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Abstract

A modular approach employing indene as the common starting material has enabled the
straightforward preparation (in three reaction steps) of a set of ligands for the palladium-
catalyzed asymmetric allylic substitution. The optimization of the first generation ligand
library on the basis of rational design and theoretical calculations has provided an
anthracenethiol- derivative that displays excellent behavior in the reaction of choice.
Improving most approaches reported to date, this streamlined ligand presents a broad
substrate and nucleophile scope. Excellent enantioselectivities have been therefore achieved
for a range of linear and cyclic allylic substrates using a large series of C-, N- and O-
nucleophiles (40 examples in total). The species responsible for the catalytic activity have
been further investigated by NMR and the origin of the enantioselectivity have been clearly
established. The resulting products have been derivatized by means of ring-closing metathesis
or Pauson-Khand reactions to further prove the synthetic versatility of the method.

1. Introduction



The future of chemical production must keep up with the growing demand for fine
chemicals while reducing the overall waste production and energy consumption demanded by
international regulations (and common sense). Over the last decades, this need for
sustainability has driven the shift from suboptimal non-catalyzed processes to high-
performing catalytic processes for the production of all sorts of chemicals.! This has been
especially noteworthy in the production of enantiopure compounds, which play a key role in
many technologically and biologically relevant applications.> Amongst the toolkit of catalytic
enantioselective transformations, asymmetric Pd-catalyzed allylic substitution stands out for
its versatility (as it creates new C-C and C-heteroatom bonds starting from simple precursors),
high functional group tolerance and mild reaction conditions. Moreover, the resulting
products accept further derivatization thanks to the presence of an alkene functionality.’ The
key role of the ligand in the induction of chirality in this process has motivated several studies
concerning the generation and evaluation of myriad candidates in terms of yield, selectivity
and substrate scope. Heterodonor compounds (phosphine/phosphinite-oxazolines being the
paradigmatic example) have proven especially advantageous because the different trans
influence of the two donor groups generates an efficient electronic differentiation between the
two allylic terminal carbon atoms. Indeed, the nucleophilic attack is known to take place
predominantly trans to the donor group with stronger trans influence. On the basis of this
premise, we have contributed with mixed ligands bearing biaryl phosphite moieties,3!* which
flexible nature allows the catalyst chiral pocket to adapt to the steric demands of the
substrate4® and , therefore, they have significantly broaden the substrate scope.

The vast amount of Pd-catalyzed allylic substitution studies reported in the literature might
give the wrong impression that this is a mature field. However, despite the remarkable
advances in catalyst design, ligands are still rarely suitable for a wide range of substrates.
Instead, the most common scenario is that each allylic precursor requires independent
optimization to identify the optimal catalytic system, and a similar situation takes place with
the various nucleophiles. Consequently, the identification of “privileged” ligands remains a
central task in this type of chemistry. In addition to giving excellent results for a broad range
of allylic precursors and nucleophiles (C, N or O-based), such privileged ligands must be
readily prepared from available starting materials and be easy to handle (i.e. solid, robust and

stable in air).



To this end, we recently started a research line aimed at identifying suitable alternatives to
the labile oxazoline moiety. We were especially interested in the stable and easy to prepare
thioether group, which allowed the preparation of a Pd/phosphite-thioether furanoside-based
catalyst that creates C-C, C-N and C-O bonds with different substrates and a variety of
nucleophiles.” The yields and enantioselectivities obtained were comparable to the best
catalytic systems reported in the literature. Although these furanoside ligands were prepared
from inexpensive D-Xylose, their synthesis was tedious and required a large number of steps.
Other researchers have demonstrated the utility of thioether-based P-S ligands.® For instance,
the pioneering work in Pd-catalyzed allylic substitution and other relevant asymmetric
reactions of Pregosin’ and Evans,6* among others, put the focus on this kind of ligands and
spurred their development. Despite the many efforts devoted to develop P-S ligands, their
impact has been limited for two main reasons: (a) even in the most successful cases, they
were limited in substrate and nucleophile scope: enantioselectivities were mainly high for the
allylic substitution of the standard (and hindered) rac-1,3-diphenyl-3-acetoxyprop-1-ene S1
using dimethylmalonate as nucleophile,6 and (b) thioether-based ligands are prone to
producing mixtures of diastereomeric thioether complexes, which tend to interconvert in
solution.® However, if one could design a scaffold able to control the S-coordination of the P-
S ligand, the chiral element would move closer to the metal, thus giving rise to simpler

ligands that can be prepared in less steps than their oxazoline-phosphine counterparts.

Herein, we give a new push to the study of the catalytic potential of P,S-ligands by
screening readily accessible but novel thioether-containing compounds, including a detailed
study of the species responsible for the catalytic performance. For this purpose, we designed a
small but structurally diverse library of P-thioether ligands L1-1.8a—g (Figure 1) that was
tested in the Pd-catalyzed allylic substitution of a broad range of substrates and nucleophiles.
These new P,S-ligands are synthesized in only three steps from inexpensive indene (ca. 20
USD/kg in bulk) and, since the corresponding enantiopure epoxide is prepared through
Jacobsen epoxidation, both enantiomeric series are equally available. This modular approach®
greatly expedites the evaluation of several thioether and phosphite/phosphinite moieties,
which is deemed crucial for the iterative optimization of the most promising candidates.
Consequently, the catalytic performance of the ligands depicted in Figure 1 has been studied

by systematically varying: (i) the electronic and steric properties of the thioether (L1-L8)



group, (ii) the configuration of the biaryl phosphite moiety (a—c), and (iii) the P-containing
group (phosphite versus phosphinite groups, d—g).
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Figure 1. Phosphite/phosphinite-thioether ligand library L1-L8a—g.

An additional advantage of this set of ligands is the fact that their simplified backbone
renders very simple NMR spectra, thus reducing signal overlap, as well as facilitating the
identification of relevant intermediates and accelerating the DFT calculations performed to
rationalize the behavior of the system. By combining theoretical studies and NMR
spectroscopy, we have been able to rationally fine-tune the ligands, improve
enantioselectivity and identify the species responsible for the catalytic performance. This
optimized ligand has proven active in the Pd-catalyzed allylic substitution of both linear and
cyclic substates with a broad range of C-, N-, and O-nucleophiles (26 examples in total),
even with the environmentally friendly propylene carbonate as solvent. Finally, the
applicability of the new Pd/P-thioether catalysts has been further demonstrated in the
practical synthesis of chiral (poly)carbocyclic and heterocycles using straightforward
sequences of allylic alkylation/ring-closing metathesis or allylic alkylation/Pauson-Khand

reactions.

2. Results and discussion

2.1. Synthesis of the first generation ligand library L1-L7a-g
Phosphite/phosphinite-thioether ligands L1-L7a—g can be efficiently prepared in three
steps as illustrated in Scheme 1. In the first step, epoxidation of inexpensive indene 1 with
bleach using Jacobsen's catalyst, followed by low-temperature crystallization, yielded indene
oxide with 99% ee.’® Next, the regio- and stereospecific ring opening of 2 with the

corresponding thiol was carried out with sodium hydroxide in a dioxane/water mixture.!! In



order to ensure chemical diversity, eight thiols with markedly different steric and electronic
properties were used at this stage. Finally, we took advantage of the hydroxy group in 3-9 to
establish a representative set of phosphite and phosphinite moieties following standard
procedures.*? The resulting enantiopure ligands were isolated in good yields as white solids
(phosphite-thioether ligands L1-L7a—) or colorless oils (phosphinite-thioether ligands L1—
L7d—g). Phosphite-thioether ligands were found to be stable in air and resistant to hydrolysis,
whereas the phosphinite analogues, proved less stable, slowly decomposing after a month

even when stored at low temperature.
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Scheme 1. Three-step synthesis of phosphite/phosphinite-thioether ligands L1-L7a—g from
indene. (i) (R,R)-Mn-salen catalyst, 4-PPNO, aq. NaClO, CH:CIz;*° (ii) RSH, NaOH,
dioxane/H20 (10:1);** (iii) CIP(OR!R?),; (OR'R?),= a—c, Py, toluene and (iv) CIPR?; R®= d—
g, NEts, toluene.

All ligands were characterized by 3'P{*H}, 'H and *C{*H} NMR spectroscopy and
HRMS. All data were in agreement with assigned structures.” See experimental section for

purification and characterization details.

2.2. Evaluation of the first generation ligand library in the allylic substitution of

symmetrical 1,3-disubstituted allylic substrates

" The spectra assignments were supported by the information obtained from 'H-'H and *H-'°C correlation
measurements. The 3P{*H}, H and *C{*H} NMR spectra showed the expected pattern for the C;—ligands. The
VT-NMR in CD,Cl, (+35 to —85 °C) spectra showed only one isomer in solution. In all cases, one singlet in the
31P{*H} NMR spectra was observed.



As already mentioned, the catalyst ability to adjust to the steric demands of the substrate is
a key factor in transferring the chiral information to the product. To assess the potential of this
ligand library in the allylic substitution, we first tested L1-L7a—g in the Pd-catalyzed allylic
substitution of two substrates with different steric requirements: the model substrate S1 and
the more challenging cyclic S2 (Table 1). Excellent yields were almost invariably obtained
under mild reaction conditions (i.e. 1 mol% Pd, ligand-to-palladium ratio of 1.1 at room
temperature) with TOF as high as 2000 mol (mol h)™. As for the enantioselectivities, up to
97% ee for S1 and 88% ee for S2 could be achieved by using ligands that combine an aryl
thioether group with a chiral biaryl phosphite moiety.

In an effort to measure the contribution of the different P-donor groups, we analyzed the
results of ligands Lla—g (entries 1-7). The trend was clearly pointing out to a superior
performance of phosphite- over phosphinite-based structures (i.e. entries 2 vs. 4-7), even with
very bulky ones. The possibility that chirality of the ligand could control the conformation
around the biphenyl moiety was ruled out by comparing entries 1-3, where the superior
performance of ligands bearing a phosphite with axial chirality was evident (entries 2-3).
Actually, the chiral axis seems to be the major factor in controlling the enantioselectivity.
Indeed, ligands differing only in the configuration of this chiral axis (but otherwise having the
same stereocenters) give rise to products with opposite absolute configuration (entries 2-3).
Considering the substrates independently, with S1 a remarkable cooperative effect between
the configuration of the biaryl phosphite moiety and the ligand backbone is observed, which
results in a matched combination with ligand L1b, that bears an (R) chiral axis (entry 2 vs 3).
This cooperative effect is less pronounced for cyclic substrate S2, and both enantiomers of the
alkylated products are therefore easily accessible with similar levels of enantioselectivity by
simply setting the configuration of the biaryl phosphite moiety (entry 2 vs 3).

Finally, by further comparing ligands L1-L7b, we found that the electronic and steric
properties of the thioether substituent have a small but important effect on the
enantioselectivities: ligands with aryl-thioether groups led to higher ee’s (especially with
cyclic substrate S2; i.e. entry 11 vs 2, 8 and 9) than their counterparts with alkyl thioether
moieties, even for the bulky tert-butyl thiol derivative. In summary, the best
enantioselectivities for S1 (ee's up to 97%) were obtained with ligands L4-L7b, built from a

combination of any aryl thioether group with an R-biaryl phosphite group: the above-



mentioned matched combination (entries 11, 12, 16 and 17). On the other hand, the best
enantioselectivities recorded for substrate S2 (ee's up to 88%), in both enantiomers of the
alkylated product, were obtained with ligands L4-L7b—c¢, containing either an R or S-biaryl
phosphite group with an aryl thioether moiety (i.e. entries 11-13 and 16-17).

With the aim of improving the sustainability profile of the process, we studied the
reactions in 1,2-propylene carbonate (PC), an environmentally friendly alternative to standard
organic solvents because of its high boiling point, low toxicity, and "green" synthesis.’®
However, it has been scarcely used in asymmetric Pd-catalyzed allylic substitution and mainly
limited to the standard S1 substrate and dimethyl malonate as nucleophile.4%1%°14 Thus, we
repeated the allylic substitution of substrates S1 and S2 in PC (Table 1, entry 18; see also
Table SI-1 in the Supporting Information for the use of PC for the allylic substitution of other
substrates and nucleophiles). Gratifyingly, the enantioselectivities remained as high as those

observed when dichloromethane was used.



Table 1. Pd-catalyzed allylic alkylation of S1-S2 with dimethyl malonate as nucleophile
using ligands L1-L7a—g.?

tg/\/?\/:; . <002Me Pd/L1-L7a-g (1 moi%) Me0,C.__CO,Me
(rac) CO;Me  BSA/KOAc / CH,Cl, 2NN
OAc OAc
Ph)\s?\Ph Osz
Entry L  %Conv(h)®  %ee’ % Conv (h)®  %ee’
1 Lla 100(05) 17 (R) 1002)  15(9)
2 Llb 100(05) 90 (R) 100(2) 66 (R)
3 Lic 100(05)  75(S) 100(2)  61(S)
4 Lid 100(05) 50 (R) 100(2)  28(5)
5 Lle 100(05)  25(R) 100 (2) 11 (S)
6 LIf 505  32(R) 10 (2) 28 (S)
7 Llg 100(05) 4(R) 100(2)  14(R)
8 L2b 100(05) 90 (R) 100(2)  62(R)
9 L3b 100(05) 84 (R) 100(2) 60 (R)
10 L3e 100(05) 63 (R) 100(2)  77(S)
11 L4b 100(05° 97(R) 100(2)  85(R)
12 Lsb 100(05) 96 (R) 100(2) 86 (R)
13 L5c 100(05)  80(S) 100(2)  84(5)
14 L5d 100(05) 28(R) 100 (2) 13 (S)
15 L5e 100(05) 40 (R) 100 (2) 11 (S)
16 Leb 100(05) 96 (R) 100(2)  88(R)
17 L7b  100(05) 97 (R) 1002) 87 (R)
18 L5b  100()  96(R) 100 (4)  85(R)

4 0.5 mol% [PdCI(n3-CsHs)]2, ligand (0.011 mmol), substrate (1 mmol), CH:Cl,
(2 mL), BSA (3 equiv), nucleophile (3 equiv), KOAc (pinch) at rt. ® Conversion
measured by 'H NMR. ¢ Enantiomeric excesses measured by HPLC for dimethyl
2-(1,3-diphenylallyl)malonate  (10) and by GC for dimethyl 2-(1,3-
cyclohexanylallyl)malonate (11). ¢ TOF= 2000 mol (mol h)* calculated after 5
min from catalysis performed at 0.25 mol% of Pd. ¢ Reactions carried out using
PC as solvent at 40 °C.



2.3. Optimization of ligand parameters by DFT computational studies leading
to fine-tuned phosphite-thioether ligands L8

With the ultimate goal of fine-tuning the ligands to increase enantioselectivity, we carried
out DFT calculations of the transition states and key Pd-olefin intermediates involved in the
enantiodetermining step. Previous mechanistic studies on Pd-catalyzed allylic alkylation have
established the irreversible nucleophilic attack as the enantiodetermining step, although the
corresponding transition state (TS) can be either early or late, depending on the nucleophile,
ligands, and reaction conditions.'® In the latter case, the enantioselectivity of the final product
is controlled by the formation of the most stable Pd-olefin complex, rather than by the
difference in energy of the transition states leading to products.

Therefore, we started by calculating the relative stability of the transition states and the Pd-
olefin intermediates using the model substrate S1 and dimethyl malonate as nucleophile with
ligands L5b—c. The goal was to evaluate the effect of the chiral axis of the biaryl phosphite
moiety, as these ligands differ only in the configuration of this biaryl (see Table 1, entry 12 vs
13). Only the two syn-syn allyl complexes were calculated, neglecting the contribution of
other allylic species of higher energy (anti-anti and syn-anti).3¢ In this study, we have taken
into account the configuration of the thioether and the attack of the nucleophile trans to P and
S atoms. In contrast to P-N ligands, the trans effect exerted by the thioether and the phosphite
are of a similar magnitude; indeed, previous studies have shown that small changes in the
ligand can shift the trans preference in P,S-ligands.5?® The results of the most stable
transition states (TSw) and TSs)) and Pd-olefin intermediates (Pd-olefingy and Pd-olefins))
leading to the formation of both product enantiomers are shown in Table 2 (the full set of
calculated TSs and Pd-olefin intermediates can be found in the Supporting Information). The
energy differences of the calculated TSs match with the results obtained in the catalytic
process, the value for L5b (AG*= 28 kimol?; eecac > 99% (R)) being therefore higher than
that of L5¢c (AG*= 10.8 kJmol™; eecac = 97% (S)). This is in agreement with the higher
enantioselectivities achieved using L5b than L5c (96% (R) ee for L5b vs 80% (S) ee for L5c;
Table 1, entries 12 and 13). Moreover, DFT correctly predicts the formation of the opposite
product enantiomers when L5b and L5c are applied. It should be noted that, in contrast to
what was observed with ligand L5b, both enantiomers of the substitution product obtained

with ligand L5c arise from TSs with exo coordination of the substrate, with the nucleophilic



attack trans to P (for the major enantiomer) and trans to S (for the minor enantiomer). Finally,
the calculated energies of the Pd-olefin intermediates do not correlate well with the
experimental results (Table 2). For both ligands, the most stable olefin complex corresponds
to the R-enantiomer in more than 99% ee. The enantioselectivity is therefore not controlled by
the rotation of the allylic system during the nucleophilic attack leading to the most stable
Pd(0)-olefin complex.

Table 2. Calculated energies for the most stable transitions

states (TS) and Pd-n-olefin complexes leading to the R- and S-

enantiomers of the alkylated product of S1 using dimethyl

malonate as nucleophile.

Transition states (TS)

Ligand TSR TSs) % eecalc % €€exp
L5b és mg >99 (R) 96 (R)
oh Pd- R Ph Pd P\
E“\A\‘—\ EAS‘_’\*Ph
E
0 kJ/mol 28 kJ/mol
endo exo
% el
L5¢ NP L 96 (S) 80 (S)
“' Ph E—§>7\>Ph
E E
‘\E 24.3 kJ/mol 13.5 kJ/mol

exo exo

Pd-olefin complexes

Ligand Pd-olefing) Pd-olefins)y % eecac % eeexp

A

Pd P\

/ %) 42’\\»%

E
Ph 0 kJ/mol 38.1 kd/mol

L5b >99 (R) 96 (R)
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R-s O .
Ph Pd-R~o
/ o)

L5c R o >99 (R) 80 (S)
Ph Pd-R~q
g e
E E
E 7.0 kJ/mol 25.1 kJ/mol
E= CO,Me

Of all transition states (TSs) evaluated for both ligands, L5b and L5c, Figure 2 shows the
two most stable. For the Pd/L5b catalytic system, it is seen that the endo TS is destabilized
due to steric repulsion between one of the phenyl substituents of the substrate and the biaryl
phosphite moiety. This increases the energy gap between the endo and exo TSs and could
explain the preference for one of the pathways and, consequently, the higher enantiomeric
excess achieved with Pd/L5b compared to Pd/L5c. In the Pd/L5c catalyst, this repulsion is
less pronounced and therefore the two TSs have a more similar energy. The different steric
constrains between both catalytic systems are reflected by the dihedral angles wi-w3 (Figure
2). Thus, the difference between the dihedral angles w1(C-O1-P-Pd) and w3(C-O1-P-O>) of the
TSs responsible for the formation of the R- and S-enantiomers (TSwr) and TS(s)) are higher for
Pd/L5b than for Pd/L5c catalytic systems. It is also interesting to note the different spatial
arrangement of the hydrogens of the methylene group of the ligand backbone. In the TSs of
Pd/L5c the hydrogens are closer to the phosphite moiety than in the TSs of Pd/L5b, making
the steric environment where the substrate is located less crowded. This again supports that
the energy differences between the TSs are closer in Pd/L5c than in Pd/L5b.

Finally, we divided the energies of the transition states in: deformation energies of two
moieties ([Pd-LS] and [substrate-nucleophile]) and in interaction energy between the two
moieties. The results show very similar interaction energies for both ligands, but larger
deformation energy for the [Pd/LSb] moiety than for [Pd/L5e¢]. This goes in line with
previous findings showing that the transition states with LSc¢ can accommodate better the

substrate and nucleophile than those TSs containing L5b (see section SI-18 for details).
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Figure 2. Most stable calculated transition states from S1 using ligands (a) L5b and (b) L5c
(hydrogen atoms have been omitted for clarity).

Based on the previous findings, we investigated whether the lower enantiomeric excesses
recorded with the cyclic substrate S2 (ee’s up to 88%) could be improved by increasing the
steric hindrance of the ligand. A simple way to do this is to introduce a thioether group that is
bulkier than the 2,6-dimethylphenyl moiety, while maintaining the aryl groups (that have been
shown to perform better than their alkylic counterparts). For this purpose, we ran analogous
TS calculations for S2 with ligand L5b (bearing the 2,6-dimethylphenyl thioether group) and
with other ligands containing instead the bulkier 2,6-diisopropylphenyl or anthracenyl
moieties. To accelerate the DFT calculation we used ammonia as model nucleophile.r” The
results show that the enantioselectivity is affected by the steric effects of the thioether group
(Table 3), increasing from 9% (R) for ligand L5b (with a 2,6-dimethylphenyl thioether group)
to 35% with a 2,6-diisopropylphenyl thioether, and to 74% (R) with an anthracenyl thioether

moiety. The results of these calculations prompted us to prepare two new ligands containing
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an anthracenyl thioether group (L8b and L8c; Figure 1)" and test them in the Pd-catalyzed
alkylation of S2. To our delight, the introduction of this bulky aromatic moiety did affect
positively the enantioselectivity, increasing from 86% ee to 94% ee (Table 3), as predicted by
the theoretical calculations. This result is comparable to the best one reported in the literature
for this challenging substrate.3 If we compare the calculated and experimental values (Table
3), we can conclude that, despite the fact that the calculated free energy differences are
systematically lower than the experimental values, the general trend is reproduced well. The
robustness of the theoretical model is demonstrated with the prediction of the new improved
ligands L8b,c containing an anthracenyl moiety. Interestingly, ligand L8b also provided the
highest enantioselectivity in the alkylation of linear substrate S1 (ee’s up to 99% (R),

compared to previous best value 97% with ligand L7b).

Table 3. Comparison between theoretical

and experimental results in the Pd-catalyzed

SR 0o
: . {p-o
allylic substitution of S2. ©:>—0 o
R ngand AG#calc % €€calc % EEexpa AG#expa

L

L5b 1.2kdJmol 9(R) 86(R) 6.3kJmol

2.1kJ/mol  35(R) - -

2 Ay

L8b  6.8klJmol 74(R) 94 (R)® 8.6 kJ/mol

@ Reaction conditions: 0.5 mol% [PdCl(n3-C3Hs)]z, ligand (0.011 mmol),
substrate (1 mmol), CH.Cl, (2 mL), BSA (3 equiv), nucleophile (3 equiv), KOAc
(pinch) at rt. ® Ligand L8c¢ provided the alkylated product 12 in 93% ee (S).

it These ligands were prepared from (1S,2S)-1-(anthracen-9-ylthio)-2,3-dihydro-1H-inden-2-ol (12) as described
in Scheme 1.
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2.4. Allylic substitution of linear substrate S1 with several nucleophiles. Scope and

limitations

We initially considered the allylic substitution of substrate S1 with an extensive range of
C-, N- and O-nucleophiles. Table 4 shows the results using ligand L8b, which had provided
the best results in the allylic alkylation of S1 with dimethyl malonate as model nucleophile. A
variety of malonates, including the allyl-, butenyl-, pentenyl- and propargyl-substituted ones,
reacted with S1 to provide products 13—-19 in high yields and enantioselectivities (ee's up to
99, entries 1-7). These substituted malonates are known to be more challenging nucleophiles
for Pd-catalyzed allylic substitution, but they give rise to more interesting products from a
synthetic point of view (see section 2.6 below). The addition of acetylacetone also proceeded
with high enantiocontrol (entry 8, ee's up to 98%). High yields and enantioselectivities were
also found in the addition of malononitrile and isopropyl cyanoacetate (products 21 and 22;
ee's up to 99%, entries 9 and 10) albeit the diastereoselectivity of the latter was low, as
expected for such an acidic stereocentre.'8

Pyrroles, which are electron-rich N-containing heterocycles interesting from the synthetic
and biological point of view,!” also performed well as nucleophiles in this reaction. Despite
their importance, only one catalytic system has been successful in the Pd-catalyzed allylic
alkylation of S1 type substrates with pyrroles, and this only at low temperature (—20 °C).*
The difficulty of the transformation is more evident if we consider that, even two of the most
successful ligands developed for this process (Trost diphosphine and phosphine-oxazoline
PHOX), did not work with pyrroles.?’ Thus, we were pleased to see that using the Pd/L8b
system we could reach ee's up to 99% and high yields working at room temperature (entries
11 and 12).

Chiral allylic amines are also ubiquitous in biologically active compounds,3" so we next
studied the use of amine derivatives as nucleophiles. Benzylamine provided the substitution
product 25 in high yield and enantioselectivity (99% ee; entry 13). To test the scope of allylic
amination, the reaction of S1 was evaluated using other N-nucleophilic compounds (entries
14—-18). The combination Pd/L8b also proved highly efficient in the addition of p-methoxy-
and p-trifluoromethylbenzylamines (compounds 26 and 27) and the furfurylamine 28 (entries
14-16), enantiocontrol being always excellent. The addition of morpholine, a cyclic

secondary amine, also gave the expected product with high enantioselectivity (product 29;
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entry 17), while allylamine proceeded with comparably high enantioselectivity (97% ee; entry
18). This is especially interesting given the fact that the amination product 30 is a key
intermediate in the synthesis of complex molecules. For example, the Boc protected
derivative of 30 can be further applied in metathesis reactions for the construction of a
dihydropyrrole derivative (see section 2.6 below).

The exquisite enantiocontrol observed for C- and N-nucleophiles can also be extended to
aliphatic alcohols (compounds 31-35, ee's up to 99%; entries 19-23). The effective allylic
substitution with this type of O-nucleophiles opens up new synthetic avenues towards chiral
ethers, which are important for the synthesis of biologically active molecules.?! Despite the
potential of the resulting products, a general catalytic solution for the Pd-catalyzed allylic
etherification has remained elusive and most of the few successful examples reported to date

22 while aliphatic alcohols have been less studied.4%6™** Moreover, the

deal with phenols,
enantioselectivities reported so far largely depend on the type of aliphatic alcohol and small
modifications of their electronic properties46>?* can have a large impact on this parameter.
Using our streamlined ligand L8b, we found that benzylic alcohols gave excellent results
regardless of the steric and electronic properties of the aryl group (entries 19-22). Allyl
alcohol also furnished the desired product in high yield, and ee (entry 23). Even more
outstanding are the almost perfect enantioselectivities (ee's up to 99%) and high yields
achieved in the etherification of S1 with triphenylsilanol (entry 24), a rather unusual
nucleophile that gives rise to a protected chiral alcohol.?** Remarkably, enantioselectivities

recorded with O-nucleophiles (entries 19—24) were, at the very least, as high as those obtained

with dimethyl malonate.
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Table 4. Pd-catalyzed allylic substitution of linear substrate S1 with different types of C, N,
and O nucleophiles using Pd/L8b catalytic system.?

OAc Nu
Pd/L8b
_
AN, v ——— o N

Ph
S1 13-36
Entry Substrate Product % Yield® %ee® | Entry Substrate Product % Yield® % ee®
(¢} (¢}
1 s1 ka 94  99(R) | 13 s1 @T 88 99 (S)
0 0 . U
2 s1 f”m 92 9B R)| 14 s1 ® 81 99 (S)
0 2
CO,Me
3 SIS \Ye 92  97(5 | 15 s1 F3°N” S 78 99(S)
15 27
S O w
4 s1 N 93 98(S) | 16 s1 - 83 97 (S
opqe 0 ®
Ao )
5 s1 o : 89 98 (S) | 17 s1 \ 87 98 ()
17 O - O
6 s1 POGL 91 95(S) | 18 1 DS 79 97 (S
XN
O - O (S) S O NS )
2 Yoo O
7 s1 N 90 99 (S) | 19° s1 : 92 99 (S
O - O O \31 O (S)
o (o]
8 s1 ka 88 98 (R) | 20° s1 @T 90 99 ()
0O . O
Nao //N
9 s1 \v 84 99 (R) | 21° S1 FaC@\? 91 98 (S)
J . O % O
(o]
10 s1 *V ) 82 9897t | 22¢ s1 \U\ 93 98(S)
O 22 O (6(?)40 O 34 O
r
Et \/\Q
11¢ s1 @ 87 96 (S) | 23 s1 o : 0 83 96 (S)
O S R O 35
23
— Ph3Si\Q
124 s1 W 85  >99(S)| 24 s1 O f 0 78 99 (R)
O \24 O 36

20.5 mol% [PdCI(n3-C3Hs)]z, 1.1 mol% ligand, CH,Cl, (2 mL), BSA (3 equiv), nucleophile (3 equiv), KOAc
(pinch) at rt for 30 min. ® Isolated yield. ¢ Enantiomeric excesses measured by HPLC or GC. ¢ 2 mol% [PdCl(n?3-
CsHs)]2, 4.4 mol% ligand CHCl; (2 mL), KoCOs (2 equiv) at rt for 18 h. ¢ 2 mol% [PdCI(n®-C3Hs)]2, 4.4 mol%
ligand CHCl, (2 mL), Cs,CO3 (3 equiv) at rt for 18 h.
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2.5. Allylic substitution of several linear and cyclic substrates S2—S9 using several C-

nucleophiles. Scope and limitations

After the broad scope of nucleophiles displayed by the catalytic system with S1, we turned
our attention to the use of another five linear substrates (S3—S7) with electronic and steric
requirements different from S1 (Table 5, entries 1-6). Advantageously, we found that the
catalytic performance was neither affected by the introduction of electron-withdrawing and
electron-donating groups (entries 1-3), nor by the introduction of ortho- and metha-
substituents at the phenyl groups of the substrate (entries 4-5). A remarkable
enantioselectivity (entry 6) was still achieved in the Pd-catalyzed allylic alkylation of S7, a
challenging substrate that typically gives rise to the corresponding substitution products in
much lower enantioselectivities than S1 in otherwise identical conditions.

Finally, we wanted to see if the high enantioselectivities achieved in the allylic substitution
of linear substrates were retained for their notoriously difficult cyclic analogues. To this end,
a number of cyclic substrates with different ring sizes were tested using ligand L8b (Table 5;
for the results using the Pd/L8c catalytic system see Table SI2 in the Supporting
Information). For substrate S2, a range of C-nucleophiles proved to give vyields and
enantioselectivities as high, if not higher, as those recorded with dimethyl malonate (ee's up to
97%, entries 7-11). The only exception was acetylacetone that led to somewhat lower
enantioselectivity (entry 6). High enantioselectivities in both enantiomers of the substitution
products were thus obtained using methyl-, allyl- and propargyl-substituted malonates
(compounds 45-47; Table 5; entries 9-11 and Table SI.2). Furthermore, the biaryl phosphite
group in Pd/L8b and Pd/L8c can adapt its chiral pocket to efficiently mediate the substitution
of other cyclic substrates (entries 13-16). Excellent yields and enantioselectivities,
comparable to the best reported in the literature, were obtained in the allylic alkylation of a 7-
membered cyclic substrate with different C-nucleophiles (products 51 and 52; entries 15 and
16). Even more interesting is that the good performance could be also extended to the allylic
alkylation of a more challenging 5-membered cyclic substrate (compounds 49 and 50; entries
13 and 14).
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Table 5. Pd-catalyzed allylic substitution of substrates S2—S9 with several C nucleophiles

Nu Nu
or *
Lo (U

using Pd/L8b catalytic system.?

LG OAc
R/\)\R or (Q + H—-Nu

Pd/L8b

— AN
(rac) " (rac) 37-42 " 43-52
Entry Substrate Product % % ee® | Entry Substrate  Product % % ee’
Yield® Yield®
(e} (o] COyMe
1 S3 Meo™ ~oe 98 9R)| 9 s2 (7, 87 91 (R)
e 45
WCOZMe coér\ge’vIe
2 S3 oo 87  97(R) | 10 s2 L 84 9% (R)
0 "
o 0 MeO,C COQMe/
3 sS4 Moo e 89 9 (R) | 11 S2 R 86 97 (R)
N 47
BrBr
o o o
4 S5 Meo™ " Nowe 91  97(R) | 12 S2 \ifo 82 80 (-)
MeO A OMe © 4
(J w U
(e} [e] MeO (o)
5 S6 veo oA one 87 99R) | 13 S8 ff 80  84()
XN @ 49 OMe
(J . 0
o o Me0,C G0:Me
6 s7 oo o 91 >05 | 14 S8 @W 83 85 (-)
T ®)
EtO. (e] MeO. o
7 S2 ff 87 95(R) | 15 s9 \/[f 0 9% (R
© 43 OEt Q 51 OMe
BnO.__O Me0,C_CO2Me
8 S2 \ifo 84 95 (R) | 16 S9 Qw 92 96 (R)
© 44 OBn 52

2.0.5 mol% [PdCI(n3-C3Hs)]2, 1.1 mol% ligand, CH2Cl, (2 mL), BSA (3 equiv), nucleophile (3 equiv), KOAc
(pinch) at rt for 2 h. ® Isolated yield. © Enantiomeric excesses measured by HPLC, GC or 'H-NMR using

[Eu(hfc)s].

2.6 Synthetic applications of the allylic substitution compounds. Preparation of chiral

functionalized (poly)carbocyclic and heterocyclic compounds 53-61

To illustrate the synthetic versatility of the compounds obtained from the enantioselective

Pd-catalyzed allylic substitution, we have prepared a range of chiral functionalized

carbocycles (53-56), heterocycles (57-58) and polycarbocycles (59-61). These compounds

have been synthesized by straightforward reaction sequences involving allylic substitution of
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the substrate followed by either ring-closing metathesis (Scheme 2) or Pauson-Khand enyne
cyclization (Scheme 3).

According to this strategy, the alkylated compounds 16-18 (see Table 4 above) undergo
clean ring-closing metathesis with no loss of enantiopurity, furnishing a number of 5, 6 and 7-
membered carbocyles, in high yields and enantioselectivities (ee’s ranging from 95-98%;
Scheme 2). In an analogous manner, the O-heterocycle (5)-57 is achieved by sequential allylic
etherification of S1 with allylic alcohol and ring-closing metathesis reaction (Scheme 2); the
corresponding N-heterocycle 58 performs similarly, albeit it requires protection of the amine

with Boc prior to the ring-closing metathesis reaction, due to the azophilicity of ruthenium.

OAc 1) Pd-L8b / Z\@n/\ /@)n

R R 2) Grubb's catalyst R 53-58

MeOZC COZMe EtOZC

85% overall yield 83% overall yield 80% overall yield
98% ee (S) 97% ee (S) 97% ee (S)
EtO,C Boc

Et0,C o N
/ /
O 56 57 58

77% overall yield 73% overall yield 65% overall yield
95% ee (S) 96% ee (S) 96% ee (S)

Scheme 2. Preparation of chiral functionalized carbo- and heterocyclic compounds 53-58.

The second derivatization we tackled was the Pauson-Khand reaction of the propargylated
derivatives 47, 50 and 52 (see Table 5 above), which differ only in the size of the ring.
Formation of the complex with Cox(CO)gs, followed by thermal decomposition, gave rise to
the [2+2+1] cycloadducts 59—-61, which feature an architecturally complex tricyclic system
with a trans-cis fusion (Scheme 3). Remarkably, the chiral information on the allylic
substitution products was reliably conveyed to the final products, which were isolated as

single diastereomers and with ee’s replicating those of the starting materials. The relative
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configuration of ketone 61 was assigned on the basis of a single crystal X-ray diffraction

image, 59 and 60 being assigned by analogy.

59 42% overall yield
83% ee (-)

1) Pd-L8¢

CO,Me
A

A
OO oo
(5 2) Coy(CO)g / CO

60 26% overall yield
o} 96% ee (+)

I

U 61 63% overall yield
. 96% ee (+)

Scheme 3. Preparation of chiral functionalized polycarbocyclic compounds 59-61. X-ray
structure of compound 61 is also included.

2.7. Origin of enantioselectivity: study of the Pd-zr-allyl intermediates

Our DFT calculations have established the nucleophilic attack as the enantiodetermining
step (vide supra). With the aim of better understanding the catalytic process, we decided to
prepare and characterize the Pd-allyl intermediates and determine their relative reactivity
towards the nucleophile. Consequently, we studied the Pd-m-allyl compounds 62—65 [Pd(n*-
allyl)(L)]|BFs (L = L5b—¢) by NMR and DFT studies. These Pd-intermediates containing
cyclohexenyl and 1,3-diphenyl allyl groups were synthesized as previously reported (Scheme

4).2* All complexes were characterized by 'H, '*C and 3'P NMR spectroscopy'! and mass

spectrometry. Unfortunately, we were unable to obtain crystal of sufficient quality to perform

il The spectral assignments were confirmed using *H-'H, 3*P-'H, 3C-'H and *H-'H NOESY experiments as well
as DFT calculations.
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X-ray diffraction measurements. The ESI-HR-MS showed the heaviest ions at m/z

corresponding to the cation.

AgBF
[PACI(n3-allyl)], v o2l 2L 5 PdmP-allyl)(L)JBF, + 2 AgCl

62 allyl = cyclo-CgHg; L= L5b
63 allyl = cyclo-CgHg; L= L5¢c
64 allyl = 1,3-Ph,-C3Hj; L= L5b
65 allyl = 1,3-Ph,-C3Hj3; L= L5¢

Scheme 4. Preparation of [Pd(n?3-allyl)(L)]BFs complexes 62—65.

To understand why the opposite enantiomer is obtained when changing the configuration
of the biaryl phosphite group, we compared the Pd-1,3-cyclohexenyl-allyl intermediate 62,
which contains ligand L5b with its related counterpart Pd/L5c intermediate (63). The VT-
NMR study (30 °C to —80 °C) showed the presence of essentially single isomers (ratio ca.
20:1; Scheme 5) for both intermediates (62 and 63). The major isomers were unambiguously
assigned by NMR to be the exo isomer for 62 and the endo isomer for 63. In both cases, the
thioether group had an S-configuration. For complex 62, the NOE indicated interactions
between one of the tert-butyl groups of the phosphite moiety with the terminal allyl proton
trans to the thioether group, whereas for compound 63 this interaction appeared with the
methinic hydrogen of the CH-O group (Figure 2). The exo arrangement of the allyl group in
complex 62 is further confirmed by a NOE interaction of the terminal allyl proton trans to the
phosphite moiety with one of the methyl groups of the thioether moiety, while the other
methyl of the thioether group presents a NOE interaction with the methinic hydrogen of the
CH-S group (Figure 2). Similarly, the endo disposition of the allyl group in the complex 63 is
further confirmed by the presence of NOE interactions with one of the methyls of the 2,6-
dimethylphenyl thioether group with the methinic hydrogen of the CH-S group, the central
allyl proton and the terminal allyl proton trans to the phosphite moiety. The assignments are
in agreement with the DFT calculations of the Pd-n3-cyclohexenylallyl complexes (see
Supporting Information for the results of the full set of calculated Pd-n3-allyl intermediates).
Thus, for Pd/L5b the major Pd-n3-exo isomer is 9.5 kJ/mol more stable than the most stable
endo isomer, while for Pd/L5c the Pd-n3-endo isomer energy is 7.3 kJ/mol lower than the
most stable exo isomer. The 3C NMR chemical shifts indicate that for both major isomers the

most electrophilic allylic terminal carbon is trans to the phosphite group. Assuming that the
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nucleophilic attack takes place at the more electrophilic allyl carbon terminus, the fact that the
observed stereochemical outcome of the reaction (86% ee (R) for Pd/L5b and 84% ee (S) for
Pd/L5c) is similar to the diastereoisomeric excess (de 90%) of the Pd-intermediates indicates
that both major and minor species react at a similar rate. In summary, the study of Pd-allyl
intermediates shows that changes in the configuration of the phosphite moiety lead to changes
in the ratio of the species that provide both enantiomers of the alkylated product. The
enantioselectivity is therefore mainly controlled by the population of the Pd-allyl

intermediates.

(S) P (S) -
R-§ ] R-S 0]

Pd-P~ -— Pd-P-n | Pd-P- — Pd-P-
1006 s~ "\"O 72 N\TO, /- "\ O 7= \"O
~ o) o) ! 0 1038 o)

NU- 84.3 ! :

! Nu A 85.1

62 exo 62 endo : 63 exo 63 endo

Major (20) Minor (1) : Minor (1) Major (20)

0 kJ/mol 95kJmol ! 7.3 kJimol 0 kJ/mol

Nu Nu,, Nu Nu,,
Cr  “Ce "On "

Scheme 5. Diastereoisomeric Pd-n3-allyl intermediates for S2 with ligands L5b and L5c.
The relative amounts of each isomer are shown in parentheses. The chemical shifts (in ppm)

of the allylic terminal carbons and the relative DFT-calculated energies are also shown.

Figure 2. Relevant NOE contacts from the NOESY experiment of Pd-ni-allyl
intermediates 62 and 63.
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Finally, to assess the impact of the phosphite chiral axis configuration on the
enantioselectivity obtained for S1, we compared the corresponding Pd allylic intermediates
with ligands L5b and L5c (64 and 65, respectively). In this case, L5b provided high
enantioselectivity whereas L5c proved less selective, which is in contrast to the observation
made for the alkylation of the cyclic substrate S2. The VT-NMR study (30 °C to —80 °C) of
intermediates 64 and 65 showed a mixture of two isomers in equilibrium with ratios 1.3:1 and
2.3:1, respectively (Scheme 6). All isomers were assigned to be syn/syn, according to the
NOE interaction between the two terminal protons of the allyl group. Unfortunately, the NOE
contacts are not conclusive enough to unambiguously assign the 3D structure of these
isomers. The final assignment of these Pd-allyl intermediates was performed by DFT studies
(see Supporting Information) and further assessed by studying the reactivity of the Pd-
intermediates with sodium dimethyl malonate at low temperature by in situ NMR studies
(Figure 3). The DFT calculated population of the different Pd-allyl species (i.e. ratio of 1.4:1
for complex 64) is in good agreement with the population obtained experimentally.
Calculations indicate that for both systems, the most stable Pd-allyl intermediate is the exo
isomer, the endo isomer being higher in energy (0.8 kJ/mol for Pd/L5b and 5.5 kJ/mol for
Pd/L5c). On the other hand, the reactivity study of the Pd-intermediate 64 with sodium
dimethyl malonate at low temperature reveals that the minor endo isomer reacts faster than
the major isomer (Figure 3; kendo/Kexo = 8). This reactivity pattern is in agreement with the
previously presented TS calculations (see Section 2.2), which indicate that the most
favourable (lowest in energy) transition state arises from the nucleophilic attack to the Pd-
allyl endo intermediate, being the pathway for the exo TS of much higher energy (AAG*= 28
kJ/mol; Table 2). All these evidences further support the DFT calculations that suggest that
for intermediates 64 the major isomer has an exo disposition, while the minor isomer has an
endo spatial arrangement. In contrast, the reactivity study of the Pd-allyl complex 65 indicates
that the major exo isomer is the isomer that reacts faster with a nucleophile (Figure 3;
Kexo/Kendo = 3). Again, this finding is in agreement with the TS DFT calculations (vide supra,
AAG*= 10.8 kJ/mol, Table 2) and corroborates the DFT isomer assignment of the Pd-allyl
intermediates observed in solution, having the major isomer an exo arrangement.

It should be pointed out that, albeit for the Pd/L5c catalytic system the relative population

of the faster reacting isomer is much higher than that of Pd/L5b, the latter provides higher
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enantioselectivity (96% ee for Pd/L5b vs 80% ee for Pd/L5c). Hence, in the case of S1 the
enantioselectivity seems to be controlled by the different reactivity of the allyl intermediates
towards the nucleophile (rather than their population, as was the case for S2). These results
are in line with the previous TS DFT calculations (see section 2.3, Table 2) and therefore
further corroborate that the energy gap between the most stable TSs leading to each of the
product enantiomers is higher for the Pd/L5b catalytic system than for Pd/L5c.

QY Sy E S 4 - R4~
R—S O R—S /O ! R=S, O R-S, /O
Pd- P ~ 1036 Pd F’\ : Ph Pd- P —~ Pd P~
030 L&\o VARSE 1015\—&\0 Ph [/ 5O
Ph _\_\ . Ph ) —\‘jgs 0
Nu"~" g0.2 ; N 88.6 -/ oh
64 exo 64 endo E 65 exo 65 endo
Maijor (1.3) Minor (1) E Major (2.3) Minor (1)
0 kd/mol 0.8 kd/mol ' 0 kd/mol 5.5 kd/mol
Kendo'Kexo = 8 ¢ E ¢ Kexo/Kendo = 3 l
Nu Nu Nu Nu
S pp > pp, R Ph/k/\Ph LS pp e R Ph/k/\Ph

Scheme 6. Diastereoisomer Pd-n3-allyl intermediates for S1 with ligands L5b and L5c. The
relative amounts of each isomer are shown in parentheses. The chemical shifts (in ppm) of the

allylic terminal carbons and the relative DFT-calculated energies are also shown.

(a) initial (b) initial
+ Na(CH(CO,Me),)

“ ‘ + Na(CH(CO,Me),)

Il | ’ | ‘
. | |L-MJR WVJ“'WW_,“ S

04.0 103.0 102.0 04.0 103.0 102.0 107 106 105 104 10 107 105

.
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Figure 3. 3'P-{*H}NMR spectra before and after the addition of sodium dimethyl malonate in
CD.Cl, at -80 °C of: (a) [Pd(n1,3-diphenylallyl)(L5b)]BF4 (64) (b) [Pd(n3-1,3-
diphenylallyl)(L5c)]BF4 (65).
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3. Conclusions

In summary, following a modular approach from enantiopure indene oxide, a
phosphite/phosphinite-thioether ligand library has been prepared and benchmarked in the Pd-
catalyzed asymmetric allylic substitution. After careful analysis of these results, and with the
support of theoretical calculations, we have rationally designed a novel ligand that presents an
improved enantioselectivity profile. The most remarkable feature of this optimized ligand is
the broad scope demonstrated: linear and cyclic substrates, as well as a range of C-, N-, and
O-nucleophiles (40 examples in total), all give rise to the desired products in excellent yields
and enantioselectivities, even with the green propylene carbonate as solvent. Other advantages
of the optimized ligand are that it is easily synthesized in only three steps from inexpensive
indene and that it is solid and stable to air. Thorough mechanistic studies based on NMR
spectroscopy have led to the identification of the species responsible for the catalytic
performance, thus rationalizing the origin of the enantioselectivity. For enantioselectivities to
be high, the ligand parameters therefore need to be correctly combined to either increase the
difference in population of the possible Pd-allyl intermediates (for cyclic substrates) or to
increase the relative rates of the nucleophilic attack for each of the possible Pd-allyl
complexes (linear substrates). To assess the potential impact of this catalytic system in
synthesis, the products have been employed in ring-closing metathesis or Pauson-Khand
reactions, giving rise to a set of chiral (poly)carbocycles and heterocycles with retention of the

enantioselectivity.

4. Experimental section

4.1. General considerations

All reactions were carried out using standard Schlenk techniques under an atmosphere of
argon. Solvents were purified and dried by standard procedures. Phosphorochloridites were
easily prepared in one step from the corresponding biaryls.?® Enantiopure (-)-indene oxide 2*°
and phosphinite-thioether ligands L1d*?® and L5d*? were prepared as previously described.
Racemic substrates S1-S9% and Pd-allyl complexes [Pd(n3-1,3-Phz-CsHs)(u-Cl)]2?" and
[Pd(n3-cyclohexenyl)(u-CI)]22® were prepared as previously reported. *H, *C{*H}, and
31p{1H} NMR spectra were recorded using a 400 MHz spectrometer. Chemical shifts are

relative to that of SiMes (*H and *3C) as internal standard or HsPO. (3!P) as external standard.
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'H, 13C and 3P assignments were made on the basis of H-'H gCOSY, 'H-1*C gHSQC and
1H-31p gHMBC experiments.

4.2. General procedure for the regio- and stereospecific ring opening of 2.
Preparation of thioether-alcohols 3-9 and 12

A solution of (-)-indene oxide 2 (2 mmol, 264 mg) in dioxane (4.5 mL/mmol of indene
oxide) is treated with the corresponding thiol (3 mmol). Then, a solution of NaOH (3 mmol,
120 mg) in water (0.45 mL/mmol of indene oxide) is added dropwise. The reaction mixture is
capped and stirred at 55 °C until the epoxide is consumed according to TLC analysis (ca. 45-
60 min). After this, the mixture is cooled to room temperature, diluted with water and
extracted with CH2Cl> (3 x 20 mL). The combined organic layers are dried over NaSO4 and
concentrated to give a residue that is purified by flash chromatography on silica gel (eluent
specified in each case) to give the desired thioether-alcohol.

(1S,25)-1-(Isopropylthio)-2,3-dihydro-1H-inden-2-ol (3). Yield: 308 mg (74%), white
solid. ~ SiOz-chromatography  (gradient from cyclohexane/EtOAc = 100:0 to
cyclohexane/EtOAc = 80:20). *H NMR (400 MHz, CDCls): 8= 1.34 (d, 3H, CHs, 'Pr, Ju.1
=6.7 Hz), 1.38 (d, 3H, CHs, 'Pr, 3Ju.n =6.7 Hz), 2.07 (bs, 1H, OH), 2.86 (dd, 1H, CH2, 2Jn-+
=16.1, 3Jn-n =4.4 Hz), 3.14 (hept, 1H, CH, 'Pr, 3Ju.4 =6.7 Hz), 3.38 (dd, 1H, CH3, 2Jn-n =16.1,
3Jun =6.2 Hz), 4.13 (d, 1H, CH-S, 3Jun =4.1 Hz), 4.46-4.49 (m, 1H, CH-0), 7.22 (bs, 3H,
CH=), 7.36 (m , 1H, CH=).2*C NMR (100.6 MHz, CDCls): 5= 23.8 (CH3), 24.2 (CH3), 35.5
(CH), 39.9 (CHy), 55.9 (CH-S), 79.9 (CH-0), 125.1 (CH=), 125.4 (CH=), 127.1 (CH=), 127.9
(CH=), 140.0 (C), 141.3 (C).

(1S,2S)-1-(Propylthio)-2,3-dihydro-1H-inden-2-ol (4). Yield: 325 mg (78%), white solid.
SiO2-chromatography (gradient from cyclohexane/EtOAc = 100:0 to cyclohexane/EtOAC =
80:20). *H NMR (400 MHz, CDCls): 8= 1.01 (t, 3H, CHgs, "Pr, 3Ju.n =7.3 Hz), 1.66 (sext, 2H,
CHa, "Pr, 3Ju.n =7.3 Hz), 2.10 (bs, 1H, OH), 2.53 (dt, 1H, CHy, 2Ju.n =12.3, 3Ju-n =7.3 Hz),
2.60 (dt, 1H, CHa, 2Jn-n =12.3, 3Jn-n =7.3 Hz), 2.87 (dd, 1H, CH2, 2Jh-n =16.1, 3Jn.n =4.7 Hz),
3.37 (dd, 1H, CHg, 2Ju-n =16.1, 3Ju.n =6.3 Hz), 4.09 (d, 1H, CH-S, 3Ju.n =4.3 Hz), 4.49
(quint, 1H, CH-0O, 3Ju.n =5.0 Hz), 7.32-7.40 (m, 1H, CH=), 7.20-7.25 (m, 3H, CH=). 1*C
NMR (100.6 MHz, CDCl3): &= 13.6 (CH3), 23.2 (CH>), 33.0 (CH>), 39.8 (CH>), 57.0 (CH-S),
79.3 (CH-0), 125.1 (CH=), 125.3 (CH=), 127.1 (CH=), 127.9 (CH=), 140.1 (C), 140.6 (C).
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(1S,2S)-1-(tert-Butylthio)-2,3-dihydro-1H-inden-2-ol (5). Yield: 320 mg (72%), pale
orange solid. SiOz-chromatography (gradient from cyclohexane/EtOAc = 100:0 to
cyclohexane/EtOAc = 80:20). *H NMR (400 MHz, CDCls): 8= 1.45 (s, 3H, CHs, ‘Bu), 2.29
(bs, 1H, OH), 2.86 (dd, 1H, CHg, 2Ju-n =15.8, 3Jn-n =5.6 Hz), 3.32 (dd, 1H, CHa, 2J41 =15.8,
3J4n =6.4 Hz), 4.03 (d, 1H, CH-S, 3Ju.n =5.3 Hz), 4.39-4.44 (m, 1H, CH-0), 7.19-7.25 (m,
3H, CH=), 7.38 (m, 1H, CH=), 7.36 (m , 1H, CH=).13C NMR (100.6 MHz, CDCls): = 31.7
(CHs, 'Bu), 39.9 (CHy), 43.7 (C, 'Bu), 54.6 (CH-S), 80.8 (CH-0), 124.8 (CH=), 125.6 (CH=),
127.2 (CH=), 127.7 (CH=), 139.7 (C), 142.0 (C).

(1S,2S)-1-(Phenylthio)-2,3-dihydro-1H-inden-2-ol (6). Yield: 373 mg (77%), white
solid. ~ SiOz-chromatography  (gradient from cyclohexane/EtOAc = 100:0 to
cyclohexane/EtOAc = 80:20). *H NMR (400 MHz, CDCls): 6= 2.09 (bs, 1H, OH), 2.82 (dd,
1H, CH2, 2311 =16.3, 3Jn-n =3.5 Hz), 3.32 (dd, 1H, CHg, 2J4n =16.3, 3Jun =6.2 Hz), 4.50 (dt,
1H, CH-0, 3Ju-n =6.2 Hz, 3Jun =3.4 Hz), 4.55 (d, 1H, CH-S, 3Ju.n =3.3 Hz), 7.19-7.24 (m,
4H, CH=), 7.26-7.31 (m, 2H, CH=), 7.34-7.37 (m, 1H, CH=), 7.40-7.43 (m, 2H, CH=).13C
NMR (100.6 MHz, CDCls): &= 39.9 (CH>), 59.1 (CH-S), 79.6 (CH-0O), 125.2 (CH=), 125.7
(CH=), 126.9 (CH=), 127.2 (CH=), 128.3 (CH=), 129.0 (CH=), 130.9 (CH=), 135.2 (CH=),
139.9 (CH=), 135.2 (C), 139.9 (C), 140.6 (C).

(1S,2S)-1-((2,6-Dimethylphenyl)thio)-2,3-dihydro-1H-inden-2-ol (7). Yield: 427 mg
(79%), white solid. SiO>-chromatography (gradient from cyclohexane/EtOAc = 100:0 to
cyclohexane/EtOAc = 80:20). *H NMR (400 MHz, CDCls): 6= 1.75 (bs, 1H, OH), 2.47 (s,
6H, CHs), 2.82 (dd, 1H, CHg, 2Ju-t =16.6, 3Ju-n =2.1 Hz), 3.52 (dd, 1H, CH2, 2Jn-n =16.6, 3Jn-
n =5.5 Hz), 4.32 (d, 1H, CH-S, 3Jn.1 =2.0 Hz), 4.36 (tt, 1H, CH-O, 3Jn.n =5.5 Hz, 3Jn.n =2.1
Hz), 6.94 (d, 1H, CH=, 3J4.4 =7.5 Hz), 7.06-7.16 (m, 4H, CH=), 7.18-7.26 (m, 2H, CH=). °C
NMR (100.6 MHz, CDCl3): 6= 21.9 (CHa), 40.3 (CH>), 58.8 (CH-S), 78.5 (CH-0O), 125.3
(CH=), 125.4 (CH=), 126.7 (CH=), 128.1 (CH=), 128.2 (CH=), 128.7 (CH=), 132.0 (CH=),
140.4 (C), 140.7 (C), 143.6 (C).

(1S,2S)-1-((4-(Trifluoromethyl)phenyl)thio)-2,3-dihydro-1H-inden-2-ol (8). Yield: 478
mg (77%), yellow oil. SiO.-chromatography (gradient from cyclohexane/EtOAc = 100:0 to
cyclohexane/EtOAc = 80:20). *H NMR (400 MHz, CDCls): 8= 2.06 (d, 1H, OH, 3Ju.n =4.9
Hz), 2.91 (dd, 1H, CHa, 2Jn.n =16.5, 3Ju.n =3.5 Hz), 3.42 (dd, 1H, CHa, 2Ju-+ =16.5, 3Ju.n =6.0
Hz), 4.55 (m, 1H, CH-0), 4.69 (d, 1H, CH-S, 3Ju.n =3.2 Hz), 7.21-7.30 (m, 3H, CH=), 7.36-
7.41 (m, 1H, CH=), 7.46-7.57 (m, 4H, CH=). *3C NMR (100.6 MHz, CDCls): 6= 40.2 (CH>),
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58.0 (CH-S), 78.6 (CH-0), 124.1 (CH=), 125.4 (CH=), 125.7 (CH=), 125.8 (q, CH=, 3Ju.F
=3.8 Hz), 127.4 (CH=), 128.2 (q, C, ?Ju-r =32.8 Hz), 128.7 (CH=), 128.8 (CH=), 139.0 (C),
140.6 (C), 141.3 (C).

(1S,25)-1-((4-Methoxyphenyl)thio)-2,3-dihydro-1H-inden-2-ol  (9). Yield: 541 mg
(79%), yellow oil. SiO.-chromatography (gradient from cyclohexane/EtOAc = 100:0 to
cyclohexane/EtOAc = 75:25). 'H NMR (400 MHz, CDCls): 6= 1.97 (d, 1H, OH, 3y =5.2
Hz), 2.81 (dd, 1H, CHz, 2Ju-n =16.3, 3Ju.n =3.5 Hz), 3.25 (dd, 1H, CH2, 2Jn-n =16.3, 3Jun =6.1
Hz), 3.79 (s, 3H, CH30), 4.38 (d, 1H, CH-S, 3Ju.1 =3.3 Hz), 4.50 (tt, 1H, CH-O, 3Ju.n =6.1
Hz, 3Jun =3.5 Hz), 6.82 (d, 2H, CH=, 3J4.4 =8.7 Hz), 7.19-7.27 (m, 3H, CH=), 7.35-7.42 (m,
3H, CH=). 3C NMR (100.6 MHz, CDCls): 8= 39.9 (CH,), 55.3 (CH-S), 60.6 (CH30), 78.6
(CH-0), 114.6 (CH=), 124.4 (CH=), 125.2 (CH=), 125.6 (CH=), 127.0 (CH=), 128.1 (CH=),
135.1 (C), 140.2 (C), 140.6 (C), 159.6 (C).

(1S,2S)-1-(Anthracen-9-ylthio)-2,3-dihydro-1H-inden-2-ol (12). Yield: 308 mg
(45%), yellow solid. SiO2-chromatography (gradient from cyclohexane/EtOAc = 100:0 to
cyclohexane/EtOAc = 80:20).. *H NMR (400 MHz, CDCls): 6= 1.33 (d, 1H, OH, 3J4.1
=5.1 Hz), 2.80 (dd, 1H, CHa, 2Jn.n =16.4, 3Jn.n =2.6 Hz), 3.58 (dd, 1H, CH2, 2J4.1 =16.4,
3Ju-n =5.6 Hz), 4.40 (m, 1H, CH-0), 4.55 (d, 1H, CH-S, 3Ju.n =2.2 Hz), 7.16 (t, 1H,
CH=, 3Ju-n =7.5 Hz), 7.24 (t, 1H, CH=, 3Ju.n =7.5 Hz), 7.25-7.30 (m , 2H, CH=), 7.52
(ddd, 2H, CH=, 3Ju-n =8.0 Hz, Ju.n =6.5 Hz, “Ju-n =1.1 Hz), 7.61 (ddd, 2H, CH=, 3Ju.1
=8.9 Hz, 3Jn-n =6.5 Hz, “Jun =1.0 Hz), 8.05 (d, 2H, CH=, 3Ju.n =8.4 Hz), 8.54 (s, 1H,
CH=), 8.98 (dqg, 2H, CH=, 3Ju-4 =8.9, “Ju-n =1.0 Hz).*C NMR (100.6 MHz, CDCl3): 6=
40.1 (CH2), 61.2 (CH-S), 78.7 (CH-0), 125.3 (CH=), 125.4 (CH=), 125.7 (CH=), 126.6
(CH=), 126.9 (CH=), 127.0 (CH=), 127.7 (CH=), 128.4 (CH=), 129.1 (CH=), 129.6 (C),
131.8 (C), 134.9 (C), 140.2 (C), 140.8 (C).

4.3. General procedure for the preparation of phosphite-thioether ligands L1-
L8a-c

The corresponding phosphorochloridite (1.1 mmol) produced in situ was dissolved in toluene
(5 mL), and pyridine (0.3 mL, 3.9 mmol) was added. The corresponding thioether-hydroxyl
compound (1 mmol) was azeotropically dried with toluene (3 x 2 mL) and then dissolved in
toluene (5 mL) to which pyridine (0.3 mL, 3.9 mmol) was added. The alcohol solution was

transferred slowly to a solution of phosphorochloridite. The reaction mixture was stirred at 80

29



°C for 90 min, after which the pyridine salts were removed by filtration. Evaporation of the
solvent gave a white foam, which was purified by flash chromatography in silica
(Hexane/Toluene/NEtz = 7/3/1) to produce the corresponding ligand as a white solid.

Lla. Yield: 320.8 mg (50%). 3P NMR (161.9 MHz, C¢Ds): 6=141.5 (s). *H NMR (400
MHz, CsDg): $=1.09 (d, 3H, CHs, 'Pr, 3Ju.1 =6.4 Hz), 1.07 (d, 3H, CHs, 'Pr, 3Ju.n =6.8 Hz),
1.26 (s, 9H, CHs, 'Bu), 1.28 (s, 9H, CHs, 'Bu), 1.54 (s, 9H, CHjs, 'Bu), 1.56 (s, 9H, CHs, 'Bu),
2.90-2.96 (m, 2H, CHz, CH 'Pr), 3.23 (dd, 1H, CHz, 2Jn-n =16.4 Hz, 3Ju.ri =5.6 Hz), 4.57 (b,
1H, CH-S), 5.18 (m, 1H, CH-OP), 6.94-7.12 (m, 3H, CH=), 7.31 (s, 1H, CH=), 7.33 (d, 1H,
CH=, “Jun =2.8 Hz), 7.34 (d, 1H, CH=, “)u.n =2.4 Hz), 7.57 (d, 1H, CH=, “u.n =2.4 H2),
7.59 (d, 1H, CH=, “Jun =2.4 Hz), **C NMR (100.6 MHz, C¢De): 6=23.4 (CHs, 'Pr), 23.8
(CHs, 'Pr), 31.0 (d, CHs, 'Bu, Jcp =7.6 Hz), 31.1 (CHs, 'Bu), 34.2 (C, 'Bu), 34.9 (C, 'Bu), 35.3
(CH, 'Pr), 39.1 (CH>), 54.7 (CH-S), 82.8 (CH-OP), 124.1-146.6 (aromatic carbons). MS HR-
ESI [found 669.3498, C40Hs503PS (M-Na)* requires 669.3502].

L1b. Yield: 220.8 mg (37%). 3P NMR (161.9 MHz, CsDe): 6=130.2 (s). '"H NMR (400
MHz, CsDg): 6=1.03 (d, 3H, CHs, 'Pr, %Ju.i =6.8 Hz), 1.23 (d, 3H, CHa, 'Pr, 3Ju.n =6.4 Hz),
1.49 (s, 9H, CHs, 'Bu), 1.53 (s, 9H, CHgs, 'Bu), 1.64 (s, 3H, CHs), 1.76 (s, 3H, CHa), 2.01 (s,
3H, CHs), 2.07 (s, 3H, CHs), 2.71-2.77 (m, 1H, CH, 'Pr), 2.88 (d, 1H, CH2, 2Ju.n =16.4 Hz),
3.27 (dd, 1H, CH2, 2Jn-1 =16.4 Hz, 3Jn.n =4.8 Hz), 4.81 (b, 1H, CH-S), 4.92 (m, 1H, CH-OP),
6.89-7.12 (m, 3H, CH=), 7.19 (m, 2H, CH=), 7.35 (d, 1H, CH=, 3Ju. =8.8 Hz). 1*C NMR
(100.6 MHz, CeDs): 5=16.3 (CHs), 16.6 (CHs), 20.0 (CH3), 20.1 (CHa), 23.3 (CHs, 'Pr), 24.2
(CHs, 'Pr), 31.3 (CHs, 'Bu), 31.4 (d, CHs, 'Bu, Jc.r =5.3 Hz), 34.6 (C, 'Bu), 34.7 (C, 'Bu), 34.8
(CH, 'Pr), 39.3 (CH,), 55.0 (CH-S), 82.9 (CH-OP), 124.9-146.4 (aromatic carbons). MS HR-
ESI [found 613.2903, C3sH4703PS (M-Na)* requires 613.2876].

Llc. Yield: 202.0 mg (34%). %P NMR (161.9 MHz, C¢De): 6=139.4 (s). *H NMR (400
MHz, CsDe): 6=1.09 (d, 3H, CHs, 'Pr, %Ju.ni =6.8 Hz), 1.12 (d, 3H, CHa, 'Pr, 3Ju.n1 =6.8 Hz),
1.47 (s, 9H, CHs, 'Bu), 1.61 (s, 9H, CHs, 'Bu), 1.69 (s, 3H, CHs), 1.75 (s, 3H, CHs), 2.05 (s,
6H, CHs), 2.85-2.91 (m, 1H, CH, 'Pr), 3.37 (d, 1H, CHa, 2Ju.n =16.4 Hz), 3.38 (dd, 1H, CH,,
2J4-1=16.8 Hz, 3Ju-n=6.0 Hz), 4.24 (d, 1H, CH-S, 3J4.11 =4.8 Hz), 5.07-5.11 (m, 1H, CH-OP),
6.95-7.03 (m, 3H, CH=), 7.18 (s, 1H, CH=), 7.23 (2H, CH=). 3C NMR (100.6 MHz, C¢Ds):
8=16.3 (CHs, 'Pr), 16.5 (CHs, 'Pr), 20.1 (CHs), 23.5 (CHs), 23.9 (CHs), 31.3 (CHs, 'Bu), 31.4
(d, CHs, 'Bu, Jcp =5.3 Hz), 34.6 (C, 'Bu), 34.8 (CH, 'Pr), 39.7 (CHy), 54.7 (CH-S), 82.7 (d,
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CH-OP, ZJcp =6.1 Hz), 124.9-1455 (aromatic carbons). MS HR-ESI [found
613.2869, C36H4703PS (M-Na)* requires 613.2876].

L2b. Yield: 352.2 mg (59%). 3P NMR (161.9 MHz, C¢Ds): 5=132.4 (s). *H NMR (400
MHz, CsDs): 6=0.82 (pt, 3H, CHs, Pr, 3Ju.+1 =7.2 Hz), 1.41-1.53 (m, 2H, CHa, Pr), 1.53 (s, 9H,
CHs, 'Bu), 1.58 (s, 9H, CHs, 'Bu), 1.69 (s, 3H, CHgs), 1.80 (s, 3H, CHs), 2.05 (s, 3H, CHs),
2.09 (s, 3H, CHg), 2.23-2.30 (m, 1H, CHy, Pr), 2.44-2.50 (m, 2H, CHy, Pr), 2.93 (d, 1H, CHa,
2)4-1 =16.8 Hz), 3.25 (dd, 1H, CH2, 2Jn-n =16.4 Hz, 3Ju-t =5.2 Hz), 4.72 (b, 1H, CH-S), 4.90-
4.94 (m, 1H, CH-OP), 6.92 (d, 1H, CH=, 3Ju.1 =6.4 Hz), 7.00-7.03 (m, 2H, CH=), 7.22 (d,
2H, CH=, 3J4.h =8.0 Hz), 7.37 (d, 2H, CH=, 3Ju.h =6.8 Hz). *C NMR (100.6 MHz, CsDs):
0=13.2 (CHBg, Pr), 16.2 (CHg), 16.5 (CHa), 20.0 (CHa), 20.1 (CHa), 23.0 (CHa, Pr), 31.3 (CHs,
'Bu, Jc-p =5.3 Hz), 31.4 (CHs, 'Bu), 33.1 (CH, Pr), 34.6 (C, 'Bu), 34.7 (C, 'Bu), 39.2 (d, CHz,
3)cp=3.8 Hz), 56.1 (d, CH-S, 3Jc-r =3.0 Hz), 82.4 (CH-OP), 124.8-146.1 (aromatic carbons).
MS HR-ESI [found 613.2903, C3sH4703PS (M-Na)* requires 613.2876].

L3b. Yield: 283.6 mg (47%). 3P NMR (161.9 MHz, CsDe): 6=134.2 (s). '"H NMR (400
MHz, CsD¢): 6=1.34 (s, 9H, CHs, '‘Bu), 1.48 (s, 9H, CHs, 'Bu), 1.58 (s, 9H, CHs, 'Bu), 1.69 (s,
3H, CHs), 1.74 (s, 3H, CHs), 2.05 (s, 3H, CHa), 2.06 (s, 3H, CHs), 2.71 (d, 1H, CH2, 2Ju.H
=16.0 Hz), 3.12 (dd, 1H, CHa, 2Ju.1 =16.4 Hz, 3Ju.n =5.2 Hz), 4.56 (b, 1H, CH-S), 5.22-5.25
(m, 1H, CH-OP), 6.83 (d, 1H, CH=, 3Ju.n =7.2 Hz), 6.96-7.21 (m, 1H, CH=), 7.41 (d, 1H,
CH=, 3Ju.n =7.6 Hz). *C NMR (100.6 MHz, C¢Ds): 8=16.3 (CHs3), 16.5 (CH3), 20.0 (CHs3),
20.1 (CHs), 31.4 (CHs, 'Bu), 34.6 (C, 'Bu), 34.7 (C, 'Bu), 38.8 (CH>), 43.5 (C, 'Bu), 54.0 (d,
CH-S, 3Jc-p =3.8 Hz), 83.7 (CH-OP), 124.7-145.7 (aromatic carbons). MS HR-ESI [found
627.3026, C37H4903PS (M-Na)* requires 627.3032].

L4b. Yield: 284.8 mg (41%). 3P NMR (161.9 MHz, CsDe): =135.3 (s). 'H NMR (400
MHz, CeDg): 6=1.44 (s, 9H, CHs, 'Bu), 1.51 (s, 9H, CHgs, 'Bu), 1.69 (s, 3H, CH3), 1.77 (s, 3H,
CHs), 2.06 (s, 3H, CH3), 2.07 (s, 3H, CHs), 2.73 (d, 1H, CHy, 2Ju-+ =16.8 Hz), 2.93 (dd, 1H,
CHa, 2Jn.n =17.2 Hz, 3Jun =5.6 Hz), 4.95 (b, 1H, CH-S), 5.03-5.06 (m, 1H, CH-OP), 6.80-
6.82 (m, 1H, CH=), 6.90-7.01 (m, 5H, CH=), 7.21 (d, 2H, CH=, 3J4.1 =3.6 Hz), 7.27-7,29 (m,
3H, CH=). 13C NMR (100.6 MHz, CsDs): 6=16.2 (CH3), 16.5 (CHs), 20.0 (CHs), 20.1 (CHs),
31.3 (CHjs, 'Bu), 31.4 (CHs, 'Bu), 34.5 (C, 'Bu), 34.6 (C, ‘Bu), 39.2 (d, CH2, 3Jc-r =3.0 Hz),
58.8 (d, CH-S, 3Jcp =3.8 Hz), 81.6 (d, CH-OP, 2Jcp =4.6 Hz), 124.8-145.7 (aromatic
carbons). MS HR-ESI [found 647.2737, C39H503PS (M-Na)* requires 647.2719].
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L5b. Yield: 324.6 mg (42%). 3P NMR (161.9 MHz, CsDs): $=135.7 (s). 'H NMR (400
MHz, CsDg): 6=1.42 (s, 9H, CHs, 'Bu), 1.52 (s, 9H, CHs, ‘Bu), 1.68 (s, 3H, CH3), 1.79 (s, 3H,
CHa), 2.04 (s, 3H, CH3), 2.08 (s, 3H, CHs), 2.31 (s, 6H, CHa), 2.90 (d, 1H, CHz, 2Jn.+ =16.8
Hz), 3.38 (dd, 1H, CH2, 2Jn-n =16.8 Hz, J4.4 =4.8 Hz), 4.80-4.83 (m, 1H, CH-OP), 4.91 (s,
1H, CH-S), 6.67 (d, 1H, CH=, 3Ju.1 =7.2 Hz), 6.83 (pt, 1H, CH=, 3Jun =7.2 Hz), 6.88-7.03
(m, 5H, CH=), 719 (d, 1H, CH=, *Jn. =2.4 Hz). 3C NMR (100.6 MHz, CsDs): 5=16.2 (CHs),
16.5 (CH3), 20.0 (CHs), 20.1 (CHs3), 21.7 (CHs), 31.2 (CHs, '‘Bu), 31.3 (d, CH3, 'Bu, Jcr =5.4
Hz), 34.5 (C, 'Bu), 34.6 (C, 'Bu), 39.3 (d, CH2, %Jc-» =3.8 Hz), 58.0 (d, CH-S, 3Jc.p =3.8 Hz),
81.3 (d, CH-OP, ZJc.p =4.6 Hz), 124.8-145.6 (aromatic carbons). MS HR-ESI [found
675.3026, C41H4903PS (M-Na)* requires 675.3032].

L5c. Yield: 276.4 mg (36%). 3'P NMR (161.9 MHz, CsDe): $=137.5 (s). 'H NMR (400
MHz, CsDe): 5=1.44 (s, 9H, CHs, 'Bu), 1.56 (s, 9H, CHs, 'Bu), 1.69 (s, 3H, CHa), 1.74 (s, 3H,
CHjs), 2.05 (s, 3H, CHs3), 2.06 (s, 3H, CHs), 2.25 (s, 6H, CHs3), 3.19 (d, 1H, CH2, 2Ju.1 =16.8
Hz), 3.50 (dd, 1H, CH2, 2Jn-1=17.2 HZ, 3J4-4=4.8 Hz), 4.60 (b, 1H, CH-S), 4.93 (m, 1H, CH-
OP), 6.46 (d, 1H, CH=, 3Ju.4 =7.2 Hz), 6.79 (m, 1H, CH=), 6.86-7.22 (m, 6H, CH=), 7.22 (s,
1H, CH=). 8C NMR (100.6 MHz, CsDs): $=16.2 (CH3), 16.4 (CHs), 20.0 (CH3), 20.7 (CHs),
31.3 (CHs, 'Bu), 34.5 (C, 'Bu), 34.6 (C, 'Bu), 40.2 (d, CHa, 3Jcp =3.0 Hz), 57.5 (d, CH-S, 3Jc.r
=3.8 Hz), 81.0 (d, CH-OP, 3Jcp =7.6 Hz), 124.8-145.5 (aromatic carbons). MS HR-ESI
[found 675.3041, C41H4903PS (M-Na)* requires 675.3032].

L6b. Yield: 336.1 mg (52%). 3P NMR (161.9 MHz, C¢Ds): 5=135.6 (s). 'H NMR (400
MHz, CsDe): 6=1.41 (s, 9H, CHs, 'Bu), 1.47 (s, 9H, CHs, 'Bu), 1.69 (s, 3H, CHa), 1.74 (s, 3H,
CHa), 2.05 (s, 3H, CHs3), 2.06 (s, 3H, CH3), 2.67 (d, 1H, CHa, 2Ju-+ =16.8 Hz), 2.99 (dd, 1H,
CHa, 2Ju-n =16.8 Hz, 3Jun =6.0 Hz), 4.92 (b, 1H, CH-S), 4.96-5.01 (m, 1H, CH-OP), 6.82-
6.84 (m, 1H, CH=), 6.99-7.19 (m, 8H, CH=), 7.24-7.26 (m, 1H, CH=). 3C NMR (100.6 MHz,
CsDs): 6=16.9 (CH3), 17.1 (CH3), 20.6 (CHs), 20.7 (CHas), 31.9 (d, CHs, ‘Bu, 3Jcp =5.3 Hz),
32.0 (CH3,'Bu), 35.2 (C,'Bu), 35.3 (C,'Bu), 39.6 (CH>), 58.3 (d, CH-S, 3Jc.r =3.8 Hz), 81.7 (d,
CH-OP, 3Jcp =4.6 Hz), 125.7-146.2 (aromatic carbons). MS HR-ESI [found
715.2610, CaoHasF303PS (M-Na)* requires 715.2593].

L7b. Yield: 321 mg (49%). 3P NMR (161.9 MHz, CeDs): 6=135.4 (s). 'H NMR (400
MHz, CeDs): 5=1.47 (s, 9H, CHs, 'Bu), 1.55 (s, 9H, CHa, 'Bu), 1.71 (s, 3H, CHs3), 1.82 (s, 3H,
CHjs), 2.07 (s, 3H, CHa), 2.10 (s, 3H, CHs), 2.78 (d, 1H, CHa, 2Ju.1 =16.8 Hz), 2.87 (dd, 1H,
CHz, 2Jn-+=16.8 Hz, 3Ju.n =5.6 Hz), 3.16 (s, CHs, p-OMe) 4.88 (b, 1H, CH-S), 5.04-5.07 (m,
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1H, CH-OP), 6.54 (d, 2H, CH=, 3Ju.+ =8.8 Hz), 6.82 (d, 1H, CH=, 3Ju.+ =6.8 Hz), 6.96-7.23
(m, 6H, CH=), 7.31 (d, 1H, CH=, 3Ju.4 =7.2 Hz). 3C NMR (100.6 MHz, CsDs): 6=16.7
(CH3), 16.9 (CH3), 20.4 (CHas), 20.5 (CHa), 31.7 (CHs, 'Bu), 31.8 (CH3,'Bu), 35.0 (C,'Bu),
35.1 (C,'Bu), 39.9 (CHy), 54.8 (CHs, p-Me0), 60.5 (d, CH-S, 3Jc.» =3.8 Hz), 82.4 (d, CH-OP,
3)c-p =4.6 Hz), 114.7-160.4 (aromatic carbons). MS HR-ESI [found 677.2851, C4oH704PS
(M-Na)" requires 677.2825].

L8b. Yield: 94.3 mg (27%). 3'P NMR (161.9 MHz, CsDs): 6=136.1 (s). *H NMR (400
MHz, CsDs): 6=1.28 (s, 9H, CHs, 'Bu), 1.39 (s, 9H, CHs, 'Bu), 1.65 (s, 3H, CH3), 1.79 (s, 3H,
CHa), 2.02 (s, 3H, CHs3), 2.03 (s, 3H, CHj3), 2.91 (d, 1H, CHa, 2Ju-+ =16.8 Hz), 3.45 (dd, 1H,
CHa, 2Ju-1 =16.8 Hz, 3Jn.n =5.2 Hz), 4.92-4.95 (m, 1H, CH-OP), 5.22 (b, 1H, CH-S), 6.55-
6.63 (m, 2H, CH=), 6.90 (s, 2H, CH=), 7.11-7.28 (m, 6H, CH=), 7.73 (d, 2 H, CH=, 3Jy.n =8,0
Hz), 8.16 (s, 1, CH=), 8.96 (d, 2 H, CH=, 3J4.4 =8,4 Hz). 1*C NMR (100.6 MHz, CgDs):
8=16.2 (CHs), 16.6 (CHs), 20.0 (CHs), 20.1 (CHs), 31.1 (CHs, 'Bu), 31.3 (d, CHs, 'Bu, Jc-p
=5.4 Hz), 34.4 (C, 'Bu), 39.7 (CHy), 60.1 (CH-S), 81.4 (CH-OP), 124.8-145.7 (aromatic
carbons). MS HR-ESI [found 747.3048, C47H4903PS (M-Na)* requires 747.3028].

L8c. Yield: 102 mg (29%). 3P NMR (161.9 MHz, CeDs): 5=134.7 (s). 'H NMR (400
MHz, CeDs): 5=1.33 (s, 9H, CHs, 'Bu), 1.45 (s, 9H, CHa, 'Bu), 1.66 (s, 3H, CH3), 1.84 (s, 3H,
CHa), 2.01 (s, 3H, CHs3), 2.07 (s, 3H, CH3), 2.94 (d, 1H, CHa, 2Ju-n =16.2 Hz), 3.54 (dd, 1H,
CHa, 2Jn-n =16.2 Hz, 3J411 =6.2 Hz), 5.02 (m, 1H, CH-OP), 5.27 (b, 1H, CH-S), 6.64 (m, 2H,
CH=), 6.95 (s, 2H, CH=), 7.11-7.27 (m, 6H, CH=), 7.72 (d, 2 H, CH=, 3Ju.n =7.6 Hz), 8.04 (s,
1, CH=), 8.92 (d, 2 H, CH=, 3Ju. =8.0 Hz). 3C NMR (100.6 MHz, C¢D¢): 5=16.4 (CHz),
16.5 (CHs), 20.2 (CHa), 20.7 (CHz3), 31.4 (CHs, 'Bu), 31.7 (CHs, 'Bu), 34.6 (C, 'Bu), 34.8 (C,
'Bu), 40.1 (CHy), 58.4 (CH-S), 81.4 (CH-OP), 125.2-146.9 (aromatic carbons). MS HR-ESI
[found 747.3032, C47H903PS (M-Na)* requires 747.3028].

4.4. General procedure for the preparation of phosphinite-thioether ligands L1-
L8d-g

The corresponding thioether-hydroxyl compound (0.5 mmol) and DMAP (6.7 mg, 0.055
mmol) were dissolved in toluene (1 ml), and triethylamine was added (0.09 ml, 0.65 mmol) at
rt, followed by the addition of the corresponding chlorophosphine (0.55 mmol) via syringe.

The reaction was stirred for 20 min at room temperature. The solvent was removed in vacuo,
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and the product was purified by flash chromatography on alumina (toluene/NEtz = 100/1) to
produce the corresponding ligand as an oil.

Lie. Yield: 257.8 mg (61%). 3P NMR (161.9 MHz, CgDs): $=98.2 (s). *H NMR (400
MHz, CsDe): =1.08 (d, 3H, CHs, 'Pr, Ju.ni =6.8 Hz), 1.21 (d, 3H, CHa, 'Pr, 3Ju.n =6.4 Hz),
2.37 (s, 3H, CHs, 0-Tol),2.41 (s, 3H, CHs, o-Tol), 2.91-3.01 (m, 2H, CH 'Pr, CH>), 3.30 (dd,
1H, CHa2, 2J4-n=16.4 Hz, 3Ju.1=6.0 Hz), 4.49 (b, 1H, CH-S), 4.82 (m, 1H, CH-OP), 6.91-7.15
(m, 9H, CH=), 7.36 (d, 1H, CH=, 3J4.4 =6.8 Hz), 7.52 (m, 2H, CH=). 3C NMR (100.6 MHz,
CsDs): 6=20.3 (d,CHs, 0-Tol, 3Jc.p =4.0 Hz), 20.5 (d,CHs, 0-Tol, 3Jc-r =4.4 Hz), 23.2 (CHs,
'Pr), 23.8 (CHs, 'Pr), 35.3 (CH, 'Pr), 39.1 (d, CHg, 3Jc-r =6.1 Hz), 54.7 (d, CH-S, 3Jcr =6.1
Hz), 87.7 (d, CH-OP, 2Jc.p =20,7 Hz), 124.8-141.4 (aromatic carbons).

L1f. Yield: 128.9 mg (61%). 3P NMR (161.9 MHz, CsDs): 5=140.4 (s). *H NMR (400
MHz, CeDs): 6=1.08-1.20 (m, 6H, CHz, Cy), 1.22 (d, 3H, CHg, 'Pr, 3Ju.n =6.4 Hz), 1.25-1.35
(m, 5H, CHy, Cy), 1.38 (d, 3H, CHs, 'Pr, 3Ju.n =6.4 Hz), 1.48-1.61 (m, 5H, CH, Cy), 1.69 (b,
5H, CH, CHz, Cy), 1.86 (m, 2H, CH,, Cy), 2.98 (d, 1H, CH2, 2Ju-+ =16.0 Hz), 3.10-3.17 (m,
1H, CH 'Pr), 3.41 (dd, 1H, CH2, 2Jn-1 =16.4 Hz, 3J4.1 =5.6 Hz), 4.51-4.54 (m, 2H, CH-S, CH-
OP), 6.99-7.15 (m, 3H, CH=), 7.40 (d, 1H, CH=, 3J4.4 =8.0 Hz), 7.52 (m, 2H, CH=). 13C
NMR (100.6 MHz, C¢Dg): $=23.3 (CHs, 'Pr), 24.0 (CHs, 'Pr), 26.5-27.1 (CHz, Cy), 28.1 (CH>,
Cy), 28.3 (CH2, Cy), 28.5 (CH, Cy), 35.2 (CH, 'Pr), 37.6 (d, CH, YJc.» =8.5 Hz), 37.8 (d, CH,
1Jcp =9.9 Hz), 39.3 (d, CHg, 3Jc.p =6.1 Hz), 54.8 (d, CH-S, 3Jcr =6.1 Hz), 87.7 (d, CH-OP,
2)cp =18.4 Hz), 124.8-141.5 (aromatic carbons).

L1g. Yield: 129.9 mg (54%). **P NMR (161.9 MHz, CeDe): 8=114.5 (s). *H NMR (400
MHz, CeDs): 6=1.11 (d, 3H, CHs, 'Pr, 3Ju-n =6.8 Hz), 1.22 (d, 3H, CHs, Pr, 3J4.n =6.4 Hz),
2.04 (s, 3H, p-CHzs, Mes), 2.06 (s, 3H, p-CHs, Mes), 2.39 (s, 12H, 0-CHs, Mes), 2.85-2.99
(m, 2H, CH 'Pr, CHy), 3.33 (dd, 1H, CHy, 2Jn-+ =16.4 Hz, 3Ju.n =5.6 Hz), 4.46 (b, 1H, CH-S),
4.66 (m, 1H, CH-OP), 6.63 (s, 1H, CH=), 6.64 (s, 1H, CH=), 6.65 (s, 1H, CH=), 6.66 (s, 1H,
CH=), 6.94-7.05 (m, 2H, CH=), 7.12 (m, 1H, CH=), 7.31 (m, 1H, CH=). 3C NMR (100.6
MHz, CeDs): 6=20.6 (p-CHs, Mes), 22.1 (d, 0-CHas, Mes, 3Jc.p =3.0 Hz), 22.2 (d, 0-CH3, Mes,
8Jc.p =3.1 Hz), 23.2 (CHs, 'Pr), 23.9 (CHs, 'Pr), 35.2 (CH, 'Pr), 38.9 (d, CHa, 3Jc.r =6.8 Hz),
54.6 (d, CH-S, 3Jcp =7.6 Hz), 87.6 (d, CH-OP, 2Jcp =22,1 Hz), 124.7-141.6 (aromatic
carbons).

L3e. Yield: 147,6 mg (31%). 3P NMR (161.9 MHz, CsDs): $=97.7 (s). *"H NMR (400
MHz, CeDs): 6=1.24 (s, 9H, CHs, 'Bu), 2.32 (s, 3H, CHs, o-Tol), 2.41 (s, 3H, CHs, o-Tol),
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2.92 (dd, 1H, CHg, 2Jn-+ =16.4 Hz, 3Jur =2.8 Hz), 3.22 (dd, 1H, CH2, 2Jh-+ =16.0 Hz, 3Jnn
=5.2 Hz), 4.40 (b, 1H, CH-S), 4.82-4.85 (m, 1H, CH-OP), 6.89-7.12 (m, 9H, CH=), 7.39 (d,
1H, CH=, 3Jun =7.2 Hz), 7.50-7.54 (m, 2H, CH=). 3C NMR (100.6 MHz, CsDs): 5=20.2 (d,
CHs, 3Jc.p =15.3 Hz), 20.4 (d, CH3, 3Jc.p =16.0 Hz), 31.3 (CHs, 'Bu), 39.0 (d, CHz2, Jc-r =6.0
Hz), 43.4 (C, 'Bu), 53.6 (d, CH-S, 3Jc.r =6.8 Hz), 88.5 (d, CH-OP, 3Jcr =20.6 Hz), 124.6-
142.3 (aromatic carbons). MS HR-ESI [found 457.1731, C27H:10PS (M-Na)* requires
457.1725].

L5e. Yield: 260.6 mg (54%). 3P NMR (161.9 MHz, CeD¢): 5=98.5 (s). *H NMR (400
MHz, Ce¢Ds): 6=2.30 (s, 3H, CHs, 0-Tol), 2.35 (s, 3H, CH3, 0-Tol), 2.44 (s, 6H, CHz), 3.14 (d,
1H, CHa, 2Ju.+ =16.8 Hz), 3.54 (dd, 1H, CH2, 2Jn-H =16.8 Hz, 3Ju.n =5.2 Hz), 4.78-4.82 (m,
1H, CH-OP), 4.83 (b, 1H, CH-S), 6.91-7.14 (m, 12H, CH=), 7.23 (s, 1H, CH=), 7.32-7.35
(m, 1H, CH=), 7.40-7.44 (m, 1H, CH=). 13C NMR (100.6 MHz, C¢Ds): 5=20.1 (d, CH3, 3Jcp
=6.1 Hz), 20.3 (d, CHs, 3Jc.p =6.8 Hz), 21.7 (CH3), 39.4 (d, CHa, 3Jc.r =6.9 Hz), 58.0 (d, CH-
S, 3Jc-p=6.9 Hz), 85.7 (d, CH-OP, 3Jcp =5.4 Hz), 124.9-143.5 (aromatic carbons).

4.5. Typical procedure for the allylic alkylation of disubstituted linear (S1 and
S3-S7) and cyclic (S2 and S8-S9) substrates

A degassed solution of [PdCI(n3-CsHs)]2 (0.9 mg, 0.0025 mmol) and the corresponding
ligand (0.0055 mmol) in dichloromethane (0.5 mL) was stirred for 30 min. Subsequently, a
solution of the corresponding substrate (0.5 mmol) in dichloromethane (1.5 mL), nucleophile
(1.5 mmol), N,O-bis(trimethylsilyl)-acetamide (370 uL, 1.5 mmol) and a pinch of KOAc were
added. The reaction mixture was stirred at room temperature. After the desired reaction time
the reaction mixture was diluted with Et,O (5 mL) and saturated NH4ClI (aq) (25 mL) was
added. The mixture was extracted with Et,O (3 x 10 mL) and the extract dried over MgSOa.
Conversions were measured by 'H NMR and enantiomeric excesses were determined either
by HPLC (compounds 11, 13-22, 37-41 and 43-46) or by GC (compounds 12, 47-48 and 50-
52) or by 'H NMR using [Eu(hfc);] (compounds 42 and 49). For characterization and ee

determination details see Supporting Information.

4.6. Typical procedure for the allylic alkylation of disubstituted linear substrate

S1 using pyrroles
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A degassed solution of [PdCI(n3-C3Hs)]. (1.8 mg, 0.005 mmol) and the corresponding
phosphite/phosphinite-thioether (0.011 mmol) in dichloromethane (0.5 mL) was stirred for 30
min. Subsequently, a solution of the corresponding substrate (0.5 mmol) in dichloromethane
(1.5 mL), the corresponding pyrrole (0.4 mmol) and K.COz (110 mg, 0.8 mmol) were added.
The reaction mixture was stirred at room temperature. After 18 h, the reaction mixture was
diluted with Et,O (5 mL) and saturated NH4Cl (ag) (25 mL) was added. The mixture was
extracted with Et2O (3 x 10 mL) and the extract dried over MgSQOs4. Conversions were
measured by 'H NMR and enantiomeric excesses were determined by HPLC. For

characterization and ee determination details see Supporting Information.

4.7. Typical procedure for the allylic amination of disubstituted linear substrate
S1

A degassed solution of [PdCI(n3-C3Hs)]2 (0.9 mg, 0.0025 mmol) and the corresponding
ligand (0.0055 mmol) in dichloromethane (0.5 mL) was stirred for 30 min. Subsequently, a
solution of rac-1,3-diphenyl-3-acetoxyprop-1-ene (S1) (0.5 mmol) in dichloromethane (1.5
mL), the corresponding amine (1.5 mmol), N,O-bis(trimethylsilyl)-acetamide (370 uL, 1.5
mmol) and a pinch of KOAc were added. The reaction mixture was stirred at room
temperature. After 2 hours, the reaction mixture was diluted with EtO (5 mL) and saturated
NH4Cl (ag) (25 mL) was added. The mixture was extracted with Et,O (3 x 10 mL) and the
extract dried over MgSO.. Conversions were measured by H NMR and enantiomeric
excesses were determined by HPLC. For characterization and ee determination details see

Supporting Information.

4.8. Typical procedure for the allylic etherification and silylation of
disubstituted linear substrate S1

A degassed solution of [PdCI(n3-CsHs)]2 (0.9 mg, 0.0025 mmol) and the corresponding
ligand (0.0055 mmol) in dichloromethane (0.5 mL) was stirred for 30 min. Subsequently, a
solution of rac-1,3-diphenyl-3-acetoxyprop-1-ene (S1) (31.5 mg, 0.125 mmol) in
dichloromethane (1.5 mL) was added. After 10 minutes, Cs2CO3 (122 mg, 0.375 mmol) and
the corresponding alcohol or silanol (0.375 mmol) were added. The reaction mixture was
stirred at room temperature. After 18 h, the reaction mixture was diluted with Et.O (5 mL)
and saturated NH4Cl (aqg) (25 mL) was added. The mixture was extracted with Et,O (3 x 10
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mL) and the extract dried over MgSOa. Conversions were measured by 'H NMR and
enantiomeric excesses were determined by HPLC. For characterization and ee determination

details see Supporting Information.

4.9. Typical procedure for the preparation of chiral carbo- and heterocyclic
compounds 53-58

A solution of Grubbs Il catalyst (5 mg, 0.006 mmol) and the corresponding alkylated
product (0.12 mmol) in CH2Cl> (3 mL) was stirred for 16 h. The solution was directly purified
by flash chromatography (Hex/EtOAc 95:5) to obtained the desired compounds. For

characterization and ee determination details see Supporting Information.

4.10. Typical procedure for the preparation of chiral tricyclic compounds 59-61
A solution of the starting enyne (0.187 mmol) in 1 mL of tert-butylbenzene was added to a
solution of Co2(CO)s (83 mg, 0.243 mmmol) in 0.5 mL of tert-butylbenzene under air. The
flask was rinsed with 0.5 mL more of the same solvent. The resulting mixture was stirred at
room temperature for 1 h, until full consumption of the starting material was observed by
TLC. After that, the system was heated at 170 °C for a further hour. Then, it was cooled to
room temperature, filtered on Celite with CH2Cl> and concentrated in vacuo. The crude
mixture was purified by flash column chromatography on silica gel eluting with
cyclohexane/EtOAc (gradient form 90:10 to 70:30) to furnish the desired tricyclic compound

as a white solid. For characterization and ee determination details see Supporting Information.

4.11. General procedure for the preparation of [Pd(n3-allyl)(L)]BF4complexes
62-65

The corresponding ligand (0.05 mmol) and the complex [Pd(u-Cl)(n3-1,3-allyl)]. (0.025
mmol) were dissolved in CD.Cl, (1.5 mL) at room temperature under argon. AgBF4 (9.8 mg,
0.05 mmol) was added after 30 minutes and the mixture was stirred for 30 minutes. The
mixture was then filtered over celite under argon and the resulting solutions were analyzed by
NMR. After the NMR analysis, the complexes were precipitated as pale yellow solids by
adding hexane.

[Pd(n3-1,3-cyclohexenylallyl)(L5b)]BF4 (62). 3P NMR (CD:Cly, 298 K), &: 106.7 (s, 1P).
'H NMR(CDCl, 298 K), 5: 0.78 (m, 1H, CHp, allyl), 1.03 (m, 1H, CH, allyl), 1.39 (s, 9H,
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CHs, 'Bu), 1.42-1.56 (m, 2H, CHy, allyl), 1.52 (s, 9H, CHs, 'Bu), 1.62-1.71 (m, 2H, CH,
allyl), 1.81 (s, 3H, CHg), 1.97 (s, 3H, CHz), 2.23 (s, 3H, CH3), 2.41 (s, 3H, CH3), 2.68 (s, 3H,
CHa, SR group), 2.91 (s, 3H, CHs, SR group), 3.23 (dd, 1H, CH2, 2Jn-n= 12.4 Hz, 3Jn.n=7.2
Hz), 3.51 (dd, 1H, CH2, 2Ju-w= 12.4 Hz, 3Ju.u= 6.4 Hz), 4.00 (m, 1H, CH allyl trans to S),
4.81 (m, 1H, CH-0), 5.15 (d, 1H, CH-S, 3Ju.n= 6.8 Hz), 5.24 (m, 1H, CH allyl central), 5.46
(m, 1H, CH allyl trans to P), 6.71 (d, 1H, CH=, 3Ju.n= 6 Hz), 7.18 (m, 1H, CH=), 7.3-7.5 (m,
7H, CH=). ¥C NMR (CD:Cl,, 298 K), &: 18.1 (CHs), 18.2 (CHs), 20.9 (CH; allyl), 21.9
(CHa), 22.0 (CHz), 24.5 (CHs, SR group), 25.7 (CHs, SR group), 28.6 (CH2 allyl), 29.6 (CH>
allyl), 32.9 (CHjs, 'Bu), 33.5 (CHjs, 'Bu), 36.6 (C, 'Bu), 36.9 (C, 'Bu), 39.4 (d, CHy, Jcr= 6
Hz), 55.2 (CH-S), 83.6 (d, CH-O, Jcp= 4.8 Hz), 84.3 (d, CH allyl trans to S, Jcr= 6.5 Hz),
100.6 (d, CH allyl trans to P, Jc-p= 30.5 Hz), 115.0 (d, CH allyl central, Jc-p= 8.7 Hz), 125.5-
147.3 (aromatic carbons). MS HR-ESI [found 839.2869, C47HssO3PPdS (M-BFs)" requires
839.2874].

[Pd(n3-1,3-cyclohexenylallyl)(L5¢)]BF4 (63). 3'P NMR (CD,Cly, 298 K), &: 106.2 (s, 1P).
'H NMR(CD.Cly, 298 K), &: 1.18 (m, 1H, CH, allyl), 1.47 (s, 9H, CHs, 'Bu), 1.55 (s, 9H,
CHs, 'Bu), 1.51-1.72 (m, 3H, CH_, allyl), 1.84 (s, 3H, CH3), 1.86 (m, 1H, CH, allyl), 2.14 (s,
3H, CHa), 2.14 (m, 1H, CH2), 2.38 (s, 3H, CHz3), 2.44 (s, 3H, CHzs), 2.58 (s, 3H, CHs, SR
group), 2.70 (s, 3H, CHs, SR group), 3.29 (dd, 1H, CHa, 2Ju-n= 12.4 Hz, 3Ju.u= 6.8 Hz), 3.56
(dd, 1H, CHz, 2Ju.n= 12.4 Hz, 3Ju.n= 6 Hz), 4.08 (m, 1H, CH allyl trans to S), 5.20 (m, 1H,
CH allyl trans to P), 5.28 (m, 2H, CH-S and CH allyl central), 5.34 (m, 1H, CH-0), 6.14 (d,
1H, CH=, 3J4.u= 6.4 Hz), 7.04 (m, 1H, CH=), 7.3-7.5 (m, 7H, CH=). 3C NMR (CD,Cly, 298
K), &: 18.1 (CHs), 18.2 (CH3), 21.0 (CH2 allyl), 21.9 (CHzs), 22.0 (CHs), 24.7 (CH3, SR
group), 24.8 (CHs, SR group), 29.5 (CH: allyl), 30.96 (CH; allyl), 33.1 (CH3, 'Bu), 33.5 (CHs,
'Bu), 36.6 (C, 'Bu), 36.8 (C, '‘Bu), 40.1 (d, CHa, Jcp= 5.4 Hz), 56.8 (d, CH-S, Jcr= 3.2 Hz),
85.1 (m, CH-O and CH allyl trans to S), 103.8 (d, CH allyl trans to P, Jc.p= 28.6 Hz), 115.0
(d, CH allyl central, Jc.,= 7.9 Hz), 125.4-147.0 (aromatic carbons). MS HR-ESI [found
839.2870, C47Hss03PPdS (M-BF4)" requires 839.2874].

[Pd(n3-1,3-diphenylallyl)(L5b)]BF4 (64). Major isomer (57%): 3P NMR (CD.Cl, 298
K), &: 102.8 (s, 1P). *H NMR(CDCl,, 298 K), &: 1.25 (s, 9H, CHa, 'Bu), 1.59 (s, 9H, CHs,
'Bu), 1.66 (s, 3H, CHs), 1.69 (s, 3H, CHz3), 1.97 (s, 3H, CHs, SR group), 2.18 (s, 3H, CHs),
2.24 (s, 3H, CHs), 2.95 (s, 3H, CHs, SR group), 2.97 (m, 1H, CH,), 3.41 (dd, 1H, CHz, 2Jn.n=
12.4 Hz, 3Ju.n= 7.2 Hz), 4.70 (m, 1H, CH-S), 4.75 (m, 1H, CH allyl trans to S), 4.85 (m, 1H,
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CH-0), 5.46 (m, 1H, CH allyl trans to P), 6.18 (dd, 1H, CH allyl central, 3Ju.n= 10.8 Hz, 3Ju.
n= 9.2 Hz), 6.36 (d, 1H, CH=, 3Jy.n= 6.0 Hz), 6.71-7.52 (m, 14H, CH=). 13C NMR (CDCl,,
298 K), 6: 16.9 (CHs), 17.3 (CHs), 20.7 (CHs), 20.9 (CHs), 22.5 (CHs, SR group), 24.0 (CHs,
SR group), 31.5 (CHs, 'Bu), 32.1 (CHs, 'Bu), 36.4 (C, 'Bu), 36.6 (C, 'Bu), 37.6 (b, CH2), 53.6
(CH-S), 80.2 (d, CH allyl trans to S, Jcp= 7.3 Hz), 80.4 (d, CH-O, Jc.p= 6.8 Hz), 93.0 (d, CH
allyl trans to P, Jc.p= 21.2 Hz), 110.8 (d, CH allyl trans to P, Jc.p= 8.4 Hz), 122.7-144.5
(aromatic carbons). Minor isomer (43%): 3P NMR (CDCly, 298 K), &: 102.6 (s, 1P). 'H
NMR(CD:Cly, 298 K), 5: 1.50 (s, 9H, CHs, 'Bu), 1.58 (s, 9H, CHs, 'Bu), 1.63 (s, 3H, CHs),
1.80 (s, 3H, CHa), 2.20 (s, 3H, CHs, SR group), 2.42 (s, 3H, CHz3), 2.48 (s, 3H, CH3), 3.14 (s,
3H, CHs, SR group), 2.97 (m, 1H, CH,), 3.30 (dd, 1H, CHz, 2Jnn= 12.4 Hz, 3Ju.n= 7.2 Hz),
4.15 (m, 1H, CH allyl trans to S), 4.89 (m, 1H, CH-0O), 5.02 (m, 1H, CH-S), 5.39 (m, 1H, CH
allyl trans to P), 6.36 (d, 1H, CH=, 3Ju.n= 6.0 Hz), 6.52 (t, 1H, CH allyl central, 3J4.1= 9.6
Hz), 6.71-7.52 (m, 14H, CH=). °C NMR (CD-Cl;, 298 K), &: 16.9 (CHs), 17.3 (CH3), 20.8
(CHs), 20.8 (CHs), 22.5 (CHs, SR group), 23.3 (CHs, SR group), 30.6 (CHs, 'Bu), 31.0 (CHs,
'Bu), 36.5 (C, 'Bu), 36.8C, '‘Bu), 37.6 (b, CHy), 53.5 (CH-S), 79.8 (d, CH allyl trans to S, Jc-p=
6.3 Hz), 92.3(d, CH-O, Jc-p= 6.2 Hz), 103.2 (d, CH allyl trans to P, Jcp= 23 Hz), 112.1 (d,
CH allyl trans to P, Jc.p= 10 Hz), 122.7-144.5 (aromatic carbons). MS HR-ESI [found
951.3184, CssHe203PPdS (M-BF4)" requires 951.3187].

[Pd(n3-1,3-diphenylallyl)(L5c)]BF4 (65). Major isomer (70%): 3P NMR (CD.Cl,, 298
K), 8: 104.3 (s, 1P). *H NMR(CD.Cl;, 298 K), &: 1.41 (s, 9H, CHs, 'Bu), 1.63 (s, 3H, CHa),
1.65 (s, 3H, CHg), 1.77 (s, 12H, CHgs, 'Bu and CHs), 2.27 (s, 3H, CHs), 2.47 (s, 3H, CHs, SR
group), 3.06 (s, 3H, CHs, SR group), 3.01 (m, 1H, CH>), 3.36 (dd, 1H, CHz, 2J4.u= 12.8 Hz,
3Ju-n= 6.8 Hz), 5.01 (m, 1H, CH-0), 5.06 (m, 1H, CH-S), 5.12 (m, 1H, CH allyl trans to S),
5.26 (d, 1H, CH allyl trans to P, 3Ju.n= 10 Hz), 5.95 (d, 1H, CH=, 3J4.u= 6.0 Hz), 6.73 (m,
1H, CH allyl central), 6.87-7.51 (m, 14H, CH=). 3C NMR (CD,Cly, 298 K), &: 18.0 (CHs3),
18.4 (CHs), 21.9 (CHa), 22.1 (CHa), 24.4 (CHas, SR group), 25.8 (CHs, SR group), 33.8 (CHs,
'Bu), 34.2 (CHjs, 'Bu), 36.7 (C, 'Bu), 36.9 (C, 'Bu), 40.0 (d, CHz, Jcp= 6.7 Hz), 56.9 (d, CH-S,
Jc-p= 2.7 Hz), 84.7 (d, CH-O, Jc-p= 5.4 Hz), 88.6 (d, CH allyl trans to S, Jc-p= 5.2 Hz), 101.5
(d, CH allyl trans to P, Jc.p= 25.7 Hz), 112.9 (d, CH allyl trans to P, Jc.p= 8.3 Hz), 124.7-
146.9 (aromatic carbons). Minor isomer (30%): 3'P NMR (CDCl,, 298 K), &: 107.1 (s, 1P).
'H NMR(CD:Cly, 298 K), &: 1.64 (s, 9H, CHs, 'Bu), 1.72 (s, 9H, CHs, 'Bu), 1.74 (s, 3H, CHa),
1.82 (s, 3H, CHa), 2.31 (s, 3H, CHg), 2.33 (s, 3H, CHz), 2.38 (s, 3H, CH3, SR group), 2.60 (s,
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3H, CHs, SR group), 3.01 (m, 1H, CHy), 3.47 (dd, 1H, CHz, 2Jn-w= 12.8 Hz, 3Ju.v= 6.8 Hz),
4.85 (d, 1H, CH-S, 3Ju-n= 5.6 Hz), 5.21 (m, 1H, CH allyl trans to S), 5.51 (m, 1H, CH-0),
5.70 (d, 1H, CH allyl trans to P, ®Ju.w= 10 Hz), 6.00 (d, 1H, CH=, 3Ju.n= 6.0 Hz), 6.58 (m,
1H, CH allyl central), 6.87-7.51 (m, 14H, CH=). 3C NMR (CD,Cly, 298 K), &: 18.2 (CHj3),
18.3 (CHgs), 21.9 (CHs), 22.0 (CHs), 24.2 (CHs, SR group), 26.1 (CHs, SR group), 32.8 (CHs,
'Bu), 34.1 (CHjs, 'Bu), 36.6 (C, 'Bu), 36.7 (C, 'Bu), 39.6 (d, CHz, Jcp= 7.5 Hz), 58.1 (d, CH-S,
Jc.p= 2.5 Hz), 86.7 (d, CH-O, Jc.p= 7.5 Hz), 95.0 (d, CH allyl trans to S, Jcp= 5.4 Hz), 95.9
(d, CH allyl trans to P, Jc.p= 23.7 Hz), 113.0 (d, CH allyl trans to P, Jc.p= 9.1 Hz), 124.7-
146.9 (aromatic carbons). MS HR-ESI [found 951.3182, CssHe2O3PPdS (M-BF4)" requires
951.3187].

4.12. Study of the reactivity of the [Pd(n3-allyl)(L))]BFs with sodium dimethyl
malonate by in situ NMR?

A solution of in situ prepared [Pd(n3-allyl)(L)]BFa (L= phosphite-thioether, 0.05 mmol) in
CD2Cl> (1 mL) was cooled in the NMR at —80 °C. At this temperature, a solution of cooled
sodium dimethyl malonate (0.1 mmol) was added. The reaction was then followed by 3!P
NMR. The relative reaction rates were calculated using a capillary containing a solution of

triphenylphosphine in CDCl; as external standard.

4.13. Computational details

Geometries of all transition states and intermediates were optimized using the Gaussian 09
program,®® employing the B3LYP3! density functional and the LANL2DZ® basis set for
palladium and the 6-31G* basis set for all other elements.®® Solvation correction was applied
in the course of the optimizations using the PCM model with the default parameters for
dichloromethane.®* The complexes were treated with charge +1 and in the single state. No
symmetry constraints were applied. Normal mode analysis of all transition states revealed a
single imaginary mode corresponding to the expected nucleophilic attack of the nucleophile to
one of the two allylic termini carbons. The energies were further refined by performing single
point calculations using the above-mentioned parameters, with the exception that the 6-
311+G**% pasis set was used for all elements except palladium, and by applying dispersion
correction using DFT-D3% model. All energies reported are Gibbs free energies at 298.15 K

and calculated as Greported = Ge-316* + (Es-311+G** - E6-316+) + EpFT-D3.
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