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Abstract

Middleboxes are widely used in today’s Internet, especially for security and performance. Mid-

dleboxes classify, filter and shape traffic, therefore interfering with application behaviour and

performing new network functions for end hosts. Recent studies have uncovered and studied

middleboxes in different types of networks.

In order to understand the middlebox interference on traffic flows and explore the involved ASes,

our methodology relies on a client-server architecture, to be able to observe both directions of

the middlebox interaction. Meanwhile, probing with increasing TTL values provides us chances

to inspect behaviour of middleboxes hop by hop.

Implementing our methodologies, we exploit a large-scale proxy infrastructure Luminati, to de-

tect HTTP-interacting middleboxes across the Internet. We collect a large-scale dataset from van-

tage points distributed in nearly 10,000 ASes across 196 countries. Our results provide abundant

evidence for middleboxes deployed across more than 1000 ASes. We observe various middle-

box interference in both directions of traffic flows, and across a wide range networks, including

mobile operators and data center networks.
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Chapter 1

Introduction

1.1 Introduction

Middleboxes such as firewalls, load balancing switches and Deep Packet Inspection (DPI) boxes

have been a major part in today’s network infrastructure. A middlebox could be defined as any

intermediary network device performing functions other than standard functions of an IP router

on datagram between two end hosts [1]. Currently, the main goals driving the deployment of

middleboxes are security (to enhance the visibility of network traffic and enable the enforcement

of security policies) [2, 3, 4, 5] and performance enhancement (through traffic shaping, caching

and transparent proxying) [2, 6, 7, 8].

In comparison with other Internet devices, such as switches and routers, middleboxes are com-

plex, as they operate on packets from network layer to application layer at line rate. Middle-

boxes interfere with end-to-end packet transmission, application functionality, and restricting or

preventing end host applications from performing properly [1, 9]. In general, the middlebox

interference can be categorized into three types. First, middleboxes intentionally drop or filter

packets as policies [10, 11]. For example, network administrators filter P2P file sharing traffic to

avoid the legal implications of copyrighted files [12]. Second, middleboxes modify packet con-

tents [13, 10, 5]. Some web proxies modify HTTP headers to control meta information between

client and server (e.g., cache preferences). Finally, in order to perform other functions as net-
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work policies, middleboxes inject forged packets, e.g., for blocking purposes. For instance, the

Great Firewall of China (GFC) blocks some certain sites by injecting spoofed DNS responses,

and causes intrusional damage in terms of Internet censorship [14]. As a summary, middleboxes

have the ability to inspect and manipulate traffic flows, interfere with their end-to-end behaviour,

and not only have positive impact on network traffic but also affect the behaviours of end host

applications.

1.2 Motivation

Middleboxes are widely used in various types of networks. Indeed, according to a survey of 57

enterprise network administrators, it was concluded that there are probably as many middleboxes

as routers inside the network [2]. Also, the survey of edge-network behaviour [15] showed the

evidence of middlebox traffic manipulation in common ISPs. In addition, lots of governments

use middleboxes to implement network censorship [16, 17, 18]. GFC is the most complex mid-

dlebox system that operates with numerous protocols ([19, 20, 21, 22, 23]). The governments

of Iran, Yemen, Tunisia and Sudan use commercial software in state-controlled servers, and cen-

sor all outgoing flows [17, 24, 11]. It is claimed that middleboxes are distributed in everywhere

of today’s network. However, we have limited knowledge about where and how middleboxes

interfere with traffic flows now.

At the same time, Internet traffic is changing (e.g., HTTPS accounts for a significant portion of

Internet traffic now [25]). Considering the complexity of middleboxes, applications and network

traffic, we argue that methodologies are needed to detect and analyse middlebox interference for

different kinds of applications.

In this report, we analyse the potential impart of middleboxes in today’s network and explain the

reasons why we care about middleboxes; we summary the lessons learnt from prior work, and

introduce our own measurement methodologies to detect and locate middlebox interference on

traffic flows; we show the measurement results in a commercial platform which provides vantage

points all over the world, and illustrate middlebox behaviour in different kinds of network.
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1.3 Contribution

Our contributions are twofold. First, we introduce our methodology to detect and locate middle-

box interference based on a client-server architecture. We also explain how to use the Luminati

platform to run large-scale measurements and get a global dataset from our measurements.

Second, based on our methodology, we find evidence for a significant amount of middlebox

interference on both directions of the traffic flows in different networks. According to our dataset,

we observe a wide variety of injected HTTP headers in HTTP messages, some known and some

never reported before. Surprisingly, we even observe new headers that are only added by mobile

networks and cloud platforms.

Overall, we find that injected HTTP headers expose the presence of multiple types of middle-

boxes across diverse networks and most of middleboxes are at the edge of networks. Further, the

interference on HTTP responses often reveals the corresponding functions of the middleboxes,

such as proxying, caching, URL filtering, and WAN optimization.

This report is structured as follows: we present the introduction and motivation in this session.

Afterwards, we review the status of current studies in Chapter 2. We present the measurement de-

sign process, and explain the methodology in Chapter 3. We present our study result in Chapter 4.

At the end, in Chapter 5 and Chapter 6, we discuss our potential work and make a conclusion for

this report.
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Chapter 2

Literature Study

Middleboxes play a crucial role in the modern Internet infrastructure [24, 10, 2]. The growing

benefits of using middleboxes and unknown middlebox interference on network traffic flows mo-

tivated researchers in technical and regulatory community to examine middleboxes from various

aspects. In this chapter, we review some studies to understand the presence of middleboxes, the

motivations of measuring behaviour of middleboxes, and essential methodologies of detecting

middleboxes.

2.1 Middleboxes Taxonomy

The word ”middlebox” was introduced by Lixia Zhang to describe new phenomenon in Internet.

Afterwards, B.Carpenter defined middlebox in the work [1], ”a middlebox is any intermediary

device performing functions other than the normal, standard functions of an IP router on the

datagram path between a source host and destination host.” Meanwhile, a middlebox should not

be clarified as a physical device necessarily, it could be virtual and interpreted as a network

function.

As we know, the classical Internet architecture is based on hourglass model [26] and end-to-

end principle [27]. In the old architecture, the only boxes between two end hosts are IP routers,
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which provide the function of forwarding packets purely [28]. However, insertion of middleboxes

breaks old network model. Middleboxes not only spread new functions throughout the network,

but also bring new challenges for network communication sessions.

Furthermore, middleboxes are complex, they operate at network, transparent, upper layers, and

even a mixture. RFC3234 [1] classifies middleboxes in a multidimensional taxonomy and gives

examples to describe characterisations of them. For example, NAT, firewall, IDS/IPS, load bal-

ancer and web proxy are all examples for middleboxes, and they work across different layers for

diverse purposes.

2.2 Middleboxes Today

Middleboxes are widely used and play an important role in different kinds of networks [9]. More-

over, the behaviour of middleboxes is complicated, while the impact on applications is poorly

understood. In this subsection, we describe some prior work, state current deployments of mid-

dleboxes, and illustrate our motivations in details.

2.2.1 Middleboxes in Enterprise Networks

Sherry et al. [2] in 2012 presented a detailed study of middlebox deployments. In this study, the

researchers conducted a survey of 57 enterprise network administrators, including the number

of middleboxes deployed, personnel dedicated to middleboxes, and challenges faced in admin-

istering related middleboxes. Based on the survey, they undertook a systematic exploration of

requirements and design spaces for outsourcing middleboxes, implemented APLOMB, a practical

service for outsourcing enterprise middlebox processing to the cloud.

This work is the first large-scale survey of middlebox deployments in research community. Their

dataset illustrates that typical enterprise network is a complex ecosystem of firewalls, IDSes, web

proxies, and other network devices. The number of middleboxes in each enterprise is compara-

ble to its number of traditional switches and routers. All of these are vital evidences to show

middleboxes are widely used in enterprise network and affect the Internet infrastructure. On the

other hand, the design of APLOMB aims to reduce cost of middlebox infrastructure, while redi-

recting traffic through APLOMB may cost bandwidth, affect application performance and bring
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security challenges at the same time. For instance, as shown in evaluation part in this work,

three common applications (HTTP, BitTorrent, VoIP) suffer little when their traffic is redirected

through APLOMB. In summary, moving middleboxes to cloud solves the problems caused by

cost, management complexity, and failures of middlebox infrastructure. But it is needed to un-

derstand how middleboxes deal with real traffic flows and take the middlebox interference into

account.

2.2.2 Middleboxes in ISP Networks

Kreibich et al. [15] presented Netalyzr, a network measurement and debugging service that eval-

uates the properties of Internet access and connectivity in ISP networks. In this study, they have

recorded 130,000 runs of the system from 99,000 different public IP addresses, constructing a

large-scale picture of many facets of Internet edge behaviour (outgoing port filtering, hidden in-

network HTTP caches, DNS manipulations, NAT behaviour, path MTU issues, IPv6 support, and

access-modem buffer capacity) as well as tracking each behaviour’s technological evolution over

time.

The dataset of this work consists sessions from 6884 organizations across 186 countries, covering

most ISP networks. The results reveal some systemic problems, such as difficulties with frag-

mentation, the unreliability of path MTU discovery, restrictions on DNSSEC deployment. Also,

it shows evidence of DNS NXDOMAIN wildcarding, HTTP proxying and caching. Though, the

original usage of Netalyzr was for Internet users to obtain analysis of their Internet connectivity,

their findings illustrate some behaviour of middleboxes. For instance, some NATs and firewalls

are DNS-aware devices, some HTTP proxies open new connections to end servers and inject new

headers to HTTP requests.

The researchers also used Netalyzr in recent study of cellular networks [29, 30], showing that

13% (of 299 mobile operators) were manipulating headers [29], and part of these manipulating

headers were modified by middleboxes for user privacy, security and network operations. At

the same time, Netalyzr detected the presence of transparent HTTP proxies in 58% of cellular

sessions (covering 296 operators in 119 countries), describing how proxies modified or blocked

DNS and HTTP traffic [30].
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Xu [31] undertook an analysis of proxy behaviour in 2015, and demonstrated how transparent

web proxies interacted with HTTP traffic in four major US cellular carriers. With full control

over the client devices and servers, researchers explored proxy properties through various exper-

iment configurations, varying parameters (e.g. content to fetch), socket properties (e.g. server

IP address or port), HTTP configuration (including modified headers), and even adjust network

conditions.

Based on experiment results, researchers exhibited the application-level features of web prox-

ies, such as HTTP caching, HTTP redirection, connection and so on. More specifically, there

were three key conclusions characterizing transparent web proxies in ISPs. First, each carrier

implements proxying policies differently, thus the speed and quality of downloaded contents for

users are affected. Second, the split connections improve performance for larger flows (up to

45%), while they have negligible impact on small ones (less than 100KB). Last, proxies inter-

pose on connections to almost all popular web sites, but Google’s YouTube traffic could bypasses

T-Mobile proxies, which maybe due to a special arrangements for certain content. All of these

findings notice us the behaviour of web proxies is diverse, and their impact on performance for

web workloads is varied. Moreover, end users may remain unaware of the existence of web proxy

typically, we are motivated that it is necessary to explore large-scale and in-depth measurements

to understand behaviour of middleboxes and their impact on applications.

The Open Observatory of Network Interference (OONI) [32] has processed some network mea-

surements which aim to detect internet censorship, traffic manipulation and other signs of surveil-

lance since 2012. The OONI project is under the Tor project, collecting millions of network tests

across more than 90 countries. The researchers published the testing methodology to identify

HTTP Header Field Manipulation and the collected HTTP headers on the website. According to

the published data, we observed that lots of manipulated HTTP headers were injected by proxies,

caches and other network middleboxes.

2.2.3 Middleboxes and Internet Censorship

Recent years, Internet censorship is achieved by using nation-wide middleboxes in some coun-

tries (e.g. China, Yemen, Sudan). The work [11] is a survey on Internet censorship detection

which explains censoring mechanisms in detail. In this work, the researchers gave a charac-
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terization of current censoring systems, proposed related analysis and discussion of censorship

detection techniques. From this work, we find lots of evidence to describe the usage of middle-

boxes in censorship, such as, IP blocking, TCP reset injection, DNS injection, transparent proxy,

HTTP warning page injection and so on. Additionally, the performance impact (e.g. increased

packet loss and delay) made by middleboxes attracts us to detect and analyse middleboxes from

multiple aspects.

Aryan et al. presented a network measurement about Internet censorship in Iran [33]. In this

paper, the researchers investigated technical mechanisms and mapped the network topology of

censorship infrastructure. This work highlights the fact that censorship in Iran relies heavily on

centralized equipments (middleboxes). The main mechanisms which are used for censoring in

Iran are IP filtering, DNS NXDOMAIN packet injection, DNS hijacking, HTTP warning page

injection and TCP connection throttling.

Great Firewall of China (GFC) is a well-known middlebox system, featuring IP blocking, key-

word filtering, DNS hijacking and so on [16]. Different from other detection work, Xu et al. [20]

explored the location of Intrusion Detection System (IDS) devices of GFC placed for keyword

filtering as AS and router level. The algorithm of this work was sending probe packets that

contain known blacklist keywords with increasing TTL values. As opposed to previous work,

the researchers did not use top websites as targeted servers, the selected servers from diverse

provinces in China to find more filtering devices.

In short, this work gives an explanation of China’s AS-level Internet topology. ASes in this

work are categorized into two types, one is border AS which is directly peered with foreign

ones, the others is internal AS. Not surprisingly, findings show that most of filtering devices

belong to border ASes expect two internal filtering interfaces. These findings state the middlebox

distribution in network topology, and provide better understanding for Chinese national-scale

intrusion detection system.



2.3. Detecting Method 11

2.3 Detecting Method

Internet has changed significantly now. For example, the increasing personalization of web ser-

vice has led to a number of clients and servers adopting HTTPS [34]. The work [34] is a study

of HTTPS which categorizes and quantifies the cost of ’S’ in HTTPS. By collecting data from

large ISPs, this work claims that 50% of web traffic flows today are secure. In other words,

HTTPS is widely used in web services. However, encryption provides confidentiality and au-

thentication to end users, but it renders all transparent and explicit middleboxes (e.g. web proxy,

DPI) ineffective at the same time. Moreover, HTTPS affects the protocol-related performance for

applications, e.g., increasing latency, negative impact on battery life. To manage the trade off be-

tween security and network functions on the path, we need to detect and understand middleboxes

firstly.

In this section, we describe and review prior work which introduces the detecting methods of

middleboxes. As shown in Table 2.1, we summary and compare detecting methods with dif-

ferent criteria. In brief, The work ( [35, 10, 13]) detected middlebox interference on IP and

TCP protocols in different kinds of networks, especially illustrated packet header modifications

in each layer. The one [7] employed a range of detectors at transport and application layers for

identifying proxies specifically. The new tools of middlebox detection were also designed, and

implemented in both computer [5] and mobile device versions [36].

2.3.1 Interactions Between Transport Protocols and Middleboxes

The first detailed analysis of interactions between protocols (especially transport protocols) and

middleboxes was published in 2004 [35]. The researchers used active measurement to assess

the behaviour of middleboxes, illustrated the fact that performance of protocol mechanisms in

Internet was quite different from theory.

This work used and extended the methodology from prior work [37] on TCP Behaviour Inference

Tool (TBIT). TBIT is a tool that characterizes TCP behaviour of a remote web server. TBIT

establishes a TCP connection with remote host, uses raw IP sockets to send segments, and sets

up BSD filter to deliver incoming packets to TBIT analysing process. However, the detecting

process of TBIT is limited by network conditions to some degree. For instance, the packet losses
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may lead the test wrongly reported. In this work, the researchers took each test specifically, and

used large set of web servers to make tests as robust as possible. In the section of results, this

work detected middlebox interference on Explicit Congestion Notification (ECN), Path MTU

Discovery, IP options, TCP options, and examined whether all of these headers could be used

safely.

As the first work to measure middlebox interference, this work makes a positive beginning to

understand behaviour and effect of middleboxes on basic TCP headers (emphasizing the end-to-

end network principle is broken). While, it leaves an open question that how middleboxes affect

the performance of transport protocols or applications. More active tests with application traffic

flows may be useful to investigate other middlebox interference.

2.3.2 Middlebox Interference on TCP Extensions

In 2011, Honda et al. [13] developed a tool ( TCPExposure) made of a client and a server to

determine whether middleboxes affect the performance of TCP option headers across diverse

networks. In particular, this work clarifies the limitations on TCP extensions imposed by mid-

dleboxes, discusses some questions about TCP options in real network. For example, what will

and will not pass through middleboxes, whether there are modifications in TCP option headers

or how middleboxes affect the transmission of TCP flows.

To answer these questions, the researchers conducted a study from 142 networks in 24 countries,

including cellular, WiFi and wired networks.

The initiator (acting like a TCP client) and the responder (a TCP server) run tests to trigger

on-path middlebox interference. The initiator transmitted crafted segments that included bytes

indicating commands in their payloads. The responder replied with a segment contains both

received and returned headers in payloads for identifying manipulations. Additionally, the gen-

erated traffic flows were mimicked with new TCP extensions, and examined destination ports

were varied.

As a summary, this work gives an example to measure middlebox impact on TCP options sys-

tematically. First, it examines the middlebox interference on TCP layer across diverse networks

(public, private, residential, commercial and academic networks). The satisfying conclusions are
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middleboxes are widely used for implementing functions for network layer, and middleboxes

do not affect the use of TCP options. Second, the idea of controlling both ends of the path

is significant for middlebox detection, as it provides the access to generate, track and analyse

traffic flows. Final, it guides the future design of TCP extensions, attracting the attentions of

researchers to think about compatibility of middleboxes in network deployment. However, there

are some other details needed to be discussed. Since main mimicked traffic flows in experiment

were SYN/SYNACK TCP segments, this method could not detect the middlebox interference

on performance of applications. Differently, the tool HICCUPS([38]) integrated middlebox de-

tection into common TCP connection process and presented relative tests with application layer

payloads. In addition, middleboxes interfere with different protocols. It is better to create a

high-level taxonomy of the testing tool, not only be used for specific protocols.

2.3.3 Middlebox Detection in Cellular Network

Today’s growing cellular traffic demand leads to great challenges for cellular network carriers to

provide users good network performance, and protect mobile devices from potential attacks [10].

The goal of this study is to gain insight into middleboxes’ policies, specific NAT and firewall in

cellular networks, and make targeted improvement for mobile applications.

In methodology part, the data was collected from about 400 users in 107 carriers across 6 conti-

nents. Researchers introduced NetPiculet, a tool comprised of client software running on mobile

devices inside cellular networks and a dedicated server in Internet. The client and server sent

end-to-end probes to infer middleboxes’ policies and quantify their impact based on traces.

This work is the first large-scale system that effectively discovers cellular network policies. It il-

lustrates a diversity of NAT and firewall polices and explains important implications for network

carriers as well as mobile application developers. It provides methodologies and results to under-

stand NAT and firewall in cellular network. However, although the target of this work is to detect

middleboxes, the detected policies only cover NAT and firewall in cellular network. Middleboxes

are much more complex and diverse, and therefore require considering wider interactions.
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2.3.4 Proxy Detection

As an extensive measurement of Netalyzr, the work [7] presented the results of experiment prob-

ing for presence of web proxies by establishing HTTP connections from end-user browsers to

custom web servers under researchers’ control. Running Netalyzr, 14% of clients show evidence

of HTTP proxying through one or more tests.

The Netalyzr tool uses a java applet to drive the bulk of test communication with their pro-

grammed servers. A Java applet is typically embedded inside a web page and runs in the context

of a browser [39]. Precisely, java applets run automatically within most major web browsers, en-

gage in raw TCP and UDP flows to arbitrary port and come with intrinsic security guarantees for

users. These advantages provide sufficient flexibility to conduct measurement tests and a simple

enough interface for unsophisticated users run it (giving access to a much larger user population).

When the user visits Netalyzr website, browser downloads and executes the applet. The applet

conducts test connections to various measurement servers. Test results and raw network traffic

traces in servers are stored for later analysis.

More specifically, this work detected web proxies based on two main strategies: TCP termination

and packet rewriting. A proxy employing TCP termination separates TCP connection with the

controlled server, relaying the content stream from both endpoints. To indicate the presence of

a TCP-terminating proxy, they used non-responsive server to send a RST packet to all incoming

requests. If Netalyzr clients make a connection on port 80 successfully, it provides evidence

that there is a TCP-terminating proxy on path. On the other hand, a packet-rewriting proxy may

modify traffic or inject additional traffic as flows through it. By checking the received HTTP

responses, modifications in HTTP headers, HTML documents and transfer encoding in a manner

can presence the packet-rewriting proxy.

In addition, this work added a new test to point the location of TCP-terminating proxy. For

any port on which previous test flagged the presence of a terminating proxy, Netalyzr client

attempted a TCP connection to a traceroute server which conducted a traceroute to respond

client using SYN-ACK packets. The traceroute terminated upon receiving TCP handshake’s

pure ACK, rather than an ICMP ”TTL exceeded” response. The hop which returned last ICMP

time-exceeded reply is the closest hop near the TCP-terminated middleboxes.
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Furthermore, the researchers repeated requests with different cache-control headers to check

and compare the received contents, detecting the behaviours of caching, transcoding and other

performance of HTTP.

As a summary, this work detects the presence of proxies, identifies the functions, and introduces

a TCP-terminating proxy location technique based on traceroute. However, the detection of this

work is based on TCP termination and packet manipulation. It is hard to detect transparent proxy

which does not open a new connection or modify packet contents. Making use of traceroute

is a key contribution to locate proxies, but the locating method in this work is only designed

for TCP-terminating proxy. In fact, the locating method only works for transport layer. At

the country level, they find that some use proxies for nation-wide censorship, such as Bahrain,

Singapore, Lebanon, the United Arab Emirates and so on. Although it could be evidence to prove

the Internet censorship is used in these countries, only controlling server side and focusing on

behaviour of proxies are not enough to explain the Internet censorship accurately. Overall, this

work is a empirical study of web proxy, while we need more general methodologies to detect and

locate all kinds of middleboxes.

2.3.5 Traceroute-style Detecting Tool

Detal et al. proposed tracebox [5], an extension of the traceroute tool, that is capable of detecting

middlebox interference. Same with traceroute, tracebox sends probes with increasing TTL values

and waiting for ICMP time-exceeded replies. Differently, traceroute uses quoted packet inside of

ICMP replies to identify intermediate routers, tracebox uses it to infer modifications applied on

probes by intermediate middleboxes and pinpoint where a given modification takes place. The

researchers deployed tracebox on PlanetLab [40], using 72 machines as vantage points. Each

vantage point had a target list of 5000 domains built with top 5,000 Alexa web sites. They

found some vantage points removed or changed TCP options at the very first hop. Also, the

modification of TCP sequence number occurred on the path of two experiment cases.

In brief, it is a key contribution of making use of ICMP time-exceeded replies to detect and

locate middleboxes. However, detecting methods are limited by the types of ICMP replies. When

IPv4 router receives an IPv4 packet whose TTL is going to expire, it returns an ICMPv4 time-

exceeded message that contains offending packets. According to RFC792, the returned ICMP
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packet should quote the IP header of original packet and the first 64 bits of payload of this

packet [41]. Different with this, RFC1812 [42] recommends to quote the entire IP packet in the

returned ICMP, but this recommendation has only been implemented on some routers. When

tracebox receives ICMP replies with full quoted original packet, it is able to detect any changes

in each layer. From the result of PlanetLab use case, the number of router that replies with a full

ICMP is too few to cover all paths.

On the other hand, the presence of middleboxes is inferred only by packet modification. As we

mentioned before, the behaviour of middleboxes and application traffic flows are both complex.

The interference could not only be modification, but also filtering or injection. Tracebox could

detect the modification of bytes in each packet, but it is not enough for detecting other middle-

box interference. In addition, lacking of controlling in server side, tracebox merely explores

modification performed by upstream middleboxes.

TraceboxAndroid [36] is a proof-of-concept measurement application for Android mobile de-

vices implementing the tracebox algorithm. It is a tool for smartphones to infer middlebox be-

haviour in WiFi and cellular networks. Although this tool has same limitations as tracebox,

the results list more impact and understanding of mobile devices (e.g. middlebox TCP option

blocking).

Craven et al. proposed TCP HICCUPS [38] in 2014 to reveal packet header manipulation (spe-

cific for TCP header) to both sides of a TCP connection. To detect modifications, HICCUPS

hashed packet headers and spread the resulting hash into three fields of the original headers (in

case a change to any header field). Running HICCUPS across a distributed and diversity set of

paths, the researchers discovered a wide variety of behaviours in both forwarding and receiving

directions, but as displayed in the tool name, it purely works for TCP traffic flows.

2.4 Summary and Discussion

As a summary, we explain the definition of middlebox, illustrate the reasons that why we care

about middleboxes, and discuss existing detecting methods in prior work. Middleboxes are inter-

mediary devices that performing new network functions other than forwarding packets. While,

the insertion of middleboxes brings new challenges, such as compatibility of protocols, privacy
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of network traffic and so on. On the other hand, middleboxes are extensively deployed for secu-

rity and performance enhancement in networks, and interfere with traffic flows in varied ways.

All of these reveal that middleboxes are important in current Internet and affect the behaviour of

applications, then methodologies are needed to detect and measure them.

Table 2.1: Detecting Method Comparison
Method Client Root Access Server Root Access Locating Support Protocols Multiple Interference

TBIT [35] X × × IP,TCP ×
TcpExposure [13] X X × IP,TCP X

NetPiculet [10] X X × IP,TCP X
Netalyzr [7] × X X HTTP ×
Tracebox [5] X × X IP,TCP ×

HICCUPS [38] X X × IP,TCP ×

As shown in Table 2.1, we discuss prior methodologies from different aspects. Learnt from them

and achieve our own motivations, we propose our methodologies in three parts. First, both end

hosts should be controlled for generating, capturing, and analysing traffic flows. Second, client

and server are programmed for working as applications, the traffic flows should contain payloads

of application layers. Last, detecting methods are based on different interference of middleboxes

(filtering, injection, modification), and could be used for large-scale measurement generally.
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Chapter 3

Methodology

Our work aims to detect and locate the behaviour of middleboxes, especially measuring the

middlebox interference on applications. In this chapter, we explain the methodologies of our

work conscientiously.

Our methods adopt a client-server architecture, allowing to generate probe packets from clients

and servers, compare the expected traffic exchanged between end hosts and the one actually re-

ceived (Section 3.1). Also, we describe three types of middlebox interference, illustrating the

detecting process with controlling of both end hosts (Section 3.2). Different with prior work,

our probe packets are crafted with application layer payloads that attempt to expose middlebox

interference with application traffic flows. In Section 3.3, we describe our application probes,

explaining the process of samples. As followed, we describe our traceroute-like probing with in-

creasing TTL values, illustrating how to locate the approximate position range of the interfering

middlebox by these methods. Finally, we describe how to adopt our methodologies with Lumi-

nati, the commercial Peer-to-Peer (P2P)-based HTTP/S proxy service, launching crafted HTTP

requests across all over the world.
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3.1 Client-Server Architecture

Our methods control both client and server sides, making use of root access to generate, capture

and compare traffic flows. As shown in Figure 3.1, we treat the middlebox as a black box, and

detect the interference by checking the differences between exchanged traffic flows and original

probes. Client-server architecture provides visibility of the network between end hosts, observ-

ing the difference between upstream and downstream traffic. Different from bit modification

detection, e.g. tracebox [5], our end hosts are programmable to generate probes from varied lay-

ers, make connections, and respond to queries as running real applications. Filtering, injection,

and modification are inferred by comparing the traces from client and server.

The code of client makes up of lots of bash commands to make connection, send queries and

capture traces at the same time. It is compatible to run from terminals of the Linux system

machines. Based on multiple application layer protocols, the server listens on particular ports

and returns responses as the format of varied application servers, such as DNS resolver, web

server and so on.

Figure 3.1: Client-Server Architecture

3.2 Detecting Process

Our methods detect three types of interference: filtering, injection and modification. In this sub-

section, we describe the interference with different use cases, explain the process of detection and

implementation with diagrams, and finally discuss how to identify the interference by analysing

captured traces.
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3.2.1 Filtering

Theoretically, one end host should receive the original probes from source host. If not, the probe

may have been lost or filtered by some middleboxes. As shown in Figure 3.2, the middlebox

drops the packets for purpose when packets go through it.

Figure 3.2: Diagram for Filtering

A firewall is an important example of network middleboxes that filters traffic flows for network

security and network control. Nowdays, there are three types of use cases for filtering. First, fire-

walls or any other middleboxes drop packets based on IP addresses and TCP ports. As described

in prior chapter, IP or port blocking is the earliest filtering mechanism and used for Internet

censorship in China, Brazil and so on [20, 43, 11].

Second, middleboxes operate up to the transport layer of OSI model, the state of connection is

used for making judgements for filtering. In principle, this kind of filtering should follow the

policies of TCP. However, as observed in the work [10], the stateful firewall policies in some

cellular networks usually do not strictly follow the TCP specification.

Furthermore, middleboxes also operate filtering in application layer. The triggers of filtering

are inside payloads of application layer and middleboxes need understand the applications and

related protocols. For example, URL filtering and keyword filtering are achieved by checking

application payloads (e.g. HTTP request target, content of HTTP response), implementing Inter-

net censorship, copyright protection and other web traffic control. In addition, middleboxes are

getting ”wider” or ”deeper” inspection at application stack [44]. For instance, intrusion detection

system (IDS) are developed in today’s network for malicious activity or policy violations.

In our work, we control both client and server sides, we detect the filtering by mapping the
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original probes and received packets. To take into account the effect of random packet loss, we

send the probes several times, repeating the experiments for multiple samples. Also, we send

probes that do not attempt to trigger middlebox interference to verify that the exposed middlebox

behaviour is indeed caused by specific payloads.

3.2.2 Injection

Figure 3.3: Diagram for Injection

As shown in Figure 3.3, middleboxes may inject fake packets to end hosts with spoofed source IP

addresses. The injected packets usually interferes with network connection for blocking, affect-

ing the performance of applications. For example, GFC returns forged DNS responses to clients

for blocking some blacklisted websites, causing collateral damage and affecting communication

beyond the censored networks when outside DNS traffic traverses censored links [14]. Moreover,

forged TCP RST packets are deployed by some ISPs to manage P2P traffic, as well as by GFC

to censor communication of in and out traffic flows [45]. Also, some organizations insert HTTP

response with warning html page to notice clients the network filtering or network control.

The injected packets are crafted by middleboxes. The source IP addresses are forged with the

destination IP of original probes, pretending the standard communication with end hosts. We

compare the traces from both end hosts, finding the extra packets which are not sent from end

hosts, but injected by middleboxes. Indeed, some middleboxes inject HTTP response with warn-

ing html page payload to notice the client about the traffic filtering. Since we control client and

server, we could infer the filtering and injection at the same time, exposing the full process of

middlebox interference.
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3.2.3 Modification

Packet manipulation is a main kind of middlebox interference for shaping traffic flows. Middle-

boxes may remove headers in different layers, inject new headers to carry more information of

middleboxes or connection, modify the value of headers and response payloads for new func-

tions.

Figure 3.4: Diagram for Modification

We find lots of examples for packet manipulation in today’s network. First, some middleboxes

manipulate the IP and TCP headers, affecting the compatibility between middleboxes and net-

work protocols. For example, the study [13] developed a measurement methodology to evaluate

middlebox behaviour relating to TCP headers, especially for TCP extensions. From the results,

we are warned that do not assume sequence numbers arrive unmodified, which will affect the

performance of TCP option or TCP connection. In addition, proxies are common in today’s

networks, and strips TCP options in different ASes.

Second, by manipulating the headers and contents of application traffic flows across regions and

networks, more communication meta and user’s private information are exposed and tracked

through middleboxes [46].

Furthermore, the Chinese censorship inserts additional attacking scripts to outgoing HTTP re-

sponses, engineering a denial-of-service attack on GreatFire.org, an organization dedicated to

resisting China’s censorship [16]. By making use of packet manipulation, Chinese government

turns GFC into a weapon (China’s Great Cannon) which coopts arbitrary computers outside of

China to achieve Chinese policies.

To detect the modification in each packet, we decode the traces as each protocol defined, compar-
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ing the difference between original probes and received packets from clients and servers. Also,

by correlating the different types of modifications, we could infer the presence of middleboxes,

explore the functions and effects of these middleboxes in varied networks.

3.3 Probe

3.3.1 HTTP Probe

World Wide Web (WWW) is accessed through HTTP, dictating the format of exchanging web

contents. Since HTTP provides a vital infrastructure for users exchanging information and com-

municating with each other, it has changed Internet significantly.

Currently, the implementation of HTTP is diverse: the user agents of HTTP traffic are not only

the general-purpose browsers, but also other household appliances, command-line programs, mo-

bile applications and so on. Likewise, common HTTP original servers are not only large public

websites, but also other home automation units, configurable networking components, office ma-

chines, advertisement selectors, third party servers and video-delivery platforms [47]. Moreover,

lots of middleboxes interact with HTTP traffic, serving numerous roles, from performance en-

hancement to access control to network censorship [7]. Therefore, we craft our probes as HTTP

messages, simulate the work process of HTTP for detecting related middlebox interference.

Theoretically, a HTTP message consists of a message header and an optional message body,

separated by a blank line [48]. As shown in Figure 3.5, the message header of HTTP request

contains request line and request headers [49]. The request line includes the request method,

URL link and the version of HTTP. As discussed in Section 3.2, these contents of HTTP requests

contain information about traffic flows, and may be triggers of some middlebox interference.

Also, HTTP response contains the status line and other response headers. In general, HTTP

request/response headers are used to pass additional communicate meta information between

clients and servers. The headers are classified by their usage category, such as authentication,

cache, client hints, conditionals and so on, representing the related functions of middleboxes. At

the same time, the HTTP payload constitutes the content of the message, returning the queried

documents.

In our method, the client makes TCP connection with our owned server firstly. After making
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Figure 3.5: HTTP Message Format

TCP connection successful, the client sends HTTP request, the server returns HTTP response to

client as followed. By making the TCP connection, we could achieve the full process of sending

and responding HTTP messages, which may trigger more middlebox interference about state.

For instance, application-layer filter is a kind of stateful middleboxes. It typically operates on

live TCP connections. Instead of filtering all packets directly, the end hosts are allowed to make

TCP connections. After examining the payloads of application traffic flows, the application-layer

middlebox filters traffic flows or terminates live TCP connections by related policies and states.

At the client side, we launch HTTP requests by using the command-line program curl. Three

default request headers are issued: Host, User-Agent and Accept. To detect the behaviour of

middleboxes for implementing Internet censorship, we craft the value of ”Host” header with

blacklisted domain names (Table 3.1). For our own server, we instantiate the server in Amazon

EC2 instance, using the default Apache configuration with the exception of disabling all caching

(using the Cache-Control header). To avoid ethical issue, the payload of HTTP response is a

simple ”Hello World” HTML page (Figure 3.7).

Figure 3.6: Detecting Process of HTTP Traffic Flows

The analysing process is based on the captured traces. We compare the traffic flows with traces

from client and server sides, checking the filtering and modification of HTTP request and re-

sponse. At the same time, we detect TCP reset packet injection or other interference about

connection state by finding the additional TCP reset packets from middleboxes.
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Figure 3.7: The Source Code of HTML Page in HTTP Response

3.3.2 TLS probe

Security is more and more important on the Internet [50]. TLS and SSL are cryptographic pro-

tocols that provide means for achieving security at the transport layer [51, 52]. Currently, TLS

is the most widely used as the secure transport layer below HTTP, running the secure version of

HTTP, HTTPS [50, 34]. A large number of websites, such as Gmail, Facebook or even YouTube

use TLS as the secure transport layer to transmit encrypted data to protect the user information,

for example, 50% of YouTube streaming flows are over HTTPS [34]. Furthermore, some mid-

dleboxes today operate TLS/SSL traffic [53], performing ”man in the middle” (attack) on the

connection for Internet censorship purpose [54, 55, 56]. We use the TLS handshake message to

detect whether there is fake certificate injection or any other interference on TLS traffic flows.

Figure 3.8: The Process of TLS Handshake

Each TLS connection begins with a handshake between client and server. As shown in Fig-

ure 3.8, the client asks the Public Key Infrastructure (PKI) suite from the authenticated server
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and generates cryptographic keys to create a secure channel for encrypted data transmission.

Figure 3.9: Detecting Process of TLS Traffic Flows

In theory, TLS negotiation [57] includes four steps. First, client sends a ”Client Hello” message

to list cryptographic information for the server. Then, server responds to client with a ”Server

Hello” message which returns the server’s certificate. Getting the public key from the server’s

certificate, the client creates a random Pre-Master Secret. Based on the Pre-Master Secret, the

server and client generate the new session keys for encrypting application data. If any middlebox

modifies or injects fake certificate or key on the path, the handshake will fail and the transmission

will not safe any more. As mentioned in [25], because of TLS and HTTPS, all network func-

tionalities must reside at the endpoints. However, it may be not optimal or even possible for the

networks with middleboxes. In order to understand the behaviour of middleboxes on encrypted

data, we plan to measure how middleboxes interfere with TLS traffic flows firstly.

To check the process of TLS negotiation, our client sends a ”Client Hello” message to our con-

trolled server (Figure 3.9). The server listens on port 443 to wait for the TLS handshake message.

The server does not respond the handshake message, any received TLS handshake message in

client side is injected by middleboxes. Since the extension section in Client Hello Message has

the Server Name field, we craft it with our blacklisted host names to check any middlebox inter-

ference which is related to Internet censorship.

3.3.3 DNS Probe

Currently, DNS is the most widely used service on the Internet [58]. In theory, most of Internet

devices make connection and access websites based on IP addresses. While, it is quite harder for

users to remember the exact IP address than the name of a website. DNS provides the function

of converting domain name to IP address. Before connecting to a website, users need resolve do-

main name to IP address by accessing DNS. DNS is the fundamental step for end users accessing
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web-hosting services, and affects the performance of many Internet applications.

In general, end user firstly sends DNS query to a resolver, which may be operated by their ISP,

wireless carrier or other third party providers. If the resolver does not have the answer, the

resolver queries to root nameserver, TLD nameserver and authoritative DNS server to get the

DNS record. The resolver returns the DNS record to end user, and stores the record in its local

cache. If anyone else requests the same domain name again, and the TTL of the local cache is not

expired, the resolver will return the record to the user directly. Otherwise, the resolver will query

to the authoritative DNS server again. In other words, the resolver is important to DNS service for

returning response, the local cache in the resolver can become poisoned if it contains an incorrect

entry. For example, the GFC inspects DNS queries near the ISP’s boundary routers for sensitive

domain keywords and injecting forged DNS responses. Unfortunately, the local DNS resolver

saves incorrect caches and returns forged response to all queried users. The DNS requests are

not only from inside censored networks, but also from outside censored network. The injected

forged responses affect communication beyond the censored networks when outside DNS traffic

traverses censored links, causing large scale collateral damage across the world [14, 59].

Figure 3.10: Detecting Process of DNS Traffic Flows

In our method, we set up a DNS proxy server to capture, compare the DNS queries and responses

to detect middlebox interference on DNS traffic flows. Figure 3.10 shows the process of our

detection. Instead of querying to ISP DNS resolver, our client queries to our own controlled

DNS proxy server which is running in Amazon Elastic Compute Cloud (EC2) instance [60].

Our DNS proxy server forwards DNS query to Google public DNS service to get the correct

DNS response which returns actual IP addresses for the queried domain name. To defend against

spoofing attacks that can ”poison” a name server’s cache and return malicious IP address, Google

has implemented several recommended solutions to help guarantee the authenticity of the re-
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sponses [61]. At last, our DNS proxy server returns correct response to our clients. The client

and DNS proxy server are both controlled, the analysis is based on decoding and comparing

traces from both sides.

Figure 3.11: DNS Message Format

Figure 3.12: A Small Ethernet II Frame Contains DNS message

As shown in Figure 3.12, DNS protocol uses UDP as transport layer protocol because of its small

overhead. Without making connection firstly, UDP is much faster than TCP. The DNS message

could be divided into five sections: DNS header, the question for the name server, the answer

for the query, the records for authoritative server and additional information that may be used

(Figure 3.11).

DNS header contains 12 bytes in total, assigning an identifier for the DNS message as DNS

ID; specifying which of the remaining sections are present, whether the message is a query or

a response, a standard query or other type query in flags; pointing out the number of question

and answer entries. We use DNS ID to map the original query and received query, and detect the

packet filtering or manipulation by comparing captured traces.
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Different with DNS response, DNS query only has question section. Question section contains

three fields: the queried domain name, type of the query and the class of query. In our method,

we use type A query to resolve the IPv4 address into domain name.

The answer, authority, and addition sections all share the same resource record format [62, 63].

Each resource record contains the domain name for this resource record, the type and class of

resource record, and the time duration that resource record may be cached. Fake responses with

spoofed resource records may be injected to the user, and the resolved IP address in the resource

record may be modified [59]. We decode the traces as DNS protocol, and compare each field to

identify the interference.

As discussed in Section 3.2.2, the queried domain name in DNS protocol is the trigger for mid-

dlebox interference. In details, we select 47 host names (Table 3.1) to craft different DNS queries,

triggering the packet filtering or packet injection, especially the behaviour of middleboxes which

are related to Internet censorship, copyright protection, and network security. The host names

are listed from Internet censorship paper ([64, 11]) and online news about blocked websites in

different countries ([65, 66, 67, 68]).

File Hosting
www.buzzfeed.com narod.ru ipicture.ru
thepiratebay.sx thepiratebay.org www.primewire.ag
fileserver.com newzbin.es Movie4K.to
torrentfreak.com imgur.com fc2.com
nm.ru fenopy.eu bittorrent.am
h33t.com kat.ph torlock.com
firstrow1.eu
Proxy and VPN
NinjaProxy.com www.sodahead.com pirateproxies.net
www.hotspotshield.com www.turbohide.com sur.ly
bayproxy.pw
Porn Website
www.pornhub.com hardsextube.com 10gay.com
redtube.com pornru.net young12.nm.ru
teen-sweet.com younger18.com
News/Search/Bet Blocking Website
facebook.com youtube.com twitter.com
barenakedislam.wordpress.com www.similarsites.com friendlyatheist.com
www.loonwatch.com www.foxnews.com newsfilter.org
en.wikipedia.org archive.org wordpress.com
bet365.com

Table 3.1: Blacklist of Host Names
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In our early work, we implemented the methods of DNS probes in PlanetLab platform [40]. Our

methods detected two types of foged DNS responses and the corresponding results confirmed the

interference of injection, as reported in prior work [14, 69]. Limited by the number of available

instances in PlanetLab, our detection results about DNS-interacting middleboxes are all related

to GFC, which has been already studied in prior work [14, 69, 11, 64]

3.4 Middlebox Locating

Currently, middleboxes are located by probing with different TTL values. As mentioned in

tracebox methodology [5], when an IPv4 router receives an IPv4 packet whose TTL is going to

expire, it returns an ICMPv4 time-exceeded reply contain the offending packet. The differences

between original probes and offending packets reveal the behaviour of middleboxes on the path.

3.4.1 Locating Three Types of Middlebox Interference

Inspired by tracebox, we develop traceroute-like locating methods with our client-server archi-

tecture, comparing the original probe, the quoted offending packet in the returned ICMP time-

exceeded reply and the received one in server side, inferring the approximate hop range of three

types of middlebox interference. While, some routes do not return ICMP time-exceeded replies.

Also, some middleboxes modify or filter the replies again. Using our methods which control both

client and server sides is essential to locate varied interference. In this subsection, we explain

how to locate three types of middlebox interference specifically. Furthermore, we discuss the

limitation of locating in next subsection 3.4.2.

Figure 3.13: Locating Process of Packet Filtering



3.4. Middlebox Locating 31

As shown in Figure 3.13, the probes are sent with increasing TTL values. The client receives

multiple ICMP time-exceeded replies to describe the path. However, after the middlebox filters

the original probes, the received ICMP time-exceeded replies could not cover the whole path

between client and server. The last hop in described path is the approximate location of where a

given filtering takes place.

Figure 3.14: Locating Process of Packet Injection

The probes with small TTL values will not trigger the injection packet (shown in Figure 3.14).

From the received ICMP time-exceeded replies and injected packets, we identify the last hop

before the probe triggers injected packet. At the same time, we could identify the first hop after

the probe passes though middleboxes and triggers injected packet. These two hops describe the

approximate location of middleboxes.

Figure 3.15: Locating Process of Packet Modification

If the original probe is modified by middleboxes, the offending packet inside the ICMP time-

exceeded replies are different. We locate the range of middlebox by checking each received
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ICMP time-exceeded replies, discovering the involved networks deeper and deeper.

3.4.2 Discussion

To locate the middlebox, we check each quoted packets in ICMP time-exceeded replies, and

point out the last hop before modification and the first hop after crossing the middlebox. However,

these traceroute-like locating methods are limited with the received ICMP time-exceeded replies.

First, some routers do not return the ICMP time-exceeded replies, especially inside private net-

work. The distance between middleboxes and identified location may be more than one hop.

Second, the type of returned ICMP reply affects our identification. According to RFC792 [41],

the returned ICMP time-exceeded reply should quote the IP header and the next eight bytes of

original packet. RFC1812 [42] suggests to quote the entire IP packet in ICMP time-exceeded

reply, but this recommendation has not been widely implemented. The more contents of original

probes quoted in the ICMP replies, the more interference we could locate.

At last, as we discussed before, middleboxes are complex. There may be multiple middleboxes

between two routers. With our methods, we could figure out the hop range of middleboxes from

upstream and downstream directions, trying to identify the types of involved networks, but, it is

hard to point out the accurate number and location of each middlebox .

3.5 Methodology with Luminati

Since we aim to measuring vantage points in different networks across the world, we implement

our methodology with Luminati, based on the Hola network, to launch HTTP requests across the

Internet. In this section, we describe how to develop our methodology with Luminati platform,

detecting the presence of middleboxes through their interaction with HTTP requests and answers.

We keep adopting the client-server architecture, with control on both sides of the end-to-end

flow. All probes sent and received are collected and kept for further analysis. Note that the detail

description of our client-server methodology has been described in Section 3.1.
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3.5.1 Hola and Luminati

Hola is a P2P VPN service, which allows users to route traffic over a large number of country

peers, from nearly 280 countries. These country peers run on users’ machines, therefore based

on a variety of devices, e.g., laptops, mobile devices, and distributed across various types of

networks. In practice however, Hola forwards traffic via super proxies located in a few countries

(e.g., the UK or the USA), instead of going though each country peer.

To get full advantage of the vantage points from the Hola proxy network, one needs to rely

on Luminati. Luminati is a paid HTTP/S service that is based on the Hola network. Luminati

forwards users’ traffic via Hola country peers, not the specific super proxy, therefore providing a

much larger set of vantage points from which to launch probes. Furthermore, Luminati enables

users to select country peers in the Hola network. For instance, the Luminati users could launch

multiple requests from same country peer by adding the same -session-number parameter to

their subsequent requests. The session number could be a random number, and Luminati will

keep forwarding the subsequent requests via the same country peer, for a period of 60 seconds

only. After these 60 seconds, Luminati chooses another country peer, potentially different from

the prior one. Also, even though in principle a country peer from the chosen country will be used,

there is no guarantee that this is actually going to be the case.

In the received HTTP responses, Luminati super proxies add two headers, for logging and de-

bugging the selected country peer (X-Hola-Timeline-Debug and X-Hola-Unblocker-Debug),

carrying the identifier zID for the selected country peer. By recording the zID, we can check

whether our probes are forwarded via the same country peer, even if the country peer has changed

its IP address in the meantime.

3.5.2 Measurement Methodology

3.5.2.1 Available Country Peers

Although Luminati provides diverse country peers across the Internet, a user is only able to select

country peers at the granularity of an AS or a country, without indication about the network type

inside which the country peer is. Luminati does not enable a controlled selection of the ingress

nodes, and selects the available country peers randomly. As we aim to probe from as many
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networks as possible in our measurements, we launch HTTP requests via as many as possible

country peers. For each country among the 275 available countries of the measurements, we

keep sending probes using random session numbers.

Figure 3.16: Sample Request of Luminati.

Figure 3.16 shows the shell scripts to launch HTTP requests with Luminati. The parame-

ter zproxy.luminati.io could be replace by the IP address of one particular super proxy, and the

port number is fixed (22225). The country code parameter (CC) and the random session num-

ber are used for selecting available country peers in different countries and separating country

sources of traffic. More examples which explain how to work with Luminati in Java, Python,

Ruby and Perl are displayed on the official website [70].

We launch sets of 500 requests for a given country at a time. If for a given country, after a set of

500 requests, we observe 5 duplicate country peers, we stop probing this country for a while1.

3.5.2.2 DNS resolution

In principle, Luminati allows users to set the DNS resolution by adding the -dns-remote parame-

ter to the request. This DNS resolution can be done at two different places. The first place where

the DNS resolution can be done is at the super proxies, which send the DNS query to Google’s

public DNS service. The second place is at the country peer, which sends the DNS query to

its local DNS resolver. To ensure that our probes are forwarded by country peers, and not the

super proxies, we forward the original HTTP GET request directly to the country peer, and ask

for the DNS resolution to be also done by the country peer. Figure 3.17 illustrates the process of

launching HTTP requests using the Luminati platform. For all requests, we select the same super

proxy from the United Kingdom, using all available country peers.

3.5.2.3 Crafted Probes and Answers

With our methodology, we control both the client and server sides, sending crafted probes (HTTP

requests) and responses (HTTP responses). Unfortunately, Luminati does not provide direct ac-

1But we guarantee that we launch a total of 1000 requests in any given country in our measurements,
even if a single country peer is available.
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Figure 3.17: Luminati-based Probing Methodology.

cess to the country peers for probes to be sent, but only allows requests to be forwarded through

them. Figure 3.18 shows the traffic exchange process between country peers and our controlled

server. We treat country peers as our original clients, and detect middlebox interference on the

path between the country peer and the server. As shown in Figure 3.18, the actual origin of the

probes is one of the available Luminati country peers acting as client, and the target of the probes

is a server under our control, located in Ireland Amazon cloud data center, running the server-side

of our methodology.

Figure 3.18: Traffic Flow between Country Peer and Target Server.

We set up measurement clients, operating in Amazon cloud instances in Ireland. We launch

HTTP requests to our target server, via the Luminati country peers2, with 7 default request head-

ers: Host, User-Agent, Accept, Accept-Charset, Accept-Encoding, Keep-Alive and Connection.

2As we rely on the Luminati proxy peers, the location of the clients is technically irrelevant for the
middlebox detection.
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Table 3.2: Default HTTP Headers.
Name Default Value

Request Header

Host shanluminati.com
Accept-Charset utf-8
Accept */*
User-Agent curl/7.35.0
Accept-Encoding gzip
Connection keep-alive
Keep-Alive max=20, timeout=10

Response Header

Accept-Ranges bytes
Connection keep-alive
Keep-Alive max=20,timeout=10
Content-Type text/html; charset=UTF-8
Date Mon, 15 Aug 2016 16:59:35 GMT
Etag 90-52ecccfbb0285
Content-Length 144
Last-Modified Thu, 24 Mar 2016 15:07:56 GMT
Server Apache/2.4.6 (Red Hat Enterprise Linux)

The default values of these headers are shown in Table 3.2.

In Figure 3.19, we show the sample script of launching HTTP requests from client side. As

described before, the requests are fowarded to super proxies firstly. We choose to do the DNS

resolution by country peers and insert the parameter -dns-remote in the requests. The default

HTTP headers are setted by parameter -H, which is the option of curl to specify HTTP headers.

Figure 3.19: Sample Request of Luminati.

Our target server is operating in an Amazon cloud instance, located in Ireland as well3. The

server acts as a standard Apache HTTP server, waits for the TCP connection and GET request,

and returns the HTTP response with a crafted payload. As we are forwarding requests through

3Only in the case of requests launched from country peers in Ireland, we rely on an Amazon cloud
instance in the US as target server to ensure our probes travel through the Internet, not inside the Amazon
infrastructure.
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other users’ machines, to avoid potential ethical problems for these users, we only respond to

requests with a simple ”Hello World” HTML page with 9 default response headers.

Figure 3.20: Sample Script of HTTP Server.

Figure 3.20 shows the sample python script which is operating in Amazon cloud instance. We

craft a sample payload of HTTP response in a text file in advance. After making the connection

successfully, we send the crafted response back to the client. In addition, we import the Scapy

library in the scripts for the next location step, sending the probes with increasing TTL values.

Although not every country peer would return us with a response, we compared all received

HTTP messages with the sent probes. As explained in Section 3.5.1, the super proxy of Luminati

adds two headers (X-Hola-Timeline-Debug and X-Hola-Unblocker-Debug) to HTTP response,

illustrating the information of selected country peer. These two headers do not affect or overwrite

other original headers. When comparing HTTP responses, we do not take these two headers into

consideration, but investigate other headers.

3.5.3 Locating Methodology with Luminati

Inspired by tracebox, we try to locate the involved middleboxes hop by hop. Since we can not

have access to Luminati country peers, our current process of probing is unidirectional, from
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Figure 3.21: Diagram of Probing with Increasing TTL Values

server to country peers (shown in Figure 3.21). The servers are both in Amazon cloud platform,

one is located in Ireland data center, the other is located in US for probing the country peers

distributed in Ireland.

In principle, the last hop which returns ICMP time-exceeded reply should be in the same AS of

country peers. Meanwhile, if the middleboxes are located near client side, the last ICMP reply

may also come from same AS of country peers. On the other hand, if the last ICMP reply comes

from different AS of country peer, we infer that there may be TCP-terminating middleboxes

between two end hosts, and the locations of middleboxes are in the middle or close to server

side.

Similar with our prior experiments, our probes are crafted with HTTP response payloads. To im-

plement the response with increasing TTL values, we develop our python scripts with the Scapy

library, and send our responses to the country peers directly (without making connections). To

mark the TTL value for each probe, we craft the IP identification in IP datagram with the same

value of its TTL.

3.6 Summary

Lacking the access to the network devices inside networks, it is very hard to have the visibility

to observe what happens in the middle. Our methods aim to mimic the transmission of traffic
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flows, describing the behaviour of middleboxes on the path, analysing middlebox interference

and locating the approximate location of involved middleboxes.

As discussed in Section 2.4 and Table 2.1, we learn and develop our methodology from prior

detecting methods. Inspired by TcpExposure, NetPiculet and HICCUPS, our methods control

both client and server sides, which allow to compare the traces between two end hosts (client

and server) at the same time. The difference between traces illustrates the middlebox interfer-

ence, explaining the effect on the state of connection, and how middlebox breaks the end-to-end

model. Differs from these three prior methods, our probe packets are crafted as our design, pro-

viding the freedom to launch different kinds of queries to mimic varies kinds of traffic flows. In

addition, we detect the packet manipulation in both direction (from client to server and server to

client) independently, avoiding multiple manipulation by the same middlebox. The tool Netalyzr

provides different types of network functionality tests, giving us lots of ideas about making large-

scale measurement. While, our detection is done by both upstream and downstream directions

with larger dataset. Tracebox is a traceroute-like tool to identify packet modifications performed

by upstream middleboxes. It is a seminal work in the area of middlebox interference. Our

methodology extends this work with application traffic flows, detecting middlebox interference

on applications, especially exploring the middlebox behaviour triggered by application payloads.

In addition, with the help of traceroute-like probing, we check the middlebox interference hop

by hop, locate the range of approximate position of middlebox, exploring the types of networks

inspected.

On the other hand, the process of locating middlebox depends on the returned ICMP time-

exceeded replies. As we discussed in Section 3.4.2, not all the routers return ICMP replies.

It is hard to describe each hop in the whole path. Also, some ICMP replies only quote the first

64 bits of original packets, which can not be used for detecting and locating the manipulation of

application layer payloads. Indeed, it is hard to point out the location where each interference

occurred, our methods locate the approximate hop range of involved middleboxes.
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Chapter 4

Results

To sample middlebox interference across the Internet, we want the probes to be sent through a

physical infrastructure distributed across the world. However, the infrastructure used to send the

probes should provide significant and as representative as possible vantage points, i.e., beyond

a purely academic one such as PlanetLab. Indeed, PlanetLab is not suitable for our middlebox

study. Most of PlanetLab instances are distributed inside research labs with unrestricted Internet

access, and the usage of middleboxes in academic networks is limited. We have used our method-

ology on the PlanetLab infrastructure as well, but hardly found any middlebox interference this

way, only a few non-representative instances of middleboxes. Therefore, we use the commercial

Peer-to-Peer (P2P)-based HTTP/S proxy service, Luminati, based on the Hola network, to launch

HTTP requests across the Internet.

In this Chapter, we explain what we get by using Luminati platform to run large-scale measure-

ments (Section 4.1.1). Also, based on our analysis and results, we show evidence for a signif-

icant amount of middlebox interference on both directions of traffic flows in different kinds of

networks (Section 4.1.2 and Section 4.1.3). In addition, we investigate more information about

the location of involved middleboxes by launching traceroute-like probes (Section 4.2).
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4.1 Middlebox Interference on HTTP Messages

Middleboxes are widely used in today’s Internet, especially for security and performance. Mid-

dleboxes classify, filter and shape traffic, therefore interfering with application performance and

performing new network functions for end hosts. In this part of results, we provide evidence for

middleboxes deployed across more than 1000 ASes. We observe various middlebox interference

in both directions of traffic flows, and across a wide range networks, including mobile operators

and data center networks. In details, we examine middlebox interference on HTTP requests in

Section 4.1.2 and describe response manipulation in Section 4.1.3. Furthermore, for each type of

manipulation, we not only study the variety of headers affected, but also try to infer the type of

network in which the manipulations take place.

4.1.1 Dataset

We now give a brief introduction of our collected dataset. We kept launching requests through

different country peers for a period of 5 days, from September 29 until October 3 2016. Table 4.1

shows the number of the IP addresses seen through the requests and responses, their AS and

country. In Table 4.2, we investigate the AS coverage based on the classification provided by

Dimitropoulos et al. [71]. Despite the fine-grained nature of this classification, nearly 67% of

the ASes we observe are unclassified (last row of Table 4.2). Also, the classifier abstains from

classifying some ASes, when the information about them is not sufficient (labeled as ”Missing

Sufficient Information” in Table 4.2).

Table 4.1: Overview of Dataset
Requests Responses

# of IPs 401,746 372,603
# of ASes 10,060 9,634
# of countries 196 196

For requests, we rely on the source IP address of the received request at the server. This IP

address will either be the one from the Luminati country peer or a TCP-terminating middlebox

located between the country peer and our server. Luminati adds the IP address of the selected

country peer to the response header, and therefore the IP address we use for the response in our

dataset is one of the selected country peers (not of a middlebox). All the corresponding ASes and
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Figure 4.1: Number of IP Addresses per Country (max 16433).

Figure 4.2: Number of ASes per Country (max 1200).

Table 4.2: AS Classification
AS Classification Requests

(# of ASes)
Responses
( # of ASes)

Customer 927 887
University 324 319
Internet Exchange 3 3
Network Information Center 43 43
Tier 1 39 38
Tier 2 1631 1611
Missing Sufficient Information 197 198
Unclassified 6896 6536

countries are inferred from these IP addresses. We provide the distribution of selected country

peers in Figure 4.1 and Figure 4.2.
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4.1.2 Request Header Injection

In the upstream direction, i.e., on the path the HTTP request takes towards the server, we see a

variety of new headers injected by middleboxes. These headers mostly relate to common network

functions, such as proxying, caching, filtering and load balancing. When comparing the injected

headers from the requests with those from responses, we see a wider diversity of different headers

being manipulated in responses. We also observe that most of the manipulated response headers

relate to proxies or caches that inject new headers into requests. Though the sheer numbers do

not constitute conclusive evidence, this may indicate that middleboxes affecting the upstream

direction (requests) are actually a subset of those affecting the downstream direction (responses).

Given that middleboxes are stateful devices that see both directions of the traffic flows, it is nat-

ural to expect a significant overlap between manipulations done in both directions of the traffic.

4.1.2.1 Proxies/Caches Request Header Injection

Table 4.3: Injected Request Headers Related to Proxy or Cache Functions.
Injected header # of ASes # of countries Note

Proxy-Related

Via 695 117 Via: 1.1 rcdn9-cd1-dmz-wsa-1.cisco.com:80
X-Forwarded-For 535 106 X-Forwarded-For: 192.168.2.157
X-Proxy-ID 178 58 X-Proxy-ID: 2004304525
X-IMForwards 30 20 X-IMForwards: 20
Max-Forwards 5 4 Max-Forwards: 10
Client-IP 5 7 Client-IP: 10.224.164.34
Client-ip 3 2 Client-ip: 192.168.23.5
X-BlueCoat-Via 49 9 X-BlueCoat-Via: fb09b83d12ade53b
CUDA CLIIP 19 11 CUDA CLIIP: 172.16.20.138
X-IWS-Via 7 6 X-IWS-Via: 1.1 51066FAS (IWSS)
X-IWSaaS-Via 1 1 X-IWSaaS-Via: 1.1 scannerdy-an-20-3012-a-pro-

18293387:8080 (IWSaaS)
X-RBT-Optimized-By 2 2 X-RBT-Optimized-By: LGEPS-PC-ACC-3070M-A

(RiOS 8.6.2c) SC
RVBD-CSH 1 1 RVBD-CSH: ::ffff:172.25.80.199
RVBD-SSH 1 1 RVBD-SSH: ::ffff:172.17.12.199
Surrogate-Capability 8 5 Surrogate-Capability:srv015.guape.zigdigital.com.br
X-Tinyproxy 1 1 X-Tinyproxy: 10.192.9.79
X-If-Via 1 1 X-If-Via: 1.1 i-FILTER84982

Cache-Related

Cache-Control 750 106 Cache-Control: max-stale=0
Pragma 4 3 Pragma: no-cache
X-Loop-Control 35 2 X-Loop-Control: 151.233.132.133
If-Modified-Since 24 13 If-Modified-Since: Thu, 24 Mar 2016 15:07:56 GMT
If-None-Match 21 11 If-None-Match: ”90-52ecccfbb0285”

In Table 4.3, we list all instances of injected headers corresponding to proxies and caches. For

each header instance, we also provide the number of ASes and countries of the possible location

of the injection. As previously mentioned in our methodology, we infer the AS and country

of the source IP address of the received requests. This IP address will either be the one from
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the Luminati country peer or from a middlebox located between the country peer and our server.

Therefore, even though it is not the definitive location of the middlebox, it will be typically at

the edge of the Internet given the vantage points provided by Luminati. From how often these

headers are observed in different networks, we get a measure of the popularity of these two

important network functions overall. Meanwhile, we check the values of the injected headers

(see examples provided in the last column of Table 4.3). We find that the values of the headers

are consistent with the names of the headers, reflecting the related network functions played by

the corresponding middlebox.

The most frequently injected request header in our dataset is Cache-Control. This header sets

specific directives for cached copies, and is seen in about 7.5% of all ASes we sample in our

measurements. The next most popular injected header is Via, injected by proxies to inform

end points of its presence, sometimes also adding information about the name and version of the

middlebox. We observed the Via header across 695 ASes in 117 countries. Middleboxes do more

than tell their functions. They also add private information about the end-point originating the

HTTP request, as from the X-Forwarded-For header that carries the IP address of the original

client. Doing this is surprising, if the intended usage of proxy is to provide anonymity for end

users, since adding the IP address of the original client defeats the very purpose of proxying,

by revealing to the server the originator of the query. The next most popular injected header is

X-Proxy-ID, seen in 178 ASes across 58 countries, which carries the identifiers of the proxies.

Injected HTTP headers also reveal a significant number of vendor-specific middleboxes. For

example, X-IWS-Via and X-IWSaaS-Via are headers added by Trend Micro middleboxes, run-

ning the InterScan Web Security service. InterScan Web Security (IWS) is a software appliance

that dynamically protects traffic flows on Internet gateway [72]. Another expected header is X-

IWSaaS-Via, from the Amazon cloud instance inside a Japanese data center. Beside the typical

functions of proxying and caching, we find headers related to services such as private IP map-

ping (X-Tinyproxy), traffic flows filtering (X-If-Via) and WAN optimization (RVBD-CSH and

RVBD-SSH). Although not very common, these instances provide evidence of the diversity of

roles played by middleboxes in today’s Internet, way beyond the usual functions such as caching

and proxying.

As shown in Figure 4.3, most of involved ASes are Tier-2 or customer networks, supporting our
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Figure 4.3: AS Classification of Injected Request Header

expectation that the middleboxes are generally located at the edge of networks.

4.1.2.2 Non-standard Request Header Injection

So far, we have studied injected headers for which the function of the middlebox is straightfor-

ward, because the header is well known or the name strongly suggests its function. This is not

always the case unfortunately. When the header does not tell us its purpose, we try to guess its

function based on its name or its network.

Mobile devices/networks request header injection In Table 4.4, we list a set of headers for

which we could guess the purpose. We also provide the name of the networks from which the

requests come, and the countries of these networks.

We observe that some headers are used to expose information about cellular networks and the

mobile devices that use these networks. For example, x-gateway and o2gw-id are specially used

in the O2 (GB) mobile network, to carry the ID and location of gateways [29]. X-Roaming

and X-RAT-TYPE are both injected to describe the radio technology used in a particular mobile

network.

From either the name of the header, or the network where the middlebox is located, it is obvious

that the headers shown in Table 4.4 are used for mobile devices and mobile networks. Unex-

pectedly, looking at the content of the headers reveals information about the mobile users, which

is visible to the server-side. Unfortunately, despite the huge number of vantage points provided
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Table 4.4: Request Headers Exposing Mobile Network and Device Information.
Injected Header # of ASes # of countries
x-gateway 1 (O2-ONLINE) 1 (GB)
o2gw-id 1 1
X-Nokia-Gateway-Id 1 (MIRS) 1 (IL)
X-Nokia-
MaxDownlikBitrate

1 1

X-Nokia-
MaxUplinkBitrate

1 1

X-Nokia-BEARER 1 1
X-Roaming 1 (MTNSS) 1 (SS)
X-RAT-TYPE 1 1
MSISDN 2 (ZAIN, Jordan Tele) 2 (IQ,JO)
msisdn 2 (AXIATA,globacom) 2 (BD,NG)
mpesaMsisdn 1 (VODAFONE) 1 (RO)

by Luminati, we only observed this in 8 ASes, 4 of them could be classified. Two of them are

customer networks, and the other two are Tier-2 networks. As much as Luminati provides van-

tage points at the edge of the Internet, few of these are actually located inside mobile networks,

at least as seen from modified HTTP headers. Our results suggest that relying on vantage points

located inside mobile networks is necessary to better sample middleboxes deployed across the

Internet.

Remaining injected headers The remaining injected headers are either non-standard, or have

names or values that make it challenging, though sometimes possible, to guess the purpose of the

HTTP header or the function of the corresponding middlebox. We list these on Table 4.5. We

provide the name, country of the network (when found) and example values.

Some injected headers nicely exemplify specific types of middlebox interference, such as URL

filtering, real-time content filtering, or the specific networks where the middleboxes are deployed,

e.g., mobile networks or cloud providers. For example, the x-up-vfza-id header is added by the

VODACOM network, revealing the ID of the upstream gateway inside the mobile network. The

headers with the prefix X-TMCE are added by Trend Micro middleboxes, and from looking at

the AS number of the Luminati proxy, these headers are injected for the IWSaaS service inside

the Amazon cloud platform. Similarly, the headers containing FFI and HCF are likely to be

added by specific vendor devices. The X-FCCKV2 header is added by middleboxes running the

Fortinet software for traffic filtering [7]. Finally, despite its rather generic name, the Server-Slot

header is added by a middlebox inside the French cloud computing company OVH. OVH offers
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VPS, dedicated server and other web services, suggesting that the original request went through

some web host running inside a cloud instance before reaching our target server.

Table 4.5: Remaining Injected Request Headers.
Injected Header AS Num/ISP Country Note
x-up-vfza-id 1 (VODACOM-AS) 1 (ZA) x-up-vfza-id: 65501
x-subscriber-info x-subscriber-info: 10.139.195.196
cli 1 (QA-ISP) 1 (QA) cli: 97433872509
imsi imsi: 427012926009698
X-TMCE-GUID X-TMCE-GUID: 48c1b6b0-4a2f-11e6-

9c7d......
X-TMCE-Token 1 (Amazon.com, Inc) 1 (JP) X-TMCE-Token:48c1b6b0-4a2f-11e6-

9c7d......
X-TMCE-User X-TMCE-User: %40ce-ac7caab8-74df-4bc4-

ae2d......
FFIClient FFIClient: True
FFI-Authenticate 1 (NL-SOLCON) 1 (NL) FFI-Authenticate: e78d964b-99db-4c70-

88c5......
FFI-AuthenticateUser FFI-AuthenticateUser: enno
FFI-UrlToFilter FFI-UrlToFilter:

http://shanluminati.com/?TYPE1 nl 21408
HCFVer 1 (TTNET) 1 (TR) HCFVer: 3.7.18
HCFType HCFType: server
X-FCCKV2 2 (ENERGOTEL,TTSLMEIS) 2 (SK,IN) X-FCCKV2: GAJ3kZcRPNFiiMihhS2K......
X-Bloxx-Result 1 (DATAWEB B.V) 1 (NL) X-Bloxx-Result: [201, 203, 250, 251, 254,

255, 260, 261, 266, 267, 401, 425, 3009]
Server-Slot 1 (OVH) 1 (FR) Server-Slot:ovh01FR.openvpn.wifiprotector...
Referer 2 (NHN-AS,CHINA-UNICOM) 2 (KR,CN) Referer: http://www.baidu.com/s?wd=www
X-delete-header 1 (CHINANET-BACKBONE) 1 (CN) X-delete-header: gzip
Accept-Xncoding 1 (Bezeqint Internet Backbone) 1 (IL) Accept-Xncoding: gzip
NCLIENT50 2 (VIA-NUMERICA,Hanyang

University)
2 (FR,KR) NCLIENT50: NCLIENT50

serialnumber 1 (INFOCLIP-AS) 1 (FR) serialnumber: V2401625

4.1.2.3 Summary

Overall, our results from HTTP request header manipulation demonstrate the variety of different

middleboxes deployed inside today’s networks, and their many purposes and behaviours. From

injected HTTP headers inside requests, we found that proxies and caches are the prevalent type

of middlebox, and these are deployed world-wide, more than 100 countries. Despite relying on

the Luminati probing infrastructure that does not particularly sample well mobile networks or

cloud providers, we still found evidence of middleboxes in these networks. Finally, we observed

multiple instances of vendor-specific middleboxes, which define their own HTTP headers, or of

service-specific behaviours outside proxying and caching.
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4.1.3 Response Header Manipulation

n this section, we explore HTTP response header manipulation, as well as web page blocking

specifically. Before going into details of the response header manipulation, let us mention that

most of the middlebox interference observed on the downstream part (by the client receiving

the response) overlaps with the middlebox functions observed in the upstream direction. As

previously mentioned, this makes sense as middleboxes typically are stateful devices, that see

both directions of the traffic. However, this does not imply that HTTP header manipulation

will take place in both directions for a given flow, or that the same headers will be affected.

Therefore, one cannot expect that HTTP header manipulation in the two directions of the traffic

will be similar, but at best consistent.

4.1.3.1 Response Header Injection

Proxies/Caches response header injection Expectedly, similar to the case of HTTP request

headers, most instances of injected response headers relate to proxying and caching, such as

the cache hit record, the age for the cached copies and proxy connection status.

Table 4.6: Response Header Injection.
Injected Header # of ASes # of coun-

tries
Note

Cache-Related

X-Cache 519 105 X-Cache: MISS from localhost
X-Cache-Lookup 401 99 X-Cache-Lookup: MISS from localhost:3128
Age 216 53 Age: 0
Cache-Control 206 76 Cache-Control: max-age=0,must-revalidate,no-

cache,no-store
X-CFLO-Cache-
Result

48 5 X-CFLO-Cache-Result: TCP MISS

X-Loop-Control 22 2 X-Loop-Control: 5.202.228.198 179F97......
X-Cache-Full 11 1 X-Cache-Full: MISS from myauth.pirai.rj.gov.br
Vary 7 6 Vary: *
X-Cache-Debug 1 1 X-Cache-Debug: TCP MISS/NODNS-IIP/-
SPINE-CACHE 1 1 SPINE-CACHE: MISS
ANIS-CACHE 1 1 ANIS-CACHE: MISS

Proxy-Related

Proxy-Connection: 128 52 Proxy-Connection: Keep-Alive
X-Cnection 23 7 X-Cnection: close
X-OSSProxy 19 16 X-OSSProxy: OSSProxy 1.3.337.376 (Build

337.376 Win32 en-us)(Apr 22 2016 15:45:25)
X-Squid-Error 9 6 X-Squid-Error: ERR-READ-ERROR 104

Third Party Server Set-Cookie 2 2 Set-Cookie: xodbpb=; Path=/; HttpOnly

As shown in Table 4.6, X-Cache is the most frequently added response header, observed from
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519 ASes across 105 countries1. The next most popular, X-Cache-Lookup is observed in 401

ASes, nearly 4% of all ASes we observe. Both of them are used to handle cache implementation

details.

Surprisingly, we find the header Set-Cookie injected in some of our responses, while the server

should be adding it, not a middlebox. Although we could not identify the host that actually

sets these cookies, the injection implies the existence of a third-party server (or a middlebox)

responsible for such an injection. Though we do not see the third-party actually tracking the

browsing behaviour of the client, the existence of such a third-party constitutes a privacy risk for

end-users who are unlikely to be aware of its presence.

Compared to the injected request headers, we see less information about the unique user or

gateway is injected in the response headers by the middleboxes. We observe 12 injected request

headers that carry the information about the original user (private IP address) and the name or

identification of proxies. Only two injected response headers record the cache hit results, carrying

information about caches on the path. Although upstream and downstream traffic flows are likely

to cross the same middleboxes, the middlebox interference we observe in both directions of

the traffic is different. More private information about subnets or clients is added to requests

compared to responses.

Remaining response header injection Similar to the request header situation, Table 4.7 shows

the non-standard injected response headers. Again, in such cases we need to guess the purpose of

the header. From our inference, it appears that most of these injected headers carry information

related to content filtering and identification of middleboxes in different networks. However,

we did not find any specific network function that would generally apply in these cases. For

instance, X-IS-ELAPSED and X-IS-FILTER are injected in the same request, but from the

values of these two headers we could not infer their function. From their name, we guess they

are likely to be injected for filtering. Headers such as those with the X-Nokia prefix, or X-

Android, are injected by the Android operating system, and therefore related to middleboxes

located in wireless or mobile networks. The Client-Date, Client-Peer and Client-Response-

Num headers are injected by SmarTone, the mobile network operator in Hong Kong. This shows

1Different from the case of requests, for responses we rely on the IP address of the country peer to
infer the AS number and country of this header modification.
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that consistently with the upstream case, we see evidence of middleboxes in mobile networks

from the downstream direction of the traffic.

Table 4.7: Injected Response Headers Requiring Inference.
Injected Header # of ASes # of countries
X-IS-ELAPSED 2 1
X-IS-FILTER 2 1
X-Android-Selected-
Protocol

1 1

X-Android-Response-Source 1 1
Client-Date 1 1
Client-Peer 1 1
Client-Response-Num 1 1
X-Bst-Request-Id 3 4
X-Bst-Info 3 4
X-WS-PAC 3 4
Warning 14 11
Mime-Version 11 8
Location 10 9
Content-Language 6 5
X-Vitruvian 6 5
X-TurboPage 4 5
Refresh 2 1

4.1.3.2 Response Header Modification and Removal

For response headers, we also observe header removals (Table 4.9) and value modifications (Ta-

ble 4.8). Though we do not have explicit evidence about the type of middlebox in these cases,

a large portion of the ASes for these headers overlap with those involved in the Via, Cache-

Control and X-Forwarded-For headers in the requests. For example, as shown in Table 4.8,

77% of ASes for which Accept-Range modifications occur overlap with the ASes involved in

request header injection. This suggests that these modifications and removals are actually done

by the same middleboxes in both directions.

Overlapping ASes also give us the opportunity to look at cases where the ASes from the requests

and responses differ. Indeed, when the IP address seen in the request received by the server

differs from the IP address seen in the response (identifying the country peer), this means that

the former IP address belongs to a TCP-terminating middlebox. We therefore count such IP

addresses (1025), ASes (168), and countries (55) where these are located. Unfortunately, these

statistics provide us only with a very poor lower bound on the number of middleboxes and net-

works observed, compared to the evidence from the HTTP header manipulation. Indeed, from
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the sheer HTTP manipulation we observed, we found evidence of middleboxes in 1011 ASes

from the requests, and in 1023 ASes for responses.

Some response header modifications and removals may affect the end-to-end performance. For

example, some proxies modify or remove the value of the Accept-Ranges header, to disable byte

serving. As byte serving allows the server to partially deliver the content, modifying the value of

Accept-Ranges can very well affect the content transfer. Also, the removal of the Last-Modified

and Etag headers may affect the updating of cached copies.

Table 4.8: Modified Response Headers (with AS overlap).
Modified
Header

# of ASes # of overlap ASes # of countries

Content-Length 191 108 (57%) 75
Accept-Ranges 61 47 (77%) 38
Content-Type 37 20 (54%) 24
Server 26 15 (58%) 17

Table 4.9: Removed Response Headers (with AS overlap).
Removed
Header

# of ASes # of overlap ASes # of countries

Last-Modified 143 84 (59%) 65
Accept-Ranges 107 64 (71%) 50
Content-Length 85 52 (51%) 36
Etag 73 42 (58%) 39
Server 33 21 (64%) 20

4.1.3.3 Summary

All in all, the manipulations of HTTP responses confirm the diversity of network functions played

by today’s middleboxes. Similar to the case of request headers, most of the injected response

headers are added by proxies and caches. As shown in Figure 4.4, the classification of ASes

which inject new headers inside responses is quite similar to those that do so on the requests. Al-

though the types of injected headers are different between requests and responses, the consistency

in the trends in both directions of the traffic possibly indicate that the same middleboxes indeed

affect both directions of the traffic. From the downstream part of the traffic, we observed header

manipulations that may potentially negatively impact end-to-end performance. Finally, we also

observed instances of page blocking, exposing the URL filtering function of middleboxes.
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Figure 4.4: AS Classification of Injected Response Header

4.1.4 Conclusion

In our results, we studied the presence of multiple types of HTTP-interfering middleboxes in

today’s networks. We observed a large number and variety of injected headers, demonstrating the

prevalence of HTTP-interfering middleboxes across the Internet. The main middlebox functions

identified from these interactions are proxying, caching, filtering and NAT. Despite the limited

number of instances, we also observed HTTP header manipulation done by mobile networks and

cloud providers, providing evidence for widespread deployment of middleboxes in the Internet.

4.2 Middlebox Location

To investigate the location of involved middleboxes, we launch traceroute-like probes to pinpoint

the approximate hop range where the interference takes place. From prior section, we already

got the IP lists of all the available country peers. To maximize the usage of our data and explore

the ASes deeper, we extended our work to send crafted HTTP responses with increasing TTL

values from our servers to all available country peers.

4.2.1 Information about Last Returned ICMP Reply

Analysing the received ICMP time-exceeded replies, we compared the ASes of available country

peers and last hops which returned ICMP reply back to our servers. Also, to investigate more

about the last ICMP replies and involved ASes, we figured out the types of ASes with same
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classifier [71], which are used for our Luminati dataset.

Table 4.10: Comparing ASes between Country Peers and Last Hops
Total number Last hop in same

AS
Last hop in different AS

# of IPs 349,617 229,955 (65.77%) 119,662
# of ASes 9450 5749 (60.83%) 5734 (2033 are overlapped)

Table 4.11: AS Classifications of Last Hops
AS Classification # of ASes
Customer 612
University 147
Internet Exchange 5
Network Information Center 40
Tier 1 40
Tier 2 1429
Missing Sufficient Information 159
Unclassified 3952

In total, we sent traceroute-like probes to 372,603 IP addresses which are distributed in 9634

ASes. While, since some IP addresses of last hops could not map to ASes (the mapped result

is null), we got the IP addresses of last hops for 349,617 probes successfully, and nearly 66%

of probes could receive ICMP replies from same ASes of target country peers (shown in Ta-

ble 4.10). Furthermore, we classified the corresponding ASes of last hops which returned last

ICMP time-exceeded replies. As shown in Table 4.11, most of last hops are distributed at the

edge of networks.

4.2.2 Observation of Response Header Injection

Although it is hard to use Luminati to locate middleboxes, we explored the injected response

headers again by checking the ASes of last hops to explore ASes between servers and coun-

try peers. From Section 4.1, we already analysed the IP addresses and corresponding ASes of

country peers which were injected new response headers. We counted each country peer as one

sample, compared the ASes of country peers and last hops, inferring the approximate place that

where the header injection took place.

As shown in Figure 4.5, most of last hops of samples are in the same ASes of country peers. The

manipulation may take place in same ASes of country peers, and the location of middleboxes may

be close to client side. In contract, some cache related headers may be injected from different
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Figure 4.5: ASes Comparison between Last Hops and Involved Country Peers

ASes. For example, SPINE-CACHE and ANIS-CACHE are injected by vendor-specific caches,

and the last received ICMP replies are all from different ASes. Although the number of samples

is only 4, we inferred that these two types of vendor-specific caches may be TCP-terminating

middleboxes, located in the middle between clients and servers.

4.2.3 Summary

In conclusion, we explored the IP addresses and corresponding ASes of last hops which returns

ICMP time-exceeded replies between country peers and servers. In our results, nearly 66%

of samples receive ICMP replies from hops which are close to country peers. For the rest of

samples, we guess that there may be middleboxes on the path which open new TCP connections

with servers. However, our current work could not locate the actual position of middleboxes, and

the results are more or less affected by returned ICMP time-exceeded replies . In order to probe

and explore more deeply on the paths, more methodologies are needed for locating middleboxes

and investigating ASes in the middle.
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Chapter 5

Discussion

In brief, we describe our methodologies and provide an abundant insight on HTTP-interacting

middleboxes. According to our results, we believe that our methodologies will be useful for

understanding the middlebox interference on traffic flows, inferring and identifying the involved

networks. However, when we tried to measure the middleboxes on large scale, we noticed some

limitations on our methodologies, samples and dataset. In this chapter, we explain these limita-

tions and discuss how to extend our work in the future work.

5.1 Limitations on Methodology

5.1.1 Discussion about Client-Server Architecture

As mentioned in Section 3.1, our methodologies control both end hosts to adopt a client-server

architecture, generating and capturing traffic flows in both directions. As the paths between two

end hosts are complicated, the locations of clients and servers affect the behaviour of middle-

boxes. Futhermore, some middleboxes are reported to be stateful devices, the directions of traffic

flows also affect the middlebox interference. However, our current work did not cover the selec-

tion of clients and servers. If we could control more vantage instances in the future, we could

investigate more behaviour of middleboxes.



5.1. Limitations on Methodology 56

In order to run the application traffic flows as we designed, we need the root permission to access

vantage points. However, it is a challenge for sampling across the Internet. Although we could

make use of the virtual machines in some commercial cloud infrastructures, such as Amazon

Web Service (AWS) , Google Cloud Platform (GCP) and so on, the number and distribution of

instances are not enough for our large-scale measurement. For the purpose of extending our

work, we need design other methodologies to run scripts, or collect more volunteers in varied

networks to detect different types of middlebox interference.

Presently, we treat all middleboxes as one blackbox in our client-server model. While, it is pos-

sible that multiple middleboxes are located between two end hosts. In addition, one middlebox

could operate from network layer to application layer. It is hard to figure out the accurate number

or individual behaviour of each middlebox by using our current methodologies.

5.1.2 Limitations on Application Probe

Implemented with Luminati, we reproduced HTTP traffic flows and detected HTTP-interacting

middleboxes in our results. We believe that our methodologies will be suitable to measure the

further performance of applications in next step. However, the reproduced traffic flows are lim-

ited. Considering the ethical issues when we reproduce traffic flows from users, the probes are

limited to be standard application traffic messages without any triggers of filtering, blocking or

other behaviours of Internet censorship.

One the other hand, Internet traffic is changing (e.g., HTTPS accounts for a significant percentage

of application traffic flows now), and the corresponding policies of middleboxes are evolving.

HTTP traffic flows are not enough to investigate the behaviour of middleboxes. We need extend

our work to HTTPS, understand how middleboxes interfere with the encrypted traffic flows and

investigate the corresponding effect on the performance of HTTPS.

5.1.3 Limitations on Traceroute-Like Locating

Making good use of ICMP messages is a key method to locate middleboxes hop by hop. How-

ever, the traceroute-like locating methods are limited with the returned ICMP time-exceeded

replies. As described in Section 3.4.2, some routers do not return the ICMP time-exceeded
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replies, and some middleboxes modify the returned replies again in the downstream direction.

We could not illustrate the accurate behaviour of middleboxes at each hop, and the result of

location is rounded to approximate hop range where the interference takes place.

In addition, the types of returned ICMP replies also affect our detecting and locating the ma-

nipulation of traffic flows. According to RFC792 [41], the returned ICMP time-exceeded reply

should quote the IP header and the next eight bytes of original packet. Meanwhile, RFC1812 [42]

suggested to quote the entire IP packet in ICMP time-exceeded reply, but this recommendation

has not been widely implemented. The more contents of original probes quoted in the ICMP

replies, the more manipulation we could detect.

5.2 Limitations on Luminati

Thanks to Luminati, we could be able to launch HTTP requests and receive responses from

more than 350,000 available country peers distributed in nearly 10,000 ASes. According to our

dataset and results, the samples of Luminati are from different types of networks, which provide

enough evidences to show the presence of middleboxes. However, since the super proxies and

all country peers are based on Hola network, the measurement crawler does not have root access

to available country peers. As discussed in prior section, the locations of clients and servers

affect our detection. With Luminati, we could not select or change the location of clients. Since

crawler only receive HTTP responses from super proxy, it is not possible for us to confirm how

the traffic flows are filtered or dropped between super proxy and country peer. Also, the probes

with increasing TTL values could not be reproduced from the country peers, which means that

we could not locate the middleboxes from upstream direction.

Furthermore, Luminati controls the selection of country peers. Although Luminati provides dif-

ferent types of users (e.g. mobile device user, desktop user), we do not have the right to make

choices. Also, the number of available country peers is varied with time. If we could launch our

requests in a longer term, our results could cover more ASes and present more types of middle-

boxes inside networks. Overall, in order to make use of millions of country peers from Luminati,

we need to better estimate our samples, value the sheer number of middleboxes deployed across

the Internet in the future.
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5.3 Limitations on AS Classification

In our results, we investigated the involved AS by classifying the types of ASes. We experimented

with three classifiers. CAIDA’s AS ranking [73] is an up-to-date classifier which provides great

coverage of ASes. However, the categories of ASes are quite coarse, and there are only three

categories: Transit, Content and Enterprise. Compared with CAIDA AS ranking, the classifier

provided by Dhamdhere [74] and the one provided by Dimitropoulos [71] have lower recall,

but the classification is a slightly finer-grained. In our work, we used the classifier provided

by Dimitropoulos, which offered similar recall with [74], but with a finer grained classification.

Whilst, there are nearly 67% of ASes are unclassified in our result. Therefore, we argue that better

classification must be developed to investigate the involved ASes, and give better understand of

behaviour of middleboxes in varied networks.

5.4 Summary

In summary, we discuss the limitations of our work from different aspects of methodology, sam-

ple collection and data classification. Middleboxes affect the traffic flows on both directions of

traffic flows, and the types of interference are not only packet manipulation, but also filtering and

injection. We need adopt a client-server architecture to generate and capture traffic flows from

both end hosts. However, these requirements make sampling harder. To do the large-scale mea-

surement, we need design more methods to collect volunteers or samples across Internet to count

and locate middleboxes in the future. Also, we should include the selection of servers in our

future work, detecting other behaviours by changing locations of clients and servers or directions

of traffic flows.

Luminati is an important platform for us to collect samples. Although we could not control the

selection of these country peers and do not have the access to these vantage points, the significant

scale of samples provide lots of valuable data to analyze. Furthermore, since Luminati provides

HTTPS traffic flows at the same time and HTTPS plays an increasingly significant role in our

network. We could extend our methods and make use of millions of country peers in Luminati to

understand middlebox interference on HTTPS in the future.
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Chapter 6

Conclusion

In this report, we firstly give an introduction to middleboxes from the definition in theory to the

behaviour in varied networks; present our motivations to illustrate why it is important to study the

middleboxes and measure the effect of interference on traffic flows. We describe our methodolo-

gies and explain the differences between other related work, emphasising the reasons that why

we need our methods. Deploying our methodologies in a commercial P2P network Luminati,

we find the presence of middleboxes in different networks, manipulating traffic flows for imple-

menting more network functions, enhancing the visibility of network traffic flows and enable the

enforcement of security policies. At the same time, detected middleboxes provide us changes to

infer and investigate the involved ASes.

As a new kind of device in today’s network, middleboxes break the end-to-end network model,

split connections between two end hosts, interfere with the traffic flows, and provide functions for

security and performance improvement. However, as middleboxes and networks are all compli-

cated, we have the limited knowledge about what happens in the middle and how the interference

affects the performance of applications. It is critical to detect and measure the behaviour of mid-

dlboxes and have a deeper understanding of types of networks inspected.

In our work, we introduce the methodology to detect middlebox interference based on a client-

server architecture. The clients and servers are both controlled and programmable to reproduce
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traffic flows with different application payloads. Furthermore, adopting a client-server architec-

ture provides us abilities to generate and capture exchanged traffic flows in both directions. To

better implement our methods and conduct a large-scale dataset, we introduce the commercial

platform Luminati platform and explain how to develop our methodology with it. Thanks to Lu-

minati, we find evidence for a significant amount of middlebox interference on the traffic flows

in different networks. Our results demonstrate the presence of varied HTTP-interacting middle-

boxes in nearly 1,000 ASes across 196 countries We observe a wide variety of injected HTTP

headers in HTTP requests, some known and some never reported before. Surprisingly, we even

observe new headers that are only added by mobile networks and cloud platforms. Overall, we

find that injected headers expose the presence of multiple types of middleboxes across diverse

networks. Further, the interference on HTTP responses often reveals the corresponding functions

of the middleboxes, such as proxying, caching, URL filtering, and WAN optimization. Analysing

the types of involved ASes and probing with the increasing TTL valuses responses, we find that

most of interference happends at the edge of network.

As discussed in Chapter 5, Luminati and our methodologies have some limitations. In the future,

we need extend our methodologies with the selection of clients or servers, change the traffic

directions between two end hosts, and try to investigate the stateful behaviour of middleboxes.

At the same time, more methodologies are needed for sampling and collecting volunteers in

varied networks, launching probes from multiple types of ASes, giving a better estimate of the

number of middleboxes in the Internet, as well as their actual impact. Since Luminati has a

large-scale country peers to forward HTTP/HTTPS messages, we plan to make good use of

HTTPS messages, explore the middlebox interference on encrypted traffic. Last but not least,

our current work focuses on the interference and behaviour of middleboxes, we should extend

our measurement to examine the effect on application performance, such as detecting the impact

on packet loss, delay and other performance factors.
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