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ABSTRACT

In this paper, we consider the problem of separating a set of
independent components when only one movable sensor is
available to record the mixtures. We propose to exploit the
quasi-periodicity of the heart signals to transform the signal
from this one moving sensor, into a set of measurements, as if
from a virtual array of sensors. We then use ICA to perform
source separation. We show that this technique can be applied
to heart sounds and to electrocardiograms.

Index Terms— Independent Component Analysis, Peri-
odic Signals, FastICA, Blind Source Separation Application,
Heart Sounds, Electrocardiogram, foetal Electrocardiogram.

1. INTRODUCTION

Independent component analysis (ICA) is a multidimensional
signal processing technique used to separate signals arising
from linear mixtures of several unobserved components or
sources into distinct components. In biomedical signal pro-
cessing, ICA can be used to analyse the electroencephalo-
gram, to separate out the components arising from different
brain sources [1], the electrocardiogram, for example in the
context of extracting the foetal ECG from a recording taken
from an expectant mother, and which contains the maternal
heart and other interfering sources. ICA can also correlate dif-
ferent exams, such as MEG data and EEG [2]. Underlying the
ICA generative model, is the assumption that a set of source
signals, s(t) ∈ Rm, are transmitted simultaneously through a
mixing medium, and a set of sensors simultaneously record a
weighted linear combination of them, denoted as x(t) ∈ Rn.
Typically, the basic mixing model assumes an instantaneous
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and noiseless mixture of sources, that can be written as

x(t) = As(t) (1)

where A ∈ Rn×m is the mixing matrix, and it is assumed that
the source signals are mutually statistically independent, with
at most one source having a Gaussian probability distribution
[3]. For simplicity, we assume that there are as many sensors
as sources n = m. To recover the original sources, an ICA
algorithm such as Infomax [4], JADE [5], or FastICA [6], is
used to estimate the unmixing matrix W. The sources are
finally estimated using:

y(t) = Wx(t). (2)

where y(t) are the recovered sources. ICA suffers from a
permutation and scaling ambiguity, which means that the
ordering and scale of the estimated sources cannot be pre-
determined [2].

In this paper, we address the problem of separating a set of
independent components assuming that we have access to one
moving sensor and we also assume that the underlying source
signals that we wish to separate are quasi-periodic (this is a
well-known characteristic of heart signals). Specifically, in
our algorithm, the sensor is a stethoscope that is placed at
particular locations in the thoracic (chest) region, during the
routine listening of the heart sounds.

At first glance this might appear to be a single sensor sep-
aration problem such as discussed in [7]. However, the avail-
ability of a moving sensor and the cyclic-stationary nature of
the signal means that we can simulate an array of n spatially
separated sensors which acquire n mixtures by time-shifting
to align the mixtures. Thus, x1(t) will be recorded during the
time interval 0 < t < t1, x2(t) during t1 < t < t2, etc., with
each mixture being zero outside the time interval.

As result, the signal from the moving sensor can be seg-
mented to extract the mixture signals, which are then artifi-
cially synchronised and treated as if they were acquired si-
multaneously from an array of sensors. Then, any ICA algo-
rithm can be used to extract the underlying sources.



2. HEART SIGNALS

Heart signals include the electrocardiogram (ECG) signal,
and heart sounds. The ECG is a recording of the difference
in potential between two electrodes during the cardiac cycle,
and provides important information about the performance
of the heart. ECG signal analysis typical entails removal of
noise and interference. A related problem is the elimination
of maternal ECG (MECG) components from ECG signals
recorded during pregnancy, also known as foetal ECG ex-
traction. When risk factors are present during pregnancy,
electrocardiograms, along with other measurement methods,
may be of vital importance to both mother and child. This
problem has been studied at length [8], and several ICA algo-
rithms have been used to extract the foetal heartbeat. Because
of this, we use our algorithm to address this problem, as a step
to establish the validity of the proposed method. We do this
by simulating a relocated sensor, then aligning the mixtures,
and comparing the output of ICA applied on this, with the
output of conventional ICA.

The act of hearing the heart sounds is known as auscul-
tation, and is one of the cheapest and most useful techniques
for the diagnosis of heart disease. Whenever a clinician is
performing an auscultation he observes the main constituents
of a cardiac cycle: The first heart sound (typically referred to
as S1) and the second heart sound (S2), which has two com-
ponents: A2 and P2, as shown in Figure 1(a). The A2 and
P2 components are of interest to the clinician, because they
can be used as an indicator of the presence and severity of a
number of cardiac abnormalities [9].
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Fig. 1. a) The heart sound and b) Standard auscultation sites

3. SEPARATION VIA SEQUENTIAL SIGNAL
SYNCHRONISATION

In this paper we aim to separate the A2 and P2 components.
We do this in a way that is inconspicuous to the clinician, who
remains free to performs a routine examination, including lis-
tening to the heart sounds sequentially at four standard sites,
as shown in Figure 1(b). Since simultaneous recordings are
not available, ICA cannot be applied directly. An alternative

approach is to take advantage of the quasi-periodic nature of
the heart sound, and align the observed signals so that they
are artificially synchronised. These signals are then presented
to the ICA algorithm as if they were acquired simultaneously.

Algorithm 1 Separation via sequential signal synchronization
1. Segment the observed signal to extract the recordings a

the different locations using:

x̃i(t) =

{
x̄i(t) if ti < t < ti+1

0 otherwise

where ti represents the time at which recording at the next
thoracic (chest) location begins.

2. Align the mixture signals using

x̂i(t) =

{
x̃i(t− ti) if i = 1
x̃i (t− (ti + δi)) otherwise (i > 1)

3. Form the mixture vector

x̂(t) = [x̂1(t), . . . , x̂n(t)]
T

4. Apply FastICA.

In the scheme that we present, only one sensor is avail-
able, and it is firstly used to acquire a mixture of the sources
from locationA on the chest (see Figure 1(b)). The same sen-
sor is then placed at the B location, and so on, until four ob-
servations are obtained. The sensor signal, x̄(t), contains the
heart signal from the four locations, with periods of silence
when the sensor is being relocated. Note that the timing be-
tween the source signals is not affected by the way the signals
are acquired. In order to generate a mixture signal vector as in
equation (1), we proposed to segment x̄(t) into four signals,
so that the i-th heart signal is given by

x̃i(t) =

{
x̄i(t) if ti < t < ti+1 (3)
0 otherwise

where ti represents the time at which recording at the next
thoracic (chest) location begins (eg. the sensor is placed at A
at time t1, atB at time t2, and so on). We align the signals, so
that they can be presented to the ICA algorithm as if they were
acquired simultaneously. In doing this, we exploit the quasi-
periodicity of the heart cycle. We seek to align the peaks of
the mixtures in x̃i(t), according to

x̂i(t) =

{
x̃i(t− ti) if i = 1 (4)
x̃i (t− (ti + δi)) otherwise (i > 1),

where δi is the relative time shift to get the peaks to align. It
is evaluated using the cross-correlation function:

δi =

N−m−1∑
n=0

x̃i(m)x̃∗i (n+m), for i 6= j. (5)



Fig. 2. The proposed method

Finally, the FastICA algorithm is used to separate the inde-
pendent components from x̂(t) = [x̂1(t), . . . , x̂n(t)]

T . The
proposed algorithm is summarized in Algorithm 1.

0 200 400 600 800 1000
−1

1

0 200 400 600 800 1000
−1

1

0 200 400 600 800 1000
−1

1

0 200 400 600 800 1000
−1

1

(a)

0 1000 2000 3000 4000
−1

1

0 1000 2000 3000 4000
−1

1

0 1000 2000 3000 4000
−1

1

0 1000 2000 3000 4000
−1

1

(b)

Fig. 3. Maternal ECG mixed with foetal ECG. The classical
input to ICA a) and the input for the proposed method b).

4. VALIDATION ON ELECTROCARDIOGRAM -
FOETAL ECG EXTRACTION

To test the validity of our method, we used it to address the
foetal ECG extraction problem, on the signals described in
[10]. To simulate a relocating sensor, we selected random sec-
tions of the recorded signals from each of four sensors. Then
we aligned the sections as described previously and applied
FastICA[6] to perform source separation. Figure 3(a) shows
the mixture signals, while Figure 3(b) illustrates the simulated
sequential signals, prior to alignment. The separated signals
are illustrated in Figures 4(a) and (b), where the former shows
the output of the FastICA algorithm using the classical ap-
proach (note the graph the first extracted signal has the higher
heart rate, from the foetus), while the latter shows the output
of the FastICA algorithm using the proposed method. Com-
paring the two figures, we can see that the proposed algorithm

successfully extract the foetal ECG, and generally recovers
the same sources as conventional ICA. The scaling ambiguity
of ICA causes the difference in the second source extracted
by the two algorithms.
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Fig. 4. Output of ECG signals using classical (a) and pro-
posed method (b). In a) and b): the first signal is the foetal
ECG. The second and forth signals are a mixture with mater-
nal and foetal ECG, and the third signal is maternal ECG.

5. EXPERIMENTS ON HEART SOUNDS

In this section we apply our algorithm to heart sounds ac-
quired sequentially at the locations shown in Figure 1, from a
healthy adult. They were recorded using an electronic stetho-
scope from Welch Allyn model Elite, connected to a laptop to
capture the signal. The sound was digitised at 44.1KHz, with
16 bits resolution.

Since most of the frequency content of heart sounds is
found below about 1.5KHz, the audio signal was resampled
down to 8KHz. The signal was also normalised so that the
amplitude of the waveform lies between [−1,+1]. To remove
undesired noise and to emphasise the heart sounds we per-
formed wavelet threshold denoising [11].



The proposed algorithm was then applied to the signal.
Figure 5 shows examples of one heart cycle taken from the
four waveforms that have been aligned, and prior to input to
ICA. They are labelled with the locations to which they cor-
respond. The FastICA algorithm was subsequently applied
to this set of synchronised mixture signals, and the follow-
ing parameters were selected: non-linearity function g(u) =
tanh(a1 ∗ u), fine tuning function g(u) = u3, and epsilon
10−7.

Figure 6 shows the separated components. In particular,
the A2 component can be seen in the second output, at sample
5032, while the P2 component is observed in the fourth out-
put, at sample 5119. These A2 and P2 components are sim-
ilar to the components reported in the literature [12]. More-
over, their relative sizes are in agreement with what is ex-
pected in a healthy patient (A2 comes earlier than P2 and has
a greater amplitude). These results were validated by a clini-
cian (SSM).
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Fig. 5. An example of heart cycles acquired on each of the
four sites depicted on Figure 1.

6. CONCLUSIONS

In this paper we introduced a new method for the separation
of sources when only one sensor is available to record their
mixtures. The proposed method segments the recorded sig-
nal into several mixtures, and exploits the periodic nature of
heart signals to align these. The result is a mixture vector
from which ICA can separate the underlying sources. The al-
gorithm was validated on ECGs and subsequently applied to
heart sounds, from which it was found to extract two compo-
nents that are particularly interesting from the clinical point
of view.
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