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Abstract: The paper describes Dolores, a model designed to predict football match outcomes 

in one country by observing football matches in multiple other countries. The model is a 

mixture of two methods: a) dynamic ratings and b) Hybrid Bayesian Networks. It was 

developed as part of the international special issue competition Machine Learning for Soccer. 

Unlike past academic literature which tends to focus on a single league or tournament, Dolores 

is trained with a single dataset that incorporates match outcomes, with missing data (as part of 

the challenge), from 52 football leagues from all over the world. The challenge involved using 

a single model to predict 206 future match outcomes from 26 different leagues, played from 

March 31 to April 9 in 2017. Dolores ranked 2nd in the competition with a predictive error 

0.94% higher than the top and 116.78% lower than the bottom participants. The paper extends 

the assessment of the model in terms of profitability against published market odds. Given that 

the training dataset incorporates a number of challenges as part of the competition, the results 

suggest that the model generalised well over multiple leagues, divisions, and seasons. 

Furthermore, while detailed historical performance for each team helps to maximise predictive 

accuracy, Dolores provides empirical proof that a model can make a good prediction for a 

match outcome between teams 𝑥 and 𝑦 even when the prediction is derived from historical 

match data that neither 𝑥 nor 𝑦 participated in. While this agrees with past studies in football 

and other sports, this paper extends the empirical evidence to historical training data that does 

not just include match results from a single competition but contains results spanning different 

leagues and divisions from 35 different countries. This implies that we can still predict, for 

example, the outcome of English Premier League matches, based on training data from Japan, 

New Zealand, Mexico, South Africa, Russia, and other countries in addition to data from the 

English Premier league. 
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1 Introduction 
 

Association football, more commonly known as football or soccer (hereby referred to as 

‘football’), is the world’s most popular sport (Dunning, 1999). At the turn of the 21st century, 

FIFA estimated that there were approximately 250 million football players in over 200 

countries, and over 1.3 billion football fans (Britannica, 2017). From a financial perspective, 

the European football market alone is projected to exceed €25billion in 2016/17 (Deloitte, 

2016), whereas the global sports gambling market is estimated to worth up to $3trillion, with 

football betting representing 65% of this figure (Daily Mail, 2015). 

 Several studies focus on various aspects of football, from analysing player development 

and injury recovery to team psychology and match tactics. This paper is concerned with the 

challenge of developing a model that is capable of predicting the outcome of future football 

matches, over multiple leagues and divisions, as part of the special issue competition Machine 

Learning for Soccer (Berrar et al., 2017). Past relevant academic studies typically focus on a 

single league or tournament, with predictions derived using various predictive modelling 

techniques. These can be divided into statistical models, machine learning and probabilistic 

graphical models, and rating systems. Specifically, 

 

i. Statistical models: Applications to football match prediction typically include ordered 

probit regression models (Kuypers, 2000; Goddard & Asimakopoulos, 2004; Forrest et 

al., 2005; Goddard, 2005) and Poisson models (Maher, 1982; Dixon & Coles, 1997; 

Lee, 1997; Karlis & Ntzoufras, 2003; Angelini & Angelis, 2017). These studies are 

typically published in statistical journals. 

 

ii. Machine Learning and probabilistic graphical models: Applications to football 

match prediction typically include genetic algorithms (Tsakonas et al., 2002; Rotshtein 

et al., 2005), Bayesian or Markov methods (Joseph et al., 2006; Baio & Blangiardo, 

2010; Rue & Salvesen, 2010; Constantinou et al., 2012b; 2013b) and neural networks 

(Cheng et al., 2003; Huang & Chang, 2010; Arabzad et al., 2014). These studies are 

typically published in computer science and artificial intelligence journals. 

 

iii. Rating systems: Applications to football match prediction are mainly based on variants 

of the widely known ELO rating system (Elo, 1978; Leitner et al., 2010; Hvattum & 

Arntzen, 2010), which was initially developed for assessing the strength of chess 

players, and include the official FIFA/Coca-Cola World Ranking (FIFA, 2017). A 

rather different rating method, the pi-rating (Constantinou & Fenton, 2013a), provides 

relative measures of superiority between football teams solely on the basis of the 

relative discrepancies in scores between adversaries. These studies also tend to be 

published in statistical journals. 

 

This paper describes a model, which combines a rating system with a Hybrid Bayesian 

Network (BN). The rating system, which is partly based on the pi-rating system mentioned 

above, generates a rating score that captures the ability of a team relative to the residual teams 

within a particular league. The resulting ratings are then used as input to the BN model for 

match prediction.  

A BN is a well-established graphical formalism for representing and reasoning under 

uncertainty. It is a type of a probabilistic graphical model (Koller & Friedman, 2009) 

introduced by Pearl (1982; 1985; 2009), where variables are represented by nodes and 

influential links by arcs. A BN model encodes the conditional probabilistic relationships 

amongst random variables under the assumptions of a Directed Acyclic Graph (DAG), which 
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satisfies the Markov condition of conditional independence. Hybrid BNs are simply BN models 

that incorporate both discrete and continuous variables.  

The paper is structured as follows: Section 2 describes the data engineering approach, 

Section 3 describes the model, Section 4 provides a worked example of the model, Section 5 

evaluates the model and discusses the results, and Section 6 provides the concluding remarks. 

2 Data engineering 
 

The dataset is provided as part of the Call for Papers for the special issue competition Machine 

Learning for Soccer (Berrar et al., 2017). The data consist of a training dataset which 

incorporates 216,743 match instances from different football leagues throughout the world, and 

a test dataset of 206 match instances that occurred between March 31 and April 9 in 2017. For 

each sample, the dataset provides information about the name of the home and away teams, the 

football league, the date of the match, and the final score in terms of goals scored. Table 1 

illustrates the leagues captured by the training and test datasets, which incorporate missing data 

as part of the challenge. Specifically, cells in background colour: 

 

 Yellow: represent leagues captured by data. 

 Grey: represent leagues not captured by data. 

 Red: represent missing data; i.e., missing match results for a whole season. A total of 

seven seasons of match results are omitted for model training as part of the challenge 

in the competition, which is expected to negatively influence the predictive accuracy 

of the model. 

 Blue: represent ongoing leagues captured by the test dataset. 

 
Table 1. The football leagues captured by the training and test datasets. The code ENG1 represents the top division 

in England (i.e., English Premier League) and ENG5 the fifth division in England (i.e., Conference League); the 

same reasoning applies to each of the residual coded leagues. A cell in yellow background indicates that the league 

is captured by the training dataset; grey indicates that the league is not captured by any of the datasets; red indicates 

missing data (whole league); and blue indicates ongoing leagues captured by the test dataset. 
 

   Season 
 
 
 

League 

2
0
0
0
/0

1
 

2
0
0
1
/0

2
 

2
0
0
2
/0

3
 

2
0
0
3
/0

4
 

2
0
0
4
/0

5
 

2
0
0
5
/0

6
 

2
0
0
6
/0

7
 

2
0
0
7
/0

8
 

2
0
0
8
/0

9
 

2
0
0
9
/1

0
` 

2
0
1
0
/1

1
 

2
0
1
1
/1

2
 

2
0
1
2
/1

3
 

2
0
1
3
/1

4
 

2
0
1
4
/1

5
 

2
0
1
5
/1

6
 

2
0
1
6
/1

7
 

2
0
1
7
/1

8
 

GER1                   

GER2                   

GER3                   

ENG1                   

ENG2                   

ENG3                   

ENG4                   

ENG5                   

ITA1                   

ITA2                   

HOL1                   

SCO1                   

SCO2                   

SCO3                   

SCO4                   

SPA1                   

SPA2                   

FRA1                   

FRA2                   

FRA3                   

BEL1                   

TUR1                   

GRE1                   
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POR1                   

NOR1                   

USA1                   

USA2                   

ARG1                   

BRA1                   

BRA2                   

RUS1                   

RUS2                   

JPN1                   

JPN2                   

KOR1                   

CHN1                   

ZAF1                   

AUS1                   

MEX1                   

NZL1                   

DZA1                   

ISR1                   

CHL1                   

ECU1                   

VEN1                   

MAR1                   

TUN1                   

CHE1                   

SWE1                   

FIN1                   

AUT1                   

DNK1                   

 

In predicting the outcome of a match for team 𝑥, a possible starting point is to base the 

prediction on recent historical results of 𝑥. Such an approach typically requires statistical 

profiles related to the historical performances for each team. In contrast, this paper adopts the 

approach of Constantinou and Fenton (2012b), where team ratings are based on recent 

historical match results, but where match predictions are derived from historical observations 

which include different teams. This implies that a match prediction between teams 𝑥 and 𝑦 is 

often based on historical results that include neither 𝑥 nor 𝑦. In this paper, this approach is 

extended to different divisions and different countries.  

Since part of the overall model is based on a rating system, it naturally shares similarities 

with other rating-based approaches, but which demonstrate varying degrees of success. These 

include the Elo variants and pi-rating in football (Leitner et al., 2010; Hvattum & Arntzen, 

2010; Constantinou and Fenton, 2012b; 2013a; FIFA, 2017), the ‘adjusted offensive and 

defensive efficiencies’ in basketball (Gelman et al., 2003; Piette et al., 2011), the points scored 

or ‘runs scored and runs allowed’ in baseball, hockey, and basketball (Oliver, 2004; Miller, 

2006; Dayaratna & Miller, 2013), and the ‘defence-adjusted value over average’ statistics in 

Australian and American Football (O’Shaughnessy, 2006; Schatz, A. (2006)). 

To illustrate the data engineering approach used in this paper, Table 2 presents six match 

predictions distributed into three cases of rating difference between adversaries. These 

examples represent a sample of the actual predictions submitted to the competition, and are 

associated with match instances that come from different leagues and countries. In brief, Table 

2 illustrates how distinct statistical profiles are ignored by generating identical predictions for 

match instances that share identical rating difference, even though these rating differences are 

derived from teams with different home and away ratings. For example, the predictions for 

Guadalajara vs C Tijuana and M Haifa vs Beitar J are derived from roughly the same training 

data. This is because these matches share nearly identical rating difference (𝑅𝐷) and hence, the 

model will generate the prediction from historical match instances that share a similar 𝑅𝐷. 
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Table 2. An illustration of the data engineering approach which enables us to generate identical predictions for 

match instances which share identical rating difference (𝑅𝐷), where identical 𝑅𝐷𝑠 are derived from teams with 

different home (𝐻𝑇) and away (𝐴𝑇) ratings. 

 
Case League Match 

date 
HT AT HT 

rating 
AT  

rating 
RD  

(BN input) 
Model 

prediction 
[1-X-2]  

Bookmakers’ 
prediction  

[1-X-2] 

Match 
result 
[Goals] 

1 ENG2 01/04/17 Newcastle Wigan 0.98 -0.34 1.31 70-18-12 69-21-10 1 [2-1] 
HT favourite ECU1 09/04/17 CS Emelec C Juvenil 1.16 -0.23 1.39 71-18-11 77-16-8 1 [2-0] 

2 MEX1 02/04/17 Guadalajara C Tijuana 0.12 0.23 -0.11 38-27-35 38-29-33 X [3-3] 
no favourite ISR1 01/04/17 M Haifa Beitar J 0.53 0.62 -0.09 38-27-35 35-31-34 1 [3-2] 

3 ITA1 02/04/17 Pescara AC Milan -0.99 0.68 -1.68 9-17-74 16-21-62 X [1-1] 
AT favourite SPA1 02/04/17 Granada Barcelona -0.30 1.47 -1.77 9-17-74 7-13-80 2 [1-4] 

    
This approach addresses a number of data issues associated with the challenge of using a single 

model to predict football match outcomes from different leagues. Specifically,  

 

i. Temporal data: Consider a match between teams 𝑥 and 𝑦 in season 2016/17, where 𝑦 

has +1 advantage in rating over 𝑥. The historical performances of 𝑥 and 𝑦 in past 

seasons are not only sparse, but also become increasingly less relevant the further away 

they are from season 2016/17. This implies that the data are temporally dependent, 

which makes recent data more important than old data. However, this approach 

eliminates this drawback. This is because instead of searching for historical match 

instances between 𝑥 and 𝑦, and having to weight discovered observations in terms of 

relevance in the temporal space, the algorithm searches for historical match instances 

where any away team had +1 rating relative to the home team, regardless of the date, 

the place, or the teams of the match. 

 

ii. New team data: When a team is promoted or relegated to a division for the first time, 

there may be no relevant data available in terms of how this team performs against 

teams that already participate in that division. This approach partly addresses this issue, 

since the challenge now is to rapidly optimise the rating of the newly 

promoted/relegated team for that division, and this is because when a team joins a 

league for the first time it does so with a default rating value of 0. 

 

iii. Different leagues: A particularly important benefit of this approach is that historical 

observations of match instances from one league can be used to predict match results 

for teams in another league. This is because while a team with rating 𝑅 in league 𝐴 is 

in no way equivalent to a team with rating 𝑅 in league 𝐵, a match instance in league 𝐴 

with rating difference 𝐷 exhibits strong similarities with a match instance in league 𝐵 

with rating difference 𝐷. 

3 The overall model 
 

Further to what has been discussed in the Introduction, the overall model is based on the 

following two subsystems: 

 

i. A dynamic rating system that provides relative measures of superiority between 

adversaries for each league, and which represents an extended version of the pi-rating 

system (Constantinou & Fenton, 2013a). Note that because in this paper the rating 

method is extended to multiple leagues, a team can participate in different leagues 

through promotion or relegation. Since a team’s rating converges relative to the 

adversaries in a particular league, each team has distinct ratings corresponding to each 



Accepted for publication in Machine Learning. 18 January 2018. 

6 

 

of their participating leagues. As discussed in the previous section, when a team joins 

a league for the first time it is assigned a default initial rating of 0 for that league. The 

old rating is saved for the old league as the new default rating for that specific team, in 

case they ever return to that league. 

 

ii. A Hybrid BN model that takes the resulting ratings from (i) as input to infer the 

predictive distribution of 1X2, also known as HDA (i.e., home win, draw, and away 

win), as indicated in Table 2. 

 

3.1 The rating system 
 

The rating system takes into consideration the goal discrepancies observed at each match 

instance to revise team ratings. In the original pi-rating version, as well as in this extended 

version, the ratings are based on: 

 

i. Learning rate 𝛌: Determines to what extent the new match results influence the team 

ratings. The higher the learning rate 𝜆, the more important the recent match results 

become and hence, the higher their impact is on revising team ratings. This parameter 

is based on the fact that recent match results are more relevant than older match results, 

in terms of generating team ratings that reflect a team’s ability at a given point in time. 

However, one limitation is that the parameter does not account for the temporal 

difference between matches; implying that whether the last game came in the preceding 

season or one week ago, they are discounted equally in both cases. 

 

ii. Diminishing function 𝝍: Is a function of the difference between the observed and the 

expected goals. It aims to diminish the impact each additional goal difference error has 

on team ratings. For example, a win by 2 goals influences team ratings less than twice 

relative to a win by 1 goal. This parameter is based on the fact that a win is more 

important for a team than increasing goal difference. 

 

iii. Learning rate γ: A team has two ratings, one for home and another for away grounds. 

The learning parameter 𝛾 determines to what extent performances at the home grounds 

influence away team ratings and vice versa. A higher learning rate 𝛾 indicates a greater 

influence. This parameter is based on the well-known phenomenon of home advantage, 

under the assumption that the home advantage is not invariant between teams. While 

there is a single learning rate γ for all teams, Section 3.1.1 describes how the 

home/away effect for every team is treated individually. 

 

In addition to the original three features of the pi-rating, this extended version 

incorporates the team form factor. This factor is introduced based on the assumption that team 

performances may dramatically decrease or increase for a short period of time, and such 

performances do not necessarily reflect the true long-term ability of the team. This assumption 

shares similarities with the Pythagorean expectation proposed in baseball, which provides an 

estimate of the games a baseball team should have won based on the number of runs they scored 

and allowed (Miller, 2006). In essence, the Pythagorean expectation is a probabilistic 

estimation of team results based on run statistics, and it could be used to estimate under/over-

performances. It has been applied to other sports such as basketball (Oliver, 2004) and hockey 

(Dayaratna & Miller, 2013) with varying degrees of success. It has also been applied 

successfully in college basketball based on points scored (Pomeroy, 2017), by simply 

predicting the one with the higher expected win percentage as the likely winner. Applications 
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to football have not been met with similar success, though a considerably more complicated 

extension of the Pythagorean expectation was shown to perform reasonably well in predicting 

total league points at the end of a football season (Hamilton, 2011). 

In this paper, the team form factor is implemented by introducing a second parallel 

layer of ratings that capture team form. Specifically, the ratings generated by the original pi-

rating are assumed to represent the actual long-term team ability in the form of ‘background’ 

ratings, whereas the manipulated ratings in view of team form are assumed to represent short-

term under/over-performances in the form of ‘provisional’ ratings. The provisional ratings are 

determined based on the three additional parameters:  

 

i. Form threshold 𝝓: Represents the number of continuous performances, above or 

below expectations, which do not trigger the form factor, under the assumption that the 

original implementation of the pi-ratings fails to adapt quickly to such dramatic 

changes. For example, if 𝜙 is set to 1, the form factor will trigger only after observing 

more than one continuous under/over-performances. 

 

ii. Rating impact µ: This parameter comes as a natural consequence of parameter 𝜙 

above. It represents the rating difference used to establish provisional ratings from 

background ratings, once the form factor is triggered. 

 

iii. Diminishing factor 𝜹: This parameter is based on the assumption3 that the background 

ratings ‘catch up’ with each continuous over/under-performance and hence, the form 

impact diminishes with each 𝜙 + 1. It represents the level by which rating impact µ 

diminishes with each additional continuous over/under-performance. 

 

In brief, the algorithm searches for patterns of continuous over/under-performances. If 

more than 𝜙 are discovered, the form factor is triggered and causes the provisional ratings to 

change and evolve differently from the background ratings, as long as the form factor remains 

active. In the case of continuous under-performances, the provisional ratings decrease faster 

relative to the background ratings, with a diminishing decrease with each 𝜙 + 1, and vice versa 

for over-performances. Otherwise, the provisional ratings remain equal to the background 

ratings. When an over/under-performance occurs for a team, the match prediction is based on 

the team’s provisional rating; otherwise, on the team’s background rating. 

 

3.1.1 Description of the rating system 

 

A team’s background rating is calculated as follows:  

 

brτ =
brτH + brτA

2
 

 

where brτ is the background rating for team τ, brτH is the background rating for team τ when 

playing at home, and brτA is the background rating for team τ when playing away. Assuming 

a match instance between home team 𝑥 and away team 𝑦, the home and away ratings are 

respectively revised dynamically, for both teams, as follows: 

 

 Revised (at time 𝑡) home (𝐻) background rating (br) for home team 𝑥, given respective 

prior (at time 𝑡 − 1) home background rating brxH𝑡−1: 

                                                           
3 The reverse assumption had also been examined and was found to decrease predictive accuracy. 
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brxH𝑡 = brxH𝑡−1 + 𝜓𝑥(𝑒) × λ 

 

 Revised (at time 𝑡) away (𝐴) background rating (br) for home team 𝑥, given respective 

prior (at time 𝑡 − 1) away background rating brxA𝑡−1: 

 

brxA𝑡 = brxA𝑡−1 + (brxH𝑡 − brxH𝑡−1) × γ 

 

 Revised (at time 𝑡) away (𝐴) background rating (br) for away team 𝑦, given respective 

prior (at time 𝑡 − 1) away background rating bryA𝑡−1
: 

 

bryA𝑡
= bryA𝑡−1

+ 𝜓𝑦(𝑒) ×  λ 

 

 Revised (at time 𝑡) home (𝐻) background rating (br) for away team 𝑦, given respective 

prior (at time 𝑡 − 1) home background rating bryH𝑡−1
: 

 

bryH𝑡
= bryH𝑡−1

+ (bryA𝑡
− bryA𝑡−1

) × γ 

 

where 𝜆 and 𝛾 are the learning rates discussed in Section 3.1, 𝑒 is the error between the observed 

and predicted goal difference: 

 

𝑒 = |go − gp| 

 

where go is the observed goal difference defined as home team goals minus away team goals, 

i.e., go = gox − goy, and similarly gp is the expected goal difference gp = gpx − gpy where: 

 

gpx = b
|brxH𝑡−1|

𝑐 − 1        and        gpy = b
|bryA𝑡−1

|

𝑐 − 1 

 

and 𝜓(e) is a function of 𝑒 that aims to diminish the importance of the score difference error 

(i.e., 𝑒), such that: 

 

𝜓(e) = c × logb(1 + e) 
 

where 𝑏 is the base of the logarithm used, 𝑏 = 10, and 𝑐 = 3 (Constantinou & Fenton, 2013a)4. 

 

Note that: 

 

𝜓𝑥(𝑒) = {
𝜓(e), gp < go

−𝜓(e), otherwise
        and        𝜓𝑦(𝑒) = {

𝜓(e), gp > go
−𝜓(e), otherwise

 

  

When the form factor is triggered, a team’s provisional rating is calculated as follows: 

 

                                                           
4 Constantinou & Fenton (2013a) proposed the function 𝜓(e) to diminish the importance of high score differences. 

While in both studies the function appears to adequately capture the importance of high score differences, a 

weakness of this function is that it is deterministic, in exchange for reduced model complexity. 
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pr =

{
 

 br + (−µ ×
𝜙cx − 𝜙

(𝜙cx − 𝜙)δ
) , underperformance

br + (µ ×
𝜙cx − 𝜙

(𝜙cx − 𝜙)
δ
) , overperformance

 

 

where pr is the provisional rating, 𝜙cx is the current count of continuous under/over-

performances for team 𝑥 (team 𝑦 receives a similar treatment), and parameters µ, 𝜙, and δ are 

as defined in Section 3.1. 

 

3.1.2 Parameter optimisation 

 

The parameters of the rating system are optimised for predictive accuracy through exhaustive 

search (i.e., grid search) over the hyperparameter space as illustrated in Fig. 1 and Fig. 2. The 

optimisation is restricted to match instances from seasons 2014/15 onwards of the training 

dataset; a sample of 44,264 observations. By restricting the parameter optimisation to 

approximately the last three seasons of data, we ensure that the learnt model is optimised for 

prediction on relatively recent match results. The optimisation is performed in two stages. First, 

the learning rates 𝜆 and 𝛾 are optimised for predictive accuracy with match predictions being 

based on the background ratings. Fig. 1 indicates that the optimal learning rates are 𝜆=0.054 

and 𝛾=0.79, at which point they minimise the prediction error, measured by the Rank 

Probability Score (RPS; refer to Section 5), at 0.211208.  

 

 
 

Fig. 1. Optimal learning rates discovered at 𝜆=0.054 and 𝛾=0.79, at which point the background ratings minimise 

the prediction error, measured by the RPS, at 0.211208. The results are based on training data from seasons 

2014/15 onwards (a sample of 44,264 match instances). 
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The learning rates are optimised on the global scale over all football leagues considered 

by the dataset, and are somewhat higher than the learning rates of 𝜆=0.035 and 𝛾=0.7 reported 

in the original pi-rating version (Constantinou & Fenton, 2013a), but which were solely based 

on the English Premier League (EPL). Note that the missing data incorporated into the training 

dataset as part of this competition, in the form of entire football seasons, is expected to have 

marginally inflated the global optimal learning rates. This is because, in the case where season 

𝑡 is missing, the team ratings at the start of season 𝑡 + 1 are still strongly influenced by match 

results at the end of season 𝑡 − 1 and hence, need to ‘catch up’ to current performance. 

Similarly, and as shown in Fig. 2, the parameters with respect to the provisional ratings 

are optimised at 𝛿=2.5, µ=0.01, and 𝜙=1, at which point the provisional ratings minimise the 

RPS at 0.211198. Note that while the average difference in RPS between the background and 

provisional ratings is rather marginal, it is still important because the form factor only affects 

a part of the 44,264 match instances considered for optimisation (i.e., teams that satisfy the 𝜙 

criterion). In fact, the results show that the provisional ratings have influenced the predictive 

distribution 1X2 by up to a maximum of 2.75%, 2.15% and 4.73% percentage points for each 

respective state of the distribution. 
 

 
 

Fig. 2. Optimal parameters discovered at 𝛿=2.5, µ=0.01, and 𝜙=1, at which point the provisional ratings minimise 

the prediction error, measured by the RPS, at 0.211198. The results are based on training data from seasons 

2014/15 onwards (a sample of 44,264 match instances). 
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3.2     The Hybrid Bayesian Network model 
 

Fig. 3 illustrates the BN model used in conjunction with the rating system to generate match 

predictions. Since the aim here is to convert rating discrepancies into match predictions, we 

require an input node that takes such rating discrepancies as input, and a latent node that outputs 

the posterior probabilities of the 1X2 distribution, given the rating discrepancy input. These 

nodes are Rating Discrepancy (𝑅𝐷) and Prediction (𝑃) as shown in Fig. 3 and Fig. 6. The 

observable node 𝑅𝐷 is in grey background colour in Fig. 3, whereas all of the residual latent 

nodes are in white background colour. Since the latent nodes remain unobserved, 𝑅𝐷 remains 

𝑑-connected to 𝑃 (‘𝑑’ denotes ‘directional’ connection; i.e., a connecting path). 

The latent node Ability Difference (𝐴𝐷) generates posterior ranks of ability difference given 

the observation of the difference in rating between adversaries (i.e., 𝑅𝐷 observations). The 

direction of the arc from 𝐴𝐷 to 𝑅𝐷 enables the model to learn, from data, the 𝑅𝐷 values that 

correspond to each 𝐴𝐷 state. As a result, the BN model generates 𝐴𝐷 distributions that 

maximise 𝑅𝐷 observations; i.e., infers the most probable 𝐴𝐷 distribution that explains the 

observed difference in 𝑅𝐷 between adversaries. Since the data provided for the competition 

includes goal data, the model infers 𝑃 naturally from Goals Home (𝐺𝐻) and Goals Away (𝐺𝐴); 

but note these two nodes are not really required to learn 𝑃. Specifically,  

 

i. 𝑨𝑫: captures 42 distinct ranks of ability difference between adversaries, driven by 

rating discrepancies. At its prior state, 𝐴𝐷 outputs a data-driven histogram of the 

predetermined ranks (see Fig. 6). Since the ranks are inferred from ratings, it makes 

sense that each rank is represented by an equal interval width, rather than by clusters 

(note that no visible clusters exist). The deterministic ranks enable us to capture extreme 

rating discrepancies between adversaries which, as shown in Fig. 4, are very important 

in determining extreme favourites and outsiders. Each rank has rating difference 0.1, 

determined by the granularity of the 42 levels which has been chosen to ensure that for 

any rating discrepancy there are sufficient data points for a reasonably well informed 

prior5. This level of complexity is significantly higher relative to the 28 ranks 

introduced in the original pi-rating system (Constantinou & Fenton, 2013a). The 

relatively big dataset made available for this study, as part of the competition, has made 

it possible for the ranks of team ability difference to increase from 28 to 42. 

 
Table 3. Predetermined levels of team ability difference, where 𝑅 is the rank of rating difference, 𝐶 is 

the rating condition, and 𝑆 is the sample size of match instances that satisfy 𝐶. 

 

𝑹 𝟏 𝟐 … 𝟐𝟐 𝟐𝟑 … 𝟒𝟏 𝟒𝟐 

 

𝑪 
 

> 2.1 
> 2  
and 

 ≤ 2.1 

 
… 

> 0  
and 

 ≤ 0.1 

> −0.1  
and 
 ≤ 0 

 
… 

> −1.9  
and 

 ≤ −1.8 

 
≤ −1.9 

𝑺 201 145 … 9554 8680 … 32 50 

 

ii. 𝑹𝑫: represents a mixture of 42 ~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 distributions (one for each state of 𝐴𝐷). At 

its prior state, 𝑅𝐷 represents the average discrepancy between home and away ratings, 

and assumes that the difference follows a ~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 distribution since the actual data-

driven histogram of ancestor 𝐴𝐷 resembles a perfect ~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 distribution (see 𝐴𝐷 

and 𝑅𝐷 in Fig. 6). This node takes the resulting provisional team ratings as input in the 

form of prxH − pryA. 

 

                                                           
5 The minimum sample size is 32 at R=41. 
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i. 𝑮𝑯/𝑮𝑨: represent discrete distributions which capture the data-driven histogram of 

goals scored for each team at home and away grounds, given 𝐴𝐷. Note that while these 

distributions are not meant to be used as predictors for the number of goals scored by 

each team, they can be used to predict the score difference (in addition to the outcome 

of interest 1X2). 

 

ii. 𝑷: represents a discrete probability distribution for the prediction of interest, with 

probabilities assigned to each of the three states of the 1X2 distribution. 
 

 
 

Fig. 3. The Bayesian Network model that represents the second part of the overall model. The node 𝑅𝐷 takes as 

input the provisional team ratings in the form of prxH − pryA, to generate 1X2 predictions at node 𝑃.  

 

The parameter learning of the BN model is restricted to match instances where both the 

home and away teams have already played a minimum of 506 match instances for each specific 

league and division they participate in. This restriction ensures that team ratings have 

converged well prior to being considered as training samples by the model. As a result, the size 

of the training dataset is reduced from 216,743 to 149,772 samples. Tables 9 to 13, in Appendix 

A, present the Conditional Probability Tables (CPTs) for each of the BN model nodes, which 

are learnt using Maximum Likelihood Estimation for parameter learning, based on the data 

provided for the competition. Fig. 6, in Appendix B, illustrates the prior outputs of the BN 

model.  

Furthermore, Fig. 4 illustrates the sensitivity of states 1X2 of node 𝑃 given 𝐴𝐷, and 

shows that the parameters of the BN model have generalised well over all leagues, divisions 

and seasons. This is because the probability for a home win over all leagues and divisions 

across the world maximises at 𝐴𝐷 = 1, where the home team is assumed to have the greatest 

advantage over the away team in terms of rating, and decreases linearly with minimum 

probability observed at 𝐴𝐷 = 42, when the home team is assumed to be the outsider (and vice 

versa for the probability for an away win). Additionally, the probability for a draw peaks at 𝐴𝐷 

points 22-24, when neither of the teams is assumed to have the advantage, since the 

probabilities for the home and away wins are almost equivalent. However, some instability is 

                                                           
6 In (Constantinou & Fenton, 2013a), 30 iterations of rating development were found to be sufficient in the case 

of the EPL. In this study, the number of iterations has been increased to 50, even though the learning rates are 

higher and promise faster convergence of the ratings. This is because, in this study, we generalise the model over 

52 leagues and hence, it is more than likely that some leagues exist in which the rating difference between the 

strongest and weakest teams is considerably higher relative to the respective difference when only focusing on 

the EPL, as in the original study. 
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observed, particularly at the higher ranks of ability difference, and especially when the away 

team is the strong favourite. This instability may be due to the relatively low sample size 

associated with some of the higher ranks of 𝐴𝐷 (refer to Table 3). 

 

 
 

Fig. 4. Sensitivity analysis of the 1X2 states of node 𝑃, given 𝐴𝐷. 

 

4 Worked example of Dolores 
 

4.1     Predicting match outcomes from team ratings 

  
The worked example is based on the Leicester City vs Stoke City match, dated April 1st 2017. 

This match represents one of the 206 future match predictions submitted to the competition. 

First, we require the prior ratings associated with each of the teams; 𝑥 for Leicester and 𝑦 for 

Stoke. These are: 

 Home prior background rating for team 𝑥: brxH𝑡−1 = 0.463014. 

 Away prior background rating for team 𝑥: brxA𝑡−1 = 0.208624. 

 Away prior background rating for team 𝑦: bryA𝑡−1
= 0.037819. 

 Home prior background rating for team 𝑦: bryH𝑡−1
= 0.537708. 

For prediction, we only require the home and away rating priors for home and away teams 

respectively. First, the algorithm checks if the 𝜙 criterion is met to determine whether any 

under/over-performances occur and, in such an event, considers the provisional, rather than the 

background, ratings. According to Section 3.1.2, the optimal values for the parameters required 

to compute the provisional ratings are 𝛿=2.5, µ=0.01, and 𝜙=1. Since 𝜙=1, an under/over-

performance can be established only when 𝜙 < −1 or 𝜙 > 1 respectively. Data shows that 

𝜙cx = 3 for team 𝑥 and 𝜙cy = −1 for team 𝑦. Team 𝑦 does not satisfy the 𝜙 criterion and 

hence, their away rating remains unchanged and equal to their away background rating:  

pryA = 0.037819 

Team 𝑥 does satisfy 𝜙 > 1 and hence, the algorithm considers the provisional rating: 
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prxH =

{
 

 br + (−µ ×
𝜙cx − 𝜙

(𝜙cx − 𝜙)δ
) , underperformance

br + (µ ×
𝜙cx − 𝜙

(𝜙cx − 𝜙)
δ
) , overperformance

= br + (µ ×
𝜙cx − 𝜙

(𝜙cx − 𝜙)δ
) = 

 

0.463014 + (0.01 ×
3 − 1

(3 − 1)2.5
) = 0.466550 

up from the background rating of 0.463014. These can now be used as input to the BN model 

in the form of prxH − pryA = 0.466550 − 0.037819 = 0.428730. The BN model can be 

constructed as discussed in Section 3.2, and with reference to the CPTs provided in Appendix 

A. Furthermore, Fig. 7 in Appendix B illustrates the outputs of all the BN latent nodes 

associated with the above input. The prediction (i.e., output on node 𝑃 in Fig. 7) is: 

𝑃(1) = 0.486,    𝑃(𝑋) = 0.261,    𝑃(2) = 0.253 

For comparison, the average bookmakers’ odds (Football Data, 2017) associated with this 

match instance are: 

𝑂𝑑𝑑𝑠(1) = 2.04,    𝑂𝑑𝑑𝑠(𝑋) = 3.44,    𝑂𝑑𝑑𝑠(2) = 3.83 

which, following normalisation, convert to  

𝑃(1) = 0.470,    𝑃(𝑋) = 0.279,    𝑃(2) = 0.251 

 

4.2     Revising team ratings from match results 
 

The match outcome was 2-0 in favour of team 𝑥 (i.e., Leicester City). The next step is to revise 

both the home and away ratings for both the home and away teams. We first compute the goal 

difference expectation for 𝑥 and 𝑦 respectively: 

gpx = b
|brxH𝑡−1|

𝑐 − 1 = 10
|0.463014|

3 − 1 = 0.426718 

gpy = b
|bryA𝑡−1

|

𝑐 − 1 = 10
|0.037819|

3 − 1 = 0.029453 

 From this, we can compute the expected goal difference for the match: 

 

gp = gpx − gpy = 0.426718 − 0.029453 = 0.397265 

 

Since the observed goal difference is 2 in favour of team 𝑥, go = gox − goy = 2 − 0 = 2, the 

goal difference error between predicted and observed goal difference is: 

 

𝑒 = |go − gp| = |2 − 0.397265| = 1.602735 

 

We then diminish the impact of the goal difference error for both teams 𝑥 and 𝑦 respectively: 

 

𝜓𝑥(𝑒) = {
𝜓(e), gp < go

−𝜓(e), otherwise
= 𝜓(e) = c × log10(1 + e) = 
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3 × log10(1 + 1.602735) = 1.246290 
 

𝜓𝑦(𝑒) = {
𝜓(e), gp > go

−𝜓(e), otherwise
= −𝜓(e) = −(c × log10(1 + e)) = 

 

−(3 × log10(1 + 1.602735)) = −1.246290 

 

We can now revise the background ratings. For this, we also require the optimal 𝜆 and 𝛾 

parameters (see Section 3.1.2). Specifically, 

 

 brxH𝑡 = brxH𝑡−1 + 𝜓𝑥(𝑒) × λ = 0.463014 + 1.246290 × 0.054 = 0.530314 

 

 brxA𝑡 = brxA𝑡−1 + (brxH𝑡 − brxH𝑡−1) × γ = 

0.208624 + (0.530314 − 0.463014) × 0.79 = 0.261791 
 

 bryA𝑡
= bryA𝑡−1

+𝜓𝑦(𝑒) ×  λ = 0.037819 + (−1.246290) × 0.054 = −0.029481 

 

 bryH𝑡
= bryH𝑡−1

+ (bryA𝑡
− bryA𝑡−1

) × γ = 

0.537708 + (−0.029481 − 0.037819) × 0.79 = 0.484541 
 

Finally, we need to update the parameter 𝜙 for both 𝑥 and 𝑦 teams. This would be the fourth 

continuous over-performance for team 𝑥; i.e., this is because the expectation was 0.397 goals 

difference in favour of team 𝑥, relative to the observation of 2 goals difference in favour of 

team 𝑥. Similarly, this would be the second continuous under-performance for team 𝑦. As a 

result, 𝜙cx = 4 and 𝜙cy = −2. Now the ratings are ready to be used for future match prediction 

(i.e., repeat of Section 4.1) and later revised based on future match results (i.e., repeat of Section 

4.2). 

5 Evaluation and discussion 
 

The model is evaluated in terms of both predictive accuracy and profitability against published 

market odds. This section covers these two methods of predictive evaluation in turn. 

 

5.1     Predictive Accuracy 
 

As part of the competition, the RPS function (Epstein, 1969) is selected to determine the 

predictive accuracy of the models. The RPS is shown to be more appropriate in assessing 

probabilistic football match predictions than other more popular metrics, such as the RMS and 

Brier score (Constantinou & Fenton, 2012a). This is because the RPS is a scoring function 

suitable for evaluating probabilistic outcomes of ordinal, rather than nominal, scale. For 

example, in the case of predicting the winning lottery number, if the winning number is 10 then 

a prediction of 11 is no better than a prediction of 49; i.e., they are both equally wrong. 

However, in the case of football match prediction, if the observed outcome is a home win, then 

a prediction of a draw is less inaccurate than a prediction of an away win, even though neither 

of those outcomes occurred; i.e., they are not equally wrong.  
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The RPS represents the difference between cumulative predicted and observed 

distributions, and is defined as: 

𝑅𝑃𝑆 =
1

𝑟 − 1
∑(∑(𝑝𝑗 − 𝑒𝑗)

𝑖

𝑗=1

)

2
𝑟−1

𝑖=1

 

 

where 𝑟 is the number of distribution outcomes (𝑟 = 3 in our case), 𝑝𝑗 is the predicted outcome 

at position 𝑗 such that 𝑝𝑗 ∈ [0, 1] for 𝑗 = 1, 2, 3 and 𝑝1 + 𝑝2 + 𝑝3 = 1, and 𝑒𝑗 is the observed 

outcome at position 𝑗 such that 𝑒𝑗 ∈ [0, 1] for 𝑗 = 1, 2, 3 and 𝑒1 + 𝑒2 + 𝑒3 = 1. 
 

Table 4. The results from the international special issue competition Machine Learning for Soccer (Berrar et al., 

2017), determined by the RPS function. ‘Team ACC’ represents Dolores described in this paper. 

 
 

Position 
 

Participant 
 

RPS 
Relative  

performance 

1 Team OH 0.206307 100% 
2 Team ACC 0.208256 99.06% 
3 Team FK 0.208651 98.88% 
4 Team HEM 0.217665 94.78% 
5 Team EB 0.225827 91.36% 
6 Team LJ7 0.231297 89.2% 
7 Team AT 0.398058 51.83% 
8 Team LHE 0.451456 45.7% 
9 Team EDS 0.451456 45.7% 

 

Table 4 presents the results from the international special issue competition Machine 

Learning for Soccer, as determined by the RPS function. Dolores, stated as ‘Team ACC’ in 

Table 4, ranked 2nd in the competition with a predictive error 0.94% higher than the top and 

116.78% lower than the bottom participants. The results are based on match predictions 

submitted for 206 future matches, from 26 different leagues, played from March 31 to April 9 

in 2017. Crucially, the predictive accuracy achieved on the test dataset demonstrates lower 

average predictive error when compared to the training dataset error, and this strongly suggests 

that the model has not overfitted the data. 

In addition to the results from the competition, Table 5 illustrates the predictive 

accuracy achieved by the model for each of the 52 leagues, and based on match instances from 

seasons 2014/15 to March 19, 2017 (i.e., data used for optimisation). The leagues are ranked 

by lowest RPS. Overall, the results show that the predictive accuracy in lower divisions (shaded 

background) tends to be lower than the predictive accuracy in top divisions. This is because 

the rating discrepancy between teams in lower divisions tends to be lower, on average, than 

between teams in top divisions; implying that the difference in team ability between favourites 

and outsiders in lower divisions is not as high as in top divisions. Specifically, and based on 

the training dataset used for optimisation (refer to Section 3.1.2), the average rating difference 

between teams in lower divisions is 23.7% lower compared to the average rating difference 

between teams in top divisions. This also explains why bookmakers’ odds associated with 

lower division matches tend to be more ‘uncertain’ (i.e., rarely indicate a strong favourite) 

relative to the odds offered for top division matches.  

 

 

 

 

 

                                                           
7 Late submission. 
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Table 5. The 52 leagues ranked by the model’s ability to correctly predict match outcomes in each of those 

leagues, as determined by the RPS. Leagues in shaded background represent lower division leagues. 

 
 

Rank 
 

League 
 

RPS 
Rank 

(cont.) 
League 
(cont.) 

RPS  
(cont.) 

Rank 
(cont.) 

League 
(cont.) 

RPS 
(cont.) 

1 GRE1 0.186837 19 ECU1 0.207701 35 BRA2 0.213859 
2 POR1 0.187336 20 GER1 0.207865 36 ENG2 0.214551 
3 TUN1 0.189627 21 TUR1 0.207872 37 USA2 0.214765 
4 SPA1 0.189776 22 ITA2 0.208106 38 AUT1 0.214834 
5 HOL1 0.198428 - Competition 0.208256 39 FRA2 0.215712 
6 NZL1 0.199761 23 MR1 0.208347 40 FRA3 0.217333 
7 DZA1 0.199978 24 ISR1 0.208738 41 JPN2 0.217748 
8 ITA1 0.200186 25 NOR1 0.209523 42 AUS1 0.219293 
9 RUS1 0.201090 26 ZAF1 0.209934 43 GER2 0.220783 
10 SCO2 0.202711 27 SCO1 0.210492 44 JPN1 0.220841 
11 ENG1 0.203025 - Average 0.211198 45 GER3 0.220901 
12 SWE1 0.203678 28 ARG1 0.211560 46 ENG5 0.221096 
13 FRA1 0.205407 29 USA1 0.211943 47 MEX1 0.222098 
14 CHN1 0.205870 30 SPA2 0.212160 48 CHL1 0.222686 
15 BEL1 0.205888 31 FIN1 0.212238 49 ENG3 0.224518 
16 CHE1 0.206125 32 DNK1 0.212842 50 ENG4 0.225497 
17 BRA1 0.206403 33 RUS2 0.212910 51 SCO3 0.234675 
18 VEN1 0.207126 34 KOR1 0.213330 52 SCO4 0.235894 

 

5.2     Profitability 
 

Naturally, the performance of a football model can also be determined by its ability to generate 

profit against published market odds. In (Constantinou & Fenton, 2013b) we argued that it can 

be misleading to focus the evaluation of a football model solely on maximising or minimising 

a scoring function because a) different scoring functions can generate different conclusions 

about which model is ‘best’, and b) in financial domains researchers demonstrated a weak 

relationship between the various accuracy metrics and actual profitability (Leitch & Tanner, 

1991). 

On the other hand, profitability-based evaluations exhibit other kind of limitations and 

hence, it would be best to report results based on both accuracy and profitability metrics. 

Specifically, profitability depends on: 

 

i. The published market odds, which differ depending on the selected bookmaker for 

validation purposes. However, in (Constantinou & Fenton, 2013c) we showed that the 

divergence in odds between bookmaking firms is limited to the point that arbitrage 

opportunities are eliminated or, otherwise, minimised. 

 

ii. The bookmakers’ incorporated profit margin, which is also known as the ‘over-

round’, and represents the ‘unfair’ advantage introduced in published market odds, to 

practically guarantee profit for the house8 over time. In (Constantinou & Fenton, 2013c) 

we showed that while the discrepancy in profit margins between bookmakers decreases 

over time due to competition, they can still differ considerably between online 

bookmakers and hence, the selection of the bookmaker can have a significant impact 

on profitability.  

 

iii. The betting strategy, which is an important decision making problem. Betting decision 

making is normally based on a discrepancy threshold associated with the difference 

between predicted and bookmakers’ probabilities (converted from odds), in favour of 

                                                           
8 This ‘unfairness’ is similar to the payoffs offered on roulette where the house has an edge, or a profit margin, of 

1/37 (or 2.7%) in the case of the European roulette, and 2/38 (or 5.26%) in the case of the American version. 
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the model in terms of payoff. The value of the bet is either fixed throughout the betting 

simulation, or determined by the Kelly criterion (Kelly, 1956). 

 

iv. The interpretation of the results, which is typically based on the return-on-investment 

(ROI) or the net profits. In (Constantinou & Fenton, 2013b) we argued that ROI can be 

a misleading figure. Consider the following two scenarios: 

 

a. Model 𝐴 suggests two £100 bets and both are successful (100% winning rate), 

returning a net profit of £200, which represents a ROI of 100%. 

 

b. Model 𝐵 suggests five £100 bets and four of them are successful (80% winning 

rate), returning a net profit of £300, which represents a ROI of 60%.  

 

A profitability evaluator based on ROI would have erroneously considered model 𝐵 as 

being inferior at maximising profit than model 𝐴. This is because it fails to consider the 

possibility that model 𝐴 might have failed to discover all of the potential betting 

opportunities in the same way model 𝐵 did. Conversely, a model which maximises ROI 

can still be useful in cases where we are interested in minimising the risk of negative 

returns in exchange for a lower expected net profit. 

  

In this paper, both the ROI and net profit figures are reported. However, betting decision 

making is optimised for net profits and not for ROI. Specifically, profitability figures: 

 

i. Are based on Football-Data (2017), which captures the published market odds offered 

by a number of bookmakers over many leagues. The odds are recorded on Friday 

afternoons for weekend games and on Tuesday afternoons for midweek games. 

 

ii. Consider the maximum bookmakers’ odds, which represent the best available odds over 

a number of fixed odds bookmakers (e.g. excluding Betfair Exchange odds). 

 

iii. Are based on all the leagues offered by Football-Data (2017); a total of 21 leagues, 

where 11 are top divisions and 10 are lower divisions, starting from season 2010/11 to 

March 2017. 

 

iv. Do not assume that the profit margin is eliminated, which hovers between -0.04% and 

1.63%, for the best available odds (as discussed in (ii) above). 

 

v. Do not take advantage of any arbitrage opportunities that may arise between 

bookmakers’ odds. 

 

vi. Are based on the typical betting decision strategy whereby a bet is simulated on the 

outcome of a match instance that offers a payoff which exceeds a predetermined level 

of discrepancy between predicted and offered odds, in terms of probability. The 

discrepancy threshold found to maximise overall net profits is 8% (absolute). If more 

than one outcome meet the discrepancy threshold, only the outcome with the highest 

discrepancy is chosen for betting. 

 

Tables 6 and 7 provide the results on profitability from betting simulations, for top and 

lower divisions respectively. In both tables, the results are ranked by lowest profit margin. 

Overall, the results illustrate marginal profits over all top division leagues and marginal losses 
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over all lower division leagues. The discrepancy in profitability between top and lower 

divisions could be explained by the higher profit margins incorporated into the odds associated 

with the lower division matches. However, lower profit margins do not necessarily imply 

higher profitability (as shown later in this section). Over all of the 21 leagues, and 

approximately 7 seasons of betting simulations, the model has invested £12,100 in bets (i.e., 

12,100 bets of £1 each) and generated £12,069.65 in winnings. Curiously, the model performs 

relatively well when it comes to the top European football leagues, such as the Spanish La Liga 

and especially the EPL. Note that the top European leagues, including the German Bundesliga, 

tend to generate the largest betting volumes and this increases their importance in terms of 

competition between bookmakers, which partly explains why they incorporate the lowest profit 

margins.  

It has long been assumed that enormous betting volumes dictate a part of the odds; a 

way for bookmakers to exchange marginal levels of predictive accuracy to maximise profits. 

Odds which are biased due to betting volumes can be exploited by predictive models. This 

study supports this assumption based on the high profitability generated on match instances of 

the EPL, which is by far the most popular football league. It is also crucial to note that the 

popularity of the EPL has also made it the most likely choice for assessing football match 

prediction models in the academic literature. This is problematic because, as shown in Tables 

6 and 7, the level of profitability observed on match instances of the EPL does not repeat for 

any of the residual 20 leagues. Additionally, the results show that the profitability between 

seasons, based on bets ranging from 76 to 135 per EPL season, is not consistent and ranges 

between -6.4% and 38% ROI, or -£6.5 and £39.7 net profits. 

 

 
Table 6. Profitability for top division leagues in Europe, ranked by the bookmakers’ build in profit margin. 

 
 

League 
Bets  

simulated 
Average  

betting odds 
 

Win rate 
 

Returns 
 

Profit 
 

ROI 
Profit  

margin 

GER1 559 5.38 29.87% £570.89 £11.89 2.13% -0.04% 
SPA1 667 6.31 25.04% £743.46 £76.46 11.46% 0.00% 
ENG1 686 5.20 28.57% £823.72 £137.72 20.08% 0.05% 
ITA1 767 5.43 23.47% £697.94 -£69.06 -9.00% 0.12% 
FRA1 707 4.80 27.44% £672.22 -£34.78 -4.92% 0.32% 
HOL1 442 4.42 28.96% £402.42 -£39.58 -8.95% 0.83% 
SCO1 325 5.16 29.54% £371.70 £46.70 14.37% 0.84% 
POR1 510 6.79 21.57% £483.85 -£26.15 -5.13% 0.95% 
TUR1 393 5.29 22.90% £369.86 -£23.14 -5.89% 1.03% 
BEL1 382 4.29 31.15% £392.17 £10.17 2.66% 1.10% 
GRE1 556 7.33 18.53% £531.15 -£24.85 -4.47% 1.20% 

Overall 5,994 5.54 26.09% £6,059.38 £65.38 1.09% 0.58% 

 

 
Table 7. Profitability for lower division leagues in Europe, ranked by the bookmakers’ build in profit margin. 

 
 

League 
Bets  

simulated 
Average  

betting odds 
 

Win rate 
 

Returns 
 

Profit 
 

ROI 
Profit  

margin 

ENG2 750 3.28 31.33% £655.74 -£94.26 -12.57% 0.61% 
FRA2 735 3.82 25.85% £631.67 -£103.33 -14.06% 0.67% 
GER2 474 3.71 28.06% £419.46 -£54.54 -11.51% 0.73% 
ENG3 927 3.38 33.76% £959.12 £32.12 3.46% 0.77% 
ENG4 838 3.40 32.10% £823.99 -£14.01 -1.67% 0.79% 
ITA2 860 4.04 32.56% £937.62 £77.62 9.03% 1.20% 

SCO2 281 5.24 26.33% £308.48 £27.48 9.78% 1.27% 
SPA2 673 4.12 28.68% £631.36 -£41.64 -6.19% 1.33% 
SCO3 343 4.58 33.24% £373.42 £30.42 8.87% 1.44% 
SCO4 225 4.91 34.67% £269.41 £44.41 19.74% 1.63% 

Overall 6,106 3.83 30.66% £6,010.27 -£95.73 -1.57% 1.04% 
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Table 8 illustrates the overall profitability per football season, over all of the 21 leagues. 

The results show that while the profit margins have been steadily decreasing over time, and 

while lower profit margins tend to promise greater returns, this has not resulted into increased 

profitability. It is important to note that lower profit margins translate into greater payoffs, and 

which subsequently increase the betting frequency due to a greater number of match instances 

satisfying the criteria for simulating a bet (assuming the betting decision threshold remains 

constant). The change in betting frequency does not necessarily translate into increased 

profitability. This behaviour invites future research on dynamic betting decision thresholds 

driven by profit margins. It is worth mentioning that the bookmakers who offer betting 

exchange services (not considered in this study), such as Betfair, enable bettors to minimise 

profit margins normally below 0.5%, but with a commission fee on winnings up to 5%, which 

can be discounted depending on betting activity. 

 
Table 8. Overall profitability generated per football season, over all of the 21 leagues. 

 
 

Season 
Bets  

simulated 
Average  

betting odds 
 

Win rate 
 

Returns 
 

Profit 
 

ROI 
Profit  

margin 

2010/11 1475 4.62 27.93% £1,469.06 -£5.94 -0.40% 1.37% 
2011/12 1562 5.12 26.06% £1,538.89 -£23.11 -1.48% 0.98% 
2012/13 1691 4.42 29.92% £1,758.98 £67.98 4.02% 0.86% 
2013/14 1713 4.75 28.96% £1,738.09 £25.09 1.46% 0.54% 
2014/15 2099 4.63 28.68% £2,097.33 -£1.67 -0.08% 0.15% 
2015/16 2054 4.68 28.24% £2,074.75 £20.75 1.01% 0.71% 
2016/17 1506 4.58 28.29% £1,392.55 -£113.45 -7.53% 0.49% 

    
Further to what has been discussed in Section 5.1, and with reference to Table 5, Fig. 5 

illustrates the ROI9 generated for top divisions (left chart) and lower divisions (middle chart), 

ordered by highest predictive accuracy; i.e., lower RPS. In both cases, the results weakly 

suggest that the higher the unpredictability of a league, the higher the profitability. However, 

this outcome contradicts the results presented in Tables 6 and 7, which indicate that profitability 

decreases for lower divisions that are generally associated with higher unpredictability. 

Nonetheless, segregating each of the top and lower divisions by season (right graph), for a total 

of 143 leagues (21 leagues over approximately seven seasons), and ordering them by lower 

RPS as in previous cases, reveals that unpredictability does indeed weakly associate with 

higher profits (the linear trend starts and ends at approximately -2.5% and 4% ROI). 

 

 

 
 

Fig. 5. The ROI generated for top divisions (left), lower divisions (middle), and all divisions segregated by season 

(right) and ordered by higher predictive accuracy (lower RPS). Linear trend is superimposed as a dashed line. 

 

 

 

                                                           
9 ROI has been chosen over the net profits to ensure that the graphs in Fig. 5 do not generate a trend that is biased 

towards the number of bets simulated per league. 
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6 Concluding remarks 
 

The paper described Dolores, which is a model designed to predict football match outcomes 

from all over the world, as part of the international special issue competition Machine Learning 

for Soccer. The model is novel in its approach which is based on a) dynamic ratings for 

temporal analysis, and b) a hybrid BN model that takes the resulting ratings from (a) as input 

to infer the 1X2 distribution. The model was trained with a dataset of 52 leagues, which 

includes different divisions from 35 countries. Unlike past relevant literature, this model is 

designed in a way that enables it to predict football match outcomes of teams in one country 

by observing match outcomes of teams in multiple countries. 

The predictive accuracy of Dolores was assessed as part of the competition, which 

involved predicting 206 future match instances from different leagues during March in 2017. 

The paper extends the assessment of the model to a profitability-based validation, based on 

bookmakers’ odds from 21 different leagues and over a period of approximately seven football 

seasons. The results indicate marginal profits of 1.09% ROI over all top divisions, and marginal 

losses of -1.57% ROI over all lower divisions. While the overall ROI10 is not impressive, it still 

serves as empirical proof that the model, which was solely based on goal data, has generalised 

well over all leagues and divisions, even accounting for the missing data incorporated into the 

dataset as part of the challenge. Furthermore, while detailed historical performance for each 

team is typically required to maximise predictive accuracy, Dolores provides empirical proof 

that a model can make a good prediction for a match outcome between teams 𝑥 and 𝑦 even 

when the prediction is derived from historical match data that neither 𝑥 nor 𝑦 participated in. 

Further to profitability, it is important to note that relevant academic literature is often 

driven by profitability from betting simulations on match instances of the EPL. In many cases, 

these results are based on a single season of the EPL. Interestingly, Dolores generated 20%+ 

ROI based on approximately seven seasons of the EPL; a rather impressive performance. 

However, as shown in Tables 6 and 7, this level of profitability is not repeated for any of the 

residual 20 leagues taken into consideration. Given that the EPL is the most popular league, 

this enforces the popular hypothesis that the enormous betting volumes dictate part of the 

published market odds, and this enables predictive models to exploit such inaccuracies. 

Moreover, the results show that profitability between seasons of the same league is not 

consistent. In the case of the EPL, and over seven seasons of betting simulations, annual 

profitability ranges between -6.4% and 38% ROI. These all-inclusive results raise some 

concerns about the validity of conclusions in past relevant literature. This is because, while 

there is nothing wrong with demonstrating that a model can identify such (possibly) biased 

odds and generate profit from bets on match instances of the EPL, there is still a risk that such 

results will be misinterpreted as generic and independent of the EPL. The results from this 

study also suggest that it would be best to extend assessments of profitability over multiple 

seasons. 

Finally, past studies have shown that it is possible to increase the predictive accuracy 

of a model by incorporating other key factors, such as player transfers, availability of key 

players, participation in international competitions, new coach, level of injuries, attack and 

defence ratings, and even team motivation/psychology in the form of expert knowledge 

(Constantinou et al, 2012b; Pena, 2014; Szczepanski & McHale, 2015; Constantinou & Fenton, 

2017). Because of the competition requirements and the multiple leagues captured by the 

dataset, the model presented in this paper had to be restricted to goal scoring data. Future work 

will investigate ways to extend Dolores towards accounting for such additional key factors of 

interest. 

                                                           
10 Note that the betting strategy was optimised for net profits rather than ROI (refer to Section 5.2, point(iv)). 
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Appendix A: Parameterised CPTs of the Hybrid Bayesian Network  
 
 

Table 9. The CPT for discrete node Ability difference (AD). 

 
State p 

1 0.00134204 
2 0.00096814 
3 0.00143552 
4 0.00240365 
5 0.00345859 
… … 
38 0.00085463 
39 0.00047405 
40 0.00027375 
41 0.00021366 
42 0.00033384 

 

 

Table 10. The CPT for continuous node Rating difference (RD). 

 
    AD 
RD 

 
1 

 
2 

 
… 

 
41 

 
42 

 
p 

~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 

(
2.26633910,
0.01734093

) 

~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 

(
2.05039323,
0.00083939

) 

 
… 

~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 

(
−1.83382988,
0.00071413

) 

~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 

(
−2.08811346,
0.02281514

) 

 

Table 11. The CPT for discrete node Goals Home (GH). 

 
AD 

GH 
 

1 
 

2 
 

3 
 

4 
 
… 

 
39 

 
40 

 
41 

 
42 

0 0.0348259 0.0275862 0.0465116 0.0555556 … 0.4225352 0.6097561 0.4375 0.46 
1 0.1194030 0.1310345 0.1720930 0.1916667 … 0.3943662 0.1951219 0.375 0.4 
2 0.2437811 0.2965517 0.2790698 0.3194444 … 0.1549296 0.1219512 0.1875 0.1 
3 0.2238806 0.2068966 0.2 0.2111111 … 0.0281690 0.0487805 0.0 0.02 
4 0.1741293 0.1172414 0.1162791 0.1277778 … 0.0 0.0243903 0.0 0.02 
5 0.0845771 0.1103448 0.1069767 0.0416667 … 0.0 0.0 0.0 0.0 
6 0.0796020 0.0551724 0.0511628 0.0361111 … 0.0 0.0 0.0 0.0 

7+ 0.0398010 0.0551724 0.0279070 0.0166667  0.0 0.0 0.0 0.0 

 

 

Table 12. The CPT for discrete node Goals Away (GA). 

 
AD 

GA      
 

1 
 

2 
 

3 
 

4 
 
… 

 
39 

 
40 

 
41 

 
42 

0 0.5621890 0.4896552 0.5767442 0.5222222 … 0.0704225 0.1219512 0.0625 0.0 
1 0.3184079 0.3931034 0.2930233 0.35 … 0.2394366 0.2195122 0.21875 0.14 
2 0.1094527 0.0965517 0.1069767 0.1 … 0.2535211 0.1951219 0.375 0.2 
3 0.0099502 0.0137931 0.0186047 0.0222222 … 0.1690141 0.1707317 0.125 0.22 
4 0.0 0.0 0.0046512 0.0055556 … 0.1830986 0.1707317 0.09375 0.18 
5 0.0 0.0068966 0.0 0.0 … 0.0563380 0.0731707 0.0625 0.1 
6 0.0 0.0 0.0 0.0 … 0.0281690 0.0487805 0.03125 0.06 

7+ 0.0 0.0 0.0 0.0  0.0 0.0 0.03125 0.1 
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Table 13. The CPT for discrete node Prediction (P). 

 
GH 0 1 … 6 7+ 

GA 
P 

0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ … 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 … 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 
X 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 … 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
2 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 … 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

 

Appendix B: Prior and posterior outputs of the Bayesian Network 
 

 
 

Fig. 6. The prior outputs of the parameterised Bayesian Network model (graph produced in AgenaRisk). 
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Fig. 7. The posterior outputs of the Bayesian Network model based on the worked example of Section 4. 
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