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Abstract 

Objectives: To functionalise novel chlorhexidine (CHX) particles with iron oxide (Fe3O4) 

nanoparticles and control their release kinetics in a dental resin using an external magnetic field. 

Methods: Fe3O4 nanoparticles were synthesized and incorporated into spherical CHX 

particles and the powder was freeze dried. Resin disc specimens were produced using a 

UDMA-HEMA resin mixed with freeze dried spherical Fe3O4-CHX particles (5 wt. %), which 

were placed into a Teflon mould (10 mm diameter × 1 mm depth) and covered with a Mylar 

strip. A MACS magnet was left in contact for 0 mins (Group 1), 5 mins (Group 2) or 10 mins 

(Group 3) and the resin discs subsequently light cured (Bluedent LED pen, Bulgaria) for 60 s 

per side. The resin discs were immersed in deionised water at various time points up to 650 h. 

UV-Vis absorbance was used to determine the CHX content. CHX released for each time point 

was determined. The functionalized CHX particles and resin discs were characterized using 

TEM, TGA, EDX and SEM. 

Results: Fe3O4 nanoparticles (20 nm) incorporated into the spherical CHX particles, led to a 

mean (SD) particle size reduction from 17.15 (1.99) µm to 10.39 (2.61) µm. The presence of 

Fe3O4 nanoparticles in the spherical CHX particles was confirmed with SEM, EDX, and TGA. 

SEM of group 1 resin discs (no magnetic exposure) showed functionalized CHX spheres were 

homogeneously distributed within the resin discs. For resin discs which had magnetic exposure 

(5 or 10 mins) the particles started to cluster nearer the surface (Group 2: 43.7%, Group 3: 

57.3%), to a depth of 94 µm. UV-Vis absorbance revealed Group 1 resin discs had a cumulative 

CHX release of 4.4% compared to 5.9 % for group 2 and 7.4% for group 3 resin discs, which 

had magnetic exposure (5, 10 mins). 
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1. Introduction 

Antibacterial agents and their delivery are of great importance in medicine and dentistry, since 

a wide range of bacterial infections are still the major reasons for recurrent/ persistent infections 

despite the use of antibiotics [1, 2]. Biomaterial implants used in modern medicine for 

functional restorations are also susceptible to infections, which can lead to failure [3]. Increased 

application of implants in dentistry has led to significant numbers of patients developing peri-

implantitis (47.1% prevalence with mean functional loading of 10 years) [4]. These painful 

infections are caused by anaerobic bacteria and lead to bone loss, exposure of titanium implant 

threads and ultimately implant removal. Painful surgical treatment, smoothing of the implant 

[5] and cleaning together with antibiotic therapy can be carried out, but many of these treatment 

strategies have poor outcomes [6]. The site of bacterial infections can also be largely 

inaccessible to antimicrobial agents used in the oral cavity, especially in periodontal pockets 

and proximal/marginal areas of composite restorations, which are susceptible to bacterial 

micro-leakage. This can lead to the establishment of bacterial biofilms causing secondary caries, 

inflammation and degradation of the polymer composite [7]. Bacteria may become resistant if 

the antibacterial agents cannot penetrate the biofilm and if sufficient drug is not available at 

the infection site [8, 9]. Therefore efficient delivery and penetration of the antibacterial agent 

to the exact site of infection is highly desirable. In some infection, enhanced antimicrobial drug 

delivery might be achieved by using a non-invasive external magnetic force to improve drug 

navigation to the infection site. Magnetic field navigated drug delivery is based on the use of 

magnetic nanoparticles such as  magnetite, strontium ferrite, manganese ferrite and others [10] 

embedded into different nano-/micro- carriers or used directly, and various therapeutic agents 

have been loaded for magnetic targeted delivery [11-14]. Recent studies have demonstrated 

that by using a magnetic field superparamagnetic iron oxide nanoparticles are able to target 

infection sites, inhibit several bacterial functions and penetrate biofilms; thereby overcoming 
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the therapeutic barrier often encountered when using traditional antibiotics or other 

antibacterial agents [3, 9]. In dentistry, magnetic nanoparticles have been incorporated into 

polymeric scaffolds or cement composites to enhance cell adhesion and osteogenic 

differentiation [15-17] and have been navigated inside dental tubules via an external magnetic 

field for treating dental hypersensitivity [18]. Magnetic nanoparticles are also combined with 

other components to enhance their antibacterial performance. Mahmoudi et al., reported core-

shell nanoparticles consisting of a superparamagnetic core and silver shell, which showed 

enhanced antimicrobial activities and excellent penetration of biofilms when an external 

magnetic field was applied [19].  

CHX is a bis-biguanide antiseptic and disinfectant extensively used in medicine and dentistry 

[20, 21]. The current authors previously developed a novel formulation of CHX with a 

controllable crystal size [22] and release behavior when incorporated into a  dental resin [23]. 

Functionalisation of the novel CHX particles with gold nano-rods resulted in the ability to 

produce a near-infrared light (NIR) responsive CHX release [24]. With the ability to move 

CHX to an infection site using an external magnetic field, the combination of magnetic 

nanoparticles with CHX crystals could extend the range of antibacterial applications and 

improve efficacy. Therefore we aim to functionalise the novel CHX particles with iron oxide 

nanoparticles (Fe3O4) and investigate the possibility of moving the resulting CHX composite 

in a dental resin with an external magnetic field. There are many clinical situations where a 

targeted drug release would be desirable in restorative dentistry, periodontology and medicine. 

Magnetic responsive CHX formulations may be particularly useful in developing magnetic 

targeted antibacterial materials.  
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2. Materials and Methods 

2.1 Magnetic nanoparticles synthesis 

Iron oxide nanoparticles (Fe3O4) were synthesized according to a well-established Massart’s 

co-precipitation method [25]. Briefly, 2.35g FeCl3 (Fluka, 44944, Lot: 30607125) and 0.86g 

FeCl2 (Fluka, 44939, Lot: 24606139) were added in 40 ml H2O in a three-neck flask, and then 

placed in an oil bath and heated up to 80 oC in an argon atmosphere. The mixture was next 

stirred using a magnetic stirrer (VWR Stirrer, USA), at a rate of 800 rpm, whilst 5 ml NH4OH 

(Sigma-Aldrich, UK, lot: 320145) was added slowly with a syringe. Heating was maintained 

at 80 oC for 30 mins and then 2 ml of 0.5g/ml citric acid (Sigma-Aldrich, UK, 27490, Lot: 

23405C03) was introduced. The temperature was next raised to 95 oC and held for 90 mins. 

The product was cooled and dialysed against H2O in a 14 kDa cut-off membrane (Sigma-

Aldrich, UK, D9527) for one week. The Fe3O4 nanoparticles were then characterized using 

transmission electron microscopy (TEM) (JEOL-JEM 2010, USA) at acceleration voltage of 

200 kV. 

2.2 Fe3O4-Chlorhexidine sphere synthesis 

Spherical CHX particles (SCPs) were functionalized with Fe3O4 nanoparticles and prepared 

by mixing 200 µl of Fe3O4 nanoparticle suspension with 1 ml of 0.33M CaCl2 (Sigma-Aldrich, 

UK, C8106, Lot: SLBF7416V). The mixture was added to 1 ml of 15 mg/ml CHX-diacetate 

solution (Sigma-Aldrich, UK, C6143, Lot: 19H0417). The mixtures were shaken for 1 min, 

and then centrifuged at 2000 rpm for 1 min (Eppendorf centrifuge, 5417C, Germany). To 

reduce the dissolution of the particles, the precipitates were washed three times with 0.33M 

CaCl2 solution. All the supernatants were collected for UV-Vis absorbance (Wavelength = 254 

nm). The functionalized CHX spheres (CHX/Fe3O4) were freeze dried (ScanVac Cool Safe 

Freeze Drying, Denmark) at -107 oC, 0.009 mBar for 1 day. The proportion of CHX in the 
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powders was calculated using both UV-Vis (Lambda 35, Perkin Elmer, USA) and thermo-

gravimetric analysis (TGA Q50) as described in our previous work [23]. Control SCPs (without 

Fe3O4 nanoparticles) were synthesized by co-precipitation of CaCl2 and CHX-diacetate, as 

described in our previous study [26]. 

 

2.3 Preparation of functionalized chlorhexidine UDMA- HEMA resin discs 

UDMA-HEMA resin was prepared by mixing 64% urethane dimethacrylate (UDMA) 

(Esschem, UK, Lot: 591-22), 36% hydroxyethyl methacrylate (HEMA) (Aldrich, UK), 0.08% 

of N, N-dimethyl-P-toluidine (Acros Organics, UK) and 0.05% dimethylamino ethyl 

methacrylate (Aldrich, UK). The mixture was stirred at 800 rpm for 15 min (VWR Stirrer, 

USA). Finally, camphorquinone (Sigma-Aldrich, UK) was added at the proportion of 0.1% and 

the mixture was stirred for another 15 min. The viscous liquid resin was next mixed for 1 min 

with the freeze dried CHX/Fe3O4 spheres (5 wt.% CHX content) using a Rotomix (120V/60Hz, 

2850 rotations/min) (ESPE RotoMix, USA).  

The resin mixture containing CHX/Fe3O4 spheres was placed into a Teflon mould (10 mm in 

diameter ×1 mm depth), left for 10 mins and then cured through a Mylar film with a curing 

light (Bluedent LED pen, Bulgaria) (430-490nm, 600 mW/sq.cm) for 60 s on both sides (Group 

1). To control the distribution of CHX/Fe3O4 particles in the resin mixture, it was again placed 

into the Teflon mould and covered with a Mylar film. A MACS magnet (1.5 cm diameter, 0.5 

cm depth, Miltenyi Biotech, UK) was left in contact for 5 mins (Group 2) or 10 mins (Group 

3) and then the resin discs were light cured for 60 s per side. All the discs were next weighed 

on a microbalance (Salter Ander-180A weighing scale, UK) and the amount of CHX in each 

disc was calculated. 
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2.4 UV/VIS Spectroscopy  

The release kinetics of CHX from the resin discs was measured using UV-Vis absorption 

(Lambda 35, Perkin Elmer, USA). All the UDMA-HEMA resin discs containing CHX/Fe3O4 

spheres were kept in cuvettes containing 2 ml deionized water at room temperature. Specimen 

Groups 1, 2 and 3 (n=3 per group) were tested at time points of 1h, 3h, 5h, 15h, 25h, 40h, 65h, 

95h, 140h, 205h, 275h, 350h, 500h and 650h. Solutions from each time interval were collected 

for the UV-vis absorbance test and replaced with fresh deionised H2O. The released CHX for 

each time point was determined according to an established calibration curve [23]. Residual 

CHX in all the supernatants was determined by measuring the UV absorption of the 

supernatants at 254 nm. Cumulative release for each of the groups was plotted and compared. 

 

2.5 Scanning electron microscopy (SEM) characterization  

The spherical CHX particles, CHX/Fe3O4 spheres and resin discs containing CHX/Fe3O4 

spheres (Groups 1-3) were characterised using SEM. The resin discs containing CHX/Fe3O4 

spheres were immersed in liquid nitrogen and fractured to analyse the distribution of spheres. 

All the samples were gold coated for 45s at 18 mA, 0.04 mBar using a sputter coater (SC7620, 

Emitech, UK) and viewed using a scanning electron microscope (FEI Inspect-F, USA), in the 

secondary electron imaging mode, with an accelerating voltage of 10 kv and spot size of 3.5. 

To identify the presence of Fe in the CHX/Fe3O4 spheres, energy dispersive X-ray 

spectroscopy (EDX), (INCA, Oxford Instruments, High Wycombe, UK) was used with an 

accelerating voltage of 20 kV, working distance of 10 mm and spot size of 5. Back scattered 

SEM images were also used to illustrate the distribution of Fe in the CHX/Fe3O4 spheres. 

To determine the influence of Fe3O4 nanoparticles on the size of spherical CHX particles, the 

Mean (SD) particle diameter of the spherical CHX particles and functionalized CHX particles 
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(CHX/Fe3O4) were measured using quantitative image analysis software (Nano Measurer, 

version 1.2) of the SEM images.  

Resin discs containing CHX/Fe3O4 spheres with 0 mins (Group 1), 5 mins (Group 2) or 10 

mins (Group 3) magnetic exposure were characterized using SEM using the above protocol. 

To acquire a panoramic image, cross-sectional SEM images were taken continuously from one 

side of the resin disc to the other side and then all the individual images were assembled to 

produce a panoramic image. To analyze the distribution of CHX/Fe3O4 spheres in the resin 

discs as a function of distance to the magnet, the panoramic images for each group (n=3 per 

group) were divided into 21 frames. Each frame was presented along the x-axis in 47 µm 

increments. The number of CHX/Fe3O4 spheres in each of the frames was counted and 

summed to get the total number. The CHX/Fe3O4 sphere distribution in the resin discs was 

plotted as a function of frame distance to the magnet side, with each point representing the 

percentage of CHX particles in each frame accordingly. The border of the frame next to the 

magnet was set as zero.   

In order to assess the influence of magnetism on particle distribution the number of CHX/Fe3O4 

particles in each frame (n=3 in each of the three test groups) were statistically compared using 

a one way ANOVA (p<0.05, Tukey test, Sigma stat, version 2.03, SPSS Inc.).  
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2.6 Cytotoxicity Assay 

The Cytotoxicity of CHX/Fe3O4 spheres were evaluated with a standard MTT (3-[4,5 

dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) assay using L929 fibroblast cell line 

(ECACC 85011425, UK). The MTT assay was carried out according to the protocol outlined 

in ISO 10993-5:2009 (Biological evaluation of medical devices - Part 5: Tests for in vitro 

cytotoxicity). Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM; Lonza, 

UK) supplemented with 10% fetal bovine serum (FBS) with 100 IU/mL penicillin, 100 μg/ml 

streptomycin, and 2 mmol/L glutamine (all from Invitrogen, UK) in a humidified incubator in 

10% CO2 in air at 37°C seeded in flat bottom 96-well microtiter plates (Sarstedt, Germany) at 

104 cells per well with a final volume of 225μl and incubated for 22 hours. Following 

incubation, a series of 2 fold dilutions (0.000625 % to 0.08 %) of CHX/Fe3O4, commercial 

chlorhexidine diacetate (CHX) and pure Fe3O4 nanoparticles in deionised water were prepared. 

25μl of each CHX/Fe3O4, CHX and pure Fe3O4 nanoparticle concentration was added into 

respective 96-well flat-bottomed microtiter plates to achieve a final CHX/Fe3O4, CHX and 

pure Fe3O4 nanoparticle concentration range of 0.0000625 % to 0.008 %. 25μl of sterile 

deionized water were added into the control wells (cells only and medium only) and plates 

were incubated for 24 hours. Culture medium containing the treatments was then removed and 

50 μL of 1 mg/mL tetrazolium salt MTT (Sigma-Aldrich, Gillingham, UK) was added to each 

well and incubated in 37 °C for 2 hours. Formazan crystals generated by mitochondrial enzyme 

activity were then dissolved by 100 µl of isopropanol and the intensity of the purple coloured 

reaction product was quantified by measuring the absorbance spectra with a plate reader at 570 

nm. The absorbance of untreated cells was considered to be 100%. Relative cell viability was 

calculated as: (absorbance of treated cells/absorbance of untreated cells) x 100%. Finally, an 

inverted microscope (Nikon Eclipse TE2000-S, UK) was used to image the morphology of 

treated and untreated cells. 
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2.7 Antimicrobial Assay 

Oral pathogenic bacterium, Porphyromonas gingivalis (strain W50) was used to evaluate the 

antibacterial activity of CHX/Fe3O4. P. gingivalis was grown on blood agar (Blood Agar Base 

No. 2; Oxoid, UK) plates in an anaerobic atmosphere (10% H2, 10% CO2, and 80% N2) at 

37°C for 48 hours. The bacterial culture was harvested and suspended in brain heart infusion 

(BHI) broth (CM1135; Oxoid, UK) supplemented with 5µg/ml haemin and 5µg/ml menadione 

bisulphite. The bacterial culture was then grown for 24 hours anaerobically after which it was 

adjusted to an initial optical density (OD) of 0.1 at 600 nm (OD600nm) with BHI broth. A series 

of 2 fold dilutions (from 0.08 % to 0.000625 %) of CHX/Fe3O4 in deionised water were 

prepared. 225μl of diluted bacteria and 25μl of each CHX/Fe3O4 concentration was mixed into 

96-well flat-bottomed microtiter plates to achieve a final CHX/Fe3O4 concentration range of 

0.008 % to 0.0000625 %. For control wells (bacterial suspension only and BHI only), 25μl of 

sterile deionized water were added. The plates were incubated for 24 hours anaerobically and 

OD was determined at 595 nm (OD595nm) to quantify bacterial growth. The lowest CHX/Fe3O4 

concentration with no detectable bacterial growth was recorded as the minimum inhibitory 

concentration (MIC). Additionally, MTT assay was carried out as described above to determine 

the viability of treated bacteria. Briefly, bacterial culture medium containing different 

CHX/Fe3O4 concentrations were removed, 50 μL of 1 mg/mL tetrazolium salt MTT (Sigma-

Aldrich, Gillingham, UK) was added to each well and incubated anaerobically for 2 hours. 

Formazan crystals were then dissolved with 100 µl of isopropanol and absorbance was 

measured at 570 nm. Bacterial viability was calculated as: absorbance of treated 

bacteria/absorbance of untreated bacteria x 100%.  

 

 



11 
 

3. Results 

3.1 Results of the TEM study 

TEM image of synthesized Fe3O4 nanoparticles is showed in Figure 1. It can be seen that the 

mean diameter (SD) of the nanoparticles is 13.1 (2.4) nm and they appeared in clusters.  

3.2 Results of the SEM study 

SEM photomicrographs of the SCP and CHX/Fe3O4 spheres is shown in Figure 2a, e and 2b, 

f. Spherical CHX particles were produced by co-precipitation of chlorhexidine diacetate and 

CaCl2. Both samples showed a porous structure and particles were monodispersed (Figs. 2a-f). 

The mean (SD) diameter for SCP was 17.15 (1.99) µm, whilst the CHX/Fe3O4 spheres had a 

mean (SD) diameter of 10.39 (2.61) µm. SEM photomicrographs at high magnification 

(×40,000) indicated a dendritic structure for both particles (Figs. 2c-d), but Fe3O4 nanoparticles 

appeared dispersed within the structure for the functionalized particle (Fig. 2d). SEM images 

in the back scattered mode illustrated the presence of Fe in the CHX/Fe3O4 spheres (Fig. 2f), 

which was not present in the SCP (Fig. 2e) and peaks for Fe were clearly identified using EDX 

(Fig. 3). 

The cross-sectional SEM images of resin discs (Groups 1-3) assembled to make panoramic 

images are presented in Figures 5a, b, c. Frames (indicated by white lines, first 3 numbered) 

are presented in 47 µm increments and the position of the magnet (M) is marked to indicate the 

magnet side. For the Group 1 resin discs with no magnetic exposure (Fig. 5a), the CHX/Fe3O4 

spheres were homogeneously distributed throughout the resin discs. The Group 2 and 3 

specimens (5 and 10 mins magnetic exposure) resulted in the clustering of many of the 

CHX/Fe3O4 spheres at the magnet end (Figs. 5b, c). According to the numbers of magnetic 

CHX/Fe3O4 spheres counted in each of the frames, their distribution was plotted as a function 

of distance from the magnet (Figs. 6 a, b, c). To gauge the effects of the magnetic field the 
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percentage of particles in the first three frames (nearest the magnet) and in the disc with no 

treatment are listed. Group 1 frames were; 1: 8.4 %, 2: 3.6 % and 3: 7.1 % (Fig 6a). Group 2 

(5 min magnetic exposure) frames were; 1: 22.9%, 2: 20.8%, 3: 7.1% and Group 3 (10 min 

magnetic exposure) were 1: 38%, 2: 19.3% and 3: 5.5% (Figs 6 b, c). The results of the 

statistical analysis of particles in the SEM frames (1-3) were highly significant (p<0.01) and 

are given in Table 1. The power of the performed test with alpha was 0.050:1.0. 

 

3.3 Results of the Thermo-gravimetric analysis 

The results of the TGA analysis are shown in Figure 4. The spherical CHX particles (SCP) had 

8.5 wt.% remaining after increasing the temperature to 800 oC [24], and for the Fe3O4 

functionalized CHX spheres there was 33 wt.% remaining.  

 

3.4 Release kinetics of CHX from resin 

The release of CHX from the HEMA-UDMA resin discs containing functionalized 

CHX/Fe3O4 spheres (Groups 1-3), demonstrated a two stage process (Fig. 7). In the first stage 

there was a burst release (until 200 h) which was more rapid for Groups 2 and 3 when compared 

to Group 1. The second stage of the plots demonstrated a sustained release for all groups. Group 

1 (no magnetic treatment) resulted in 4.4% CHX released, whilst Group 2 (5 min magnetic 

treatment) gave 5.9% CHX released and Group 3 (10 min magnetic treatment) resulted in 7.4% 

CHX released at 650 h.  
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3.5 Cytotoxicity Assay Results 

The results of the cytotoxicity assay are presented in Figure 8a. Treatment with functionalized 

chlorhexidine spheres (CHX/Fe3O4) and commercial chlorhexidine diacetate (CHX) reduced 

cell viability in a dose-dependent manner in vitro. Overall, CHX/Fe3O4 spheres demonstrated 

reduced cytotoxicity in comparison with CHX at the same concentration. 

Relative cellular viability was reduced to approximately 50% in 0.0005% CHX treated cultures 

whilst the viability was above 80% in CHX/Fe3O4 sphere treated cells. While viability 

remained >70% in CHX/Fe3O4 sphere treated cells at 0.001% concentration, CHX treated cells 

demonstrated reduced viability (~30%) (Fig.8a). Accordingly, changes in cellular morphology 

(rounded, swelled, and loss of attachment to the wells) were also observed in both 0.0005% 

and 0.001% CHX treated cultures, whilst the normal morphology was maintained in 

CHX/Fe3O4 sphere treated cultures (Fig. 8b-d).  

3.6 Antimicrobial Assay Results 

Figure 9 shows the antimicrobial activity of CHX/Fe3O4 against P.gingivalis. The growth of 

P. gingivalis was completely inhibited by 0.0005% wt./vol. CHX/Fe3O4 (MIC) (Figure 9a) as 

measured by culture optical density. The MTT assay also confirmed this MIC value with no 

viability being detected at 0.0005% wt./vol. CHX/Fe3O4 (Figure 9b).  
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4. Discussion 

The antibacterial activities of metal nanoparticles such as gold, silver, copper, zinc and titanium 

and their applications against bacterial infections are well established [27]. In the current study 

Fe3O4 nanoparticles with an mean (SD) diameter of 13.1 (2.4) nm (Fig. 1) were synthesized 

using a co-precipitation method to take advantage of their ferrimagnetic properties [28] and 

allow targeted CHX drug release. Magnetic nanoparticles are extensively used for targeted drug 

delivery and as diagnostic agents due to their excellent magnetic properties, superior 

biocompatibility and ease of functionalization [14]. Magnetite (Fe3O4) is an inverse spinel 

structure with various particle morphologies that include spherical, octahedral or cubic 

structures [29]. The cubic structure is known to grow via a screw dislocation process [30]. In 

this study TEM of the precipitated Fe3O4 nanoparticles appeared to show signs of spherical 

morphology, although this was indistinct. The shape, size and surface chemical functionalities 

of iron oxide nanoparticles have a profound effect on their antibacterial activities [3]. When 

tested, CHX/Fe3O4 demonstrated antimicrobial activity against the periodontal pathogen P. 

gingivalis (Fig. 9). Importantly the cytotoxicity assay results showed that the CHX/Fe3O4 

treated cells maintained >90% viability at the concentration that inhibited bacterial growth (Fig. 

8a). Furthermore, Fe3O4 nanoparticle alone treated cells demonstrated >90% viability even in 

the highest treatment concentration tested (0.008%), whilst commercial CHX diacetate treated 

cells were not viable. This demonstrates that Fe3O4 nanoparticles were not cytotoxic to the 

fibroblastic cells (Fig. 8a). Magnetic targeted superparamagnetic iron oxide nanoparticles have 

been shown to be active against Staphylococcus epidermidis biofilms and may be an effective 

alternative to antibiotics for antibiotic-resistant strains [3]. They also appear more effective in 

penetrating and inhibiting biofilms compared with traditional antibiotics [9]. The antibacterial 

mechanisms associated with metal nanoparticles include their electrostatic attraction to the 

negatively charged bacterial cell membrane, their high surface area to volume particle ratio [31] 
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and production of a reactive oxygen species, ensuring intimate membrane contact and leading 

to functional disorder of the bacterial cells [3]. The dynamic series of interfacial interactions 

between nanoparticles and biological structures are however very complex [32].  

The crystallization of the CHX compound onto the Fe3O4 nanoparticles in the present study is 

advantageous as it presents an opportunity for a dual and tailored antibacterial effect. Enhanced 

antibacterial activity might also be obtained through the release of Fe3O4 nanoparticles through 

the dissolution of CHX from the sphere structure. Such a possibility would be valuable in 

treating antibiotic resistant bacterial biofilms but remains to be demonstrated.  

Functionalization of the CHX spheres using the Fe3O4 nanoparticles appeared to dramatically 

decrease the mean (SD) CHX particle diameter from 17.15 (1.99) µm for the particles with no 

functionalization (Figs. 2a, 2e) to 10.39 (2.61) µm for the CHX/Fe3O4 spheres (Figs. 2b, 2f). 

However, the spherical morphology and structure appeared unchanged (Figs. 2c-f). These metal 

ions may also act as sites for CHX crystallization, where the co-precipitation system 

encourages surface crystallization. Previous work indicated that functionalizing the CHX 

spheres with gold nanorods resulted in correlation between the number of nanoparticles added 

and the mean CHX particle diameter and number (r2=0.98) [24]. It is hypothesized that this 

might be possible with a number of metal ions including Fe3O4. The present work was directed 

towards the magnetic properties associated with ferrimagnetic domains in the Fe3O4 structure 

(tetrahedral and octahedral sub-lattices) [29], enabling a magnetic responsive drug release 

behavior. The Fe3O4 nanoparticles identified in this study are known to interact with each other 

and problems have been posed with functionalizing these particles for different applications 

[33]. Domains of the excess Fe3O4 nanoparticles were identified trapped within the CHX 

crystal structure (Figs. 2d, 2f, 3), which enhanced the magnetic effect and allowed the 

CHX/Fe3O4 particle movement. 
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The spherical CHX particles produced by co-precipitation of CaCl2 and chlorhexidine diacetate 

had a very high drug content (> 90 wt.%). After TGA analysis (Fig. 4) the remaining weight 

of the spherical CHX particles was 8.5 wt.%, which was ascribed to the presence of CaCl2 and 

chlorhexidine diacetate/degradation products [23]. When the CHX particles were 

functionalized with Fe3O4 nanoparticles, the remaining weight increased to 33 wt.% (Fig. 4), 

which was due to the non-decomposing metal nanoparticles at high temperature. Therefore 

24.5 wt.% of Fe3O4 nanoparticles were calculated to have been incorporated into the CHX 

particles and this proportionally reduced CHX content may be the reason for the reduced 

cytotoxicity observed against fibroblastic cells in comparison with CHX at the same 

concentration (Fig. 8). 

Magnetic nanoparticles are largely incorporated within carriers together with drugs resulting 

in a low drug loading rate [34]. The current strategy overcomes this problem as it was possible 

to grow the CHX drug (67 wt.%) directly onto the surface of metal nanoparticles and trap them 

within its structure (Figs. 2d, 2f). There are many studies using magnetic nanoparticles for 

targeted delivery, but this is the first study to integrate magnetic nanoparticles directly into 

drug crystals. This method promotes intimate contact between the metal nanoparticles and 

CHX crystals that can improve both plasmonic [24] and magnetic sensitivity, broadening the 

range of drug delivery methods. This also allows the potential of varying the Fe3O4 

nanoparticle content to tailor these properties and to control the size, number and CHX/ Fe3O4 

sphere ratio via particle crystallisation. 

Functionalization of the CHX spheres allowed the particles to be moved in the viscous HEMA-

UDMA resin in response to application of an external magnetic force (Figs. 5b, 5c). The resin 

sample without magnetic exposure presented a homogeneous distribution of CHX/Fe3O4 

spheres across the SEM cross sectional samples (Figs. 5a, 6a), which were evenly distributed 

by the resin mechanical mixing prior to curing. There was also no statistical difference (p>0.05) 
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between the number of spheres present in SEM frames 1-3 indicating this to a depth of 141 

microns. Following magnetic exposure (5 and 10 mins) there was a significant increase (p<0.01) 

in the number of CHX/ Fe3O4 spheres to a depth of 94 microns from the surface (Fig 5b, 5c, 

6b, 6c) nearest to the magnet. This represented 43.7%- 57.3% of the CHX/ Fe3O4 spheres in 

the samples (Figs. 6 b, 6c). At a depth >94 microns (Frames 3, Figs. 5b, 5c) from the surface 

nearest the magnet the CHX/ Fe3O4 sphere number was reduced and not significantly different 

to the CHX/ Fe3O4 sphere distribution (frame 3, group 1) with no magnetic exposure (Table 1, 

P>0.05). Clearly with magnetic exposure there was bulk movement of the CHX/ Fe3O4 spheres 

towards the magnet. The strength of the magnetic field was a key factor, and the magnetic field 

currently used was 400 mT at the magnet surface. Magnetic field strength has been shown to 

drop rapidly as a function of distance from the surface for Fe3O4 nanoparticles incorporated in 

microcapsules (1.3 um diameter) and dispersed in cell suspensions [35]. The current work 

necessitated the movement of the larger mean (SD) 10.39 (2.61) µm diameter CHX/ Fe3O4 

spheres through a viscous HEMA-UDMA resin and with a Mylar film (1 mm depth) used in 

the disc fabrication process, further reducing the magnetic fields influence. This would explain 

the residual CHX/ Fe3O4 spheres remaining in the SEM frames furthest away from the magnet 

(Figs 6 b, 6c). Further work is required on the type of magnet/magnetic field strength and 

duration on the movement of the drug particles to optimise this process. More efficient 

synthesis of cubic nanoparticles could also affect their magnetic sensitivity [36], allowing a 

stronger magnetic field to be used to reduce the exposure time. Guardia et al [37] suggested 

that cube-shaped (polydispersity <20%) Fe3O4 nanoparticles (19 nm) were in the transition 

between superparamagnetic and ferromagnetic particles, which yields high magneto-thermal 

properties. The magnetic attraction of CHX/ Fe3O4 spheres and their directed movement 

through a dental polymer or gel is extremely desirable, as it allows the drug to be moved to the 

infection site to potentially kill the bacteria more efficiently. Antibacterial agents of this kind 
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navigated by an external magnetic field resulted in an 8-fold higher antibacterial effectiveness 

in comparison to using antibiotics [3]. The current CHX/ Fe3O4 spheres might therefore be 

effective in sites in the oral cavity inaccessible to current antimicrobial agents, such as deep 

periodontal pockets or sites susceptible to secondary caries.  

 

The release kinetics of CHX/ Fe3O4 spheres from the HEMA-UDMA resin demonstrated a 

twostage process. Utilising a magnetic field (5 and 10 mins) to draw the CHX/ Fe3O4 spheres 

to the surface appeared to have the effect of inducing a more rapid drug release in the initial 

stages (until 200 h) from 2.9% (no magnetic field) to 4.0% (5 min) or 4.5% (10 min) (Fig. 7). 

Near surface drug entrapment and rapid leaching in water explains this burst effect [38, 39]. 

Inhibition of the polymerisation process by the increased CHX content in the near specimen 

surface (94 µm) and the presence of residual monomers /unreacted hydrophilic components 

encouraging water sorption of the polymer [40, 41]. After a 650 h sustained CHX release the 

overall drug content was also increased from 4.4% to 7.4% (10 min magnetic exposure). Most 

of the CHX incorporated in the Group 1 resin discs remained in the resin due to the 

homogeneous distribution of CHX/ Fe3O4 spheres throughout the sample interior (Group 1, 

Fig 5a), which limited the volume fraction of CHX/ Fe3O4 spheres available for rapid 

dissolution and diffusion mechanisms near the surface [41]. Synthesis of spherical CHX 

particles (without functionalization) by co-precipitation of CaCl2 and chlorhexidine diacetate 

indicated that the particles were stable, less soluble and with lower CHX release rates than the 

chlorhexidine diacetate counterpart when dispersed in resin [23]. This can be attributed to Cl- 

ions in their structure [42] and has been linked to the CHX release kinetics [22]. Following 

application of a magnetic field for 5-10 mins the CHX/ Fe3O4 spheres (43.7%- 57.3%) were 

drawn to a depth of 94 microns from the surface of the polymer (Fig 5b, 5c, 6b, 6c). The 

diffusion of CHX is determined by the water droplets formed around the drug particles, which 
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form pathways or channels linked to the surface [43]. It is therefore not surprising that the resin 

discs with more CHX/ Fe3O4 spheres distributed near the surface had higher release rates. 

Mechanisms for CHX/ Fe3O4 sphere dissolution appeared to be via the central part of the 

particle which was more prevalent for spheres nearer the resin surface than the interior. This 

dissolution behavior was thought to be associated with the penetration and intimate contact 

between the resin and the interior CHX/ Fe3O4 sphere structure [23]. The magnetic CHX/ 

Fe3O4 spheres embedded in resin could therefore also be further triggered with an alternating 

magnetic field to induce a responsive release [33, 44, 45], which will be explored in future 

work. 

The functionalized CHX spheres (CHX/ Fe3O4) have a number of potential applications and 

this is the first study to demonstrate novel magnetic functionalized CHX particles, where their 

distribution in a resin can be manipulated with an external magnetic field to alter the CHX 

release kinetics. These particles could be incorporated into dental filling materials and used to 

restore exposed implant surfaces or dispersed into maxillo-facial/ denture lining materials, 

allowing magnetically directed and drug responsive properties. These magnetic CHX/ Fe3O4 

spheres dispersed in gels and varnishes etc. are particularly attractive for the treatment of 

persistent periodontal or biomaterial-implant-associated infections.  
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Figure 1, TEM image of Fe3O4 nanoparticles. 

Figure 2, SEM photomicrographs of: (a, c, e) spherical chlorhexidine particles and; (b, 
d, f) CHX/Fe3O4 spheres.  

 

Figure 3, EDX of CHX/Fe3O4 spheres indicating peaks for Fe. 

Figure 4, TGA for the spherical chlorhexidine spheres and CHX/Fe3O4 spheres. 

Figure 5, Cross-sectional SEM photomicrographs of HEMA-UDMA resin discs with 
Fe3O4/CHX spheres: (a) without magnetic field treatment; (b) with magnetic 
field treatment for 5 min; (c) with magnetic field treatment for 10 min. 

 

Figure 6, Plots of the distribution of Fe3O4 /CHX spheres in HEMA-UDMA resin disc 
as a function of magnetic field treatment. (a) without magnetic field treatment; 
(b) with magnetic field treatment for 5 min; (c) with magnetic field treatment 
for 10 min. 

 

Figure 7, Release kinetics of chlorhexidine from the HEMA-UDMA resin disc as a 
function of magnetic field treatment. black line= without magnetic field 
treatment; red line= with magnetic field treatment for 5 min; blue line= with 
magnetic treatment for 10 min. 

 

Figure 8, (a) Relative viability of fibroblast cells following treatment with Fe3O4 
nanoparticles, CHX and CHX/Fe3O4 spheres (results averaged from three 
independent experiments).  Light microscopy images of cell morphology in; 
(b) untreated-0%; (c) CHX/Fe3O4 (0.001%) and; (d) Chlorhexidine diacetate 
(0.001%).  

Figure 9  (a) Growth of P. gingivalis was determined by measuring OD 595nm at 0 h 
after 24 h. (b) Relative viability of P. gingivalis following 24 h treatment with 
CHX/Fe3O4 (results averaged from three independent experiments and shown 
as mean SD). 
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Table 1, Mean (SD) CHX/Fe3O4 particle distribution in the cross-sectional SEM 

photomicrographs, frames 1-3 (figures based on n=3 panoramic SEM images 

per test group). 

 

 

 

 

 

 

 

  



39 
 

Table 1 

 

 

 

*Significant differences are indicated by different superscript letters between groups (P<0.05). 
(Figures are based on n=3 panoramic images per test group). 

 

 

SEM Frame 
Sections 

Mean Particle 
Number (SD) 

(Group 1) 

Mean Particle 
Number (SD) 

(Group 2) 

Mean Particle 
Number (SD) 

(Group 3) 

 

1 

 

2.3 (0.6) a,c,e,f 

 

7.7 (1.5) b,d 

 

11 (1.0) d 

2 1.0 (0.0) a,c,f 7.0 (2.0) b 5.7 (1.5) b,e 

3 2.0 (1.0) a,c,f   2.3 (0.6) c,e, f 1.7 (1.2) f 
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