics states but also the hybrid zone which 

connects the two limits. To achieve such consistency without any local violation of the governing 

conservation laws, the s-function is not a just a linear interpolation parameter for the MD force but is 

an active variable that is involved in the micro-macroscopic dynamics of the two-phase flow analogy 

equations. Because of local conservation of mass and momentum fluxes of the two-phase mixture in 

the entire range of phase “concentrations” including the intermediate region, 0 1s  , macroscopic 

properties of the governing continuum equations, including those of acoustic wave propagation such 

as the linear dispersion relation, are preserved. 

The forcing source and sink functions of the two-phase analogy method are defined in such a way so 

that the local conservation of mass and momenta is not violated at any point. The effect of the forcing 

functions can be compared with the effect of the external boundary force that accounts for the virial 

component of the pressure as suggested by Ref.40 and also with the effect of the thermodynamic force 

of the AdResS model. For example, the AdResS thermodynamic force preserves continuity of pressure 

across the hybrid multi-resolution particle zone. But this preservation does not include continuity of 

the pressure gradient that determines acoustic sound speed, hence, does not support the same acoustic 

wave dispersion relation across the hybrid zone in this case. 

The suggested way of smoothly connecting continuum hydrodynamics with particles in the two-phase 

analogy framework can also be compared with the Hybrid MD model.25 The latter is based around the 

idea of the momentum flux exchange between the MD and the Navier-Stokes model at the hybrid 

interface H for the conservation of mass and momentum fluxes. However, the Hybrid MD model still 

permits local violations of mass and momentum in the buffer domain B, which connects H and MD 
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zones and which is needed to operate the two zones without numerical artefacts. B is a mass and 

momentum reservoir of the particles and used for imposing the external momentum into the molecular 

dynamic region using a particle insertion-deletion-sorting algorithm based on the energy 

minimization.41 This reservoir plays the role of an artificial interface between the continuum and 

discrete particle representations of the same chemical substance: the models can inform one another 

in terms of the transport coefficients and other macroscopic properties but remain very different 

conceptually. This is not the case in the suggested two-phase flow analogy model where the MD and 

the hydrodynamic representation of the same chemical substance converge one to another in 

accordance with the conservation laws and avoiding any need for external reservoirs of mass and 

momentum. 

As discussed above, the s-function of the two-phase flow analogy method plays an important role in a 

consistent definition of mass and momentum transfer between the two “phases” in accordance with 

the governing conservation laws (1),(2),(5), (10). Having defined the modified MD particle equations 

(14) and (15), we will now demonstrate how they are consistent with the governing conservation laws 

of the two-phase liquid. This demonstration will also help deriving an equivalent formulation of the 

governing equations that can be suitable for a practical numerical implementation. The resulting 

formulation will be called Generalised Landau-Lifshitz Fluctuating Hydrodynamics equations. 

First, let us derive some expressions which will be used in further analysis. From (12) we obtain 

 
1

N

p

p

  
=

= + , (16) 

and from (13) 

 
1 1 1

N N N

i i ip p p i ip p

p p p

u q u q u    
= = =

     
  = + + = +     

     
   , (17) 

Let us consider a particle mass conservation law in control volume V: 
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6

1

1 1

0

N

t p N
p p

p

p

m
d

d
t dt












=

= =

 
 

    + =  
   


 

x
n . 

By substituting 
1

N

p

p

  
=

= −  and (14) into the particle conservation law, one obtains: 

 
( )

( )
0

6

1 1 1,

' 1
1 ( ) 0

i

i

xN

t

p ip p p ip p p p i i

p p Nx

s u s u f s dy dn
t V







  
    

 = = =

    −
  + − + − =  
       

    

By rearranging, the last equation becomes: 

 
( )

( )
6 6

1 1 1 1

' 1 1
1 ( )

N N

t

p ip p i p ip p i

p p

s u dn s u dn f s
t V V

 

 

 

  
   

 = = = =

      −
+ = − − +      

         
     (18) 

which, in turn, can be reduced 

 
( ) 6

1 1

1
( ) ,

N
t

i p i

p

su dn Q f s
t V






  
  

 = =

   −
+ = +  

   
   

where 

 ( )
6

1 1

1
1

N

p ip p i

p

Q s u dn
V









= =

  
= − −  

   
   

is the effective density source due to the MD “phase” and isu  is an averaged product of the i-th velocity 

component of the two-phase mixture and the s-function for each face  of the control volume V. 

By introducing a new dependent variable, *  = −  the conservation law for the continuum field 

*  is obtained: 

 
6

1

* 1
* ( )t

i is u dn Q f s
t V






 
  

 =

 + = +  , (19) 

which, assuming a sufficiently large control volume, can be written in a differential form: 
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 * * ( )i

i

su Q f s
t x

   
 

+ = +
 

. 

Having computed *  from (19), the mixture density field   can be determined as *  = + , where 

  is obtained from solving (11). 

It can be noted that in comparison with the “phase” density equations (1) and (2), the new Eq.(19) is 

simpler to solve as it does not contain a vanishing parameter s or ( )1 s−  inside the time derivative 

term. At this point we still need to show how Eq.(19) amounts to exactly the same mass conservation 

law in accordance with the governing conservations laws of Section 2.1. This is what is has been 

addressed below: 

By adding 
1 1

N N

t p p t p p

p p

s m s m 
= =

− = −   to Eq.(18) and re-arranging the result, the following expression 

is obtained: 

 

( ) ( )
6

1 1 1

6

1 1 1

1 1

( )

NN

t p p p ip p i

p p

NN

t p p p ip p i

p p

s m s u dn t

s m s u dn t f s V t













  

     

= = =

= = =

  
 − + − =   

   

  
= − − +  

   

  

  

 (20) 

By comparing (20) and (2), the definition of the source sink/source function follows: 

 
6

1

1

1 1

( )

N

t p p N

p

p ip p i

p

s m

J s u dn f s V
t









  


=

= =

  
= + −  

   


   (21) 

To show consistency of the derived sink/source function with the continuum phase equation (1), let us 

start from the equation for the difference between the molecular dynamics and the continuum field, 

( )
D

f s
Dt

   = −  , which in the integral form reads: 
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 ( ) ( )
6

1

1
( )t d t f s t

V





      
=

  +   = −   u n  

By re-arranging this equation to 

 
( ) ( )

6

1, 1, 1 1, 1,

1
1 1

( )

t p p p p p p p p p

p N p N p N p N

s s s s d t
V

f s t





       

  

= = = = =

    
− − − + − − −   =     

    

= −  

    u u u n
 

and introducing a new dependent variable corresponding to the continuum phase with using Eq.(3), 

the following balace law is obtained 

 
6

1, 1 1,

1
( )t p p p p p

p N p N

s s s s d t f s t
V





        
= = =

    
− + −   = −       

    
  u u n  

The last equation is equivalent to Eq.(1), where the source function is defined in accordance with 

equation (21): 

 ( ) ( )
6 6

1

1 1, 1 1,

( )t t p p p p p

p N p N

sm s d t s m s d t f s V t J t 

 

         
= = = =

    
+   = +   −        

    
   u n u n  

To complete the formulation, let us now derive the corresponding momentum equations. 

By starting from the equation of particle momentum balance: 

 
6

1 1 1 1

NN N
p ip

t p ip p ip p

p p p

d du
m u u d t m t

dt dt







   
= = = =

     
+  =      

       
   

x
n . 

By using 
1

N

ip p i i

p

u u q 
=

= −  and (14),(15) the momentum balance equation is re-arranged to: 
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which becomes 
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. 

Here it was assumed that 

 
0
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1 1 1,
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1 1 1, 1, 1,

( )
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j

j

j

j

xN

ip p p j j

p p Nx
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N

p ip p p j j p
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
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
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    
    −  

       

  

    

 

since the expression on the left-hand-side of the above equation can be approximated by the 

corresponding cell-volume average, which is then identical to the right-hand-side. Indeed, the right-

hand-side corresponds to the same cell-volume average that is multiplied by the “density” of each atom 

in control volume, 
p , summed over all particles, and then divided by the collective density of the 

atoms (the density of liquid per control volume). 

By defining a new dependent variable quantity, i i iq u q = −  and rearranging the corresponding 

prognostic equation for this quantity, the following momentum balance equation is obtained: 
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  

 

For an appropriate reconstruction of the averages inside the last summation, this leads to 
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 (22) 

and introducing averages for each face of the control volume, this reduces to 
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where the effective source 

 ( ) ( )( )
6

1 1 1

1
1 1

NN
MD

i p ip p jp p ip j

p p
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 
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corresponds to the contribution to the force and the momentum difference from the MD particles and 

jsu  is an averaged product of the j-th velocity component of the two-phase mixture and the s-function 

for each face  of the control volume V. 

By recalling 
1

N

ip p i i i

p

u u q q 
=

= − = , the last equation is re-arranged to  
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( ) ,t i

i j j i i i

q
sq u dn Q sF f s q

t V








 =

 + = + +    (23) 

which, for a sufficiently large control volume, can be represented in the equivalent differential form 

as 
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j i i i i

j

q
su q Q sF f s q

t x


 
+ = + + 

 
. 

Having determined iq  is from (23), the two-phase mixture velocity iu  is calculated as ( )i i iu q q = +

, where iq  is obtained from (11) as discussed in the numerical implementation section. 

It can be noted that in comparison with the “phase” density equations (5) and (10), Eq(23) is simpler 

to solve because it does not contain a vanishing parameter, s or ( )1 s−  inside the time derivative term. 

For completeness, we now need to show how Eq(23) is equivalent to the same momentum flux 

conservation law in accordance with the analogy equations Eq.(5) and (10). 

By adding 
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t p p ip t p p ip

p p
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= =

− = −   to Eq.(22) and rearranging the result, the following equation 

for the momentum is obtained: 
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By comparing the above equation with Eq.(10), the corresponding momentum source/sink term is 

determined: 
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To demonstrate how this expression is consistent with the continuum phase equation (5), let us 

consider the equation defining the evolution of the difference between the molecular dynamics and 

continuum field ( )i i

D
q f s q

Dt
 = −  , which in the integral form is given by: 
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After some re-arrangement, the last equation becomes: 
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By substituting the definition of the mixture velocity, ( )
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expression is further rearranged to: 
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which is equivalent to 
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It can be noted that the above equation is identical to the momentum equation of continuum “phase” 

(5) with the source function being given by (24). 

The unsteady equations (11),(19), and (23) for continuum density and momentum fields will be 

referred to as Generalised Landau-Lifshitz Fluctuating Hydrodynamics (GLL-FH) equations. These 

equations are to be solved together with the modified MD equations (14) and (15). Properties of the 

GLL-FH equations in some special limiting cases are analysed in the next section. 
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2.3. Special cases and the compatibility condition at the hydrodynamic boundary between the 

pure continuum and the particle region 

1. If 0s =  (pure MD case) then the density GLL-FH equation (19) reduces to: 

 
6

1 1

* 1
N

t
ip p i

p

Q u dn
t V








 


 = =

  
= = −   

   
   

and the momentum equation (23) becomes: 
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t V










 = = =

 
= = −  

 
    

From Eq.(11), abridged equations for the difference between the continuum and the MD fields are 

obtained: 

 ( )
6

1

1
0tD

d
Dt t V





 


 =


= +  = u n    for mass 

and 

 ( )
6

1

1
0i t i

i

Dq q
q d

Dt t V







 =

 
= +  = u n    for momentum. 

Since the above equations are homogeneous, if the initial and boundary conditions are such that   

and iq  are both equal to zero, these quantities will remain zero at all later times, hence, 

 *, =   i iu q = . 

In this case, the solution fields obtained from MD particles, which are averaged over any control 

volume and time step of the continuum hydrodynamics representation, satisfy equations (19) and (23) 

exactly. That is, in the limit of 0s→  the GLL-FH equations reduce to all-atom Molecular Dynamics 

not only in the sense of a sufficiently large statistical ensemble, as it is the case for the classical Landau-

Lifshitz Fluctuating Dynamics equations (6)-(9), but also in terms of the locally averaged fields. 
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2. 1s =  corresponds to a pure hydrodynamic zone. In particular, this includes the vicinity of where the 

continuum hydrodynamics zone merges with the hybrid continuum-particle zone ( 1s  , 1s → ). This 

is where an appropriate (e.g. periodic) boundary condition needs to be used for the MD particles when 

solving equations (14) and (15). Altogether, this sets an internal compatibility condition that must be 

satisfied between the MD particle and the continuum hydrodynamic regions for consistency as 

discussed below: 

In the considered case of the particle-continuum zone, 1s  , 1s → , GLL-FH equations (19) and (23) 

reduce to 

 ( )
6

0

1

** 1
* ( )tD

d f s
Dt t V





 
     

 =

 = +  = =  u n  (25) 

and 
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0

1

1i t i
i i i

Dq q
q d F q

Dt t V






 

 =

= +  = +  u n  (26) 

In a similar way, equations (11) which describe the difference between the continuum and the particle 

phase density and momentum reduce to: 

 ( )
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0

1

1tD
d

Dt t V





 
   

 =


 = +  = −  u n  (27) 

and 

 ( )
6

0

1

1i t i
i i

Dq q
q d q

Dt t V






 

 =

 
 = +  = −  u n . (28) 

The above equations lead to an exponential convergence of the   and iq  quantities to zero, hence, 

leading to *, =  i iu q = , and the   and iq  variables are completely decoupled from the LL-FH 

equations in the continuum hydrodynamic zone. 
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From this, the classical continuum density and momentum LL-FH equations are satisfied for the 

mixture variables in the pure hydrodynamic region ( 1s = ): 

 ( )
6

1

1
0tD

d
Dt t V





 


 =

= +  = u n  (29) 

and 

 ( )
( )

( )
6

1

1t i

i i i

uD
u u d F

Dt t V





 
 

 =

= +  = u n  (30) 

 

Equations (27) and (28) play the role of compatibility conditions between the particle-continuum zone 

and the pure hydrodynamic zone. For continuity of mass and momentum fluxes, the same mass and 

momentum flux must be preserved across the interface 1s =  that separates the pure hydrodynamic 

zone from the particle-continuum zone. Hence, instead of solving the reduced continuum equations 

(29) and (30) in the pure hydrodynamic zone, the equations are rearranged to the form of GLL-FH 

equations (19) and (23) for the continuum density and momentum fields *  = −  and i i iq u q = −

. This results in a numerically consistent formulation where the same unified system of equations 

(25)-(28) is solved in the entire computational domain (fig.1). 

3. Computational implementation 

Following the computational method for solving the standard LL-FH equations37, a finite-volume 

scheme is implemented for the GLL-FH equations, which is formulated in a space-time staggered 

predictor-corrector form. 

At the predictor step, the solution at the mid-time-level is updated using a forward time integration and 

a central flux approximation. This is followed by the second-order extrapolation step to compute the 

conservation fluxes at the new time level. The final step is corrector where the solution at the new time 
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step is computed using a backward time integration. This results in a computational scheme that is 

second order in space and time. Further details of the algorithm are outlined in the Appendix. 

A special note is in order to describe the “phase binding” parameters of the hybrid model,  and  

which have units of [s-1]. These parameters can be considered as some effective relaxation constants 

which prevent the continuum and the particle ‘phases’ from separation. The values of  and  need to 

be sufficiently large in comparison with the hydrodynamic gradients for effective phase binding. In 

the numerical examples of the paper,  and  are order of 1-10 [ps-1] that corresponds to the 

characteristic time scale of 10-100 MD time steps. This time scale should be much smaller than a 

characteristic time of the hydrodynamic interaction. It can be noted that the range of  and   

parameters of the suggested hybrid multiscale method determines the applicability range of the method 

it terms of the assumed space-time scale separation between the small atomistic particle and the large 

continuum hydrodynamic scales. 

In comparison with the GLL-FH equations, which are solved in the entire computational domain, the 

MD equations are solved in a small part of the domain. The computational cost of the best MD solvers, 

such as those implemented in GROMACS42–44, scales linearly with N in ideal cases, where N is the 

number of MD particles. For statistical averaging accuracy, the number of particles per control volume 

should be at least ( )100  compared to the number of GLL-FH control volumes. 

Since the same unified set of GLL-FH equations can be solved in the entire computational domain 

consistently without keeping a large number of control volumes occupied by the particles, the 

computational benefits of the suggested approach over the all-atom MD simulations can be significant. 

These benefits are illustrated in Table 1, which compares computational costs of the current hybrid 

method with the cost of all-atom MD simulations for the numerical examples considered in section 4. 

All hybrid model simulations considered (10 ns or 106 MD time steps for liquid argon) typically take 

about 1 hour on a computer workstation equipped with Graphics Processing Units (GPUs). In 
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comparison with this, the all-atom MD simulations for the same problems require a 4-6 times longer 

run time. Notably, the running times compared correspond to the same computer and the same 

GROMACS version, with and without including the GLL-FH model. 

It can be further noted that efficiency of the new hybrid scheme is directly linked to the size of the 

continuum hydrodynamics zone relative to the total computational domain size. For macroscopic-size 

computational domains, the computational benefits of the new approach over the all-atom molecular 

dynamics simulations of the same domain size are expected to be many orders of magnitude larger in 

comparison with the current test cases. 

 

Table 1: Simulation costs of the hybrid multiscale method against the all-atom molecular dynamics for 

typical test problems, hours per nanosecond [hrs/ns] in each case 

Test case Steady equilibrium Couette flow 
Acoustic wave 

propagation 

Cost of the all-atom 

simulation [hrs/ns] / cost of 

the hybrid method [hrs/ns] 

0.58 / 0.10 0.58 / 0.10 0.42 / 0.10 

 

 

4. Numerical Examples 

4.1. Liquid argon at steady equilibrium conditions 

As the first test, the GLL-FH method solutions will be analysed for how well the particle/continuum 

“phases” bind together and preserve standard deviation of density and velocity of liquid argon 

fluctuations at thermal equilibrium and zero flow conditions. 
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Following Ref.31, a cubic computational domain is considered first. At the open boundaries, periodic 

boundary conditions are applied. A spherical-shape user-defined function ( ),s s t= x  of the hybrid 

multiscale model based on the two-phase analogy is specified so that it is zero in the centre of the 

computational domain and grows to the domain periphery where the particles are driven by the external 

hydrodynamic field: 

 ( ) ( )

min

max min min

max

, ;

, ;

, .

MD

MD
MD FH

FH MD

FH

S r R

r R
s r S S S R r R

R R

S r R

 


−
= − +  

−
 

 (31) 

where MDR  and FHR  are the radii of the discrete particle and the hydrodynamic zone which are user-

defined parameters, r is the distance to the geometrical center of discrete particle zone, min 0S =  and 

max 1S =  (fig. 1). 

The density and velocity components of the GLL-FH solution are sampled in several points of the 

computational domain, which correspond to different values of the s-function, for subsequent analysis. 

For 0s =  and 1s = , which correspond to the centre and the periphery of the domain, respectively, the 

mixture velocity and density are equal to the corresponding MD velocity and density in the given cell 

within the statistical noise error. In the intermediate hybrid zone (0 1s  ), MD and mixture variables 

are driven to each other very fast (exponentially), as shown in Figures 2-3. For the same hybrid zone 

region, Figure 4 shows that the corresponding standard deviations of the density and velocity 

fluctuations are also in excellent agreement with the all-atom MD simulations within a statistical error. 
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Figure 2. Time-history of density fluctuations of mixture and MD “phase”, s = 0.5 

 

 

Figure 3. Time-history of velocity fluctuations of mixture and MD “phase”, s = 0.5 
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Figure 4. Standard deviations of density (a) and velocity (b) for 0.5s =  

 

Fig.5 shows the comparison of the radial distribution and velocity autocorrelation of atoms, RDF and 

VACF, obtained in the pure MD region of the hybrid computational domain ( 0s = ) with the all-atom 

MD simulation. RDF and VACF are the standard measures of how well the microscopic structure is 

resolved within the molecular dynamics part of a multiscale model in terms of correctly capturing the 

microscopic probability distribution of atoms and their decorrelation time. 

For the VACF distribution, the previous solution from the one-way coupled implementation of the 

hybrid multiscale method31 is compared with the current two-way coupled solution on the same plot. 

In comparison with the current simulation, the previous one-way coupled hybrid model ignores the 

effect of atomistic scales on the continuum “phase” by approximating the mixture solution variables 

with the standard Landau-Lifshitz Fluctuating Hydrodynamics model everywhere in the computational 

domain. From the comparison, it is clear that the feedback effect from the molecular dynamics on the 

macroscopic field is important to take into account if the velocity autocorrelation function of atoms 

needs to be simulated accurately. 

(a) (b) 
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Figure 5. RDF (a) and VACF (b) in the MD zone, argon. 

 

4.2. Steady Couette flow 

The same cubic hybrid computational domain is considered by defining the spherically symmetric 

distribution of the user-defined function ( ),s s t= x  (31) to separate the zones of molecular dynamics 

and continuum fluid dynamics, which is now applied for the steady Couette flow test.  

It can be noted that the steady Couette flow is an important feature of many engineering microfluidic 

applications, which could benefit from multi-resolution, continuum-atomistic modelling, such as the 

deformation of biomolecules by hydrodynamic gradients, which can occur in dual laminar flow 

microfluidic systems.45–47 While the unsteady start-up Couette flow problem will not be considered in 

the present paper, the capability of the suggested multiscale method for capturing unsteady flows will 

be tested in the acoustic wave propagation problem in section 4.3. 

Couette flow in liquid argon is implemented by incorporating an additional forcing term in the 

FH/hybrid region: 

 ( ) ( ) flowi
j i i i i i

j

q
su q Q sF f s q F

t x


 
+ = + +  +

 
, 

where 

(a) (b) 
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 ( )( )0 0,
, 0flow flow flow

x x analytical y zx z
F s q u y F F = − − = = , 

so there is a flow along the x axis with the mean velocity which only depends on the y coordinate, 

while the flow in the periodic z-direction is homogeneous (figure 6). The “target” analytical solution 

corresponds to the steady shear flow that depends just on the vertical coordinate in this case but 

generally could be a function of other space coordinates and time as well so long as its variation is 

slower than 10-100MD time steps (see discussion in Section 3). 

It should be pointed out that the forcing term flow

iF  is identically zero in the pure MD region, hence, 

the atoms in MD region are accelerated by the flow through their interaction with the particle-

hydrodynamic region at the periphery. That is, there is no artificial forcing applied to the atoms in the 

pure MD domain, which is simulated in a full accordance with the inter-atomic potentials of the 

standard equilibrium molecular dynamics. This can be compared with some of the Non-Equilibrium 

MD methods which apply an artificial force on all atoms directly to simulate the flow effect.48–50 

Fig.7 compares the continuum velocity and the sub-cell averaged MD particle velocity distributions 

with the analytical solution for the Couette problem. Apparently, the “binding” of MD particles to the 

flow via the hybrid region at the periphery is sufficient to obtain an excellent agreement with the 

analytical solution. 
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Figure 6. Couette flow in MD/FH region 

 

 

Figure 7. Couette flow profile for mixture (tilde) velocity and for particles’ velocity in the MD 

region 

 

Fig.8 shows the corresponding RDF and VACF distributions in the pure MD region with Couette flow. 

Similar to the stationary case, these distributions are in an excellent agreement with the reference (no-

flow) all-atom MD simulation. This indicates that, for the considered shear flow regime, the internal 



35 

material structure of liquid argon is not affected by the shear flow. The latter property is common for 

Newtonian fluids and is similar to preservation of the molecular diffusion coefficient – another 

material characteristic of a gas or a liquid, which for Newtonian fluids does not depend on the velocity 

strain field in accordance with the Curie’s theorem of linear irreversible thermodynamics.48 

 

 

Figure 8. RDF (a) and VACF (b) in the MD zone with Couette flow 

 

4.3. Acoustic wave propagation 

As a final example, accuracy of the new AdResS-FH model is tested for an acoustic wave propagation 

problem following.25,51,52 It can be noted that in comparison with the shear wave propagation test 

problems considered by Ref.31 and Ref.53, acoustic wave propagation involves closely correlated 

fluctuations of density and velocity in accordance with the linear wave dispersion relation, hence, is 

more challenging for numerical modelling. 

An elongated rectangular hybrid computational domain is considered with defining a one-dimensional 

distribution of the user-defined function ( ),s s t= x , which delineates the zones of molecular dynamics 

and continuum fluid dynamics for the acoustic wave propagation in the x-direction in a similar way to 

the spherical-shape s-function (31) (fig.9). 

(a) (b) 
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An incoming planar acoustic wave solution is imposed at the inlet boundary of the hydrodynamic 

domain. Because of the central stencil of the scheme (see Appendix), the numerical implementation of 

the GLL-FH equations requires specifying the acoustic wave solution at first two cell layers in the pure 

hydrodynamic region for density and momentum variables, ˆ* *  = + , ˆ
i i iq q q= + , where 

 ( )ˆ* * cos t kx   = − , 

 ( )ˆ * cosx Sq c t kx  = − . 

Here 
2 S

x

c

L


 = , 

2

x

k
L


= , xL  is the length of the box along x axis, 

Sc  is speed of sound, which is 

determined in accordance with the equation of state of liquid argon. 

The numerical resolution of solving the GLL-FH equations corresponds to 20 cells per acoustic 

wavelength, which resolution is considered adequate for the present second-order numerical scheme. 

 

 

Figure 9. 3D view of the computational domain for the acoustic wave propagation problem – 21x5x5 

cells in total including the FH, hybrid, and MD region. The contour line shows a typical 

instantaneous acoustic wave distribution in argon which wavelength is equal to the computational 

domain size. 
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Fig.10 shows several realisations of density and velocity signals extracted from the centre of the pure 

MD region. The total time window of the data extracted corresponds to 100 ns which is about 1000 

acoustic time periods. Acoustic fluctuations are an order of magnitude smaller compared to the thermal 

fluctuations but compared to the former the latter are uncorrelated. Hence, to reduce the noise, all 

signals have been phase-averaged and also averaged in the y-z plane which corresponds to the 

homogeneous directions of the problem. 

The averaged MD density and velocity fields agree with the analytical solution within the statistical 

noise scatter. This indicates that the two-way coupled hybrid model correctly transports both the mass 

and momentum of the macroscopic fluctuations in the system. 

 

 

Figure 10. Mixture density (a) and velocity (b) averaged over acoustic wave phase in comparison 

with analytical solution after 100 ns (~1000 periods of acoustic wave) 

 

It should be noted that in order to avoid spurious reflections of the acoustic wave from the 

particle/continuum boundaries, the model calibration parameters, e.g. α, β, and maxS  parameter of the 

s-function, had to be fine-tuned in the hybrid zone 0 1s  . For this particular test, α and β were 

increased to the maximum values as discussed in Section 3 to provide the strongest coupling between 

(a) (b) 
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the particle and continuum “phases”, while maxS  in (31) for the hybrid region was slightly reduced to 

achieve a smooth gradient of the s-function in the particle zone, hence, a smooth solution behaviour 

near the discrete particle/continuum boundary. 

It can be further remarked that in comparison with some previous works of the authors, e.g. Refs.31,36, 

where the analytical acoustic solution was directly imposed as a part of the one-way coupled approach, 

the statistical noise level of the two-way coupled solution is expected to be higher because of the non-

linearity and stochastic nature of the GLL-FH equations as one approaches the MD resolution scale. 

 

Conclusion 

A new Generalised Landau-Lifshitz Fluctuating Hydrodynamic (GLL-FH) model is proposed for 

consistent two-way coupling between the molecular dynamics and continuum hydrodynamics of the 

same fluid in the framework of analogy with two-phase hydrodynamics. The new model is based on 

extending the classical Landau-Lifshitz fluctuating hydrodynamic equations in order to record and 

propagate the differences between the locally averaged atomistic particle fields and the continuum 

hydrodynamic fields in accordance with the conservation laws. In comparison with the previous 

models, including the work of the authors, the new model allows one to consistently take the feedback 

from the particle dynamics on the continuum fluid dynamics into account concurrently. This feedback 

is important for tailoring the macroscopic fluid dynamics equations to the dynamics of discrete particle 

dynamics on-the-fly rather than prescribing the former from an approximate analytical model such as 

the standard Landau-Lifshitz Fluctuating Hydrodynamics model that is restricted to the Gaussian 

statistics. In terms of numerical implementation, the inclusion of the feedback effect results in a less 

stiff coupling between the continuum and discrete particle parts of the hybrid model in comparison 

with the previous one-way coupled models. Numerical examples are considered for several simulations 

of liquid argon flows in GROMACS, a popular open-source molecular dynamics software. The 
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improved consistency of the GLL-FH model has facilitated the current implementation of an efficient 

spatial domain decomposition of the zone of discrete particles from the pure continuum hydrodynamic 

zone in a seamless way. Such spatial decomposition was not possible to implement in the previous 

hybrid multiscale models based on the two-phase analogy, which lacked the full consistency. Thanks 

to the new implementation, an order of magnitude reduction in computational cost has been achieved 

for the current hybrid model implementation in comparison with the all-atom molecular dynamics 

solution. An excellent agreement of the solutions of the new two-way coupled hybrid method with the 

reference all-atom molecular dynamics simulations is demonstrated for the benchmark problem of 

liquid argon fluctuations in equilibrium. The solutions for the velocity autocorrelation function of 

atoms obtained with the new method show a superior accuracy in comparison with the previous one-

way coupled hybrid multiscale method that ignored the feedback effect on the flow. As a demonstration 

of new capabilities of the two-phase flow analogy method to cope with non-uniform macroscopic 

flows, both the macroscopic velocity and the microscopic structure properties of liquid argon under 

steady Couette flow conditions are obtained from the numerical simulation. The numerical solutions 

are in a good agreement with the analytical solution for the meanflow velocity profile and the reference 

all-atom molecular dynamics simulation in the absence of flow. The latter is in accordance with the 

physics of Newtonian fluids, such as argon, whose intrinsic material properties do not depend on the 

flow applied. As a final example, the new GLL-FH model is tested on the problem of high-frequency 

acoustic wave propagation in liquid argon. After the normal-plane and phase averaging applied, the 

solution of the GLL-FH equations demonstrates a good agreement with the reference analytical 

solution both in terms of the amplitude and the phase.  

As a final remark, it should be emphasised that the suggested GLL-FH method provides a general 

unified framework for coupling MD particles and continuum fluid dynamics. In particular, in all 

current examples, a simple monoatomic liquid is considered, which is represented by a single (all-

atom) resolution MD model as the particle “phase” of the GLL-FH equations. However, the suggested 
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GLL-FH modelling framework can also be applied to multi-resolution particle (e.g. AdResS) 

simulations for modelling of complex liquids, e.g. protein solutions in water, which may require 

additional measures for the reduction of complexity of a discrete particle system before coupling the 

latter with continuum hydrodynamics. The required complexity reduction can be achieved, for 

example, by adopting the recent work36 of the authors who implemented AdResS in the framework of 

the two-phase analogy method. 
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Appendix: Numerical Implementation 

For solving the MD particle equations (14) and (15), the following standard leap-frog algorithm is used 

to advance the coordinates and velocities over one MD time step: 

For atom coordinates: 

( ) ( )
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For atom velocities: 
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Here superscript n denotes the time layer index in the FH model, for example, ( )n t   , 
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, (A3) 

where 
, ( )x cell ih  is cell i size along x axis, 0i  is the index of the middle cell. In case 0i ix x , the integral 

can be calculated the same way but with accounting for the opposite sign. 

The continuum equations to be solved numerically are summarised below: 

 ( ) ( )
6

0

1 1

1
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N
t

p

p

d s s s
t V





 
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 = =

 
 +  = −  − − −  

 
 u n ; (A4) 
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t V




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    

 = =

 
 +  = − − − −  

 
 u n ; (A5) 
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6
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NN
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i p ip p jp p ip j

p p

Q s F s u u dn
V








= = =

 
 = − − −  

 
   ; (A8) 

 *  = + ; (A9) 

 ( )i i iu q q = + . (A10) 

There are 12 equations (A4)-(A10) and 12 variables to solve: , , , , *,i i iu q q    , , ,i x y z= . 

Let us denote ( ) ( )
1 n

n FH

t
n

FH t t

f t f t dt
t

−

= 
   as a moving average of each relevant MD field over FH 

time step. For simplicity, details of the numerical algorithm will be demonstrated for the x direction of 

(x,y,z) Cartesian coordinate system. 

Figure 11 shows the computational stencil in space in the one-dimensional case where subscripts C, 

CL, CR correspond to the cell centres, subscripts L, R, LL, RR refer to the cell sides. 

 

 

Figure 11. Spatial computational stencil for the 1d scheme 

 

Predictor step of the numerical algorithm for the continuum equations: 
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where 
,

n

CQ  is a counter of particle mass source/sink in cell C and at time layer n: 
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 (A15) 

where 
,

n

i CQ  is a counter of particle momentum source/sink in the given cell C and time layer n: 
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 1 2 1 2 1 2*n n n

C C C  + + += +  (A17) 

 ( )1 2 1 2 1 2 1 2

, , ,

n n n n

i C i C i C Cu q q + + + += +  (A18) 
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The predictor step is followed by the extrapolation step, where the new flux variables 1n +  and 1n

iu +  

on the cell sides (faces) are determined using a linear extrapolation of the Riemann characteristic 

variable to compute the solution at the new time layer 1n+ . The characteristic decomposition 

procedure follows the work37 which has 3 main steps: 

1) The primary variables,   and iu , at the current time level n and the intermediate time level 1 2n +  

are decomposed into the characteristic Riemann invariants, R+  and R−  in accordance with the 

hyperbolic part of the Navier-Stokes equations (6)-(9), which corresponds to isothermal gas dynamics 

equations: ( )0logi i SR u c  + = + , ( )0logi i SR u c  − = − , where 0  is a reference bulk fluid density 

and Sc  is the sound speed which is consistent with the fluid equation of state ( )p p = . 

2) A weighted average of the second-order upwind and the second-order central extrapolation schemes 

with flux correction is applied to update the values of the invariants, R+  and R− , at the new time level 

1n+  at the cell-face points by using the characteristic variables obtained at step 1 for the preceding 

time levels 1 2n +  and n. 

3) The final values of the flux variables 
1n +
 and 1n

iu +  are obtained from the characteristic variables 

in accordance with their definition: ( ) 2i i iu R R+ −= + , 0 exp
2 S

R R

c
 

+ − −
=  

 
. 

Corrector step: 
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