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Abstract

We show that the bicrossproduct model C[SU5|»<U (suz) quantum Poincaré
group in 2+1 dimensions acting on the quantum spacetime [z;, t] = 1Ax; is related
by a Drinfeld and module-algebra twist to the quantum double U (sug)><C[SUs)]
acting on the quantum spacetime [z,,z,] = 1\eu,x,. We obtain this twist by
taking a scaling limit as ¢ — 1 of the g-deformed version of the above, where it
corresponds to a previous theory of g-deformed Wick rotation from ¢-Euclidean
to ¢-Minkowski space. We also recover the twist result at the Lie bialgebra level.

1 Introduction and Motivation

It is now widely accepted that quantum gravity effects may plausibly lead to space-
time, even flat spacetime, being better modelled by noncommuting coordinates than
classical ones. One such model that is is clearly related to 3D quantum gravity (with-
out cosmological constant and with point sources) is the angular momentum algebra
[z, %] = 1A€,T, as spacetime, as first proposed by 't Hooft in the mid 1990s[1, 2, 3, 4].
Another well-known model from the mid 1990s is the Majid-Ruegg ‘bicrossproduct’
model[5, 6] with spacetime [x;,t] = 1A\z;, which we take in the 3D case. Both mod-
els are notably for having Poincaré quantum group symmetries of interest in their own
right[2, 7]. In the present paper we show that these well-known models are in fact related
and in some sense equivalent via a module-algebra (or Drinfeld-type) twist.

Previously it was explained at the g-deformed level in [8] that these two models are
quantum Born reciprocal or ‘semidual’ aspects of 3d quantum gravity and that at this
g-deformed level they are also related by twisting and hence in some sense self-dual up
to twisting equivalence. However, the isomorphisms used were highly singular as ¢ — 1,
so only apply strictly with cosmological constant. The interpretation of ¢g-deformation
here as introducing a cosmological constant is clear from the close link between the
quantisation of the relevant Chern-Simons theory (giving the Turaev-Viro invariant), the
relevant g-deformation quantum group and the relevant WZNW model of conformal field
theory[9, 10]. In this context, quantum Born reciprocity interchanges the cosmological
and Planck scales for a fixed value of g-deformation parameter and the quantum double
D(U,(suz2)) = U,(so013) with the quantum group U, (suq)*P»<iU,(sus) = U,(so4) at the
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level of isometry quantum group, so these are twisting equivalent, a result first introduced
in [11] as ‘quantum Wick rotation’, see [12]. Our surprising new result is that by working
out the structures in great detail and carefully taking the ¢ — 1 limit while at the same
time scaling the generators, i.e in a contraction limit, a remnant of the result survives
in the form a module algebra twist between the above two quantum spacetimes and
their Poincaré quantum groups D(U(suy)) and C[SUS|waU (sus) respectively. The role
of D(U(suz)) in particular for constructing the states of 3d quantum gravity with point
sources is well established and we refer to [4, 8] for an introduction. That a scaling
‘contraction’ limit of U,(so4) gives a quantum Euclidean group was first pointed out in
[13] and this is presumably isomorphic to C[SUS|»<U(suy) in the same way as the 4d
quantum Poincaré quantum group proposed in [7] by contraction of U,(s023) was shown
in [5] to be a bicrossproduct C[R x R*|»al(s0; 3).

Our scaling limit result is striking because the two quantum spacetimes models appear
very different and have always been treated as such; one quantum spacetime is the en-
veloping algebra of a simple Lie algebra and the other of a solvable one. One Poincaré
quantum group is quasitriangular while bicrossproducts are not usually quasitriangular,
although the 3d one in [13] is, a result which in our version is now explained by twisting
as this preserves quasitriangularity. Moreover, whereas the quasitriangular structure of
the double exists formally, it does not take a usual algebraic form as the exponential of
generators, whereas our universal R-matrix on the bicrossproduct does and this implies
such a form also for the double by twisting. Similarly, when quantum spacetimes are
related by a module algebra twist then their covariant noncommutative differential ge-
ometry is related by twisting[14, 15] and hence that must also be the case here: For the
spin model the smallest covariant calculus is known to be 4D [2] and for the standard
bicrossproduct models it is known to be one dimension higher than classical [16], so
again 4D but now this is explained by our twisting result. Similarly, the construction
of particle state representations of D(U(suy)) by the Wigner little group method in [8]
should have a parallel on the bicrossproduct model side via twisting. Such possible
applications will be considered elsewhere.

The paper starts in Section 2 with some general Hopf algebra constructions which
underly the quantum Wick rotation[11] and semidualisation in [17, 8] but which were
not given so explicitly before. We carefully specialise these to U,(susy), again giving all
constructions in explicit detail in Sections 3.1-3.5. These exact formulae then allow us
in Section 3.6 to take the ¢ — 1 limit with suitably scaled generators. This is a rather
tricky process due to 1/(1—¢~?2) singularities but we remarkably do obtain finite results,
which we then verify explicitly, see Corollary 3.1. Section 4 rounds off the paper with the
Poisson-Lie or semiclassical level version of our results in line with [19] and mainly as a
further check of our calculations (notably, we show that we recover the expected Lie bial-
gebra double r-matrices). Our results relate to a different Lie bialgebra contraction than
[20] but the latter may emerge as a different limit of our results. Another direction for
future work is that U,(su2) as quantum spacetime is a unit hyperboloid in ¢-Minkowski
space and as such its constant-time slices give the 2-parameter Podles spheres [21], all
of which may have a parallel on the bicrossproduct model side of the twisting. Another
topic for further study is to look carefully at the different signatures (so the spin model



is the version for Euclideanised 3D quantum gravity) and the relationship between the
different real forms as reflected in the applicable x-structures.

2 Explicit Hopf algebra isomorphisms

This section brings together two different contexts in the book [12]. The first, about
semidualisation, was explained in [8] in the present context of 3d quantum gravity while
the second about twisting was explained in [11] in the context of quantum Wick rotation.
It was also outlined in [8] how to bring these together but now we need to work out the
underlying isomorphisms rather explicitly, which is not easy from the literature.

We use the conventions for Hopf algebras in [12] namely a Hopf algebra or ‘quantum
group’ H is both an algebra and a coalgebra, with ‘coproduct’ A : H — H ® H which
is an algebra homomorphism. There is also a counit € : H — k if we work over k and
an ‘antipode’ S : H — H defined by (Sh))he = hayShe = €(h) for all h € H and
notation Ah = hy, ® h,,. We shall refer to a covariant system (H, A) meaning a Hopf
algebra H acting on an algebra A as a module algebra, i.e., in the left handed case,

h>(ab) = (hgya)(he>b),  hel = e€(h).

where > is a left action. There is then a left cross-product algebra A>H. We refer to
[12] for details. We denote by H* a suitable dual Hopf algebra with dual pairing given by
a non degenerate bilinear map (, ) and HP H°" denote taking the flipped coproduct
or flipped product. As an easy exercise, if H acts covariantly on A from the right then

hea = a<S™h (2.1)

is a left action of H on A°P as another covariant system.

2.1 Semidualisation and the quantum double

(i) A double crossproduct Hopf algebra Hi><1H, can be thought of as a Hopf algebra
H which factorises into two sub-Hopf algebras built on H; ® Hy as a vector space. By
factorisation, we mean a map H; ® Hy — H as an isomorphism of linear spaces. One
can then naturally extract the actions > : Ho® Hy — H; and < : Hy® Hi — H,
of each Hopf algebra on the vector space of the other defined by (1®a).(h®1) =
am>hay @ ay<h, for the product viewed on H; ® Hs obeying some further compati-
bility properties (one says that one has a matched pair of interacting Hopf algebras).
Conversely given such data one can reconstruct the algebra of Hi><1Hs from these actions
as a double (both left and right) cross product. The coproduct of Hix1H; is the tensor
one given by the coproduct of each factor and there is a canonical right action of this
Hopf algebra on the vector space of Hy which respects the coalgebra structure of Hy and
thus provides in a canonical way a covariant left action of H;><xHy on HJ as an algebra.
Here H; acts on H; by dualising the above right action < on Hs, and Hs acts on Hj by
the coregular action ar¢ = ¢, {(a, ¢.,). Hence we have a covariant system (H><Hs, Hy)
and an associated cross product Hj>i(H;>1H,). Further details are in [12] and earlier
works by the first author.



(ii) The semidual of this picture associated to the same matched pair data was intro-
duced by the first author, see [12] for details, and is constructed by dualising the data
involving Hj to give a bicrossproduct Hopf algebra Hj»<H; which then acts covariantly
on Hy from the right as an algebra as the semidual covariant system (Hy»<1H;, Hy). The
remarkable fact is that (Hy»<H;)><Hy = H3>I(H><H,) as algebras, i.e. the combined
system is the same actual algebra but its interpretation is different in that the role of
spacetime coordinates Hy and momentum H; coordinates in the first case is reversed in
the other, with rotations H; the same. This is the B-model semidualisation referred to
in [8]. There is equally well an A-model semidualisation where we dualise H; to obtain
Hor4HY acting on the left on H; while Hi>aH5 acts on the right on H and the two co-
variant systems again have the same cross products, Hy>(H.>tH;) = (Hi><Hy)><HY.
These ideas go back to the first author as a new foundation (‘quantum born reciprocity’)
proposed for quantum gravity namely that one can swap position and momentum gen-
erators in the algebraic structure [17].

We will particularly need details of the B-model which were not provided explicitly
in [8]. Starting with a matched pair Hi, Hy acting on each other the left action > :
H,® Hy — H; of Hy on Hj and a right coaction Agr : Hy — H; ® H; of H; on H; are
define by

(h>g)(a) == ¢p(a<h), ¢ € Hy, a€ Hy heH

RO(h' a) =avh, h€ H,, a€ Hy,, Arh=h"®h'c H ®H;.

These define the bicrossproduct Hy»<H; by a left handed cross product H;>1H; as an
algebra and a right handed cross coproduct Hy»<H; as coalgebra:

(@ h)(Y®g) =¢(h,pV)@h,g, he€ Hy, ¢eH,
A(p®@h) =(¢0, @ h° 1) @(dyhfyy @ hesy) (2.3)

The canonical right action of Hy»<H; on Hj is
ad(p @ h) = aw<hi{p,ayn), Vhe H,, a€Hy, ¢e€H;. (2.4)
Note that H; ® 1 and 1 ® H,; appear as subalgebras with cross relations
hp =1@h) (Y ®1) = hqpt @ hy = (ha)pP @ 1) (1@ hey)) = (haP¥)he,

where we identify h =1®h and ¢y = ¢y ® 1.

(iii) We now apply the above construction to the specific case of the Drinfeld quantum
double D(H) = Hx<H*? due to [18] and viewed as an example of a double crossproduct
from work of the first author, see [12] for details. Here the right action of H on H*P
and the left action of H*°P on H are given respectively by

ah = a@)(ha), 60} (She), @), ah = he(ha), 6w ) (She), ae), h € H, a € H™P.
(2.5)
The double cross product Hx<1H*°P then comes out as

(h®a).(g@b) = hgw @baw(ga), 1)) (S9e), am), h.g € H, a,be H, (2.6)
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with the tensor product coproduct. This Hopf algebra canonically acts on (H*°P)* =
HP from the left as an algebra. The action is

(h®@a)ed = (Pu), a)h>dny, ¢ € H®P (2.7)
in terms of the coproduct of H and the action > in (2.8).

Semidualising, the left action of H on HP already referred to and the right coaction
of H®P on H are respectively

h>p = hyydShe = Adp(¢), Arh = hg & hy)yShes (2.8)
so that the product of HPp<H is therefore
(@Rh)(Y©g) = dhaPY@hwg, heH, ¢¢eH (2.9)
as the standard cross product Hq>H and the coproduct is
A(p@h) = dp) @ hy @ PyhayShisy @ he (2.10)

in terms of coproducts of H. This Hopf algebra acts covariantly on H*°P from the right
according to

ad(p @ h) = (phy, aq)) @ (Shey, aw), h€ H, ¢ € H*?, a € H". (2.11)

Using (2.1), and correctly using the inverse antipode of the bicrossproduct determined
by the coproduct (2.10) gives the covariant left action of the bicrossproduct quantum
group on H* as

(9@ h)pa = (Sha)S¢, an))ac (he); ae)- (2.12)
In summary, the semidual of the left covariant system (D(H ), H®P) is the right covariant
system (H°Pw<H, H*P), which is (H°P»<H, H*) as a left covariant system with action
(2.12). This is essentially as in [12] where we denoted HPp<H = M (H) the ‘mirror
product’ but now in our current conventions and, critically, keeping track of algebras on
which our Hopf algebras act.

(iv) Finally, we observe as a right-left flipped version of [12, Prop. 6.2.9] that there is
a Hopf algebra isomorphism

9]_ . HCOp ®H — }JCOP’QFI7 91(¢® h/) == ¢Sh(1> ® h(z), 01_1(¢®h) - ¢h<1) ® h(g) (213)

under which the right action of HP»tH on H*P by (2.11) is isomorphic to a right
action of H°°P ® H on H*°P by

a<(p @ h) = a<georpp 01 (¢ @ h) = a@m) (P, aqy) (Sh, ag)).
and by observation (2.1) this is equivalent to H°P? ® H acting on the left on H* by
(p@h)pa=a1S (p@h) = a<(SP @ ST h) = ay, (Sé, an))(h,as) (2.14)
and this is also 61(¢ ® h)>a acting by (2.12).

In summary, the semidual of the left covariant system (D(H), H) acting by (2.7) is
isomorphic to the left covariant system (H®P ® H, H*) acting by (2.14). This action is
equivalent to a left action of H and a right action of another copy of H it is H* with
a natural H-bimodule structure afforded by the coproduct (the Hopf algebra version of
left and right derivatives on H*).



2.2 Twisting of module algebras and quantum Wick rotation

(i) We recall following Drinfeld that a quasitriangular Hopf algebra is a pair (H,R),
where H is a Hopf algebra and R is an invertible element of H ® H satisfying

(A ® ld) (R) :R13R23, <ld ® A) (R) - R13R12
A“P(h) =R(ARR™', heH.

In this case R obeys

(e®id)(R) = (ild®€)(R) = 1,
(SRIR =R, (HdeS)R'=R,
R12R13R23 - R23R13R127 (2'15>

where we write R = R ® R with the notation that
Riji=19.0R"®12..0R"®..01

is the element of H ® H...® H which is R in the i'th and j'th factors. The identity
(2.15) is known as the quantum Yang-Bazter Equation (QYBE) and on account of this
R is also called a Universal R-matrix.

Next, an element y € H® H for any Hopf algebra H is called a twisting 2-cocycle [12]
if

X12(A®id)x = x3(id®A)y, (e®id)x =1

and in this case there is a new Hopf algebra H, with the same algebra and [12],
Avh = x(AR)X™' Ry =xaRx"', Sh=U(SKU" Vhe H,, (2.16)

where U = -(id ® S)x is invertible. Moreover, if H acts covariantly on A from the left
then H, acts covariantly on a new algebra A, with product

ab=-(x""pla®D)). (2.17)

This cocycle twisting theory was introduced by the first author in [22, 11] and other works
from that era (Drinfeld did not consider 2-cocycles or module algebra twists but rather
conjugation by general elements y in the category of quasi-Hopf algebras). Clearly, if H
is quasitriangular and we take 2-cocycle x = R, then H, = HP.

(ii) Following [11], we similarly see that HP ® H acting on H* by (2.14) twists via
X1 = Rl_Sl to H® H acting on a new algebra, which we will denote H", with product

alb=Re(a®b) = (R"®1pa)(R” @ 1)pb) = R(an, ® bu))aebe)

Thus the covariant system (HP ® H, H*) at the end of Section 2.1 twists to (H ® H, HY)
by X1

Moreover, the further twist of H ® H by the 2-cocycle xo = Ro4 gives a Hopf alge-
bra which we will denote Hw»arH (it is technically a double cross coproduct) acting



covariantly on an algebra H* with

a;b =0 (RQgD(CL ® b))

=am (R, a@) O be (SR™, b))

=020 R(aq) ® b)) R(ae @ Sba)

=005 R(Saa) ® Sbz) )R @ Sby))

=020 R(San)ap @ Sby,)
for all a,b € H*, where we view R by evaluation as a map on H*®? and use the axioms
of R in dual form. This product makes H* with its unchanged coproduct into a braided-
Hopf algebra as part of the theory of transmutation so the result in [11] was that this
can be seen as a twist (namely by ¥ = xax1 = Rz Rz = (A®id)R™).

(iii) Moreover it is known [12, Thm 7.3.5] that there is a Hopf algebra map
0 : D(H) - HrapH, 0:(h®a)=hyR™?®hyRY(a, R"URM) (2.18)

according to inclusions i = A and j(a) = (id ® id ® a)(R3; Ras) of H, H*P in Hrap H.
Note also that the latter has at least a couple of interesting quasitriangular structures
built from R namely,
Rp =Ry R5 RouRas = (x2)21R13 Raaxa'y Ri = Ry R13R24Ras = (x2)21Rs1Raaxs '
(2.19)
with Rp the image under 5 of the canonical quasitriangular structure of D(H) (at least
if H is finite dimensional so that the latter is defined). In the factorisable case the map
0y is an isomorphism of Hopf algebras, where ‘factorisable’ means ) = R91R viewed by
evaluation as a map @ : H* — H by Q(a) = (a, Q")Q™ is an isomorphism. This holds
formally for the standard quantum groups associated to semisimple Lie algebras.

Pulling back under 6y we compute using the Hopf algebra and quasitriangularity axioms
that D(H) = Hx<H*P acts covariantly on H* by

(h®a)pb = 05(h @ a)>peor o b = gy (b, (Sbez) )biay) R, by )R (bes), ) (2.20)
This is also the action on of 610(h®a) € H®Pp<H on b for the action (2.12).

Lemma 2.1 Q) : H* — H is a map of covariant algebras, intertwining the action of
D(H) in (2.20) with its action on H in (2.7).

Proof It is known [12, Prop 7.4.3] that @ is a homomorphism of braided-Hopf algebras
where H* is as above with unchanged coproduct and H has an unchanged product and
modified coproduct A. In particular, it maps the algebras and Q(b,)) ®(h, (Sbu))bs)) =
h>Q(b) as it intertwines the left action given by evaluating with the right adjoint coac-
tion, with the left adjoint action of H. Hence

Q(h®a)pb) = Rlaw,bu)R(be), ap)>Q(be))
= (Q(bw)), a))R((Sbz))by, az)) Q) (bz))
= (@ (%)Rm a)( hRM)>Q (b))

= ={(Q)1)R™, a)(hRM)>Q(b) 2

= (Q(b)w), >h>Q( )y = (h®a)>Q(b)
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where we used that Q(b,,) @ Q(bw)) = AQ(b) = Q(b) 1) SR® @ RU>Q(b),, and indicated
the braided coproduct by the underlining the numerical suffices. The 2nd equality is
easily proven by breaking down the 3rd expressions in terms of parings of H with H*
and using the quasitriangular and Hopf algebra pairing axioms. [J

Putting all the above together, we arrive at our main result:

Theorem 2.2 [f H is factorisable then the covariant system (D(H), H) in Section 2.1
viewed via Q) as a covariant system (D(H), H*) is isomorphic to a twisting of its semidual

(HePwaH, H*). Here we twist by (01 ®60,)(x) = Ra3 and the isomorphism is given by
0 =0,0,: D(H) — HPwaH, where

O(h®@a) = haQ " She @ heRMa, @ "R?)

Moreover, H®P»aH has two quasitriangular structures given by 61 ® 60, of Riz Ros and
R31Raa-

Proof We combine the results above together with an straightforward computation for
0. We recognise Y = XaX1 = Roz Rz = (ARI)R = (0, ®60;")R,3 so under 6, this
maps over to Ry € (HPw»aH)®2. Because the action of the double on the vector space
H* in Lemma 2.1 agrees via 6 with the action (2.12), it means that @) at the algebra
level with the transmuted product and 6 at the quantum symmetry level together form
an isomorphism of the covariant systems as stated. [J

We can also compute the quasitriangular structures in H°Pp<1H explicitly in terms of
R’s using the axioms of a quasitriangular structure as

Rpp = (1®01)(Rz3R) = R (S®id®S®id)(A®A)R
Rz (S®id® S ®id)R14RauRi3Ras
([d® S~ @id®id)(Ry RasRisRii Rt )
Rp, = (01 ®01)(R31R2s) = Rz(S®ideS®id)(A®A)R

= R3(S®id®S®id)R14R2uR13R 23

= ([d®S'®id®id)(RsRsR13R Rat)

where all expressions are reduced to tensor products of H.

3 Computations for H = U,(su2) and ¢ — 1 scaling limit

Here we obtain the main result, starting with explicit formulae in the g-deformed case.

3.1 The Hopf algebra U,(suy) = C,[SU;]

We recall that the Hopf algebra U, (suz) is defined over formal power series C[[t]] with
generators H, X, where q = e%, say. The relations are defined by

¢ —qH

[H H] =0, [H Xy =42X., [X, X ]= —.
q4—q"

(3.1)



The coproduct, counit and antipode are given by

H
2

AH=H®l+10H AX)=q¢?0X.+X.®q7,
e(H)=0 e(Xy) =0, (3.2)
S(H)=—H, S(Xi)=—¢"'Xx,
For ¢ real, the x-structure takes the form H* = H X7 = X;. The Hopf algebra

U,(suq) is called the g-deformation of the universal enveloping algebra U(sug). It is
quasitriangular with real-type universal R-matrix

H _H
R=q 5 ey i Xeorix (3.3)

where €7, is the g-exponential e , = 377 [k#ﬁg]!, with [k;¢72] = 11__‘7;: and [k; ¢7%)! =
[k;q72|[k — 1;¢7%]...[1; ¢"?]. This means that e ,e; = 1 and that if AB = ¢?BA, then
2%

A+B _ _A _B
€2 = €€ .

Next, unusually, we write U,(sug) as Cy[SU;] where latter has «, 3,7,0 generators
of B,[SUs] related via the map ). The coordinate algebra B,[Ms] is the space of
2 x 2 braided Hermitian matrices [29, 12], or ¢-Minkowski space, with generators u =

( (;é ? ) satisfying the relations

Ba=¢af, ~ya=q oy, da=asd,
B4 =1 =g a6 —a), [6,8=0-q¢*aB, [6=>0-q¢)a,  (34)

)
det(u) = ad — ¢*yB = 1 gives the braided group B,[SU,] or g-hyperboloid. When ¢ # 1
this algebra with o' adjoined provides a version U,(suz) via the map @ the ‘quantum
Killing form’[12] as

0 (Oz 5) I ; ¢ g—q g X (3.5)
v 0 ¢ (q—q " )Xeq7 ¢ Hq g g )X X

which we regard as an identification. If we assume « is invertible then the element ¢ is
determined by the braided-determinant relation and not regarded as a generator. This
map can also be viewed as essentially an isomorphism between the braided enveloping
algebra BU,(suy) (which has the same algebra as U,(suz)) and its dual which is the
braided function algebra B,[SU,]. Here, the unbraided coproduct of B,[SUs,] as inherited
from that of U,(suz) is

and real form (j b ) = (g g) . Its quotient by the braided-determinant relation

Aa=a®Ra A=10F+Ra Ay=1R7+7R®a,
Sa=a' Sf=—q?a"'f Sy=—yal, c(a™)=1, €B)=¢()=0(36)

The R-matrix becomes

R = quHe((]:qﬂrw@ail’B; a=qg". (3.7)

We denote U,(suy) in the form of the algebra of B,[SUs,] with « invertible and the
coproduct in (3.6) as the Hopf algebra C,[SU;].
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3.2 The Hopf algebra C,[SUs| = U,(su})

The well-known Hopf algebra C,[SUs,] is the dual of U,(sus) and can be viewed as the
quantum deformation of the algebra of functions of SU(2). A set of generators for
C,[SUy] is given by the matrix elements t*; : U,(suz) — C in the defining representation
of U,(suz) where

(h,t';) = p(h):, h € Uy(suy), t';€C,ISU, (3.8)

7

a

and p is in the spln—% representation. As usual we write t'; = < . ) which we recall

d
have the relations
ba =qab, bc=cb, bd=q ‘db,
ca =qac, cd=q ‘de, da=ad+ (q—q )b (3.9)
The coproduct, counit and antipode are given by
Aa=aRa+bRc, Ab=a@b+bRd, Ac=cRa+dRc, Ad=cRb+d®d,
ca=ed=1, eb=ec=0, Sa=d, Sd=a, Sb=—qb, Sc=—q'c, (3.10)

and the real form by a* = d, b* = —q~!c for ¢ real. The duality pairing takes the form

|

<qi%7a> = qi%7 <qi2 ad> = q:F%7 <X+7b> = ]-7 <X—7C> = 1. (311)

Applying a representation (3.8) to one half of the R-matrix leads to the definition of the
well-known L-matrices

(L4 = RUp(RH), (L) = p(R™)R™, (312)

H _H 3
= 7 9 - €7 —epX Cu=1-g2
q?pXy g 0 q

We also, unusually, write C,[SUs| with new generators z, x4 defined by

a b qz q%/uu;_ )
- . 3.13
( ¢ d ) < grpry g (1 + quirir.) (3.13)

If we assume a is invertible, the element d is not regarded as a generator as it is fixed by
the g-determinant relation det,(t) = ad — ¢~*bc = 1. The algebra then takes the form

where

SRS

vl

[Ty, 2] = 2y, x4, 2] = 0. (3.14)
The coproduct, counit and antipode can then be translated as

A= ¢ + - @, Ar)=¢Rr +1-®q¢° +qu’r-®q¢ "0,
Ar)) =2, ¢ +q ®@r, +qu’r 2 q " ®x,., €2)=0, elors)=0,

S(@*) =q¢ (1 +qilriw), S(zs)=—q  ws. (3.15)
We denote C,[SUs| with @ invertible as the Hopf algebra U,(su}). The corresponding
s-structure on U,(suj) is given by 2* = —xzy, (¢°)* = ¢ *(1 + qulz ).
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3.3 The quantum double covariant system (D (U,(su2)), U,(suz))

The quantum double of U, (sus) is the double cross product Hopf algebra D(U,(suz)) =
U, (su2)=<C,[SU|°P, with algebra structure given by (3.1), the opposite algebra to (3.9)
together with cross relations obtained from (2.6) as

H
2

97,a)=0, q7b=g 'bq?, qrc=qeg>, g

X—a:q_ aX—_‘_bq?a [X—ab] =0, [X—> ] q(
_H

CLX_,. = QX+CL—|—(] 2c¢, [X+7C] = Oa [X-i-v ] =4q 1((]

), dX_ =q'X_d+q?b,

“2d), X.d=qdX,;+cq®.
(3.16)

The coproduct, counit and antipode are given by (3.2) for the Hopf subalgebra U, (sus)
and the coproduct, the counit and inverse of the antipode in (3.10) for the Hopf subal-
gebra C,[SUs]°P. The quantum double D(U,(suz)) canonically acts on U, (suz) from the
left with (3.1) as algebra, resulting in the covariant system (D(U,(susz)), U,(suz)). The
left covariance action is given by (2.7) as

HoH =0, HeoXy=+2X,, X,oH=-2¢¢ 27X, XXy = (¢"2— ¢V )g 2 X2,
XobXe =q 2(XoXe — ¢ X Xy), avH =14 H, avq? =q2q?, abXy=q 2X4,
boH =0, bog? =0, boX,=gq2, bxX_=0, cxH=0, c>g? =0,

H
2

c>X, =0, c»X_=4¢q2», doH=-1+H, dbq% = q_%q%, d>X, = q%Xi.
(3.17)
This is the standard g-deformed quantum double system. This ¢ # 1 corresponds to a
cosmological constant in 3d quantum gravity.

3.4 The bicrossproduct covariant system (C,[SU;]*°Pw»<iU,(sus), U,(su3))

Here we use the alternative description of one of the U,(suz) as C,[SUS] and of C,[SUs|

as Uy(sub) as explained above. From (2.8), we obtain the left action of U,(suz) on
C,[SU;] as

a B\ [0 —28 s (a B\_( a g8
HD(V 5)_<27 0 ) v D(v 5>_(qﬂv 5 )

a B\ _( -y —¢(0- )) (a 6):< g2 0 )
X+D(7 5) < 0 g7y A v 0 gi6—a) —q 28 )’

Writing @ = a®l, f = f®1, v = y®1, in the subalgebra C,[SU;|*?®1 and
H = 1®H, Xy = 1®Xy, in 1®@U,[sus] of the ‘mirror product’ M (U,(suz)) =
C,[SUSPeal, (susz), we obtain its cross relations from (2.9) as

[H’O‘] :[H75]20> [H7ﬁ]:_267 [H77]:277

(Xi,0] =—¢2vq7, X =qBX; —q2(6 —a)g?, Xyv=q "9Xy, [Xy,0]=q 27q7,
(X_,a] =q¢28q7, X B=qBX_, X y=q¢ "9 X_+q:(0—a)g?, [X_,0=—q38¢>.
(3.18)
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The coproduct is given by (2.10) as
Aad =a®@a Af=01+a® Ay=7®1+a®vy, AH=1®H+ H®1,

AX-F = q_7®X++X+®Cflq% +q_%lu71(q% —q_%)(g)fya/*lqg’

AX. =q¢ 20X +X_ ®a gz +q¢ i (g2 —q 2)®a ' Bq".
(3.19)

This Hopf algebra covariantly acts from the left on U, (suj;) with (3.14) as algebra giving,
the covariant system (C,[SU5|*PpiU,(sus), Uy(su3)). From (2.12), we obtain this left
action on C,[SU;] as

()= (0 3 ) e () - (A )
Ko (20 (e ) (1) (qub_a D).
(O D)= ) (D) (00,

() =re(in) .

S O

qZ 0 . qZ qZ
He | oy | = 20 ), qrr | oxy | = qry ;
T_ —2z_ T_ g o
& —q*pay
X+ > €Ty = 0 s
x p @ =g (1 + gPo o))
& ¢’ pa_
Xl o |=| - (¢ - +qglzia)) |,
T_ 0
qz q—lqz qz 01
ab | Ty | = qx+ , Bl e | = i |
T_ g lo_ T_ 0
z 19
q —q2 Py
yo | 2y | = 0 . (3.21)
3
T —q 2q (L + gl )

This is the ‘mirror product’ covariant system semidual to the quantum double one. The
mirror product Hopf algebra[12] for generic ¢ # 1 here is isomorphic to a tensor product
so it not usually considered of interest, though it is for us.

3.5 Twisting equivalence of the ¢g-deformed covariant systems

In this section we work out the algebra isomorphism and the twisting of the preceding
two covariant systems as established in Theorem 2.2. Here the algebra isomorphism

0 : D(U,(suz)) — Cy[SUS|“Pwal,(sus)

12



is defined in Theorem 2.2 by
O(h@t) = hy,Q PShy @ hgRM(t, QTR h e Uy(suz), t € C)[SU,).
fR=RMQR™ then Q = RyR = RERM @ RUR'™ sothat Q' = R"MUR B @R BRI,

Therefore
Q*D] <tik, Q*[1]> — 'R//* [2]']2/*[1] <tik, R/*[l]R*[2]>
= R/-LIR-O <tik:, R/-MR— [2]>
= RIER-MgE Ry, RE)
= RESRI(EE,,, SR (™, R
= L', SLT™,.

This combination is a conjugate map () to the one we used before. Hence
1@t = Q—[z] RRU(E;, QTIREY = Q1 @ RI(H,, QW) (tF,, R™)
= LI SLT @ Lt
Also, for h®@1 € U,(suz) ® 1, we have
O(h®1) =hu,Q PShy @ heRM(1,Q R = h()She @hE =1®h.  (3.22)

In terms of our generators this means that 6 identifies the qg, X4 generators of the two
quantum groups and

(9<a b) - qu +3q3LL§X_X+ %MX H ® 1qg 0H
c d —q2uqe Xy q" qg2uXy q 2

25 2 g
Y a pXy q

where § = a~!(14+¢*$7) and in the 2nd expression we replace by «, 3, v for the generators
of C,[SU3|®P. One can check that this is indeed an algebra isomorphism as dictated by
the theorem.

The Drinfeld twist of the bicrossproduct C,[SUS|“Pw»U,(sus), defined in Theorem 2.2
as xp = (01 ®01)x = Roy € C,[SU;]°Pwal, (suq) @ C,[SUZ]|Peal, (suz) is given by

1
2107 X “pe1 1 —-q 2 KX g 1 A
XB =€ g 21Rq¢2XyQa” B0 g 2 OHeHel quq +®a ﬁq sHOH (3.24)

where ¢# = o when viewed in C,[SU;]*P and K = ¢% in U,(suz) and the second
equality uses the identifications C,[SU;|*P? = C,[SU;]*P? ® 1 and U, (suz) = 1 ® U,(suz)
in C,[SU;]°Ppal,(suz). One can check that yz(A )xz" where A is the coproduct of
C,y[SUS Pl (sus), gives us a coalgebra isomorphic by 6 to the coalgebra of the quan-
tum double (so # is not just an algebra isomorphism if we take this twisted coproduct)
as per the theorem. For example,

BROAd= (0R0)(d@d+c2b) = aK ' @aK ' + (=K + aqg? uX,) @(—¢*8K ™)
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_1 - o i
X(A0(d)xp" = e PRX@a 15(@[(*1 ®a[(*1)eg_§ KXy®@a™18

which gives the same answer on writing A = —¢~2 KX, ®a'fand B = oK' ® oK
and C' = ¢>yK ® K713 so that AB = ¢?BA + C, AC = CA using the commutation
relations in C,[SU;|Pwal,(suz). Operators with these relations formally obey

epBe s = B+ (¢ —1)BA+C,

which we use.

The map of covariant algebras provided by Lemma 2.1 is computed from Q(t) =
(t,Q"YQP = L*SL™ and was already given in (3.5) when one notes that B,[SU,]
and C,;[SUs| have the same coalgebra and the same generators (but different algebra
relations). From this point of view @) : U,(su}) — U,(suz) is not an algebra map (we
would have to use the transmuted or twisted product on the first algebra) and obeys

z 1 H 1 H
Q( a qz p - >: St epgr X
q2pry g (1 + qulayr) ¢zpXiqr ¢+ X X

Here a" = a-a:a--- (n times) when one looks carefully at the transmuted product - on
the generator a = ¢*, which implies

H H
2 2

X, Qey) =q ' Xk, (3.25)

Q(Z) =H, Q(CE*) =q

at the level of U,(su3) generators.

We also obtain two quasitriangular structures for the bicrossproduct C,[SU;5]PeaU, (suz)
defined in Theorem 2.2. Then we find expressions for

Ri,, Re, € Cy[SUS|“Peal,(sus) @ C,[SUS|“Pral,(su2)

as follows: From Theorem 2.2, we have Rp, = (Id® S7! ®id ® id)(R 3 RasR13R 14 Ras )
and similarly for R, with Rs; in place of Ry3. Writing R for U, (sus), this is

. 1. . LMoHoH®1 —pKX,  @¢d" @K 'X_®1 ng" 9 KX, 9 K~ 1X_®1
Rp, = ([d® ST @id@id)(gz! @7t A5 ent, T
euKX+®1®K*1X,®1e—,uKX+®1®1®K*1X,e—uqH®KX+®1®K*1X,

2

(H®1®1®H+1®H®1®H))
g2 q> q

1
q 2
= (ld® S™'®id®id) (q%1®H®H®1eq7%°‘®KX+®a‘15®1 ~ly@ef@a1B®1

_ e
g2 q

[

1 —1 1 ~
elea B®1e_q27®1®1®K*1X,€—ua®KX+®1®K*1X7 7%(H®1®1®H+1®H®1®H))

q—2 q2 q2 q
(3.26)

where K = ¢2 and o = ¢ viewed in C,[SU3|°P . Here, we have written Rp,, as
an element of U, (sug)»<iU,(susz) @ U, (sug)»al,(susz) in the first equality. In the second
equality, we view the first and the third legs in C,[SU;]°? using the map @ in (3.5)
—tred®aTlfel

_1 .
and used the fact that eg,j a@ KXy ®aBOL o mutes with ep

. Note that
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S~ reverses order, resulting in more complicated expressions if we apply this. Similarly,
Theorem 2.2 gives

. R . lgepioH®l pK'X_®10KX,®1 LigHgH®1 pl@ KX @K 1X_®1
Rp, = (d® S ®1d®1d)(q2 ®le ®eg,2 gl OH® ®e§,2 +
lpeleHe1 pKX+ 10K 1X_®1 —puKX;R11QK'X_ _lygi9lQH
qZ €y €2 q 2
6—2u1®KX+®1®K‘1qu—%(1®H®1®H))
q

~ ~ 1 -1 - 1
. 1o . 1 SaT BRIl 1 TI1I®KX g1
= (d® S 1®1d®1d)(q2H®1®H®1€;72 q21®H®H®16(q]72 QKX ®a 'B®

~ - 1 —1 1 -
AoleAel yY@l@a B8l _12y01010K'X_ ligieleH
2

1 _1
q* €q_2 eq a->
1 KX,  ®1QK 1x_ _1

et DKX1®1® g a(ieHe1O ) (3.27)

3.6 Limiting twist between the spin model and the bicrossproduct model

We are now in position to consider the degenerations of the two covariant systems by
scaling the various generators appropriately to recover the results of Theorem 2.2 in the
limit ¢ — 1.

(i) For the quantum double D(U,(suz)) = U, (sug)=<C,[SU|°P, the U,(suz) part has no
problem with the limit ¢ — 1 and so U,(suz) — U(sug), with the standard Lie brackets
(H,H] =0, [H X, =+2X,, [X,,X_]=4H, (3.28)

and cocommutative coalgebra

AH=H®1+10H AXy)=10Xs+ Xs®]1,
e(H)=0 e(Xs)=0, S(H)=-H, S(Xi)=—Xg, (3.29)

Similarly, C,[SUs|? +— C(SU,), the commutative algebra of functions on SU, as ¢ — 1.
The cross relations in the limit can easily be extracted from (3.16) as

[H,a) =0, [H,b]=-b, [H,c]=2c, [H,d] =0,
(X _,al=0b, [X_,b
(Xi,a] =—c, [Xy,c
(3.30)

and the coproduct is the tensor product one. The quantum group U,(suz) is also the
quantum spacetime algebra for the covariant system (D(U,(suz)), U,(suz)). In the limit
the covariant action of D(U(sug)) = U(suq)><C(SUs,) on U(susy) is given by the ¢ — 1
limit of (3.31) as

H-H =0, HeXy=4+2X,, XioH=-2X,, Xi>X,=0,
XXy =H, avH=1+H, avXy=Xy, b>H=0, X, =1,

boX_ =0, ¢c>H=0, cX, =0, ecX_=1 dbH=-1+H, dvX.=X..
(3.31)
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This limit action was first computed in [2] and to match standard conventions, we choose
generators

(3.32)

J

; APs 4 42 AP, —
H=2J), Xi=Ji%x1h, ;5= ( e’ +a15Py 15(P1 —1Pa2) ) ’

Z%(Pl + ZPQ) €XP3 — Z%po

where A € R is a deformation parameter and P; not regarded as a generator but is
determined by the det(¢) = 1 condition. This gives the algebra as

[qu Jb] = Zeabcjm [Pa; Jb] = ZEabc7)ca [Paa ,Pb] = 07 (333)

and the coproducts turns out to be

A
AJ,=J,01+1®J,, AP, =P, 1+1®P, — §eabc73b®730. (3.34)

For the quantum spacetime algebra for the covariant system, we write
AH =29, AXy =2 +129 (3.35)
and then the limit of relations (3.28) gives the spin model spacetime algebra
[T, 2] = 1A€pT). (3.36)

This is the ¢ — 1 limit (D(U(suy)), U(suz)) as a deformation of U(iso(3)) on R*[2].

(i) In the covariant system (C,[SU5]“Ppal,(sus), U,(su3)), we have Cj[SU|*P
C[SU5]°P with commutative algebra and U, (sus) — Uisug) with the standard algebra
(3.28). From (3.18), the cross relations becomes

[H,Oé] :[H76]:O7 [H,ﬁ]:—ZB, [H/Y]:Q/Va
[XJr?a] == [X+7/8] = _(6 - O‘)a [X+77] = 07 [X+,(5] =7 (337)
[X—7a] =0, [X—:/B] =0, [X—77]:(5_a)’ [X—’(S]:_B-
The coproduct is obtained from (3.19) as

Aa =a®®a Af=R1+a®f Ay=7®1+a®y, AH=1H+H®I1
AX, =10X;+Xp0a '+ 4@y, AX_=10X_+X_@a'+Z®a™p.

(3.38)
In this limit the covariant action of C[SUS|*PealU (sug) on U(suj) from (3.21) is
H>z=0, Hbxy =22z, Xipay =0, Xybz=TF2ry, Xibay = *=2
ooz =271, away =z, prz=0, pfrr.=-1, Brr_=0 wz=0
wry =0, ywr_=—1. (3.39)

To match standard conventions for the bicrossproduct quantum group C[SUS [Pl (sus),
we now identify new generators

@ = 6)\])0’ 5:)\P+7 /7:)\P—7 P:I::p2:l:lp17
H = QM, X+:N2—ZN1, X,:Nz—i—ZNl. (340)
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Then the relations (3.37) become

[pa;pb] :Oa [M7N1]2N27 [M7N2]:_N17 [N17N2]:_M7
[M,po] =0 [M,p;] =1ei;pj,  [Nispo,] = —teijpje (3.41)
Nipi] = gee (S92 - N52) = 1,2,

where p? = p? + p2 and coproduct (3.38) gives

Apy =po®@1+1®@p;, AM=1@ M+ M®]1,
Ap; =p; @1+ @ p;, (3.42)
AN; =1@N;+ N; @ ™ + AM @pe ™0, i=1,2.

For the model spacetime U,(su3), we set
ro =1z, x1=—=\ry+2x_), To=AT4—2_) (3.43)
and then take the limit ¢ — 1 to get from (3.14), the bicrossproduct model spacetime
[, x0]) = 1Ax;. (3.44)

In terms of these standard generators (3.40), the covariant actions (3.39) can be trans-
lated as

Ml>$() = 0, MI>£CZ' = —€;;T;, NZ'I>ZL’() = —1x;, NZ'DZE]' = —25ij1'0,
po>ro = =1, po>x; =0, pi>xe=0, p>x;=1i€5 1,7=172. (3.45)

This is the bicrossproduct model covariant system (C[SU;|Po<iU (sus),U(su3)) as a
quantum Poincare group in three dimensions acting on the Majid-Ruegg quantum space-
time as a 3d version of [5].

(iii) We now look at the ¢ — 1 limit of the twist between the two covariant systems. We
remind the reader that for handling of the cocycle and R-matrices we reduced expressions
to the tensor product of the underling Hopf algebras. In effect in what follows we equip
the vector space of C[SU;|*PwalU(suz) with two products, one is the cross product
algebra as part of the bicrossproduct »< construction and the other is the tensor product
® algebra. In the following, we use the convention that all exponentials are multiplied
in the tensor product ® algebra, which does not impact (3.46) but is important for the
correct reading of (3.47).

Corollary 3.1 From the above analysis, we arrive at the degeneration limit ¢ — 1 of our
result that the covariant system (D(U(suz)) = U(sug)><C[SUy|P, U(suz)) is isomorphic
to a twisting of the covariant system (C[SUS|“Po<ilU (suz), U(sul)). The twist is derived
from (3.24) in the limit ¢ — 1 as

Yp, = e X+@07B e Hell) ¢ (O[SUF]“Pral (sus))®2. (3.46)
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The degeneration limit ¢ — 1 of (3.26) also provides an R-matriz for the bicrossproduct
C[SUsPeal (suz) given by

RBO = 6%7H®a’15 : 6_0<X+ ®a"lp : 6_%H®(O‘_1)6_7®X76 %(a 1)®H7 <347)
where
-1 = (_1)71
. efaX+®Oé B i Z TO&”XLL ®<a71ﬁ)n'
n=0 ’

Proof We write a = a®1, f = ®1, vy =v®1, in the subalgebra C,[SU]*? ® 1 and
H=1®H, Xy =1® X, in 1@ U,(sus) of C;[SU;]Peil,(susz), with ¢ = e’. Then in
the limit ¢ — 0, the algebra isomorphism becomes 6 : D(U(suy)) — C[SU5]*PoilU (sus)

given by
b —
0 (i d) = (_‘37 f) , O(h) =h, h € U(sus) (3.48)

It is easy to check that 6 is indeed an algebra isomorphism. For example [#(X,),0(b)] =
0(a) — 0(d), etc. Now we write o = e37 = 1+ LH + O(t?), so that

- 00 <_t”Hn®f~[”_ ® 1 n . 2 lHee )
=y _Zﬁ —— ) ®(a=1)"+O(t?) = e 2 +0(t%),

n.

and therefore from (3.24), we see that yz — g, = ¢+ € e @01 54 5 0. To
obtain the limit for the R-matrix, we first note that for X commuting with H,

_ _ X bH X >~ 1/ X\""Z .
lﬁ% <6q2 6!12) - Z nl (_E> H(H - 2i).

=1

Then form (3.26), the limit of Rp, as ¢ — 1 becomes

Rp, =(id® S ®id ®id) (eél@H@’("‘”@1ea®X+®“’15®1

[e’e) _1)n
Z%,Qi (y®1®a'fe1)" 1®H —-2)@1®]1)
n=0 ’

e 1®LO®I®X_

6—%(a—1)®1®1®H)’ (3.49)

where we used that X = y®@1®a !3® 1 commutes with 1® H®1®1 and also that
S? =id on Ul(suy). Next, we also note that for any elements

([d®S®id®id)((e@bec@d) - (A9BRC®D)) = (Id®S®id®id)(eA®bB ® cC @ dD)
= aA® S(bB)®cC ®dD = Aa®(SB)(Sh) ® Ce® Dd
=([d®S®ideid) (A BRC®D)- (id® S®id®id)(a®b® c®d)

provided dD = Dd, since the first and third legs are in C[SUJ|°P which is already
commutative. Here, - indicates that the product is in the tensor product one of the Hopf
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algebra. Using this observations, (3.49) becomes

0o n—1

Rz, :(id@S@id@id)(Z n'12n7" ® H(H +2i) ®(a”'B)"® 1))
n=0 i=1

([d® S ®id®id)(ez! ®H - D@00 X @atFal)
e 1®1O18X_ —3((a-1)®1010 H) (3.50)

because the first two lines of (3.49) are of the form A® B® C ®1 and the last line is
unchanged under the action of (id ® S ®id ® id). We evaluate the first two lines of the
above equation as follows: In the first line, we have

n—1
7®HH 2i)@(a ') @1

=1

(id® S ®id®id) Z Wn

(%) n—1
1 -1
= (H + 2i) "®1=ex®F
;%n!Q” ®g +20) (' f)"®l=¢

The second line of (3.50) is evaluated as

(id®S®id®id)(e%1®H®(a*1)®l a®X+®a—15®1)

_ —cx®X+®a 18®1 _11®H®(a 1) § : an ( —lﬁ)ne—%Hé@(a—l)

n!
n=0

- 1
e—aX+®oz g . €—§H®(a—1)'

Finally, we check that U (sus) is a module algebra twist by xp, of U(suz), i.e. U(su3)y,, =

U(suz), where the twisted product a-,, bis given by (2.17). With Xpo = e ®a=1) X+ ®a!B
we have that for example

Z xpy T+ = (XB (Z®$+

— < g)mDXﬁbz) (e = 1)™>(a”'B8)"pay)

m' nl

= Z — (( )m z) ((a—1)"ezy) + Y % ((g)mw—zm) (@ =1)">(=1))

= 2Ty + 274,

and
Tiong 2= ) Z —— ((g)m >X¢>x+> ((a —1)™s(a1B)"2)

S5 (Y o) e

=T42 — T4,

19



Computing all possible combination of products, we obtain the following twisted algebra

[I-Hx—]'XBO = [ZL’+,£L‘_] +z, [x:taxi]'XBO = [x:bx:l:]v [sz]'XBO = [Z,Z]

(T4, 2 xp, = [T4,2] =324, v, 2]5p, = [2-,2] + 7 =22
which on evaluating the product in U(su}) gives

[er?w*]'XBO =z, [z, xi].XBO =0, [z Z]'XBO =0, [za, Z]'XBO = F224.
We see that
O(H)=2z2 P(Xy)=1u4 (3.51)

defines an isomorphism of U(suy) with U(su}) after twisting. This is manifestly the
inverse of @) : U(suj) — U(suz) of covariant algebras in Lemma 2.1 which in our case
by (3.25) is just Q(z) = H, Q(r+) = X4 in the ¢ — 1 limit. By construction, the
identification must be covariant but it is a useful check to see this directly. For example,

OlapP(H)=0bz=2+1=d(1+ H) = P(arH)
O(d)pB(X_) = avr_ = B(X_) = (d>X_).

4 Semiclassical limit of results

In this section describe our twisting result at the infinitesimal Lie bialgebra level, i.e.
the classical double as a Lie bialgebra twist of the bicross sum, both in the case when
q is switched on and in the scaling limit ¢ — 1 with a parameter \. We begin with a
brief review of Lie bialgebras and classical r-matrices and refer the reader to [12, 23]
and references therein for details.

4.1 Double and Semidual Lie Bialgebras and classical r-matrices

A Lie bialgebra in the sense of Drinfeld provides a semiclassical or infinitesimal notion
of a Hopf algebra. A Lie bialgebra (g, , |,d) is a Lie algebra (g,[ , ]) over a field
k equipped with a cocommutator § : g — g ® g is a skew-symmetric linear map, i.e.
d : g — A?g satisfying the coJacobi identity

(0®id)od(§) +cyclic=0, VEeg
and that for all £,n € g,
(&) = (ade ® 1 + 1 ® ade)d(n) — (ad, ® 1 + 1 ® ad,;)0(§).

There exist a Lie bialgebra version of the quasitriangular Hopf algebra which arise nat-
urally in the following way: Since ¢ is a l-cocycle, an element r = rM ®@r® € g®g
provides a coboundary structure for the Lie bialgebra (g,[, ],0) if 6 = Or, i.e. §(§) =
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adeg(r) = [ ® 14+ 1® ¢, r]. This requires that ade(r + 72;) = 0 for all £ € g to have ¢
antisymmetric. For any Lie algebra g, we define the map

g®2 — g®3, r— [[’T‘, ’I“]] = [T1277"13] + [T127’T’23] + [7“13,7"23]. (41)
This map restricts to the map A%g — A3g. The equation
[r,r]] =0 (4.2)

is called the classical Yang-Baxter equation(CYBE) and any solution of the CYBE in
g ® g is called a classical r-matrix. The classical r-matrix provides a quasitriangular
structure for the Lie bialgebra. It is triangular if it satisfies the CYBE and r9y = —r
and called factorisable if it satisfies the CYBE and r +ry; : g¢* — g is a linear surjection.
The classical r-matrix therefore provides a natural infinitesimal version of the universal
R-matrix while the factorisable case correspond to R factorisable.

If (g,[, ],7) is a quasitriangular Lie bialgebra and x© € g ® g obeys

[ X+ Il IIXG X =0, ade(X° + x5:1) =0, VE €y, (4.3)

then (g,[, ],7 4+ x©) is also a quasitriangular Lie bialgebra. The element y is called a
Lie bialgebra twist and d,c = § + 0x° is also a Lie bialgebra.

A quantised enveloping algebra roughly speaking means a Hopf algebra over C[[t]]
generated by a vector space g, with relations and coproduct of the form

&n—n& =[&n+0(t), (A—A“P)E =t +O(t"), (4.4)

where t is a formal deformation parameter. Further, if the Hopf algebra has a quasitri-
angular structure of the form

R =1+tr+ O(t?), (4.5)

then 6 = Or, and our Lie bialgebra is quasitriangular. This interpretation is also com-
patible with twisting. More explicitly, if x = 1+ tf + O(t?), then from (2.16), we
have

X=fa—f (4.6)

(Classical double and bicross sum Lie bialgebras provide a semiclassical version of the
quantum doubles and bicrossproduct quantum groups respectively, described in Section
2.1. For any finite dimensional Lie bialgebra g with dual g*, there is a quasitriangular
Lie bialgebra, D(g), the classical double of g built on g @ g* as a vector space, with

Coonev] = ([&n+ D &, &) — (s, ne))
([, @] + > tm (e, &) — dm (@, ),
(Do) Z(O @ én)) (0D dpay) + Z(&u ®0) (&= @ 0),
ro= > (08 f)®(e,®0).

a
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*0p

Here g*°P, g, appear as sub-Lie bialgebras, where ()°? denotes the opposite (negated)
Lie bracket. The set {e,} is a basis of g and {f*}, a dual basis. Moreover, if (g,r) is
factorisable then D(g)=(g® g),s where we mean twisting by a certain cocycle x5, which
as we saw amounts to adding x§ to the (—ry;) @ if we want rp and to r @ r for another
r-matrix r;. We can further view this as a twisting of g°® & g by a certain other cocycle
x§ built from 7.

Semidualisation can also be defined for Lie bialgebras which are double cross sums.
Given a matched pair of Lie algebras (g, m), one can define the double cross sum g<m
as the vector space g @ m. The semidual gives the the bicross sum Lie bialgebra m*p<g
built on m* & g with

[fo&h®n = (ph—nf) @€ ],
S(fef) = D) (0@ep)®(f*@0) - (f*®0)(0d et
+> (fin ®0) @(fiu ® 0),

for all f® &, hdn e mpag, where §(f) =D fiy ® fia is the Lie coalgebra given by the
dualisation of the Lie bracket of m. For a detailed account of these constructions, we
refer to [12]. In particular, the splitting from the double semidualises to a bicross-sum
gePpag=g°? P g as Lie bialgebras.

Putting these facts together gives an isomorphism of quasitriangular Lie bialgebras
0°: D(g) — (g°°P»<g) e, , with

0°(€) =¢, 0°(9) = =27 (¢) + (Id®P)r, X5 =123 — Tu1, (4.7)

for all £ € g and ¢ € g*, where r; = (r +191)/2 is viewed as a map g* — g and tilde
indicates that the result is viewed in the g®P copy. As a check, one has

(°@O)Vf"®eq) =Toa —T1a —Ta1 =TBp + X5, TBp =7T24a —T23 — T14

so the canonical r-matrix for the double when mapped over under the isomorphism is
the twist of 7p,,. There is also

TR, =731 —T23+T13 —T14 + T4

which twists to the image under 6°® 6¢ of the other r-matrix r;, on D(g). This is the
Lie bialgebra version of the general theory in Section 2. We now verify everything on
our examples as a check.

4.2 Infinitesimal limit of results in the limit ¢ — 1

In the infinitesimal Lie bialgebra limit, the quantum double D(U(sus)) becomes the Lie
bialgebra double D(sug) = sugb<su,™ = susb<R3. Here, the sus parts has its standard
Lie bracket and su;” = R? has a commutative algebra. The relations are given by (3.33)

[Jm Jb] = ZEachc; [Pay Jb] = Z‘Eabc’Pa [Paa ,Pb] =0. (48>
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The bicrossproduct quantum group C[SU;]“Peal(sus) described in Section 3.6 in
terms of the basis (3.40) can be viewed as a deformation of U(sus’»<isus), where A is
the deformation parameter. In the semiclassical limit, C[SU;|“PpaU (suz) becomes the
bicross sum sug’B<isuy, where sup has its standard Lie bracket and suy™ = R® has a
commutative Lie bracket. From (3.41) the relations are given by

[pa,;ps] =0, [M,Ni] =No, [M,No]=—Nyi, [Ny,No] =—M,
[M,po] =0 [M,pi] =1eip;, [Nispo,| = —reipj,  [Niypjl =reipo 1,5 = 1,2,
(4.9)
In terms of the basis (3.40), the R-matrix becomes
Rp, = eAP,M®>\P+e*’\P0 :e—ekpox+®xp+e**po : e—M<g)(e*po—1)€—,\1>,@)(,6—(5*100—1)@M7
(4.10)

where we have kept the X for simplicity. Then the semiclassical limit of the bicrossprod-
uct R-matrix (4.10) gives a classical r-matrix for the bicross sum as

rgy, = —M®po—po®M—-P.@X_ —X,®P,
= —M®py—po@M — (po@Na+p1 @ Ny + No@pa+ N1 @p1)
—1(p2 @ Ny — p1 @ No + No @ p1 — N1 @ po) (4.11)

It is interesting to see that if we set M = Jy, J; = N; and P, = —p,, to match standard
notation, we get an r-matrix for the bicross sum susp<isu, as

By, = Pa®Ja+Ja®Pa—Z(Pl/\JQ—PQ/\Jl)
= P,®J,+ J, @ P, 4+ 1mge®™P,AJ.,, m?=1, (4.12)
where m is a unit time-like vector.

We observe that the symmetric part of the r-matrix (4.12) is equal to the Casimir
associated to the invariant, non-degenerate symmetric bilinear form used in the Chern-
Simons action [24, 25] and therefore suitable for constructing the Poisson structure on
the classical phase space via the Fock-Rosly construction [26]. This shows that the
bicrossproduct with r-matrix depending on a time-like deformation vector and with
complex antisymmetric part is compatible with 3d gravity via the Fock-Rosly compat-
ibility condition. This is different from the family of classical bicross sum r-matrices
associated to 3d gravity with vanishing cosmological constant obtained in [27, 19]. In
the later, the r-matrices are real and depend on space-like deformations vectors. See
also [20] where a complete classification of all r-matrices compatible to 3d gravity with
vanishing cosmological is constructed via semidualisation of Lie bialgebras which are
double cross sums.

Now, rewriting the twist in Corollary 3.1 in terms of the basis (3.40), we get

Xp, = € X+ APreT0 =M (Er0-1) (4.13)

and the semiclassical limit for the twist gives the Lie bialgebra twist by (4.6) as
X, = X+ QP + M®@py— PL® X, —po@ M
=M®py—po@M + N2@p1 + N1 @p1 — p2 @ Ny — p1 @ Ny
+UN2@p1 — N1 @pz — pa @ Ny — p1 @ Ny) (4.14)
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The above considerations leads to the semiclassical limit of the results in Corollary 3.1
that the double Lie bialgebra D(sus) is a Lie bialgebra twisting of bicross sum Lie
bialgebra sug»<sus. The isomorphism (3.48) becomes 6° : D(sug) — sug P B<ISus,
where

0°(Jo) = M, 6°(J;) = N;, 6(P.) = —2pa, i=1,2, a=0,1,2. (4.15)

Twisting the bicrossproduct r-matrix by x§%, and using the isomorphism (4.15) gives the
r-matrix for a classical double D(sus) as

Dy =TBy T X, = —200OM—-P X —P, X, =P,®J, (4.16)

on using the identification #¢ for the last step, in agreement with the general theory in
Section 4.1.

4.3 Infinitesimal limit of the ¢g-deformed results

If we take the semiclassical limit of Section 3.5 without sending ¢ — 1, we have on the
one side the Lie bialgebra double D(sus) = suodisu,” where sus” = ansg is the Lie

algebra of the Lie group AN, of 2 x 2 matrices of the form
e 41
<0 ge—q‘)n) ) ¢;§>776R7

and the notation refers the abelian and the nilpotent parts of this group. The vector
space splitting expressed in the Lie double cross sum is the lie version of the Iwasawa
factorisation of SL(2,C) = SU;.AN,. This result from [28] is the reason that the
quantum double D(U,(suz)) can be regarded as the ¢-Lorentz quantum group. Our
result is that this D(sus) is a twist of the double cross sum susb<isus as quasi-triangular
Lie bialgebras. The latter is known to be isomorphic to sus™” @ sus recovering the
(complexified) Lorentz Lie bialgebra as twist of a direct sum. This fact is essentially
known[12] but it is a nice check of our formulae to check this from the semiclassical limit
of Section 3.5.

To this end, the quantum double is given by (3.1), (3.14), with cross relations in (3.16)
written conveniently as

H
2

H H
[q?)qz] = 07 q2ry = qilxiq ’ [Xivxi] - 07
1 H _, _H . 1 s 1 H
X,z ]=q 2p 1<q2q (1+qpeiz_) —q 2q), X ¢ =q'¢X_ +qruz_q>?,
3 _ H _, _H . . 3 _H
Xy, o ]=q 2p 1(q2q (1+qpleiz_) —q 2q>, Xy =qX q" +q2uq 2oy,
(4.17)

The coproduct, counit and antipode are given by (3.2) for U,(suz) and the opposite
of the coproduct, the counit and inverse of the antipode in (3.15) for U,(su3)°?. The
bicrossproduct U, (susz)®Pwal,(susg) is from (3.18) and (3.19). The twisting (3.24) takes
the form
X,B _ 6(;2(1—q72)1®q%){+ ®q_%)~(,®1q_%1®H®H®1 _ 6(1_2(1_q*2)q%X+ ®q_%)~{,q_%[{®ﬁ,
(4.18)
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where H, X. are the generators for U, (sus)*P.

For the semiclassical or infinitesimal regime, in (3.26) and (3.27), we write ¢ = e? and
use (4.5) to get classical r-matrices for the bicross sum as

@D:%H@H—ﬁ@H—H@ﬁ%ﬂh@X;mﬁ®X;n&®Xﬂ (4.19)
and
vy, = }L(Qﬁ@ﬁ—ﬁ@H—H@ﬁJrH@H)
+ X X, + X, 0X_ +X,0X_ - X, 0X_ - X, ®X_. (420

It is easy to check that 75, and rp, satisfy the CYBE (4.2). In this semiclassical regime,
the twisting (4.18) becomes

1 - - - ~
XCB:Z(H®H—H®H)+X+®X,—X,®X+. (4.21)

Thus the two classical r-matrices for the corresponding classical double are

1 - - ~
rp = X5+ 7B, = Z(H@H—2H®H)+X+®X,—X+®X, - X ®X,, (422

rL=X5+rp, = (HOH-2H® H —2H® H)

+X_ X, + X, 90X +X,0X_ - X, 9X_ - X_®X,. (423

| =

Now for the Lie algebra sus with basis {H, X1}, the standard Drinfeld-Sklyanin r-
1 1 1

matrix is r = ZH®H+X+®X_ so that r, = ZH®H+§(X+ RX_ +X ®X,). We
let su = span{¢, 1.} be the dual Lie algebra with relations

Ve 8= g¥s, [0, 0] =0,
and dual pairing
<¢7 H> = 1’ <¢+7X+> = 17 <¢—7X—> =1
Then from (4.7) we get
o f - 8
0°(H) = H, 6°(X2) = Xu, 0(0) = —o + 1 0°() = ~K_, 0°(u) = X, + X,

which one can check is in agreement with semiclassicalising (3.23). Then

0°®6)V @ H +v_®X_ + ¢, ®Xy)

H H . 5
:(Z—§)®H+(X+—X+)®X——X—®X+=T’D

in agreement with the general theory in Section 4.1.
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