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Abstract— The frequency stability of power systems is in-
creasingly challenged by various types of disturbance. In par-
ticular, the increasing penetration of renewable energy sources
is increasing the variability of power generation while reducing
system inertia against disturbances. In this paper we explore
how this could give rise to rate of change of frequency (RoCoF)
violations.

Correlated and non-Gaussian power disturbances, such as
may arise from renewable generation, have been shown to
be significant in power system security analysis. We therefore
introduce ghost sampling which, given any unconditional distri-
bution of disturbances, efficiently produces samples conditional
on a violation occurring. Our goal is to address questions such
as “which generator is most likely to be disconnected due to
a RoCoF violation?” or “what is the probability of having
simultaneous RoCoF violations, given that a violation occurs?”

I. INTRODUCTION
Frequency stability is a prime concern of transmission

system operators, since instability may cause machine desyn-
chronization leading to large power outages [1]. Decreased
levels of system inertia [2], together with the variability
of renewable generation, can lead to large swings in the
power system frequency [3]. While promising mitigations
exist including participation from loads [4], [5], distributed
energy resources [6] and virtual inertia [7], it is increasingly
important to also understand the stability of power system
frequency under random disturbances to the network’s power
injections. In the Irish transmission system, for example, the
rate of change of frequency (RoCoF) has been identified as
the key limit to allowing high real-time penetrations of wind
generation [8].

In this paper, following a disturbance to the nodal power
injections we model the rate of change of frequency (RoCoF)
at each node over the primary control timescale. Using a
novel ghost sampling method, we then approximate the sta-
tistical distribution of disturbances conditional on a RoCoF
violation occurring in at least one node of the network. The
sampler is based on the Metropolis-Hastings Markov Chain
Monte Carlo (MCMC) method and the disturbances can have
any unconditional distribution, including correlated and non-
Gaussian cases. Our statistical modelling thus goes beyond
that in current probabilistic power system reliability analyses
(see, for example, [14]). This paper is also complementary
to recent studies estimating the unconditional probability of
rare events in power systems [11], [12], [13].

The ghost sampling algorithm is of independent interest
for the simulation of rare events, as it is designed to
overcome issues of slow mixing suffered by the standard
Metropolis-Hastings MCMC algorithm in this context (see,
for example, Section 1.11.2 of [15]).
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II. MODEL DESCRIPTION

A power system described by the graph G = (G, E)
is considered, with nodes (buses) G = {1, . . . , n} and m
edges (transmission lines) E ⊆ {(i, j) : i < j} ⊂ G × G.
It is assumed that G is a reduced network in which each
bus houses a generation unit, since passive loads can be
eliminated via Kron reduction [16], [17]. Writing ωj for
the frequency at node j ∈ G, the time evolution of nodal
frequencies is modelled via linearized dynamics as

Mjω̇j +Dj ωj = pinj − poutj , ∀ j ∈ G, (1)

where Mj > 0 is the inertia of the generator at node j ∈ G,
Dj > 0 is the damping/droop control coefficient, and pinj and
poutj represent, respectively, the mechanical power injected
by the generator at node j and the net electrical power drawn
by the network from node j; see [18] for more details.

Reactive power injections and reactive power flows are
neglected and the standard assumptions of lossless lines,
time-invariant identical voltage magnitudes across all nodes
and small-signal approximations [19], [20] are made. In
view of these assumptions, the so-called DC power flow
approximation holds, namely

poutj =
∑
i∈G

fi,j =
∑
i∈G

Bi,j(θi − θj), (2)

where fi,j describes the power flow on the line between
nodes i and j, if present; Be = Bi,j ≥ 0 is the (effective)
susceptance between nodes i and j, and θj denotes the
phase angle at node j ∈ G. Denoting by B ∈ Rm×m
the diagonal matrix with the susceptances {Be}e=1,...,m as
diagonal entries, the relation between line flows and phase
angles may be rewritten in matrix form as f = BCT θ, where
f ∈ Rm and θ ∈ Rn are the vectors of line flows and phase
angles, respectively, and C ∈ {−1, 0, 1}n×m is the incidence
matrix of G:

Ci,e =


1 if e = (i, j),

−1 if e = (j, i),

0 otherwise.

We are interested in how, starting from an equilibrium
point, the network reacts to a vector u ∈ Rn of nodal power
disturbances. In view of (1) and (2), the deviations from their
nominal values of the nodal frequencies and line power flows
are then described by

Mjω̇j = −Dj ωj + uj −
∑

i : (i,j)∈E

fi,j , ∀ j ∈ G, (3a)

ḟi,j = Bi,j(ωi − ωj), ∀ (i, j) ∈ E , (3b)

where, with a minor abuse of notation, the variables ω
and f henceforth denote deviations from the corresponding



nominal values at equilibrium. This means, in particular, that
at equilibrium all variables in equations (3) are equal to 0.

The entries uj , j ∈ G of the random disturbance vector
u ∈ Rn are modelled as continuous random variables
with joint probability density function π, so that for any
measurable subset A ⊆ Rn we have

P[u ∈ A] =

∫
A

π(u1, . . . un) du1 . . . dun. (4)

One advantage of our approach is that the random distur-
bances uj are not required to be statistically independent.
This is because the correlation in renewable generation,
alongside correlation in other factors such as loads, has
been shown to have a significant effect on power system
risk assessment [21]. Further, the errors in renewable power
forecasts have been shown to have significantly non-Gaussian
distributions, such as heavy tails in the case of wind [22]. To
illustrate this point the case study presented later in Section V
uses a mixture of uncorrelated Gaussian and correlated, fat
tailed non-Gaussian distributions.

The uj are modelled as step disturbances, namely

u(t) = u1{t≥0}.

Thus time t = 0 is the moment just after the random
disturbance(s). The desynchronization effect of u on the
frequencies at all nodes j ∈ G will be modelled from time
t = 0 until time t = ε > 0. This step model is valid when
the disturbances represented by the uj can be reasonably
approximated as constant over the time interval [0, ε]. (In
the case study below we take ε = 0.5s.)

Our method in the remainder of the paper has two parts,
as follows:

1) characterise the ‘safe region’ K ⊂ Rn of disturbances
u ∈ Rn which do not give rise to frequency violations;

2) generate a statistically representative sample from its
complement Kc.

Frequency violations will be characterised using the Ro-
CoF, by which we mean |ω̇|, the magnitude of the rate of
change of frequency.

The rest of the paper is organized as follows. In Section III
we specify the nodal frequency dynamics and carry out step
1). Step 2) is developed in Section IV, and an illustrative
case study is provided in Section V.

III. ROCOF VIOLATIONS FOR NODAL FREQUENCIES

A common object of study is the system frequency or
center of inertia (COI) (see, for example, [3]):

ω̄(t) :=

∑
i∈GMi ωi(t)∑

i∈GMi
.

While this is of inherent interest, it does not fully capture
RoCoF violations. To illustrate this point, Fig. 1 plots three
nodal frequency traces together with the system frequency
following a random disturbance. These traces are simulated
from the system described in the case study of Section V.
It is clear from the figure that a given RoCoF threshold
can be simultaneously respected by the system frequency
and violated by one or more nodal frequencies. From the
practical perspective, too, it is nodal frequencies which
trigger the operation of RoCoF-sensitive generator protection

(a) Time evolution over the first 2s of the nodal frequency deviations
ω1(t), ω2(t), and ω3(t) and the system frequency ω̄(t) (Hz) in the
case study of Section V after a random disturbance.

(b) Corresponding evolution over the first 2s of frequency speed
deviations ω̇1(t), ω̇2(t), ω̇3(t), and ˙̄ω(t) (Hz/s) for the same random
disturbance as in Fig. 1(a). The dashed horizontal lines represent the
RoCoF threshold rmax = 1Hz/s.

Fig. 1: Post-disturbance traces of some nodal frequencies for
the case study about the IEEE 39 New England interconnec-
tion system presented of Section V.

relays which can, in turn, lead to significantly more serious
frequency violations. We will therefore focus on nodal fre-
quency violations in this paper.

Let M ∈ Rn×n and D ∈ Rn×n be the diagonal ma-
trices containing the generator inertias and damping factors
respectively, and u ∈ Rn the random vector of disturbances.
Together with the notation from the previous section, the
swing equations (3a) and (3b) read

[
ω̇

ḟ

]
=

[
−M−1D −M−1C
BCT O

]
·
[
ω
f

]
+

[
M−1

0

]
u,[

ω(0)
f(0)

]
=

[
0
0

]
.

By differentiation we obtain

ω̈ = −M−1D ω̇ −M−1CBCT ω
= −M−1D ω̇ −M−1Lω,

ω̇(0) = M−1u,

where L := CBCT is the weighted Laplacian matrix of the
graph G. This may be written as the homogeneous dynamical



system ẋ = Ax, with

x =

[
ω̇
ω

]
, A =

[
−M−1D −M−1L

I O

]
,

x(0) =

[
M−1u

0

]
,

whose solution is

x(t) = exp(tA)x(0). (5)

For a fixed node j the maximum RoCoF |ω̇j | does not in
general occur at time 0, in contrast to the system frequency
(see for example [14]). This can be confirmed by examining
ω̇3 in Fig. 1(b). Let us therefore consider sampling ω̇j at
times n

N ε, n = 0, . . . , N . Although in principle this involves
no loss of generality since digital RoCoF measurements have
a discrete sampling rate, we note that any lower sampling rate
N/ε should be chosen carefully to avoid an excessive loss
of sensitivity (comments on the choice of N are provided in
the case study of Section V). Define the ‘node-j safe region’
K(j,N) by

K(j,N) =

N⋂
n=0

K(j,N)
n , where (6)

K(j,N)
n =

{
u ∈ Rn :

∣∣∣ω̇j ( n
N
ε
)∣∣∣ ≤ rmax

}
. (7)

It follows from (5) that K(j,N)
n is given by the set

K(j,N)
n =

{
u ∈ Rn :

∣∣∣∣exp
(n ε
N
A
)
j

[
M−1u

0

]∣∣∣∣ ≤ rmax

}
,

where exp(tA)j denotes the j-th row of the matrix exp(tA).
As the intersection of two half-spaces, this set is a convex
polytope. Hence K(j,N) and the ‘all-nodes safe region’ K(N)

are also convex polytopes, where

K(N) =
⋂
j∈G

K(j,N). (8)

(Note that, clearly, different thresholds r(j)max could be chosen
per node to enable modelling of differing protection relay
settings for differing types of generating machine, or to
enable to modelling of DC links, and the safe region would
again be a convex polytope).

Having characterised the safe region, we now turn to
the problem of generating a representative sample from
its complement. In the next section we describe how the
Metropolis-Hastings MCMC algorithm, a commonly used
technique for generating random samples, may be efficiently
adapted for this purpose.

IV. GHOST SAMPLING ALGORITHM

The goal of this section is to introduce a method to sample
efficiently from the conditional joint density, or target,

π(u)1Kc(u)

π(Kc)
, where π(Kc) =

∫
Kc

π(v)dv.

Since MCMC sampling methods do not require strong
assumptions on the target density they are ideally suited
to such problems [15], [23]. However the event Kc is in
principle rare, which may cause problems of computational
inefficiency. Below we describe the ghost sampling (GS)

algorithm, which is a particular instance of the Metropolis-
Hastings (MH) algorithm, more precisely of a Symmetric
Random Walk Metropolis (SRWM) algorithm [23], [24]. We
will show in the case study of Section V that it enables
an efficient approach to statistical questions such as “which
generator is most likely to be disconnected due to a RoCoF
violation?” or “what is the probability of two simultaneous
RoCoF violations being caused, given that a violation oc-
curs?”.

Given a symmetric (meaning q(x) = q(−x)) density
function q : Rd → R (termed the proposal density) and
initiating at X0 ∈ Kc ⊂ Rd, the SRWM successively
generates samples X1, X2, . . . according to the procedure
in Algorithm 1.

Algorithm 1: SRWM algorithm (i-th step)

Input : The i-th sample Xi ∈ Kc ⊂ Rd

1 Generate a SRWM proposal Yi+1 distributed according
to the density q(y −Xi)dy;

2 Evaluate the acceptance probability:

α(Xi, Yi+1) = min

(
1,
π(Yi+1)1Kc(Yi+1)

π(Xi)1Kc(Xi)

)
, (9)

interpreted as one if π(Xi)1Kc(Xi) = 0:
3 Generate a uniform random variable U on [0, 1];
4 if U ≤ α(Xi, Yi+1) then
5 Xi+1 = Yi+1;
6 else
7 Xi+1 = Xi;
8 end
9 return Xi+1

The aim is to generate a Markov chain X1, X2 . . . with
stationary distribution equal to π1Kc

π(Kc) . Typical examples
of symmetric proposal densities are Yi+1 ∼ N(Xi, σ

2Id)
or Yi+1 ∼ Xi + U([−δ, δ]d), that is, the proposal is drawn
from a normal (resp. uniform) distribution centred at Xi.
Note from (9) that knowledge of π1Kc suffices and the
normalising constant π(Kc) need not be known.

A well-known difficulty with the SRWM algorithm arises
when the target density is multi-modal (see Section 1.11.2 in
[15]). In the present application to rare event sampling, where
the set K of “common” outcomes is removed from π, we
may be left with a target density π1Kc

π(Kc) with multiple, well-
separated local modes. Starting in the vicinity of one mode
of the target density, “jumping across the set K” could be
a rare event with respect to the proposal density q, resulting
in slow mixing of the SRWM sampler.

The ghost proposal is designed to circumvent these issues
by moving ‘through’ K, and is now described in the case
when K is a bounded convex polytope. (A more general
case, together with proofs, can be found in our technical
report [25].) Fix an SRWM algorithm with proposal density
q and target π1Kc

π(Kc) . Denote the boundary of K by δK, and
let the current state of the chain be Xi /∈ K. First, generate
an SRWM proposal Yi+1 and denote ϕi := Yi+1−Xi. Then
with probability 1, Yi+1 6= Xi and the ray from Xi passing
through Yi+1 intersects δK either twice (cf. Fig. 2(b)-(c))
or not at all (cf. Fig. 2(a)). In the former case, when there



are two numbers t2 > t1 > 0 such that Xi + tϕi ∈ δK
and t1 < 1, then Yi+1 is either inside K or on the opposite
side of K with respect to Xi and we modify the proposal
to Zi+1 = Yi+1 + (t2 − t1)ϕ (cf. Fig. 2(d)). If there are no
such points, set Zi+1 = Yi+1 (cf. Fig. 2(a)). Finally perform
a MH step, accepting the proposal Zi+1 with probability
α(Xi, Zi+1) (cf. (10)) and setting Xi+1 = Zi+1, otherwise
rejecting the proposal and setting Xi+1 = Xi. Pseudocode
is provided in Algorithm 2.

Algorithm 2: Ghost Sampling algorithm (i-th step)

Input : The i-th sample Xi ∈ Kc ⊂ Rd

1 Generate a SRWM proposal Yi+1 distributed according
to the density q(y −Xi)dy;

2 Calculate ϕi = Yi+1 −Xi;
3 Calculate all the intersection points (which are at most

two) T := {t > 0 : Xi + tϕ ∈ δK};
4 if T = {t1, t2} and min{t1, t2} < 1 then
5 Zi+1 = Yi+1 + (t2 − t1)ϕ;
6 else
7 Zi+1 = Yi+1;
8 end
9 Evaluate the acceptance probability:

α(Xi, Zi+1) = min

(
1,
π(Zi+1)1Kc(Zi+1)

π(Xi)1Kc(Xi)

)
, (10)

interpreted as one if π(Xi)1Kc(Xi) = 0:
10 Generate a uniform random variable U on [0, 1];
11 if U ≤ α(Xi, Zi+1) then
12 Xi+1 = Zi+1;
13 else
14 Xi+1 = Xi;
15 end
16 return Xi+1

Xi

Zi+1 = Yi+1

Zi+1

(a)

Xi

Yi+1

Xi+1

Yi+1 = Xi+1

(b)

Xi

Yi+1

Xi+1

Yi+1 = Xi+1

Xi + t1ϕ

Xi + t2ϕ

(c)

Xi

Yi+1

Zi+1

Yi+1 = Zi+1

(d)

Fig. 2: Illustration of the key ideas underlying the ghost
sampling algorithm.

The following example (see Figures 3 and 4) illustrates
how ghost sampling improves upon the standard MH al-
gorithm in the present context. Consider a diamond shaped
region K = {(x, y) ∈ R2 : |x|+ |y| < 7}, let π be the two-
dimensional Gaussian density with zero mean and covariance
matrix diag(4, 1) and let q be the density of a standard two-
dimensional Gaussian random variable.

Starting to the left of the diamond-shaped set K, Algo-
rithm 1 will have difficulties crossing to the right side of
the diamond since, firstly, a direct move to the other side is
unlikely with respect to q. Secondly, any sequence of steps
through Kc towards the right side is likely to suffer rejections
at the top and bottom vertices of K, where the values of π
are much smaller than around the left and right vertices.
The ghost sampler, however, is likely to make a direct move
between the left and right sides, making it more efficient at
exploring the rare event Kc.

-8 -6 -4 -2 0 2 4 6 8
-5

0

5

Fig. 3: Example of samples by a standard MH chain.
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Fig. 4: Example of samples by the ghost sampling algorithm.

From the mathematical perspective it is important that the
ghost sampling algorithm can be seen as a special instance of
the SRWM algorithm (with some proposal density qK that is
derived from q). As a consequence, the law of large numbers
(LLN) is valid for the ghost sampling algorithm, meaning
that sample averages 1

n

∑n
i=1 f(Xi) for large n can provide

good estimates for the actual conditional expectations∫
Kc f(v)π(v)dv

π(Kc)
= Eπ[f(X)|X /∈ K].

In the context of frequency stability in power grids, the
GS algorithm can be used for networks with hundreds or
possibly even thousands of nodes. If the safe region K is a
known convex polytope, like the one in (8), the ghost sampler
is computationally not significantly more demanding than the
standard SRWM algorithm. The number of samples required
to efficiently explore the state-space and to capture all the
modes of rare events is of the same order as the number of
generators (see Section 6 in [24]). Moreover, it has recently
been shown [26] that a low-dimensional representation can
often be obtained for the weather-related randomness in re-
newable generation using PCA techniques. Although beyond
the scope of this paper, it should be possible to further reduce
computational complexity by exploiting this approach.



V. CASE STUDY: IEEE 39 NEW ENGLAND NETWORK

In this section we illustrate how inferences can be made
about RoCoF violations using the ghost sampling algorithm.
As a case study we consider the IEEE 39-bus New England
interconnection system, which has 10 generators and 29 load
nodes, see Fig. 5(a). The system parameters for our experi-
ments are taken from the Matpower Simulation Package [27].

We consider the Kron-reduced version of the aforemen-
tioned system, which is illustrated in Fig. 5(b). The thickness
of the edges in Fig. 5(b) is proportional to the equivalent
susceptance between the two corresponding generator nodes.

(a)

(b)

Fig. 5: (a) Line diagram of the IEEE 39-bus system and (b)
the Kron-reduced version of the IEEE 39-bus system with
only the 10 generator nodes.

The GS algorithm is appropriate for any continuous distri-
bution one may want to consider for the power disturbances,
in particular those featuring heavy-tailed or correlated com-
ponents. Aiming to illustrate its potential, we thus consider a
mixed distribution that prescribes the disturbances u1 and u2
in generators 1 and 2 to be correlated and heavy-tailed, while
the remaining generators are assumed to have i.i.d. Gaussian
disturbances. More specifically, we model the disturbances
u3, . . . , u10 as independent Gaussian random variables with
zero mean, each with standard deviation 65 times smaller
than the associated generator’s nominal power injection. The

disturbances u1 and u2 are modelled by the joint density

(u1, u2) ∼ 1

1 + (30(u1 − u2/2))4
· 1

1 + (30(u2 − u1/2))4
.

We declare a violation if the RoCoF at any node exceeds
the threshold rmax = 1Hz/s, which corresponds to the safe
region K(N) introduced in Section III, see (8). The duration
considered is ε = 0.5s and the sensitivity of the results is
examined with respect to N , taking N = 1, 5, 20, 50, 100.
The GS algorithm uses a Gaussian proposal N(0, σ2I),
whose standard deviation σ2 = 10−3 has been tuned so that
approximately 15% of the proposed moves are accepted, as
suggested in [28].

For each value of N , 106 disturbances u from the comple-
ment of K(N) were sampled after discarding an initial burn-
in period. For each generator, Table I provides information
on its probability of disconnection due to a nodal RoCoF
violation. Note that generator 10 was never disconnected in
our experiments and so is not shown.

N G1 G2 G3 G4 G5 G6 G7 G8 G9

1 28.9 80.3 0.5 0.6 0.9 0.4 1.6 6.5 1.6
5 27.6 81.5 12.4 1.1 2.1 0 1.2 9.8 1.7
20 27.5 79.5 11.5 1.9 3.0 0.1 2.4 15.5 2.0
50 28.5 78.8 12.2 1.1 2.7 0.1 2.4 17.1 2.6
100 28.6 79.8 12.2 1.7 2.4 0.1 1.9 15.6 2.0

TABLE I: Empirical probabilities (in %) of nodal RoCoF
violations at each generator, given that a RoCoF violation
occurs. Results are shown for different time discretizations
N of the interval [0, 0.5s].

Despite noise due to random sampling, the estimates in
Table I are comparable for N > 5. Recalling (5), the
appropriate choice of N is also informed by the spectral
properties of the matrix A. In particular, the highest fre-
quency component of the fluctuations is the eigenfunction
corresponding to the eigenvalue with largest imaginary part.
Table II reports some other relevant statistics for the IEEE
39-bus system under the considered disturbance model.

N = 1 N = 5 N = 20 N = 50 N = 100
pd 15.2% 22.4% 24.0% 25.0% 25.0%
d 1.21 1.37 1.44 1.46 1.44
L 596 701 735 744 736

TABLE II: Empirical statistics for the IEEE 39-bus system,
given that a RoCoF violation occurs: the probability pd of
multuple RoCoF violations, the average number d of viola-
tions and the corresponding average level L of disconnected
generation (in MW).

Our case study results highlight the importance of mod-
elling the desynchronization in nodal frequency. It is clear
from Table I that the majority of RoCoF violations occur
at generator 2, which has a heavy-tailed disturbance model.
From Fig. 5, generator 2 is connected via a relatively
high susceptance line to generator 3, which has a Gaussian
disturbance model. Thus RoCoF violations due to a large
disturbance at the former generator are capable of inducing
subsequent violations at the latter within our considered
timescale. This network effect is clearly visible in Fig. 1,
where a large initial disturbance at generator 2 is followed
by subsequent RoCoF violations, at around t = 0.4s and



t = 0.6s, at generator 3. The same relationship can be seen
between generators 1 and 8. These observations highlight
the importance of the (reduced) network structure and line
susceptances in the modelling of frequency violation patterns
and system vulnerabilities.

VI. CONCLUSIONS

This work aims to provide a mathematical framework to
understand how unusually large power disturbances cause
frequency violations, in particular in terms of RoCoF. We
describe the time evolution of the nodal frequencies as a
system of coupled swing equations with a random step
disturbance at time 0. A novel MCMC method is introduced,
called the ghost sampler, to sample disturbances condition-
ally on a RoCoF violation occurring, i.e., outside the so-
called “safe region”. An illustrative case study is presented,
and it would be of interest to develop this further, for example
using empirical probability distributions for heavy-tailed and
correlated renewable forecast errors.

Future work will explore further metrics capturing fre-
quency violations, such as nadir and average RoCoF. It would
be natural to look also at line overloads caused by power
fluctuations and complement in this way the work done
in [11]. Lastly, we believe that the MCMC ghost sampler
has potentially wide applicability beyond power systems
reliability in settings where one has to sample rare events.
This is particularly so in view of the fact that many of the
conditions for the region K can be relaxed, e.g., convexity.
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