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Abstract 

Parafilm is a soft, solvent-proof and self-sealant thermoplastic material obtained by blending 

paraffin wax and polyolefin and that displays irreversible elongational thinning as the material is 

stretched. In this paper a lamination process was used to transfer graphene nanoplatelets (GNPs) on 

self-adherent Parafilm substrate and we show that a high-strain state of such conductive Parafilm/ 

GNPs film is reversible when the film is transferred by lamination to a fluoroelastomer (FKM) 

substrate. The stretching of GNP network stuck on viscoelastic Parafilm gave rise to regions of high 

and low GNP concentrations with increasing the electrical resistance upon stretching. Upon 

relaxation from a high-strain state, the composite film on FKM substrate maintain the initial 

electrical conductive state. Finally it was shown the reduction of the ethanol corrosion action in 

terms of swelling and mechanical performance of the neat FKM when the Parafilm/GNPs film is 

used for its packaging. In view of the low cost thermoplastic polymer used for the transferring and 

the lamination method propose, these findings represent a facile and an industrial scalable approach 

to realize  novel multifunctional elastomer composites. 

Keywords: graphene; fluoroelastomers; lamination; mechanical properties; stretchable conductors. 
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Introduction 

Parafilm is the most used thermoplastic paraffin material in research laboratories as sealant plastic 

foil since it is resistant against many polar solvents. The Parafilm is hydrophobic, stretchable, soft 

and due to its low melting point it becomes adhesive applying heat during lamination, sticking 

strongly to the receiving substrates. The Parafilm utilization in several research fields is well known 

[1-5] and such material has received attention because it was used with success for transferring of 

few-layer graphene sheets by lamination [6]. Graphene flakes were embedded into paraffin wax to 

prepare graphene/wax composites with electromagnetic interference (EMI) shielding performance 

[7]. Recently, the combination of the stretchable and hydrophobic functionalities of Parafilm with 

the electrical conductivity of carbon nano-fibers was found advantageous for realizing printable 

electronics by spray coating method [8].  

Unfortunately, Parafilm displays irreversible plastic deformation when stretched thus hindering its 

application for reversible stretchable electronic where high elastic recovery is required. The self-

sticking properties of the Parafilm to adhere to stretchable substrates could be a viable and facile 

solution to make possible the high-strain recovery when the stress is released. A lot of examples of 

highly stretchable and conductive multifunctional materials have been reported in literature, with 

the most of them obtained by mixing a conductive percolation network of nanwires/nanoparticle 

within the host matrix making these methods matrix dependent for scalable applications [8,9-13].  

Highly stretchable fluoroelastomers (FKM, typically  containing  65%  fluorine) with stretch ratios 

λ>6 (where λ = final length/initial length, or Lf/Li) are of critical importance in solving problems in 

aerospace, automotive, chemical and petroleum industries [14,15]. In particular FKM materials are 

noted for their high resistance to heat and a wide variety of chemicals, other key benefits include 

excellent resistance to aging and ozone and very low gas  permeability. However FKM materials 

are generally not resistant to ethanol, methanol and glycols fluids. Hence, new products of FKMs 

with enhanced performance is needed. The specific challenge in this regard is a quantified target 
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that consists in the optimization of elastomeric-like nanocomposites with multifunctional properties 

like monitoring the FKM strain with electrical resistance variation and anti-corrosion properties for 

the compatibility of such materials with high percentage of ethanol blended gasoline and with 

improved resistance to solvents.  

Since the main factors that affect the composite properties are the particle size and the mode of 

interactions with the matrix materials, the nano-scale dimensions of 2D graphitic nano-inclusions 

such graphene nanoplatelets (GNPs) result in a huge benefit thanks to a better shape factor, larger 

contact surface and higher mechanical strength. It was found that the use of GNPs [16] ensures very 

good dispersion into the polymer phase and improves the most the mechanical and electrical 

properties of the composite, by enhancing the interface between the filler and the host medium. 

GNPs are very effective in improving the barrier properties of a polymer nanocomposite, by 

inhibiting the molecular diffusion through the matrix also resulting to enhanced corrosion resistance 

and low permeability [17,18].  

Here we report a novel method that consist in the lamination of hydrophobic Parafilm containing 

graphene nanoplatelets (GNPs) on fluorelastomer substrate. Once laminated, the Parafilm/GNPs 

film maintains the electrical resistance reversible under stretch ratios up to λ=3. Finally, when the 

Parafilm/GNPs film is used as packaging medium of FKM, the fluoroelastomer exhibits improved 

mechanical and swelling properties against ethanol corrosion. 

 

Experimental details 

Graphene nanoplatelets (GNPs) were kindly supplied by NANESA (G3Nan average thickness of 9 

nm  ∼  25 layers). GNPs were dispersed in chloroform at various concentrations ranging from 0.05  
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mg ml-1  to 1mg ml-1. GNPs were dispersed for 15min at room temperature using a sonication bath 

with the power fixed at 80% and a frequency of 40 kHz. Commercially available glass has been 

used as substrate. The glass surface was cleaned with ethanol and acetone, rinsed with water, dried 

under  nitrogen  and  taken  inside  a  dry Ar glovebox.  Afterwards,  the  glass  surface  was  treated 

in oxygen plasma for 10 min. The plasma was generated by a radio frequency power supply (13.56 

MHz) and carried out at room temperature with the gas pressure fixed at 4.5x10-2  Torr. The power 

employed  was  fixed  at  20W  (substrate  bias  300  V).  The  GNP  dispersion  was  drop  on  the  

glass substrate  and  left  to  evaporate  the  solvent  at  room  temperature.  Drop  cast  GNPs  were  

then transferred to Parafilm film (Parafilm M®, Pechiney Plastic Packaging Company) through 

direct transfer process, which consists of lamination. The lamination provides the pressure 

necessary to achieve  close  contact  between  the  GNPs  and  the  Parafilm  substrate  so  that  the  

GNPs  remain attached to the substrate. DSC was carried out in a TA Q200. Each sample was 

heated from 25 to 160°C at a heating rate of 10°C/min and then cooled at the same rate. Melting 

and crystallization temperatures, were determined from a subsequent heating run.  

Fluoroelastomer (FKM), FC2122 used in this work is a dipolymer made from hexafluoropropylene 

and vinylidene fluoride that has an incorporated bisphenol cure system, which was kindly supplied 

by 3MTM Dyneon. FKM compound was prepared in an open two-roll laboratory mixing mill 

(Comerio Ercole) at room temperature. The rotors operated at a speed ratio of 1:1.4. Rubber 

compound was vulcanized in an electrically heated hydraulic press (Gumix) at 177 °C and 200 

MPa. The optimum cure time, t90 was previously determined by using a Monsanto Moving Die 

Rheometer MDR 2000E. 

The Parafilm/GNP film was laminated on the FKM sheet at ~110°C. At this temperature the 

Parafilm becomes soft and sticky. The lamination was performed by using a cylindrical rod steel 

applying the pressure and temperature necessary to mould the Parafilm/GNPs film to the FKM 

substrate. 
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The samples, consisting of GNPs transferred to paraffin film and Parafilm/GNPs on FKM, were cut 

into strips of ~ 100 mm ×  20 mm × 0.13 mm.  The mechanical properties were measured by a 

universal tensile testing machine (Lloyd Instr. LR30K) with a 250 N cell at room temperature. The 

extension rate was 10 mm x min-1 and the gauge length was 60 mm.   

At each elongation, or stretch ratios λ, of the Parafilm/GNPs and Parafilm/GNPs on fluoroelastomer 

samples, the electrical resistance was measured using a computer controlled Keithley 4200 source. 

The electrical resistance measurements were performed by biasing the Parafilm/GNP coating 

between two strips of silver paint located at a distance of 25 mm and perpendicular to the strain 

direction. Since the thickness and width of the substrate were found to decrease during the 

stretching, the resistance variation was calculated from the differential of the fundamental formula 

d(R)=d(ρl/A) as dR/R=dρ/ρ+dl/l-dA/A where R, ρ, l and A are the electrical resistance, the 

electrical resistivity, the length and the cross section area, respectively. Finally expressing dA/A=-

2νdl/l, the resistance change can be written as dR/R=dρ/ρ+(1+2ν)ε where ν and ε are the Poisson’s 

ratio and the strain of the sample, respectively. Moreover, for our calculations, we assumed a 

Poisson’s ratio of 0.4 for paraffin wax [19]. 

The morphology of the prepared samples was investigated by atomic force microscopy (AFM) and 

field emission scanning electron microscopy (FESEM, Zeiss Supra 25). AFM images were obtained 

operating in phase contrast tapping mode with a scanning probe microscope (Nanosurf easyScan 

DFM). Height and phase images were obtained under ambient conditions with a typical scan speed 

of 0.5 line/s, using a scan head with a maximum range of 70µm x 70µm.  

 

Results and discussion 

Parafilm is an inexpensive thermoplastic materials composed primarily of paraffin wax and 

polyolefin. In its solid form, the wax component is semicrystalline with low melting points (i. e. 50-
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100°C). Parafilm shows large deformations when strained as reported in Fig. 1a. In particular, the 

strained Parafilm specimen shows a linear elastic zone followed by a plastic zone with downward 

slope before break.  

The GNPs can be visually identified after the transfer procedure to the target Parafilm substrate, as 

shown in Fig. 1b. When the GNPs were transferred to the Parafilm film a mechanical response 

similar to neat Parafilm has been recorded (Fig. 1b) with higher strength and elongation at break 

(see Table I). This effect is well known in composites where stiff and soft phases coexist and the 

stiff phase reinforces and thereby strengthens the soft one [20-22]. The high stretch-ratio property of 

the underlying fluoroelastomer substrate is also reported in Fig. 1c. Parafilm is a thermoplastic 

material obtained by mixing paraffin wax and polyolefins with different molecular weight; DSC 

enables a determination of transition temperatures for these constituents as reported in Fig. 1d. The 

DSC heating curves for Parafilm and Parafilm/GNPs samples, respectively, show three endothermic 

peaks at about 45°C, 58°C and 99°C. The first two peaks are due to the melting crystalline wax 

fractions having different molecular weight distributions [23] while the peak at higher temperature 

is the polyolefin melting peak. Polyolefin and paraffin wax crystallization peaks were recorded 

during the cooling at 80ºC and 50°C, respectively.   

                           

  

a) 
b) 

c) 
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Figure 1. Photographs and stress-stretch ratio curves of (a) Parafilm, (b) Parafilm/GNPs and (c) 

FKM samples, respectively. (d) DSC heating/cooling curves of Parafilm and Parafilm/GNPs 

samples. 

 

Table I. Average values and standard deviations of the mechanical characteristics and volume 

change after immersion in ethanol of three specimens of each prepared sample. 

Samples 

Strength 

 

(MPa) 

Elongation at 

break 

(%) 

∆V 

 

(%) 

Parafilm 1.0±0.2 157±20 - 

Parafilm/GNPs 1.6±0.1 273±44 - 

FKM 5.8±0.6 623±40 - 

FKM after 48h in ethanol 4.2±0.3 458±45 14.16±0.08 

FKM packed with Parafilm film after 48h in ethanol 3.5±0.3 536±38 1.66±0.03 

FKM packed with Parafilm/GNPs film after 48h in 

ethanol 
4.9±0.3 549±55 1.71±0.03 

d) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

Interestingly, once transferred to the Parafilm tape and strained, the composite film shows the 

appearance of bands oriented orthogonal to the strain direction (Figures 2a and 2b). The formation 

of such bands is due to a plastic deformation and is reminiscent of a soft response that has been 

recently observed in liquid crystal elastomers, where, for example, if the material is deformed 

orthogonally to the alignment direction of the nematic phase, a short-range ordering has been 

reported [24]. The presence of such bands could be due to an uneven distribution of the GNPs 

within the material, which elongate more than the rest of the material. If this is the case, the 

macroscopic elongation measured would be a complex average of two different phases, with 

different mechanical properties. The local mechanical behaviour of two different phases was 

investigated by AFM analysis in phase contrast tapping mode. This non-invasive technique has 

been used to qualitatively map the films surfaces evidencing the contrast between the hard and 

the soft phases that are present on the film surface. Fig. 2c shows the AFM picture recorded on 

Parafilm/GNP coating after stretching; the region outside the band is characterized by a different 

surface morphology (Fig. 2c) with the presence of an hard phase dispersed into a soft polymer 

matrix outside the shear band can be distinguished. When passing to the plastic band,  

microcracks  appeared,  as  illustrated  in  Fig.  2c. This finding can be explained suggesting that 

stretching such viscous substrate gave rise to inhomogeneous density distributions of GNPs with 

mesoscopic size that are dragged away upon stretching. 

 

a) 
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Figure 2. (a) Photographs of Parafilm/GNP film at different strains. The arrows show the 

formation of alternating bands with regions of low GNPs concentration. (b) FESEM images 

showing the formation of bands on the stretched sample. The inset shows a higher magnification 

view of the morphology recorded inside the band region; the dashed line in the main panel 

indicates the stretching direction. (c) AFM phase image (70µm x 70µm square) that is 

corresponding to the (1) and (2) regions of the panel (b). Black arrows indicate the presence of 

regions with the highest contrast in the region (2) while the asterisk indicates the microcracks. 

The dashed line serves to the eyes to indicate the separation between the regions (1) and (2). 

The optical microscopy images recorded in reflection mode on the unstretched Parafilm/GNPs 

film show that GNPs once transferred to the Parafilm matrix arrange as an uninterrupted path 

(Fig. 3a). Electrical resistance in this sample is thus attributed to the number of such percolative 

GNP contacts. Electrical resistance variation of Parafilm/GNPs film as a function of the 

stretching ratios, λshows that the initial resistance (i. e. unstretched state) increases with 

stretching-ratio (Fig. 3a); the increased resistance is attributed to the reduction of percolative 

GNP contacts at high strains as suggested in the optical micrograph of Figs. 2a and 3a. 

b) 

1 

2 

1 

2 

c) 
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A different trend was observed for the Parafilm/GNP film once transferred to the fluoroelastomer 

substrate. As the composite film was stretched, the resistance was found to increase with the 

deformation, reaching a maximum value at λmax (i. e. 2 and 3). Subsequently, as the specimen 

was brought to the initial state from λmax to 1, the electrical resistance regained the initial values, 

suggesting an almost reversible mechanism of GNP dragging previously observed in the stretch 

axis direction. For the highest stretch-ratio i. e. λmax=4, the resistance did not show any recovery 

when the sample relaxes to its un-strained condition. This is a signature that at this maximum 

stretch-ratio the electrical network made of GNP contacts are subjected to an irreversible 

deformation. Also, we did not observe any sliding of the Parafilm/GNPs film with respect to the 

FKM substrate in our tensile tests at macroscopic length scales as observed in Fig. 3d.Different 

surface deformations are however shown in FESEM images at microscopic length scale in Fig. 

3e. In  general,  wrinkling is  a sinusoidal and uniform deformation; whereas, delamination have 

a localized deformation; in our case, from Fig. 3e delaminations generally formed across the 

surface. The pre-strain, after that the delamination occurs, could be used to calculate the 

adhesion energy according to a model where the film can considered as an adhesive tape with 

pre-tension attached to a substrate [25]. From such theory of peeling for large deformations in 

pre-strained conditions, the pre-strain for film delamination (λd=4) can be expressed in terms of 

adhesion energy (Y), film’s Young modulus (E) and film thickness (t) as ln(λd)=2x(Y/Ext)0.5 that 

for E=86MPa (calculated from the elastic region of the stress-strain curve of the Parafilm/GNPs 

film in Fig. 1b) and t=140µm restitutes a value for Y ~6x103N/m. This value indicates that the 

critical value of λ=4 found for the Parafilm/GNPs film on FKM coincides with that measured at 

rupture for the Parafilm/GNPs film (Fig. 1b), suggesting that FKM substrate makes reversible 

the Parafilm mechanical behavior until its rupture despite the plastic deformation of the 

Parafilm/GNPs film.      
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Figure 3. (a) Optical micrographs and schematic side/top view of GNP platelets embedded in 

Parafilm matrix in unstretched and stretched state (i. e. the arrows indicate the strain direction), 

respectively. The initial side/top view shows an interconnected electrical path of GNPs, GNPs then 

b) c) 

d) λ=2 λ=3 λ=4 

e) 

λ=1 λ=1 λ=1 
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separate during stretching, thus raising the sheet electrical resistance. (b) Schematic representation 

of stretch mechanism before the stretch at λ=1, during the stretch at different stretching ratios and 

after relaxing to an unstretched state λ=1 of Parafilm/GNPs coupled with fluoroelastomer. (c) 

Electrical resistance variations to initial resistance values of Parafilm/GNPs coupled with 

fluoroelastomer substrate through the stretching cycles from λ=1 to λmax=2, 3 or 4, then returned to 

a relaxed state (λmax → 1). (d) Photographs of Parafilm/GNPs coupled with fluoroelastomer 

substrate through stretching cycle from λ=2, 3, 4 to a relaxed state (right panels). (e) FESEM 

images showing at different magnifications the delaminations of Parafilm/GNPs film after the 

stretching cycle from λ= 4 to a relaxed state.   

The main drawback for practical applications of the FKM when operating in severe conditions 

relies on swelling and blistering caused by ethanol permeation through the thickness of the 

elastomeric material with a consequent lack of elasticity, poor strength and low elongation at break. 

On the contrary Parafilm is resistant against many polar substances, e.g. ethanol. In this regard the 

FKM specimen was packed with Parafilm/GNPs film and put in an oven at 110°C for 30 minutes, 

then the sample was cooled and immersed in ethanol for 48 hours at 25°C. For a comparison 

purpose a neat specimen of FKM was immersed in the same liquid. The tensile strength and 

ultimate elongation at the end of the required immersion period, the specimens were removed from 

the liquid and quickly dip in acetone and blot with filter paper. The stress-strain curves as well the 

mechanical characteristics of these specimens are reported in Figure 4 and Table I, respectively. 

The change in volume was also calculated according to the equation (M3-M1)/d(M1-M2)x100 where 

M1 is the initial mass of the specimen in air, M2 is the mass of the specimen immersed in distilled 

water at room temperature, M3 is the mass recorded in air after the immersion in the liquid and d is 

the density of the immersion liquid expressed as Mg/m3. The diffusion of the solvent depends on 

the concentration of free space available in the matrix which accommodates the penetration of 

solvent molecule [26,27]. The packaging by Parafilm/GNPs coating demonstrated a low solvent 
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permeability as well as the maintenance of the mechanical characteristics (see Tab. I), thus 

demonstrating a synergistic effect between the Parafilm/GNPs film and the FKM substrate. To 

assess the possible role played by GNPs on ethanol permeation through the Parafilm based coating, 

we report the FESEM analysis on the cross-sectional profile of the Parafilm/GNP film applied on 

the FKM substrate where it is clear that once laminated, the GNP are on the outer side of the 

Parafilm (Fig. 4b). To explain the observed barrier properties of GNPs reported in Tab. I, we recall 

that in general liquid (i. e. ethanol) permeation in polymer coatings occurs via a network of surface 

capillaries [28]. After the addition of GNPs, the top view FESEM image shows that there is a 

limited space left for ethanol to permeate between graphene sheets (Fig. 4b), and the only diffusion 

path remaining is through structural defects. 

 

a) 
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Figure 4. (a) Stress-stretch ratio curves of FKM, FKM after 48 hours of immersion in ethanol, FKM 

packed with Parafilm/GNPs and FKM packed with Parafilm after 48 hours in ethanol, respectively. 

(b) Typical cross-sectional (left panel) and top view (right panel) FESEM images of Parafilm/GNP 

film applied on FKM substrate. 

 

Conclusions 

We present a novel method to develop composite coatings with recoverable electrical resistance 

from high-strain state. The composite coating was realized from thermoplastic Parafilm commonly 

used in research, clinical and industrial laboratories worldwide and graphene nanoplatelets. Such 

materials were mechanically coupled by lamination. We also demonstrate that fluoroelastomer 

substrates can be used with success for the lamination transfer of such composite coatings. The 

GNPs in the coating creates an electrical conducting percolation network that, unlike in the Parafilm 

matrix, is reversible even under high strain. We found also that the Parafilm/GNPs film acts as a 

barrier against ethanol corrosion when applied to the FKM substrate in terms of swelling and 

mechanical properties. These findings suggest that future research directions in such elastomeric 

composite materials become possible, such as corrosion-resistant functional devices where the 

b) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

 

solvent repellent nature of the paraffin wax coating as well as the conductivity properties when 

combined with conductive nanofiller adds new properties and functions to traditional elastomers. 
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