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Abstract: There are only a few reported methods by which the size and 

morphology of organic single crystals for high-performance organic field-effect 

transistors (OFETs) or other devices can be controlled. Here, a facile solution-

processed antisolvent vapor diffusion method was employed to grow millimeter-length 

C60 single crystal microwires directly in the solution. The size of the microwires can be 

controllably varied via the C60 concentration and/or the choice of antisolvent. OFETs 

fabricated from the as-produced microwires exhibit mobilities as high as 2.30 cm2 V−1 

s−1. A clear relationship between crystal preparation condition and device performance 

is revealed whereby the lower the evaporation rate of antisolvent and/or the higher the 
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C60 concentration, the higher the devices performance. Photodetectors based on our 

microwires give a responsivity that is an order of magnitude higher than those grown 

by drop-casting methods. This study provided a facile method for the crystal 

engineering of size-tunable millimeter-length C60 single crystals, and revealed the 

important influences of antisolvent to the C60 crystal size and the performance of 

devices based on them. We believe that our processing approach can be further 

exploited for a broad range of other organic semiconductors to achieve desirable single 

crystal size and morphology and thus desirable OFETs and photodetector performance. 

 

Organic field-effect transistors (OFETs) based on one-dimensional (“1D”) 

morphological microstructures have attracted continuous attention in recent years 

owing to their unprecedented device performance, which present great promise for 

flexible, low-cost, and lightweight electronic devices including complementary 

circuits,1,2 displays,3,4 sensors,5–7 and photodetectors.8–10 Of these, photodetectors 

(which convert optical signals to electrical signals) are essential elements in high-

resolution imaging technique, light-wave communications, and optical 

interconnects.11–14  

Among 1D microstructures, organic single-crystal microwires (“SCMWs”), being 

free of grain boundaries and molecular disorder, facilitate directional charge transport 

and exciton diffusion.15,16  

High-performance OFETs based on SCMWs have been reported for various small 

conjugated molecules. For instance, OFETs based on Fullerene C60 needle-like single 



  

3 

 

crystals exhibits electron mobilities exceeding 10 cm2 V−1 s−1,17 which is one of the 

highest among OFETs based on solution-grown organic single crystals. Inspired by the 

high performance of the SCMWs, interest now is directed toward the controllable 

assembly of the crystals and the study of their photo-response properties.9 

Until now, the most commonly used methods for fabricating organic single-

crystals are vacuum-deposition and solution-deposition techniques. However, these 

techniques have several drawbacks. Vacuum deposition has the disadvantages of being 

energy-consuming and a requirement for complex equipment. Solution-deposition 

techniques, including drop-casting,18 spin-coating,19,20 and dip coating21–23 have the 

disadvantage of involving a step in which the solvent is removed from the surface by 

evaporation – a kinetically controlled phenomenon.24–27 These have the effect that the 

microstructures of single crystals are not particularly controllable, resulting in poor 

reproducibility.28 Various post-treatment procedures have been widely employed to 

improve molecular surface organization after solution deposition such as thermal18,29 

and solvent vapor annealing.30–34 These in turn had the disadvantage in that that post-

treatment requires the preformation of a homogeneous and continuous film, which 

limits their applicability for device fabrication. Growing crystals directly in solutions 

avoids the negative effect caused by the substrate, which enables more finely tuning of 

the crystal morphology and thus achieve the desirable device performance.  

In this article, we report a two-vial-based solution-processing method, antisolvent 

vapor diffusion (AVD), which permits modification of the self-assembly of organic 

semiconductors directly in the solution before transferring to substrates. In this method, 
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we set C60 solutions of m-xylene in the inner vial and antisolvents including methanol 

(MeOH), ethanol (EtOH) and isopropanol (IPA) in the outer vial. The slow solvent 

exchange between m-xylene and antisolvents via vapor diffusion enables gradual and 

highly controlled adjustment of the size of the crystals. The crystal size is finely tuned 

by varying the C60 concentrations together with using different antisolvents. 

Macroscopic C60 SCMWs with millimeter lengths were obtained through this method. 

The effect of antisolvent-induced variations in the crystal size (length, width and height) 

and crystallization behavior were studied by optical microscopy (OM), atomic force 

microscopy (AFM), scanned electron microscopy (SEM), transmission electron 

microscopy (TEM) and X-ray diffraction (XRD), as appropriate. OFETs are fabricated 

based on AVD-grown C60 SCMWs with a maximum electron mobility exceeding 2.30 

cm2 V-1 s-1. NIR-photodetectors based on AVD-grown SCMWs present a responsivity 

an order of magnitude higher than those grown by drop-casting (“DC”) method, 

indicating a high suitability of the AVD method for practical applications. This study 

provided a facile method for the crystal engineering of size-tunable millimeter-length 

C60 single crystals, and revealed the important influences of antisolvent to the C60 

crystal size and the performance of devices based on them. We believe that our 

processing approach can be further exploited for a broad range of other organic 

semiconductors to achieve desirable single crystal size and morphology and thus 

desirable OFETs and photodetector performance. 

Using an AVD crystallization strategy, we have succeeded in growing size-tunable 

millimeter-length C60 SCMWs. Figure 1a displays the setup and working mechanism 
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of the two-vial–based AVD. During the process of AVD, a C60 solution in inner vial is 

exposed to an atmosphere of a saturated antisolvent vapor in an airtight container. The 

slow solvent exchange between the two solvents via vapor diffusion enables gradual, 

highly controlled adjustment of the solubility of the C60 molecules. Upon gradual 

solvent exchange, the solution in the inner vial became more dominant with antisolvents, 

which are poor solvents (with low solubility) for C60, thereby leading to self-assembly 

of the C60 molecules into SCMWs. After 5 days’ growth, C60 SCMWs with millimeter 

length are achieved. The SCMWs obtained were then re-dispersed in hexane, producing 

a suspension well-suited for moving onto a substrate by pipette. After 24 hours’ thermal 

annealing under vacuum to remove solvent molecules from the lattice structure,35 the 

samples can be used for microscopy imaging or device fabrication. Successful 

application of this method for crystallization depends on the judicious selection of 

solvents according to the intrinsic properties of the materials under study. m-xylene was 

used as the inner-vial solvent because it can induce 1D single crystal growth of C60.
17

 

Commonly-used poor solvents for C60, IPA, MeOH and EtOH, were used as outer-vial 

antisolvents.  

Figure 1b-e presents the influence of C60 concentration, and the choice of 

antisolvents with different evaporation rates (“ERs”), on the AVD crystallization 

process. The crystal growth process can be divided into two stages – (i) nucleation and 

(ii) growth. According to the LaMer model,36,37 there are three stages in C60 crystal 

growth: nucleating aggregation (Stage 1), initial three-dimensional (3D) growth (Stage 

2) and preferential one-dimensional (1D) growth (Stage 3). In Stage 1, when nucleation 
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threshold is achieved, C60 molecules aggregated and combined with van der Waals 

interaction. In Stage 2, growth along the crystal height, length and width directions 

occurs simultaneously. In Stage 3, driven by π-π interactions, C60 stacks preferentially 

along the length direction and as such form tightly packed 1D chains. The two key 

factors exhibited in the kinetic growth model are (i) the duration of Stages 1 and 2 and 

(ii) the number-density of nuclei formed during Stage 1. These two factors are 

separately controlled by the C60 concentration and the choice of antisolvents.  

Figure S1 presents X-Ray photoelectron spectroscopy (XPS) C1s spectrum of as-

prepared C60 single crystals. It shows that our C60 single crystals exhibit almost 100% 

carbon with binding energies at about 284.5 eV (C–C).38 OM, SEM and AFM methods 

were employed to measure the length, width and height of the C60 SCMWs. The results 

are shown in Figure 2a-c and Figure S2-10 (Supporting Information). Table 1 

summarizes dimensions of the C60 microwires prepared under different preparation 

conditions. The mean value and standard deviation of the dimensions are calculated 

based on some 40 crystals. We found that the length L, width W, and height H of the 

C60 SCMWs can be readily adjusted by tuning processing variables such as antisolvent 

varieties and C60 concentrations in m-xylene. Firstly, we found that L, W and H are all 

directly related to the C60 concentration; as W and H decrease, while L increases with 

increasing C60 concentration irrespective of which antisolvent is employed. Figure 1b 

shows a direct correlation between the solution concentration and the nucleation rate 

whereby higher concentrations yield faster nucleation. The C60 solution with the highest 

concentration (2 mg mL-1) spent the shortest duration in Stages 1 and 2, resulting in the 
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smallest crystal width and height. The reason for this is that in higher concentrations 

the total number of C60 growth units is greater than it is in lower concentration solution. 

Therefore, during the one-dimensional growth, longer microwires are achieved from 

higher concentration solutions. Conversely, the C60 solution with the lowest 

concentration (0.2 mg mL-1), and thereby the smallest number of C60 growth units, 

remained the longest time in Stages 1 and 2 and resulted in SCMWs with the largest 

width and height but the smallest length. Secondly, we found that the length of the 

SCMW may also be governed by the choice of the antisolvent. For example, at a 

constant C60 concentration of 2.0 mg ml-1, average L = 4.47, 2.52 and 1.31 mm, W = 

1.07, 1.04 and 1.09 μm and H = 0.89, 1.01 and 0.94 are observed when the antisolvent 

was IPA, EtOH and MeOH, respectively. This observation results from the different 

ERs of these three antisolvents (ER relative to EtOH: IPA = 0.78, EtOH = 1.0 and 

MeOH = 1.1).39 As shown in Figure 1c-f, the number density of nuclei is tuned by 

applying antisolvents with different ERs. At a fixed value of C60 concentration, the 

number density of nuclei increases with higher ER antisolvent (Figure 1d). By keeping 

the concentration, and thereby the number of C60 growth units constant, the final length 

of the microwires maybe shortened by applying antisolvents with higher ER (Table 1). 

This is a result of the increased number density of nuclei (i.e., the number of microwires 

as per Figure 1f). In summary, the advantage of the AVD process is that the crystal 

size can be fine-tuned in the solution by varying the C60 concentration and/or selecting 

the antisolvents with different evaporation rates. Varying the solution concentration 
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controls the crystal three dimensional sizes while applying different antisolvents further 

tunes crystal length.  

To gain more insight into the crystal structures of the C60 SCMWs, the samples 

were studied by XRD, the results of which are shown in Figure 2d and Figure S11. 

The XRD patterns can be indexed with a FCC crystal system, and the 200 reflection is 

missing. The extinction of 200 reflection is typical of pristine FCC C60 crystals.40 The 

lattice constant of the of the C60 SCMWs is a = 1.414 nm; which consistent with the 

value of 1.415 nm of pristine C60 crystals.41 Further insight into the molecular 

organization is obtained by TEM of individual SCWMs and its corresponding selected 

area electron diffraction (“SAED”) patterns. TEM image in Figure 2e reveals that the 

SCMWs are of uniform structure and the presence of discrete diffraction points in the 

SAED patterns (Figure 2f and Figure S12) is observed, indicating single crystallinity 

of the 1D object.  

The high quality and macroscopic dimension of the as-grown millimeter-length 

SCMWs facilitates OFETs fabrication. This is because electrodes can be easily 

deposited perpendicular to the crystals with the support of a shadow mask (as opposed 

to the more common crystal-positioning under microscopy). As such, SCMW-based 

OFETs were constructed on n-octadecyltrimethoxysilane (“OTS”) monolayer-

modified SiO2 (300 nm)/Si substrates. A bottom-gated top-contact configuration was 

achieved by depositing Au as source and drain electrodes (Figure 3a). As shown in 

Figure 3b, the channel length was 1 mm. The crystals did not fully cover the channels. 

Therefore, the active channel width was measured from the contacting area of the 
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crystals that cross the source and drain electrodes (as shown in Figure 3c). The 

saturation region electron mobilities of AVD-grown C60 SCMW OFETs based on 

varied C60 concentrations and antisolvents were tested under vacuum. The transfer and 

output characteristics of typical n-channel OFETs were observed (Figure 3d, e and 

Figure S13-15), showing excellent gate modulation. Charge carrier mobility plays a 

central role in semiconductor science and technology, because the efficiency of 

semiconductor devices generally improves as charge mobilities increase.42 The 

mobility was gate-bias dependent therefore we calculated the mobilities over the high 

gate voltage regime (40 to 80 V), as suggested in the literature.43 OFET characteristics 

of C60 SCMWs obtained at different preparation conditions was summarized in Table 

2. For comparison, OFETs based C60 needle-like crystals grown by conventional drop-

casting method was also fabricated according to the literature.17 At the C60 

concentration of 2.0 mg mL-1 with IPA as antisolvent, a maximum electron mobility 

(μ) of 2.30 cm2 V-1 s-1, on/off current ratio (Ion/Ioff) >104, and threshold voltage (VT) of 

16.5 V were achieved (Figure 3d). At this condition, a total of 50 devices from the 

same fabrication batch were investigated, and the distribution histogram of the electron 

mobilities obtained is shown in Figure 3f. They all have mobilities over 1.90 cm2 V−1 

s−1, yielding a high average mobility up to 2.11 cm2 V−1 s−1, which is better than the 

mobility (0.78 cm2 V−1 s−1) of OFET based C60 needle-like crystals grown by 

conventional drop-casting method as shown in Figure S16. Different antisolvents and 

concentrations of C60 in m-xylene were used for crystal growth to uncover the growth 

condition and mobility relationships as shown in Figure 3g. Firstly, it is seen that at 
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constant C60 concentration, the average mobility of OFETs shows a decline when 

employing IPA, EtOH and MeOH, respectively, as the antisolvent. This is due to their 

different ERs; whereby, lower ER antisolvent give slower solvent exchange between 

the two solvents via vapor diffusion. This enables gradual and highly controlled 

adjustment of the solubility of the molecules and produce high-quality crystals with 

lower defects. Secondly, it was found that, for constant antisolvent, C60 concentration 

in m-xylene plays an important role in device performance, whereby mobility increases 

with increasing C60 concentration. As discussed above, higher C60 concentrations 

induce thinner single crystals, which result in better interfacial contacts to the 

dielectric.44,45 Furthermore, thinner crystals would minimize the injection and 

extraction barriers of charge carriers.46 These are further evidenced by calculating the 

subthreshold swing (S.S.) and interface trap density (NSS), which represent the interface 

quality and the trap behavior in OFETs. It is reported that the crystal quality plays an 

important role in device performance.47 As the interface control is the same for all 

devices, their different S.S. and NSS result from the different crystal quality. Therefore, 

the S.S. and NSS here can represent the crystal quality of each device. Subthreshold 

swing and interface density of each OFETs are calculated according to the Equation (1) 

and Equation (2):48  

𝑆. 𝑆. =  
𝑑𝑉𝐺𝑆

𝑑𝐼𝐷𝑆
                                  (1) 

𝑁𝑠𝑠 = [
𝑆 log (𝑒)

𝑘𝑇/𝑞
− 1]

𝐶𝑖

𝑞
             (2) 
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Where Ci is the capacitance per unit area; k is Boltzmann’s constant, and T is the 

absolute temperature, IDS is the drain–source current, VGS is the gate voltage . As shown 

in Table 2, OFETs based on C60 grown by IPA has the lowest S.S. and NSS, which 

further confirmed that the slower decrease in solubility allows for growth of materials 

with minimal crystalline defects and thus result in higher device performances. As such, 

not only the crystal size, but also device performance, is fine-tunable by the AVD 

method.  

Curry et al. reported that C60 single crystal has a unique extended absorption in 

NIR region.49 Coupled with the excellent charge transport characteristics and the 

millimeter-scale infrastructures, C60 SCMWs show significant promise for applications 

in NIR photodetectors. To investigate photo-response properties, two kinds of device 

were fabricated on silicon substrates with a 300 nm thick thermal oxide layer. The first 

used 1D AVD-grown C60 single crystals (IPA antisolvent: C60 concentration = 2.0 mg 

mL-1). The second used a conventional drop-casting (DC) method. We refer to these as 

AVD-device and DC-device, respectively. Single crystals obtained by DC are very 

short (less than 200 μm) when compared to mm-length AVD-grown single crystals. 

Therefore, for comparison reasons, both devices were made with identical channel 

lengths of 20 μm (as shown in the SEM images in insets of Figure 4a and b). The 

electrical properties were measured using a traditional two-terminal method.8 Photo-

response characteristics under NIR (780 nm) laser diodes with the power intensity of 

1.5, 2.5 and 6.5 mW cm-2 are shown in Figure 4a, c, e and g for AVD-device and 

Figure 4b, d, f and h for the DC-device and summarized in Table 3. 
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Figure 4a and b shows typical current versus voltage curves of AVD and DC 

photodetectors in the dark and under laser illumination. The slight nonlinearity of the 

I−V curves results from the work-function mismatch between C60 and the gold contacts 

used in our devices. A drastic increase in current under laser illumination is observed 

when compared to the current in the dark. These devices also revealed good light-

controlled characteristics in that the conductivity increased significantly with the 

increase of illumination intensity. Interestingly, the AVD-device has a lower dark 

current than the DC-device, which is attributed to their different morphologies. The 

microwires of the AVD-device has a width of ~ 0.9 μm. This is less than the ~2.4 μm 

width for the DC-device, which gives lower dark current in AVD device.  

Photoresponsivity, R, is a key factor to identify the light-sensitive performance of 

photodetectors. R is defined as the photocurrent generated per unit power of incident 

light on the effective area of a photodetector. To further evaluate the photo-response, 

we calculated photo-responsivity of AVD and DC-devices by the Equation (3):50 

𝑅 =
𝐼𝑙𝑖𝑔ℎ𝑡 − 𝐼𝑑𝑎𝑟𝑘

𝑃𝑆
              (3) 

Where Ilight is the current when exposed to NIR light, Idark is the dark current, P is 

the incident power density and S is the effective illuminated area. The effective 

irradiated area is approximately 5.13 μm2. The AVD photodetector has clearly a 

substantially higher performance than the DC-device. As depicted in Figure 4c and d, 

at an applied bias of 30 V, under 1.5, 2.5 and 6.5 mW cm-2 laser illumination, AVD 

devices achieve responsivities of 82.6, 58.5 and 48.2 A W-1 respectively. These are over 
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one order magnitude higher than the responsivities of the corresponding DC-devices as 

shown in Table 3. Broad spectral detection is beneficial for extending the application 

range of photodetectors. The spectral photoresponse of the device at a bias of 30 V at 

wavelengths from 350 to 800 nm is displayed in Figure S17. The AVD photodetectors 

present broadband photo-response at wavelength from 350 to 800 nm. The peak 

response is found at 450 nm with a responsitivity of about 112.5 A W-1. These results 

indicate an excellent performance of photodetectors based on our AVD grown C60 

single crystals, which give more satisfactory values when compared with other 

reported photodetectors working under the similar conditions (Table 4). 37,51–60 

Furthermore, both AVD and DC photodetectors present good stability. As shown in 

Figure S18, both devices retained over 80% of their initial responsitivities after 240 h 

in 30% relative humidity at room temperature. 

It has been reported that the device configuration had a drastic influence on the 

sensitivity of photodetectors: whereby channels with larger surface-to-volume ratio 

would yield higher responsivity.8 In our case, the C60 microwires grown by the AVD 

method have a higher surface-to-volume ratio than that produced by the DC method, 

which enables the AVD device to have higher performance. This is further confirmed 

by measuring several AVD devices with different surface to volume ratios as shown in 

Table S1. In addition, AVD device (2.11 cm2 V-1 s-1) has a higher charge mobility than 

DC device (0.78 cm2 V-1 s-1), which would lead to high efficiency of the extraction of 

photo-generated carriers, and result in the better performance of AVD than DC.53 It is 
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also worth noting that at the same applied bias, the responsivity increases with lower 

power density, which demonstrates the high sensitivity of our NIR photodetectors. 

Figure 4e and f displays the time-dependent current response of both 

photodetectors with the laser switched on and off at a fixed voltage of 30 V. Under 

illumination of same power density, the “on” and “off” states keep the same current 

level for several cycles, indicating the excellent reversibility and stability of C60 crystal 

photodetectors. Furthermore, analysis of an enlarged photo-response process 

containing one rise and one reset (Figure 4g and h) shows both the rising and reset 

time of the AVD devices are faster than those of the DC devices. In addition, the on/off 

ratio under 6.5 mW cm-2 illumination is 59.2 for AVD, which is more than 10 times 

higher than DC-device (5.6). The higher on/off ratio, faster detection time and the 

higher responsivity of AVD device further demonstrate the excellence of AVD 

crystallization method for practical applications.  

In conclusion, a facile solution-processed antisolvent vapor diffusion method was 

employed to grow one-dimensional millimeter-length C60 crystal microwires directly 

in the solution. The size of the SCMWs is tunable simply by controlling the C60 

concentration and the choice of antisolvent. The macroscopic dimension of as-produced 

SCMWs facilitates device fabrication, and OFETs based on them exhibit mobilities as 

high as 2.30 cm2 V−1 s−1. The relationship between crystal growth condition and device 

performance are revealed whereby lower antisolvent evaporation rates and/or higher 

C60 concentrations result in higher device performances. Photodetectors based on C60 

single crystals by AVD method, shows better performance than the DC device with a 
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fast, reversible, and stable photo-response, revealing the excellence of AVD method for 

practical applications. We believe that AVD method can be further exploited for a broad 

range of other organic semiconductors to achieve desirable single crystal size and 

morphology and thus desirable OFETs and photodetector performance. 

 

Experimental Section  

Materials: C60 with a purity of 99.95% was purchased from SES research, n-

Octadecyltrimethoxysilane (OTS) was purchased from Sigma Aldrich. m-xylene, IPA, 

MeOH, EtOH and other solvents were purchased from Sigma Aldrich. All materials 

were used without further purification.  

Wafer modification: Highly doped silicon substrates (1 cm2) with 300 nm SiO2 were 

used for FET substrates. Before crystallization, the wafers were modified by n-OTS 

monolayer following previous report.61 

Crystallization: Crystals were grown by a two-vial-based antisolvent vapor diffusion 

methods. Briefly, an inner vial containing 2 ml m-xylene solution of C60 was placed in 

a sealed outer vial, which contained about 2 ml of antisolvent. The concentration of C60 

was varied from 0.2 mg ml-1 to 2 mg ml-1 and IPA, EtOH and MeOH were respectively 

applied as antisolvent in this research. The inner vial was sealed by fine-meshed 

aluminum foil for slow vapor diffusion between the two solvents (Figure 1a). Upon 

gradual solvent exchange, the solution in the inner vial became more dominant with 

antisolvent, thereby leading to self-assembly of the molecules into MWs. After about 5 

days, the exchange between the two solvents reached the equilibrium, resulting in 
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complete assembly of the molecules, and precipitating down to the bottom of the inner 

vial. Then, the MWs were filtered from the solution and re-dispersed in hexane, 

producing a suspension well-suited for deposition on a substrate either for microscopy 

imaging or device fabrication.  

Morphology Characterization and Crystallography: OM images were recorded using 

an Olympus BX 60 optical microscope. A NT-MDT Ntegra atomic force microscope 

in semicontact mode was used to characterize surface morphology of the MWs. SEM 

images were recorded by an FEI Inspect-F scanning electron microscope. TEM 

observations were performed with an ED configuration on a JEOL JEM-2010 

transmission electron microscope with an accelerating voltage of 200 kV. XRD was 

performed by Siemens D5000 X-Ray Powder diffratometer. X-Ray photoelectron 

spectroscopy (XPS) spectra were obtained on a Thermo ESCALAB 250 spectrometer. 

OFET fabrication and characterization: OFETs were constructed in a bottom-gated 

configuration by depositing top-contact source and drain electrodes (50 nm Au), with 

channel lengths (L) of 1 mm for AVD OFETs and 20 μm for DC OFETs and the channel 

width (W) was measured from the contacting area of the crystals that cross the S and D 

electrodes. Current–voltage characteristics of the devices were measured under a 

vacuum of 10−6 Torr on a Lake Shore model PS-100 tabletop cryogenic probe tation 

with a Keithley 4200-SCS semiconductor parameter analyzer. The measured 

capacitance of the OTS-modified SiO2/Si substrates was 11 nF cm-2. The field-effect 

mobility was calculated in the saturation regime by using the equation IDS = 

(µWCi/2L)(VG − VT)2, where IDS is the drain–source current, µ is the field-effect 
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mobility, W is the channel width, L is the channel length, Ci is the capacitance per unit 

area of the gate dielectric layer, VG is the gate voltage and VT is the threshold voltage. 

Photodetector Fabrication and Photoresponse Measurement: Photodetectors were 

fabricated by dispersing MWs on silicon wafers with a 300 nm thick thermal oxide 

layer. The electrical contacts to individual MW were defined by copper grid shadow 

mask with the typical gap of 20 μm, and subsequently 50 nm Au was evaporated. 

Photoresponse measurements were performed on the same Lake Shore model PS-100 

tabletop cryogenic probe tation by two-terminal mode with an applied bias of 30 V at 

room temperature. The parameters were analyzed using a Keithley 4200-SCS 

semiconductor characterization system. Laser diodes with different power densities 

(1.5, 2.5 and 6.5 mW cm-2) and wavelength (350, 370, 400, 420, 450, 470, 500, 520, 

550, 570, 590, 600, 620, 650, 680, 700, 720, 740, 750, 760, 780 and 800 nm) were used 

to illuminate the devices to initiate the photocurrent.  

Long-Term Stability Measurement: The photodetectors were put in a Linpin 

Temperature Humidity Test Chamber with temperature and relative humidity of 23℃ 

and 30%, respectively. The photo-response of the photodetectors were measured every 

5 hours by the method mentioned above. 
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Figure 1 (a) Schematic diagram of C60 SCMWs grown by AVD method. (b) LaMer 

model for the growth of microwires at different C60 concentrations. (c) Vapor diffusion 

of antisolvent to induce solvent exchange between m-xylene and antisolvent. (d) Crystal 

nucleation at the solvent exchange interface. (e) Initial 3D growth of nucleation. (f) 

Preferential 1D growth to form miscrowires.  
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Figure 2 (a) OM, (b) SEM, (c) AFM (inset: selected area roughness analysis) images 

of C60 single crystals grown by AVD method at a C60 concentration of 2 mg mL-1 with 

IPA as antisolvent. (d) XRD pattern and (e)TEM image with corresponding (f) SAED 

pattern of vacuum-annealed FCC C60 single crystals grown by AVD method at a C60 

concentration of 2 mg ml-1 with IPA as antisolvent. 
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Figure 3 (a) Schematic of a typical device; (b) OM image showing C60 MWs between 

source S and drain D electrodes, channel length L was measured from the real channel 

length and channel width (W) was measured from the contacting area of the crystals 

that cross the electrodes shown in the (c) SEM image. Typical (d) transfer and (e) output 

characteristics and (f) mobility distribution histogram of the FETs based on C60 MWs 

grown by AVD method at a solution concentration of 2.0 mg ml-1 with IPA as 

antisolvent; (e) OFET mobilities as a function of the C60 concentrations with different 

antisolvents.  

(a) (b) (c) 

(d) (e) 
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Figure 4 Photo-response characteristics of C60 single crystal devices, grown by the 

AVD (a,b,c,d) and DC (e,f,g,h) methods respectively. (a, b) I−V curves under dark 

condition and illuminated by NIR lasers. (c, d) Responsivity change with the laser 

power at different gate bias. (e, f) Time-dependent photocurrent response with the lasers 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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on and off at the voltage of 30 V. (g, h) Enlarged portions of one response and reset 

process under different laser powers. 
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Table 1 Average sizes of C60 single crystal microwires obtained under different 

preparation conditions. Each value is calculated based on 40 crystals.  

Antisolvent 

CC60 

(mg mL-1) 

L (mm) W (um) H (um) 

IPA 2.0 4.47±0.53 1.07±0.16 0.89±0.15 

 

1.0 3.76±0.54 1.31±0.27 1.20±0.32 

0.5 3.53±0.40 2.06±0.41 2.07±0.45 

 0.2 3.15±0.34 2.45±0.43 2.40±0.43 

EtOH 2.0 2.52±0.62 1.04±0.19 1.01±0.13 

 

1.0 2.31±0.60 1.29±0.30 1.25±0.41 

0.5 2.17±0.49 2.10±0.41 2.15±0.55 

 0.2 2.05±0.34 2.59±0.50 2.67±0.57 

MeOH 2.0 1.51±0.23 1.09±0.20 0.94±0.17 

 1.0 1.36±0.33 1.32±0.31 1.19±0.29 

 0.5 1.25±0.20 2.11±0.31 2.11±0.38 

 0.2 1.11±0.18 2.53±0.53 2.47±0.53 
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Table 2 OFET device performances of C60 single crystal microwires obtained under 

different preparation conditions. Each value is calculated based 50 devices.  

Antisolvent 

CC60 

(mg mL-1) 

μ 

（cm2 V-1 s-1） 

Ion/Ioff 

（104） 

VT 

(V) 

S.S. 

(V/decade) 

Trap Density 

(×1012 cm-2 eV-1 ) 

IPA 2.0 2.10±0.20 2.4±0.16 15.3±2.5 7.42±1.1 9.36±1.3 

 

1.0 1.81±0.39 1.5±0.21 14.7±2.7 7.93±1.6 10.12±1.3 

0.5 1.73±0.30 2.8±0.19 15.9±5.3 8.38±1.2 11.34±1.4 

 0.2 1.50±0.33 1.4±0.13 13.6±3.1 8.90±1.1 12.31±1.7 

EtOH 2.0 1.13±0.33 1.2±0.23 12.6±1.6 9.99±2.1 12.62±2.2 

 

1.0 1.05±0.43 1.3±0.09 12.3±1.1 10.67±2.3 13.48±2.9 

0.5 0.87±0.29 1.3±0.16 11.4±2.2 11.00±2.9 13.91±2.7 

 0.2 0.81±0.31 1.4±0.13 17.1±4.4 11.23±2.2 14.23±2.8 

MeOH 2.0 0.40±0.21 1.4±0.11 16.7±3.9 14.37±3.4 18.19±3.4 

 1.0 0.34±0.17 1.3±0.08 13.9±2.9 15.75±3.1 19.93±3.9 

 0.5 0.29±0.11 1.6±0.19 13.5±1.6 17.77±2.9 22.51±3.2 

 0.2 0.25±0.11 1.5±0.17 11.8±1.1 23.91±4.2 30.31±4.8 
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Table 3 Characteristics of AVD and DC photodetectors at a fixed voltage of 30 V 

 AVD photodetectors DC photodetectors 

P 

(mW cm-2) 

Dark current 

(nA) 

On/off 

ratio 

Responsivity 

(A W-1) 

Dark current 

(nA) 

On/off 

ratio 

Responsivity 

(A W-1) 

1.5 

0.3 

26.7 82.6 

2.1 

2.7 5.6 

2.5 28.7 58.5 3.6 4.9 

6.5 59.2 48.2 5.6 3.1 
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Table 4 Comparison of performance for photodectors based on various semiconductors 

Material 

Wavelength 

(nm) 

Power density 

(mW cm-2) 

Responsivity 

(A W-1) 

Reference 

pentacene 

365 5.0 50 

62 

650 5.0 0.45 

Spiro-4p-CPDT 370 \ 25 52 

C8BTBT 473 2.7 33 63 

C60 

360 4.38 75.3 

37 

650 4.38 90.4 

F8T2 405 3 0.0004 54 

graphene 532 \ 8.61 55 

ZnO/GaN 370 \ 1.3 57 

ZnO 382 \ 0.0056 56 

In2Se3 500 2.81 89 58 

ZnO-CNT 365 10 0.00048 59 

NPB/C60 350 0.192 0.315 60 

AVD-grown C60 780 1.5 82.6 In this work 

 


