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Manuel A. Vázqueza,b,1, Inés P. Mariñoc,d,*,1, Oleg Blyusse,d, Andy Ryand, Aleksandra Gentry-Maharajd,

Jatinderpal Kalsid, Ranjit Manchandad,f, Ian Jacobsd,g,h, Usha Menond,2, Alexey Zaikind,i,j,2

a Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés 28911,

Madrid, Spain.
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Abstract

We present a quantitative study of the performance of two automatic methods for the early detection of

ovarian cancer that can exploit longitudinal measurements of multiple biomarkers. The study is carried out
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for a subset of the data collected in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS).

We use statistical analysis techniques, such as the area under the Receiver Operating Characteristic (ROC)

curve, for evaluating the performance of two techniques that aim at the classification of subjects as either

healthy or suffering from the disease using time-series of multiple biomarkers as inputs. The first method

relies on a Bayesian hierarchical model that establishes connections within a set of clinically-interpretable

parameters. The second technique is a purely discriminative method that employs a recurrent neural

network (RNN) for the binary classification of the inputs. For the available dataset, the performance

of the two detection schemes is similar (the area under ROC curve is 0.98 for the combination of three

biomarkers) and the Bayesian approach has the advantage that its outputs (parameters estimates and

their uncertainty) can be further analysed by a clinical expert.

Keywords: Ovarian cancer; biomarkers; deep learning; recurrent neural networks; Markov chain; Monte

Carlo; Gibbs sampling; Change-point detection; Bayesian estimation.

1 Introduction 1

Ovarian cancer remains the fifth most common cause of cancer-related deaths among women, with more 2

than 150,000 annual deceases worldwide. Most cases occur in post-menopausal women (75%), with an 3

incidence of 40 per 100,000 per year in women aged over 50. The early detection of this disease increases 4

5-year survival significantly, from 3% in Stage IV to 90% in Stage I [1]. Therefore, it is important to 5

design efficient methods for early detection. 6

The screening and initial procedures for the detection of ovarian cancer are often carried out by testing 7

serum biomarkers that are known to correlate with the appearance of tumours. In particular, the serum 8

biomarker Canger Antigen 125 (CA125) is the most commonly used oncomarker in the screening of ovarian 9

cancer [2–5]. However, other serum biomarkers have been reported to be associated with the development 10

of ovarian cancer [6–8] and it has been recently suggested that they can be used in combination with 11

CA125 [8–14]. The biomarker that has received more attention is the Human Epididymis Protein 4 (HE4), 12

which has been used in the ROMA (Risk of Ovarian Malignancy Algorithm) to discriminate ovarian cancer 13

from benign diseases [9, 15] as well as in different panels for the purpose of early detection [7, 10, 11]. In a 14

study within the Prostate Lung Colorectal and Ovarian (PLCO) cancer screening trial [16], HE4 was the 15
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second best marker after CA125, with a sensitivity of 73% (95% confidence interval 0.60 – 0.86) compared 16

to 86% (95% confidence interval 0.76 – 0.97) for CA125 [17,18]. Another serum biomarker, glycodelin, 17

has also shown promising performance in the detection of ovarian cancer [12,19,20]. 18

Recently, time series data from multiple biomarkers, including CA125, HE4 and glycodelin, have been 19

jointly analysed to determine whether the level of these markers changed significantly and coherently at 20

specific time instants [6], associating this fact with the development of tumours. The focus in [6] was placed 21

on the detection of change-points for different biomarkers, by estimating the probability of coincidences 22

as well as the probability of the change-point of a given biomarker appearing (and being detected) 23

earlier than others. As a consequence, it was suggested that the combined detection of change-points in 24

several biomarkers could be exploited for early diagnosis of ovarian cancer. In this paper we address the 25

quantitative study of this automatic diagnostic technique using statistical analysis tools. 26

In particular, we study the trade-off between sensitivity (proportion of correctly detected positives) 27

and specificity (proportion of correctly detected negatives) of a detection procedure that relies on the 28

Bayesian change-point (BCP) model described in [6] which, in turn, is a version of the model proposed 29

originally in [21] for the ROCA (Risk of Ovarian Cancer Algorithm) scheme. The quantitative analysis is 30

carried out for a subset of the data collected in the UK Collaborative Trial of Ovarian Cancer Screening 31

(UKCTOCS) [22]. It involves time-series of CA125, HE4 and glycodelin for both healthy subjects (controls) 32

and diagnosed patients (cases). 33

The decisions made by the BCP model involve estimating a number of parameters that admit a natural 34

clinical interpretation. Although parsimony is always a desirable property to have in any model, accuracy 35

(measured in terms of sensitivity and specificity) is here the ultimate goal. Hence, we also consider machine 36

learning-based schemes which are often capable of modeling more complex mappings (between a set of 37

measurements and the corresponding output) at the expense of some interpretability. 38

Deep learning (DL), and Recurrent Neural Networks (RNNs) in particular, have become important 39

tools in classification tasks that involve the processing of ordered sequences of data [23]. Such methods 40

have achieved state-of-the-art performance in applications such as handwriting [24], speech recognition [25] 41

or image caption generation [26]. RNNS have also found many applications in the clinical field for tasks 42

involving the classification of time series. In [27] a Long Short-Term Memory (LSTM) RNN is trained to 43

classify diagnoses from pediatric intensive care unit (PICU) data. The same kind of data is fed to an 44

RNN in [28] in order to predict mortality rates for patients in the intensive care unit. A Gate Recurrent 45
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Unit (GRU) is proposed in [29] for heart failure prediction. The authors of [30] use RNNs to assess the 46

stress level of drivers from physiological signals coming from wearable sensors. In this work, we deploy a 47

simple RNN for discriminating between women with ovarian cancer and healthy controls based on an 48

ovarian cancer screening test that combines multiple biomarkers. The main challenge in applying DL in 49

this context is the relatively small size of the dataset, which imposes some constraints on the kind of 50

neural architectures that can be successfully trained without overfitting. 51

The ultimate goal in this paper is to carry out a comparison between these two different strategies 52

(BCP and RNN) highlighting the advantages and disadvantages of both techniques. The study of both 53

approaches, however, clearly shows that combining longitudinal time series of different biomarkers can 54

improve the classification of pre-diagnosis samples regardless of the method. 55

The rest of this paper is organised as follows. Section 2 is devoted to the description of the dataset. 56

Section 3 is devoted to a brief description of the Bayesian change-point method and the classification and 57

statistical analysis carried out with it. In Section 4 the recurrent neural network technique is presented as 58

well as the training procedure. The results obtained for both methods are presented and discussed in 59

Section 5 and, finally, Section 6 is devoted to dicussion and conclusions. 60

2 Data 61

The two methods have been applied to a dataset from the multimodal arm [6] of the UK Collaborative Trial 62

of Ovarian Cancer Screening (UKCTOCS, number ISRCTN22488978; NCT00058032) [22], where women 63

underwent annual screening tests using the blood tumour marker CA125. Biomarkers HE4 and glycodelin 64

assays were additionally performed on stored serial samples from a subset of women in the multimodal 65

arm diagnosed with ovarian cancer and controls. The dataset included 179 controls (healthy women) and 66

44 cases (diagnosed women): 35 cases of invasive epithelial ovarian cancer (iEOC), 3 cases of fallopian 67

tube cancer and 6 cases of peritoneal cancer. Out of these 44 cases, 16 are early stage (International 68

Federation of Ginecology and Obstetrics, FIGO [31], stages I and II) and 28 are late stage (FIGO stages 69

III and IV). In terms of histology, there are 27 serous cancers, 2 papillary, 3 endometrioid, 2 clear cell, 3 70

carcinosarcoma, and 7 not specified cancers. Each control has 4 to 5 serial samples available (177 controls 71

with 5 samples and 2 controls with 4 samples) and each case has 2 to 5 serial samples available (24 cases 72

with 5 samples, 10 cases with 3 samples and 10 cases with 2 samples). For healthy women, the range 73
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of age is 50.3–78.8 years and the average age over all women and samples is 63.6 years. On the other 74

hand, the range of ages for cases is 52.0–77.4 years and the average age over all women and samples is 75

65.5 years. A detailed classification of the women with cancer is shown in Table 1, indicating the range of 76

ages and the average age of the different subgroups. 77

Table 1. Classification of cases, showing the range of ages and the average age over the corresponding
women and samples.

Histology Stages number of women range of ages average age

serous cancers
I-II 9 [52.0-69.0] 61.3

III-IV 18 [54.9-76.7] 66.6

papillary
I-II 1 [68.1-69.2] 68.6

III-IV 1 [55.2-57.2] 56.2

endometrioid
I-II 2 [60.3-64.3] 62.7

III-IV 1 [67.6-68.7] 68.1

clear cell
I-II 2 [57.0-77.4] 67.2

III-IV 0 0 0

carcinosarcoma
I-II 0 0 0

III-IV 3 [60.0-67.2] 63.7
not specified
cancers

I-II 2 [72.7-74.2] 73.5
III-IV 5 [62.5-73.0] 67.8

All serum samples were assayed for CA125, glycodelin and HE4 using a proprietary multiplexed 78

immunoassay based on Luminex technology which was developed and run by Becton Dickinson. 79

It should be noted here that all the biomarker measurements have been modified via a logarithmic 80

transformation, as detailed in [12, 21], in the form of Y = log(Z + 4), where Z is the value of a particular 81

marker. 82

Traditionally, single-biomarker time-series have been employed for the screening of ovarian cancer 83

patients, particularly CA125 data. Recently, a few studies [6, 12, 32, 33] have suggested that different 84

biomarkers can be combined into multidimensional time-series and can lead to more accurate diagnosis. 85

We explore this approach in the sequel. 86

3 Bayesian Change-Point Method 87

3.1 Bayesian model 88

In order to analyse the available data, we adopt the Bayesian change-point model (BCP) described in [6,21] 89

and outlined in Fig. 1. Let yij denote the log-transformed measurement of the biomarker Z (where Z 90
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can be any of CA125, HE4 or glycodelin) for the i-th woman in the study at age tij . The number of 91

measurements for the i-th subject is denoted ki, so the time series consists of measurements collected at 92

ages ti1, . . . , tiki . The time tij of a measurement yij can depend on previous values yij′ , j
′ < j. 93

There are parameters in the model that are common to all women, namely those in the set C = 94

{µθ, µγ , σ2
θ , σ

2
γ , σ

2, π}, and parameters specific to each subject, namely Si = {θi, Ii, τi, log γi}. A key 95

parameter in the study to be carried out is the unobserved binary indicator Ii, which serves to determine 96

whether the corresponding biomarker of the i-th woman suffers or not a significative change in its behaviour. 97

The indicator Ii for each woman is assumed to follow, a priori, a Bernoulli distribution with success 98

probability π, where π represents the proportion of women for which we a priori expect a significant 99

change in the time-evolution of the biomarker level, i.e., a change-point in the time series. We have chosen 100

for the parameter π the prior distribution Beta(1.0, 1.0). 101

γ

ij I=0

θµ 2
θσ

θi
2σ

yij

yij I=1

τ iI i

π µγ σ 2
γ

i

y

Fig 1. Scheme of the hierarchical Bayesian model. Source: Fig. 1 from Ref. [6].

When the indicator of a given woman is Ii = 0 (expected for healthy women), all log-transformed 102

measurements of this woman, yij (j = 1, . . . , ki), are assumed to be modelled by a normal distribution 103

with mean denoted E(yij |tij , Ii = 0) = θi and variance σ2. This mean, θi, specific for each woman, is 104

also assumed to follow a normal distribution with mean and variance denoted, respectively, as µθ and 105

σ2
θ , common to all women. We have chosen the same prior distributions as in [6] for σ2, µθ and σ2

θ . In 106

particular, σ2 ∼ IG(2.05, 0.1), µθ ∼ N (2.75, 1) and σ2
θ ∼ IG(2.04, 0.065), where N (a, b) denotes a normal 107

distribution with mean a and variance b and IG(a, b) denotes the inverse gamma distribution with mean 108

b/(a− 1) and variance b2/[(a− 1)2(a− 2)]. 109

On the other hand, when the indicator of a given woman is Ii = 1 (expected for women with 110
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ovarian cancer), the corresponding measurements of this subject are assumed to be modelled by a normal 111

distribution with mean represented by the piecewise linear function E(yij |tij , Ii = 1) = θi + γi(tij − τi)+ 112

and variance σ2 (the same as before). The notation (·)+ denotes the positive part of the expression 113

between parentheses, γi represents the positive increase of the function that occurs after some time instant 114

τi, referred as the change-point of the time series, and θi is modelled as explained above. As in [6], log γi is 115

assumed to follow a normal distribution with mean and variance denoted, respectively, as µγ , σ2
γ , common 116

to all women. The same prior distributions as in [6] have also been chosen for µγ and σ2
γ and τi, namely 117

µγ ∼ N (1.1, 0.1), σ2
γ ∼ IG(2.2, 0.12) and τi ∼ T N (di − 2, 0.752, [di − 5, di]), where di denotes the age of 118

patient i at the time of the last measurement and T N (a, b, c) represents truncated normal distributions, 119

with mean a, variance b and restricted to the interval c. 120

The posterior probability distributions for all unknown parameters of the model can be approximated 121

using the Metropolis-within-Gibbs (MwG) sampling algorithm described in detail in [6]. This algorithm 122

iteratively generates samples from the distribution of each parameter conditional on the current values of 123

the other parameters. It can be shown that the resulting sequence of samples yields a Markov chain, and 124

the stationary distribution of that Markov chain is the joint posterior probability distribution [34]. This is 125

done with every biomarker, that is, CA125, HE4 and glycodelin. 126

3.2 Detection Method 127

Unlike in [6], where the focus was placed on the change-point instant τi and its coherence across different 128

biomarkers (i.e., whether the slope of different biomarkers series changed simultaneously or not), in this 129

paper we propose to asses whether the i-th subject has ovarian cancer or not based on the expected value 130

of the indicator variable Ii given the available data. 131

Let m be the number of subjects in the dataset. In order to compute the expectation of Ii, i = 1, . . . ,m, 132

we run the MwG algorithm described in [6] to produce a chain of 10, 000 entries. Each entry of the chain 133

contains one sample of each unknown parameter in the set A =
⋃m
i=1 Si

⋃
C, which includes the common 134

parameters in C and all subject-specific parameters. The first 5, 000 entries are removed (to ensure that 135

the chain has converged) and the expected value of each Ii (i ∈ {1, . . . ,m}) is estimated using the 5, 000 136

remaining entries in the chain, i.e., E[Ii|data] ≈ 1
5,000

∑10,000
k=5,000 I

(k)
i =: Îi, where I

(k)
i is the k-th sample of 137

the i-th indicator in the Markov chain. 138

Detection can be carried out by comparing Îi to a threshold 0 < α < 1, in such a way that 139
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• if Îi < α the i-th subject is considered healthy, and a negative output is produced, and 140

• if Îi > α the disease is detected and a positive output is produced. 141

Some remarks are in order: 142

• The detection threshold α can (and should) be optimised using the available data. In Section 5 we 143

compute and plot the ROC curve that results from trying different values of α in the interval [0, 1] 144

for the dataset described in Section 2. This curve can be used to select the value of α that yields 145

suitable specificity (true negative rate) and sensitivity (true positive rate) values. 146

• The BCP model and the estimator Îi can be used for “soft” detection. Intuitively, a value of Îi well 147

above the selected α suggests a very confident positive (correspondingly, Îi << α points towards a 148

clear negative), while a value of Îi close to α may trigger different tests or the inspection of that 149

subject’s data by an expert clinician. 150

• The procedure can be naturally used on multiple biomarkers (and, indeed, we present such results 151

in Section 5). When we compute the estimator Îi for several biomarkers we adopt the convention 152

that the outcome is positive if Îi > α for at least one biomarker, while it is negative if Îi < α for all 153

biomarkers. ROC curves (obtained by varying the threshold α) are displayed in Section 5 for the 154

single-biomarker and multiple-biomarker cases. 155

4 Recurrent Neural Network 156

4.1 Network architecture 157

In a machine learning approach, we must decide whether a subject is healthy or not based on the value of 158

(at most) three features, given by the measurements of the biomarkers (CA125, HE4, and glycodelin), 159

and their corresponding time stamp. This is a small number of features and, when considering a deep 160

learning approach, we should be careful to choose a network architecture that is simple enough as to avoid 161

overfitting. With that in mind, we consider the most basic RNN followed by a dense layer, as shown in 162

Fig. 2. For the i-th subject, the input to the network is given by the sequence xi1,xi2, · · · ,xiki where 163

xij = [tij , yij ]
>

is a 2 × 1 column vector whose first element is the age of the subject, tij , and whose 164

second element represents, as above, the log-transformed measurement of the biomarker Z (where Z can 165
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xij ×

Wih

+

bih

+

tanh

×Whh

s̃j

×

who

+

bho

σ ôij

sj

sj−1

dropout

RNN

Fully Connected
Layer

Fig 2. Network architecture for a single biomarker.

be any of CA125, HE4 or glycodelin) for the i-th subject in the study at age tij . The hidden state of the 166

network right before processing the j-th input from the i-th subject, xij , is given by the H × 1 (column) 167

vector sj−1, where H is the number of the hidden neurons. Then, the operation of the RNN is described 168

by the equation 169

sj = f (Wihxij + bih + Whhsj−1) (1)

where Wih is the H×2 input-hidden projection matrix, Whh is the hidden layer (recurrent) kernel matrix 170

of size H ×H, bih is a H × 1 bias vector, and f(·) is an (element-wise) activation function. The latter is 171

here the hyperbolic tangent, though other (usually non-linear) functions such as a Rectified Linear Unit 172

(ReLU) or sigmoid function are also possible [23]. When the last sample for the i-th subject, xiki , is fed 173

to the RNN, the final output of the network for that subject is computed as 174

ôiki = σ
(
w>hos̃ki + bho

)
(2)

where σ(x) = 1/ (1 + e−x) is the sigmoid function, who is the H × 1 hidden-output weights vector, s̃ki is 175

the state vector ski after dropout [23], and bho is the (scalar) output bias. 176

Matrices Whh and Wih, along with vectors bih and who, and the scalar bho constitute the parameters 177

to be learned by the neural network (NN). In order to estimate them, we use the cross-entropy loss 178

function, 179

L =
1

N

N∑
i=1

− (oi log(ôiki) + (1− oi) log(1− ôiki)) , (3)
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where N is the number of samples (subjects) seen during training and oi is the true label (1 for cases, 180

0 for controls) for the i-th subject. Notice that the RNN provides an output for every input but only 181

the last one, ôiki , is considered in the cost function. Minimization of the loss function is carried out by 182

means of stochastic gradient descent (SGD) with dynamic learning rates updated according to the Adam 183

algorithm [23]. 184

When more than one biomarker is available, we use the above architecture as building block and 185

process each one separately. Figure 3 illustrates this for the combination of CA125 and HE4. The time

CA125 RNN

HE4 RNN

dropout Fully Connected
Layer

ôij

Fig 3. Network architecture for biomarkers CA125 and HE4.

186

series of every biomarker is summarised by the last state of an RNN, and the two resulting H × 1 vectors 187

are concatenated to give an overall state that, after dropout, is processed by a fully connected layer. 188

Extension to three (or more) markers is straightforward. 189

4.2 Training, classification and statistical analysis 190

Rather than splitting the data into a training and test sets, and due to the small number of data, we 191

evaluate the performance of the RNN using cross validation. This entails partitioning the dataset into 192

K = 5 equal sized disjoint sets or folds, and in turn evaluate the performance on each one while training on 193

the rest. Ultimately, this yields a prediction for every subject in the dataset, which allows for computing 194

the usual performance metrics. 195

The above RNN architecture has two hyperparameters: the number of neurons in the hidden state, 196

H, and the amount of dropout used for regularisation. Additionally, the training phase gives rise to yet 197
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another hyperparameter, which is the number of epochs. These three hyperparameters are selected by 198

another (inner) level of cross-validation. Indeed, 10-fold cross-validation is used on every training set to 199

compare the performance of the model for every possible combination of the values of the hyperparameters. 200

The actual training is then performed using the best combination of hyperparameters (over the entire 201

training set). 202

During training, the biomarker’s measurements are normalised so that, across all the samples of all 203

the subjects, the mean is 0 and the variance is 1. This is common practice in most machine learning 204

algorithms, and it is meant to speed up optimisation. Notice that the empirical means and variances (one 205

per feature) used for normalisation during training must be kept and applied on any subsequent sample 206

that is to be classified (and, in particular, over the test set). 207

Regarding the initialization of the weights, different strategies are used for different layers of the 208

network. In particular, Whh is set to a random orthogonal matrix as proposed in [36], Wih and who are 209

initialized using Glorot’s scheme [37], and bias vector bih and scalar bho are set to zero. 210

5 Results 211

In this section we assess the performance of two schemes that we have described in Section 3 (BCP) and 212

Section 4 (RNN), in terms of their sensitivity and specificity. These two metrics, for different values of 213

the corresponding threshold, are illustrated by the Receiver Operating Characteristic (ROC) curve. 214

Figure 4 shows the AUC along with the corresponding confidence interval for every individual biomarker, 215

as well as every combination of biomarkers encompassing CA125. In both algorithms it is clear that, when 216

considering a single biomarker, CA125 is the one yielding the best performance (a larger AUC in a narrower 217

confidence interval). When using several biomarkers, the best results are obtained when combining CA125 218

with HE4. Specifically, in both algorithms the AUCs for “CA125+HE4” and “CA125+HE4+Gly” are 219

≈ 0.98. Figures 5 and 6 show, respectively, the ROC curves for the BCP and RNN schemes. In both 220

cases, the plot on the left focuses on the results for a single biomarker, while the plot on the right depicts 221

the curves for combinations of biomarkers (along with the curve of CA125 that serves as a reference). 222

The confidence intervals given in Figure 4 suggest that the differences between the AUC within and 223

across algorithms are not statistically significant. Specifically, when comparing both schemes (the one 224

based on RNNs and the one based on BCP) for a standalone biomarker or combination of biomarkers, 225
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AUC Confidence Interval [l,u] l u

RNN
CA125 0.963

0.85 0.9 0.95 1

0.921 1
HE4 0.912 0.86 0.965
Gly 0.904 0.842 0.965

CA125+HE4 0.977 0.951 1
CA125+Gly 0.966 0.924 1

CA125+HE4+Gly 0.976 0.944 1

BCP
CA125 0.956 0.908 1
HE4 0.93 0.879 0.981
Gly 0.929 0.872 0.986

CA125+HE4 0.985 0.969 1
CA125+Gly 0.976 0.947 1

CA125+HE4+Gly 0.98 0.962 0.998

Fig 4. Area Under the Curve with 95% confidence intervals.
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(b)

CA125, AUC=0.956

CA125+HE4, AUC=0.985

CA125+Gly, AUC=0.976

CA125+HE4+Gly, AUC=0.980

Fig 5. ROC curves and area under ROC curve obtained by the Bayesian Change-point
method for different biomarkers: (a) when considering a single biomarker (CA125, HE4 or
glycodelin), (b) when considering different combinations of then three biomarkers.

the estimated AUCs are very close and the corresponding confidence intervals overlap to a great extent. 226

Hence, it is hard to say one algorithm performs better than the other. On the other hand, when focusing 227

on a certain algorithm, although using the three biomarkers increases the AUC and narrows down the 95% 228

confidence interval, there is still some overlap when the latter is compared with the confidence intervals 229

for individual biomarkers. 230
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CA125, AUC=0.970

CA125+HE4, AUC=0.982

CA125+Gly, AUC=0.978

CA125+HE4+Gly, AUC=0.983

Fig 6. ROC curves and area under ROC curve obtained by the Recurrent Neural Network
for different biomarkers: (a) when considering a single biomarker (CA125, HE4 or glycodelin), (b)
when considering different combinations of the three biomarkers.

In order to assess whether, for a given algorithm, the differences between AUCs for different com- 231

binations of biomarkers are statistically significant, we have computed the p-value of hypothesis tests 232

comparing, pairwise, every possible combination of biomarkers. Notice that here we are slightly abusing 233

notation, and we are also referring to a single biomarker, e.g., “CA125”, as a combination. The results are 234

shown in Figure 7. Those tests in which the null hypothesis (“the compared AUCs are equal”) is rejected 235

at a 0.05 significance level are highlighted in bold font. Some remarks are in order 236

• In both algorithms, the AUC attained using the three biomarkers is different (better) from that 237

achieved using only HE4 or only Gly; additionally, in the RNN-based algorithm, it is also the case 238

that using all the biomarkers yields an improved AUC as compared to using only CA125. 239

• In both algorithms the AUC using only Gly is different from that using any of the two-marker 240

combinations; in the RNN algorithm the hypothesis that the AUC using only Gly is the same as 241

that using only CA125 is also rejected. 242

• In both algorithms, we must also reject the hypothesis that the results for HE4 only are equal to 243

those obtained using “CA125+HE4” combination. 244

For the problem at hand, one of the most important performance metrics is the sensitivity. In order to 245

compare effectiveness of BCP- and RNN-based schemes for this metric, we set the corresponding decision 246

threshold of each algorithm at a value such that a minimum specificity of 90% is attained, and evaluate the 247
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Hypothesis test RNN BCP

CA125 vs HE4 0.127 0.461
CA125 vs Gly 0.044 0.435

CA125 vs CA125+HE4 0.121 0.226
CA125 vs CA125+Gly 0.372 0.402

CA125 vs CA125+HE4+Gly 0.04 0.317
HE4 vs Gly 0.803 0.97

HE4 vs CA125+HE4 0.024 0.027
HE4 vs CA125+Gly 0.105 0.092

HE4 vs CA125+HE4+Gly 0.035 0.045
Gly vs CA125+HE4 0.011 0.03
Gly vs CA125+Gly 0.029 0.037

Gly vs CA125+HE4+Gly 0.007 0.04
CA125+HE4 vs CA125+Gly 0.319 0.335

CA125+HE4 vs CA125+HE4+Gly 0.921 0.171
CA125+Gly vs CA125+HE4+Gly 0.103 0.618

Fig 7. p-values obtained for the hypothesis tests assessing whether the AUCs attained by different
combinations of biomarkers are different (in both the RNN- and BCP-based methods).

sensitivity afterwards. The results are shown in Figure 8. When a single biomarker is used, the sensitivity 248

of the BCP algorithm is slightly higher than that exhibited by the RNN in each of the three cases (CA125, 249

HE4, and Gly), although the corresponding confidence intervals overlap pairwise, and hence the differences 250

are not statistically significant. When using combination of biomarkers, both algorithms show a noticeable 251

increase in the sensitivity. Specifically, when considering the three biomarkers, both the RNN and the 252

BCP algorithm exhibit a sensitivity of around 0.98, whereas when only CA125 is exploited, the sensitivity 253

attained by the RNN algorithm is ≈ 0.91 and that achieved by the BCP-based scheme is ≈ 0.93. In both 254

algorithms, there is overlap between the confidence intervals for CA125 and CA125+HE4+Gly, but it 255

is clear that using the combination the confidence interval is significantly narrower. Hence, it could be 256

argued that both algorithms benefit from using all the three biomarkers. 257

6 Discussion and Conclusions 258

We have explored two different approaches to tackle the problem of ovarian cancer detection from a 259

sequence of longitudinal measurements of several biomarkers. The first approach relies on a Bayesian 260

hierarchical model whose fundamental assumption is that measurements taken from case subjects exhibit 261
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sensitivity Confidence Interval [l,u] l u

RNN
CA125 0.909

0.6 0.7 0.8 0.9 1

0.818 0.977
HE4 0.773 0.636 0.886
Gly 0.818 0.705 0.932

CA125+HE4 0.955 0.886 1
CA125+Gly 0.909 0.818 1

CA125+HE4+Gly 0.977 0.886 1

BCP
CA125 0.932 0.841 1
HE4 0.818 0.705 0.932
Gly 0.886 0.773 0.964

CA125+HE4 0.977 0.932 1
CA125+Gly 0.977 0.909 1

CA125+HE4+Gly 0.977 0.932 1

Fig 8. Sensitivity for a 90% specificity.

a changepoint in one or several biomarkers. The second approach is a purely discriminative machine 262

learning algorithm based on the use of RNNs, a kind of artificial neural network specially suited for the 263

processing of ordered sequences of data. 264

Our experimental results (relying on real data) show that, regardless of the method, CA125 is the 265

single biomarker yielding the best performance, as measured by either the AUC or the sensitivity attained 266

for a fixed specificity. When using several biomarkers, both algorithms get a performance boost, although 267

the latter is not always statistically significant. For instance, 95% confidence level hypothesis tests suggest 268

that the joint use of CA125, HE4 and glycodelin biomarkers increases the performance of both methods 269

as compared to using either HE4 or glycodelin alone. However, only for the RNN-based scheme, the 270

combination of the three biomarkers seems to improve the AUC obtained by CA125 alone. In any case, 271

both methods exhibit nearly the same performance. Similar conclusions can be drawn when looking at 272

the sensitivity of the algorithms for a fixed specificity at 90%. In such a case, the confidence interval 273

for the sensitivity obtained using CA125 alone, on one hand, and the three biomarkers, on the other 274

hand, overlap. Hence we cannot rule out the hypothesis that both sensitivities are equal. However, 275

when using CA125, HE4 and glycodelin, the estimated sensitivity is noticeably higher and, moreover, the 276

corresponding confidence interval is markedly narrower. 277
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Since the performances of the two approaches are ultimately comparable when every available biomarker 278

is used, other considerations must be taken into account when choosing one over the other. If interpretability 279

is a concern, the parameters estimated by the BCP algorithm have a physical intuitive interpretation, 280

whereas the weights in a neural network (NN) are usually much harder to interpret. On the other hand, 281

RNNs are able to integrate different markers more naturally. In connection with this, RNNs might also 282

be able to perform some kind of feature selection by way of weighting more heavily a certain biomarker 283

(accounting for previously seen values) whereas in the BCP scheme, every biomarker is considered equally 284

important. 285

RNNs, and NNs in general, usually need a large amount of training data in order to obtain a model 286

that achieves good generalization capabilities. In order to avoid overfitting, regularization techniques, 287

such as dropout, can be used when the dataset is small, but it is not always straightforward how or where 288

to apply them. On the contrary, generative models like BCP make the most of the available data while 289

accounting for the uncertainty given by the prior. 290

Regarding the RNN approach, future works should use a larger dataset which will allow to exploit the 291

full potential of deep learning in the problem at hand. Also, many other NN architectures are possible, 292

but exploring them would demand a paper of its own. 293
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