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Abstract

In addition to time efficiency, minimisation of fuel consumption and
related emissions has started to be considered by research on optimisa-
tion of airport surface operations as more airports face severe congestion
and tightening environmental regulations. Objectives are related to eco-
nomic cost which can be used as preferences to search for a region of cost
efficient and Pareto optimal solutions. A multi-objective evolutionary op-
timisation framework with preferences is proposed in this paper to solve a
complex optimisation problem integrating runway scheduling and airport
ground movement problem. The evolutionary search algorithm uses mod-
ified crowding distance in the replacement procedure to take into account
cost of delay and fuel price. Furthermore, uncertainty inherent in prices is
reflected by expressing preferences as an interval. Preference information
is used to control the extent of region of interest, which has a beneficial
effect on algorithm performance. As a result, the search algorithm can
achieve faster convergence and potentially better solutions. A filtering
procedure is further proposed to select an evenly distributed subset of
Pareto optimal solutions in order to reduce its size and help the decision
maker. The computational results with data from major international
hub airports show the efficiency of the proposed approach.

Keywords— airport ground operations; runway scheduling; multiobjective op-
timisation; preference search

1 Introduction

Twice as many passengers are predicted to be carried by air traffic in 2030 com-
pared to 2013 [1]. With this continuous growth and no actions taken, congestion
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will become a serious problem for many airports together with a significant en-
vironmental impact. As a result, a lot of attention has been attracted towards
research on airport operations on the surface [2–10] and near airspace [11,12].

Recently, the Active Routing (AR) approach for airport ground movement
has been introduced [3,4,13,14] with the aim of providing near-optimal nondom-
inated speed profiles and routes for taxiing aircraft. AR enables the routing and
scheduling of taxiing aircraft, which was previously based on distance, emphasis-
ing time efficiency, to be optimised with regard to richer information embedded
within speed profiles. These include the taxiing times, the corresponding fuel
consumption, and the associated economic implications, i.e. cost of taxi time
and fuel [4]. Results in [4, 9] demonstrated a significant trade-off between taxi
time and fuel consumption using different speed profiles and routes, which fa-
cilitates multi-objective decision making (e.g. selecting the taxi time efficient
solutions in the peak period and fuel efficient ones in the off-peak period as in
[4]). The real-time application of the AR framework can be achieved using a
pre-computed database of nondominated speed profiles for key building blocks
(i.e. straight taxiway segments) of the airport layout [13]. The database acts as
a middleware to effectively separate the speed profile generation module from
the routing and scheduling module. Furthermore, the airport ground movement
problem has been shown in [14] to have an impact on another critical surface
operation, runway scheduling.

Due to the multi-objective nature of speed profile generation, routing and
scheduling in the AR framework implies an existence of Pareto optimal solutions
for different conflicting objectives. This gives rise to the following issues: 1)
which Pareto optimal solutions should be selected and stored in the database
when the size of the Pareto optimal set is extensively large; 2) which routing and
scheduling solution should be selected and implemented for the airport ground
movement and the runway scheduling problem.

State-of-the-art approaches for the multi-objective optimisation problem con-
sidered in this study, e.g. those in [7, 15], are proved to be computationally
demanding for larger and complex instances. Therefore, a legitimate approach
in this case is multi-objective evolutionary optimisation algorithms, as they are
suitable for complex optimisation problems and have the ability to find multiple
near-Pareto optimal solutions in a single run compared to the classical optimi-
sation methods [16]. Traditionally, multi-objective evolutionary optimisation
algorithms have emphasised on the search for a complete Pareto optimal set. It
is often the case that a decision maker (DM) is expected to select a preferred
solution from the obtained Pareto optimal set, i.e. a posteriori, according to
his/her preferences. However, the complete Pareto optimal set may be difficult
to approximate and an unconverged Pareto front does not allow the DM to
find an ideal solution to his/her preferences [17]. As a consequence, a solution
with higher taxi time and fuel consumption may be chosen by the DM. On the
contrary, if DM’s preferences are considered before the search, i.e. a priori, the
optimisation algorithm can concentrate on guiding the search to a preferred re-
gion of interest (RoI), making the search more computationally efficient with
faster convergence [18, 19]. The search by the optimisation algorithm can be
also steered in an interactive manner, in which the DM progressively articulates
the preferences during the search.

Scalarizing functions [20] involving some additional parameters correspond-
ing to DM’s preference are often used to transform a multi-objective problem
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into a single-objective one. However, this approach may be counterproductive
[21]. The DM cannot investigate other optimal or near-optimal solutions and
their properties corresponding to the preference information if only a single so-
lution is found during the search. Moreover, in practice, the preferences are
often only vague as relative weighing of the priorities is usually approximate.
Therefore, the preferences are better to be utilised to search for a RoI rather
than a single solution in order to take into account such uncertainty.

Research on incorporating preferences into evolutionary algorithms has been
active in the last two decades. For a recent review, see [22]. There are several
ways of expressing preferences [23]. In addition to use weights, reference points
[21,24], aspiration levels or goal vectors to represent the desired values of objec-
tives, the DM can also specify a utility function, preference [25] or outranking
relation [26]. Weights or trade-off information (i.e. how many units in one ob-
jective is at most worth a unit improvement in another objective) are often used
to express preferences. Examples include an evolutionary algorithm in [27] with
maximally acceptable trade-off rate between objectives, a weight distribution
function in [28] and a modified Nondominated Sorting Genetic Algorithm-II
(NSGA-II) [16] with reference direction (weights) [17, 18]. The dominance re-
lation is modified according to the distance to the reference point in [29] or
aspiration level satisfaction in [30]. An achievement scalarizing function taking
into account reference point is used to prefer some solutions closer to the RoI
in [17,25,31].

Although the abovementioned approaches assume inherently approximate
preferences and search for the RoI instead of a single solution, sometimes more
information about the preference is available. For example, an interval provides
more information (upper and lower bound) about the underlying uncertainty
in the preference compared to the single value of the reference point, weight,
etc. The uncertainty in preferences should be linked to the size of the RoI, with
the RoI adjusted accordingly. Usually, a user defined parameter is introduced
to control the extent of the RoI [18, 21, 24]. From a practical point of view,
setting up this parameter is not intuitive and the DM can control the extent
of the RoI only approximately. As a result, improper parameter setting will
lead to either a too wide RoI, wasting computational resources, or a too narrow
RoI, not including preferred solutions. In more recent development, Tchebycheff
weights that minimise the weighted Tchebycheff distance from the ideal point
in [19] and objective function values in a co-evolutionary algorithm [32] can be
expressed as an interval. Also, a brushing technique [32] enables the DM to
conveniently specify a range of preferred objective function values by drawing
in the objective space. However, the specification of these ranges in [19, 32] is
left completely to the DM.

In addition, a scalarizing function (i.e. weighted aggregation) and its corre-
sponding parameters (i.e. weights) can express approximate preference. Scalar-
izing functions have been used in decomposition evolutionary algorithms [33]
to convert a multi-objective problem into a set of single-objective subproblems.
By varying the parameters of the scalarizing function, different solutions are
obtained during the search and combined to provide a Pareto set. The DM
can select multiple parameters according to his/her approximate preference, or
the parameters can be set by the algorithm as in [34] to find solutions close to
a reference point. However, the decomposition based approach has the follow-
ing disadvantages: 1) if a weighted sum is used as a scalarizing function, the
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decomposition based algorithm cannot reach solutions on a non-convex Pareto
front; 2) if a reference point is used, then it leads to a problem of controlling
the extent of the RoI as described earlier; and 3) selecting evenly distributed
parameters does not always result in even distribution of solutions. Therefore,
in this paper, the scalarizing function is used only for controlling the extent of
the RoI, rather than for decomposition. To the best of our knowledge, this is
the first application of the scalarizing function for this purpose, especially in the
context of airport surface operations.

A scalarizing function can be a cost function, i.e. a unit of each objective
has an economic value: the price of fuel or cost corresponding to a minute of
delay spent at the airport surface or emissions produced. Economic costs are
commonly used in airport sector as incentives [4] when several stakeholders (e.g.
airlines, airport) are involved in airport surface operations. However, unit cost
are often available as approximate values, reflecting the range of inputs used for
their calculation, e.g. different costs for different airlines. The assumption made
in this paper is that the uncertainty in the unit cost can be modelled as the RoI.
The linear cost function of the unit cost and the total objective function values
can evaluate each solution in terms of the total costs, determining the solution
with minimal cost from the Pareto set. By varying the unit costs within an
interval, reflecting the approximate preference, different solutions will have the
minimum cost. A set of these solutions will then form the RoI.

Once the RoI is found, the DM can select a single preferred routing and
scheduling solution to be implemented. However, due to the large number of
optimal solutions in the RoI, especially in the presence of many objectives,
such a decision making process can pose a significant cognitive load on the DM.
Therefore, a representative subset of solutions in the RoI is often favoured by the
DM. This subset should be uniformly-distributed, i.e. with uniform distances
between the solutions in the objective space. Too large distance can result in too
big difference between two alternative solutions. The same requirement applies
to the subset of speed profiles which are stored in the database with a finite
size. In this case, reducing the number while retaining an uniform distribution
of available speed profiles is essential in reducing the search space of the airport
ground movement and runway scheduling problem.

The issue of finding a set of well-distributed optimal solutions in the objective
space has been addressed by preferring less crowded regions such as in NSGA-II
[16] or by a controllable distance between the solutions during the search (a
priori) [19,24,35,36], after (a posteriori), e.g. by filtering methods in [37]. The
uniform spread of solutions in NSGA-II [16] is achieved by a crowding distance
favoring solutions further apart from each other, however without any control
by the user over the desired distance. In [35], ε-dominance divides the objective
space into hyper-boxes with equal size of ε and only one solution is retained
within each box. However, the location of the solution within the box is not
considered, which may result in an uneven distribution. R-NSGA-II [21] prefers
only one solution within the ε-neighbourhood in a similar way to ε-dominance
. The territory concept presented in [19] prevents solutions to have smaller
than the pre-defined distance. Although the territory concept is similar to ε-
dominance, it prevents losing solutions towards the extremes of the Pareto front
[19]. Similarly, network suppression threshold in [36] controls the minimum
euclidean distance of solutions. However, the solutions can still be unevenly
dispersed as 1) the maximum distance between the solutions is not restricted in
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[19,36], and 2) only maximum distance is considered in [19]. The reference-point-
based many-objective evolutionary algorithm proposed in [24] evenly distributes
reference points so their projections on the Pareto front result in well-distributed
solutions. However as noted in [38], in practical problems with constraints
or discontinuities in the Pareto front, even though reference points are evenly
selected, the algorithm may not end up distributing all solutions uniformly on
the Pareto front. In contrast to a priori methods, a posteriori filtering methods
select a subset of solutions after the search has finished. This is advantageous as
the filtering method can consider all solutions found after the search, not only a
few constantly changing solutions generated during each iteration of the search
algorithm. A review of a posteriori methods is given in [37].

In the light of the discussion above, a gap in the existing research is identi-
fied: ability to handle approximate or uncertain preferences while finding uni-
form distribution of solutions on the Pareto front. Therefore, in this paper, we
introduce a multi-objective evolutionary optimisation (EMO) framework that
addresses the above issues. In particular, the novelty of this study can be sum-
marised as follows:

1. An EMO framework is introduced which can handle approximate prefer-
ences. The scalarizing function and its corresponding parameters (i.e. an
interval of economic value for a unit of each objective) specify the RoI.
Specially designed new crowding distance for the replacement procedure
of the EMO framework controls the extent of RoI efficiently, which has a
direct impact on the algorithm’s performance. The main idea is that using
interval preference information to define the extent of the RoI results in
better solutions found by the EMO algorithm than the algorithms which
use user defined parameters for this purpose.

2. A new filtering procedure is proposed to find a representative uniformly-
distributed subset of solutions, which further improves the ability of the
DM to select a cost efficient solution.

3. The proposed EMO algorithm and filtering procedure are applied to an
integrated ground movement and runway scheduling problem formulated
in our previous work [14] with an additional objective corresponding to
emissions.

The algorithm design choices, i.e. crowding distance and filtering procedure have
a practical relevance in terms of saved total time, fuel, emissions and economic
costs.

The rest of the paper is organised as follows. Details and related work about
the integrated optimisation problem, consisting of the ground movement prob-
lem and runway scheduling, are provided in Section 2. Section 3 describes the
EMO framework incorporating the preferences and uniform distribution of so-
lutions. Section 4 presents experiments with the proposed algorithm on data
instances from Manchester, Beijing Capital International and Doha Interna-
tional Airports. Lastly, Section 5 draws conclusions and future work.
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2 Airport ground movement and runway schedul-
ing problem

This section provides a description of the models for the integrated airport
ground movement and runway scheduling problem. A table with complete no-
tation is in Appendix.

2.1 Related work

The ground movement problem has been mostly investigated with the aim of
minimisation of the total taxi time or time associated objective [2]. Integer pro-
gramming [5,10] or graph-based approaches such as [6,39] have been employed
to tackle this problem. Apart from the taxi time, a limited number of studies
considered fuel burn as an objective. Research on the stand holding problem
[40–42] minimises the fuel burn by holding the aircraft at the stand with inac-
tive engines for as long as possible. However, the stand holding problem does
not consider fuel variations during taxiing due to different acceleration. Re-
sults in [9, 43] demonstrated that the minimum taxi time results in a higher
fuel burn caused by heavy and multiple accelerations/decelerations required
to achieve fast movement. Also, as shown in [44], emissions are a conflicting
objective with taxi time and fuel consumption. In light of this, the recently pro-
posed AR framework [3, 4] provided a holistic decision making framework for
multi-objective routing and scheduling of taxiing aircraft. This renders the AR
approach the ability to search for efficient taxiing in terms of not only time, but
also fuel consumption and emissions. A similar approach is introduced in [45],
considering taxi time, deviation from departure slots and emissions for ground
movement. Unlike the multi-objective AR framework, [45] aggregates all objec-
tives together in an scalarized objective function using weights. Therefore, only
one solution is obtained after a single run of the algorithm.

The runway scheduling problem has often an objective related to delay,
makespan of the schedule, the number of changes in comparison with the First-
come-first-served (FCFS) sequence, or various combinations. Approaches em-
ployed to solve this problem include hybrid tabu search [46], dynamic program-
ming [47], branch and bound [48] and genetic algorithms [49]. For a detailed
review on this topic, see [50]. Routing, sequencing and scheduling aircraft in
terminal area around the runway has also attracted attention of researchers
[11, 12, 51–55]. Similarly to the runway scheduling problem, approaches for the
terminal area often have a time related objective, such as minimisation of delay
from scheduled landing/take off times, or minimum distance in case of routing
[56].

As pointed out in [2], the ground movement problem is interconnected with
runway scheduling. The ground movement needs to make sure that the de-
parting aircraft can reach the runway on time. Similarly, the runway schedule
determines the time and sequence for the arriving aircraft to taxi. Researchers
have started to consider the ground movement and runway scheduling in an inte-
grated manner. A two-stage model was adopted in [8] where a runway sequence
is fixed first by a branch and bound algorithm, and then the ground movement
problem is solved by a genetic algorithm considering a delay related objective.
An integer programming proposed in [15] decomposes the integrated problem in
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a similar way. Runway scheduling constraints are imposed on ground movement
in the mixed integer linear programming model in [7]. These approaches can
result in a suboptimal solution as the problems are treated in separate stages.
More recently, a heuristic for the integrated problem has been introduced in
[57] and [58] considering only the time related objective. In addition to ground
movements and runway scheduling, the model in [59] integrates also scheduling
aircraft in the terminal area. In contrast to the previous single-objective ap-
proaches, a multi-objective genetic algorithm proposed in [14] for the integrated
ground movement and runway scheduling problem takes into account aircraft
speed profiles, improving both time and fuel efficiency. In light of this, in this
study, a multi-objective and integrated modelling approach similar to [14], but
additionally incorporating emissions as another objective and preferences, is
adopted. Minimising time and fuel consumption due to surface operations bears
significant economic implications to airlines and airports [4]. Also, minimisation
of emissions is often considered by airports as shown in [60] in order to mitigate
their environmental impact.

2.2 Ground movement problem

The ground movement problem aims to obtain conflict-free routes and schedules
with minimum taxi time, fuel and emissions for all aircraft taxiing between
gates/stands and runway or in an opposite direction. The total taxi time ttaxi,
total fuel consumption f taxi and total emissions εtaxi for all aircraft i = 1, . . . , h
are calculated as outlined in Algorithm 1. As described in our previous works
[13,14], the ground movement problem is divided into two parts:

1. Preprocessing: the nondominated speed profiles for key building blocks of
the airport layout are found and stored in a database in Lines 1–4.

2. Routing and scheduling: the routes and schedules for all taxiing aircraft
are found in Lines 5–17, using the speed profiles for building blocks re-
trieved from the database.

In Line 1, building blocks are identified from a graph representation of air-
port taxiway layout [13]. The building blocks include all straight segments
of taxiways, separated by turning segments. Using building blocks and turn-
ing segments, any route between gates/stands and runway (or vice versa) can
be recreated. Then, nondominated speed profiles for each building block are
found in Line 2. Taxiing on each building block is divided into four phases:
acceleration, constant speed, deceleration and rapid deceleration, representing
a simplified typical taxiing behaviour as shown in Fig. 1. As described in [3],
by varying acceleration rate and the length of each phase, different speed pro-
files can be explored. In order to have an unrestricted search space for the
integrated optimisation problem, all speed profiles, without considering prefer-
ences, are explored in Line 2. Without loss of generality, a recently proposed
Population Adaptive Based Immune Algorithm (PAIA) [36] is adopted. PAIA
achieved good results in terms of performance indicators for the speed profile
optimisation problem compared to other algorithms [3]. However, it should be
noted that any search algorithm can be employed for this task. The set of non-
dominated speed profiles is filtered through the filtering procedure described in
the next section for uniformly-distributed nondominated speed profiles which
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Algorithm 1: Outline of the ground movement problem.

/* Preprocessing */

1 Identify building blocks of airport layout;
2 Find speed profiles for building blocks by PAIA;
3 Filter speed profiles;
4 Store speed profiles in database;
/* Routing and scheduling */

5 for i = 1, . . . , h do
6 if i ∈ D then
7 Find route qi starting at tbasei + xi;
8 else
9 Find route qi starting at tri ;

10 end
11 Given qi, determine Si;
12 forall s ∈ Si do
13 Retrieve speed profile yi from database;
14 Calculate ti,s, fi,s, ε

pp
i,s;

15 end

16 Reserve route qi with taxi time
∑|Si|
s=1 ti,s

17 end
18 Calculate ttaxi, f taxi, εtaxi;

are then stored in the database in Line 4. Note, that Lines 1–4 are run before
the preference-based EMO framework described later in this paper.

Time (s)

Speed (m·s-1)

Acceleration Constant speed Deceleration Rapid
deceleration

Figure 1: An example of a speed profile with four phases.

Lines 5–18 detail the routing and scheduling part for each aircraft i =
1, . . . , h. The aircraft are ordered with respect to their pushback/landing times.
For departures (Line 7), aircraft start taxiing at time tbasei + xi, where xi is a
decision variable and corresponds to time in seconds for which the departing
aircraft is held at the gate after the baseline departure time tbasei . Arriving
aircraft (Line 9), start taxiing at landing time tri . For each departing/arriving
aircraft i, route qi is found by the heuristic k-QPPTW algorithm described in
[9]. In order to keep computational times reasonable, in this paper, for each
arriving aircraft i, only the fastest route qi in terms of taxi time is generated,
based on assumed constant speed 15.43 m/s (30 kn) for straight segments and
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5.14 m/s (10 kn) for turns. Due to the assumption of generating only the fastest
route based on the constant speed, this route is slightly worse than the optimal
one. By generating additional routes up to 10 (the 2nd fastest route, 3rd fastest
route, . . . ), an improvement of 2–5% and 2–7% in taxi time and fuel consump-
tion, respectively, was observed in [4] compared to the fastest route. In this
paper, the generated routes take into account previously routed aircraft and do
not change with subsequently processed aircraft. Based on route qi, a set of
building blocks Si, corresponding to qi is determined in Line 11. For all s ∈ Si,
speed profile yi is then retrieved from the database. yi is a decision variable
that determines which speed profile is retrieved from Nsp speed profiles. Then,
taxi time ti,s, fuel consumption fi,s and emissions εppi,s of pollutant pp for build-
ing block s are determined as follows. The taxi time ti,s of aircraft i required
to travel through building block s following speed profile yi consists of partial
times tphasep (yi) spent in each taxiing phase p:

ti,s =

4∑
p=1

tphasep (yi). (1)

As described in [3], fuel consumption needed to follow a speed profile de-
pends on thrust levels η which are determined for each taxiing phase p. During
deceleration and rapid deceleration, η = 5% of full rated power, and during
turning η = 7% [61]. For acceleration and constant speed phase, η is calculated
in (2) where weight is the weight of the aircraft, acc is the acceleration rate,
µ · weight · gacc is the rolling resistance force and Foo is the maximum power
output of the jet engine. µ is rolling resistance coefficient, set to 0.015 [3] in
this paper. gacc = 9.81 m · s−2 is the gravitational acceleration. Note, that the
air resistance is not assumed here due to low speeds involved.

η =
weight · acc+ µ · weight · gacc

Foo
(2)

The thrust level η corresponds to a fuel flow φp(yi) which is calculated by linearly
interpolating or extrapolating fuel flow values for η = 7% and η = 30% reported
in ICAO database, following the approach in [61]. The fuel consumption fi,s of
aircraft i for building block s following speed profile yi is defined in (3).

fi,s =

4∑
p=1

φp(yi) · tphasep (yi) (3)

Given a calculated fuel flow φp(yi), the corresponding emission indices EIpp(φp(yi))
(g of pollutant for each kg of burned fuel) for pollutant pp is a function of φp(yi).
EIpp(φp(yi)) can be obtained using curves fitted to the values reported in ICAO
Emissions Databank, similarly as in [44]. Finally, the total emission εppi,s of pp
of aircraft i during taxiing on s is calculated in (4). It should be noted that the
relationship between fuel flow φp(yi) and emission indices EIpp(φp(yi)) is non-
linear and inversely proportionate for hydrocarbons (HC) and carbon monoxide
(CO) pollutants, i.e. a higher fuel flow yields less pollutants per kg of fuel than
the lower fuel flow does.

εppi,s =

4∑
p=1

φp(yi) · tphasep (yi) · EIpp(φp(yi)) (4)
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In the previous research [44], it was shown that HC and CO pollutants for
light and medium category aircraft are strongly correlated with the taxi time.
Therefore, for light and medium category aircraft it is assumed that minimising
taxi time will minimise HC and CO emissions at the same time. The nitrous
pollutants (NOx) are linearly dependent on fuel flow for light, medium and
heavy category aircraft, and for that reason are not considered in the search.
For the heavy category aircraft, the HC and CO pollutants are considered as
an individual objective. However, due to the strong correlation between them,
it is sufficient to include only one of them, e.g. HC, in the optimisation. As
a result, only HC is considered as an additional objective for heavy aircraft in
this paper. For light and medium category aircraft, only taxi time and fuel
consumption is considered during the search. After efficient solutions in terms
of these two objectives are found, the value of HC is calculated for aircraft in
these categories according to (4).

After ti,s, fi,s, ε
pp
i,s are determined, the route qi with taxi time

∑|Si|
s=1 ti,s is

reserved for aircraft i. Lines 5–17 are repeated until all aircraft are processed.
Finally, the total taxi time ttaxi, the total fuel consumption f taxi and emission
εtaxi for all aircraft i = 1, 2, . . . , h, are calculated in (5)–(7). Due to reasons
mentioned above εtaxi only considers εHCi,s .

ttaxi =

h∑
i=1

|Si|∑
s=1

ti,s, (5)

f taxi =

h∑
i=1

|Si|∑
s=1

fi,s, (6)

εtaxi =

h∑
i=1

|Si|∑
s=1

εHCi,s . (7)

2.3 Runway scheduling problem

The runway scheduling problem aims to find landing and take-off times for all
aircraft arriving or departing from a given runway. The objectives of runway
scheduling are the minimum delay, fuel consumption due to waiting and associ-
ated emissions subject to safe separation between aircraft. In this study, landing
times are fixed and only take-off times are subject to search. This is due to the
fact that holding arriving aircraft still in air has more impact on the air traffic
control system compared to departing aircraft on the airport surface.

The minimum amount of time which must elapse between subsequent air-
craft using the runway is due to air turbulence (called wake vortices) generated
by departing/landing aircraft and in-flight separation constraints imposed by
different speeds of airborne aircraft. In this study, only separation to prevent
wake vortices is considered for simplicity.

The set of all h aircraft is denoted as H and consists of A arriving and D
departing aircraft. The function W (wj , wi) returns the wake vortex separation
for a pair of subsequent (leading/trailing) aircraft j, i with weight categories
wj and wi. The values of required separations between a leading and trailing
aircraft departing/arriving on the runway are given in Table 1. As can be seen,
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Table 1: Separations in seconds between departures (D) and arrivals (A) for
different weight categories w: heavy (Hv), medium (M) and light (L) [15].

Trailing

Leading

A-Hv A-M A-L D-Hv D-M D-L
A-Hv 96 157 207 60 60 60
A-M 60 69 123 60 60 60
A-L 60 69 82 60 60 60

D-Hv 60 60 60 96 120 120
D-M 60 60 60 60 60 60
D-L 60 60 60 60 60 60

longer separations are generally needed when the heavier aircraft is followed by
a lighter one. For aircraft departing in the order of j, i, e, the triangle inequality
W (wj , wi) +W (wi, we) ≥W (wj , we) holds.

Let tri be the actual landing or take-off time for arriving and departing
aircraft i, respectively. tri is given for arriving aircraft i ∈ A. For departures,
i.e. i ∈ D, tdi is the arrival time at the runway holding point which is calculated

as tdi = tbasei +
∑|Si|
s=1 ti,s. If the difference between tdi and trj of previous aircraft j

complies with the minimum separationW (wi, wj), aircraft i can take-off without
delay, i.e. tdi = tri . Otherwise, departing aircraft i at the runway holding
point needs to postpone its take-off as defined in (8), subject to tri ≥ tdi and
tri ≥ trj +W (wi, wj).

tri =


tdi if tdi − trj

≥W (wi, wj),

tdi +W (wi, wj)

−(tdi − trj) otherwise.

(8)

Therefore, the waiting time twi of the departing aircraft i ∈ D is equal to twi =
tdi − tri . In this paper, we assume that no departure slots are prescribed, and
aircraft can take off immediately as long as it is safe to do so.

Minimisation of the total runway delay trwy, as defined in (9), is the first
objective of the runway scheduling. The second objective to be minimised is
the total runway fuel frwy used during twi by jet engines with idle fuel flow φwi .
The third objective is to minimise emissions εrwy associated with the fuel frwy.

trwy =

|D|∑
i=1

twi , (9)

frwy =

|D|∑
i=1

twi · φwi . (10)

εrwy =

|D|∑
i=1

twi · φwi
· EIpp. (11)

The idle fuel flow φwi
and emissions EIpp correspond to fuel flow and emissions,

respectively, and are based on the International Civil Aviation Organisation
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(ICAO) engine database for η = 5% of the representative aircraft. Similarly, as
for the ground movement problem, only HC emissions are considered in (11). For
heavy category aircraft, HC emission serves as an individual objective, whereas
for light and medium category aircraft emissions are calculated after the search.

2.4 Integrated optimisation problem

Following the modelling approaches in Sections 2.2 and 2.3, in this section, the
ground movement and runway scheduling problem are integrated into a multi-
objective optimisation problem. The objective functions considered are (12)-
(14). g1 corresponds to the total time, g2 is the fuel consumption and g3 is the
total emission of HC. Each objective function consists of two components. The
first component is for ground movement, and the second one is for the runway
scheduling part. Each component is based on equations detailed in Sections 2.2
and 2.3.

min g1 = ttaxi + trwy, (12)

min g2 = f taxi + frwy, (13)

min g3 = εtaxi + εrwy. (14)

For the integrated optimisation problem, the decision variables are the follow-
ing: the pushback time xi for departing aircraft i ∈ D and the speed profile
yi ∈ {1, . . . , Nsp} for all aircraft i ∈ H. xi determines when aircraft i starts
ground movement and therefore arrival time at the runway holding point. In
this paper, xi is limited to an integer value within {0, . . . , 300}. yi determines
the duration of ground movement for arriving/departing aircraft i and arrival
time at the runway holding point in case of departures. The complete solution
to the integrated optimisation problem is represented as a vector of integer val-
ues: { x1, x2, . . . , x|D|, y1, y2, . . . , yh}. Given the decision variables, the objective
function values g1, g2, g3 are determined by:

1. ttaxi, f taxi, εtaxi,

2. trwy, frwy, εrwy.

In order to search for the values of decision variables, the EMO framework is
adopted and is described later.

2.5 Economic values of objectives

In practice, each unit of objectives g1, g2, g3 defined in Section 2.4 correspond
to an economic value, i.e. a unit cost. Economic costs are recognised in [4]
as incentives and an efficient way to consider different stakeholders’ interests
during airport surface operations: the airlines and the airport. As described in
[4], the following costs are related to airport surface operations (this includes
taxiing and waiting at the runway):

• time dependent cost (e·s−1) related to g1 which consists of:

– aircraft maintenance cost: maintenance is needed at a regular time
intervals,
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– aircraft opportunity cost: revenues missed because time during taxi-
ing or waiting at the runway is not used for profitable service,

– other operational costs related to aircraft (e.g. crew salaries)

– airport opportunity cost: revenues missed because infrastructure at
the airport is not used for profitable service,

• fuel costs (e·kg−1) related to g2,

• emission costs (e·g−1) related to g3 used in this paper.

Emission costs are a monetary value for each g of the pollutant emitted. Some
airports have already applied an emissions charge scheme [60] due to which
airlines need to pay for their emissions. However, the schemes usually lump HC
and NOx emissions together and the detailed information of charges per unit
for individual pollutants is missing. Therefore, in this study, no monetary value
for g3 is assumed and the decision is left to the DM.

However, some unit costs are often difficult to determine and only approxi-
mations are available. For example, a unit cost of g1 depends on maintenance
cost or crew salaries which can be different for different airlines. Therefore,
searching for a RoI with solutions within a range of objective function val-
ues, corresponding to certain ranges of unit costs for g1, g2 bears more prag-
matic meaning. The scalarizing function used in this work is defined as a
function Ctotal(zk, c) which evaluates a solution zj found during the search
in terms of the total monetary cost for nrobj objectives, using a unit cost vector
c = [c1, . . . , cnrobj ], cm ≥ 0 for m = 1, . . . , nrobj for each objective:

Ctotal(zk, c) =

nrobj∑
m=1

cm · gm(zk). (15)

If no information about the economic value for objective m is available, cm = 0.
It should be noted that (15) can be rewritten such that different cm is used
for aircraft in different weight categories and then multiplied by the sum of
the objective function values of aircraft belonging to that weight category. For
example, different fuel price can be used for heavy category aircraft if more
equal consideration of heavy (which consume more fuel) and medium aircraft is
desired.

The vector c̄ = [c̄1, . . . , c̄u] defines the most probable unit costs c̄m ≥
0 for m = 1, . . . , nrobj . Furthermore, to include the uncertainty in the unit
costs, for each c̄m an upper bound c̄upperm and lower bound c̄lowerm is defined such
that c̄lowerm < c̄m < c̄upperm . It should be noted that c̄lowerm , c̄m, c̄

upper
m can be

elicited from the DM or from the data held by the airport, e.g. the range of fuel
price during a certain period.

In the next section, we show how the preferred region defined by the DM
or based on scalarizing function and unit costs of objectives is constructed dur-
ing the search by the EMO framework, to guide the preference-based EMO
algorithm towards the RoI. This is carried out in conjunction with a filtering
procedure to obtain uniformly-distributed solutions.
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3 EMO framework with preferences

In this section, we describe the EMO framework based on the preferred region
and filtering procedure to find solutions in the RoI for the integrated optimisa-
tion problem as defined in Section 2.4. The structure of the EMO framework is
outlined in Algorithm 2. Lines 1–13 describe the Preference-based EMO algo-
rithm (P-EMOA) and Line 14 refers to the filtering procedure. P-EMOA is a
derivative of a generic EMO algorithm, such as NSGA-II [16]. In Line 1, the ini-
tial population is filled with solutions with random values of decision variables.
Each solution in the population is assigned objective function values g1, g2, g3

in Lines 2–4, as described in Section 2.4. In Line 6, solutions with better objec-
tive function values are selected for reproduction. Reproduction is performed
by applying a 2-point crossover, with a given probability, to two parent solu-
tions. In Line 9, mutation randomly changes the value of decision variables
according to the mutation rate. Then, the solution is assigned the values of
g1, g2, g3. Solutions, surviving to the next generation, are selected in Line 12.
The replacement procedure in P-EMOA is adapted to incorporate preferences.
A generic EMO favours non-dominated solutions which are in less ”crowded“
regions of the whole objective space, such as in the standard NSGA-II. In P-
EMOA, the replacement prefers solutions which are in the RoI as well as not
crowded within it. For this purpose, the replacement procedure with a modified
crowding distance taking into account these two requirements is adopted and
will be described in the next section. The loop in Lines 5–13 is repeated until
the maximum number of generations is reached. The final population is then
filtered by a filtering procedure to obtain a representative subset of solutions.

Algorithm 2: Structure of the EMO framework.

/* P-EMOA */

1 create initial population;
2 for each solution in population do
3 calculate g1, g2, g3;
4 end
5 while the maximum number of generations is not reached do
6 select good solutions for reproduction;
7 apply 2-point crossover;
8 for each solution in population do
9 perform mutation;

10 calculate g1, g2, g3;

11 end
12 replace population;

13 end
/* Filtering procedure */

14 apply filtering procedure to the final population

3.1 Replacement procedure for P-EMOA

During each generation, a non-dominated sorting [16] is performed during the
replacement to identify the non-dominated fronts. Within each front, surviv-
ing solutions are selected based on the preferred region of the Pareto front of
solutions in the objective space. The preferred region is defined as follows.
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Figure 2: Preferred region on Pareto front of the convex DTLZ2 problem [62],
for c̄ = [1, 1, 1], c̄lower1 = c̄lower2 = c̄lower3 = 0.8, c̄upper1 = c̄upper2 = c̄upper3 = 1.2.

Firstly, the middle point zC is identified as the most preferred solution within
the front. Next, boundary solutions zBa , called the characteristic neighbours are
selected such that for each objective gm an interval [vminm , vmaxm ] is defined for
m = 1, . . . , nrobj as shown in Fig. 2. The middle point together with the bound-
ary solutions specify the RoI. It should be noted, that the middle point and the
boundary solutions can be selected by the DM interactively via the brushing
technique [32]. As described in Section 2.5, a scalarizing function Ctotal can be
utilised for finding the middle point and the boundary solutions. In such case,
c̄lowerm , c̄m, c̄

upper
m need to be provided by the DM. The middle point is deter-

mined as a solution zk which has a minimum scalarizing function value with
respect to the unit cost vector c̄:

zC = arg min
zk

(Ctotal(zk, c̄)). (16)

In order to determine boundary solutions, we define a boundary unit cost vector
c̄B . The vector c̄B is a vector with boundary unit cost values, i.e. cm equals to

c̄lowerm or c̄upperm . Therefore, for u objectives, this leads to nrB = 2nr
obj

bound-
ary unit cost vectors c̄B , which are the complete combinations of upper/lower
bounds, e.g. c̄B = [c̄lower1 , c̄upper2 , c̄upper3 ]. Each a-th c̄B corresponds to a charac-
teristic neighbour, which is a solution zk with a minimum scalarizing function
value using c̄Ba :

zBa = arg min
zk

(Ctotal(zk, c̄
B
a )). (17)

All zB define a RoI, within which solutions with minimum Ctotal(zk, c̄m) for
any unit cost vector cm between c̄lowerm and c̄upperm are located, as illustrated in
Fig. 2. Furthermore, the RoI obtained from the scalarizing function can be
further modified by the DM during each generation.

In order to focus the search on the RoI, the crowding distance cdk is modified
as follows. For each zk within the same non-dominated front, cdk is calculated
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as:

cdk =


∞ if zk is the middle point zC ,

M + dcdk else if zj outranks zC ,

1/Ctotal(zk, c̄) otherwise.

(18)

If the solution zk is the middle point, cdk = ∞ and ensures that it is always
selected for the next generation. Otherwise, cdk is determined based on the
outranking relation [26] of zk to zC . The middle point zC is outranked by zk
(denoted as zkSzC) if vminm ≤ gm(zk) ≤ vmaxm for all objectives m = 1, . . . , nrobj .
All zk outranking zC form the outranking neighbourhood. Solution zkSzC if
all gm for m = 1, . . . , nrobj are within [vminm , vmaxm ]. The interval [vminm , vmaxm ],
called the veto interval, for objective m is determined by nrB characteristic
neighbours:

vminm = min{gm(zBa ), a = 1, . . . , nrB}, (19)

vmaxm = max{gm(zBa ), a = 1, . . . , nrB}. (20)

Determining whether zk belongs to the outranking neighbourhood does not
depend on its Ctotal value as defined in (15). This is important, as it is well
known (e.g. [63]) that such weighted sum aggregation can discover solutions
located only on a convex part of the Pareto front.

Solutions zk belonging to the outranking neighbourhood have the crowding
distance equal to M + dcdk , where M = 106 in this paper. dcdk estimates the
distance to the neighbouring solutions in (21), sorted according to [16]:

dcdk =

u∑
m=1

gm(zj+1)− gm(zj−1)

gmax
m − gmin

m

. (21)

Where gmin
m ,gmax

m correspond to the minimum and maximum value of objective
gm encountered during the search so far. With M set to big positive integer,
cdk ensures that the replacement performs its intended function, i.e. always
preferring solutions from the characteristic neighbourhood, whereas the diversity
within RoI is maintained by favouring solutions which are more distant from
each other by adding dcdk .

For solutions outside the characteristic neighbourhood, cdk is inversely re-
lated to Ctotal(zk, c̄), with larger cdk assigned to solutions with smaller Ctotal(zk, c̄).
As a result, solutions zk with smaller Ctotal(zk, c̄) and therefore smaller distance
to the RoI are favoured. If a scalarizing function is not used, euclidean distance
from the nearest characteristic neighbourhood solution can be used instead.
This is particularly important if there are not enough solutions in the outrank-
ing neighbourhood to fill the population such as in early stages of evolution or
due to the nature of the optimisation problem.

Finally, solutions are selected according to descending value of cdk until the
population is filled. After the specified number of generations has elapsed, the
final population containing solutions from the RoI is archived into set R. How-
ever, as mentioned previously, the possibly large number of solutions and their
uneven distribution pose a difficulty for the DM to make a decision, particu-
larly in the case of higher number of objectives. Therefore, the same filtering
procedure used to fill the database is applied again to obtain a representative
subset of uniformly-distributed solutions from R.
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Figure 3: Illustration of the territory concept.

3.2 Filtering procedure of Pareto optimal solutions

As discussed in Section 2.2, a representative subset of solutions helps the DM
in the selection process and reduces the number of solutions to be stored in a
database. The procedure is performed in two steps:

1. R→ R∗ using territory concept [19],

2. R∗ → R∗∗ using the ξ-heuristic proposed in this paper.

Firstly, R is filtered using the territory concept to obtain an initial set R∗.
However, as discussed below, the distance between solutions after filtering in
the first step may still be non-uniform. Therefore, in the second step, R∗ is
further refined into R∗∗ using the evenness measure.

In the first step, only solutions zk which do not have any other solution zl
in their territory are kept. The territory of zk is defined as the region within a
distance τ of zk in each objective among the regions that neither dominate nor
are dominated by zk as shown in Fig. 3.

The first step of the filtering procedure is detailed as follows. For each
solution zk in R:

1. If R∗ is empty, zk is accepted into R∗. Otherwise, proceed to the next
step.

2. Objective values gm of zk are normalised as defined in (22), where gmaxm , gminm

refer to the maximum/minimum objective value g of the m-th objective
in R.

gm =
gm − gminm

gmaxm − gminm

(22)

3. The rectilinear distance drectkl of zk is calculated to each solution zl in R∗:

drectkl =

nrobj∑
m=1

|gm(zk)− gm(zl)| (23)
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4. A solution z∗l with the smallest rectilinear distance drectkl∗ to zk is found as
l∗ = arg minl(d

rect
kl ).

5. The maximum scaled absolute objective difference δ between zk and z∗l is
found according to (24).

δ = max
m=1,2,...,nrobj

|gm(zk)− gm(z∗l )| (24)

6. If δ ≥ τ , zk is accepted and moved into R∗. Otherwise, zk is rejected.

The filtering procedure in the first step depends on the value of τ , effectively
controlling the size of the archive population. Two strategies for setting up the
value of τ are proposed: 1) If a fixed number of solutions NR is preferred, the

value of τ is set to τ = 1/(
nrobj−1

√
NR+o), with o = 0 initially. If the number of

solutions obtained using the initial τ is less than NR, o is iteratively increased
until the number of filtered solutions equals NR. 2) If a minimum difference
incm in objective m between any two solutions is required, τ = incm, where
incm is normalised similarly as in (22). This ensures that δ is at least incm in
(24). Instead of setting up different incn for each objective n with a different
scale than objective m, an initial incm is set up for any m objective. In order to
set incn for objective n 6= m, the objective normalisation for n can be adjusted
with adjn as outlined in (25). adjn is derived from (26) and adjusts the scale
of n such that τ (based on incm) corresponds to incn. The difference incn
can be also based on the economic value, in which case incn multiplied by cn
corresponds to the desired difference in monetary units.

gn =
gn − gminn

gmaxn − gminn + adjn
(25)

τ · (gmaxn − gminn + adjn) = incn (26)

The filtering in the first step provides a good initial set R∗. However, solu-
tions in R∗ may be closer than τ in some dimensions as only maximum distance
is considered in (24). Also, as δ is not required to be strictly equal to τ , and
indeed it can be any value larger or equal to τ , a large distance between solu-
tions is possible. Therefore, R∗ needs to be refined by a ξ-heuristic based on the
evenness measure [64] in the second step. The evenness measure is defined as
follows. For each solution zk in R∗, two spheres (circles in case of 2 objectives
or hyper-spheres for more than 3 objectives) are constructed, as illustrated in
Fig. 4. The first sphere is the smallest sphere that can be constructed between
zk and any other solution in R∗. The diameter of this sphere is denoted as dLk .
The second sphere is the largest sphere that can be constructed between zk and
any other solution in R∗ such that no other solution in R∗ is within the sphere.
The diameter of this sphere is denoted as dUk . The diameters dLk and dUk are
calculated as euclidean distances between corresponding points. The evenness
measure for R∗ is then defined in (27), where σd and d̂ refer to the standard
deviation and mean, respectively, of the set of all diameters for all solutions in
R∗: {dL1 , dL2 , . . . , dLk } ∪ {dU1 , dU2 , . . . , dUk }.

ξ =
σd

d̂
(27)
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Figure 4: Illustration of the evenness measure for (a) 2-objective case, (b) 3-
objective case.

A set of solutions is exactly evenly distributed when ξ = 0, i.e. all diameters
are equal. This is illustrated in Fig. 4, where dU1 > dL1 for z1, in contrast to
dU2 ≈ dL2 for z2.

The set R∗ is refined by the ξ-heuristic by replacing solutions zk from R∗

with better solutions zl from R. The ξ-heuristic replaces solutions based on the
value of absolute difference |dLi −d̂| and |dUi −d̂|. A small value of |dLi −d̂|, |dUi −d̂|,
respectively indicates that dLi , dUi are close to an ideal value, approximated by

d̂. The ξ-heuristic is performed as follows. For each solution zk in R:

1. The nearest solution zl from R∗ is determined in terms of euclidean dis-
tance.

2. Solution zl is temporarily removed from R∗ and zk temporarily inserted
to R∗.

3. Then, diameters dLk and dUk are calculated as euclidean distance between
zk and the corresponding points on the sphere.

4. If |dLk − d̂| < |dLi − d̂| ∧ |dUk − d̂| < |dUi − d̂|, solution zk is accepted into R∗

and zl is finally removed. For example, solution z3 replaces z1 in Fig. 4.
Otherwise, zk is rejected and zl is returned to R∗.

After all solutions from R are tested, R∗∗ = R∗.

4 Computational results and discussion

4.1 Experimental setup

The proposed EMO framework was tested on a set of instances of real arrival
and departure flights from 3 airports: Manchester (MAN), Beijing Capital In-
ternational (PEK) and Doha International Airport (DOH). The complexity of
the taxiway layout ranges from simple (DOH), medium (MAN) to complex
(PEK) as can be seen in Fig. 5. The data provided specified landing/pushback
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Table 2: Data instances.

Instance Aircraft Arrivals Departures Date
man1 25 13 12 12:00, 3.9.2011
man2 21 12 9 21:00, 3.9.2011
man3 24 8 16 18:00, 3.9.2011
man4 36 15 21 07:00, 3.9.2011
man5 13 4 9 9:00, 3.9.2011
man6 21 11 10 6:00, 3.9.2011
doh1 21 17 4 19:00, 16.3.2014
doh2 21 19 2 21:00, 16.3.2014
pek1 17 3 14 13:00, 9.7.2014
pek2 20 6 14 13:00, 9.7.2014

times and gates/runway exits for each flight. man instances are extracted
from Nottingham ASAP instances 1. Complete data instances are available at
http://dx.doi.org/10.5281/zenodo.1197292. The details of instances are given
in Table 2. The size of instances ranges from 13 to 36 aircraft with different mix
of arrivals and departures, representing a balanced set of different traffic levels.

N

(a) (b) (c)

Figure 5: A directed graph representation of the airport surface for (a) Doha
International Airport, (b) Manchester, (c) Beijing Capital International Airport.

As a simplification, all aircraft have been categorised into 3 weight categories
(light, medium, heavy) and representative aircraft is designated for each cate-
gory: Learjet 35A, Airbus A320 and Airbus A333 for light, medium and heavy
category, respectively. The specifications of the representative aircraft are used
for calculation of wake vortex separations, fuel burned and emissions. For each
building block, the number of speed profiles which are saved into the database

1http://www.asap.cs.nott.ac.uk/external/atr/benchmarks/data/groundMovement/MAN OSM Benchmark 20111029 GM.txt
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was set to Nsp = 10 for light and medium category aircraft. For heavy cate-
gory aircraft, Nsp = 20 as 3 objectives are considered during the speed profile
generation, in contrast to 2 objectives for light and medium category aircraft,
as explained in Section 2.2.

The EMO framework is implemented using the Inspyred package for Python
[65]. Based on initial experiments with instance man1, the termination criteria
for EMO framework was set to 50 generations and the number of individuals
in population was 50. The crossover operator was set to a two-point crossover
with probability 1, the mutation operator randomly changed a single gene with
a probability 0.1. A scalarizing function described in Eq. 15 and a unit cost
vector c̄ = [0.469, 0.71, 0] was used for the RoI specification. c̄ is a vector of cost
of delay, set similarly as in [14] and fuel price (as of 14.1.2014), all in Euro. The
unit cost bounds in this paper, without loss of generality, were set to c̄± 20%:
c̄upper = [1.2× 0.469, 1.2× 0.71, 0] and c̄lower = [0.8× 0.469, 0.8× 0.71, 0]. After
the search, the resulting solutions were filtered to obtain NR = 10 solutions.

4.2 Computational results

The performance of the proposed two-phase EMO framework (P-EMOA with
the filtering procedure) was compared to other evolutionary algorithms: NSGA-
II [16] without preference information, R-NSGA-II [21], MOEA/D [33] and
NSGA-III [24] with preferences. MOEA/D decomposes the optimisation prob-
lem into subproblem based on weights. As preference in this paper is for-
mulated using a scalarizing function and unit cost bounds, it directly applies
to MOEA/D. More specifically, we use (15) as a decomposition method with
weights randomly generated within c̄upper and c̄lower as defined in Section 4.1.
R-NSGA-II and NSGA-III require reference points as an input, which were gen-
erated as follows. In each generation of R-NSGA-II and NSGA-III, the middle
point and characteristic neighbours are calculated as defined in Section 3.1 and
used as reference points. The crossover and mutation settings for NSGA-II,
R-NSGA-II, MOEA/D and NSGA-III were identical as for P-EMOA. For R-
NSGA-II, ε = 0.1 is used to control the extent of obtained solutions. Other
parameters of algorithms were left unchanged from the ones suggested in the
original studies. It should be noted that although c3 = 0, all algorithms consider
and minimise all 3 objectives and c3 applies only to preference information.

Fig. 6 shows an example of the Pareto front for pek1 instance. As can
be seen, P-EMOA focused its search on the RoI. Setting no preference for the
emissions c3 = 0 produced a 3 dimensional front defined by the middle and char-
acteristic neighbour points based only on unit costs incurred by c1, c2. Within
this front, emissions are not restricted. Due to the inverse and non-linear rela-
tionship between fuel flow and emissions per kg of fuel described in Section 2.2,
solutions with higher fuel consumption due to a higher acceleration rate and
fuel flow have less emissions in total. From a visual comparison, P-EMOA re-
sulted in a better convergence compared to other algorithms. For NSGA-II, this
is expected, as it concentrates on the whole Pareto front. MOEA/D produced
inferior solutions, although not very far from the ones generated by P-EMOA.
Both R-NSGA-II and NSGA-III resulted in worse convergence compared to P-
EMOA. Also, for both MOEA/D and NSGA-III, the resulting fronts tend to
have solutions not evenly distributed.

In order to fairly compare the performance of P-EMOA with NSGA-II, R-
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Figure 6: Pareto fronts from an experiment for pek1 instance shown (a) in a
3-objective view , (b) g1, g2 projection, (c) g1, g3 projection, (d) g2, g3 projection.

NSGA-II, MOEA/D and NSGA-III, a quantitative measure is further calcu-
lated. As the aim of the search in this study is to find solutions corresponding
to the DM’s preferences, a measure which can take into account the utility
of obtained solutions according to preferences is needed. Traditional measures
such as the hypervolume indicator [66], can be unsuitable for preference-based
algorithms [67], as they do not take into account the preference information. For
example, one set of solutions can have better hypervolume value compared to
another set, even if it is further away from the RoI. Few performance measures
have been introduced in the literature recently [67,68], designed specifically for
preferences expressed as reference points. These measures assume that the RoI
is defined as solutions within a radius (set as a user parameter) from the ref-
erence point. However, this is different to the definition of RoI used in this
work, i.e. solutions within a range of objective function values, determined by
the characteristic neighbours, corresponding to c̄lowerm and c̄upperm for objectives
m = 1, . . . , nrobj . As a results, selecting solutions within a radius from the
reference point may include solutions which are not in the RoI. Furthermore,
as explained below, an improperly selected RoI can affect search performance.
Therefore, the R3 indicator [69] is employed as it directly incorporates weights
into the evaluation procedure, which enables to define an interval of weights,
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similar to c̄lowerm and c̄upperm . The R3 indicator evaluates Pareto set approxima-
tions based on a utility value of individual solutions. Let the weighted linear
utility function u(λ, PA) of the Pareto front PA be the minimum value of the
scalarizing function (15) obtained across all solutions in PA:

u(λ, PA) = ( min
∀zj∈PA

{|Ctotal(z∗, λ)− Ctotal(zk, λ)|}). (28)

where λ ∈ Λ is a weight vector, λ = (λ1, λ2, λ3) and z∗ is the ideal point,
i.e. the minimum values of objectives found during the experiments. Note,
that in this case the lower value of the utility function corresponds to lower
economic costs, thus better solution. In our case, the set Λ consists of 10,000
randomly generated vectors with the bounds λ1 ∈ (0.8×0.469, 1.2×0.469), λ2 ∈
(0.8× 0.71, 1.2× 0.71), λ3 = 0, according to preferences set in Section 4.1.

Then, the IR3 indicator for two approximation sets PA, PB can be calculated
as:

IR3(PA, PB) =

∑
λ∈Λ[u(λ, PB)− u(λ, PA)]/u(λ, PB)

|Λ|
(29)

Positive values of IR3 mean that PA is preferable to PB and larger values show
bigger difference between the two sets.

Table 3: Average IR3 indicator for P-EMOA and one of the investigated algo-
rithms for 30 runs before applying the filtering procedure and after.

NSGA-II R-NSGA-II MOEA/D NSGA-III
Before After Before After Before After Before After

man1 0.1367 0.1692 0.0901 0.1061 -0.0024 -0.0024 0.1899 0.2028
man2 0.0929 0.1102 0.0439 0.0518 0.0398 0.0310 0.2039 0.2013
man3 0.0834 0.1076 0.1021 0.1112 0.0085 0.0030 0.1985 0.1983
man4 0.2110 0.2443 0.1419 0.1600 0.0846 0.0844 0.2501 0.2540
man5 0.0775 0.1214 0.0966 0.1163 0.1218 0.1185 0.2406 0.2429
man6 0.1630 0.2081 0.1169 0.1404 0.1347 0.1323 0.2563 0.2685
doh1 0.1161 0.1484 0.1372 0.1633 0.0067 0.0032 0.2035 0.2079
doh2 0.1103 0.1478 0.1235 0.1515 0.0079 0.0086 0.1979 0.2065
pek1 0.1470 0.1845 0.1079 0.1396 0.0934 0.0898 0.2118 0.2189
pek2 0.1351 0.1703 0.0933 0.1071 -0.0112 -0.0128 0.1960 0.2049

Average IR3 indicators for P-EMOA and one of the NSGA-II, R-NSGA-II,
MOEA/D, NSGA-III algorithms over 30 runs are given in Table 3. The re-
sults presented are before applying the filtering procedure and after. The IR3

indicator is calculated before the filtering procedure, where all solutions gen-
erated by the algorithms are considered, and after the filtering, where only
NR = 10 solutions from each algorithm are compared. For comparisons with
NSGA-II, R-NSGA-II and NSGA-III, all values are positive, meaning that P-
EMOA resulted in a better convergence, i.e. better solutions in terms of utility
than NSGA-II, R-NSGA-II and NSGA-III for both filtered and unfiltered solu-
tions. For MOEA/D, most values are relatively small and positive, indicating a
slightly worse performance compared to P-EMOA.
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Table 4: Average utility for man1 for 10 runs of algorithms.

R-NSGA-II NSGA-III
ε u r u

0.5 84.3981 1 83.5896
0.2 83.3158 0.75 85.7992
0.1 79.4351 0.5 82.9054
0.05 73.3123 0.35 82.6533
0.01 74.0890 0.25 82.1816
0.005 76.3028 0.15 85.7848
0.001 75.3737 0 89.4186

Despite R-NSGA-II and NSGA-III use preference information to focus their
search, IR3 indicator showed worse convergence compared to P-EMOA. From
algorithm point of view, it should be noted that the difference between R-NSGA-
II, NSGA-III and P-EMOA lies in their replacement procedures, which selects
solutions surviving to the next generation. R-NSGA-II and NSGA-III empha-
sise solutions associated with reference points. Solutions are associated to the
closest reference point in terms of distance in objective space. In R-NSGA-II,
all solutions near the reference point are associated with it and only one so-
lution within a ε-neighbourhood is preferred [21]. In NSGA-III, all solutions
near the reference point are associated with it and the preferred solutions are
selected randomly [24]. Table 4 summarises results of experiments analysing
the relationship between the size of space associated with a reference point and
convergence conducted on man1 instance. The convergence is expressed by av-
erage utility u as defined in (28) over 10 runs of the investigated algorithms. For
R-NSGA-II, ε value was varied, whereas for NSGA-III, the solutions associated
with a reference point were ordered in terms of their distances to the reference
point, and only a fraction r of closest solutions were considered. As can be seen,
the size of space associated with a reference point determined by ε and r affects
convergence to the RoI. For comparison, P-EMOA achieved u = 72.4613. In
P-EMOA, outranking neighbourhood comprises a different portion of objective
space compared to the space associated with a reference point in R-NSGA-II
and NSGA-III. For larger values of ε and r, the space associated with a reference
point is too large and with too diverse solutions, leading to worse convergence.
On the other hand, for small values of ε and r the space associated with a refer-
ence point is too small and convergence is compromised due to lost of solution
diversity.

To illustrate the practical relevance of the proposed approach, pek1 instance
and Pareto fronts (before applying the filtering procedure) from Fig.6 are further
analysed as a representative example. The solution with minimum g1 from all
experiments has objective values [3534, 1483, 5468]. The solution with minimum
taxi time is often preferred in the previous research on the ground movement
problem [2]. Suppose, that the DM is interested in solutions with minimum
Ctotal for unit costs c̄ = [0.469, 0.71, 0]. The objectives for such solutions are
in Table 5. The best convergence of P-EMOA resulted in minimum values
of g1, g2, C

total compared to other algorithms. In comparison with the solution
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Table 5: Objectives g1, g2, g3 with minimum Ctotal for unit costs c̄ =
[0.469, 0.71, 0] for pek1 instance.

Algorithm g1 (s) g2 (kg) g3 (g) Ctotal (EUR)
P-EMOA 3574 1425 5837 2688
NSGA-II 3581 1439 5796 2701
R-NSGA-II 3545 1446 5812 2689
MOEA/D 3583 1423 5976 2691
NSGA-III 3564 1448 5701 2700

with minimum taxi time, the best solution in cost for P-EMOA could save 58 kg
of fuel at the expense of g1, g3. The difference for g1, g2 and Ctotal of P-EMOA
and NSGA-II (with the highest Ctotal) is 7 s, 14 kg and 13 EUR, respectively.
Beijing Capital International Airport had 567,759 departures/landings in 2013
[70]. Projecting the differences in values for P-EMOA and NSGA-II for the
whole year would result in 233,783 s, 467,566 kg and 434,169 EUR, respectively.
The annual difference between the solution with minimum taxi time, and the
best solution in cost for P-EMOA results in 1,937,060 kg of fuel. As can be seen,
even relatively small difference in this case can results in substantial amounts
given the annual traffic numbers. For objective g3, P-EMOA resulted in worse
value than NSGA-II, as c̄3 = 0. However, if the DM is interested in lower values
of g3, he/she can choose a solution [3587,1431,5661] with the minimum value of
g3 for P-EMOA with Ctotal = 2698, which is still lower than Ctotal of the best
solution in cost for NSGA-II.

IR3 is not the only measure that can be applied to compare the performance
of algorithms. The consideration of distribution of solutions is also important
from the DM’s perspective. The distribution of solutions in the Pareto front in
terms of the evenness measure as defined in (27) is compared in Table 6. The
results for P-EMOA are given after applying the filtering procedure (the 1st
column) and before (the 2nd column). Firstly, we compare P-EMOA without
the filtering procedure with other algorithms. P-EMOA without the filtering
procedure resulted in the similar evenness measure as NSGA-II, due to the
similar niching mechanism by the crowding distance in (21). On the other
hand, R-NSGA-II produced more evenly distributed solutions. Allowing only
one solution within its ε-neighbourhood in R-NSGA-II actively limits the dis-
tance between solutions in contrast to the crowding distance. MOEA/D and
NSGA-III which rely on the distribution of reference points and weights for the
even distribution of solutions achieved worse results than P-EMOA without the
filtering procedure. The solutions obtained by P-EMOA without the filtering
procedure give a good starting point for the filtering procedure, after which
P-EMOA achieved better evenness measure than other algorithms. The a pos-
teriori filtering procedure complements the a priori crowding distance niching
in P-EMOA. Note, that the filtering procedure can be used with any algorithm
such as NSGA-II, R-NSGA-II, MOEA/D and NSGA-III. The filtering procedure
applied to R-NSGA-II can obtain the same of slightly better evenness measure
than P-EMOA. However, only P-EMOA could obtain an even distribution and
good convergence of solutions at the same time as documented in Table 3 and
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Table 6: Average evenness measure for 30 runs of algorithms.

P-EMOA P-EMOA
w/o filtering

NSGA-II R-NSGA-II MOEA/D NSGA-III

man1 0.1983 0.5704 0.6130 0.5108 1.1168 0.9151
man2 0.2267 0.8060 0.9545 0.6436 0.9199 1.0900
man3 0.2290 0.7517 0.8532 0.5330 0.9214 1.0756
man4 0.2235 0.5857 0.6358 0.4814 0.8790 0.8032
man5 0.2437 0.7925 0.8043 0.5072 0.8863 1.0888
man6 0.2378 0.6141 0.6066 0.4927 1.1480 0.7500
doh1 0.2320 0.5087 0.5964 0.4149 1.3990 0.7091
doh2 0.2262 0.5440 0.5886 0.4740 0.8765 0.6908
pek1 0.2273 0.6089 0.6309 0.4721 1.1227 0.7067
pek2 0.2235 0.5937 0.6647 0.4777 1.4012 0.8399
Avg 0.2268 0.6376 0.6948 0.5007 1.0671 0.8669

Table 6. Given the relatively good performance of R-NSGA-II in the even-
ness measure, one could wonder if it could improve its convergence using the
same mechanism as described in Section 3.1 to restrict its RoI in each gener-
ation. However, R-NSGA-II uses ε-neighbourhood, which in combination with
restricted RoI would reduce the number of surviving solutions. More solutions
found within the veto interval do not result in more solutions in RoI, as only one
solution is allowed within its ε-neighbourhood. Therefore, a negative impact on
its convergence is expected.
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Figure 7: Pareto front for speed profile optimisation problem with filtered solu-
tions.

The filtering procedure is further analysed in Table 7. The filtering proce-
dure selects the solutions in two steps using: 1) the territory concept [19], 2)
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ξ-heuristic as described in Section 3.2. Table 7 gives results of the each step ap-
plied to nondominated speed profiles for MAN and PEK airports as described
in Section 2.2 and solutions of the integrated ground movement and runway
scheduling problem in Section 2.4. Note, that for DOH airport a subset of
speed profiles from PEK was used, thus no search and filtering was required.
As it can be seen, the ξ-heuristic improved the evenness measure by 18% on
average after the first step. An example of such filtering is shown in Fig. 7.
The evenness measure ξ as defined in (27), improved from 0.2357 to 0.1315 in
Fig. 7. Improved distribution has a practical implication for the DM. If the
filtered solutions are not evenly distributed, some regions of the Pareto front
will be covered less. In such a case, if the solution with minimum Ctotal(zk, c̄)
lies in such regions, the nearest selected solution will be located far from the this
solution, resulting in a solution with higher Ctotal, i.e. the total monetary cost
being chosen by the DM. For example, suppose the unit costs were equal c1 = 3,
c2 = 8, c3 = 0.2, the solution with minimum Ctotal(zk, c̄) would be z1 =[47.03,
33.48, 191.51] with economic cost Ctotal(z1, c̄) = 447.20 in Fig. 7. Considering
only filtered solutions from the first step in Fig. 7, the solution with minimum
Ctotal(zk, c̄) is z2 =[48.07, 32.99, 200.30] with Ctotal(z2, c̄) = 448.22. For fil-
tered solutions from the second step, the solution with minimum Ctotal(zk, c̄)
is z3 =[47.80, 33.13, 196.29] with Ctotal(z3, c̄) = 447.73. As can be seen, more
even distribution of filtered points resulted in a lower Ctotal (economic costs)
for the efficient solution compared to the points obtained from the first step.
Minimum Ctotal are important when selecting a subset of nondominated speed
profiles for the database and economically efficient routes and schedules based
on the speed profiles. For each aircraft i = 1, 2, . . . , h its set Si usually con-
sists of several building blocks for which speed profiles are retrieved from the
database. For example, for 17 aircraft of pek1 instance 80 building blocks
were needed. If we assume, that for each building block a similar difference
Ctotal(z2, c̄) − Ctotal(z3, c̄) = 0.49 is between evenly distributed solutions and
less evenly distributed ones, then the difference is 39.2 EUR in total. Again, for
a yearly traffic of 567,759 departures/landings in 2013 [70] for Beijing Capital
International airport this would result in 1,309,185 EUR difference. Therefore,
any economic cost difference between the selected and efficient solution quickly
adds up, emphasising the importance of even distribution.

5 Conclusion

In this paper, a multi-objective evolutionary optimisation framework with pref-
erences and filtering procedure is proposed for the integrated optimisation prob-
lem. This problem combines airport ground movement and runway scheduling
problem. The proposed approach was tested on data from major international
hub airports. Two challenging tasks were addressed by the proposed evolu-
tionary framework: 1) ability to handle approximate or uncertain preferences
expressed as an interval of the economic value for a unit of each objective; 2)
finding uniform distribution of solutions on the Pareto front.

To tackle the first challenge, a newly designed crowding distance within the
replacement procedure of the evolutionary algorithm takes into account unit
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Table 7: Average evenness measure for two steps of the filtering procedure.

Instance Step1 Step2
Speed profiles man 0.4576 0.3836
Speed profiles pek 0.5584 0.4914
man1 0.2581 0.1983
man2 0.2767 0.2267
man3 0.2831 0.2290
man4 0.2748 0.2235
man5 0.2933 0.2437
man6 0.2873 0.2378
doh1 0.2823 0.2320
doh2 0.2785 0.2262
pek1 0.2800 0.2273
pek2 0.2771 0.2235

cost range for taxi delay and fuel consumption, to control the extent of the
RoI. Efficient control of the extent of the RoI during the evolution successfully
improved the convergence of the algorithm. Such improvement has a practical
relevance, as better solutions in terms of total time, fuel consumption and emis-
sions can be discovered. The computational results illustrated the scale of the
potential savings compared to other baseline algorithms.

The second challenge was tackled by the proposed filtering procedure which
was applied to select a uniformly distributed subset of speed profiles to be
stored in the database and solutions from the RoI to be presented to the DM.
Experiments highlighted the importance of having evenly distributed solutions
in terms of the saved costs.

The computational experiments suggest that airports could benefit from
adoption of the proposed approach for decision support.

For the future research, the proposed a posteriori filtering procedure could
be embedded within EMO to select evenly distributed solutions during evolu-
tion. Also, the idea of including uncertainty into preference information in a
systematic manner deserves more attention. As an example, the uncertainty
could be expressed in terms of fuzzy values. Finally, finding not only opti-
mal but also robust solutions (robust against deviation in taxi time, departure
and arrival time) is of high importance when dealing with a real-world problem
like airport operations. To this aim, elements of robust optimisation could be
included within the search algorithm.

Data Access statement

The data and code used in this paper can be accessed at http://dx.doi.org/10.5281/zenodo.1197292.

Acknowledgement

This work is supported in part by the Engineering and Physical Sciences Re-
search Council (EPSRC) under Grant EP/H004424/1, EP/N029496/1 and EP/N029496/2.

28



Appendix. Notation
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Table 8: Notation.

Description
g1 total time objective Nsp number of speed profiles
g2 fuel consumption objective Ctotal scalarizing function
g3 total emission objective zk solution vector
H Set of all aircraft c vector of unit costs cm
h The number of all aircraft m,n objective index
A Set of arriving aircraft nrobj number of objectives
D Set of departing aircraft c̄ vector of the most probable unit

costs c̄m
i, j, e Aircraft index c̄upperm , c̄lower

m upper/lower bound of unit cost c̄m
yi speed profile of aircraft i zC middle point
qi route of aircraft i zBa characteristic neighbour
xi pushback time of aircraft i a characteristic neighbour index
acc acceleration rate vmin

m , vmax
m minimum and maximum bounds of

objective m
tbasei baseline departure time c̄B boundary unit cost vector
s building block index nrB number of boundary unit cost vec-

tors
tp(yi) taxi time spent in phase p of yi cdk crowding distance of solution k
p taxiing phase M big number constant
η thrust level dcdk neighbouring solution distance of

solution k
Thr thrust R set of solutions from RoI
Foo maximum power output of jet en-

gine
R∗, R∗∗ set of filtered solutions from RoI

weight aircraft weight τ territory distance
µ rolling resistance coefficient gmax

m , gmin
m the maximum/minimum of the m-

th objective
φp(yi) fuel flow in phase p of yi gm normalised value of the m-th ob-

jective
EIpp(φp(yi)) amount of pollutant for each kg of

burned fuel for pp given φp(yi)
drectkl rectilinear distance between solu-

tions k and l
pp pollutant δ The maximum scaled absolute ob-

jective difference
Si Set of building blocks for the route

of aircraft i
NR preferred number of solutions in R

ttaxi total taxi time o territory adjustment
f taxi total taxi fuel consumption incn preferred minimum difference in

objective n
εtaxi total taxi emission incm normalised incn
ti,s taxi time for building block s of air-

craft i
adjn adjustment for objective n

fi,s fuel consumption for building
block s of aircraft i

dLk , d
U
k diameters of the smallest/largest

sphere for solution k
εppi,s emissions of pp for building block s

of aircraft i
ξ evenness measure

W wake vortex separation function σd standard deviation of diameters

wi weight category of aircraft i d̂ mean of diameters
tri landing/take-off time for aircraft i ε extent of obtained solutions for R-

NSGA-II
tdi arrival time at the runway holding

point for aircraft i
u utility function

twi waiting time for aircraft i λ weight vector
φidlewi

idle fuel flow for wi Λ set of weight vectors
trwy total runway delay PA, PB Pareto fronts
frwy total runway fuel consumption z∗ ideal point
εrwy total runway emission r fraction of solutions for NSGA-III
k, l solution index gacc gravitational acceleration
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