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ABSTRACT Scientific advances build on reproducible researches which need publicly available benchmark
data sets. The computer vision and speech recognition communities have led the way in establishing
benchmark data sets. There are much less data sets available in mobile computing, especially for rich
locomotion and transportation analytics. This paper presents a highly versatile and precisely annotated
large-scale data set of smartphone sensor data for multimodal locomotion and transportation analytics of
mobile users. The data set comprises seven months of measurements, collected from all sensors of four
smartphones carried at typical body locations, including the images of a body-worn camera, while three
participants used eight different modes of transportation in the south-east of the U.K., including in London.
In total, 28 context labels were annotated, including transportationmode, participant’s posture, inside/outside
location, road conditions, traffic conditions, presence in tunnels, social interactions, and having meals. The
total amount of collected data exceed 950 GB of sensor data, which corresponds to 2812 h of labeled data and
17 562 km of traveled distance. We present how we set up the data collection, including the equipment used
and the experimental protocol. We discuss the data set, including the data curation process, the analysis of the
annotations, and of the sensor data. We discuss the challenges encountered and present the lessons learned
and some of the best practices we developed to ensure high quality data collection and annotation.We discuss
the potential applications which can be developed using this large-scale data set. In particular, we present how
a machine-learning system can use this data set to automatically recognize modes of transportations. Many
other research questions related to transportation analytics, activity recognition, radio signal propagation and
mobility modeling can be addressed through this data set. The full data set is being made available to the
community, and a thorough preview is already published.

INDEX TERMS Activity recognition, context awareness, camera, intelligent transportation systems,
GPS, GSM, locomotion dataset, multimodal sensors, pattern analysis, sensor fusion, supervised learning,
transportation dataset, Wi-Fi.

I. INTRODUCTION
The recent technological advances in smartphones allow to
collect rich sensor data, which can be used to discover knowl-
edge about the user’s activities and context. This enables
new applications providing tailored context-aware services
to the user [1], [2]. For example, if an intelligent system is
aware that the user is driving it can provide traffic information
and suggest better routes [3]. In recent years, there have

been numerous studies analyzing multimodal sensor data col-
lected from smartphones during locomotion and motorized
transportation [4]. Analyzing such multimodal data enables
context-aware applications in fields such as localization [5],
activity and health monitoring [6], parking spot detection [7],
content delivery optimization [8], [9], etc.

While there are numerous datasets related to gait and
activity analysis with wearable sensors [10], [11], there
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are only a limited number of datasets for a more general
analysis of locomotion and usage of transportation modes
(e.g. public transport, bicycle, etc.). To our knowledge, only
two transportation datasets collected with wearable sensors
are publicly available. The first one is Microsoft’s GeoLife
dataset [12], which provides 50176 hours of data collected
by 182 users. The dataset however contains only GPS traces
which prevents its use in multimodal analytics. The other
available dataset is the recent US-Transportation dataset [13],
which contains the data of 9 sensors from a smartphone but
contains only 31 hours of data. It is recorded with a single
smartphone, which prevents using it to assess the effect of
device placement on the resulting sensor data. More gener-
ally, the lack of a publicly available dataset with sufficient
duration, large number of sensor modalities, and rich high-
quality annotations obviously holds back research advances
in this area.

To overcome this, we designed the University of Sussex-
Huawei Locomotion-Transportation (SHL) dataset,1 which
aims to be a highly versatile dataset suitable for a wide range
of studies in fields such as transportation mode recognition,
mobility pattern mining, localization, tracking and sensor
fusion. It is designed to support reproducible research through
its versatility, multimodality, large size, and its public avail-
ability. The availability of such a dataset enables research
groups to compare methods on identical data while leaving
significant room for wide variety of new studies.

To achieve this versatility, we designed a large-scale longi-
tudinal data collection campaign, and collected 2812 hours of
labeled data over a period of 7 months. The SHL dataset con-
tains multimodal locomotion and transportation data, which
was recorded by three participants engaging in 8 differ-
ent modes of transportation in real-life settings, travelling
17562 km in total. Even though the number of participants
is three only, our focus was on the multimodality of the
collected data, the quality and richness of the annotations, and
on the collection of real-life data over a long period of time so
that we can also study changes in behavior and usage of trans-
portation modes. Each participant carried four smartphones
simultaneously at common body locations, which results in
4 × 703 = 2812 hours of annotated data. Each smartphone
was logging the data of the 15 sensors available in the smart-
phone (e.g., inertial sensors, GPS, ambient pressure sensor,
ambient humidity). Beside the smartphones, the participants
also wore a front-facing camera, which allowed us to verify
and correct annotations and to introduce additional post-
collection annotations. This resulted in 28 total annotation
types, including 8 modes of transportation, the participant’s
posture, inside/outside location, road conditions, presence in
tunnels, social interaction, and havingmeals. A preview of the
dataset is already available, which consists of 4 × 59 = 236
hours of labeled data. The complete version of the dataset
will be published together with a detailed benchmark of a
transportation mode recognition pipeline.

1Available at www.shl-dataset.org

The contributions of the paper are:
• a review of the existing transportation datasets col-
lected with wearable sensors and their characteristics
(Section II);

• a detailed description of the data collection procedure
and the data quality check-up techniques (Section III);

• the analysis and statistics of the dataset’s annotations and
the sensors (Section IV);

• an exemplary use of machine learning to recognize
modes of transportation (Section V);

• the lessons learned and some of the best practices we
developed for data collection, assuring data quality and
reducing loss (Section VI);

• a discussion of the other applications which can
be developed using this richly-annotated dataset
(Section VI).

II. STATE OF THE ART
In contrast to the numerous datasets for activity recognition
and gait analysis [10], [11], the number of datasets that deal
with the analysis of locomotion and usage of various trans-
portation modes is rather limited. Table 1 lists the related
locomotion and transportation datasets and their character-
istics, including the number and type of devices simultane-
ously worn by the participants during the dataset recording,
the type of sensor data collected, the number of participants,
the amount of data, the kind of annotations and the availabil-
ity of the dataset.

There are two datasets which offer more hours of data than
the SHL dataset we introduce here. The first is theMicrosoft’s
GeoLife dataset [12], which is one of the largest publicly
available datasets (with 50176 traces) but which contains
GPS data only. The other is the HTC dataset [14], which
has a duration up to 8311 hours but only contains the data
from 3 inertial sensors. Even though the authors claimed that
a small part of the data is publicly available, we were not able
to access it.

The SHL dataset which we introduce here and the one
collected by Reddy [20] are the only ones that were collected
with multiple devices worn by the same participant. This
allows to characterize the effect of the placement of the device
on various types of analyses (e.g. satellite reception), or to
create placement-independent recognition models.

Our SHL dataset contains a significantly larger number
of sensors (15 smartphone sensors and a time-lapse video)
compared to the others, which mainly contain accelerome-
ter, GPS, and in some cases gyroscope, magnetometer and
barometer. The US-Transportation dataset has been pub-
lished recently and it contains data from 9 sensors collected
by a single smartphone, but it has a limited duration of
only 31 hours. In the SHL dataset, the wide variety of
sensors modalities, and the availability of the sensors at
4 locations simultaneously allows a wide range of analyses
about the contribution of combinations of sensors modali-
ties to the problem being addressed. These problems could
include transportation recognition, multimodal localization,
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TABLE 1. Related locomotion and transportation datasets. The sensors are abbreviated as: Acc for accelerometer, Gyro for gyroscope, and Mag for
magnetometer.

sensor-based energy-efficiency analysis, energy saving
through sensor duty cycling and others.

Our dataset was collected by only three participants, which
is less than the other datasets. However, the variability in
the sensor signal during transportation is primarily stemming
from the motion of the vehicle as the movements of users
within a vehicle are constrained (e.g. the movement of the
bag containing the smartphone of two distinct users travelling
in a bus would be quite similar). Therefore, we emphasized:
i) collecting very long travel distance in vehicles at
the expense of less users; ii) acquiring multimodal data;
iii) rich high-quality annotations. We ensured annotation
quality through multiple processes described in this paper,
including continuous verification during the data collection
campaign by a supervisor researcher.

To summarize, our SHL dataset was collected by 4 smart-
phones simultaneously, it includes 15 sensors per phone, and
it totals 2812 hours of annotated data. This makes it by far
the largest publicly available dataset and the most diverse in
terms of data sources. Additionally, our dataset is the only one
that used a camera to enhance annotations post-collection,
which allowed us to provide 28 type of annotations and to
guarantee their high quality. This is significantly more than
any of the other datasets.

III. DATA COLLECTION
The data collection process is sketched in Figure 1. First,
the three participants (we refer to them as User 1, 2 and 3)
were trained to use the dataset collection equipment in order

FIGURE 1. Dataset collection overview.

to collect a precise annotated transportation dataset. In order
to ensure a balanced dataset, we prepared a weekly outline
of the activities (activity scenario) that the users would focus
on, but we left the users choice of the activities to carry out
for each day. During the execution of the activities, the users
were using an Android application to label the appropriate
activities and transportation modes. After the data collection,
the users used a specialized annotation tool to check and
correct the annotations. Finally, the dataset was curated and
processed to be released in an easy to use format.

A. PARTICIPANT RECRUITMENT
Previous work has shown that data can be collected from
volunteers with or without financial incentive [25]. However,
to ensure the quality of the data collected and the correspond-
ing annotations, we planned and executed the data collec-
tion with participants which were hired as employees of the
University. This also provided the participant with insurance
coverage (which was fortunately not used).

The participants were chosen after a 45-minute long
interview process. During the interview, we explained in
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significant detail the data collection process to the partic-
ipant. We believe detailed explanations were instrumental
in not having any participant withdrawing from the data
collection. While participants were employed specifically to
perform a full-time, precise, and controlled data collection,
we also explained them that they could and should attempt
to go about their usual daily activities, as they would even
without participating in this project, as this would provide
a more natural dataset. During the interview, we exam-
ined the participants’ motivation and reliability. Eventually,
the selected participants were hired through the official Uni-
versity recruitment procedure, and in addition signed an
informed consent form. The data collection protocol was ethi-
cally approved by the University of Sussex (C-REC reference
number ER/DR231/1).

B. DATA COLLECTION EQUIPMENT
Figure 2 shows the equipment that the participants wore, and
a screenshot of the mobile phone application developed for
the data collection.

FIGURE 2. Description of the equipment for data collection. A participant
wearing the equipment (on the left), and a screenshot of the smartphone
application (on the right).

To ensure a sensor-rich and logistically practical data col-
lection, for each participant we used four high-end HUAWEI
Mate 9 smartphones [26]. These phones contain a rich set
of sensors, such as inertial sensors with high-sampling rate
(>100 Hz), GPS, ambient pressure sensor, ambient humidity
sensor, etc. The smartphones were placed on body locations
where people are used to wearing phones:
• the 1st phone was held in the hand most of the time.
When running or cycling, the phone was carried in an
armband on the lower-arm. When the participants did
some activity that needed hand engagement, they put
the phone in the armband. In the dataset this location
is referred to as ‘‘Hand’’;

• the 2nd phone was carried in a jacket breast pocket
(if available) or on a chest strap (as shown in
Figure 2) or on the upper abdomen for User 3. In the
dataset this location is referred to as ‘‘Torso’’;

• the 3rd phone was carried in the trousers front pocket.
This location is referred as ‘‘Hips’’ in the dataset;

• the 4th phone was carried in a backpack. The
User 3 sometimes wore this phone in a side bag.

The corresponding data is referred to as ‘‘Bag’’ in the
dataset.

The rationale for this sensor placement was to collect data
from as many typical locations where phones are carried,
so that the analysis and the models created on this dataset are
general and cover most real-life situations.

Additionally, the participants wore a front-facing body
camera, which was used to verify label quality during a post-
collection annotation procedure. As a part of the dataset it will
allow vision-based applications, such as object recognition.
The camera was worn on the chest or backpack straps, gen-
erally facing the forward direction. In the car, we asked the
participants to orient the camera to take pictures of the road,
which later helped them to annotate the road condition and
the presence in tunnels. The camera was set to take pictures
at regular interval every 30 seconds, which is frequent enough
to help the participant to recall the data collection details
during the course of the day and, meanwhile, is less invasive
to surrounding privacy than a continuous video recording.

C. SMARTPHONE APPLICATION AND SENSORS
The phones were equipped with a custom data logging appli-
cation2 [27] as shown in Table 2. The screenshot shows
4 parts. The top part displays the status of the data collection.
The second part shows the status of the Bluetooth connection
with the other 3 phones. The application synchronizes the
4 phones using Bluetooth using a master-slave communi-
cation protocol. The participant uses only the master phone
(i.e., the one in the hand) to interact with the application.
The master phone will synchronize with the other 3 phones
automatically. The third part shows the status of the most
recent upload of the data to the server. The last part is the
current annotation and label selection, where the user chooses
the appropriate current activity (transportation mode), pos-
ture and location.

TABLE 2. Smartphone sensor modalities.

The Android application logs 15 sensor modalities that
are available in the recording smartphone. For each sensor,
we measured with the highest respective sampling rate as
offered by the Android system.

D. ACTIVITY SCENARIOS
An important task of the participants was to perform a bal-
anced collection of the 8 transportation modes of interest,
while interleaving them as much as possible with their daily

2Available at https://github.com/sussexwearlab/DataLogger
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professional or recreational routines. For instance, some par-
ticipants used to do a regular evening jog; or cycled rou-
tinely to a sports ground; or travelled to London to visit
a museum or meet friends. We encouraged participants to
blend in the data collection with their normal routines for two
reasons: first, it tended to produce a more realistic data col-
lection; second, we believed it could increase the motivation
of the participants, as the data collection procedure lasted a
very long time (up to 7 months for one participant).

To further improve the quality of the data and ensure equal
balance between the different activities, which is beneficial
for machine learning approaches, we designed a protocol in
which each participant met with the supervising researcher
once a week in order to plan the activities of the following
week. For this purpose, an activity scenario was prepared for
each day. The activity scenario was shared online, so that both
the participant and the supervising researcher had access to
it at any time. At the end of each day, the participants were
asked to use the same online spreadsheet to fill the amount of
data collected for each activity for that particular day. This
allowed the supervising researcher to check the status and
control the data collection each day. Additionally, we have
created a group chat between the research team and each of
the participants. This allowed the participants to have real-
time support in case of questions, doubts or issues.

E. DATA COLLECTION PROCESS
The daily data collection procedure started with a check list
that the participants had to follow to properly start the data
collection. That included restarting all the phones and con-
necting themwith Bluetooth. Next, the phones and the camera
were synchronized by the first photo taken by the camera.
That is, when the camera took the first photo, the participant
had to provide a recognizable acceleration pattern - putting
the phones on a table and hitting the table with the hand
5 times. Later, we used the photo and the 5 acceleration peaks
(maximum values on the acceleration graph) to synchronize
the smartphone sensors and the camera photos.

After the synchronization, the participants followed the
outline of the daily activity scenario and performed and
labeled the activities using the smartphone in the hand. In par-
allel they also kept a detailed diary (on paper or electroni-
cally), which at the end of the day was saved into the online
spreadsheet. This diary later helped participants in the pro-
cess of post-annotation using the annotation tool. At the end
of the day, the participants again followed a check list to
successfully end the data collection day. This included: the
synchronization between the camera and the phones, filling
the online spreadsheet with the amount of data collected for
each activity, adding the detailed diary of the day to the
spreadsheet, and putting the devices on chargers. Addition-
ally, they were asked to upload the data to a remote server
using their own Wi-Fi.

After several days (typically 1 week) of data collection,
the participants visited the laboratory to download the data,
to check and correct the annotations with our annotation tool.

First, the participant downloaded the data from the phones to
a PC and removed private photos. Second, to further improve
the quality of the labels, the participant performed additional
data annotation. For this purpose, we have used an in-house
annotation tool [28]. The tool loads the sensor data and the
time-lapse video, aligns both, and displays them as a time
series. An example illustration is given in Figure 3, in which
at top is the time-lapse screenshot, and at the bottom is the
accelerometer’s signal. This allows the user to verify and
correct the time stamps of the labels and to add additional
annotations.

FIGURE 3. An illustration of the annotation tool with the time-lapse
image (top) showing the participant cycling, the accelerometer 3-axial
signal (bottom) and the annotations (middle). Here the annotation
indicates the ‘‘bike’’ activity and road of type ‘‘city’’.

At the end of the measurement campaign, we performed
a semi-structured interview to obtain information from the
participants about the data collection process. For this pur-
pose, we prepared a questionnaire, which included questions
regarding the difficulty to use the equipment, the difficulty to
perform different activities, and how to improve the data col-
lection experience. The analysis of the questionnaires should
help us to understand the perspective of the measurement
subjects and to improve upcoming larger-scale measurement
campaigns.

F. REAL-TIME AND POST-HOC ANNOTATIONS
The smartphone application allowed the participants to per-
form real-time annotation of their activities and transportation
options. Table 3 lists the main 8 activities together with the
posture (sitting or standing), the location of the participant
(inside or outside a building), driver or passenger when in
a car, and lower and upper deck for the bus, which gives
18 labels in total.
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TABLE 3. The 8 main activities in the dataset.

Beside the main, on-device annotation, we asked the par-
ticipants to post-annotate additional labels using their activ-
ity diaries and the time-lapse video. These additional labels
allow precise description of the user’s day and support a wider
scope of research, such as recognition of eating, or detection
of social interactions, and others. These additional labels are:
• Road condition: city, motorway, countryside, dirt road
• Social interactions: yes if the participant was performing
an activity together with a friend, no otherwise

• Tunnel: yes if the activity was performed in a tun-
nel or underground (subway), no otherwise

• Traffic: heavy traffic if the activity was performed during
traffic peak hours with significant waiting in-line time,
normal traffic otherwise

• Food: eating, drinking, or both
In total, there were 28 labels: 18 for the main activities

and 10 for the additional annotations. Additionally, the null
class marks activities that cannot be identified with sufficient
confidence or are not in the annotated set. Some activities
of interest may take place during these un-annotated periods
but only for a very short period (e.g. a person may walk in-
between two camera snapshots).

G. DATA CURATION
The data which was downloaded from the phone was trans-
formed into a format more manageable for future uses.
We resampled all the motion sensor data (acceleration, gyro-
scope, etc.) of all 4 phones onto a common 100Hz sampling
grid. This simplifies future applications of signal processing
techniques on the data. We used the high accuracy times-
tamps, which the Android system assigns upon sensor data
acquisition for this purpose. As these timestamps are reset to
zero upon reboot, we exploit the network time to ensure time
synchronization across the multiple phones. The resulting
data is stored in plain text format, which allows easy import
in various scientific tools. In addition, the released dataset
contains the time-lapse video and a visualization of the user’s
traces and activities for each day.

H. DATA QUALITY CONTROL
1) MANUAL
We assessed data quality throughout the recordings as
in Figure 4, which shows how much data is acquired from
each sensor modality and allows visual identification of
data loss. This allows to identify irregular data acquisition.
This manual process has allowed us to identify initial issues
with the ‘‘best effort’’ sampling strategy offered by Android
phones to acquire Wi-Fi and cellular reception during a first
trial month of data collection. Quality control of the collected

FIGURE 4. Amount of data collected for the 14 sensor modalities, plotted
in time intervals of 10 minutes.

data is an essential step, which should be performed while
collecting the data, so that if something is wrong one can
correct it before the data is fully collected. Such a visualiza-
tion is especially effective for sensors which have a regular
sampling rate such as the motion sensors. Other sensors
have a more irregular sampling rate defined by the low-
level Android driver implementation. This includes battery
(sampling rate about 1 per minute), light sensor (about 3 Hz),
Google recognition API (sampling rate experimentally to be
about once every 10 second, although the Google API reports
that samples are provided whenever the activity changes) and
location (sampling rate about 1Hz).

2) AUTOMATIC
In addition to the visual inspection we employed quantitative
automatic checks based on the assessment of a continuous
‘‘coverage metric’’. The coverage metric is the ratio between
the received number of samples and expected number of
samples. This value is 1 if the expected number of sam-
ples is obtained. It is higher or lower than 1 if respectively
more or less samples than expected are received. This can be
easily computed for sensors with a regular sampling rate (e.g.
all the motion sensors and the pressure sensors at 100Hz).
However, to make the system more adaptive to the different
channels we automatically computed the expected sampling
rate using the median of time intervals between samples.
Therefore, the coverage metric is the total number of samples
received divided by the expected number of samples, which
is the duration of the recording divided by the median of
the time intervals. We found this metric to be satisfactory
for all sensors. Additionally, we automatically detect possible
reboots of a phone. As the application restarts logging auto-
matically if a reboot occurs this measure is used to identify
if a user manipulation error occurred (e.g. long-pressing the
power button leading to a reboot). Finally, we converted
these metrics into a binary decision about the quality of each
sensor channels for each phone. In the final dataset we release
recordings for which we obtained a positive decision.

IV. DATA ANALYSIS
A. ANNOTATION ANALYSIS
Figure 5 shows the amount of the data collected for each of
the 8 main activities and the contribution of each user to the
total amount. Note that User 2 had difficulties with running
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FIGURE 5. The amount of data collected for each of the 8 main activities
in hours.

and User 3 did not have access to a car, therefore they were
not able to contribute to these activities.

Figure 6 shows the breakdown for all the 28 labels and
the contribution of each user to the total amount. Note that
there is no data or very little data for the Bus-Up-Stand
because it is not allowed to stand on the upper floor of
busses in the country where the data was collected. Regarding
the road conditions, 145 hours of data were collected while
riding/driving in the city (labeled as ‘‘City road’’), 37 hours
on the motorway, 64 hours on country side roads and 19 hours
on dirt road (this was mainly mountain biking performed
by User 1). Also, there are 50 hours labeled as having a
meal (eating and/or drinking), 84 hours of data labeled as
social interaction, 49 hours of data being in a tunnel or in
the underground subway (note that the subway in London has
also parts in which it is over ground).

FIGURE 6. Breakdown for all the 28 labels and the contribution of each
user to the total amount.

Figure 7 shows the difference between the amount of data
annotated on a single phone in real-time (Raw: 752 h of anno-
tations), after using the annotation tool to correct annotations
(Annotated: 762 h of data) and the released data which is the
data that passed the auto quality-checkup test, which means
no reboot of the phones was detected (Release: 703 h of data).
This figure shows that after annotation enhancement (Raw vs.
Annotated) the amount of labeled data increased for some of
the activities, e.g., Run increased by 2 h, Bike by 9 h, and
Car by 11 h. This means the users corrected and extended the
borders, i.e., the duration for these activities.

B. SENSOR ANALYSIS
Figure 8 shows a heatmap of the GPS location data. On the
left side are all the visited locations, and on the right side is
the zoomedmap on the Brighton area, where theUniversity of

FIGURE 7. The amount of data before using the annotation tool (Raw),
after using it (Annotated) and the released data (Release).

FIGURE 8. Heatmap of the location data. On the left are all the visited
locations, on the right is the Brighton area.

Sussex leading this study is located. Note thatmost of the time
the users were aroundBrighton, with regular visits to London.
Also, User 1 had a 2-day visit in Liverpool. In the Brighton
area, most of the time the users were around the city center,
and the University of Sussex campus. In total, the participants
travelled 17562 km.

Figure 9 shows the GPS coverage (i.e. the percentage of the
dataset where one or more satellites are visible) according to
each of the annotations for the main 8 activities. Because the
GPS is logged every second, the coverage is calculated as a
ratio between the total number of samples collected and the
duration of the activities in seconds. The figure shows that the
activities that are inside and the subway have lower coverage.
For the rest of the activities the coverage is above 95%, except
for the train for which it is 87% and 78% for the sitting and
the standing posture respectively.

FIGURE 9. The GPS location coverage for each of the annotations. The
activities which are inside, and the subway have lower coverage.
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Figure 10 shows the percentage of time where N satel-
lites are visible, with N ranging from no satellites received
(10% of the time) to 23 satellites visible (never occurring).
The percentage is calculated as the amount of GPS data
collected for each number of visible satellites divided by the
total amount of data. The analysis shows that 18% of the
time there were 16 visible satellites, followed by 15% for 17,
and 13% for the 15 satellites.

FIGURE 10. The number of visible satellites and the amount of GPS data
collected in percentages.

Figure 11 shows the distance covered for each of the main
activities. These results show that the distances for the walk,
and run activities are significantly lower compared to the
vehicle-based activities. The fact that the still activity has a
non-zero distance covered is due to occasional moves which
are short walks and GPS location jitter. The largest distance
is covered by the train, which is closely followed by the car.
Note that the subway in London has some sections that are
above ground and only for these ones we calculated the dis-
tance which was 1416 km. During the underground sections
there was no GPS data available.

FIGURE 11. The number of visible satellites and the amount of GPS data
collected in percentages.

Figure 12 shows the number of visible cellular base stations
versus the amount of GSMdata collected for each base station
number. The percentage is calculated as the amount of GSM
data collected for each base station number divided by the
total amount of measurement that the smartphone retrieved
from the cellular network. The analysis shows that 22% of
the measurements performed saw 2 visible base stations,
followed by 19% which saw only one base station and 18%
of the measurement which saw 4 base stations. Note that
we used only the recordings that have the cellular modem
scanning set to 1Hz.

Figure 13 shows the number of visible Wi-Fi access points
(APs) and the amount of Wi-Fi measurements collected from
Wi-Fi APs. The percentage is calculated as in cellular net-
workwhere it refers to the amount of theWi-Fi measurements

FIGURE 12. The number of visible GSM base stations and the amount of
GSM data collected in percentages.

FIGURE 13. The number of visible Wi-Fi access points and the amount of
Wi-Fi data collected in percentages.

collected while scanning for visible APs. The analysis shows
that 22% of the time there were 2 visible APs, followed by
19% for one AP, and 18% with 3 visible APs. Similar to the
cells analysis, we used only the recordings for which we have
set the Wi-Fi scanning to 1Hz.

V. EXEMPLARY MACHINE LEARNING APPLICATION:
LOCOMOTION AND TRANSPORTATION RECOGNITION
One important motivation for collecting the SHL dataset
is to create intelligent systems capable of recognizing the
transportation mode of the user. In this section we show an
exemplary machine-learning pipeline performing transporta-
tion mode classification using the multimodal sensor data
from this dataset. We use the data from User 1 with the
four smartphone body positions (i.e. Hand, Torso, Hips, Bag),
which amounts approximately to 360 hours per body position
collected over 82 days (Fig. 5). For the analysis we considered
only the 8 main activities: still, walk, run, bike, car, bus, train
and subway.

Figure 14 illustrates the processing pipeline for transporta-
tionmode recognition.We split the data into 10 folds (approx-
imately 8 days in each fold) and performed a time-dependent
10-fold cross validation (for each testing fold, we used the
rest 9 to train the model). We used time-dependent cross
validation and not the standard randomized cross validation
because the sensors data are time-series, and we did not
want to train and test on very similar and close in time data
samples. The evaluation was done for each of the phones
independently (train and test on the data originating from the
same phone).

As suggested in [14], we divided the sensor data into
frames with a sliding window of size 5.12 seconds with half
overlap, and in each frame computed 7 features from the
magnitude of the three motion sensors. For the accelerometer
we computed mean, standard deviation, index of the highest
FFT (fast Fourier transform value, and ratio between the
first and second highest FFT values. For the gyroscope we
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FIGURE 14. The processing pipeline applied to the SHL dataset. The data
of User 1 is employed and divided into training and testing datasets using
time-dependent 10-fold cross validation. The training dataset is used for
classifier model training (top) and the testing dataset is used for
performance evaluation (bottom).

computed mean and standard deviation, and for the magne-
tometer we computed standard deviation only. We employed
a Decision Tree algorithm [29] to train a transportation mode
classification model.

Figure 15 shows the pairwise comparison of the 7 basic
features in the transportationmode classification task. In each
panel, the x-axis and y-axis indicate the value of the feature
while the class to which a sample belongs is indicated with
different colors. This figure indicates how suitable are pairs
of features to discriminate between the classes. For instance,
the third feature is better at detecting the class car compared
to the other features. The class run can be easily recognized
with the 7 features.

Figure 16 shows the confusion matrix, the F1-score and
the recognition accuracy obtained for each body position and
also the overall performance, which is computed by merging
the recognition results from all the four body positions. The
four body positions achieve similar performance, with Hand
showing slightly lower accuracy and F1-score than the other
three. We speculate the reason for this is that the participants
engaged with the phone in the hand more often during the
travel, thus introducing more noise to the motion sensor data
of the Hand phone.

The confusion matrices show that the first four activities
(still, walk, run, and bike) are better recognized compared to
the last four (car, bus, train, and subway). The motion of the
smartphones during walk, run and bike is significantly higher
than when the person is sitting or standing in the car, bus,
train or subway, thus making the former four more distinctive
than the latter four. There is mutual confusion between the
motor vehicles (car vs. bus), and between the rail vehicles
(train vs. subway). The reason for this is the similar motion
patterns during these activities. Some confusion between still
and the four vehicle activities (car, bus, train and subway) is
also observed. Typically, some vehicle classes are recognized
as still. This is possibly because the smartphones tend to
be motionless when vehicle stops. For instance, bus is more
frequently recognized as still than other vehicles which may

be due to it stopping more frequently. In contrast, car is
least recognized as still which may be due to it stopping less
frequently.

In this example we mainly aim to demonstrate the use-
fulness of the SHL dataset to the research in locomotion
and transportation recognition rather than maximizing the
recognition performance. Even though, several interesting
observations can still bemade from experimental results, such
as the limitation of using motion sensors alone (which are
present in most of the related datasets) for distinguishing the
basic 8 types of transportation modes and the influence of
sensor placement on the recognition performance. To better
distinguish the transportation modes, one should also include
additional sensors such as GPS location data, pressure sen-
sors, audio and similar. This would be one directions for
future work.

VI. DISCUSSION
A. CHALLENGES AND BEST PRACTICES
We gained a significant experience during the seven-month
data collection campaign. In this section we report on the
experience, the challenges and the issues that we encountered,
and give ideas and suggestions on how to overcome them.
We also report on the analysis of the answers of the partici-
pants to the questionnaire.

All the participants agreed that the smartphone application
was intuitive and easy to use. However, we encountered
few issues which were caused by the Android system itself.
Sudden firmware update (from MHA-L29C432B156 to
MHA-L29C432B182) for the 4 phones of User 1 caused
some of the sensors to change their sampling rate.
The accelerometer sample rate increased from a highly
regular 100 Hz sampling rate to a variable sampling rate at
about 200 Hz, and conversely the pressure sensor decreased
from 100 Hz to 10 Hz. Also, the Wi-Fi and Cell scanning
were insufficient during some of the early recordings due to
relying on a ‘‘best effort’’ scanning of Android. We modified
the logging software to force reporting of Wi-Fi and Cell at
1 second interval. While this forces the operating system to
issue sensor events to the application at that rate, Android
does not guarantee that this changes the underlying driver
Wi-Fi and cells scan rate. A possible solution would be to
use a dedicated firmware only for data collection, without
interruptions from the standard Android system.

All the participants agreed that carrying the equipment was
comfortable enough in most cases, except for some situations
such as during running. Additionally, participants agreed that
the phones were too big (the Mate 9 has a 5.9′′ screen),
especially the one in the hand that was used for annotation.
A possible solution would be to use a smartwatch and voice
commands for data annotation.

Regarding the camera, even though we initially thought
that having a camera that would constantly take pictures
would be felt to invade the privacy of the participants, the par-
ticipants accepted it quickly. This may have been helped
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FIGURE 15. Pairwise comparison of the features for transportation mode classification. The seven features
are (1)-(4): accelerometer (mean, standard deviation, index of the highest FFT value, ratio between the first
and second highest FFT values); (5): magnetometer (standard deviation); (6)-(7): gyroscope (mean and
standard deviation).

FIGURE 16. The confusion matrices for the 8 activities (still, walk, run, bike, car, bus, train, and subway), the F1-score (F1) and the accuracy (A) for each of
the phone positions and the overall.

by using a ‘‘dumb’’ camera where the pictures stayed on
the device under the control of the user, and the fact that
users could remove all the unwanted pictures prior to anno-
tation. Furthermore, the participants never encountered any
unwanted situations during the 7-month period from people

in their surroundings which could have been surprised to see
their equipment.

The time-lapse video extracted from the camera, allowed
us to precisely and richly annotate the dataset with 28 labels
in total. We tested 3 camera models and 7 cameras in total.
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Initially, we used the Snapcam ION lite camera [30], which
takes 5MP images (2592x1936). Then, we discovered that for
the Users 2 and 3, the camera was not taking images at a con-
stant interval, so we used another model: Drift Compass [31],
which takes 8 MP images (3264x2448) every 32 seconds.
Eventually, we realized that none of the above cameras were
reliable enough (irregular time interval between images) and
therefore we had to adapt the synchronization between time-
lapse video and mobile phone sensor data in the annotation
tool manually.

Regarding the main 8 activities, all participants agreed that
the subway was the most boring activity and that they had to
find something to do that does not require smart device and
internet connection. Additionally, the running activity was the
most physically demanding one, and it took some time for the
participants to adapt to it.

Participants all agreed that the usage of the annotation tool
was not easy nor intuitive and required extra time and effort to
become proficient using it. One of the first participants in the
data collection was tasked with shadowing new participants
during annotation and helping them as needed. An update of
the annotation tool is planned for future work.

The participants all agreed that planning the activity sce-
nario in advance was very helpful, especially because it was
online and shared between them and the experiment leader.
Initially, we started with more detailed activity planning by
providing start and end times for each activity, but after a few
days we realized that providing a rough outline of the activity
scenario was sufficient and gave space for improvisation and
more realistic data collection.

If we were to extend the data collection with much more
participants, some procedures could be improved to address
the current issues and bottlenecks:
• Use smaller and more practical smartphones, especially
for the one in the hand. An alternative would be to use a
smartwatch.

• The usage of the annotation tool and the software should
be improved so that the participants could do it with lim-
ited expert help. An alternative would be to have people
trained only to annotate data collected by other partic-
ipants. All the participants agreed that if the detailed
activity diary was provided, they would be able to check
and annotate other people’s data.

• The planning of the activity scenario could be computer
generated. Potentially, at the end of each day, a software
could check what is the status of the dataset/activities
collected and propose a few scenarios for the next
day or week. The experiment leader would only inter-
vene in cases where the participant cannot choose any
of the suggested scenarios.

• A continuous data quality check-up could be devised to
automatically raise warnings and notify the experiment
leader if something is wrong. The scripts that we used for
the offline automatic quality check-up and the automatic
upload of data, should be modified and adapted to check
the data continuously, every day.

B. POTENTIAL APPLICATIONS
The dataset is highly versatile due to the multimodal-
ity and rich and high-quality annotations. In this paper,
we showed how this dataset can be used for the automatic
recognition of modes of transportation from the mobile
phone sensors by using machine learning techniques. There
are numerous enhancements possible to this work. For
instance, it can be used for an in-depth analysis of user-
independent or placement-independent recognition, therefore
yielding a recognition system which is more robust to new
users or to changes in on-body phone placement. The rich
set of multimodal sensors also enables research in dynamic
power-performance tradeoffs in activity recognition, where
sensors may be duty cycled when power usage must be
reduced, or multimodal sensors fused in larger numbers to
increase recognition performance.

The dataset comprises the recording of the audio of the
smartphonemicrophone. Computational audio scene analysis
is another promising approach to recognize user transporta-
tion modes and the wider context of the user.

This dataset provides rich data for wireless sensor
network and mobile communication research, in partic-
ular it allows to explore and predict wireless coverage
(Wi-Fi or cellular) according to transportation modes, dis-
placement speed, or user location. This can enable use-
ful applications in adaptive data streaming to minimize the
impact when a connection quality degrades. Similar analysis
can be made on Satellite reception in function of the user’s
transportation modes. There are numerous additional appli-
cations for this dataset. A few examples are:
• Road condition analysis and recognition. The dataset also
contains labels about the road conditions, therefore
it can allow research in this field, such as develop-
ment of supervised machine learning model using the
smartphone sensors to automatically detect he road
conditions.

• Traffic conditions analysis and recognition. Similar to
the previous example, the traffic conditions are also
labeled, allowing researchers to use supervised machine
learning techniques to train models to automatically rec-
ognize the traffic conditions using the smartphone data.

• Automatic detection of eating and drinking. This is also
an interesting research topic, and can be potentially used
in health applications such as calorie monitoring, diets,
fitness applications, etc.

• Assessment of Google’s activity and transportation
recognition API in comparison to novel methods devel-
oped based on this dataset. Researchers can compare to a
state of the art commercial model developed by Google,
and can introduce improvements.

• Creating probabilistic mobility and locomotion models,
which are commonly used in wireless sensor network
research.

• Novel localization techniques using dynamic fusion
of sensors. This is also a topic of interest to many
researchers. Improving the localization of the user by
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using non-intrusive sensors can bring many applications
to improve the quality of life of the users. For exam-
ple, improving the indoor localization by using data
fusion techniques for smarpthone sensors can be used
for elderly monitoring applications.

• Image-based activity and transportation mode recogni-
tion, object recognition in everyday time-lapse video,
context recognition from images (e.g. social interac-
tions, having meal).

VII. CONCLUSION
In this data collection campaign, we focused on obtaining
a precisely annotated sensor-rich dataset, which is also rep-
resentative of real-life. We encouraged participants to mesh
their everyday routines with the data collection protocol as
much as possible to ensure a dataset representative of every-
day life. We used 4 high-end smartphones simultaneously
placed on typical body locations to maximize the amount
of data collected during recordings. We used a body-worn
camera to help us further improve the accuracy of the anno-
tations. To ensure the quality of the annotations, the partic-
ipants used a dedicated tool to check the annotations and
introduce additional ones after the data collection completed.
In total 28 labels were annotated, including the mode of
transportation, participant’s posture, inside/outside location,
road conditions, traffic conditions, presence in tunnels, social
interaction, and having meals.

The dataset comprises 703 hours of recordings, which
correspond to 2812 total hours of labeled data collected
given the simultaneous recording from 4 locations. This took
place over 7 months with three participants who engaged
in 8 different modes of transportation in the south-east of the
United Kingdom. Even though the number of participants is
limited to three, our focus was on the quality of the collected
and annotated data (28 labels in total), and on collecting real-
life data over long period (2812 hours of labeled data and
17562 km of traveled distance collected over 7 months). This
longitudinal data collection allows studies about changes in
behavior and transportation usage over time. The full dataset
will be made available to the community in batches over
2018 as privacy verification is completed. A preview of the
dataset including 4 × 59 = 236 hours of data is already
published at http://www.shl-dataset.org/. The full dataset will
be released in the exact same file format. This allows studies
done on the preview dataset to be seamlessly scaled up as the
full data is released.

The large number of included sensors at different body
locations, the diverse set of activities and their precise anno-
tation make this dataset a valuable foundation for various
research fields. Besides the automatic recognition of trans-
portation modes which we exemplified here, it can be used
for research in detection of social interaction, road condi-
tions detection, traffic conditions detection, localization and
sensor fusion. Further applications are expected based on
the recorded sound and the camera data such as recognizing
surrounding objects, or recognizing activities and the wider

in which they occur. The GPS and Wi-Fi and GSM data have
valuable applications for indoor localization and they can
serve as baseline for sensor-based localization.
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