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Abstract 

We constructed a molecular model (digital oil model) for heavy crude oil based on analytical data and 

our newly developed method. Crude oil was separated into four fractions: saturates, aromatics, resins, 

and asphlatenes (SARA). Although it is classified as a heavy crude oil, the asphaltenes turned out to 

be at very low weight concentration (~0.4 wt. %), and were ignored in our study. The digital oil was 

constructed as a mixture of representative molecules of four fractions: saturates, aromatics, resins, 

and lost components (which resulted from our SARA analysis). Representative molecules were 

generated by quantitative molecular representation (QMR), a technique that provides a set of 

molecules consistent with analytical data, such as elemental composition, average molecular mass, 

and the proportions of structural types of hydrogen and carbon atoms, as revealed by 1H and 13C 

nuclear magnetic resonance. To enable the QMR method to be applicable to saturates, we made two 

developments: the first was the generation of non-aromatic molecules by a new algorithm that can 

generate a more branched structure by separating the chain bonding into main and subsidiary 

processes; the second was that the molecular mass distribution of the model could be fitted to that 

obtained from experiments. To validate the digital oil thus obtained, we first confirmed the validity 

of the model for each fraction in terms of plots of double-bond equivalent as a function of carbon 

number. We then calculated its density and viscosity by molecular dynamics simulations. The 

calculated density was in good agreement with experimental data for crude oil. The calculated 

viscosity was higher than experimental values; however, the error appeared systematic, being a factor 

of ~1.5 higher than that of experiments. Moreover, the calculated viscosity as a function of 

temperature was well described by the Vogel–Fulcher–Tammann equation. Digital oil will be a 

powerful tool to analyze both macroscopic properties and microscopic phenomena of crude oil under 

any thermodynamic conditions. 
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1. Introduction 

Heavy oil, which includes extra heavy oil and bitumen, is attractive due to its huge resources. 

Conventional oil makes up only about 30 % of the world’s total oil resources, with the remainder 

occurring as heavy oil, extra heavy oil, and bitumen.1,2 The recovery and refinery of heavy oil are, 

however, more difficult and costly than those of conventional oil because of its high viscosity and 

heavier molecular compositions.1–4 Unlike conventional light oil, enhanced oil recovery (EOR) is an 

essential technique for heavy oil recovery even at early development stage. In solvent-injection EOR, 

solvents reduce the viscosity of heavy oil, but solvents that are effective vary depending on the oil 

field.1,2 It is therefore necessary to understand the oil components and their property changes on 

adding solvents to enable the effectiveness of different solvents to be evaluated. 

Owing to the development of computational technology, molecular-scale simulations are now 

widely used in petroleum engineering.5-15 The advantage of those simulations is to provide insights 

that cannot be extracted from experimental data alone. For molecular-scale simulations, it is important 

to construct an accurate molecular model of crude oil. Early studies reported many average structures 

of various fractions, such as saturates, aromatics, resins, and asphaltenes;12,16-19 however, a full 

molecular model of crude oil containing gas, light components, heavy components, and asphaltenes 

has not been reported. Theoretically, a molecular model of crude oil must contain all the components 

of that oil, but it is impossible to detect all of these. One approach to characterize a complex mixture 

is to use averaged data based on simple measurements of the whole sample.3 We have therefore 

utilized a digital oil technique. Digital oil is a molecular model of crude oil, which is represented as 

a mixture of representative molecules of each fraction. Because the representative molecules are 

generated based on the average information for that fraction, we need not detect all the components 

(when the separation is unworkable). Once we construct a digital oil, we can analyze both its 

macroscopic properties and microscopic phenomena under any thermodynamic conditions using 

molecular dynamics (MD) simulations. Eventually, we may use the digital oil to make predictions 

when the relevant experimental data are not easily accessible. 

In previous work, we constructed a digital oil model for light oil.15 The gaseous and light fractions 
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were detected by gas chromatography, and hundreds of molecular species, including n-alkanes, 

isoalkanes, naphthenes, alkylbenzenes, and polyaromatics, were modeled. The heavy fraction and 

asphaltenes were represented as molecular mixtures by quantitative molecular representation 

(QMR)10, which is a technique that can generate representative molecules consistent with analytical 

data, such as elemental composition, average molecular mass, and the proportions of structural types 

of hydrogen and carbon atoms obtained from 1H and 13C nuclear magnetic resonance (NMR) 

experiments. The digital oil was constructed as a mixture of the molecular models of all fractions. It 

could successfully reproduce the properties of light crude oil, such as density and viscosity. 

When we applied this digital oil method to heavy oils, the major difficulty was that we could not 

characterize the light fraction by gas chromatography, even when we separated this fraction into 

saturates and aromatics. In addition, when we applied QMR to the light fraction, especially saturates, 

another problem arose: the current QMR could not generate non-aromatic molecules; that is, we could 

not construct a model for saturates due to the software restrictions. In this study, we therefore 

developed the QMR to be applicable to saturates and expanded the digital oil technique to describe 

heavy crude oil. 

 

2. Methodology 

In this study, we constructed a digital oil model for a heavy crude oil (in North Japan, API gravity: 

11–17°). First, we separated a crude oil sample into the four fractions determined by SARA (saturates, 

aromatics, resins, and asphaltenes) analysis. Second, we experimentally analyzed each fraction and 

obtained average structural information. Third, we generated representative molecules of each 

fraction by QMR. Fourth, the digital oil was constructed as a mixture of representative molecules of 

all fractions. Finally, the crude oil properties (density and viscosity) were calculated using MD 

simulations with the digital oil model. As part of investigation of the crude oil properties, the density 

and viscosity of the crude oil were experimentally measured at a few temperature and pressure 

conditions. They are reported in this paper in order to validate our digital model. In the following 

Sections 2.1 to 2.3, we will make a brief summary on our experiments. In Sections 2.4 to 2.6, we will 
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discuss the model and simulation details. 

 

2.1. Separation of Crude Oil 

We separated the crude oil sample into four fractions: saturates, aromatics, resins, and asphaltenes, 

based on SARA analysis.3 These class designations are indirect labels in terms of chemical structure 

and composition.3 Ideally, saturates contain only aliphatic compounds; however, the saturate fraction 

resulting from this analysis often contains a significant amount of mono-aromatic molecules.16 The 

aromatic component contains a variety of aromatic compounds with saturated groups attached. Resins 

contain a greater number of heteroatoms and have a higher concentration of aromatic carbon, while 

asphaltenes are the highest molecular mass fraction and contain most of the polar compounds.3 The 

distinctions in molecular structure between aromatics and resins, and between resins and asphaltenes, 

therefore, are not clear.3 In the SARA analysis, the crude oil sample was first refluxed with heptane 

and separated into soluble maltenes and insoluble asphaltenes, after which the saturates, aromatics, 

and resins were extracted from the maltenes in an alumina column using heptane, toluene, and 

methanol–toluene solvents, respectively.  

 

2.2. Analysis of Crude Oil Fractions 

To generate representative molecules using QMR, we required the analytical data for each fraction, 

including the elemental composition, average molecular mass, and the proportions of structural types 

of hydrogen and carbon atoms as obtained from 1H- and 13C-NMR experiments.  

Elemental composition. The elemental compositions of carbon, hydrogen, nitrogen, and sulfur were 

directly measured by CHNS elemental analysis using a FLASH2000 analyzer (Thermo Fisher 

Scientific, USA), while the amount of oxygen was calculated by difference.  

Average molecular mass. The average molecular mass was measured by gel permeation 

chromatography (GPC) and gas chromatography distillation (GCD). GPC, also called size-exclusion 

chromatography, is a technique to determine the average molecular mass based on molecular size by 

column chromatography. The permeation and exclusion limits of the column were 200 and 70 000 u, 



 6 

respectively. For GPC, we used PU-980 (JASCO, Japan), AS-2055 (JASCO), CO-965 (JASCO), KF-

403HQ (Showa Denko, Japan), and an Infinity ELSD (Agilent Technologies, USA) as the high-

performance liquid chromatography (HPLC) pump, auto injector, thermostatic bath, column, and 

evaporative light-scattering detector, respectively. Tetrahydrofuran (THF) was used as the eluent. We 

dissolved each sample (2 mg) in THF (1 mL) and injected it into the HPLC system using the auto 

injector. We used four kinds of polystyrenes as standards to draw a calibration curve correlating 

retention time with molecular mass.20 In this study, GPC was used for the resins.  

GCD is a technique for separating and analyzing components of a mixture based on their boiling 

points. In the same way that we can obtain a distillation curve by using a calibration curve correlating 

retention time and boiling point, we used a calibration curve correlating retention time and molecular 

mass to obtain the average and distribution of molecular mass. In this study, GCD was used for 

saturates and aromatics. We used gas chromatographs (Hewlett Packard/Agilent, USA and A.C. 

Analytical Controls, Netherlands) with a flame-ionization detector (FID). N-alkanes and 

alkylbenzenes were used as the standards for the saturates and aromatics, respectively. 

Structural types. We conducted 1H- and 13C-NMR spectroscopic measurements using a Lambda 500 

spectrometer (Japan Electron Optics Laboratory (JEOL), Japan). Details can be found in our previous 

study.15 The structural types of hydrogen and carbon atoms were classified based on their chemical 

shifts. The proportions of these structural types could then be estimated on the basis of 1H- and 13C-

NMR spectroscopies. 

 

2.3. Measurement of Crude Oil Properties 

We measured the physical properties (density and viscosity) of the crude oil to validate our digital oil 

model. The density was measured at atmospheric pressure (0.1 MPa) and at 288 K using specific 

gravity bottle (pycnometer), Wadon (JIS K 2249 and JIS R 3503, Hokkai, Japan). We first filled the 

sample (50 mL) to the pycnometer and measured its weight. We then calibrated the density using the 

water equivalent of the pycnometer.  

The kinematic viscosity was measured at atmospheric pressure (0.1 MPa) and at 303, 310.8, and 
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323 K using Ubbelohde viscometer (JIS Z 8803 and JIS Z 8809, Sibata Scientific Technology, Japan). 

Ubbelohde viscometer can measure a wide range of kinematic viscosity (0.3 to 100 000 mm2/s). We 

measured the time the sample (4.0 mL) flowed out through the capillary (inner diameter: 1.03 mm), 

and then, calculated the kinematic viscosity based on the Hagen-Poiseuille law. 

 

2.4. Generation of Representative Molecules 

Based on the results of the above experiments, we generated representative molecules using QMR. 

The method consisted of two processes: generation and optimization. In the generation process, each 

molecule was described in terms of following attributes: (1) number of unit sheets, (2) number of 

aromatic rings per unit sheet, (3) number of naphthenic rings per unit sheet, (4) number of alkyl chains 

attached to each unit sheet, and (5) length of each alkyl chain. These parameters were randomly 

sampled from each probability distribution function (PDF) by the Monte Carlo algorithm.10 Note that 

the average values were estimated by the average structure analysis,21 and the minimum and 

maximum values were determined based on previous work.15 Molecules were then constructed by 

assembling building blocks according to their sampling parameters.10 Here, building blocks are 

considered as a set of basic structures of molecules, and classified into two groups: aromatic sheets 

and aliphatic chains. The building blocks contained not only hydrocarbon, but also heteroatoms, such 

as nitrogen, sulfur, and oxygen. These building blocks were prepared based on the earlier 

studies.3,15,22-26 We did not use carboxyl functional group (>C=O and –COOH) as one of the oxygen-

containing building blocks because the 13C-NMR results showed that our sample did not contain the 

carboxyl carbon. 

In the optimization process, the objective function, 𝐹1, given by Eq. (1),10 was calculated for all 

combinations of the candidate molecules: 

 

 

𝐹1 = ∑ (
𝜇𝑖

′ − 𝜇𝑖

𝜎𝑖
)

27

𝑖=1

+
1

11
∑ (

𝜇𝑖
′ − 𝜇𝑖

𝜎𝑖
)

218

𝑖=8

 , (1) 
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where 𝜇𝑖
′  and 𝜇𝑖  are the calculated and experimental values, respectively, and 𝜎𝑖  is the 

experimental error, which was taken from previous work.27 All eighteen parameters (i = 1–18) are 

listed in Table 1. The first seven parameters (i = 1–7) provide elemental composition and number-

average molecular mass, and the other parameters (i = 8–18) provide the structural parameters 

determined from NMR spectroscopies. Among them, Q1 is the alkyl-substituted aromatic quaternary 

carbon, Q2 is the bridgehead aromatic quaternary carbon, C1 is the aromatic CH beside Q2, and C2 is 

the aromatic CH except C1. The details on the other parameters can be found in previous works.10,15,27 

The accuracy of structural parameters is relatively lower than that of elemental composition and 

molecular mass, so the contribution of those parameters to the objective function was weighted by a 

factor of 1/11.10 The best combination that provided the lowest deviation was selected as the 

representative molecules. 

 

2.5. Development of QMR 

Because the QMR method was originally designed for asphaltenes and heavy fractions,10 it could not 

provide non-aromatic molecules like saturates. In the case of the previously studied light oil, we 

applied QMR only to the heavy fraction and asphaltenes, but for heavy oil, we needed to apply QMR 

to all SARA fractions, including saturates. We therefore developed an appropriate QMR method in 

this study. 

Non-aromatic molecules. We extended the QMR method to construct a model for the saturate 

fraction, which consists of monoaromatic and non-aromatic compounds. Figure 1 shows a schematic 

of generation process, where one molecule is composed by three attributes: naphthenic rings and/or 

an aromatic ring (unit sheet), long side chains (main), and short branches of the main chains (sub). 

First, the numbers of aromatic and naphthenic rings were determined, and a unit sheet was selected 

among candidates prepared in advance (Figure 1a). Next, the number and the length of main chains 

were determined, which were attached on the unit sheet. After that, the number and the length of sub 

chains were determined, and all the sub chains were attached to the main chains. In the case of 

paraffins, no unit sheet was formed (Figure 1b), so only the main chain and sub chains were 
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configured. All the parameters, such as the number, the length, and the position of chains, were 

determined by the Monte Carlo algorithm with given minimum and maximum values for each 

parameter. The optimization process of the extended QMR was the same as the previous one 

mentioned above (Eq. (1)).  

Using this method, we can select whether a particular unit sheet is present and whether it contains 

aromatic rings. Moreover, we can generate many branched structures by separating the chain bonding 

into main and subsidiary (“sub”) processes. As a result, it is now possible to generate non-aromatic 

molecules, such as paraffins and naphthenes, with more complicated chain structures than previous 

studies. 

Molecular mass distribution. Our extended QMR method enables us to generate representative 

molecules for all fractions, including saturates. Although these representative molecules reproduced 

the number-average molecular masses, they could not reproduce the molecular mass distributions. To 

improve the accuracy of the models, especially for high proportions of saturates, we fitted the 

molecular mass distribution of the models to that obtained experimentally. First, we prepared thirty 

sets of model molecules, all of which provided sufficiently small 𝐹1 deviations. We then uniformly 

divided the molecular mass range into 𝑆 grids and calculated the deviation between the model and 

the experimental values for each grid. Finally, we calculated the total deviations, 𝐹2, and selected the 

best combination with the lowest deviation. Deviation 𝐹2 is expressed as follows: 

 

 

𝐹2 = ∑(𝑤𝑖
′ − 𝑤𝑖)

2 

𝑆

𝑖=1

, (2) 

 

where 𝑤𝑖
′ and 𝑤𝑖 are the mole fractions of the model and experiments, respectively. 

 

2.6. Molecular Dynamics Simulations 

We calculated the physical properties of the digital oil by MD simulations. The GROMACS package 

(version 4.6.7) was used.28 The CHARMM general force field (CGenFF) was used for describing the 
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molecular models.29-32 It was shown in previous studies that the CGenFF (and the CHARMM force 

field) could reproduce the densities for organic liquids and the interfacial tension of oil–water 

interfaces very well with an uncertainty less than 1 % and 3 %, respectively.11,29,33 The cutoff distances 

were 1.2 nm for both the Lennard–Jones and electrostatic potentials. The particle mesh Ewald 

summation method was used for long-range electrostatic interactions.34 To remove excess potential 

energy prior to the calculation of density, we conducted an energy minimization step using the 

steepest descent method, after which we conducted an NPT (isothermal–isobaric) ensemble using the 

velocity-rescaling thermostat35 and Berendsen barostat36 until the system reached equilibrium. The 

density was then calculated using an NPT simulation with the Nosé–Hoover thermostat37,38 and 

Parrinello–Rahman barostat39 for 3 ns. The shear viscosity was calculated under NVT simulation 

(canonical ensemble) with the Nosé–Hoover thermostat for 5–20 ns. The temperature ranged from 

403 K to 303 K, and the equilibrium volumes and coordinates were obtained from the NPT 

simulations for density calculation. 

 

3. Results and Discussion 

3.1. Analytical Experiments 

Table 1 shows the weight percentages of crude oil fractions, elemental composition, number-average 

molecular mass, and the proportions of structural types of hydrogen and carbon atoms of each fraction. 

Asphaltenes were ignored in the digital oil because they comprised only 0.4 wt. %, and their yield 

was too low for their analytical determination. Because detailed characterization for a similar grade 

of heavy oil was not available, we compared our analytical results with those of bitumen.16 The H/C 

ratios of saturates, aromatics, and resins were 1.63, 1.11, and 1.15, respectively, while those in the 

earlier study were 1.75–1.89, 1.40–1.46, and 1.38–1.47.16 We thus found that the H/C ratios of our 

samples were lower than those of the samples used in the earlier study. In addition, the aromaticities 

of the saturates, aromatics, and resins were 14.7, 57.1, and 48.4 %, respectively, while values of 7.1–

9.0, 35.9–37.7, and 36.2–43.0 % were previously reported.16 As these values suggested, the 

aromaticities of our samples were higher than those of the samples used in the earlier study. These 
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results show that our crude oil sample is rich in cyclic hydrocarbons and aromatic carbons. The 

number-average molecular masses of the saturates, aromatics, and resins were 315, 473, and 515, 

respectively, while those of the earlier study were 324–380, 465–530, and 739–1010.16 Although the 

prior study focused on bitumen, these values showed good agreement, especially for saturates and 

aromatics. 

Table 1 also indicates that 39.4 wt. % of all components were lost during SARA analysis. It is 

known that components with low boiling points can vaporize during this analysis, but it is impossible 

to analyze these directly. We therefore estimated the average molecular mass of the lost components 

from the molecular mass distribution obtained by GCD. Figure 2 shows the molecular mass 

distributions of the saturates, aromatics, the crude oil sample, and the lost components. The molecular 

mass distribution of the lost components was calculated as that of the crude oil sample minus the 

saturates and aromatics. There were no aromatic molecules distributed at low molecule mass (< 260), 

so we assumed that the lost components were all saturates. In fact, the weight percentages of carbon 

and hydrogen of the lost components determined by mass balance were 86.8 and 12.6 wt. %, which 

were almost the same as those of the saturates (87.9 and 12.0 wt. %). In this paper, we assumed that 

the elemental composition and the structural parameters of the lost components were the same as 

those of the saturates. We thereby inferred analytical data for these lost components. 

 

3.2. Construction of Digital Oil 

Based on the above results, we generated representative molecules for each fraction using our 

extended QMR method. In our study, a simple random distribution was chosen for saturates and a γ 

distribution10,15 was chosen for PDFs of aromatics and resins. The sampling parameters for the 

saturates, aromatics, and resins used in the generation process are listed in Table 2 and Table 3. For 

the lost components, we used the same sampling parameters as those of the saturates. Figure 3 shows 

the relationships between the objective deviation 𝐹1 and the number of optimized molecules, 𝑀, in 

the optimization process. All fractions achieved convergence when 𝑀 was 5 or higher. It was found 

that the deviation of resins was comparable to that of asphaltenes and heavy fractions in the earlier 
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studies, with a range of 20 to 60.10,15 Interestingly, we obtained much lower deviations for light 

fractions, which was presumably because the molecular structures of light fractions were less 

complicated than those of heavy fractions, resins, and asphaltenes. The optimized parameters of the 

model for each fraction are listed in Table 1, in comparison with those obtained from experiments. 

Figure 4 shows comparisons of the experimental molecular mass distributions with one and two 

or three QMR sets for saturates and aromatics. In the case of saturates, the deviation 𝐹2 of a single 

QMR set was at least 0.2; however, when we used three QMR sets, the deviation became 0.005. 

Similarly in the case of aromatics, the deviation 𝐹2 of two QMR sets was 0.005, while that of a 

single QMR set was at least 0.03. Finally, we constructed the digital oil as a mixture of these 

representative molecules, which contained 36 kinds of molecules and 917 molecules in total. 

Representative molecules of each fraction are discussed below. 

Saturates. Figure 5 shows the saturates model. Two naphthenic hydrocarbons and nine 

monoaromatics were selected as representative. Similar structures, such as naphthenes with alkyl 

chains and monoaromatics with naphthenic rings, were found in the earlier study.16 The average 

number of unit sheets was 1.0, that of aromatic rings per unit sheet was 0.8, and the average chain 

length was 6.9. The aromaticity of the model was 21.8 %, while the experimental value was 14.7 %. 

Three QMR sets were selected for the distribution fitting. The 𝐹1 deviations of the sets were 5.9, 7.2, 

and 8.9. 

Lost components. Figure 6 shows the model of the lost components. Two isoalkanes, one naphthenic 

hydrocarbon, and five monoaromatics were selected as the representative of this fraction. It is 

noteworthy that similar structures were found in the database of our light oil model.15 The average 

number of unit sheets was 0.9, that of aromatic rings per unit sheet was 0.7, and the average chain 

length was 5.1. The aromaticity of the model was 26.4 %. Two QMR sets were selected for the 

distribution fitting, having 𝐹1 deviations of 5.1 and 10.1. 

Aromatics. Figure 7 shows the aromatics model. One monoaromatic and eleven polyaromatics were 

selected as representative. The molecules contained a few heteroatoms, such as nitrogen, sulfur, and 

oxygen. Similar structures, such as polyaromatics with naphthenic rings and thiophenic sulfur, were 



 13 

found in the earlier study.16,17 The average number of unit sheets was 1.7, that of aromatic rings per 

unit sheet was 3.0, and the average chain length was 2.4. The aromaticity of the model was 58.1 %, 

while that of experiments was 57.1 %. Two QMR sets were selected for the distribution fitting, with 

𝐹1 deviations of 3.1 and 4.1. 

Resins. Figure 8 shows the resins model. Five polyaromatics were selected as these representative 

molecules. They contained more heteroatoms than those of the aromatic fraction. Similar structures, 

such as phenolic hydroxyl group and thiophenic sulfur, were found in the earlier studies.12,16,17,19 In 

addition, we found that the heaviest two molecules resembled archipelago model for asphaltenes, 

while no molecules were similar to island model. The average number of unit sheets was 1.3, that of 

aromatic rings per unit sheet was 2.6, and the average chain length was 4.5. The aromaticity of the 

model was 54.9 %, compared with an experimental value of 48.4 %. Because of the low proportion 

of this class in the SARA fractions, we did not apply a distribution fitting. The 𝐹1 deviation of this 

model was 49.2. 

Plots of double-bond equivalent against carbon number. Planar limits, defined as the lines 

generated by connecting maximum double-bond equivalent (DBE) values at given carbon numbers, 

have been proposed as a means of predicting and understanding the molecular structure of the 

compounds in crude oil.40 For validation of each model, we plotted DBE as a function of carbon 

number and compared these with the planar limits. DBE represents the degree of unsaturation, which, 

for elemental formulae of 𝐶𝑐𝐻ℎ𝑁𝑛𝑂𝑜𝑆𝑠, is equal to the number of rings and double bonds involving 

carbon:25,40 

 

 DBE = 𝑐 − ℎ 2⁄ + 𝑛 2⁄ + 1 , (3) 

 

Figure 9 shows the plots of DBE against carbon number for each model. The planar limits of the 

saturates (PSL), aromatics (PAL), and resins (PRL)40 are also shown. All plots located below the 

planar limit of each fraction, which implied that the molecular model of each fraction was reasonable 

in terms of molecular structure. 
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3.3. Investigation of Crude Oil Properties 

Calculation of density. First, we calculated the density of the digital oil over a wide range of 

temperature. The pressure was controlled at 0.1 MPa, and the temperature ranged from 403 K to 288 

K. Figure 10 shows the calculated density as a function of temperature. The experimental datum (of 

the same oil sample) at 288 K is also shown. The calculated and measured values were in good 

agreement with each other, having the values of 942.4 and 954.7 kg/m3, respectively. In addition, we 

found that there was no glass transition in this temperature range. Because the density as a function 

of temperature was close to linear, we compared the slope of the digital oil with that of other related 

chemicals for further validation. The density slope of the digital oil was –0.76 kg/m3 K, while that of 

an asphalt model was –0.68 kg/m3 K,14 that of an experimental asphalt value was –0.60 kg/m3 K,41 

and that of toluene was –0.98 kg/m3 K.42 Considering that crude oil is a mixture of kinds of asphalts 

and light fractions, the digital oil was reasonable for crude oil compounds in terms of its density slope. 

Calculation of viscosity. We then calculated the shear viscosity of the digital oil by equilibrium MD 

(EMD) simulations.43–45 Although non-equilibrium MD (NEMD) method has become increasingly 

popular for calculating the viscosities of liquids, it was confirmed that EMD method enabled us to 

obtain the viscosity with comparable accuracy and reliability to NEMD method.45 In contrast to 

NEMD method, EMD method does not require additional adjustments of shear rate.45 Figure 11 

shows the temporal-evolution profiles of shear viscosity for correlation time at different temperatures. 

The first plateau in the profile showed the value of shear viscosity used in the EMD simulations.43–45 

Longer calculation time was required for lower temperatures, because it was difficult to obtain 

plateaus under these conditions. At the lowest temperature (288 K), the profile did not show the 

plateau in our simulations, so we judged that we were not able to calculate the viscosity at this 

temperature using EMD method. 

We experimentally measured the kinematic viscosity of the crude oil at 303, 310.8, and 323 K to 

validate the calculated viscosity of the digital oil. The kinematic viscosity is the ratio of the dynamic 

viscosity to the density,46 as given by Eq. (4): 



 15 

 

 ν =
𝜇

𝜌
 , (4) 

 

where ν is the kinematic viscosity, 𝜇 is the dynamic viscosity, and 𝜌 is the density. The calculated 

kinematic viscosity values at 303, 310.8, and 323 K were 71.8, 51.9, and 27.8 mm2/s, respectively, 

which were higher than experimental values (50.0, 32.5, and 18.8 mm2/s). However, the error 

appeared systematic, being a factor of ~1.5 higher than that of experiments. We considered several 

reasons why the calculated values were overestimated (as discussed below).  

  To further validate the viscosity, we tried fitting the calculated viscosity to equations that express 

the relationship between viscosity and temperature of liquids. Two well-known empirical expressions 

(with their respect theoretical bases) are the Arrhenius and Vogel–Fulcher–Tammann (VFT) 

equations.47 The Arrhenius equation is a two-parameter correlation, given by Eq. (5):  

 

 𝜂 = 𝐴𝑠𝑒𝑥𝑝 (
𝐸𝑎

𝑅𝑇
) , (5) 

 

where 𝜂 is the dynamic viscosity, 𝑇 is the absolute temperature, 𝐴𝑠 is the substance-dependent 

constants, 𝐸𝑎 is the activation energy, and 𝑅 is the universal gas constant.47 It is considered that 

Arrhenius equation works well at low temperatures, but fails in the high-temperature range,47 

primarily because it is expressed by only two parameters. The VFT equation is therefore commonly 

used for analysis of experimental data of temperature dependence of viscosity. This is a three-

parameter correlation, given by Eq. (6):47,48 

 

 𝜂 = 𝜂0𝑒𝑥𝑝 (
𝐷𝑇0

𝑇 − 𝑇0
) , (6) 

 

where 𝜂 is the dynamic viscosity, 𝑇 is the absolute temperature, 𝜂0 is the pre-exponential factor 

(viscosity at infinite temperature), 𝐷  is the fragility parameter, and 𝑇0  is the Vogel temperature 



 16 

(ideal glass transition temperature).47,48 The last three parameters are experimentally determined 

substance-dependent constants. The VFT equation can be applied for wide ranges of temperature, 

types of chemical compounds, and fields of research.47,48 Thus, we used the VFT equation for 

correlation in this study. Figure 12 shows a comparison of calculated viscosity with the VFT equation. 

The estimated experimental shear viscosity values based on the experimental kinematic viscosity and 

the calculated density are also shown. We used the least-squares method for fitting the parameters. 

The fitting parameter 𝜂0 was 0.41 cP, 𝐷 was 1.81, and 𝑇0 was 224 K. The parameter 𝐷 relates to 

the liquid fragility, which reflects how quickly the viscosity increases with decreasing temperature. 

For strong liquids (i.e., those that easily form glass, like SiO2), it takes a large value (typically 𝐷 ≥

100), while for fragile liquids, it takes a small value (𝐷 < 10).48 Thus, the value of 𝐷 showed that 

our crude oil sample was not a strong liquid. In addition, the value of 𝑇0  showed that the glass 

transition temperature was far below 288 K. As mentioned above, the calculated density also showed 

that the glass transition temperature was outside the range of 288–403 K. Therefore, the calculated 

viscosity showed the consistency with the calculated density in terms of glass transition temperature. 

  Overall, the crude oil properties of density and viscosity were well reflected by the digital oil. In 

future, we will consider several possibilities to improve our digital oil model. The first issue is about 

the force field used in MD simulations. As we mentioned in Section 2.6, we used CGenFF in this 

study because it well reproduced the experimental density in comparison with the other force fields, 

such as general AMBER force field (GAFF) and optimized potentials for liquid simulations 

(OPLS).29,33 However, it is not known a priori regarding the viscosity. Thus, we need to consider 

using various force fields, and if necessary, tuning parameters for viscosity calculation. The second 

issue is the optimization process where large errors of the structural parameters were used. As we 

mentioned in Section 2.4, the contribution of the structural parameters to the objective function 𝐹1 

was weighted by a factor of 1/11 because of the relatively low accuracy (Eq. (1)). Therefore, even 

though the deviation was small, these structural parameters can differ considerably from experimental 

data. In fact, these differences caused the errors in aromaticity, especially for saturates. If the 

aromaticity of the saturates model approaches the experimental value, from 21.8 % to 14.7 %, more 
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paraffinic and naphthenic hydrocarbons will be generated as the representative molecules, which 

could lead to a decrease in the viscosity of the digital oil. The third issue is the simplified fitting of 

the molecular mass distributions. In this fitting, the molecular mass range was divided into uniform 

grids and the deviation was calculated for each grid; however, to improve the accuracy of the 

distribution, a finer classification is required in the higher mole fraction range. If we use denser grids, 

the accuracy of the distribution can be improved, which could lead to a decrease in viscosity.  

  In addition, we need to enrich the kinds of molecules that can be generated by QMR. The most 

essential point is to enable a variety of isomers of representative molecules to be considered in the 

digital oil. It is well known that viscosities may differ greatly between isomers even though these 

densities are close. In some cases, they may not be distinguishable from each other in structural 

parameters determined by NMR spectroscopies. Therefore, if we consider the isomers as alternatives 

for the representative molecules, the viscosity of the digital oil could change while keeping the density 

and the structural parameters. Moreover, considering isomers can also be helpful in terms of 

heteroatom compounds structures. In the case of nitrogen compounds, for example, pyrrole indicates 

an acidic or neutral property, while pyridine indicates a basic property; that is, indole and cyclopenta-

pyridine have the same elemental compositions, the same molecular masses, and the same structural 

parameters, but different pKa values because of the position of nitrogen atom. Regarding our digital 

oil, nitrogen existed only in five-membered aromatic ring like pyrrole and indole, which showed 

acidic or neutral properties. Thus, if we consider the isomers of nitrogen compounds, we can freely 

change pKa values of these molecules, which could enable a wider variety of molecules to be 

considered in the digital oil. 

 

4. Conclusion 

In this study, we expanded the digital oil technique to model heavy crude oil. In our expanded method, 

QMR was developed to be applicable to saturates. The first development was a new generation 

algorithm that allows our QMR method to generate non-aromatic molecules like saturates. In addition, 

it can also generate more branched structures by separating the chain bonding into main and 
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subsidiary processes. The second development was that we fitted the molecular mass distribution of 

the model to that obtained from experiments. As a result, we successfully constructed a digital oil for 

heavy crude oil comprising a mixture of 36 types of representative molecules.  

To validate the digital oil, we first confirmed the validity of the model for each fraction in terms 

of the plots of DBE against carbon number. In addition, we calculated the density and viscosity of the 

digital oil by MD simulations, and confirmed good agreement with experimental data for crude oil. 

Furthermore, we compared the calculated viscosity with the VFT equation. The fitting parameter 𝐷 

showed that our crude oil sample was not a strong liquid. The fitting parameter 𝑇0 showed that the 

glass transition temperature was far below 288 K. The calculated density also showed that the glass 

transition temperature was outside the range of 288–403 K, thereby confirming consistency between 

the calculated viscosity and density. Consequently, we were able to confirm the validity of the digital 

oil in terms of molecular structure and physical properties. To further improve the digital oil, we could 

increase the accuracy of the aromaticity and the molecular mass distribution of the models in 

optimization process. In addition, we could consider a variety of isomers to refine our models, which 

will lead to further investigation of crude oil properties. Moreover, it will be very interesting to study 

the digital oil with respect to fractions upon distillation,49,50 and understand the nature of a super 

mixture behavior of a heavy crude oil; that is, why we could not characterize the individual molecules 

even for light fractions. 
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Figure 1. Schematic of generation algorithm in our extended QMR method. (a) Unit sheet is present 

and there are no aromatic rings; (b) unit sheet is not present. 

 

 

Figure 2. Molecular mass distributions of crude oil sample, saturates, aromatics, and lost components 

obtained by gas chromatography distillation. 
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Figure 3. Relationships between objective deviation and number of optimized molecules. The dashed 

lines show thresholds: the upper threshold was set to 54 for resins; the lower was set to 10 for saturates, 

lost components, and aromatics. Open symbols show the values of our models. 
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Figure 4. Comparisons of experimental molecular mass distributions with those determined using 

one QMR set and two or three QMR sets: (a) Saturates; (b) lost components; (c) aromatics. 
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Figure 5. Representative molecules of saturates. The number beside each molecule shows the number 

of that molecule contained in the digital oil. 

 

 

 

Figure 6. Representative molecules of lost components. The number beside each molecule shows the 

number of that molecule contained in the digital oil. 
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Figure 7. Representative molecules of aromatics. The number beside each molecule shows the 

number of that molecule contained in the digital oil. 
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Figure 8. Representative molecules of resins. The number beside each molecule shows the number 

of that molecule contained in the digital oil. 

 

 

Figure 9. Plots of double-bond equivalent (DBE) as a function of carbon number of saturates, 

aromatics, and resins. The planar limit for each is also shown as a line. 
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Figure 10. Calculated density as a function of temperature. An experimental datum of our crude, 

calculated values of an asphalt model, and experimental values for asphalt and toluene are also shown 

for comparison. 
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Figure 11. Temporal-evolution profiles of viscosity for correlation time in Equilibrium MD 

simulations. The dashed lines show the first plateaus, at which the values of viscosity were taken. 
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Figure 12. Calculated shear viscosity as a function of temperature. Available experimental data and 

the Vogel-Fulcher-Tammann equation are also shown for comparison. 
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Table 1. Comparison of experimental and model parameters for crude oil fractions. According to 

NMR spectroscopies, olefinic carbons were 0.0 % for saturates, 0.3 % for aromatics, and 0.5 % for 

resins, respectively. They were ignored in our model. 

 
Fraction Saturates 

Lost 

components 
Aromatics Resins 

wt. % 41.1 39.4 16.1 3.0 

No. Property Exp. Model Exp. Model Exp. Model Exp. Model 

1 C (wt. %) 87.9 88.0 - 88.1 90.3 90.3 80.0 83.4 

2 H (wt. %) 12.0 12.0 - 11.9 8.4 8.4 7.7 8.2 

3 N (wt. %) 0.0 0.0 - 0.0 0.1 0.1 0.7 0.0 

4 S (wt. %) 0.0 0.0 - 0.0 0.2 0.2 0.4 0.4 

5 O (wt. %) 0.1 0.0 - 0.0 1.0 1.1 11.3 8.0 

6 V (wt. %) 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 

7 Mn 315 304 213 203 473 472 515 500 

 Mw 345 316 219 209 595 523 1174 1053 

8 Q1 (%) 6.3 10.7 - 10.1 16.1 17.1 12.4 17.4 

9 Q2 (%) 1.2 0.0 - 0.0 8.7 15.9 12.8 14.7 

10 C1 (%) 1.3 0.0 - 0.0 20.2 14.9 12.4 13.4 

11 C2 (%) 5.9 11.1 - 16.3 12.1 10.2 10.8 9.4 

 Carbon aromaticity (%) 14.7 21.8 - 26.4 57.1 58.1 48.4 54.9 

12 Other aliphatic CH2 (%) 23.1 35.3 - 31.9 10.6 17.2 11.7 22.0 

13 Total α-CH3 (%) 13.2 10.8 - 12.1 9.5 8.8 8.0 4.3 

14 Total β-CH3 (%) 3.6 2.2 - 3.2 1.8 2.0 2.4 2.6 

15 Chain CH2 (%) 0.5 0.5 - 0.5 1.2 1.2 4.1 3.1 

16 Aliphatic CH (%) 34.7 20.0 - 15.4 15.1 8.8 18.7 6.6 

17 Naphthenic CH2 (%) 7.3 7.2 - 8.0 2.9 2.5 4.1 2.6 

18 γ-CH3 (%) 2.9 2.2 - 2.5 1.5 1.4 2.1 3.9 
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Table 2. Sampling parameters for the saturates. 

 

Saturates 

Non-aromatics Monoaromatics 

Min Max Min Max 

Number of naphthenic rings 0 3 0 3 

Number of main chains 1 4 1 1 

Length of main chains 4 10 4 10 

Number of sub chains 0 10 0 10 

Length of sub chains 1 2 1 2 

 

 

Table 3. Sampling parameters for the aromatics and resins. Note: three parameters (average, 

minimum, and maximum values) are necessary to generate a γ distribution. 

 
Aromatics Resins 

Ave. Min Max Ave. Min Max 

Unit sheets (US) 1.6 1 4 1.3 1 4 

Aromatic rings / US 2.1 1 6 2.9 1 8 

Naphthenic rings / US 1.3 0 6 2.3 0 8 

Alkyl chain length 2.3 1 8 2.6 1 10 

Substitution of aromatic atoms with 

alkyl chains (%) 
11.9 0 34 14.2 0 34 

Substitution of naphthenic atoms with 

alkyl chains (%) 
43.5 0 84 43.2 0 84 

 

 

 


