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ABSTRACT: We report the charge transport mechanism, long-term stability and 

UV-Visible-NIR photo-responsivity of single crystals of [60]PCBM 

(phenyl-C61-butyric acid methyl ester) – the dominant acceptor material in organic 

photovoltaics. Despite [60]PCBM’s paramount role in such device, its intrinsic 

properties was largely unknown because of highly disordered solution-processed 

films, the electron transport mechanism remained ill-defined, and the long-term 

stability was poor – posing a major bottleneck for advancing cell efficiency and 
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stability. We employed a liquid−liquid interfacial precipitation strategy to grow single 

crystals of [60]PCBM, which allowed us to experimentally elucidate its electron 

transport properties, long-term stability and photo-responsivity. 

Temperature-dependent mobility studies enabled us to reveal its charge transport 

mechanism. Promisingly, [60]PCBM single crystals were found to exhibit a more 

favorable band-like charge transport mechanism at room temperature and present 

electron mobility exceeding their thin-film counterparts by two orders of magnitude. 

Photodetectors based on single crystals show broadband photo-responsivity from UV, 

Visible to NIR regions. Long-term stability test showed the performance of devices 

based on single crystals remained 80% after 480-hour aging, whereas the performance 

of thin film devices dropped by over 80% under the same condition. Our findings 

underscore single crystals as a key strategy to achieve breakthroughs in highly 

efficient and stable devices. 

In recent years, organic semiconducting materials have attracted considerable 

interest because of their advantages of large-area coverage, low-cost processing, and 

structural flexibility.1–5 The fullerene derivative of [6,6]-phenyl C61 butyric acid 

methyl ester ([60]PCBM) is an n-type organic semiconductor with good electric 

properties and solubility in most organic solvents.6,7 These advantages allow 

tremendous applications of [60]PCBM in solution-processed organic field-effect 

transistors (OFETs), photodetectors (PDTs) and organic photovoltaics (OPVs).8–12 

Particularly, as the most widely used electron acceptor, [60]PCBM has important 

functions in OPVs with high power conversion efficiency.13–15 However, most of 
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 3

these applications are yet based on [60]PCBM in amorphous phase, which limits the 

enhancement of the device performance. Grain boundaries and molecular disorder in 

amorphous thin films scatter the charge carriers by the effect of coulomb scattering, 

which results in the reduction of charge carrier mobility.16,17 The absence of these 

scattering centers is the fundamental merit of organic crystals.18 A significant number 

of studies have considered that organic crystals are ideal materials for the 

enhancement in device performance because of their highly ordered molecules.19–21 

However, the side group attached to C60 makes [60]PCBM hard to crystallize, leading 

to the formation of disordered aggregates composed of nanocrystals rather than 

crystals in the microscopic scale, which has prevented the material from reaching its 

ultimate performance limits.22,23 Thus, this challenge remains a major bottleneck in 

the advancement of device performance. Particularly in the case of OPVs, tremendous 

efforts have been made to design and synthesize new organic electron conductors as 

“fullerene-free” electron acceptor alternatives.24,25 

Thus, we were motivated to grow single crystals of [60]PCBM to address the 

lack of fundamental understanding of its intrinsic stability, photo-responsivity and 

charge transport properties, particularly their intrinsic upper limit of electron mobility, 

and to reveal a clear mechanism for charge transport that could be used to devise 

rational strategies for engineering this crucial device component.26 
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(a) 

(b) (c) 

Figure 1 (a) Schematic diagram of [60]PCBM single crystals growth by liquid−liquid 

interfacial precipitation method; (b) OM image, (c) SEM image and (d) AFM 2D image with 

(e) corresponding height profile of [60]PCBM single crystals; (f) TEM image and (inset) 

corresponding SAED pattern and (g) XRD pattern of [60]PCBM single crystals. 

(d) 

(g) (e) (f) 
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 5

Single Crystal Growth and Characterization 

[60]PCBM ribbon-like single crystals were obtained through liquid−liquid 

interfacial precipitation method,23 as shown in Figure 1a. After [60]PCBM is 

dissolved in chlorobenzene (CB) at a concentration of 3 mg mL-1, the antisolvent 

isopropanol (IPA) was injected onto the surface of [60]PCBM solution. Thus, a 

liquid−liquid interface is formed. The diffusion of the antisolvent into PCBM solution 

will drive the precipitation of [60]PCBM in the form of crystals. After 24 hours’ 

growth, [60]PCBM single crystals are achieved. The crystals obtained were then 

re-dispersed in tiny amount of methanol, producing a suspension well-suited for 

moving onto a substrate by pipette. After 24 hours’ thermal annealing under vacuum 

to remove the residual solvent molecules,27 the samples can be used for microscopy 

imaging or device fabrication. 

 After obtaining [60]PCBM single crystals, we proceed to characterize their 

morphologies via optical microscope (OM), scanning electron microscopy (SEM) and 

atomic force microscopy (AFM), as shown in Figure 2b-e, respectively. The OM 

images (Figure 1b) show that the [60]PCBM ribbon crystals exhibit micrometer-scale 

length. 50 individual crystals were studied and the histogram of their dimensions are 

summarized in Figure S1. The average lengths achieved on 50 individual crystals is 

(138 ± 28.6) µm. [60]PCBM ribbon crystals present two-dimensional nano-structures 

with the width of (13.4 ± 3.15) µm and the thickness of (148 ± 34.8) nm. The crystal 

structures of [60]PCBM ribbon crystals were studied by select area electron 
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 6

diffraction (SAED) as shown in Figure 1f. The presence of discrete diffraction points, 

and the fact that no change in the SAED patterns is observed for different parts of the 

same single crystals, indicates the single crystallinity of [60]PCBM ribbon crystals. 

To further confirm the crystal structure, we performed an X-ray diffraction (XRD) 

study. The room-temperature XRD pattern of the as-prepared single crystals is shown 

in Figure 1g. The structure can be indexed with a solvent-free monoclinic crystal 

system with cell dimensions of a = 13.34 Å, b = 15.57 Å, c = 19.47 Å, which well 

coincides with the previous report in the literature.27 These morphology studies 

indicate that high quality [60]PCBM single crystals are successfully obtained. 
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(a) (b) 

(c) 
(d) 

Figure 2 (a) Schematic diagram and (b) SEM image of device structure based on 

[60]PCBM single crystals; (c) Typical transfer characteristics of single crystal devices in 

n-channel operation mode under positive drain bias; (d) Typical output characteristics of 

single crystal device in n-channel operation mode under positive drain bias. 
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 8

Charge Transport Properties 

The single-crystalline nature of [60]PCBM ribbons indicates their potential use 

in studying the intrinsic charge transport properties. This is because the minimized 

molecular disorder and defects usually give organic single crystal a high charge 

mobility, which is required in organic electronic device, such as OFETs and PDTs, to 

reduce the recombination of charge carriers.28–30 Different methods have been used to 

assess the carrier mobility in organic materials like time-of-flight (TOF) methods, 

space charge limited current (SCLC) methods and organic field-effect transistor 

(OFET) methods. Among them, the OFET method is most frequently used due to its 

ability to combine a rather simple and flexible implementation with accurate and 

reproducible results.31 Therefore, in this work we employed this method to study the 

charge transport properties of [60]PCBM single crystals. 

OFET devices based on single crystals were fabricated with bottom-gate and 

top-contact configuration. Figures 2a and b respectively show the schematic diagram 

and the SEM images of the single crystal OFET device. Typical transfer 

characteristics of single crystal device is shown in Figure 2c. The output 

characteristics in n-channel operation modes is shown in Figure 2d, indicating 

excellent gate modulation. The mobility was gate bias dependent and we extracted the 

mobility by linear fitting of (IDS)1/2 vs VGS curves. The best charge transport 

performance achieved from single crystal devices was an electron mobility (µe) of 

1.28 cm2 V−1 s−1 as shown in Figure 2c. The histograms of electron mobility obtained 

from 50 devices are shown in Figure S2. We achieved an average µe of (0.98 ± 0.18) 
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cm2 V-1 s-1 (range: 0.65 – 1.28), Ion/Ioff > 104, and VT between 11.3 and 15.3 V. OFETs 

based on [60]PCBM thin films were also fabricated for comparison. The fabrication 

details were included in Experimental Section and the OM and AFM images of 

device structure were shown in Figure S3 and S4 in the Supporting Information. For 

thin film devices, the best charge transport performance achieved was a relatively low 

µe of 6.9 × 10-3 cm2 V−1 s−1 as shown in Figure S5. The output characteristics in 

n-channel operation modes of thin-film devices is shown in Figure S6, indicating 

excellent gate modulation. With 50 devices tested, average µe of (4.6 ± 1.4 × 10-3) cm2 

V-1 s-1 (range: 2.1 – 6.9×10-3, Figure S7), Ion/Ioff > 102, and VT between 23.5 and 36.3 

V were obtained.  

This comparison clearly indicates the much better charge transport properties of 

[60]PCBM single crystals; as they exhibit an electron mobility more than two orders 

magnitude higher than that of the thin-film counterparts. This excellent feature will 

benefit both OPV and PDT devices. For OPVs, higher charge mobility is attribute to 

reduction of the charge carrier recombination to enhance the performance of organic 

photovoltaics,28–30 while for PDTs, higher charge mobility would lead to high 

efficiency of the extraction of photo-generated carriers, and result in the better 

performance of PDTs.32 
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 10

 

  

(a) (b) 

(c) (d) 

Figure 3 Transfer characteristics of single crystal devices in n-channel operation mode at the 

temperature from (a) 300K to 200K and (b) 200K to 80K; (c) Temperature dependence of mobility 

and (d) Ln(µ) versus 1/T for these two kinds of devices.  
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 11 

Band-like Charge Transport Mechanism 

To study the charge transport mechanism in [60]PCBM single crystals, 

temperature-dependent mobility were tested in a vacuum holder by cooling samples 

from 300 to 80 K. The electron mobilities were measured every 10 K. Figure 3a, b 

and Figure S8, S9 respectively show the OFET transfer curves of single crystals and 

thin films at the temperature from 300 K to 80 K with the square root of drain current 

plotted against the gate voltage. Interestingly, as shown in the Figure 3c, the electron 

mobility in [60]PCBM single crystals exhibit an increase-at-first-and-then-decrease 

behavior by cooling the samples while for [60]PCBM thin films, the electron mobility 

decrease monotonically with lower temperature. In the low-temperature region (80 K 

– 200 K, Figure 3b and S9), the electron mobility of both single crystals and thin 

films decreased by cooling the samples, yielding a positive mobility temperature 

coefficient (dµ/dT > 0). Such behavior is commonly observed in organic field effect 

transistors,33–36 reflecting the gate voltage filling up low-mobility trap states.37 This 

implies that a thermally activated mechanism governs the electron transport in 

[60]PCBM single crystals and thin films at low temperature regions. In low 

temperature regions, most charge carriers are trapped in localized shallow traps 

formed by chemical impurities, sites of structural disorder, and surface states, and 

then charge transport occurs through extended states (transport level) when the 

carriers are thermally activated (released) from the traps. Fitting the data with the 

equation (1),38 

� = �� exp �−	
��
�										(1) 
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where Ea is the activation energy and kB is the Boltzmann constant, leads to 

activation energies of 8.5 meV for single crystals and 32 meV for thin films, as shown 

in Figure 3d. The activation energy of single crystals here is much lower than that of 

thin film, suggesting a much lower degree of disorders presented in the single crystals 

and at the interface between the semiconductors and the substrates than thin films.  

On the other hand, in the high-temperature region, the electron mobility of single 

crystals increases monotonically upon cooling the samples from 300 to 200 K, 

exhibiting a negative mobility temperature coefficient (dµ/dT < 0). The observation of 

the negative mobility temperature coefficients is a general signature of charge carrier 

delocalization over a few molecules, which is the band-like charge transport.38,39 In 

the high-temperature region, sufficient thermal energy is available such that the 

influence of trapping could be eliminated and the overall conduction was determined 

by the intrinsic transport through the extended transport level within the single 

crystals. Band-like temperature dependence is the signature of high-quality crystals 

and excellent electrical conduction.33 For thin-film counterparts, like the 

low-temperature region, the electron mobility decrease monotonically by cooling the 

samples at the high temperature region, without favorable band-like charge transport 

mechanism. 

The relatively high electron mobility, highly-efficient band-like charge transport 

at room temperature, together with the excellent electrical conduction, makes 

[60]PCBM single crystals a promising replacement of the thin-film counterparts with 
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the potential ability to generate higher-density photocurrent for OPVs and highly 

efficient extraction of photo-generated carriers for PDTs.  

 

  

(a) (b) 

(c) (d) 

Figure 4 Photo-response characteristics of [60]PCBM single crystal devices. (a) I−V curves, 

(b) responsivity, (c) time-resolved photocurrent response and (d) enlarged portions of one 

response and reset process illuminated by UV, Vis and NIR lasers. 
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Photo-responsivity 

To compare the practical applications of [60]PCBM single crystals and thin films, 

we fabricated organic photodetectors (PDTs) based on both single crystals, and thin 

films. Two kinds of device were fabricated on silicon substrates with a thermal oxide 

layer that was 300 nm thick. For comparison reasons, both devices were made with 

identical channel lengths of 20 µm. The electrical properties were measured using a 

traditional two terminal method.40 Photo-response characteristics under UV (350 nm), 

visible (550 nm) and NIR (780 nm) laser diodes with the power intensity of 5 mW 

cm-2 are shown in Figure 4a-d for single crystal device and Figure S10-S13 for the 

thin film device. 

Figure 4a and S10 shows typical current versus voltage curves of single crystals 

and thin film photodetectors in the dark and under laser illumination. The slight 

nonlinearity of the I−V curves results from the work-function mismatch between 

semiconductors and the gold contacts used in out devices. A drastic increase in current 

under laser illumination is observed when compared to the current in the dark.  

Photoresponsivity, R, is a key factor to identify the light-sensitive performance of 

photodetectors. To further evaluate the photo-response, we calculated 

photo-responsivity of single crystal and thin film devices by the Equation (2):41 

� = ������ − ��
��
�� 														 (2) 

Where Ilight is the current when exposed to laser illumination, Idark is the dark 

current, P is the incident power density and S is the effective illuminated area. The 

effective irradiated areas are approximately 151.3 and 1361.3 µm2 for single crystal 
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and thin films devices, respectively. The single crystal photodetector clearly has a 

substantially higher performance than the thin film device. As depicted in Figure 4b 

and S11, at an applied bias of 30 V, under UV, visible and NIR laser illumination, 

single crystal devices achieve responsivities of 52.6, 36.9 and 11.8 A W-1 respectively. 

These values are over one order magnitude higher than the responsivities (3.52, 1.56 

and 1.03 A W-1 under UV, visible and NIR illumination respectively) of the thin film 

devices under the same condition. It has been reported that the charge mobility of 

channels had a drastic influence on the sensitivity of photodetectors: whereby 

channels with higher charge mobility would yield higher responsivity.32 In our case, 

[60]PCBM single crystals (~0.98 cm2 V-1 s-1) has a much higher mobility than its thin 

film counterparts (~4.6 × 10-3 cm2 V-1 s-1), which leads to high efficiency of the 

extraction of photo-generated carriers, and result in the better performance of single 

crystals than thin films in PDTs. 

Figure 4c and S12 displays the time-resolved current response of both 

photodetectors with the laser switched on and off at a fixed voltage of 30 V. Under 

illumination of same wavelength, the “on” and “off” states keep the same current 

level for several cycles for single crystals devices, indicating the excellent 

reversibility and stability of single crystal photodetectors, while thin film devices 

show poor reversibility. Furthermore, analysis of an enlarged photo-response process 

containing one rise and one reset (Figure 4d and S13) shows both the rising and reset 

time of the single crystal devices are faster than those of the thin film devices. It is 

worth noting that [60]PCBM single crystals have photo-response at NIR region, 
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although the photo responsivity is relatively lower (11.8 A W-1) to those in UV and 

visible region. It is reported by Curry et al. that fullerene single crystal has a unique 

extended absorption in NIR region compared to its thin film counterparts.42 To 

confirmed this in [60]PCBM single crystals, we performed UV-Vis absorption 

measurements of [60]PCBM single crystals and thin films, and the spectrum is shown 

in Figure S14. It clearly shows that in the NIR region, [60]PCBM single crystals have 

more intensive absorption than its thin films, which leads to the higher NIR photo 

responsivity of [60]PCBM single crystals than thin films. 

The better reversibility, faster detection time and the higher responsivity of single 

crystal devices further demonstrate the excellence of [60]PCBM single crystals than 

thin films for practical applications.  
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Long-term Stability 

One crucial factor for the suitable use of OFETs, PDTs and OPVs is the stability 

of these devices under ambient conditions. It was reported single crystals showed 

better moisture stability than the polycrystalline thin films due to the absence of grain 

boundaries.43,44 Therefore, the air stability of the single crystal devices should be 

better than that of polycrystalline thin-film devices. To confirm this, we evaluate the 

long-term stability of the single crystal devices the and thin film devices in air. As 

shown in Figure 5a and b, the performance of single crystal devices remains almost 

80% after the device was stored in air for 20 days, which is much better than the 

thin-film devices, which lost about 80% of their performance under the same 

condition.  

(a) (b) 

Figure 5 (a) Normalized electron mobility of the single crystal OFETs and thin film OFETs in 

ambient environment without encapsulation as a function of storage time. (b) Normalized 

responsivity of the single crystal photodetectors and thin film photodetectors in ambient 

environment without encapsulation as a function of storage time. The temperature and relative 

humidity is 23 ℃ and 30%. 
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In summary, the charge transport properties, photo-responsivity and long-term 

stability of [60]PCBM single crystals have been demonstrated. Compared to thin film 

counterparts, [60]PCBM single crystal exhibits higher electron mobility with 

band-like charge transport property at room temperature. In addition, [60]PCBM 

single crystal present more promising broadband UV-visible-NIR photo-response and 

much better long-term device stability. Our work here not only elucidates a 

straightforward and assured strategy for creating a vastly improved n-type 

semiconductor through improving the crystallinity of [60]PCBM, one of the most 

widely used commercially available n-type semiconductors for photovoltaic and 

optoelectronic devices, but also highlights mesoscale molecular ordering as the key to 

promoting the material’s charge transport properties, and thus enhance the device 

performance accordingly. Our work clearly show the great enhancement by 

employing [60]PCBM single crystals in OFETs and PDTs. For organic photovoltaics, 

the relevant work is in progress.  
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Methods 

Materials: [60]PCBM with purity of 99.95% was purchased from Ossila. 

n-Octadecyltrimethoxysilane (OTS) was purchased from Sigma Aldrich. CB, IPA and 

other solvents were purchased from Sigma Aldrich. All materials were used without 

further purification.  

Wafer modification: Highly doped silicon substrates (1 cm2) with 300 nm SiO2 were 

used for FET substrates. Before crystallization, the wafers were modified by OTS 

monolayer following previous report.45 

Crystallization: [60]PCBM ribbon crystals were grown by liquid−liquid interfacial 

precipitation method referring to the literature.23 Firstly, [60]PCBM was dissolved in 

CB (3 mg mL-1) with the assistance of ultrasonic oscillating for 25 min. 2 mL of the 

resulting solutions were injected into the 10 mL bottle. Then, IPA of 2 mL was slowly 

added into the bottles along the wall. This system was kept still until the precipitation 

of [60]PCBM crystals. The precipitated crystals were filtered with a 220 µm filter and 

re-dispersed in tiny amount of methanol, producing a suspension well-suited for 

deposition on a substrate either for microscopy imaging or device fabrication. The 

single crystals were deposited on the substrate and then the substrate was placed in a 

holder under a vacuum of 10−6 Torr for 24 h to remove the remaining solvent.  

Morphology Characterization and Crystallography: OM images were recorded using 

an Leica, DM4000 optical microscope. A NT-MDT Ntegra atomic force microscope 

in semi-contact mode was used to characterize surface morphology of the single 

crystals. SEM images were recorded by an FEI Inspect-F scanning electron 
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microscope. TEM observations were performed with an SAED configuration on a 

JEOL JEM-2010 transmission electron microscope with an accelerating voltage of 

200 kV. XRD pattern was obtained by a Rigaku D/max-2500 X-ray diffractometer 

using filtered Cu Kα radiation (λ = 1.54 Å). 

OFET fabrication and characterization: OFETs were constructed in a bottom-gated 

configuration by depositing top-contact source and drain electrodes (50 nm Au), with 

channel lengths (L) of 20 µm for both thin film and single crystal OFETs and the 

channel width (W) of single crystal devices was measured from the contacting area of 

the crystals that cross the S and D electrodes. To deposit [60]PCBM thin film 

channels, 10 mg mL-1 [60]PCBM was dissolved in chlorobenzene. The as-prapared 

solution was spin-coated on substrates at 2500 rmp for 30 s. Current–voltage 

characteristics of the devices were measured under ambient conditions on a Lake 

Shore model PS-100 tabletop cryogenic probe tation with a Keithley 4200-SCS 

semiconductor parameter analyzer. The measured capacitance of the OTS-modified 

SiO2/Si substrates was 11 nF cm-2. The field-effect mobility was calculated in the 

saturation regime by using the equation IDS = (µWCi/2L)(VG − VT)
2, where IDS is the 

drain–source current, µ is the field-effect mobility, W is the channel width, L is the 

channel length, Ci is the capacitance per unit area of the gate dielectric layer, VG is the 

gate voltage and VT is the threshold voltage. 

Electrical Measurement at Varied Temperatures: The current-voltage measurement 

was carried out on the same Lake Shore model PS-100 tabletop cryogenic probe 

station at a background pressure of 1 × 10−6 torr or lower. The controlled cooling from 
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300 K to 80 K was realized by introducing liquid nitrogen into the insulation cabin 

outside the sample cabin. Temperature of the samples was balanced by simultaneous 

heating with a hot plate under the sample holder. 

Photodetector Fabrication and Photoresponse Measurement: Photodetectors were 

fabricated by dispersing single crystals on silicon wafers with a 300 nm thick thermal 

oxide layer. The electrical contacts to individual single crystals were defined by 

copper grid shadow mask with the typical gap of 20 µm, and subsequently 50 nm Au 

was evaporated. Photoresponse measurements were performed on the same Lake 

Shore model PS-100 tabletop cryogenic probe tation by two-terminal mode with an 

applied bias of 30 V. The devices were tested under ambient conditions. The 

parameters were analyzed using a Keithley 4200-SCS semiconductor characterization 

system. 350 nm, 550 nm and 780 nm UV, visible and NIR laser diodes were used to 

illuminate the devices to initiate the photocurrent. UV-Vis absorption spectra were 

recorded by a Cary 60 UV-Vis spectrometer.  

Data availability: The data that support the plots within this paper and other findings 

of this study are available from the corresponding author upon reasonable request. 

 

ASSOCIATED CONTENT 

Supporting Information. 

Histogram of mobility calculated from 50 OFETs based on the [60]PCBM single 

crystals or the thin films. 
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[60]PCBM single crystals were prepared to understand its intrinsic photo-responsivity, 

stability, and charge transport properties. 
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