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As an imitation of the biological nervous systems, neural networks (NNs), which have been characterized as powerful learning tools,
are employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification,
and patterns recognition. This article aims to bring a brief review of the state-of-the-art NNs for the complex nonlinear systems by
summarizing recent progress of NNs in both theory and practical applications. Specifically, this survey also reviews a number of
NN based robot control algorithms, including NN based manipulator control, NN based human-robot interaction, and NN based
cognitive control.

1. Introduction

In recent years, the research of neural network (NN) has
attracted great attention. It is well known that, mammals’
brain, which consists of billions of interconnected neurons,
has the ability to deal with complex and computationally
demanding tasks, such as face recognition, body motion
planning, and muscles activities control. Figure 1 shows a
cellular structure of a mammalian neuron. Inspired by the
neuron structure, artificial NN (ANN) was developed to
emulate the learning ability of the biological neurons system
[1–3]. The concept of artificial NNs was initially investigated
byMcCulloch and Pitts in the 1940s [3], where the network is
established with a parallel structure.The basically mathemat-
ical model of NN consists of three layers, that is, input layer,
hidden layer, and output layer, which are of simple parallel
computational structure but with appealing learning ability
and computational power to predict nonlinear dynamic
patterns.

In past decades, the NN technique has been studied
extensively in areas such as control engineering, aerospace,
medicine, automotive, psychology, economics, energy sci-
ence, and many other fields [4–7]. It has been reported that
NN can approximate any unknown continuous nonlinear
function by overlapping the outputs of each neuron. More-
over, the approximation errors could be made arbitrarily
small by choosing sufficient neurons. This enables us to deal
with control problems for complex nonlinear systems [8–13].
In addition to systemmodeling and control, NNhas also been
successfully applied in various fields such as learning [14–
17], pattern recognition [18], and signal processing [19]. And
NN has been extensively used for functions approximation,
such as to compensate for the effect of unknown dynamics in
nonlinear systems [20–31]. The NN control has been proved
to be effective for controlling uncertain nonlinear systems
and demonstrated superiority in many aspects.

Recently, the researchers have focused on the study of
robotics for its increasing importance in both industrial
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Figure 1: An example of mammalian neuron (modified from [32]).

applications and daily life [33–38]. Many advanced robots
such as YuMi made by ABB, Baxter made by Rethink,
and Rolins’ Justin developed by German Aerospace Agency
(DLR) have also been widely allocated. The robots manipu-
lator system is characterized with high-nonlinearity, strong
coupling, and time-varying dynamics, thus controlling a
robot with not only positioning accuracy, but also enough
flexibility to complete a complex task became an interesting
yet challenge work. To achieve a high performance control,
dynamics of the robot should be known in advance. However,
in practice, the robot dynamic model is often rarely known
due to the complex robot mechanism, let alone various
uncertainties such as parametric uncertainties or modeling
errors existing in the robot dynamics. Therefore, advance
control algorithm is imperative for next-generation robots.
Thanks to the universal approximation and learning ability,
the NN has been widely applied in robot control with various
applications. The combination of NN and robot controller
can provide possible solutions for complex manipulation
tasks, for example, robot control with unknown dynamics
and robot control with unstructured environment. In this
paper, we present a brief review of robot control by means of
neural network. The rest of the paper is organized as follows.

After the introduction, in Section 2, we present prelim-
inaries of several popular neural network structures, such
as RBFNN and CMAC NN. Section 3 introduces a number
of theoretical developments of NN in the fields of adaptive
control, optimization, and evolutionary computing. In addi-
tion, Section 4 revisits the robot neural network control with
the applications in manipulation, human-robot interaction,
and robot cognitive control. Section 5 gives a brief discussion
about the neural network control and its future research.

2. Preliminaries of Neural Networks

In this section, we will introduce several types of NN
structure, which are popularly employed in the control
engineering.

2.1. Radial Basis Function Neural Network (RBFNN) [14, 15].
A basic architecture of RBFNN network is shown in Figure 2,
which consists of three layers, namely, input layer, hidden
layer, and output layer. In the input layer, the NN inputs
are applied. In hidden layer, the data is transformed from
input space to hidden space, which is always with a higher

dimension. The RBFNN can be used to approximate any
continuous vector function, for example, 𝐹(𝑍):

𝐹 (𝑍) = 𝑊𝑇𝑆 (𝑍) , (1)

where 𝐹(𝑍) is the estimation of 𝐹(𝑍) and 𝑍 is NN inputs
vector. �̂� = [�̂�1, �̂�2, . . . , �̂�𝑛] ∈ 𝑅𝑛×𝑙 is the estimation of
NN optimal weight, 𝑆(𝑍) = [𝑠1(𝑍), 𝑠2(𝑍), . . . , 𝑠𝑙(𝑍)]𝑇 is the
regressor, and 𝑙 denotes the number of NN nodes. Generally,
the regressor could be chosen as a Gaussian radical basis
function as follows:

𝑠𝑖 (󵄩󵄩󵄩󵄩𝑍 − 𝑢𝑖󵄩󵄩󵄩󵄩) = exp[− (𝑍 − 𝑢𝑖)𝑇 (𝑍 − 𝑢𝑖)𝜎2𝑖 ] , (2)

where 𝑢𝑖 (𝑖 = 1, . . . , 𝑙) are distinct points in state space and𝜎𝑖 is the width of Gaussian membership function. It has been
well recognized that, using the powerful approximate ability
of the RBFNN,we can approximate any continuous nonlinear
function over a compact set as

𝐹 (𝑍) = 𝑊∗𝑇𝑆 (𝑍) + 𝜀, (3)

where 𝑊∗ is the optimal weight vector and 𝜀 is the approxi-
mate error.

2.2. Cerebellar Model Articulation Controller (CMAC) NN
[39]. There has been a predominant tendency to study the
learning and control techniques of robots by exploring the
principles of biological systems. This is because the biolog-
ical creatures, mechanisms, and underlying principles are
likely to bring novel ideas to improve control performance
of the robot in a complex environment. In 1972, Albus
proposed a learning mechanism that imitates the structure
and function of the cerebellum, called cerebellar model
articulation controller (CMAC), which is designed based on
a cerebellum neurophysiological model [40]. In comparison
to the backpropagation neural network, the CMAC NN was
adopted widely in modeling and control of robots system for
its rapid learning speed, simple structure, insensitivity of data
sequence, and easy implementation [39, 41].

Figure 3 shows the basic structure of the CMAC neural
network. The CMAC could be used to approximate the
unknown continuous function, 𝐺(𝑍) = [𝑓1(𝑍), 𝑓2(𝑍), . . . ,𝑓𝑛(𝑍)], where 𝑍 ∈ 𝑅𝑚 denotes the 𝑚 dimensional inputs
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Figure 2: Structure of the RBFNN.
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Figure 3: Structure of a CMAC neural network.

space. As shown in Figure 3, two components are involved
in the CMAC neural network to determine the value of the
approximated nonlinear function 𝐺(𝑍):

𝑅 : 𝑍 󳨀→ 𝐶
𝑃 : 𝐶 󳨀→ 𝐹, (4)

where

𝑍 ism-dimensional input space

F is n-dimensional output space

C is𝑁𝑐-dimensional association space

and 𝑅(⋅) denotes the mapping from the input vector to
the association space; that is, 𝛼 = 𝑅(𝑍). The outputs
are computed through 𝑃(𝛼), by using a projection of the
association vector 𝛼 onto a weights vector, such that

𝑓 = 𝑃 (𝛼) = 𝑊𝑇𝛼, (5)

It should be noted that 𝑅(𝑍) can be represented by a
multidimensional receptive filed function such that each
point in input 𝑍 is assigned with an activation value. The

receptive-field basis functions of the association vector could
be chosen as Gaussian functions as follows:

ℎ𝑖𝑘 (󵄩󵄩󵄩󵄩𝑧𝑖 − 𝑢𝑖𝑘󵄩󵄩󵄩󵄩) = exp[− (𝑧𝑖 − 𝑢𝑖𝑘)2𝜗2𝑖𝑘 ] ,
𝑘 = 1, 2, . . . , 𝑙,

(6)

where l is number of blocks of the associate space, ℎ𝑖𝑘
denotes the kth block associated with the input 𝑧𝑖, 𝑢𝑖𝑘
denotes the receptive field’s center, and 𝜗𝑖𝑘 is the variance
of Gaussian function. Then, the multidimensional receptive-
field function can be described as

𝑆 (𝑍) = [𝑠1, 𝑠2, . . . , 𝑠𝑛]𝑇 , (7)

where 𝑠𝑘(𝑍, 𝑢𝑘, 𝜗𝑘) = ∏𝑚𝑖=1ℎ𝑖𝑘(𝑧𝑖), 𝑢𝑘 = [𝑢1𝑘, 𝑢2𝑘, . . . , 𝑢𝑚𝑘]𝑇,
and 𝜗𝑘 = [𝜗1𝑘, 𝜗2𝑘, . . . , 𝜗𝑚𝑘]𝑇. The following property shows
the approximation ability provided by the CMAC neural
network.

Lemma 1. For a continuous nonlinear function 𝐹(𝑍), there
exists an ideal weight value 𝑊∗, such that 𝐹(𝑍) could be
uniformly approximated by a CMAC with the multiplication
of the optimal weights𝑊∗ and the associate vector 𝑆(𝑍) as

𝐹 (𝑍) = 𝑊𝑇𝑆 (𝑍) + 𝜀, (8)
where 𝜀 is the NN construction errors and satisfied ‖𝜀‖ ≤ 𝜀𝑁
and 𝜀𝑁 is a small bounded positive value.
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3. Theoretical Developments

3.1. Adaptive Neural Control. During the past two decades,
various neural networks have been incorporated into adap-
tive control for nonlinear systems with unknown dynamics.
In [42], a multiplayer discrete-time neural network con-
troller was constructed for a class of multi-input multioutput
(MIMO) dynamical systems, where NNweights were trained
using an improved online tuning algorithm. An adaptive
NN output feedback control was proposed to control two
classes of discrete-time systems in the presence of unknown
control directions [4]. A robust adaptive neural controller
was developed for a class of strict-feedback systems in
[43], where a Nussbaum gain technique was employed to
deal with unknown virtual control coefficients. A dynamic
recurrent NN was employed for construction of an adaptive
observer with online turned weights parameters in [44] and
to deal with the time-delay of a class of nonlinear dynamical
systems in [45]. The time-delay of strict-feedback nonlinear
systems was also addressed by using NN control with proper
designed Lyapunov-Krasovskii functions in [46]. For a class
of unknown nonlinear affine time-delay systems, an adaptive
control schemewas proposed by constructing two high-order
NNs for identifying system uncertainties [47]. This idea has
been further extended to affine nonlinear systems with input
time-delay in [48].

It should be noticed that, piecewise continuous func-
tions such as frictions, backlash, and dead-zone are widely
existed in industrial plants. Other than continuous nonlinear
function, the approximation of these piecewise functions is
more challenging since the NN’s universal approximation
only holds for continues functions. To approximate these
piecewise continuous functions, a novel NN structure was
designed by involving a standard activation function and a
jump approximation basis function [49]. In [47], a CMAC
NN was employed for the closed-loop control of nonlinear
dynamical systems with rigorous stability analysis, and in
[50] a robust adaptive neural network control scheme was
developed for cooperative tracking control of higher-order
nonlinear systems.

The adaptive NN control scheme was also proposed for
pure-feedback systems. In [51], a high-order sliding mode
observerwas proposed to estimate the unknown system states
while two NNs were constructed to deal with approximation
errors and the unknown nonlinearities, respectively. In com-
parison to the conventional control design for pure-feedback
systems, the state-feedback control was achieved without
using the backstepping technique. In [52], a neural control
framework was proposed for nonlinear servo mechanism to
guarantee both the steady-state and transient tracking per-
formance. In this work, a prescribed performance function
was employed in an output error transformation, such that
the tracking performance can be guaranteed by the regulation
control of the outputs. In [53], an adaptive neural control was
also designed for a class of nonlinear systems in the presence
of time-delays and input dead-zone, and high-order neural
networks were employed to deal the unknown uncertainties.
In this work, a salient feature lies in the fact that only the
norm of the NNs’ weights (a scalar) needs to be online

updated, such that the computational efficiency in the online
implementation could be significantly improved. In [54], the
authors developed a neural network based feedforward con-
trol to compensate for the nonlinearities and uncertainties
of a dynamically substructured system consisting of both
numerical and physical substructures, where an adaptive law
with a new leakage term ofNNweights error informationwas
developed to achieve improved convergence. An experiment
on a quasi-motorcycle testing rig validated the efficacy of
this control strategy. In [55], a neural dynamic control was
incorporated into the strict-feedback control of a class of
unknown nonlinear systems by using the dynamic surface
control technique. For a class of uncertain nonlinear systems
with unknown hysteresis, NN was used for compensation
of the nonlinearities [56]. In [57], to deal with unknown
nonsymmetrical input saturations of unknown nonaffine
systems, NNs were used in the state/output feedback control
based on the mean value theorem and the implicit function.
To avoid using the backstepping synthesis, a dynamic surface
control scheme was designed by combining the NN with a
nonlinear disturbance observer [58].

3.2. NN Based Adaptive Dynamic Programming. In addition
to adaptive control, neural networks have also been adopted
to solve the optimization problem for nonlinear systems.
In convention optimal control, the dynamic programming
method was widely used. It aims to minimize a predefined
cost function, such that a sequence of optimal control inputs
could be derived. However, the cost function is usually
difficult to online calculate due to the computation com-
plexity in obtaining the solution of the Hamilton-Jacobi-
Bellman (HJB) equation.Therefore, an adaptive/approximate
dynamic programming (ADP) technique was developed in
[59], where a NN was trained to estimate the cost function
and then to derive solutions for the ADP. Generally, the
ADP has several different synonyms, including approximate
dynamic programming, heuristic dynamic programming
(HDP), critic network, and reinforcement learning (RL) [60–
62]. Figure 4 shows the basic framework of the HDP with a
critic-actor structure. In [63], a discrete-time HJB equation
was solved using an NN based HDP algorithm to derive the
optimal control of nonlinear discrete-time systems. In [64],
three neural networks were constructed for an iterative ADP,
such that optimal feedback control of a discrete-time affine
nonlinear system could be realized. In [65], a globalized dual
heuristic programming was presented to address the optimal
control of discrete-time systems. In each iteration, three
neural networks were used to learn the cost function and
the unknown nonlinear systems. In [66], a reference network
combining with an action network and a critic network was
introduced in the ADP architecture to derive an internal
goal representation, such that the learning and optimization
process could be facilitated. The reference network has also
been introduced in the online action-dependent heuristic
dynamic programming by employing a dual critic network
framework. A policy iteration algorithm was introduced for
infinite horizon optimal control of nonlinear systems using
ADP in [67]. In [68], a reinforcement learning method was
introduced for the stabilizing control of uncertain nonlinear
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Figure 4: An overview of the HDP structure.

systems in the presence of input constraints. By using this RL-
based controller, a constrained optimal control problem was
solved with construction of only one critic neural network. In
[69], an ADP technique for online control and learning of a
generalized multiple-input-multiple-output (MIMO) system
was investigated. In [70], an adaptive NN based ADP control
scheme was presented for a class of nonlinear systems with
unknown dynamics. The optimal control law was calculated
by using a dual neural network scheme with a critic NN and
an identifier NN. Particularly, parameters estimation error
was used to online identify the learning weights to achieve
the finite-time convergence. Optimal tracking control for a
class of nonlinear systems was investigated in [71], where a
new “identifier-critic” based ADP framework was proposed.

3.3. Evolutionary Computing. In addition to the capacity of
approximation and optimization of the NN, there has been
also a great interest in using the evolutionary approaches
to train the neural networks. With the evolvement of NN
architectures, learning rules, connection weights, and input
features, an evolutionary artificial neural network (EANN)
was designed to provide superior performance in comparison
to conventional training approaches [72]. A literature review
of the EANNwas given in [73], where the evolution strategies
such as feedforward artificial NN and genetic algorithms
(GA) have been introduced for the EANNs. In [72], several
EANN frameworks were introduced by embedding the evo-
lution algorithms (EA) to evolve the NN structure. In [74],
an EPNet evolution system was proposed for evolving the
feedforward NN based on Fogel’s evolutionary programming
(EP) method, which could improve the NN’s connection
weights and architectures at the same time as well as decrease
noise in the fitness evaluation. Good generalization ability
of the evolved NN has been constructed and verified in
the experiments. In [75], a GA based technique has been
employed to train the NNs in direct neural control systems
such that the NN architectures could be optimized. A
deficiency of the EANN is that the optimization process
would often result in a low training speed. To overcome
this problem and facilitate adaptation processes, a hybrid
multiobjective evolutionary method was developed in [76],
where the singular-value-decomposition (SVD) technique
was employed to choose the necessary neurons number in the
training of a feedforwardNN.The evolutionary approachwas

applied to identify a grey-box model with a multiobjective
optimization between the clearly known practical systems
and approximated nonlinear systems [77]. Applications of
evolutionary algorithms for robotic navigation have been
introduced and investigated in [78]. A survey of machine
learning technique was reported in [79], where several meth-
ods to improve the evolutionary computation were reviewed.

The evolution algorithms have been employed in many
aspects for evolvements of NNs, such as to train the NN con-
nection weights or to obtain near-optimal NN architectures,
as well as adapting learning rules of NNs to their environ-
ment. In a word, the evolution algorithms provide NNs with
the ability of learning to learn and also to build the relation-
ship between evolution and learning, such that the EANN
could perform favorable ability to adapt to changes of the
dynamic environment.

4. Applications in Robots

4.1. NNBased RoboticManipulator Control. Generally speak-
ing, the control methods for robot manipulators can be
roughly divided into two groups, model-free control and
model based control. For the model-free control approaches
like proportional-integral-derivative (PID) control, satisfac-
tory control performancemay not be guaranteed. In contrast,
the model based control approaches exhibit better control
behavior but heavily depend on the validity of the robot
model. In practice, however, a perfect robotic dynamic
model is always not available due to the complex mech-
anisms and uncertainties. Additionally, the payload may
be varied according to different tasks, which makes the
accurate dynamics model hard to be obtained in advance. To
solve such problems, the NN approximation-based control
methods have been used extensively in applications of robot
manipulator control. A basic structure of the adaptive neural
network control for robot manipulator is shown in Figure 5.
Consider a dynamic model of a robot manipulator given as
follows [80]:

𝑀(𝑞) ̈𝑞 + 𝐶 ( ̇𝑞, 𝑞) ̇𝑞 + 𝐺 (𝑞) = 𝜏, (9)

where𝑀(𝑞),𝐶( ̇𝑞, 𝑞), and𝐺(𝑞) are the inertialmatrix, Coriolis
matrix, and gravity vector, respectively. Then NN control
design could be given as follows:

𝜏𝑑 = −𝐾1𝑒1 − 𝐾2𝑒2 + �̂�𝑆 (𝑍) , (10)
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where 𝑒1 is the tracking error, 𝑒2 is the velocity tracking error,�̂�𝑆(𝑍) is the NN controller with �̂� being the weights matrix
and 𝑆(𝑍) being the NN regressor vector, and 𝐾1 and 𝐾2 are
control gains specified by the designer.

From (10), we can see that the robot controller consists of
a PD-like controller and aNN controller. In traditionalmodel
based controllers, the dynamic model of the robot could be
regarded as a feedforward to address the effect caused by
the robot motion. In practice, however, 𝑀(𝑞), 𝐶(𝑞, 𝑞), and𝐺(𝑞) may not be known. Therefore, the NNs are used to
approximate the unknown dynamics 𝑓 = 𝑀(𝑞) ̈𝑞 +𝐶( ̇𝑞, 𝑞) ̇𝑞 +𝐺(𝑞) and to improve the performance of the system via the
online estimation. To adapt theNNweights, adaptive laws are
designed as follows:

̇̂𝑊 = Γ (𝑆𝑒 − 𝜎�̂�) , (11)

where Γ and 𝜎 are specified positive parameters.The last term
of right-hand side of (11) is the sigma modification, which
is used to enhance the convergence and robustness of the
parameters adaptation.

In [80], a NN based share control method was devel-
oped to control a teleoperated robot with environmental
uncertainties. In this work, the RBFNN was constructed to
compensate for the unknown dynamics of the teleoperated
robot. Particularly, a shared control strategy was developed
into the controller to achieve the automatic obstacle avoid-
ance combining with the information of visual camera and
the robot body, such that the obstacle could be successfully
avoided and the operator could focus more on the operated
task rather than the environment to guarantee the stability
and manipulation. In addition, error transformations were
integrated into the adaptiveNN control to guarantee the tran-
sient control performance. It was shown that, by using theNN
technique, the control performance in both kinematic level
and dynamic level of the teleoperated robot was enhanced.
In [81], an extreme learning machine (ELM) based control
strategy was proposed for uncertain robot manipulators to
identify both the elasticity and geometry of an object. This
ELM was applied to deal with the unknown nonlinearity of
the robot manipulator to enhance the control performance.
Particularly, by utilizing ELM, the proposed controller could
guarantee that the robot dynamics follow a reference model,
such that the desired set point and the feedforward force
could be updated to estimate the geometry and stiffness of
the object. As a result, the reference model could be exactly
matched with a limited number of iterations.

In [82], the NN controller was also employed to control a
wheel inverted pendulum, which has been decomposed into
two subsystems, a fully actuated second-order planar moving
subsystem and a passive first-order pendulum subsystem.
Then the RBFNN was employed to compensate for the
uncertain dynamics of the two subsystems by using its
powerful learning ability, such that the enhanced control
performance could be realized by using the NN learning. In
[83], a global adaptive neural control was proposed for a class
of robot manipulators with finite-time convergence learn-
ing performance. This control scheme employed a smooth
switching mechanism combining with a nominal neural
network controller and a robust controller to ensure global
uniform ultimately bounded stability. The optimal weights
were obtained by the finite-time estimation algorithm such
that, after the learning process, the learning weights could be
reused next time for repeated tasks. The global NN control
mechanism has been further extended to the control of dual
arm robot manipulator in [84], where knowledge of both
robot manipulator and the grasping object is unavailable in
advance. By integrating prescribed functions into the design
of controller, the transient performance of the dual arm
robot control was regularly guaranteed. The NN was also
employed to deal with synchronization problem of multiple
robot manipulators in [85], where the reference trajectories
are only available for part of the team members. By using
the NN approximation controller, the robot has shown better
control performance with enhanced transient performance
and enhanced robustness. A RBFNN was constructed to
compensate for the nonlinear terms of a five-bar manipulator
based on an error transformation function [86]. The NN
control was also applied in the robot teleoperation control
[87, 88]. Moreover, a NN approximation technique was
employed to deal with the unknown dynamics, kinematics,
and actuator properties in the manipulator tracking control
[89].

4.2. NN Based Robot Control with Input Nonlinearities.
Another challenge of the robot manipulator is that the
input nonlinearities such as friction, dead-zone, and actuator
saturation may inevitably exist in the robot systems. These
input nonlinearities may lead to larger tracking errors and
degeneration of the control performance. Therefore, a num-
ber of works have been proposed to handle the nonlinearities
by utilizing the neural network design. A neural adaptive
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controller was designed to deal with the effect of input
saturation of the robot manipulator in [90] as follows:

𝜏 = −𝑧1 + �̂�𝐷𝑆𝐷 (𝑍𝐷) 𝛼1 + �̂�𝐶𝑆𝐶 (𝑍𝐶) 𝛼1
+ �̂�𝐺𝑆𝐺 (𝑍𝐺) + 𝐾𝑝 (𝑧2 + 𝜉) + 𝐾𝑟 sgn (𝑧2) , (12)

where 𝑧1 is the robot position tracking error, 𝑧2 is the velocity
tracking error, and 𝛼1 is an auxiliary controller. �̂�𝐷, �̂�𝐶, and�̂�𝐺 are the NN weights, 𝑆𝐷(𝑍𝐷), 𝑆𝐶(𝑍𝐶), and 𝑆𝐺(𝑍𝐺) are
the NN regressor vectors, and 𝐾𝑝 and 𝐾𝑟 are control gains
specified by the designer. 𝜉 is an auxiliary system designed to
reduce the effect of the saturation with ̇𝜉 defined as follows.

̇𝜉

= {{{{{
−𝐾𝜉𝜉 −

󵄨󵄨󵄨󵄨󵄨𝑧𝑇2Δ𝜏󵄨󵄨󵄨󵄨󵄨 + (1/2) Δ𝜏𝑇Δ𝜏󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩2 𝜉 + Δ𝜏 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩 ≥ 𝜇
0 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩 < 𝜇,

(13)

where Δ𝜏 is the torque error caused by saturation, and𝐾𝜉 is a
small positive value. To update the NNweights, adaptive laws
are designed as follows:

̇̂𝑊𝐷 = Γ𝐷𝑘 (𝑆𝐷𝑘𝛼1𝑒2𝑘 − 𝜎𝐷𝑘�̂�𝐷𝑘)
̇̂𝑊𝐶 = Γ𝐶𝑘 (𝑆𝐶𝑘𝛼1𝑒2𝑘 − 𝜎𝐶𝑘�̂�𝐶𝑘)
̇̂𝑊𝐺 = Γ𝐺𝑘 (𝑆𝐺𝑘𝛼1𝑒2𝑘 − 𝜎𝐺𝑘�̂�𝐺𝑘) ,

(14)

where Γ𝐷𝑘, Γ𝐶𝑘, and Γ𝐺𝑘 are specified positive parameters and𝜎𝐷𝑘, 𝜎𝐶𝑘, and 𝜎𝐺𝑘 are positive parameters.
In [91], an adaptive neural network controller was con-

structed to approximate the input dead-zone and the uncer-
tain dynamics of the robotic manipulator, while the output
constraint was also considered in the feedback control. In
[92], the NN was applied for the estimation of the unknown
model parameters of a marine surface vessel and in [93] the
full-state constraint of an n-link robotic manipulator was
achieved by using the NN control. The NN controller was
also constructed for flexible roboticmanipulators to deal with
the vibration suppression based on a lumped spring-mass
model [94] while in [95], two RBFNNs were constructed for
flexible robot manipulators to compensate for the unknown
dynamics and the dead-zone effect, respectively.

The NN has also been used in many important industrial
fields, such as autonomous underwater vehicles (AUVs) and
hypersonic flight vehicle (HFV). In [96], the NN has been
constructed to deal with the attitude of AUVs in the presence
of input dead-zone and uncertain model parameters. In [97],
the adaptive neural control was employed to deal with under-
water vehicle control in discrete-time domain encountered
with the unknown input nonlinearities, external disturbance,
and model uncertainties. Then the reinforcement learning
was applied to address these uncertainties by using a critic
NN and an action NN. The hypersonic flight vehicle control
was investigated in [98] where the aerodynamic uncertainties
and unknown disturbances were addressed by a disturbance

observer based NN. In [99], a neural learning control was
embedded in the HFV controller to achieve the global
stability via a switching mechanism and a robust controller.

4.3. NN Based Human-Robot Interaction Control. Recently,
there is a predominant tendency to employ the robots in
the human-surrounded environment, such as household
services or industrial applications, where humans and robots
may interact with each other directly. Therefore, interaction
control has become a promising research field and has been
widely studied. In [100], a learning method was developed
such that the dynamics of a robot arm could follow a
target impedance model with only knowledge of the robotic
structure (see Figure 6).

TheNNwas further employed in robot control in interac-
tionwith an environment [101], where impedance control was
achieved with the completely unknown robotic dynamics.
In [102], a learning method was developed such that the
robot was able to adjust the impedance parameters when it
interacted with unknown environments. In order to learn
optimal impedance parameters in the robot manipulator
control, an adaptive dynamic programming (ADP) method
was employed when the robot interacted with unknown
time-varying environments, where NNs were used for both
critic and actor networks [103]. The ADP was also employed
for coordination of multirobots [104], in which possible
disagreement between different manipulators was handled
and dynamics of both robots and themanipulated object were
not required to be known.

In this work, the controller consists of two parts, a critic
network which was used to approximate the cost function,
and an actual NN which was designed to control the robot.
The critic NN is designed as follows [104]:

Υ̂ (𝑡) = �̂�𝐶𝑆𝐶 (𝑍𝐶) , (15)

where 𝑍𝐶 = 𝜉, 𝜉 = [�̇�𝑇𝑜 , 𝑧𝑇, 𝑥𝑇𝑜 ]𝑇 with 𝑥𝑜 being the position
of the object and 𝑧 being the tracking error, �̂�𝐶 is the NN
weight, and 𝑆𝐶 is the regressor vector.

The critic NN is used to approximate a cost function𝑐(𝑡) = 𝜉𝑇𝑄𝜉 + 𝑢𝑇𝑅𝑢, where 𝑢 denotes the control input,
and 𝑄 and 𝑅 are positive definite matrix. Since the control
objective is to minimize the control effort, the adaptation law
is designed as

̇̂𝑊𝑐 = −𝜎𝑐 𝜕𝐸𝑐𝜕�̂�𝑐 = 𝜎𝑐 (𝑐 − �̂�𝑇𝑐 ̇𝑆𝐶) ̇𝑆𝐶, (16)

where 𝜎𝑐 is the learning rate and 𝐸𝑐 = (1/2)(𝑐 − �̂�𝑇𝑐 ̇𝑆𝐶)2.
On the other hand, the actual NN control is designed to

control the robot as

𝑢 = �̂�𝑇𝑎 𝑆𝑎 (𝑍𝑎) − 𝑒 − 𝐾2𝑒V, (17)

where �̂�𝑇𝑎 𝑆𝑎(𝑍𝑎) could learn the dynamics of the robot,
with �̂�𝑎 being the NN weight and 𝑆𝑎 being the regressor
vector. 𝑒 and 𝑒V are the position and velocity tracking errors,
respectively, and 𝐾2 is the control gain.
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Since the control objective is to guarantee the estimation
of both robot dynamics and the cost function Υ̂(𝑡), the
adaptive law is selected as follows:

̇̂𝑊𝑇𝑎,𝑖 = −𝜎𝑎 (�̂�𝑇𝑎,𝑖𝑆𝑎 + 𝑘𝑟Υ̂) 𝑆𝑎, (18)

where 𝜎𝑎 and 𝑘𝑟 are positive constants.
On the other hand, as a fundamental element of the next-

generation robots, the human-robot collaboration (HRC) has
been widely studied by roboticists and NN is employed in
HRCwith its powerful learning ability. In [105], theNNswere
employed to estimate the human partner’s motion intention
in human-robot collaboration, such that the robot was able to
actively follow its human partner. To adjust the robot’s role to
lead or to follow according to the human’s intention, game
theory was employed for fundamental analysis of human-
robot interaction and an adaptation law was developed in
[106]. Policy iteration combining with NN was adopted to
provide a rigorous solution to the problem of the system
equilibrium in human-robot interaction [107].

4.4. NN Based Robot Cognitive Control. According to the
predictive processing theory [108], the human brain is always
actively anticipating the incoming sensorimotor information.
This process exists because the living beings exhibit latencies
due to neural processing delays and a limited bandwidth
in their sensorimotor processing. To compensate for such
a delay, in human brain, neural feedback signals (including
lateral and top-down connections)modulate the neural activ-
ities via inhibitory or excitatory connections by influencing
the neuronal population coding of the bottom-up sensory-
driven signals in the perception-action system. Similarly,
in robotic systems, it is claimed that such a delay and a
limited bandwidth also can be compensated by the predictive
functions learnt by recurrent neural models. Such a learning
process can be done via only visual processing [109] or in the
loop of perception and action [110].

Based on the hierarchical sensorimotor integration the-
ory, which advocates that action and perception are inter-
twined by sharing the same representational basis [111], the
representation on different levels of sensory perception does
not explicitly represent actions; instead, there is an encoding
of the possible future percept which is learnt from prior
sensorimotor knowledge.

In the Bayesian, once this perception and action links
have been established after learning, these perception-action

associations in this architecture allow the following opera-
tions.

First, these associations allow predicting the perceptual
outcome of given actions by means of the forward models
(e.g., Bayesian model). It can be written as

𝑃 (𝐸 | 𝐴, 𝐼) ∝ 𝑃 (𝐴 | 𝐸) 𝑃 (𝐸 | 𝐼) , (19)

where E estimates the upcoming perception evidence given
an executed action A and other prior information you have
already known in 𝐼. The term 𝑃(𝐸 | 𝐴, 𝐼) suggests that a
prelearntmodel representing the possibility of amotor action
A will be executed given that a (possible) resulting sensory
evidence 𝐸 is perceived (backward computation).

Second, these associations allow selecting an appropri-
ate movement given an intended perceptual representation.
From the backward computations introduced in the following
equation, a predictive sensorimotor integration occurs:

𝑃 (𝐴 | 𝐸, 𝐺) ∝ 𝑃 (𝐸 | 𝐴) 𝑃 (𝐴 | 𝐺) , (20)

where A indicates a particular action selected given the
(intended) sensory information 𝐸 and a goal G. Here we
assume that one’s action is only determined by the current
sensory input and the goal.

In terms of its hierarchical organization, it also allows this
operation: with bidirectional information pathways, a low
level perception representation can be expressed on a higher
level, with a more complex receptive field, and vice versa𝑒low ⇔ 𝑒high. This can be realized by the bidirectional deep
architectures such as [112]. Conceptually, these operations
can be achieved by extracting statistical regularity shown in
Figure 7.

Since both perception and action processes can be seen
as temporal sequences, from the mathematical perspective,
the recurrent networks are Turing-Complete and have a
learning capacity to learn time sequences with arbitrary
length [113], if properly trained. Furthermore, such recurrent
connections can be placed in a hierarchical way in which
the prediction functions on different layers attempt to predict
the nonlinear time-series in different time-scales [114]. From
this point, the recurrent neural network with parametric bias
units (RNNPB) [115] andmultiple time-scale recurrent neural
networks (MTRNN) [116] were applied to predict sequences
by understanding them in various temporal levels.

The difference of the temporal levels controls the prop-
erties of the different levels of the presentation in the deep
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recurrent network. For instance, in the MTRNN network
[112], the learning of each neuron follows the updating rule of
classical firing rate models, in which the activity of a neuron
is determined by the average firing rate of all the connected
neurons. Additionally, the neuronal activity is also decaying
over time following an updating rule of leaky integrator
model. Assuming the i-th MTRNN neuron has the number
of N connections, the current membrane potential status of
a neuron can be defined by both the previous activation and
the current synaptic inputs:

𝑢𝑖,𝑡+1 = (1 − 1𝜏𝑖)𝑢𝑖,𝑡 + 1𝜏𝑖 [∑𝑤𝑖,𝑗𝑥𝑗,𝑡] , (21)

where 𝑤𝑖,𝑗 represents the synaptic weight from the j-th
neuron to the i-th neuron, 𝑥𝑗,𝑡 is the activity of j-th neuron
at t-th time-step, and 𝜏 is the time-scale parameter which
determines the decay rate of this neuron: a larger 𝜏 means
their activities change slowly over time compared with those
with a smaller time-scale parameter 𝜏.

In [117], the concepts of predictive coding were discussed
in detail, where the learning, generation, and recognition of
actions can be conducted by means of the principle of pre-
diction error minimization. By using the predictive coding,
the RNNPB and MTRNN are capable for both generating
own actions and recognizing the same actions performed
by others. Recently, the study on neurorobotics experiments
has shown that the dynamic predictive coding scheme can
be used to address fluctuations in temporal patterns when
training a recurrent neural network (RNN) model [118].
This predictive coding scheme enables organisms to predict
perceptual outcomes based on current intentions of actions
to the external environment and to forecast perceptual
sequences corresponding to given intention states [118].

Based on this architecture, two-layer RNN models were
utilized to extract visual information [119] and to under-
stand intentions [120] or emotion status [121] in social
robotics; three-layer RNNmodels were used to integrate and

understand multimodal information for a humanoid iCub
robot [112, 122]. Moreover, the predictive coding framework
has been extended to variational Bayes predictive coding
MTRNN, which can arbitrate between deterministic model
and probabilistic model by setting a metaparameter [123].
Such extension could provide significant improvement in
dealing with noisy fluctuated sensory inputs which robots are
expected to experience in more real world setting. In [124],
a MTRNN was employed to control a humanoid robot and
experimental results have shown that, by using only partial
training data, the control model can achieve generalization
by learning in a lower feature perception level.

The hierarchical structure of RNN exhibits a great
learning capacity to store multimodal information which
is beneficial for the robotic systems to understand and to
predict in a complex environment. As the future models and
applications, the state-of-the-art deep learning techniques or
themotor actions of robotic systems can be further integrated
into this predictive architecture.

5. Conclusion

In summary, great achievements for control design of nonlin-
ear system by means of neural networks have been gained in
the last two decades. Despite the impossibility in identifying
or listing all the related contributions in this short review,
efforts have been made to summarize the recent progress
in the area of NN control and its particular applications in
the robot learning control, the robot interaction control, and
the robot recognition control. In this paper, we have shown
that significant progress of NN has been made in control of
the nonlinear systems, in solving the optimization problem,
in approximating the system dynamics, in dealing with the
input nonlinearities, in human-robot interaction, and in the
pattern recognition. All these developments accompany not
only the development of techniques in control and advanced
manufactures, but also theatrical progress in constructing
and developing the neural networks. Although huge efforts
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have been made to embed the NN in practical control sys-
tems, there is still a large gap between the theory and practice.
To improve the feasibility and usability, the evolutionary
computing theory has been proposed to train the NNs. It can
automatically find a near-optimal NN architecture and allow
a NN to adapt its learning rule to its environment. However,
the complex and long training process of the evolutionary
algorithms deters their practical applications. More efforts
need to be made to evolve the NN architecture and NN
learning technique in the control design. On the other
hand, in human brain, the neural activities are modulated
via inhibitory or excitatory connections by influencing the
neuronal population coding of the bottom-up sensory-driven
signals in the perception-action system. In this sense, how
to integrate the sensor-motor information into the network
to make NNs more feasible to adapt to the environment and
to resemble the capacity of the human brain deserves further
investigations.

In conclusion, a brief review on neural networks for the
complex nonlinear systems is provided with adaptive neural
control, NN based dynamic programming, evolution com-
puting, and their practical applications in the robotic fields.
We believe this area may promote increasing investigations
in both theories and applications. And emerging topics, like
deep learning [125–128], big data [129–131], and cloud com-
puting, may be incorporated into the neural network control
for complex systems; for example, deep neural networks
could be used to process massive amounts of unsupervised
data in complex scenarios, neural networks can be helpful
in reducing the data dimensionality, and the optimization of
NN training may be employed to enhance the learning and
adaptation performance of robots.
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[36] R. J. de Jesús, “Discrete time control based in neural networks
for pendulums,” Applied Soft Computing, 2017.

[37] Y. Pan, M. J. Er, T. Sun, B. Xu, and H. Yu, “Adaptive fuzzy PD
control with stable H∞ tracking guarantee,” Neurocomputing,
vol. 237, pp. 71–78, 2017.
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[131] D. C. Cireşan, U.Meier, L.M.Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recogni-
tion,” Neural Computation, vol. 22, no. 12, pp. 3207–3220, 2010.

https://arxiv.org/abs/1706.10240


Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


