Piper: Audio Feature Extraction in Browser and Mobile
Applications

Lucas Thompson; Chris Cannam, and Mark Sandler
Centre for Digital Music
Queen Mary, University of London
{lucas.thompson, c.cannam, mark.sandler}@qgmul.ac.uk

ABSTRACT

Piper is a protocol for audio analysis and feature extraction.

We propose a data schema and API that can be used to
support both remote audio feature extraction services and
feature extractors loaded directly into a host application. We
provide a means of using existing audio feature extractor
implementations with this protocol.

In this talk we demonstrate several use-cases for Piper,
including an “audio notebook” mobile application using Piper
modules to analyse recordings; a web service for remote
feature extraction; and the refactoring of an existing desktop
application, Sonic Visualiser, to communicate with a Piper
service using a simple IPC mechanism.

1. MOTIVATION

Our key motivation is to make use of existing audio feature
extractors, for example pitch and chord estimators or beat
trackers already implemented as Vamp plugins' in C++,
while rapidly prototyping applications in a browser context.
This is enabled by compiler backends such as Emscripten [13]
and emerging standards such as WebAssembly [5], with which
one can compile feature extractors as downloadable modules
for consumption in a browser with satisfactory performance,
and by tools for audio visualisation in browsers such as the
Waves-UT libraries [10]. We construct a module interface
that uses well-defined data structures and a set of common
API verbs, so that we can recompile existing extractors to
this interface and also use essentially the same protocol when
providing feature extraction services across a network.

2. EXISTING WORK

The extraction of feature descriptors from audio for use in
audio and music related web applications, and other online
services, is nothing new. Web applications such as Songle
carry out a series of analyses on the server, extracting musi-
cally meaningful descriptors to inform visualisations of song
segments, melody lines, chords, and beat annotations which

*Supported by EPSRC Platform Grant EP/K009559/1
"http:/ /vamp-plugins.org

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2017, August 21-23, 2017, London, UK.

(© 2017 Copyright held by the owner/author(s).

PiPeR.
FeATUWLE
ExMACTION
Seemce

Awvio
AP L\CATION
Wit

/
e
A
AN
FEATUWRES

(ueer's Deviee)) (nvTemrver)

S HoT-LoAD
REQUEST

Figure 1: Two architectures supported by Piper
Above, with a central feature-extraction service. Below, with
modules hot-loaded into a client-side Javascript application.

are aggregated in an interactive time-aligned view in the web
application’s front end [4]. Similarly, Chordify—a web appli-
cation for automatically generating interactive and printable
chord charts from user provided audio recordings—extracts
harmonic and metrical structure descriptors using Vamp fea-
ture extraction plugins on the server, which are used as input
to a method for finding chord candidates [3]. In the context
of desktop applications for specific audio analysis tasks, an
application such as Tony, for melody line annotation and
transcription, also relies heavily on Vamp plugins, principally
the pYin pitch tracker [11]. (A goal of our work is to support
this kind of task-focused application in the browser as well.)

There are several open-source JavaScript libraries for low-
level feature extraction, including Meyda [12] and JS-Xtract
[6] which contain code manually rewritten from existing C++
libraries. A number of approaches also exist in the web
audio space for defining audio effect modules in the vein of
DAW plugins like VST and AudioUnits. Some are written
in pure JavaScript for use in the Web Audio API graph
[2], and some experiment with the use of Emscripten and
Portable Native Client (PNaCl) as mechanisms for bringing
existing implementations in C and C++4 to the browser
without manually translating the methods to JavaScript [9,
8]. Some approaches relating to cross adaptive audio effects
also include feature extraction [7].

3. THE PIPER PROTOCOL

Piper is a language-agnostic protocol for communicating
with a feature extraction service, which captures the life
cycle of extracting feature descriptors from blocks of audio
samples in a small set of API verbs. Feature extraction
services can exist as modules within a client application, for
scenarios similar to the Tony application, or on a server,
for applications more like Chordify. Communicating with
a feature extraction service in this way provides a clear
separation of concerns in an application’s code-base, which
may correspond to a useful separation between components
in different languages or on different hardware. For example,
version 3.0 of the Sonic Visualiser application[1] uses Piper
to operate Vamp plugin feature extractors in order to move
them out of the main process for reliability purposes.

A Piper service responds to 5 verbs: list, load, configure,
process, and finish.

A client application first queries the available feature ex-
traction methods using the list method. It then commu-
nicates with a feature extractor using a series of stateful
requests, whose parameters are informed by the dataflow
dependencies used when operating a Vamp plugin:

e Joad — Instantiates the requested extractor. Returns
metadata describing the outputs of the extractor, de-
tails of configurable parameters, and a unique handle
for referring to the extractor instance in subsequent
requests.

e configure — Sets up the extractor with parameter set-
tings and framing information for the audio input. Re-
turns metadata describing the shape of the feature
outputs (corresponding to matrices, vectors etc).

e process — Given a block of audio samples and a times-
tamp, calculates and returns a structure to the client
containing features derived from that block, of the form
described in the configure response. This method is
called multiple times in sequence, as needed, until the
audio is finished.

e finish — Notifies the end of the audio stream, allowing
processing to finish, clean up, and return any remaining
calculated features.

This stateful approach supports interaction with a feature
extraction service at a low level, necessary for applications
like Sonic Visualiser where audio is read block-by-block from
disk and features extracted in a streaming fashion.

We also propose a stateless, higher level API, where given
an entire audio file and details of the desired extractor con-
figuration, the framing of the audio happens server side and
the features can be returned to the client either in a stream-
ing fashion, as they’re calculated, or aggregated in a single
response after all processing, without the need for the more
fine-grained life cycle requests.

4. PIPER LIBRARIES

We provide a number of open-source libraries? relating to
the Piper protocol, including:

e A JavaScript library for writing client and servers;
e A C++ library for existing Vamp host environments,
allowing for communicating with Piper servers;

Zhttp://github.com/piper-audio/

e C++ headers for adapting existing Vamp plugins into
Piper modules, either as native libraries or via Em-
scripten or WebAssembly;

e JSON and Cap’n Proto schemas defining the request
and response payloads.

5. REFERENCES

[1] C. Cannam, C. Landone, and M. Sandler. Sonic
visualiser: An open source application for viewing,
analysing, and annotating music audio files. In
Proceedings of the ACM Multimedia 2010 International
Conference, pages 1467-1468, 2010.

[2] H. Choi and J. Berger. WAAX: web audio API
extension. In 13th International Conference on New
Interfaces for Musical Expression, pages 499-502, 2013.

[3] W. B. de Haas, J. P. Magalh&es, and F. Wiering.
Improving audio chord transcription by exploiting
harmonic and metric knowledge. In Proceedings of the
13th International Society for Music Information
Retrieval Conference, pages 295-300, 2012.

[4] M. Goto, K. Yoshii, H. Fujihara, M. Mauch, and
T. Nakano. Songle: A web service for active music
listening improved by user contributions. In Proceedings
of the 12th International Society for Music Information
Retrieval Conference, pages 311-316, 2011.

[5] A. Haas, A. Rossberg, D. Schuff, B. L. Titzer,

D. Gohman, I.. Wagner, A. Zakai, J. Bastien, and

M. Holman. Bringing the web up to speed with

webassembly. In Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language

Design and Implementation, 2017.

N. Jillings, J. Bullock, and R. Stables. Js-xtract: A

realtime audio feature extraction library for the web. In

Late-Breaking/Demo Session of the 17th International

Society for Music Information Retrieval Conference,

2016.

N. Jillings, Y. Wang, J. D. Reiss, and R. Stables. Jsap:

A plugin standard for the web audio api with intelligent

functionality. In Audio Engineering Society Convention

141, 2016.

J. Kleimola. Daw plugins for web browsers. In

Proceedings of the 1st Web Audio Conference, 2015.

J. Kleimola and O. Larkin. Web audio modules. In

Proceedings of the 12th Sound and Music Computing

Conference, 2015.

[10] B. Matuszewski, N. Schnell, and S. Goldszmidt.
Interactive audiovisual rendering of recorded audio and
related data with the wavesjs building blocks. In
Proceedings of the 2nd Web Audio Conference, 2016.

[11] M. Mauch, C. Cannam, R. Bittner, G. Fazekas,

J. Salamon, J. Dai, J. Bello, and S. Dixon.
Computer-aided melody note transcription using the
tony software: Accuracy and efficiency. In Proceedings
of the First International Conference on Technologies
for Music Notation and Representation, 2015.

[12] H. Rawlinson, N. Segal, and J. Fiala. Meyda: An audio
feature extraction library for the web audio api. In
Proceedings of the 1st Web Audio Conference, 2015.

[13] A. Zakai. Emscripten: an llvi-to-javascript compiler.
In Companion to the 26th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 301-312, 2011.

6

7

8

9

