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Abstract

The analysis of the collapse of individualized and isolated single-wall carbon
nanotubes under high pressure as function of their diameter, d, distinguishes
their mesoscale and their nanoscale mechanics. The evolution with pressure
of the Raman spectra for nine tube chiralities and the theoretical modelling
reveal a deviation from the continuum mechanics prediction of a collapse
pressure PC ∝ d−3. Nanotubes show a normalized collapse pressure PN =
PCd

3 = 24αD(1−β2/d2) both in experiment and in very different theoretical
models. In this expression β = 0.44 ± 0.04 nm represents the smallest
diameter for a stable freestanding single-wall carbon nanotube and D is
the bending stiffness of graphene. From the experimental data D = 1.7 ±
0.2 eV. Deviations from the continuum mechanics predictions start to be of

∗Corresponding author
∗∗Principal corresponding author
Email addresses: abraaocefas@gmail.com (Abraao C. Torres-Dias),

d.dunstan@qmul.ac.uk (David J. Dunstan), alfonso.san-miguel@univ-lyon1.fr
(Alfonso San-Miguel)

Preprint submitted to Elsevier July 2, 2017

*Manuscript

Click here to view linked References



significance for diameters smaller than ∼ 1 nm. The associated reduction
of their collapse pressure is attributed to the discretization of the elastic
compliances around the circumference of the tubes.

1. Introduction

Advances in nanoscience open new possibilities to understand how size

and geometrical parameters influence mechanical behaviour. It is always

interesting to consider if a difference between mesoscale and nanoscale mechanics

is a consequence of size (e.g. quantum effects such as quantum confinement,

also the scaling laws that account for the mechanical differences between a

crane-fly and an elephant) or a consequence of number: where the continuum

approximation assumes very large numbers of atoms but at the nanoscale

there are only a few atoms. Here we show that the collapse pressure of

nanotubes follows continuum mechanics together with a deviation which can

be described as an effect of number, not an effect of size.

Single-wall carbon nanotubes (SWCNT) are particularly remarkable as

models predict that their radial cross-section should collapse under high

pressure, with a strong dependence on their diameter, d. The range of

available diameters in carbon nanotubes provides a unique opportunity to

explore the validity of theory and models from the mesoscale to the nanoscale.

Here we show a remarkable transition from the continuum mechanics to a

behavior for the smallest tubes driven by geometrical (atomistic) discretization.

Continuum mechanics predicts the radial collapse pressure to depend on

the nanotube diameter d following the Lévy-Carrier form [1–5] d−3 developed
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in the context of tubes in steam boilers [6] and oil wells [7]. Also other

forms such as d−1 have been proposed [8]. Experimental results are quite

contradictory. For the most-studied SWNCTs having d ∼ 1.35 nm, some

experiments suggest a structural phase transition onset at ∼ 2GPa [9, 10],

whilst others suggest a collapse transition pressure ∼ 10-15 GPa [11–13].

Experimental difficulties in identifying the collapse transition include the

use of samples having wide distributions of diameter, of samples having

both open and closed carbon nanotubes which allows partial filling with

the pressure transmitting medium [14], of samples consisting of bundles of

nanotubes [15], and difficulties due to the evolution of the Raman resonances

with pressure [16, 17]. Recent experiments on individualized empty (closed)

SWCNT [14] showed excellent agreement with improved simulations [5] at

an averaged diameter, but were not used for a quantitative experimental

determination of the diameter dependence of the collapse pressure.

A major theoretical difficulty is the uncertainty in the values of the

bending stiffness, D, and thickness, h of graphene; the Lévy-Carrier result

is PC = 24D/d3 only for h = 0. There is a wide diversity of predicted D

and h values [18, 19] but at present the few experimental determinations

of D give values ranging from 1.2 eV [20] to 7.1+4.0
−3.0 eV [21]. The bending

stiffness of bilayer graphene has been measured (e.g. D ∼ 20-55 eV [21])

but this is due to the in-plane stiffness of graphene, not to the monolayer

bending stiffness. Monolayer cantilevers have also been studied, with D ∼

1-10 keV [22] but this high value is attributed to the ripples or corrugations
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in monolayer graphene, which again invokes the in-plane stiffnesses c11 and

c12 of graphene. Studying the bending stiffness in SWCNTs avoids these

issues.

In this paper, we revisit experimental data for Raman radial breathing

modes (RBM) from the well-characterised individualized tubes of Ref. 14 to

obtain — by putting physical constraints on the fits to the Raman spectra

— the collapse pressures of carbon nanotubes having different diameters

and chiral indices (m,n). We compare the experimental results with our

predictions using elastic-continuum and atomistic models as well as Monte

Carlo (MC) and quantum mechanical tight-binding (DFTB) semi-empirical

simulations which use parameters from density-functional theory. Results

identify the underlying d−3 dependence of the collapse pressure. In this

way the data from the 1-D nanotubes is exploited to give a fundamental 2-D

material parameter, that is a direct and reliable measurement of the graphene

bending stiffness modulus, D = 1.7± 0.2 eV in excellent agreement with our

DFTB calculations and also with the “typical value” of 1.6 eV reported by

Lambin [19].

For small diameters we identify an interesting deviation below the Lévy-

Carrier formula in both experiments and theory. This is evidence for the

transition from the continuummodel at the mesoscale to the onset of atomistic

(i.e. geometric or number, not size) effects at the nanoscale.
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2. Experiments

The details of the preparation of individualized carbon nanotubes samples

and of the high pressure Raman experiments are given elsewhere [14, 23,

24]. The final sample consists of individualized, mostly empty SWCNTs in

D2O:DOC solution. Empty and water-filled SWCNTs of the same (m,n) are

spectroscopically distinguished through the blue shift of the RBM frequency

of the filled SWCNTs. The D2O:DOC serves also as the pressure-transmitting

medium (PTM) for the high-pressure experiments, which were carried out in

a diamond-anvil high-pressure cell [14].

Figure 1 shows some of the Raman spectra collected from the sample

during a single pressure run. The RBMs of ten different empty SWCNTs

having peak positions at ambient pressure from 176 cm−1 to 298 cm−1 could

be distinguished. The peaks could readily be identified [24] as empty tubes

with the (m,n) values given in Figure 1. These correspond to diameters

d ranging from 0.771 nm to 1.376 nm. Under pressure, there is progressive

blueshift [14], broadening and consequent overlapping of the RBM peaks.

Concomitantly, the Raman intensities weaken and quench. Our experimental

data analysis focused on the intensities. Fits to some of the spectra are shown

in Figure 1; for details see the Supplementary Electronic Material.

The resulting RBM peak area (intensity) evolution is plotted in Figure 2.

Following a large loss of intensity from 0 to ∼ 1GPa, all nine RBM peaks

in the Raman spectra show a plateau followed by a very clear quenching at

different pressures depending on the tube diameter. In Figure 2 the data are
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least-squares fitted by the function 1/2(I0exp(−bP ) + a) erf(w/P0 (P −P0))

where the error function provides an approximation to a trilinear function

describing the plateau and the collapse. Data and fits are divided by a to

normalise the plateaux to 1 and b is a fitting parameter. With w as a free

fitting parameter, fitting those datasets which have several datapoints in

their regions of quenching ((8,3), (7,5), (7,6), 13,4)), we obtain values for w

close to 5 and so we fixed w = 5 for all datasets.

Comparison of the error function with the recent analytic solution for the

progressive collapse of the simple elastic ring under pressure [2, 25] and some

earlier studies, particularly molecular dynamics (MD), e.g. [26–28], permits

the identification of the physical significance of the w parameter (width of

the error function). There is a continuous evolution, from the transition at

the onset of collapse from circular to oval cross-section at PC , until the tube

walls come into contact at about 1.5PC . It is plausible then to identify the

pressure range PC to 1.5PC with the width of the error function, about 0.8P0

to 1.2P0 for 90% to 10% intensity. That is, the RBM quenching tracks the

progression of the collapse from first ovalisation at PC = 0.8P0 to completion

at ∼ 1.5PC = 1.2P0.

3. Modeling

In the following we model the tube collapse as a function of (m,n) using

MC and DFTB as well as simpler models, taking especial care to examine

the progression from the onset of collapse to its completion. For details of

6



the modelling, see the Supplementary Electronic Material.

Progression of the nanotube collapse is readily monitored in bifurcation

diagrams which show the evolution with pressure of the largest and smallest

tube diameter normalized by the initial circular tube diameter [28]. The

onset of collapse corresponds then to a bifurcation, and its completion to a

value of the smallest diameter close to the graphite interlayer distance. This

is done in Figure 3 for MC and DFTB as well as for two simple models,

the elastic ring model [2, 25] and the polygonal model [29]. The latter is

derived from the continuum elastic ring model by moving all the distributed

compliance to n discrete points. As expected for the large Hooke’s Law 22-

gon in Figure 3, excellent agreement is found with the Hooke’s Law elastic

ring bifurcation curve.

In the MC simulations presented here SWCNTs were described by a

non-reactive many-body potential parametrized by ab initio calculations

[30]. The validity of this potential for describing carbon nanostructures was

tested in Ref. 31. In the simulations, armchair and zig-zag nanotubes with

diameters up to 5.7 nm were hydrostatically loaded. Some of the collapse

pressures were previously reported [29].

Most of the DFTB bifurcation curves show discontinuous jumps to the

completely collapsed state as shown in Figure 3 for two (m,n). These

discontinuities thus indicate—or over-estimate—the pressures at the end of

collapse, ∼ 1.5PC . The onset of the collapse is generally not detectable, with

a few possible exceptions such as the (10,10) tube in Figure 3, while more or
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less ovalisation occurs even from the lowest pressures. These phenomena are

doubtless due to the finite strength of the frozen PTM, which enables it both

to apply shear stress to the tubes, and to resist the deformation of collapse.

In contrast, the MC results show bifurcations similar in form to the elastic

ring, so both onset and completion of collapse are clearly indicated. The MC

collapse is a little faster than the simple models, as if the bending stiffness is

softening slightly at large curvatures.

Table 1: Parameters for the bending stiffness, D, determined from the fits of Figure 4. Fits
to the data give β and D; α is a fixed correction factor (see text). Note that 1GPanm3 =
6.242 eV.

β α D
(nm) (eV)

Monte Carlo 0.48± 0.02 1.5 1.8± 0.4
MD bundles [8] 0.51± 0.03 1.5 1.26± 0.05
DFTB Ar 0.46± 0.06 1.5 2.34± 0.15
DFTB H2O 0.45± 0.05 1.5 2.33± 0.17
DFTB bundles [5] 0.41± 0.01 1.5 1.72± 0.04
Experiment 0.51± 0.05 1 1.7± 0.2

4. Discussion

Our experimental and theoretical results for the collapse pressures are

collected and compared in Figure 4. We also compare them with the MD and

G-band Raman data reported in the literature et al. [8] and the DFTB results

previously reported for bundled nanotubes without PTM [5] (these are given

for radii up to only 1.35 nm since at larger diameters they are dominated by

effects of bundling which are outside the scope of this paper). Values for the
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onset of collapse and the completion of collapse are shown by solid and open

symbols respectively. On this plot, all pressures are normalised by d3 so that

the continuum mechanics elastic ring prediction, PCd
3 = 24D, corresponds

to a horizontal straight line. This Figure thus focuses on the deviations from

PC ∝ d−3, which are small compared with the enormous range of PC given

by the d3 factor of 125 across the width of the Figure. The data of Elliott

et al. [8] presented in that work as a PC ∝ d−1 fit follow also the PC ∝ d−3

asymptotic trend for large d. Remarkably, all the data (experimental as well

as theoretical) show a reduction in PCd
3 for smaller tubes, similar to that

reported previously for the polygon-model (shown, rescaled, in Figure 4)

and for the MC model [29] as well as for DFTB calculations [5]. In the

polygon model, the R−3 dependence was observed for all ng-gons, but with

a correction term in ng so that the normalised collapse pressure could be

written as PN
C ≃ 24D(1−β2

g/n
2
g) with βg ≃ 5.3 (here βg stands for ”geometric

β”). That is, it is not the DR−3 dependence which is modified, but instead

the prefactor which becomes 24(1− β2
g/n

2
g)

We find empirically that the behavior both for small tubes and for large

tubes follows a modification of the Lévy-Carrier formula as PCd
3 = 24αD(1−

β2/d2), allowing the determination of the graphene bending modulus, D. In

this formula α is a correction factor which has the value 1 or 1.5 for the

onset or the end of the collapse pressure, respectively, as already discussed.

By fitting this expression to all the data in Figure 4 we obtain the values

of β and D given in Table 1. A remarkable agreement on β, describing the
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deviation from the d−3 behavior, is found among the different theoretical

and experimental data. All the values in Table 1 are consistent with β =

0.44±0.04 nm. That is, in individualized and bundled tubes, β is not greatly

affected by the details of the interatomic potentials between the tube and the

environment (water, argon or other tubes in DFTB; no environment in MC

and MD) but its value is mainly due to the nanotube geometry corresponding

to the discretization of the elastic compliance. Consistent with the polygon

model, the behaviour may also be written as PCd
3 = 24αD(1 − β′2/(n2 +

nm+m2)) with the dimensionless β′ = βπ/a ≃ 5.6.

It is noteworthy that the value of β ≃ 0.44 nm coincides with the diameter

of the thinnest freestanding SWCNTs reported (0.43 nm)[32]. Within the

statistical error bars the effect of β on the collapse pressure begins to be

important for diameters below ∼ 1 nm, distinguishing the regimes of nano-

and meso-scale mechanics. Other works [33, 34] used very different physical

arguments to explain deviations from the Lévy-Carrier formula proposing a

surface energy term due to the surrounding environment. Our observation

of a β at most only weakly dependent on environment appears not to favor

that proposition. A particular case is double-walled carbon nanotubes in

which the nanotube is in strong interaction - from growth - with the external

tube. In such case, the observation of carbon nanotubes with diameters

below 0.43 nm has been reported [35]. This underlines that our result only

applies for unsupported single-walled carbon nanotubes and it is consistent

with the observation of higher collapse pressures in double-walled carbon
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nanotubes with respect to the expected one for the corresponding internal

tube [36]. We may also note that the maximum collapse pressure given by

our modified Lévy-Carrier formula is obtained for tubes having a diameter

of dm =
√

5/3β = 0.57nm, which will make a (6,2) chirality the more

stable free-standing carbon tube with a collapse pressure onset of 14.3 GPa.

Our modified Lévy-Carrier formula leads to deviations from predictions of

continuous mechanics which are of 10 % for tube diameters of 1.39 nm and

which become of about 20 % for tubes of 1 nm of diameter.

Turning to the graphene bending modulus, D, the DFTB data and the

MD data of Ref. 8 display discontinuous transitions to complete collapse,

so they monitor the end of the collapse at P = 1.5PC , i.e. α = 1.5. Taking

this correction into account, Table I gives the deduced values of D for each

method. For the MC simulations, α = 1.5 as this is the known factor relating

the collapse pressure obtained by hydrostatic and radial load, respectively

[37]. All theoretical values are seen to fall into the range 1.3 - 2.4 eV, which

could be considered to constitute excellent agreement with the experimental

value from this work of 1.7 ± 0.2 eV. The D value from the DFTB results

on bundles [5] gives an excellent agreement with our experimental data. The

larger D values for the DFTB modeling with argon and water are consistent

with the solidification and the observed tube-like structure of the first shell

of the PTM around the tube which confers an additional mechanical support

[38].

These results present interesting theoretical challenges for the future.

11



The geometrical effect in small tubes is understood qualitatively but not

quantitatively. The physical significance of the nanotube value of β ≈ 0.5 nm

requires further investigation, perhaps in relation to the limits of stability at

small diameters for free-standing nanotubes. The different methods agree

much better on β than they do on the value of D. This fact suggests that β

is related not to the details of the interatomic potentials or surface energies

but to the geometry of the tubes.

What is clearly determined here is that the onset and completion of

the RBM quenching correspond well to the onset at PC and completion

at ∼ 1.5PC of the nanotube radial collapse. These data then confirm the

underlying Lévy-Carrier d−3 dependence of the collapse pressure as in continuum

mechanics but the progressive deviation from d−3 at smaller diameters due at

least in part to the geometrical effect of the atomistic nature of the carbon

nanotubes. These results provide the ultimate limits at the mesoscale of

the application of the continuum mechanics theory of tube stability under

external pressure, a problem first addressed 200 years ago for steam boilers

and later for oil wells. Finally a direct and rigorous experimental determination

of the bending stiffness of graphene follows, as D = 1.7± 0.2 eV.
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and S. Cambré at the University of Antwerp, Belgium. The computational

results presented have been achieved in part using the Vienna Scientific

12



Cluster (VSC). DJD is grateful for support from the Region Rhône-Alpes
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Figure 1: Raman spectra of radial breathing modes (RBMs) at different pressures, as
semi-logarithmic plots of the spectra with their fits. The ten Lorentzians for the identified
empty RBM peaks are shown by red solid lines; the blue dashed lines (water-filled RBMs)
and the grey dotted lines show the other peaks. The solid green line shows the sum of all
the fitted peaks, for comparison with the data (black dots). The excitation wavelength is
647.1 nm.
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Figure 2: Outcomes of fitting the spectra of Figure 1.The normalised intensities of nine
(n,m) RBM peaks are plotted as a function of pressure. For each RBM, chiral indexes and
diameter are shown on the graph

. The solid lines represent the fits with the function described in the text.
Data and fits have been normalized for a plateau value of 1.
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Figure 3: Calculated distortion of nanotubes during collapse, as the major and minor radial
axes normalised to the nanotube diameter. The open squares are for MC calculations for
(24,0) and (12,12) nanotubes. The solid circles are from DFTB of (22,0) nanotubes in
argon and (10,10) nanotubes in water. The triangles are for a 22-gonal Hooke’s Law
atomistic ring with an arbitrary spring constant. The solid lines are predictions using the
simple elastic ring with D varied to fit each dataset.
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Figure 4: The experimental collapse pressures are compared with theoretical results in the
form PCd

3 plotted against d. In this plot, the simple elastic ring with bending modulus D
gives a horizontal line at PCd

3 = 24D for the onset of collapse and at ∼ 36D for the end
of collapse. The lines are fits to the data using PCd

3 = 24αD(1− β2/d2) in which α is 1
for the onset of collapse and 1.5 for the end (see text). The dotted curve is the fit to the
polygon-model results, which have been rescaled both in radius and in spring constant so
that the shape may be compared with the other data.
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