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Abstract

One important feature of the future communication network is that users in the

network are required to experience a guaranteed high quality of service (QoS) due

to the popularity of multimedia applications. This thesis studies QoS-aware radio

resource management schemes in different OFDMA network scenarios.

Motivated by the fact that in current 4G networks, the QoS provisioning is severely

constrained by the availability of radio resources, especially the scarce spectrum

as well as the unbalanced traffic distribution from cell to cell, a joint antenna and

subcarrier management scheme is proposed to maximise user satisfaction with load

balancing. Antenna pattern update mechanism is further investigated with moving

users.

Combining network densification with cloud computing technologies, cloud radio

access network (C-RAN) has been proposed as the emerging 5G network archi-

tecture consisting of baseband unit (BBU) pool, remote radio heads (RRHs) and

fronthaul links. With cloud based information sharing through the BBU pool,

a joint resource block and power allocation scheme is proposed to maximise the

number of satisfied users whose required QoS is achieved. In this scenario, users

are served by high power nodes only. With spatial reuse of system bandwidth by

network densification, users’ QoS provisioning can be ensured but it introduces

energy and operating efficiency issue. Therefore two network energy optimisation

schemes with QoS guarantee are further studied for C-RANs: an energy-effective

network deployment scheme is designed for C-RAN based small cells; a joint RRH

selection and user association scheme is investigated in heterogeneous C-RAN.
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Thorough theoretical analysis is conducted in the development of all proposed

algorithms, and the effectiveness of all proposed algorithms is validated via com-

prehensive simulations.
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Chapter 1

Introduction

1.1 Research Motivation

The skyrocketing proliferation of multimedia infotainment applications and high-

end devices (e.g., smartphones, tablets, wearable devices, laptops, machine-to-

machine communication devices) exacerbates the stringent demand for high data

rate services. For the current bandwidth-constrained fourth generation (4G) net-

works, how to provide a large number of devices with high data rate services re-

mains a challenge. Radio resource management (RRM) has been a critical topic in

wireless communications aiming to utilise the limited frequency spectrum resources

and network infrastructure as efficiently as possible [STB15].

To provide quality of service (QoS) required by the bandwidth-intensive mul-

timedia applications, RRM schemes must be QoS-driven. To allocate resources,

the resource management system must consider resource availability as well as the

QoS requirements of individual users [BS09]. A common assumption in previous

resource allocation literature is that a user’s utility strictly increases with its re-

ceived data rate. This is true for elastic applications. However for the increasingly

popular video traffic, more specific QoS is required. These inelastic applications

1



Chapter 1. Introduction 2

can not work properly when their minimum rate requirement is violated, while do

not obtain additional benefits when given more resources than needed [SCH13].

Apart from spectrum scarcity, unevenly loaded traffic results in unbalanced per-

formance over the cells, which leads to degraded overall QoS provisioning [SBL14].

Previous studies have indicated that users are often unevenly distributed there-

fore the number of associated users may vary from cell to cell. This uneven load

distribution can degrade the QoS that users experience, especially in highly con-

gested cells [Lag10]. RRM schemes need to be adaptive that match the demand

of resources (“load”) with the supply of resources (“capacity”) [ASY+14].

Motivated by the abovementioned facts, in this thesis, QoS-aware user satisfac-

tion oriented resource management schemes with load balancing are investigated.

We give emphasis to the fast-growing multimedia traffic with specific QoS require-

ments. In existing spectrum-constrained 4G cellular networks with unbalanced

load distribution, we aim to devise joint load balancing and resource allocation

schemes to maximise the number of satisfied user whose required QoS is achieved.

From a long-term perspective, incremental improvement of QoS provisioning

based on existing 4G cellular networks with macro base stations only is not enough.

Now we are facing the rapid evolution towards the fifth generation (5G) era, the

demands for high-speed data applications have been growing exponentially re-

cently. According to the latest visual network index report from Cisco [CIS16], the

global mobile data traffic will increase eightfold between 2015 and 2020. The first

commercial 5G system planned in 2020 is expected to provide approximately 1000

times higher wireless capacity compared with the current 4G system [ABC+14].

To achieve the 5G vision, a paradigm shift is needed in radio access net-

works. In particular, the network densification overlaying existing macro cell
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networks with different sizes of small cells, has been recognized as the key ap-

proach [SZL+15][BLM+14]. Meanwhile, cloud computing technology has emerged

as a promising solution for providing high energy efficiency as well as gigabit data

rate services across wireless software defined communication networks [PLJ+14].

Therefore, cloud radio access network (C-RAN) is proposed from both the wireless

and the information technology industries as the promising 5G network architec-

ture [CLRH+14].

In C-RAN, the traditional base station is decoupled into two parts: the base-

band units (BBUs) clustered as a BBU pool with centralised cloud server and the

remote radio heads (RRHs) with antennas located at the cell sites. The BBU

pool and the RRHs are connected through fronthaul links. In practical systems,

the fronthaul is capacity-constrained [PWLP15]. By conducting most signal pro-

cessing functionality in the BBU pool, RRHs can be relatively simple and can be

densely deployed with minimum cost [KAAR15]. Such a drastic shift in the cellu-

lar paradigm leads to an open issue about the energy efficiency. Since RRHs will

be deployed in a large scale scenario to serve the peak time traffic. It is inevitable

that the RRHs will be underutilised most of other times, but still consumes most

of the peak power. In the long run, it may lead to deploying more RRHs than the

cell phones served [DDD+15].

This motivates us to optimise the energy consumption in C-RAN by selecting

appropriate subset of RRHs to adapt to the temporal and spatial traffic dynamics.

The centralisation at the BBU pool facilitates the implementation of such dynamic

RRH selection strategy. User association is jointly considered to guarantee the QoS

delivery to end users.
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1.2 Research Scope

This research focuses on QoS-aware adaptive resource management in different

OFDMA multi-cell network scenarios, which can be summarised in Table 1-A.

Table 1-A: Research problem and proposed scheme

Network scenario Research problem Proposed scheme

4G
QoS provisioning improvement:
user satisfaction maximisation

with load balancing

QoS-aware
cell adaptation

Beyond 4G
QoS provisioning improvement:
user satisfaction maximisation

Cloud based
information sharing

5G
Optimise the energy consumption

with QoS guarantee

Energy-effective
network deployment;
Joint RRH selection
and user association

Currently, 4G LTE-based radio access networks (RANs) are implemented using

a distributed architecture where base stations (BSs) perform all RAN process-

ing [BRW+15]. In Fig 1.1, every BS is responsible of the resource management

with respect to the users within its cell. Due to the popularity of bandwidth-

intensive multimedia applications, today’s cellular network is likely to be resource-

constrained to meet the stringent QoS demands. Apart from the scarceness of

spectrum resource, QoS provisioning is also constrained by the unbalanced traf-

fic distribution from cell to cell. For the 4G network which is already deployed,

we work on improving QoS provisioning using existing network infrastructure and

spectrum resources. Chapter 3 proposes QoS-aware user satisfaction maximisation

schemes with load balancing.

A natural evolution of the distributed BS architecture is cloud radio access

network (C-RAN) [Mob11]. By centralisation and virtualisation, the baseband

resources are pooled at the baseband unit (BBU), suited at the cloud centre. The
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Cell BS

Figure 1.1: Radio access network architecture: Distributed BS architec-
ture

simplified remote radio heads (RRHs) are distributed at the cell sites (Fig. 1.2).

BBU pool provides centralised signal processing and resource management across

multiple cells. Although C-RAN offers a viable solution to resolve the challenges

of rising costs and increasing signalling traffic in dense distributed BS architecture,

such a drastic shift in the cellular paradigm leads to an open issue about the energy

efficiency and operating efficiency. The primary concern of Chapter 4 is to optimise

the energy consumption with QoS guarantee in C-RAN by selecting appropriate

subset of RRHs to adapt to the temporal and spatial traffic dynamics.
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BBU pool RRH

Figure 1.2: Radio access network architecture: Centralised C-RAN ar-
chitecture

1.3 Research Contributions

This thesis proposes several novel resource management schemes in OFDMA net-

works. Orthogonal frequency division multiple access (OFDMA) technology has

been used in 4G standards and recommended as the default approach in 5G. In

resource-constrained 4G scenario, we optimise the user satisfaction. In 5G scenario

with network densification, we optimise the energy consumption.

The contributions of this thesis are summarised as follows:
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• A joint antenna and subcarrier management scheme is proposed for multi-cell

OFDMA downlink. It addresses the problem of QoS-aware user satisfaction

maximisation in resource-constrained system with unbalanced load. Semi-

smart antennas are utilised to achieve adaptive cell coverage corresponding to

the load distribution. The antenna pattern is optimised by genetic algorithm

(GA). Subcarrier is allocated in a co-opetition manner according to user’s

QoS requirements including minimum rate requirement and user/traffic pri-

ority.

• Based on the above finding, a dynamic optimisation of QoS with low-overhead

for moving users is proposed. Rather than changing the antenna pattern fre-

quently, we monitor the user movement periodically and optimise the semi-

smart antennas using GA to update the antenna pattern only when the

satisfaction ratio drops below a certain threshold.

• A joint resource block (RB) and power allocation scheme is proposed with

cloud based information sharing. The proposed algorithm, based on low

complexity heuristics, devises different power-RB polices for satisfied user

and unsatisfied user sets respectively, which operates jointly to address the

QoS provisioning problem. Cloud based information sharing through the

BBU pool is introduced to manage the co-channel assignment in order to

mitigate the inter-cell interference.

• An energy-effective network deployment (EEND) scheme is designed to re-

duce the network energy consumption in dense C-RAN: A new problem

formulation scheme is introduced where RRH is treated as a dimension

of assignable resource to achieve dynamic network construction; a C-RAN

structure is proposed that the system can dynamically select a subset of
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RRHs according to the varying traffic demand; an energy-effective deploy-

ment is achieved through multi-choice multidimensional knapsack problem

based RRH-traffic demand node association and sleeping strategy based ac-

tive RRH set determination.

• A joint RRH selection and user association (JRSUA) scheme is proposed

to minimise the network power consumption in C-RAN. Based on the pro-

posed JRSUA, we formulate an optimisation problem aiming at minimising

the total power consumption in the C-RAN while satisfying users traffic de-

mands. Since the RRH selection and user association are mutual dependent,

we decouple the network power consumption minimisation problem into two

components. First, we solve the user association for given active RRH set

using multiple-choice multidimensional knapsack model with consideration

of both radio resource and fronthaul capacity constraints. Then, we devise

a low complexity heuristic algorithm that selects the best active RRHs by

repeatedly solving the user association problem.

• Thorough theoretical analysis is presented in the development of each pro-

posed algorithm. And the effectiveness of each proposed algorithm is con-

firmed via comprehensive simulation results.

1.4 Thesis Outline

The rest of the thesis is organised as follows.

Chapter 2 provides background information about RRM aspects in wireless

communications, OFDMA basics, the concepts of QoS and C-RAN. Furthermore,

it presents literature review of state-of-the-art resource allocation approaches in
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OFDMA networks and energy efficient RRM schemes, especially sleeping tech-

niques for greener cellular systems and highlights open challenges in this context.

Chapter 3 studies QoS-aware user satisfaction maximisation schemes with load

balancing. A joint antenna and subcarrier management algorithm is proposed for

multi-cell OFDMA downlink at first. Then a dynamic optimisation of QoS with

low-overhead for moving users is proposed. The system model, detailed develop-

ment of proposed algorithms, simulation set-up and performance evaluation are

provided.

Chapter 4 investigates three radio resource management schemes for C-RANs.

Firstly, a joint resource block and power allocation algorithm is proposed with

cloud based information sharing through BBU pool. Secondly, an energy-effective

network deployment scheme is developed to reduce the network energy consump-

tion in C-RAN based small cells. At last, a joint RRH selection and user association

scheme is proposed in heterogeneous C-RAN. For each algorithm, system model,

problem formulation and performance comparison are presented in details.

Chapter 5 draws the conclusions of this thesis. The ideas for future work

based on the research carried out in this thesis are also discussed.



Chapter 2

Fundamental Concepts and
State-of-the-Art

2.1 Resource Management for Wireless Commu-

nications

Wireless mobile communication has evolved over four generations, with the fifth

generation yet to come. As a new generation stepped forward, it accompanied the

implementation of new air interface technologies as well as the enhancement of

system performances. In the early generations, performance enhancements mainly

came from physical layer technologies like modulation and multiple access, but the

contribution of radio resource management has increased with each generation. In

essence, maximised performance of a wireless system is likely attained by optimised

radio resource management implemented on the basis of matured physical layer

technologies [LPS09].

10
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2.1.1 Evolution of Wireless Communications

Wireless communication is the transfer of information over a distance without the

use of wires, cables or any other electrical conductors [BB10]. In the context of

wireless communications, a cellular network or mobile network refers to a commu-

nication system divided into small areas, where users are served by a base station

with limited range [H+07]. Recent decades have witnessed a great evolution of

wireless communication systems.

It was in the 1980s when the first generation (1G) analogue systems were widely

deployed to support circuit-switched voice telephony [LPS09]. The best known

example is the Advanced Mobile Phone System (AMPS), developed by Bell Labs in

the 1970s and launched in the United States in 1983. Europe also deployed a similar

analogue system to AMPS called the Total Access Communication System (TACS).

TACS operated at a higher frequency and with lower bandwidth channels than

AMPS [Gol05]. The 1G system used frequency division multiple access (FDMA)

technology and analogue frequency modulation [Gar10][SVDK06].

In the early 1990s, the 1G wireless systems evolved to become second generation

(2G) systems by virtue of the advances in digital technologies. The 2G wireless

systems also were targeted at voice services, but digital modulation and multiple

access methods were incorporated as well. Time division multiple access (TDMA)

was employed in the Global System for Mobile Communications (GSM), and code

division multiple access (CDMA) was used in the IS-95 CDMA system [LPS09].

Once digital cellular became available, operators began supporting data services

in addition to voice with packet switching [Gol05].

In the late 1990s, the fragmentation of frequency bands and standards in 2G

systems motivated the International Telecommunication Union (ITU) to formulate
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a specification for a single global frequency band and standard for the third genera-

tion (3G) digital cellular systems. The standard was named the International Mo-

bile Telecommunications 2000 (IMT-2000). In addition to voice services, IMT-2000

was to provide high data rate services such as broadband Internet access, interac-

tive gaming and high quality audio and video entertainment. However, agreement

on a single standard did not materialized, with most countries supporting one of

two competing standards: wideband CDMA (WCDMA) and CDMA2000. Both

standards used CDMA and supported both circuit- and packet-switched services

with broader bandwidths [LPS09][Gol05].

In 2008, the ITU issued the International Mobile Telecommunications Advanced

(IMT-Advanced) requirements for the fourth generation (4G) systems. As opposed

to earlier generations, 4G systems does not support traditional circuit-switched

telephony, but based on all-Internet Protocol (IP) packet-switched networks. Two

dominant 4G systems are commercially deployed: the IEEE 802.16 based World-

wide Interoperability for Microwave Access (WiMAX) and 3rd Generation Partner-

ship Project (3GPP) based Long Term Evolution (LTE). Both WiMAX standard

(both downlink and uplink) and LTE standard (downlink) have selected orthog-

onal frequency division multiple access (OFDMA) as the physical layer multiple

access technology [STB15] [AGM07].

Now, we are facing the advent of fifth generation (5G). 5G will provide an order

of magnitude improvement in performance in the areas of more capacity, lower

latency, more mobility, more accuracy of terminal location, increased reliability

and availability [CZ14]. Several forums and projects such as METIS (Mobile and

Wireless Communications Enablers for the Twenty-Twenty Information Society)

[FT13][BV13] and IMT-2020 [Mar15][WP514] have been established to shape the

5G vision and study its key enabling technologies. Suggested by the ITU, the
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5G deployments will commerce from 2020 [Pra14]. OFDM and OFDMA have

been recommended as the default modulation and multiple access formats for 5G

[ARS16][ZRB14][ABC+14]. We will briefly introduce the basics of OFDM and

OFDMA in Section 2.1.3.

2.1.2 Overview of RRM schemes

As stated above, the evolution of wireless communications is characterized mainly

by a shift in the physical layer technology, i.e., FDMA → TDMA → CDMA →

OFDMA [CSSK+15], of which the main features [Gar10][STB15] are summarised

in Table 2-A. In reality, the enhancements solely due to transmission technology (or

physical layer technologies in general) are limited in various aspects. First, trans-

mission technologies are already matured and there is not much scope for further

improvements without some unexpected breakthroughs. Second, most transmis-

sion technologies are developed to accomplish specific objectives, so each individual

technology cannot yield a universally optimal performance solution. This points

to the necessity for radio resource management [LPS09].

Radio resource management (RRM) encompasses a wide range of techniques

and procedures to manage radio transmission characteristics such as transmit

power, frequency channel, antenna beamforming, cell search, cell reselection and

so on. The aim of RRM is to utilise the limited frequency spectrum resources and

network infrastructure as efficiently as possible [TRV06][STB15].

The ever-increasing size of wireless mobile community coupled with the de-

mands for high-speed multimedia communications stands in clear contrast to the

scarceness of spectrum resource that has been allocated in international agree-

ments. Efficient RRM is of paramount importance to make best use of limited
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Table 2-A: The main features of FDMA, TDMA, CDMA and OFDMA

FDMA

FDMA is the most common analogue multiple access method. It
is a technique whereby spectrum is divided up into frequencies
and then assigned to users. With FDMA, only one subscriber

at any given time is assigned to a channel.

TDMA

TDMA improves spectrum capacity by splitting each frequency
into time slots. TDMA allows each user to access the entire
radio frequency channel for the short period of a call. Other

users share this same frequency channel at different time slots.

CDMA

CDMA is based on “spread” spectrum technology. CDMA increases
spectrum capacity by allowing all users to occupy all channels at

the same time. Transmissions are spread over the whole radio band,
and each voice or data call are assigned a unique code to

differentiate from the other calls carried over the same spectrum.

OFDMA

OFDMA extends the multicarrier technology of OFDM to provide
a very flexible multiple access scheme. OFDM subdivides the

bandwidth available for signal transmission into a multitude of
narrowband subcarriers, arranged to be mutually orthogonal,

which can carry independent information streams; in OFDMA, this
subdivision of the available bandwidth is exploited in sharing

the subcarriers among multiple users.

resource to fulfill the increasing demands [ZKAQ01][PKBV11]. By determining

mechanisms to use the available resources optimally, RRM can lead to a signifi-

cant improvement in transmission rate without using more bandwidth [LPS09].

In general, RRM strategies for wireless communications consists of three basic

sets [SA06][CTS06][LPS09][HLN13]:

1. Frequency/time resource allocation schemes such as channel allocation, schedul-

ing, transmission rate control which determine timing, ordering and the

amount of spectrum resource to allocate to each user;

2. Power control and allocation schemes which control the transmit power of the

base stations and mobile devices and distribute a given amount of transmit

power over multiple orthogonal subchannels with the intention to maximise
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the efficiency;

3. Call admission control, base station assignment, load management and han-

dover schemes which control access node connection.

2.1.3 Basics of OFDM and OFDMA

Orthogonal frequency division multiplexing (OFDM) is a multicarrier modulation

technique. The basic principle of OFDM is dividing a given high-bit-rate data

stream into several parallel lower bit-rate streams and modulating each stream

on separate subcarriers. Multicarrier modulation schemes eliminate or minimise

inter-symbol interference (ISI) by making the symbol time large enough so that

the channel-induced delays are an insignificant fraction of the symbol duration.

In order to completely eliminate ISI, guard intervals filled with cyclic prefix are

used between OFDM symbols. Since each subcarrier has a bandwidth less than

the coherence bandwidth of the channel, the subcarriers experience relatively flat

fading, thus enabling a low-complexity equalization [AGM07]. While each subcar-

rier is separately modulated by a data symbol, the overall modulation operation

across all the subcarriers results in a frequency-multiplexed signal, so as to resist

frequency-selective fading [HAWJ10].

OFDM is a spectrally efficient version of multicarrier modulation, where the

subcarriers are selected such that they are all orthogonal to one another and do

not interfere with each other. Each of the centre frequencies for the subcarriers

is selected from the set that has such a difference in the frequency domain that

the neighbouring subcarriers have zero value at the sampling instant of the desired

subcarrier [HT09], as shown in Fig. 2.1. An efficient implementation of OFDM

transmitter and receiver can be built with the inverse fast Fourier transform (IFFT)
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and the FFT, respectively [BJN12].

Frequency
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Sampling point 
for a single 
subcarrier

Zero value
for other 
subcarriers

Figure 2.1: Maintaining orthogonality between subcarriers

OFDMA is an extension of OFDM to the implementation of a multi-user com-

munication system. OFDMA distributes subcarriers to different users at the

same time, so that multiple users can be scheduled to receive data simultane-

ously [STB15]. Since the widespread use of digital technology for communications,

OFDMA become more feasible and affordable for consumer use. During recent

years, OFDMA technology has been widely adopted in many areas. It has been

chosen for the cellular telecommunications standard LTE and LTE-Advanced. It

is also been used by other standards such as WiMAX and many more. The overall

motivation for OFDMA in LTE and in other systems has been due to the following

qualities: a natural way to cope with frequency selectivity; computationally effi-

cient implementation of transmitter and receiver; simple frequency domain equaliz-
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ers; good spectral properties and handling of multiple bandwidths; link adaptation

and frequency domain scheduling, as well as compatibility with advanced antenna

technologies [HT09][Dew13].

Given these impressive qualities and the large amount of inertia in its favour,

the approach of OFDM and OFDMA is the unquestionable frontrunner for 5G

[ABC+14][Qua15]. However, there exist some weak points that could possibly be-

come more pronounced in 5G networks. Perhaps the main source of concerns, or

at least of open questions, is the applicability of OFDM to millimetre wave spec-

trum [GTC+14]. Second, the spectral efficiency of OFDM could perhaps be further

improved upon if the requirements of strict orthogonality were relaxed and if the

cyclic prefixes were smaller or discarded [HSL+14]. To address the weaknesses,

some alternative approaches are being actively investigated, such as time-frequency

packing [DRO11], generalized frequency division multiplexing (GFDM) [DPF12]

and filterbank multicarrier [FB11]. Most of these can be considered incremental

departures from OFDM rather than the step-function changes that took place in

previous cellular generations [SGA14].

2.1.4 OFDMA and the LTE Frame Structure

OFDMA is an excellent choice of multiplexing scheme for the 3GPP LTE downlink

since it is vastly superior to packet-oriented approaches in terms of efficiency and

latency. In OFDMA, users are allocated a specific number of subcarriers for a

predetermined amount of time. These are referred to as resource blocks (RBs)

in the LTE specifications [Acc16c][Acc16b]. Allocation of RBs is handled by a

scheduling function at the 3GPP base station.

LTE frames are 10 ms in duration. They are divided into 10 subframes, each
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subframe being 1 ms long. Each subframe is further divided into two slots, each

of 0.5 ms duration. Slots consist of either 6 or 7 ODFM symbols, depending on

whether the normal or extended cyclic prefix is employed [Acc16b].

The total number of available subcarriers depends on the overall transmission

bandwidth of the system. The LTE specifications define parameters for system

bandwidths from 1.25 MHz to 20 MHz. An RB is defined as consisting of 12

consecutive subcarriers for one slot (0.5 ms) in duration [Ahm13], which is shown

in Fig. 2.2. An RB is the smallest unit of resource allocation assigned by the base

station scheduler [Acc16c].

2.2 Quality of Service for Wireless Networks

2.2.1 QoS Definition

Quality of service (QoS) in the field of telecommunications can be defined as a set

of specific requirements provided by a network to users, which are necessary in

order to achieve the required functionality of an application (service). The users

specify their performance requirements in the form of QoS parameters, and the

network commits its bandwidth making use of different QoS schemes to satisfy the

request. Each service model has its own QoS parameters.

The quality of service can be a differentiator in the business market. Its param-

eters and measures are necessary to provide an indication of how well a service is,

and therefore, it is an important point when selecting services offered by different

service providers. If service features or price are similar, quality becomes the dif-

ferentiator for users, at the same time, service providers can make use of quality
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Figure 2.2: Resource block structure

to have an image of a “trusted” provider [BS09].



Chapter 2. Fundamental Concepts and State-of-the-Art 20

2.2.2 RRM for QoS Provisioning

Radio resource management (RRM) is considered as one of the most significant

and challenging aspects in the provisioning of QoS for wireless networks. Con-

ceptually, RRM policies, in conjunction with network planning and air interface

design, determine QoS performance both at the individual user level and at the

network level [CTS06].

From the users’ point of view, they want the best possible service features such

as maximum throughput or lowest block-and-drop rate. Especially, multimedia

users are assumed to be selfish and care only about the utility benefits that they

can derive from the network [PvdS07]. Each user generally desires to acquire as

much of the network bandwidth as possible [ZL11].

Meanwhile, the network wish to serve the maximum number of users possible

at a given time, at the agreed quality of service, as cost effectively as possible. The

greater the percentage of satisfied users served with good quality and, consequently,

the more profitable the network will be.

RRM has an important part to play in helping to match these potentially

conflicting sets of requirements [CTS06].

2.2.3 QoS Parameters

To provide and sustain QoS, RRM must be QoS-driven. To allocate resources, the

RRM schemes must consider resource availability as well as the QoS requirements

of applications, which are quantified by QoS parameters.

QoS parameters are used to identify the quality of service that a certain ap-
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plication requires or expects from the network in order to function properly. By

identifying these application requirements, intermediate forwarding nodes can as-

sign different priorities and/or resource reservations for different application flows

[Adi10].

The most common QoS parameters considered in packet-switched networks are

throughput, delay, jitter and packet loss [Lag10][Mel13][BS09].

Throughput, also known as data/bit rate, or capacity is usually denoted in

terms of bits per second (bits/s or bps). The throughput represents the amount

of data that can be transmitted in a determined time period. Throughput also

interferes with delay, since the smaller the throughput, the greater the delay in

delivering a packet. As a QoS parameter, the throughput identifies the amount of

data per second the application expects to receive in the destination node. This

QoS parameter is one of the most critical requirements for real-time applications.

Delay, is also known as latency. The delay shows the time taken for a packet or

a set of packets from a flow to leave a sender and arrive at the destination. This is

mostly affected by the number of hops between the sender and the receiver as well

as the state of the intermediate nodes (e.g., number of packets in their buffers, link

and CPU usage, etc.). Delay time can be increased if the packets face long queues

in the network, or cross a less direct route to avoid congestion. Delay is related to

packet loss due to queue overflow which can happen in situations with very large

delays. When used as a QoS parameter, the delay represents the maximum time

a packet can take to arrive at the destination and still be valid.

Jitter represents the delay variation of the received packets belonging to the

same flow. A small jitter means that most packets have the similar end-to-end

delays. On the other hand, a large jitter means that some packets will be received
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with relatively small delays while other packets will be received with relative large

delays.

Packet loss is the rate in which packets can be lost during the routing process

without greatly disrupting the application functions. Wireless and IP networks

will fail to deliver, or drop some packets if they arrive when the buffers are already

full. As a QoS parameter, the packet loss rate identifies an acceptable loss ratio in

which the application can still function.

2.2.4 Basics of QoS in LTE

Since LTE is all-IP based, in LTE network QoS is implemented between user

equipment (UE) and Public Data Network Gateway (PGW) and is applied to a set

of bearers: radio bearer, S1 bearer and S5/S8 bearer, collectively called as Evolved

Packet System (EPS) bearer. A radio bearer is the over-the-air connection. An

S1 bearer is the connection between the evolved base station (eNodeB) and the

Serving Gateway (SGW). Finally, the EPS bearer is established between the UE

and the PGW, as shown in Fig. 2.3. Bearer is basically a virtual concept and is a

set of network configuration to provide special treatment to the set of traffic e.g.,

voice over IP (VoIP) packets are prioritized by network compared to web browser

traffic [TAH11] [ATH13].

A bearer can be classified as either a default or a dedicated bearer. When a

mobile device first attaches to an LTE network, it is assigned a default bearer,

which is associated with the user’s IP address. The default bearer is a non-GBR

(Guaranteed Bit Rate) bearer which does not have a bit rate guarantee and of-

fers only best-effort service. A dedicated bearer acts as another bearer for QoS

differentiation purposes. Dedicated bearers are either non-GBR bearers or GBR
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Figure 2.3: Different bearers employed in end-to-end service delivery in
LTE and LTE-Advanced [ATH13]

bearers [PHH+12].

A GBR bearer is associated with a guaranteed bit rate, which is the minimum

bit rate that the mobile is expected to receive. A GBR bearer has dedicated net-

work resources and is suitable for sensitive real-time voice and video applications,

in which the guaranteed bit rate might correspond to the minimum bit rate of the

user’s codec [Cox12]. Take the video codec for example, the utility Uv will be 0

if the minimum required rate is not achieved [PvdS10]. This will result in unac-

ceptable quality to the user according to the peak signal to noise radio (PSNR),

which is a measure of video quality and can be calculated by PSNR = 10log10Uv

[ZL11][GYZ09][PvdS10]. A non-GBR bearer does not have dedicated resources

and is used for best-effort traffic, such as file downloads. Non-GBR bearers do not
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guarantee any particular bit rate. These can be used for non-real-time services such

as web browsing or email in which the data rate can fall to zero [ETS11][NT16].

In the access network, it is the responsibility of the eNodeB to ensure the

necessary QoS for a bearer over the radio interface. Each bearer has an associated

QoS class identifier (QCI) by a scalar number [Nak11]. Each QCI is characterized

by resource type (GBR and non-GBR), priority, packet delay budget and packet

error loss rate. The priority level determines the order in which data packets

are handled. Low numbers receive a high priority. The packet delay budget is an

upper bound for the delay that a packet receives between the mobile and the PGW

[Cox12]. 3GPP defines nine categories for delay, with 50 ms being the tightest and

300 ms the slackest. The packet error rate is an upper bound for the proportion of

packets that are lost because of errors in transmission and reception. It has nine

categories with 10−6 being best and 10−2 being the worst [ATH13].

For users associated GBR traffic, they are inelastic in their QoS requirements, a

step function can be used to present their utility, which describes user satisfaction:

UG(r) = u(r −Rmin) =

 1 r ≥ Rmin

0 otherwise
(2.1)

where u(·) is the step function, r is the user’s achievable rate and Rmin is the

minimum rate requirement [She95][BD09][KL05].

On the other hand, for non-GBR traffic, the satisfaction utility usually has

such feature: it increases with the achievable data rate, however it saturates as

achievable data rate increases [SL05][JGL05]. A log based function can be used to

grasp such feature:

Un(r) = a+ blog(r + c) (2.2)
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where a, b and c are properly chosen constants [BD09].

2.3 Resource Allocation in OFDMA Networks

In cellular networks, resource allocation refers to the aforementioned (Section 2.1.2)

channel allocation or/and power allocation [HLN13]. In OFDMA-based networks,

resource allocation schemes typically includes assigning a subset of subcarriers to

the users and distributing the power amount over each used subcarrier [SBL14].

Resource allocation in OFDMA networks has attracted extensive attention and

been intensively studied over the last decade.

Efficiency and fairness are two crucial issues in resource allocation for wireless

communication systems [RC14][ZL11]. Spectral efficiency is defined as the data

rate per unit bandwidth and is calculated by dividing the sum-rate of a system by

its total bandwidth [BB99]. Fairness, on the other hand, indicates how equally the

resources are distributed among the users. It could be defined in terms of band-

width where each user is assigned an equal number of subcarriers [OOaDTH05],

or it could be in terms of power where each user is allocated equal portion of the

power from the budget. It could also be in terms of data rate, where the objective

is to allocate the resources to the users so that all the users achieve the same data

rate [RC00a].

The major state-of-the-art resource allocation techniques reported in the liter-

ature are: 1) sum-rate maximisation; 2) max-min fairness; 3) proportional fairness

and 4) user satisfaction maximisation. The main principles of these algorithms are

summarised in Table 2-B.
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Table 2-B: State-of-the-art resource allocation techniques

Sum-rate maximisation
Allocate most resources to the users

with the best channel conditions

Max-min fairness
Assign more resources to users

exhibiting poor channel conditions

Proportional fairness
Users with low average rates

benefit more from being scheduled
than users with high average rates

User satisfaction maximisation
Allocate resources in a co-opetition manner:

a satisfied user has no inclination
to change the choice of resource

2.3.1 Sum-rate Maximisation

Schemes with sum-rate maximisation approach [KL06b][HRW+07] [CTZK09] [HZN10]

[ZW13] [TDA11] aim to maximise total sum-rate over all users of the system, or sys-

tem throughput subject to the constraint on the total power expenditure. These

schemes consider the overall throughput of the network rather than each user’s

achievable data rate. The basic idea is to allocate most resources to the users with

the best channel gains, which is unfair to the users far away to the base stations

or with bad channel conditions. Besides, it may result in QoS violation to them if

they are multimedia users with demanding rate requirements. Although the sum-

rate of a system provides a good measurement of the spectral efficiency, it is not a

valid indication of each user’s QoS satisfaction [SAR09].

2.3.2 Max-min Fairness

One approach to achieve both spectral efficiency and fairness is the max-min

rate maximisation fairness. The max-min fairness approach has been described

in [RC00b] and studied in [EIE14][Le12][NSSL11][SDYZ10], whereby maximising

the minimum data rate across all users. Roughly speaking, the goal of the max-
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min fair approach is to optimise the performance of the worst link amongst all

users. The idea behind the max-min fair approach is to treat all users as fairly

as possible. However it is inappropriate when different users have different prior-

ities [SBL14]. When there are insufficient resources, it may lead to the case that

users share the resources so fairly that none of them gets the desired QoS. Apart

from the drawback in terms of QoS provisioning, under the max-min fair solution,

some users may consume significantly more bandwidth than others, at the cost of

a reduction in the overall throughput of the network [ZL14][TK04].

2.3.3 Proportional Fairness

Another approach to accomplish efficiency fairness is proportional fairness. Ac-

cording to Kim and Han [KH05], a proportional fair optimisation problem should

maximise the sum of logarithmic average user data rates. Proportional fair alloca-

tion schemes have been investigated in [LQZZ11][FWZW10][CHK11]. It should be

noted that the proportional fair approach heuristically tries to balance the fairness

among users in terms of outcome of throughput, while implicitly maximising the

system throughout in a greed manner. The proportional fairness is a pure out-

come fairness metric, which is simple to use, but does not guarantee fairness in a

strict sense [Adi09]. The main limitation of the proportionally fair allocation is

that utility (maximisation) functions are commonly assumed to be concave. Lee

et at. [LMS04b] show that, if it is applied to non-concave utility functions (e.g.,

for multimedia communication), the system can be unstable and cause congestion

in the network.
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2.3.4 QoS Satisfaction

With the explosive growth of the Internet and the rapid advance of compression

techniques, delay-sensitive and bandwidth-intensive multimedia applications get

more and more popular. These multimedia services such as videoconferencing and

video streaming have specific QoS requirements (such as minimum data rate) to

achieve the required functionality [ZL11]. Therefore, resource allocation schemes

should be equipped with QoS provisioning.

2.3.4.1 QoS as Constraints

In most previous works, QoS is considered in the form of constraints based on the

abovementioned or other utility optimisation approaches.

Sum-rate maximisation approach based schemes with QoS consideration have

been investigated in [CTZK09][LCWY12] in multi-cell scenario. A low-complexity

multi-cell OFDMA downlink channel assignment method is proposed in [CTZK09]

to maximise the total capacity with subchannel demand constraint using graphic

framework. Based on the assumption that all subchannels are statistically equal,

they use subchannel demand to approximate the throughput requirement. The

designed scheme in [LCWY12] combines soft frequency reuse and power control to

maximise the system throughput while satisfying the minimum target data rate of

each user for OFDMA uplink.

An adaptive power and bandwidth allocation scheme is devised in [GZAE10b] to

achieve proportional fair scheduling under delay constraints for real time sessions in

single-cell OFDMA-based wireless systems. Delay and packet loss requirements are

translated into rate requirements and convex optimisation techniques are used to
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find the solution. The authors in [ZTH+10] considers the objective of network-wide

proportional fairness through Hungarian algorithm based intra-cell fast scheduling

as well as inter-cell interference coordination with QoS guarantees.

Based on dynamic programming and branch-and-bound, both near-optimal and

optimal channel and power assignment algorithms are proposed in [LCS09] to sat-

isfy multi-user rate requirements in a single-cell OFDMA downlink with the mini-

mum total transmitted power. The power minimisation subject to rate constraint

problem has also been studied in [KBCH10a][KBCH10b] in a two-cell downlink

OFDMA system impaired by multi-cell interference. [KBCH10a] provides a bi-

nary form optimal resource allocation solution and [KBCH10b] gives a asymptotic

analysis based practical solution.

In [XLZ+12], subcarrier assignment and power allocation algorithms are de-

signed to maximise generalized energy efficiency for the downlink transmission

and minimum individual energy efficiency for the uplink case in single-cell OFDMA

network, both under certain prescribed per-user traffic-related minimum rate re-

quirements. Based on bisection power adaptation, brute-force search and heuristic

subcarrier assignment algorithms are proposed to obtain optimal and subopti-

mal solutions. The authors in [WZS13] propose the semi-Markov decision process

based stochastic optimisation scheme for QoS guaranteed OFDMA multi-cell co-

operation networks. Their objective was to maximise the energy efficiency at the

base stations while ensuring the targeted QoS-guaranteed transmission rate for

mobile users.

One limitation is that all the above literature in this section have analysed

the resource allocation problem in the adequate resources system that can meet

all the users’ data rate requirements. However the traffic demands grow rapidly,
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driven largely by wireless and mobile devices, and multimedia services like video

streaming [Cis13]. Multimedia applications usually have high rate requirements.

Multimedia content, and specially video streaming, requires per-user data rates of

hundreds kilobits per second in order to be of useful quality [SHBBJ13]. These

translate into a heavy demand for the spectral resources. Therefore a more realistic

scenario is that the bandwidth-limited wireless networks cannot provide the QoS to

all the users [GZAE10a]. Another drawback of the above maximisation approaches

is that user’s utility is assumed to be strictly increasing with received data rate.

This is true, for example, when users are running elastic applications such as

file downloading. However for multimedia applications, such as VoIP and video

streaming, they cannot work property when their required data rates are violated,

but do not obtain additional benefits when given more resources than needed

[LMS04a].

2.3.4.2 User Satisfaction Maximisation

The above two considerations motivate us to study the user satisfaction approach

aiming to maximise the number of satisfied users. User satisfaction approach

introduces a judicious mixture of competition and cooperation. The idea behind

this judicious mixture is co-opetition, a concept from economic [BN97]. To allow

co-opetition, a user is called satisfied user if its achieved QoS is above or equal

to predefined QoS threshold. Rather than assuming that users wish to increase

their data rates whenever possible, we assume that each user has a predefined QoS

requirement. If the requirement is satisfied, then the user has no inclination to

change the choice of resource [SCH13][GYZ09].

Based on low complexity heuristics, a satisfaction oriented resource allocation
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(SORA) is proposed in [SLFC07] for OFDMA systems to maximise the number

of satisfied users. Based on average data rate, it divides the users into two sets:

satisfied and unsatisfied. Satisfied user does not transmit in this transmission time

interval (TTI), and subcarriers are allocated to the unsatisfied users in a round-

robin fashion. When a user achieves the required data rate for the current TTI,

it is moved to the satisfied user set. It adopts uniform power distribution among

subcarriers. The authors of [SLFC07] further extends the SORA algorithm with

beam blocking and self-interference avoidance in orthogonal random beamforming

multiple antennas scenario to exploit spatial multiplexing in [MJC10].

Research work [WWSZ10] proposes a user satisfaction based subcarrier allo-

cation algorithm for OFDMA relay networks in the resource-constrained system.

It divides users into real-time user and non-real-time user and the objective is to

maximise total user satisfaction. The proposed iterative solution includes deciding

the transmission link: direct or relay link; and then assigning subcarrier to the

user which can get the maximum rate; reallocating the subcarriers to meet real-

time user’s data requirement and adjusting the allocation among the non-real-time

users. Equal power allocation is assumed.

However [SLFC07][MJC10][WWSZ10] all consider single-cell scenario. The lim-

itation is twofold. The first is that in a multi-cell environment which is a more

realistic scenario, the inter-cell interference may impair user’s QoS satisfaction.

The other limitation is that the algorithms in [SLFC07][MJC10][WWSZ10] cannot

tackle the challenge of mutual dependency of signal-to-interference-plus-noise ratio

(SINR). In multi-cell OFDMA networks, the SINR used to calculate the achievable

data rate is unknown before the resource allocation.

[LCYW12] proposes a non-cooperative game based uplink subcarrier assign-
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ment algorithm to maximise user satisfaction for multi-cell OFDMA-based cog-

nitive radio networks. Each cell acts as a player and individually controls the

strategy of subcarrier allocation in order to maximise its own utility. The utility

in [LCYW12] is to maximise the total number of users whose QoS requirements is

achieved. Based on the interference feedback, an iterative solution is proposed to

solve the subcarrier assignment problem. Power allocation is also fixed.

Except for [ZTH+10], all above multi-cell QoS satisfaction schemes in Section

2.3.4 deal with uniform distribution of users across the entire network. However

several studies have showed that in multi-cell scenarios users are often unevenly dis-

tributed in space and, hence, the number of associated users may vary from base

station (BS) to BS [Lag10]. This may translate in an uneven load distribution

which can degrade the QoS that users experience, especially if some BSs result in

highly congested [SBL14]. For the network with non-uniformly distributed users,

the performance of those schemes will be limited due to the unbalanced load among

different cells. For example, if one cell is under-loaded and its neighbouring cells

are overloaded with all subcarriers used, the free subcarriers in the under-loaded

cell cannot be utilised to improve the service in neighbouring cells. Besides, us-

ing adaptive cell coverage, user’s interference can be alleviated by adjusting the

coverage cooperatively. Previously cell edge users with high interference could be

relived by amplifying the serving BS’s antenna gain and reducing the interference

BS’s antenna gain [YWZC10]. Load balancing is an effective RRM function (set 3

in Section 2.1.2) that provides dynamic load re-distribution in real time according

to current geographic traffic conditions. It can be used to improve the system

performance for any distributed systems containing unevenly distributed traffic,

especially for resolving the traffic hotspots [SAR+10].

In [ZTH+10], the unsatisfied cell-edge users in an overloaded cell send to the
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neighbouring BSs a request of restraining them from using the same channels.

Thus under-loaded cells make concessions to the requesters and shoulder part of

the heavy burden of the overloaded cell. It realizes load balancing in a new light.

However this scheme depends on significant backhaul communications between

users and the dominant interfering BSs. Work [KLL09] presents a minimum data-

rate guaranteed allocation algorithm with load balancing in a pseudo cell structure,

formed by the adjacent major-interfering sectors. To achieve load balancing, the

frequency reuse factor of every subcarrier in neighbouring cells is dynamically

determined. The problem with this approach is that it needs a large amount of

signalling exchange between neighbouring BSs in pseudo cells. Without increasing

the signalling traffic between users and neighbouring BSs or among adjacent BSs, a

semi-smart antenna based geographic load balancing scheme is proposed to improve

system total capacity in [YWZC10]. It takes transmit power, cell interference and

traffic densities and patterns into consideration at the same time. A drawback

is the scheme implements simple fair subcarrier allocation in which each user is

allocated same number of subcarriers. This subcarrier allocation method fails to

fulfill QoS provisioning to individual users.

2.3.5 Discussion

With bandwidth demanding GBR traffic such as real-time voice and video becomes

more and more popular, today’s mobile network is likely to be resource-constrained

to meet the ever-soaring demands. One important feature about GBR service is

that user’s satisfaction is a step function with received data rate. Therefore, the

most common resource allocation optimisation approaches including sum-rate max-

imisation and proportional fairness which assume user’s utility strictly increases
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with bit rate are not appropriate especially in resource-constrained system. If a

user’s required bit rate is achieved, giving it additional resource to further improve

its rate would be a waste to other users who want to be served. Rather than op-

timising rate subject to QoS of all users achieved, user satisfaction maximisation

which optimises the total number of satisfied users would be more suitable.

Apart from the contrast of high traffic demand and scarce bandwidth resource,

another challenge of QoS provisioning is that the traffic is often unevenly dis-

tributed from cell to cell. This may degrade the QoS experience to the users in a

congested cell. Therefore, resource allocation scheme should incorporate load bal-

ancing functionality to enhance QoS provisioning in multi-cell scenario. To make

our own contribution to address the problem of QoS-aware user satisfaction max-

imisation with load balancing, a joint antenna and subcarrier management scheme

is proposed in Chapter 3.

2.4 Network Densification

The aforementioned RRM schemes provide incremental improvements to the al-

ready deployed 4G system. However the 5G will need to be a paradigm shift

bringing new unique network and service capabilities [ABC+14] [TGW+14]. Cisco’s

annual visual network index reports have provided quantitative evidences that the

wireless data explosion is real and will continue. The latest report [CIS16] has

foretasted that by 2020, global mobile data traffic will increase eightfold; traf-

fic from wireless and mobile devices will account for two-thirds of the total IP

traffic; the number of devices connected to IP networks will be three times as

high as the global population in 2020. Fuelled by the popularity of smartphones,

tablets and video traffic, the forecast makes it plain that an incremental advance
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on current mobile networks will not meet the demands that network will face in

2020 [ABC+14]. Network densification is one of the key mechanisms for wireless

evolution into 5G.

2.4.1 Heterogeneous Network Deployments

The vision set by 5G to achieve remarkable improvements in data capacity pushes

the wireless research communities in both academia and industry to increase the

density of base station deployments, particularly in urban areas, in order to pro-

vide better throughput and coverage performance [DGK+13]. Since deployment of

additional macro base station involves significant cost and elaborate site planning,

low-power nodes (i.e., small cells, which may be employed indoors or outdoors)

offer a simpler cost-effective solution. According to the 3GPP [3GP13], a hetero-

geneous network may consist of different tiers of infrastructure elements/access

nodes (ANs), such as macro, micro, pico and femto base stations. Outdoor small

cells deployed by an operator, commonly known as pico cells, typically use a trans-

mit power of 30 dBm [BLM+14].

In 5G networks, network densification has a fundamentally different and more

important role than that in 4G. Network densification in 4G is recommended as a

complement for cellular networks by using low-power ANs like pico BSs to enhance

the capacity and coverage in partial areas, such as hotspot and indoor scenarios

[GTM+16]. However the 5G dense network is proposed as the dominant theme to

deploy in overall cellular scenarios. It is reasonable to expect constantly decreasing

cell size and increasing cell number [DGK+13]. Thus, in theory, cells can shrink

until nearly every AN serves a single user (Fig. 2.4). This allows each AN to

devote its resources to an ever-smaller number of user [ABC+14].
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Figure 2.4: Network densification in 5G

2.4.2 Advantages and Challenges

Making the cells smaller is a straightforward and effective way to increase the net-

work capacity [ABC+14]. In particular, network densification offers the advantage

of proximal communications, which in turn provides the means towards fulfilling

the following critical communication principle.

1. Spatial reuse of system bandwidth: from a system perspective, network den-

sification enables extreme spatial reuse of system bandwidth across a geo-

graphic area and ensures reduction in the number of users competing for

resources at each access node. With an increase of access node density is

directly translated into an increase of total system capacity [BLM+14].
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2. Reduction of path loss effects: by bringing the access node closer to the

user, the large-scale fading can be reduced. By deceasing the propagation

distance, the energy used for signal transmission will be reduced, which is

helpful to increase the power efficiency of the radio access network [DDD+15]

and extend the battery stand-by time of the user equipment [Mob11].

However as the densification becomes extreme, some challenges arise:

1. Affording the rising costs of installation and maintenance: evolving to ever-

smaller cells requires ever-smaller, lower-power and cheaper ANs [And13].

Nevertheless, obtaining permits and paying large monthly site rental fees for

operator-controlled small cell placements have proven a major hindrance to

the growth of pico cell, distributed antennas, and other enterprise-quality

small cell deployments [ABC+14].

2. Increasing the signalling traffic for coordination: the process of coordinating

the transmission and reception requires significant signalling overhead and

message passing between the BSs of different tiers, so as for interference

management. Messages and signalling are exchanged between pairs of BSs

via connecting links that are typically capacity limited, so such signalling

may not always be feasible [DDD+15].

Cloud radio access network (C-RAN) offers a viable solution to resolve the above

challenges by centralisation and virtualisation [ARS16]. The baseband resources

are pooled at the baseband unit (BBU), situated at the central office [Cvi14] and

the simplified remote radio heads (RRHs) are distributed at the cell sites. Through

the shared use of storage or computing resources, the total cost of ownership,

especially capital expenditure (CAPEX) and operating expenditure (OPEX) can

be saved [DGK+13]. Most of the control signalling takes place at the central cloud
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rather than between the connecting links at the cell sites [DDD+15]. This top-

down architectural change is paving the way for dense 5G deployment by making

it affordable, flexible and efficient [AIS+14].

2.5 Cloud Radio Access Network

Inspired by the green soft cooperative, cloud and clean access networks in [CLRH+14],

the cloud radio access network has been proposed from both operators (e.g., NTT,

KT, France Telecom/Orange, Telefonica, SoftBank/Sprint, and China Mobile)

as well as equipment vendors (e.g., Alcatel-Lucent Light Radio [Luc12], Nokia-

Siemens Liquid Radio [Net11]) by incorporating cloud computing into radio access

networks (RANs).

The general architecture of C-RAN consists of three main components, namely

(i) BBU pool with centralised processors, (ii) RRHs with antennas located at

the remote sites, (iii) fronthaul links which connects the RRHs to the BBU pool

[PLZW15], as depicted in Fig. 2.5.

In C-RANs, the traditional base station is decoupled into two entities: a base-

band unit and a remote radio head. Each virtualised BBU consists of a virtual

machine hosting a BBU placed in a metro data center and connected by virtual

links to a set of RRHs (i.e., a set of cells) [CCMM16]. A large number of BBUs

are clustered together as a BBU pool in one big cloud centre [JMSC15]. A BBU

pool can be located at a convenient, easily accessible site, enabling cost savings

on site rental and maintenance [CCY+15]. BBU pool provides centralised signal

processing and resource management across multiple cells, where the cloud com-

puting technology enables flexible spectrum management and advanced network
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Figure 2.5: C-RAN architecture: BBU pool, RRH and fronthaul links

coordination [PWLP15]. The centralised manner also provides the means to selec-

tively turn RRHs on/off in line with the traffic fluctuations in different scenarios

[WHY14]. BBU resiliency against network and processing failures is critical for

C-RAN deployments, which can be achieved by dedicated virtual link protection

[CAK+16] and resilient virtual machine placement [CMDTM16].

The remote radio heads (RRHs) are relatively simple, light-weight radio units

with antennas [SAS+16]. RRHs are mainly used to provide data rate for user

equipments (UEs) with a basic wireless signal coverage, by transmitting radio fre-

quency (RF) signals to UEs in the downlink and forwarding the baseband signals

from UEs to the BBU pool for further processing in the uplink. In general, RRHs

perform RF amplification, up/down conversion, filtering, analogue-to-digital con-
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version, digital-to-analogue conversion, and interface adaptation. By conducting

most signal processing functions in the BBU pool, RRHs can be relatively simple

and can be placed up on poles or rooftops [CCY+15]. RRHs are distributed on the

cell sites and can be densely deployed in a cost-efficient manner [PWLP15].

Fronthaul is defined as the link between BBUs and RRHs. Fronthaul can be

realized by different technologies, such as optical fibre communication, standard

wireless communication, or even millimetre wave communication. Generally, fron-

thaul falls into two categories: ideal without any constraints, and non-ideal. Opti-

cal fibre is considered to be the ideal fronthaul for C-RANs because it can provide

a high transmission capacity but at the expense of high cost and inflexible de-

ployment. In contrast with optical fibre, wireless fronthauls employing the cellular

transmission or microwave communication technologies are cheaper and more flex-

ible to deploy, therefore are anticipated to be prominent in practical C-RANs.

However, the capacity they can provide is limited [WHY14][PWLP15].

2.5.1 Energy Efficiency Issue

By conducting most signal processing functions in the BBU pool, RRHs can be

relatively simple and distributed in a large scale with a cost-effective manner. This

leads to open issues about energy efficiency and operating efficiency since in most

circumstances more RRHs than needed are deployed to meet the estimated highest

service demands at all times. Due to the variation of spatial traffic, it would be

feasible to switch off some RRHs.

The high density of RRHs results in severe interference and also inefficient

energy consumption. First, close proximity of many RRHs results in increased

interference, and hence the transmit power of RRHs and/or UEs needs to be
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increased to meet any given QoS. Second, the amount of energy consumed by a

large number of RRHs [Acc14] as well as by the fronthaul network to support the

connections with the BBU pool [TMW+11] will also become considerable.

The introduction of dense 5G networks consisting a wide number of small cells

also threatens to increase the operating energy costs, thereby aggravating the detri-

mental greenhouse (CO2) gas emissions [SRK16]. With the increase of global

energy consumption in wireless communication, energy issue has gained a lot of

attentions [SCSY14]. Existing work on cellular traffic distribution [PSBD11] has

already pointed out time-varying, space-varying cellular traffic patterns. Fig. 2.6

shows a week-long cellular traffic dynamics, captured across five cells in a dense,

urban locality of Seoul, Korea. It can be seen that the traffic profile of the night-

time is much lower than that of the day-time. It is also observed that there is

a difference between the traffic profiles of weekdays and weekends. The figure is

consistent with the data presented in [PSBD11]. Since the operators need to de-

ploy their access nodes to support the peak time traffic, it is inevitable that the

access nodes will be underutilised most of other times, especially, at night and on

weekends. In fact, in densely deployed networks, the number of users associated

with each access node is small, which leads to higher traffic dynamics among ac-

cess nodes [GZNY10]. The higher the deployment density, the higher the chance

that access nodes will carry no traffic or only a low traffic load due to spatial and

temporal traffic fluctuations [WTN14]. Note, however, that access nodes consume

most of their peak power even when they are in little and no activity [CZB+10].

Therefore, an effective way to achieve energy saving in mobile communication net-

works is to dynamically switch off access nodes, especially for scenarios with low

traffic load where less access nodes can meet the traffic needs of all users [FJL+13].

Such facts motivate us to select appropriate RRHs to adapt to the temporal
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Figure 2.6: Traffic dynamics across five cells in urban locality of Seoul,
Korea (Fig. 2 from [SRK16])

and spatial data dynamics, thereby optimising the energy consumption in C-RAN,

which is the primary concern of our work in Chapter 4. In addition, such an RRH

selection strategy is easy to implement in C-RAN architecture.

2.6 Energy Efficient RRM Schemes for Greener

5G Systems

Recently, certain research efforts have been devoted into developing energy efficient

RRM schemes in C-RANs. However in most of prior works, the global network

parameters and the network topology are static. For instance, the authors in

[PZJ+15][CGF+15][LCF14][CJL+14] propose their energy efficiency (EE) schemes

based on fixed network construction and traffic load.
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Authors in [PZJ+15] investigate the joint resource block and power optimisation

problem to maximise EE performance in the OFDMA-based C-RAN system. Re-

search work [CGF+15] proposes a self-adaptive power allocation scheme in software

defined C-RAN indoor scenarios aiming to save energy consumption. A C-RAN

based power allocation scheme is proposed in [LCF14], working under large-scale

multiple-input multiple-output (MIMO) scenario with enhanced energy efficiency.

C-RAN architecture is implemented into a heterogeneous network structure in

[CJL+14] and this implementation shows EE advantages by cooperative transmis-

sion. A simple but efficient pre-coding antenna beamforming is proposed to reduce

the computation complexity of BBU.

However the traffic load fluctuates significantly over time and locations. RRH

in different areas will experience different traffic demand fluctuations through the

day. For example, RRHs located in office areas will experience the highest traf-

fic demand during daytime, while in the evening they will remain underutilised.

On the contrary, RRHs located in residential areas are underutilised in daytime.

Such spatial-temporal fluctuations result in large capacity surpluses when system

is underutilisation. Thus identifying this leads to an energy savings opportunity

via network adaptation to the actual traffic demand.

From the consideration of traffic variations, scanning recent work in this area,

most research attentions have been paid to BBU management. In [WZZ14], a

graph-based dynamic frequency reuse scheme is proposed in C-RAN to reduce

energy consumption. Under this scheme, the number of active BBU is reduced. By

allowing flexible mapping between BBU and RRH due to cloud-based centralised

baseband processing, the number of BBUs is reduced to acquire more energy gains

in [SPH15] using bin packing algorithm. A traffic load balancing based strategy

is designed in [KAAR15], to assign a minimum number of active BBUs to the
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RRHs so that power saving is maximised. In this strategy, if the resource usage of

one BBU reaches the upper limit, partial traffic of this BBU will be offloaded to

another light-loaded or sleeping BBU; in contrast, an underutilised BBU will be

switched off after its traffic is completely offloaded to another suitable BBU. One

problem of these BBU management schemes is that they match the BBU resources

to the total traffic demand of each RRH. This “BBU-to-RRH” mapping does not

guarantee the QoS provisioning at user level. They investigate the mapping based

on given RRH deployment, thus overlook the potential of energy saving using

dynamic RRH sleeping techniques.

[PLZW15] and [PLJ+14] have pointed out that RRHs should be adaptive to

the traffic volume and can fall into sleep mode under administration of the BBU

pool to save much energy when the traffic load is low. This presents energy saving

opportunities of approximately 60 percent in contrast to non-sleep mode [ABH11].

However, the amount of research works for RRH switch off strategies has not been

large.

Power minimisation beamforming design for C-RAN has been addressed previ-

ously in the literature [SZL14][LZL15]. In [SZL14], the joint design on selection

of active RRHs and coordinated beamforming among active RRHs is done, with

the objective of minimising the total power consumption of RRHs and the corre-

sponding fronthaul links. A greedy algorithm and two iterative algorithms based

on a three-stage group sparse beamforming framework are developed. The defined

problem in [LZL15] has similar formulation except that both downlink and uplink

transmissions are considered jointly. A virtual downlink transmission is established

to convert the original problem into an equivalent form, which can be solved by

relaxed-integer programming. In both schemes, cooperative joint transmission re-

quires significant fronthaul capacity. Both studies assume the fronthaul links are
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ideal. However in practical systems the fronthaul is often capacity constrained

[TZJ11], which has a significant impact on both spectral and energy efficiency in

C-RANs. Therefore, the network planning of equipment deployment and radio

resource allocation schemes should account for the fronthaul capacity constraints

[HLD15].

2.6.1 Base Station Sleep Mode Techniques in Green Cel-

lular Networks

Although existing literature concerning RRH operation is quite limited. Sleeping

strategy which putting some BSs into sleep mode (or switch off/deactivate some

BSs) plays an important role to save energy, which has been proven in conventional

green cellular networks. It’s an important resource management technique from

the considerations of traffic dynamics and energy efficiency. Sleep mode, or sleep-

ing technique [ABH11] is regarded as a promising solution to reduce the power

consumption dramatically, which allows the hardware components of the base sta-

tions to be switched off and makes the power consumption adaptable to the actual

traffic [SCSY14].

Sleep mode techniques cover approaches that selectively turn off some resources

in the existing network architecture during non-peak traffic hours. These ap-

proaches generally try to save energy by monitoring the traffic load in the network

and then decide whether to turn off (or switch to sleep mode, also referred as low-

power mode or deep idle mode in some literature). The fact that BSs have been

designed to serve peak traffic leads to wastage of energy during low traffic hours.

Sleep mode operations exploit the opportunity by turning lightly loaded BSs to

sleep and to save fixed part of energy consumption [WZZY15].
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The network energy minimisation problem is to determine the optimal set of

active BSs that are needed to support the required traffic demand. This is a chal-

lenging combinatorial optimisation problem [SKYK11]. The search space increases

exponentially with the number of BSs. Let L be the set of BSs located inside the

considered geographical area. Theoretically, it requires high computational com-

plexity for finding the optimal active BS set among 2|L| on/off combinations.

A practically implementable switching on/off based energy saving (SWES) al-

gorithm is proposed in [OSK13] that can be operated in a distributed manner with

low computational complexity. The key design principle of the SWES algorithm is

to turn off a BS one by one that will minimally affect the network by using a newly

introduced notion of network-impact, which takes into account the additional load

increments brought to its neighbouring BSs. In [CD14], Genetic algorithm (GA)

is used to determine the active BS set for reducing overall network energy con-

sumption in OFDMA cellular networks with much lower complexity compared to

exhaustive search, especially when the number of BSs is large. However, in both

studies, the user association strategy is based on given design of BS switch off

strategy. In [OSK13], when a BS is turned off, the users served by it will be

handed over to the neighbouring BS which provides the best signal strength. In

GA-based scheme [CD14], when evaluating each solution representing the set of

active BSs, users are attached to the BS with the strongest signal strength.

2.6.2 Joint Design for BS Switch off and User Association

User association, as the word implies, means associating mobile end users with BSs

in an energy efficient way. In order for the sleep mode techniques to function, users

originally connecting to BSs that go asleep need to be associated with new active
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BSs. This process is required to ensure the QoS does not degrade significantly

during BS sleeping operations.

Joint design of BS operation and user association which couples BS switch off

tightly with user association offers potential aggregated gains. It has also been

noticed that simply associating a user to the closest BS may be sub-optimal when

traffic distribution is inhomogeneous, because the closest BS, if it is located in a

low traffic area, may be preferable to be turned off [SKYK11]. Therefore, optimal

user association, based on locations of users and BSs, average or instantaneous

received signal quality as well as traffic load, is an essential condition for sleep

mode schemes to be advantageous [SQKS13].

Energy efficient joint design has been studied according to different metrics.

When taking the maximisation on energy efficiency (EE) as the optimisation ob-

jective, the joint design is investigated in [TSR+15] based on providing a heuristic

solution. In particular, the small base station (SBS) with the lowest EE value is

the most possible candidate for being switched off; if the system EE is improved

after this SBS is deactivated and its served users are re-associated, the algorithm

is repeated to successively switch off the SBS with lowest EE value at each round,

till there is no gain in EE anymore. As stated in its conclusion, one limitation of

this proposed approach is that it does not take QoS constraints into account.

The joint design is also studied to minimise the total cost of flow-level perfor-

mance (file transfer delay) and energy consumption [SKYK11]. For the user as-

sociation problem, an iterative algorithm implemented by both the user and base

station sides is proposed to achieve load balancing, given the problem is feasible.

For the BS operation problem, they propose simple greedy-on and greedy-off al-

gorithms. Work [XZZL15] is an extension of [SKYK11], where both on-grid power
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and renewable energy are considered.

In [RT14], the joint optimisation problem is formulated to minimise the total

energy consumption while maintaining the QoS of users. The strategy is to put

high power macro base stations into sleep mode and offload the users to low-power

small base stations or neighbouring macro base stations. A many-to-one matching

based algorithm is used to solve user association. A voting-based macro base

station sleep mechanism is proposed.

2.6.3 Discussion

By identifying the energy saving potentials using sleeping techniques, we make

our own contribution to address the network energy minimisation problem in C-

RAN architecture. The centralisation in BBU pool facilities the implementation of

RRH selection to be adaptive to traffic dynamics. Different from previous works

reviewed above, we jointly consider user association, RRH selection, radio resource

constraints and fronthaul capacity constraints. Rather than putting high power

node into sleep mode, our strategy is to put pico RRH into sleep mode since high

power node in C-RAN needs to be active all the time for coverage in the control

plane. This part of work is in Chapter 4.

2.7 Summary

This chapter provides an overview of radio resource management for wireless com-

munications and introduces the basics of quality of service and the concept of

cloud radio access networks. Existing resource allocation approaches in OFDMA
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networks are summarised and discussed. Also, recent research interests in energy

efficient RRM schemes, especially sleeping techniques are reviewed and discussed.



Chapter 3

Joint Antenna and Subcarrier
Management Scheme

3.1 Introduction

This chapter focuses on investigating QoS-aware user satisfaction maximisation in

resource-constrained distributed 4G system with unbalanced traffic. As discussed

in Section 2.3.5, instead of rate maximisation resource allocation algorithms, it is

imperative to devise satisfaction maximisation algorithms for the ever-increasing

multimedia traffic in a resource-constrained system, as well as to support load

balancing. From this consideration, a joint antenna and subcarrier management

scheme is proposed for the multi-cell OFDMA downlink. We utilise a semi-smart

antenna approach to achieve cell coverage adaptation responding to the unbalanced

load distribution. The research objectives and contributions of this chapter can be

summarised in Table 3-A.

Specifically, in Section 3.2, general system model is introduced. Then a joint

antenna and subcarrier optimisation algorithm is proposed to improve the network

satisfaction performance in Section 3.3. Simulation set-up and results are presented

50
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Table 3-A: Research objectives and contributions

Research objectives Research contributions

QoS provisioning
improvement: user

satisfaction maximisation
with load balancing

A joint antenna and subcarrier management
scheme is proposed. Semi-smart antennas are
utilised to achieve adaptive cell coverage and

optimised by genetic algorithm. The proposed
scheme can lead to 10-15% satisfaction improvement

compared with that in fixed antenna pattern.

Dynamic optimisation
of QoS with
low-overhead

for moving users

We monitor the user movement periodically and
optimise the antenna pattern only when the

satisfaction ratio drops below a certain threshold.
This method avoids unnecessary handovers.
Simulations show that the proposed scheme
offers about 15% satisfaction improvements

in the overall user satisfaction.

in Section 3.4. Additionally by taking user priorities into account, the joint op-

timisation algorithm is further developed and evaluated in Section 3.5. Finally a

dynamic optimisation of QoS with user movement is proposed and evaluated in

Section 3.6.

3.2 System Model

An OFDMA multi-cell network serving I users with L base stations (BSs) is con-

sidered in this chapter. In this research, our focus is on downlink transmission, i.e.,

from BSs to users. The frequency reuse factor is 1 and each cell has N subcarriers.

Each cell is divided into three sectors and each sector has one third of the total

subcarriers. This thesis takes the minimum rate requirement as a QoS indicator

into consideration because data transmission rate is the most important factor to

determine a user’s satisfaction [SAR09] and is widely adopted in the literature

mentioned in Section 2.3.4. Besides, the channel models formed in this thesis is
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from the perspective of physical layer, it is difficult to evaluate other QoS sup-

porting abilities such as delay bounds and packet loss ratio [WN03]. Specifically

in this thesis, every user has an independent QoS requirement denoted by Ri. In

this chapter, for simplicity, we assume power allocation is uniformly distributed

to each subcarrier, as in [SLFC07][WWSZ10][LCYW12] and [ZXH+10]. Denot-

ing the transmit power of BS j by Pj, the BS transmit power on subcarrier n is

pnj = Pj/N . We define by Aj = [anij] the allocation matrix, where the subcarrier

allocation indicator anij is 1 if subcarrier n is assigned to user i and 0 otherwise.

Within a cell, one subcarrier can be assigned to only one user. BSs use semi-smart

antennas while users remain omnidirectional antennas.

3.2.1 Semi-smart Antennas

The concept of semi-smart antennas is put forward in [NPP+03], which has the

functionality to change the radiation pattern in response to some system need. In

semi-smart antennas approach, only few antenna elements are needed to create

highly shaped beams with low angular accuracy and gain. The theory behind this

approach is based on utilising a load balancing scheme to shape cellular coverage

according to the traffic needs [DBC04][WBJW08].

Compared to the fully smart antennas, which points an individual beam towards

each user, the semi-smart antennas approach produces a flexible broadly-shaped

coverage pattern for an area. Both the complexity and the cost are much lower

using the semi-smart antennas [ACP06][YWZC10].

In 4G systems, semi-smart antennas consists of three sectors and in each sector,

a multi-element array antenna is used to cover 120 degree. The array antenna is

controlled by adjusting the excitation of the amplitude and phase of individual an-



Chapter 3. Joint Antenna and Subcarrier Management Scheme 53

tenna elements to produce desired radiation patterns [YWZC10]. In this research,

the semi-smart antennas at each BS consist of three sectors with a 2-element array

antenna for each sector. Each BS’s coverage pattern is controlled by the 6 indi-

vidual antenna elements with each antenna element covering 60 degree. Denoting

the gain of antenna element d of BS j by gdj , the antenna pattern of one BS is

determined by Gj = [gdj ].

It would be possible to use a more complex set of antennas and control the

phase as well as the gain, but the approach adopted in this chapter is simple but

more realistic in practice.

3.2.2 Channel Model and Achievable Rate

Let hij denote the channel gain between user i and BS j, which embodies the

effects of path loss, log normal shadowing and antenna gains as large scale fading

component. Since this research focuses on system capacity investigation, which is

only related to the average signal condition, so small scale fading component is not

considered here [Xue00] [Liu14]. Then the SINR of user i in cell j, or with respect

to BS j can be expressed by

γnij =
hijp

n
j∑L

j′=1,j′ 6=j hij′p
n
j′

(
∑

i′∈Uj′ ,i
′ 6=i a

n
i′j′) + σ2

(3.1)

where Uj denotes the set of users in cell j and σ2 is the noise power. Then the

achievable transmission rate of user i on subcarrier n is given according to the

Shannon capacity formula [KdVYV12]

rnij = 4Blog2(1 + γnij) (3.2)
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where 4B is the bandwidth/spacing of the subcarrier. The received/achievable

total data rate of user i, ri is determined by

ri =
N∑

n=1

anijr
n
ij (3.3)

3.3 Proposed Joint Optimisation Algorithm

In this research, we give emphasis to the guaranteed bit rate (GBR) traffic whose

satisfaction is a step function with the received data rate, as mentioned in Section

2.2.4. Rather than assuming that users wish to increase their data rates whenever

possible, we define that user i is called satisfied user if its achievable data rate ri

is above or equal to the predefined QoS requirement Ri. The satisfied users have

no inclination to change their subcarrier allocation.

The objective of the joint antenna and subcarrier management scheme is to

achieve the maximum number of satisfied users:

max
Aj ,Gj ,∀j

{
I∑

i=1

u(ri −Ri) |
∑
i∈Uj

anij ≤ 1} (3.4)

where u(·) is a step function and the constraint states that in a cell, an occupied

subcarrier can only be allocated to one user as this is the way OFDMA operates.

Problem 3.4 involves the joint optimisation of two variables, Aj for the sub-

carrier allocation and Gj for the antenna pattern adaptation. We first solve the

subcarrier allocation for given Gj based on non-cooperative game. Then we opti-

mise the antenna pattern using genetic algorithm.
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3.3.1 Subcarrier Allocation

3.3.1.1 Fundamentals on Non-cooperative Game

Non-cooperative game theory is used in subcarrier allocation. As a BS is fully

in charge of subcarrier allocation independently in a multi-cell OFDMA network,

it can be regarded as a selfish and independent player trying to gain more profit

for itself while competing with other BSs that have the same non-cooperative

behaviour. For distributed operation, the BS in each cell should be capable of op-

erating without the information about other cells. Also it avoids massive signalling

between BSs to reduce both power and time consumption. In this situation, non-

cooperative game theory can render a useful and powerful tool for efficient resource

management [KL06a].

A non-cooperative game has a strategic form, including player, action space and

utility function. A non-cooperative game involves a finite set of players. The action

space contains all the players’ strategies against the others. The utility function

measures the payoff of the player determined by the strategies chosen by all the

players. The Nash equilibrium is regarded as the solution of a non-cooperative

game. A Nash equilibrium consists of each player’s best response against all others’

strategies. In other words, it is a steady-state point that none of the players has

incentives to change its strategy since none of them can unilaterally increase its

utility function given that the other players stick to their current strategies [LW10].

In this chapter, each BS is a player. The strategy is its subcarrier allocation

scheme Aj. Uj is the user set of player j. It is determined by the given antenna
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pattern Gj. The utility of a player is its satisfied user number:

Sj =
∑
i∈Uj

u(ri −Ri) (3.5)

3.3.1.2 Subcarrier Allocation Algorithm

We adopt the subcarrier allocation algorithm proposed in [LCYW12] but modify

it to downlink transmission.

The subcarrier algorithm has three basic modules: the initial subcarrier alloca-

tion; the release of subcarriers occupied by unsatisfied users and the reallocation

of those released resources.

A. Initial subcarrier allocation

In the initial round of subcarrier allocation, the three sectors in each cell start

allocating subcarriers to their users simultaneously. For any user, a certain num-

ber of subcarriers must be allocated to it in order to meet the QoS requirement

Ri. However, since there is no interference information available beforehand, the

number of subcarriers for a user, denoted by numij, can be calculated based on⌈
Ri/r

n
ij

⌉
but without the interference term. dxe means taking the smallest integer

greater than x. To predict the effect of inter-cell interference and to allow more

users to get their required bit rate, a guard parameter C1 is used. Therefore,

numij =
⌈
Ri/r

n
ij(1 + C1)

⌉
.

B. Subcarrier release

After one round of subcarrier allocation of all cells, the ri of every user is calculated

and then compared with Ri. The subcarriers occupied by the unsatisfied users,
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defined as the users whose ri is smaller than Ri will be released and put back to

the vacant subcarrier pool because those users occupy resources but do not actu-

ally have sufficient resources to be able to meet their minimum QoS requirement.

Rather than giving some users this resource that does not meet their requirement,

we take the resource back and distribute it to the others who can actually meet

their requirement by occupying the previously released subcarriers.

C. Subcarrier reallocation

Following the release of subcarriers, the cells start a process of reallocating the

vacant subcarriers to serve the unsatisfied users. After each round each BS will

have a table that saves information including the interference on each subcarrier.

In one cell, the unsatisfied users is reassigned subcarriers from the vacant subcarrier

pool according to the interference on the subcarrier and which sector the subcarrier

belongs to. Priority is given to the subcarriers with the best SINR perceived by

that user taking into account the interference and belongs to its own sector. The

received bit rate will be calculated whenever a new subcarrier is assigned to the

user. The assignment stops when Ri is reached. As the interference information is

calculated from the last round of all-cell allocation, it may not precisely represent

the interference for the allocation in the current round. Therefore, we add a

correction factor CFij to the number of subcarriers allocated to one unsatisfied

user according to the user’s history: CFij(t) = CFij(t− 1) + 1, where t represents

the iteration/round.

D. Overall subcarrier allocation algorithm

The overall subcarrier allocation algorithm is as follows:

i) Initial subcarrier allocation and initialise the correction factor CFij to 0.
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ii) Subcarrier release: calculate ri and release the subcarriers allocated to un-

satisfied users and then increase their CFij by 1.

iii) Subcarrier reallocation for those users still unsatisfied.

iv) Subcarrier release and increase their CFij by 1 for unsatisfied users (as in

step ii)).

v) Go back to step iii) and continue the process until the subcarrier allocation

result converges or the maximum iteration value is reached. The condition

for determining convergence is the subcarrier allocation scheme of the system

remains the same for two consecutive iterations.

3.3.2 Antenna Pattern Optimisation

The optimisation of semi-smart antennas is NP-hard [YWZC10] and the opti-

mal solution cannot be obtained easily. However, because of the recent research

progress in optimisation techniques, more and more NP-hard optimisation prob-

lems can now be solved by using meta-heuristic optimisation methods, for example

genetic algorithm (GA) [XWTS13]. GA is a well-known effective search technique

to find a optimal or near-optimal solution [Mit98] which does not require complex

mathematical functions [CD14]. GA is particularly useful on problems with little

domain knowledge because it requires no priori analysis of the hypothesis space

or of the problem domain [HG89][WYMC09]. GA deals simultaneously with a

set of possible solutions, called population to search different regions of a search

space, which allows to find a diverse set of solutions for difficult problems with non-

convex and discontinuous solution spaces [YWZC10]. Its basic idea is to update

the solution population based on the fitness function until getting a satisfactory



Chapter 3. Joint Antenna and Subcarrier Management Scheme 59

solution [ZZZX12]. Since this chapter concentrates on the use of GA, rather than

on research into GA, the reader is referred to [HG89][Mit98] for more information

on the GA details.

3.3.2.1 Fundamentals on Genetic Algorithm

GAs are search and optimisation procedures motivated by the principles of natural

genetics and natural selection. Some fundamental ideas of genetics are borrowed

to construct search algorithms that are robust and require minimal problem infor-

mation.

Fig. 3.1 shows a flowchart of the GA working principle. It begins its search with

an initial population (a random set of solutions). Once a population is initialised,

each solution in it is evaluated in the context of the underlying objective and

constraint functions. A termination criterion is then checked. If the termination

criterion is not satisfied, the population is modified by three main genetic operators

(reproduction operator, crossover operator and mutation operator). Hopefully a

better population is created. The generation counter is incremented to indicate

that one generation of GA is completed.

A. Solution representation

In GA, design parameters are coded into binary strings where each bit is a gene.

A solution (chromosome) is represented by the overall binary string including all

the design parameters, which can be referred to as chromosomal representation.

B. Fitness assignment

Once a string (or a solution) is created, it will be evaluated by the underlying
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Begin

Initialise population

Condition?

Reproduction

Crossover

Mutation

t=t+1

NO

Figure 3.1: A flowchart of the working principle of a GA including pop-
ulation and three genetic operators

objective and constraint functions and then assigned a fitness value. In the absence

of constraints, the fitness of a string will be the solution’s objective function value.

In most cases, however, the fitness is made equal to the objective function value.

C. Genetic operators

Genetic operators are the major part of the working of a GA. Three main genetic

operators are reproduction operator, crossover operator and mutation operator.

These three operators are simple and straightforward. Reproduction operator se-

lects good strings. Crossover operator recombines good substrings from two good

strings together to hopefully form a better string. Mutation operator locally alters
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a string to hopefully create a better string. Even though none of these claims

are guaranteed and/or tested during a GA generation, it is expected that if bad

strings are created they will be eliminated by the reproduction operator in the

next generation and if good strings are created, they will be emphasised.

• Reproduction operator

Reproduction operator emphasises good solutions and eliminates bad solu-

tions in a population without changing the population size. This is achieved

by: a. Identify good solutions; b. Make multiple copies of good solutions; c.

Replace bad solutions with copies of good solutions.

• Crossover Operator

Crossover operator is applied to the strings of the mating pool (new popula-

tion formed after reproduction operator). In crossover operators, two strings

are picked from the mating pool at random and some portion of the strings

are exchanged between the strings. In order to preserve some good strings,

not all strings in the population are used in crossover. If a crossover prob-

ability of pc is used then 100pc% strings in the population are used in the

crossover operation and the remaining are simply copied to the new popula-

tion.

• Mutation Operator

Like gene mutation, mutation operator changes a 1 to a 0 and vice versa

with a small mutation probability, pm. Mutation is used to keep diversity in

the population. Mutating a string with a small probability is not a random

operation since the process has a bias for creating a few solutions in the

neighbourhood of the original solution.
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As seen from the above description of GAs working principles, GAs work very

differently compared to the traditional search and optimisation methods. The

fundamental differences are: GAs work with a coding of variables instead of the

variables themselves; GAs work with a population of solutions instead of a sin-

gle solution; GAs do not require any auxiliary information except the objective

function values and GAs use probabilistic rules to guide their search [Deb99].

3.3.2.2 Antenna Management Algorithm

The encoding scheme to represent the antenna patterns as chromosomes uses a

gain vector Gj = [g1j , g
2
j . . . , g

D
j ], in which each gain value is coded as a gene,

representing antenna gains along D directions. We adopt the widely-used binary

coding method [Cui08] where each antenna gain gdj is encoded to a binary string.

Gj determines one antenna coverage pattern. The multi-cell system has L BSs, so

that a chromosome is represented as G = [G1,G2, . . .GL]. With binary encoding,

a solution/chromosome is the overall binary string including all antenna gains,

represented as the binary equivalence of G. Based on the precision, assuming one

gain value is coded into ng-bit string, then one chromosome includes DLng bits in

total.

Each chromosome is associated with a fitness function to evaluate the goodness

of its indicated solution. The fitness function here is to maximise the user satisfac-

tion, as expressed in equation (3.4). Every chromosome is fed into the subcarrier

allocation algorithm described in Section 3.3.1.2 as the input determining the user

set Uj of every player BS j.

We let the chromosomes go to the next generation through a breeding process

consisting of three operations, namely reproduction, crossover, and mutation.



Chapter 3. Joint Antenna and Subcarrier Management Scheme 63

In reproduction operation, the chromosome selection rule is based on a roulette

wheel selection, such that the higher of the fitness, the greater opportunity of

the chromosome to be selected [CSP11]. The possibility of chromosome Cp to be

selected is F (Cp)/(
∑Nre

q=1 F (Cq)), where F (Cp) is the fitness value of chromosome

Cp. Note that the selected chromosomes are not removed from the population;

therefore, it is possible that the same chromosome is selected more than once.

We use the most widely used single-point crossover method [Kay11] to combine

the genes of the two selected individuals. A crossover point is first chosen at random

somewhere along the length of the string of the chromosome. Then, across the

string of the chromosome, any codes after the crossover point are swapped between

the parent chromosomes to form two new children. An illustration of the single-

point crossover operator is given in Fig. 3.2. By inheriting partial characteristics

from the parents in this way, the chromosomes of their offspring are expected to

provide better solutions.

0 1 0 0 0 0 1 0 1 0

 1 0 0 1 0 0 0 1 0 1 

Parent 1

Parent 2

Crossover

Point

0 1 0 1 0 0 0 1 0 1 

1 0 0 0 0 0 1 0 1 0

Child 1

Child 2

Figure 3.2: An illustration of the single-point crossover operator. Two
parent solutions to create two new children solutions

After crossover, all children chromosomes go through a mutation operation. For

every gene element in the chromosome, a random number r ∈ [0, 1], is generated

and compared with the mutation probability, pm. If r < pm, the code will be
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replaced as the other possible value; otherwise, it will remain unchanged. In our

case, if mutation happens, gene 0 becomes 1 and vice versa, illustrate in Fig. 3.3.

0 1 0 1 0 0 0 1 0 1

0 1 0 1 1 0 0 1 0 1

Mutation

Figure 3.3: An illustration of the mutation operation. The fifth bit is
mutated to create a new string

To prevent the best solution of the prior generation from being lost in the

breeding process, we use elitism strategy taking the two best individuals of each

parent generation to the next generation. All other parents will be replaced by the

offspring generation. As we can see, two selected parents can produce two children;

therefore, to keep the size of the population unchanged, the breeding process has

to be repeated until Npo− 2 children are generated. Once a new population of Npo

chromosomes has been formed, it replaces the old generation. The procedure is

then repeated for a total of Nge generations. When the algorithm is terminated, the

antenna pattern solution is based on the best individual of the current population.

The flowchart for the antenna management algorithm is shown in Fig. 3.4.

3.4 Simulation Set-up and Results

To evaluate the performance of proposed algorithm, a multi-cell OFDMA network

is simulated. Fig. 3.5 illustrates the flowchart of the simulation platform used in

this chapter. The functionality of each module is summarised as follows.
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Encode potential solutions

Generate initial population 

P(0)
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the breeding process, and 
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function of each solution

3) select two of the best

individuals in the population

Evaluate the individuals
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Three basic genetic operators:

1) roulette wheel selection

2) single-point crossover

3) mutation

End

Insert copies of 

the two best

chromosomes into
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Population P(t+1) 

Population P(t) 
YES

Figure 3.4: Flowchart of the antenna management algorithm

A. Network initialisation

This module generates network topology (e.g., cell and sector); generates the posi-

tions of BSs and users, where the BS is located at the centre of every cell and the

users are distributed in uniform or unbalanced mode; marks the priority and QoS

requirement of users; does wrap-around matching up virtual cells with real cells.

B. Joint optimisation

This module implements the proposed joint optimisation algorithm. In every gen-

eration, firstly the channel model considering the semi-smart antenna gain is up-

dated. Also, the user set Uj for each BS is updated accordingly. Then we imple-

ment the subcarrier allocation algorithm in Section 3.3.1.2. For every individual
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Network initialisation

Initial antenna pattern population 

P(0) generation  

For every individual, update channel 

model and determine user set 

Generic operations:

Population P(t+1) 

Population P(t) 

Have Nge generations

been generated?

Given the antenna pattern, allocate 

subcarriers

Calculate the satisfaction and assign it 

as the fitness for all the individuals
Y

E
S

Simulation results output 

NO

Proposed joint 

antenna 

pattern and 

subcarrier 

optimisation

Figure 3.5: Flowchart of simulation platform for joint antenna and sub-
carrier optimisation

representing one solution of overall antenna pattern for the seven-cell network, the

fitness is evaluated based on the user satisfaction calculated by
∑L

j=1 Sj, where Sj

is given in equation (3.5). At last, the population will evolve by the three main

genetic operators until termination.
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Table 3-B: System parameters

Parameter Value
Network topology 7 hexagonal cells with wrap-around

Cell radius 500 m
Carrier frequency 2.0 GHz

Bandwidth 5 MHz for downlink
Subcarrier bandwidth 15 kHz

Downlink subcarrier number 300

Antenna type
3 sectors semi-smart antennas,

with 6 controllable elements (0-20 dBi)
BS transmit power 43 dBm

Path loss model (dB) 128.1 + 37.6log10(d) (d in km)
Shadowing standard deviation 10 dB

Noise density -174 dBm/Hz
User minimum rate requirement 512 kbps [CJJ09]

3.4.1 Simulation Parameters

The system parameters and the parameters for the GA simulation are shown in

Table 3-B and Table 3-C respectively. The values chosen in Table 3-B follow

the 3GPP standards [Acc16a]. The antenna type parameter is according to the

latest research works on semi-smart antennas [YWZC10][ZZZX12]. The parame-

ter settings for GA follow the latest literature applying GA in OFDMA resource

manegement [XWTS13][TCYR13][XLmT14].

Table 3-C: GA parameters

Parameter Value
Population size Npo 50

Generation number Nge 100
Crossover probability pc 0.8
Mutation probability pm 0.05
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3.4.2 Validation of Subcarrier Allocation

Fig. 3.6 shows how user satisfaction varies with increasing user density. The

satisfaction represented by the circle marked blue curve is the ratio of total number

of satisfied users (star marked green curve) over the total number of users across

the entire seven-cell network. Users are uniformly distributed here and the antenna

gains are fixed at 12 dBi as in [LCYW12]. All the results are averaged over 100

drops of simulation. The green curve agrees the same trend of number of satisfied

users variation as Figure 7 in [LCYW12]: when the system is light loaded, it can

ensure 100% satisfaction; as the user density increases, the subcarriers will become

insufficient to serve all users.

20 40 60 80 100
50

60

70

80

90

100

User density (user number/km2)

S
at

is
fa

ct
io

n 
[%

]

20 40 60 80 100
10

20

30

40

50

60

N
um

be
r 

of
 S

at
is

fie
d 

us
er

s

 

 

Satisfied user number
User satisfaction [%]

Figure 3.6: Satisfaction variation against user density

According to the non-cooperative game theory, the sign of convergence is that

all players keep the current strategy. In this case, when all the BSs maintain



Chapter 3. Joint Antenna and Subcarrier Management Scheme 69

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Iteration

S
at

is
fa

ct
io

n 
[%

]

0 5 10 15 20 25 30
0

1

C
on

ve
rg

en
ce

 

 

Convergence indicator
User Satisfaction [%]

Figure 3.7: Satisfaction and convergence against iteration

their current subcarrier allocation schemes for the following iteration it means the

algorithm has converged. The scheme maintained is the final subcarrier allocation

to be used in the transmission. Fig. 3.7 shows the satisfaction and convergence

against the iteration in one drop of simulation with 70 users/km2. It indicates the

satisfaction increases in early iterations and keeps steady as reaching subcarrier

allocation convergence in the 9th iteration. This is in-line with the Figure 9’s result

in [LCYW12].

3.4.3 Verification of Antenna Pattern Adaptation

Drop the users only at one boundary of Cell 1, shown in Fig. 3.8(a). The pink dots

represent satisfied user while the red dots represent unsatisfied user. According to

Table 3-C, after 100 generations evolution, the GA adapts the semi-smart antenna

pattern like that in Fig. 3.8(b). In this scenario, GA learns the antenna gain set
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(chromosome) which has the biggest g11 value to maximise the received power in

order to increase the number of satisfied user. The impact of generation number

will be investigated later.
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(a) Satisfied and unsatisfied users in fixed an-
tenna pattern

0 500 1000 1500 2000 2500
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(b) Satisfied and unsatisfied users in adaptive
antenna pattern

Figure 3.8: Users only at one boundary of Cell 1

Drop users at one boundary of Cell 1 and the facing antenna element coverage

of Cell 2, shown in Fig. 3.9(a). After 100 generations evolution, the GA learns

the boundary like that in Fig. 3.9(b). In this scenario, GA learns the chromosome

which makes all the users served by Cell 2 to eliminate interference. From the

comparison we can see, there are more satisfied users in Fig. 3.9(b).

3.4.4 Performance Evaluation

The overall approach of performance evaluation is to compare the user satisfaction

over the entire network with and without the antenna patterns being optimised.

Fig. 3.10 illustrates the average 10% satisfaction improvement when using the



Chapter 3. Joint Antenna and Subcarrier Management Scheme 71

0 500 1000 1500 2000 2500
Unit (m)

Cell 1

Cell 2

(a) Satisfied and unsatisfied users in fixed an-
tenna pattern

0 500 1000 1500 2000 2500

Cell 2

Cell 1

(b) Satisfied and unsatisfied users in adaptive
antenna pattern

Figure 3.9: Users at one boundary of Cell 1 and the facing antenna ele-
ment coverage of Cell 2

GA based adaptive pattern compared with a uniform fixed pattern. The user

number within the seven-cell network varies from 375 to 675. Instead of uniform

user distribution, unbalanced user distribution between the facing antenna element

coverages is used in this chapter. Satisfaction means the ratio of total number of

satisfied users over the total number of users over the entire network. The results

shown in Fig. 3.10 give the average, maximum and minimum values from 10 drops

of simulation.

When the number of user is 600, Table 3-D compares the satisfied user number

in fixed antenna pattern and adaptive antenna pattern in the 10 drops and sum-

marises that adaptive antenna gives approximate 10% satisfaction improvement.

One example of the GA evolution on maximising the satisfaction ratio over

100 generations is shown in Fig. 3.11. It can be seen that the GA functions

properly to increase the fitness value as the number of generation increases. It

shows similar probabilistic increase of fitness value against generations with Figure
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Figure 3.10: Satisfaction improvement in adaptive antenna pattern com-
pared to fixed antenna pattern in different load networks

3(b) in [XWTS13].

Table 3-D: Satisfied user number comparison with 600 users

Drop
Fixed

antenna
Adaptive
antenna

Number
increase

Satisfaction
improvement

1 387 430 43 11.11%
2 379 416 37 9.76%
3 394 435 41 10.41%
4 389 428 39 10.03%
5 389 426 37 9.51%
6 385 417 32 8.31%
7 392 437 45 11.48%
8 390 432 42 10.77%
9 385 427 42 10.91%
10 388 425 37 9.54%

Table 3-E lists 10 drops of satisfied user number in fixed antenna and GA
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Figure 3.11: GA working on maximising satisfaction ratio

based adaptive antenna with generation number Nge equals to 50, 100, 200 and

500 respectively. Based on the data in Table 3-E, Fig. 3.12 compares the average

satisfaction improvement together with the normalised elapsed time in the simula-

tions. We normalise the elapsed time of each drop simulation with 50 generations

to 1. From the comparison, 200 generations and 500 generations offer slightly

higher satisfaction improvement but consume considerably longer elapsed time.

It’s reasonable to set the generation number Nge to 100.
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Table 3-E: Satisfied user number comparison with different generations

Drop Fixed antenna Nge=50 Nge=100 Nge=200 Nge=500
1 387 425 430 430 430
2 379 411 416 416 420
3 394 427 435 436 436
4 389 424 428 428 428
5 389 420 426 426 429
6 385 416 417 419 421
7 392 433 437 437 437
8 390 430 432 432 435
9 385 421 427 427 427
10 388 416 425 425 431
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Figure 3.12: Satisfaction improvement and the normalised elapsed time
comparisons in different generations

3.5 Optimising QoS-aware OFDMA Networks with

User Priority

There are premium users who always want to have better user experience on their

4G LTE device. These users are willing to pay more for high bandwidth and better
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network access on their devices. Not only the users but some services themselves

need better priority handling in the network (e.g., VoIP call). To be able to

fulfill this, QoS plays the key role. QoS defines priorities for certain users/services

during the time of high congestion in the network. In this section, we differentiate

the users into two classes: UC1 (user class 1)-users with high priority to access

the resources; UC2 (user class 2)-users with low priority to access the resources.

Resource allocation needs to guarantee, where possible, that UC1 are all satisfied.

The UC1 priority module is added between subcarrier release and subcarrier

reallocation modules described in Section 3.3.1.2. For every cell, each unsatisfied

UC1 user in turn chooses vacant subcarriers to achieve its minimum QoS require-

ment. If there are not enough vacant subcarriers to satisfy all the unsatisfied UC1

users, satisfied UC2 users are forced to release their subcarriers and put them back

in the vacant subcarrier pool for the unsatisfied UC1 users to be reallocated.

3.5.1 Validation of User Priority

Fig. 3.13 shows one drop of simulation with uniform user density 75 users/km2

and 20% high priority UC1 users. The square marked red curve represents the

satisfaction of UC1 users, which is the ratio of satisfied UC1 user number over

the total UC1 user number; the triangle marked yellow curve is the satisfaction

for UC2 users accordingly. The circle marked blue curve indicates the ratio of the

number of satisfied users including UC1 and UC2 over the total number of users in

the system. As shown in Fig. 3.13, the subcarrier allocation algorithm converges

in the 11th iteration.

Fig. 3.14 validates the module of UC1 priority. The satisfaction of UC1 and

UC2 with the same experiment setting but without priority-aware is shown in
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Figure 3.13: Satisfaction of UC1 users, UC2 users and all users

the dashed curves. As a comparison, priority-aware subcarrier allocation algo-

rithm improves the satisfaction of UC1 from around 75% to 100%, but at the

expense of a slightly lower proportion of UC2 users getting their required QoS, as

would be expected in the algorithm design. It matches with the result of Figure 9

in [LCYW12].

Fig. 3.15 compares the satisfaction of UC1 users, UC2 users and all users with

different UC1 percentage against different number of users. The solid curves show

the satisfaction results with 40% high priority UC1 users while the dashed curves

show those with 30% UC1 users. The results reveal that higher percentage UC1

results in lower satisfaction performance which alighs with the result in Figure 11
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Figure 3.14: Satisfaction comparison with and without priority-aware

from [LCYW12].

3.5.2 Satisfaction Improvement with Antenna Adaptation

In this section we investigate the scenario with a fixed UC1 percentage=40%, Fig.

3.16 shows the antenna pattern optimisation with different objectives: A. Maximise

the user’s satisfaction; B. Maximise the UC1’s satisfaction.

The black dotted curves are the satisfaction (circle for all-user, cross for UC1,

square for UC2) with a fixed antenna pattern. They act as references. The green

solid curves are the satisfaction results with GA optimising for all users. The blue
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Figure 3.15: Satisfaction comparison with 30% UC1 and 40% UC1

dashed curves are the satisfaction with the GA optimising for UC1 users.

With GA optimising the all-user satisfaction, the satisfaction improves by ap-

proximately 15% in average, the UC2 satisfaction improves similarly, while the UC1

satisfaction suffers slightly drop when the network is heavily loaded and there are

not sufficient resources.

With the GA optimising the UC1 satisfaction, when the system is not over-

loaded, the GA will ensure the UC1 satisfaction reaches 1; when the system has

excessive users, the GA is able to slightly enhance UC1 satisfaction. However using

GA to optimise UC1 satisfaction may lead to lower all-user and UC2 satisfactions

in some drops of simulation.
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Figure 3.16: Satisfaction improvement over different objectives (optimis-
ing all user satisfaction and optimising UC1 satisfaction)
with UC1 percentage=40%

Due to the trade-off between all-user satisfaction improvement and UC1 satis-

faction improvement, the resource management system should select appropriate

optimisation goal according to different needs.

Fig.3.17(a) and Fig. 3.17(b) show two example adaptive coverage patterns after

GA evolution with 600 users. The blue dots are the UC1 users and the green dots

are the UC2 users. The only different condition is that the optimisation objective

of Fig. 3.17(a) is maximising the satisfaction of all users (objective A) while that

of Fig. 3.17(b) is maximising the satisfaction of UC1 users (objective B). From

the comparison, GA learns the cell boundaries to different objectives in different
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Figure 3.17: Adaptive patterns with 40% UC1 users

ways.

3.6 Antenna Pattern Update Mechanism

In a real-world communication network, it is not sensible to change the cell bound-

aries and the antenna coverage rapidly as this would lead to more handovers and

signalling. Adding user movement is one way to test when to change antenna

pattern and in this chapter a threshold-triggered optimisation scheme is proposed

and is found to bring approximate 15% improvement in the user satisfaction.

3.6.1 User movement

Our approach is adding user movement into the simulation and setting some thresh-

old to determine when to trigger the antenna pattern optimisation.

The whole threshold-triggered optimisation procedure is:
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i) Apply GA at the start point, record the optimal gain set. Set threshold as

half the GA satisfaction improvement over that in fixed antenna pattern.

ii) Keep that gain set in following time sampling points unless the actual sat-

isfaction improvement is lower than the threshold. Trigger GA optimisation

to get a new optimal gain set then calculate the new threshold.

iii) Go back to step ii) until the end point of the simulation.

3.6.1.1 Random Moving Users

Here the movement model is set based on [TAH11][GZAM10] and the parameters

are listed in Table 3-F.

Table 3-F: Random movement parameters

Parameter Value
Vehicular speed 30 km/h
Pedestrian speed 3 km/h

Pedestrian percentage 30%
Sampling time interval 1 s [EODB13]
Initial moving direction random

Subsequent moving direction
within 60 degree area based on

the initial direction

The simulation result during 30 seconds is shown in Fig. 3.18 with a total of 500

users. The red trigger stars explain that at these time points the GA is triggered

to change the antenna pattern. During the 30 seconds’ simulation, the adaptive

antenna gives average 12.85% satisfaction improvement.
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Figure 3.18: 30 seconds’ user random movement

3.6.1.2 Macao Scenario

Take a realistic user movement example for visitors in Macao taking bus or taxis

to their hotels. The settings in the Macao scenario are as follows in Table 3-G.

Table 3-G: Movement parameters in Macao scenario

Parameter Value
Vehicular speed 20, 40 km/h

Sampling time interval 3 s
Moving direction towards its hotel
Number of hotels 3

Movement stop condition
all the users are within

50 m distance to their hotels
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One simulation with 485 users in system is shown here to illustrate the GA effect

in this scenario. The threshold-triggered antenna pattern optimisation process is

the same as that explained before. The comparison of user satisfaction achieved

in a fixed antenna pattern and that applying GA optimisation when triggered is

shown in Fig. 3.19.
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Figure 3.19: User satisfaction when having GA triggered

Movement of a cluster of users will tend to result in worse performance as

users move in and out of cell boundaries. So in and out of cell edge conditions,

the clustering of users leads to local shortages of subcarriers. Under these con-

ditions, using triggered optimised semi-smart antenna patterns does improve the

user satisfaction, on average 17.72% over the time scale.
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It is also worth noticing that optimisation is only required intermittently so

saving on computational load and continual changes in antenna patterns would

lead to more handover and signalling load. In the later time intervals, triggering

does not occur. This does not mean that optimisation would not improve the per-

formance; it’s just because the trigger threshold is not met. This is a limitation of

the triggered approach as optimisation may lead to improvements so a combination

of trigger plus timed re-runs of the optimisation may lead to better performance.

This depends whether the main criterion is to maximise performance or minimise

the number of pattern changes.

3.7 Summary

This chapter studies QoS-aware user satisfaction maximisation with load balancing

in OFDMA downlink. Section 3.2 specifies the general system model considered

in this chapter. In Section 3.3, a joint semi-smart antenna and subcarrier resource

management scheme is proposed for QoS-aware multi-cell OFDMA networks. It is

demonstrated in Section 3.4 that using a GA to optimise the BS’s coverage pattern

in order to maximise the number of satisfied users does lead to a 10% satisfaction

improvement compared with that in fixed antenna pattern. With the use of a

user class differentiated model in Section 3.5, the GA with the maximising all

user satisfaction objective brings about an improvement of 15%. At last, Section

3.6 proposes a low-overhead dynamic QoS-aware optimisation with adding user

movement. The traffic distribution is monitored periodically and the antenna

pattern optimisation is only run when the satisfaction improvement in the system

drops below a certain level. This method avoids unnecessary management like

handovers. Simulations of two different scenarios show that the proposed scheme
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offers 12.85% and 17.72% satisfaction improvements in the overall user satisfaction,

without excessive triggering.

This chapter has proposed QoS-aware cell adaptation schemes in distributed BS

architecture. Each BS makes its own decision on its antenna pattern and subcarrier

allocation to improve the QoS satisfaction. However, incremental improvement of

QoS provisioning on current mobile networks will not meet the explosive traffic

demands in 5G systems. Instead of distributed manner, cloud radio access net-

work (C-RAN) has been proposed as a promising 5G network architecture with

centralisation. The next chapter will investigate resource management schemes in

C-RAN.



Chapter 4

Resource Management Schemes
in Cloud Radio Access Networks

4.1 Introduction

By utilising cloud based information sharing through the BBU pool, a joint re-

source block and power allocation scheme is proposed at the beginning of this

chapter to maximise the number of satisfied users whose required QoS is provided

in multi-cell OFDMA downlink served with high power nodes only.

With network densification by the deployment of low power nodes, Section 4.3

and Section 4.4 focus on optimising energy consumption of C-RAN downlink with

QoS guarantee, as discussed in previous Section 2.6.3. Multiple-choice multidi-

mensional knapsack model is used to formulate the RRH assignment problem and

sleep mode techniques are used to determine the active RRH set.

To summarise, the research objectives and contributions of this chapter are

listed in Table 4-A.

86
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Table 4-A: Research objectives and contributions

Research objectives Research contributions

QoS provisioning
improvement: user

satisfaction maximisation
with centralised control

A joint RB and power allocation with
cloud based information sharing is proposed.
The proposed scheme is capable to achieve

20-30% satisfaction improvement compared to
the conventional resource allocation approach.

Optimise the energy
consumption with

QoS guarantee

An energy-effective network deployment
scheme is proposed in C-RAN based small
cells, which saves 40% energy compared to

genetic algorithm. A joint RRH selection and
user association is proposed in heterogeneous

C-RAN, which outperforms the other
counterparts and provides near-optimal
performance with reduced complexity.

4.2 Joint Resource Block and Power Allocation

with Cloud based Information Sharing

This section proposes a QoS-aware user satisfaction oriented joint resource block

(RB) and power allocation algorithm for an OFDMA multi-cell system. The ob-

jective is to optimise user satisfaction over the entire network by maximising the

number of satisfied users whose QoS target is met. By taking the advantage of

the cloud based information sharing via BBU pool, a two-dimensional power-RB

strategy is utilised to mitigate the inter-cell interference in order to increase the

user satisfaction.

4.2.1 System Model

This section considers a downlink resource allocation in an OFDMA multi-cell

system with L high power nodes (HPNs) (e.g., macro or micro base stations)

serving I users with variety of QoS requests. Each HPN is geographically located
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at the centre of each cell. The BBU pool is interfaced with HPNs by X2/S1,

whose definitions are inherited from the standardization definitions of the 3GPP

[PLJ+14]. It is assumed that all the cells in the network share the same frequency

band, which can be divided into N resource blocks (RBs). One RB comprises

twelve consecutive subcarriers.

The HPN transmit power in cell j can be denoted by pj = [p1j , p
2
j . . . p

N
j ], where

pnj is the transmit power over the RB n in cell j. The system transmit power

can be represented by a power matrix P = [p1 . . .pj . . .pL]. For cell j, the RB

assignment is denoted by a N × I boolean assignment matrix aj = [anij], where anij

equals 1 if RB n is assigned to user i, subject to each RB can only be assigned to

one user in each cell. Similarly, the network RB assignment set can be described

as A = [a1 . . . aj . . . aL].

Each HPN is assumed to have perfect knowledge of the channel gain hij between

user i and the HPN in cell j. Given the system transmit power matrix P and RB

assignment set A , the SINR of user i in cell j using RB n can be expressed as

γnij =
hijp

n
j∑L

j′=1,j′ 6=j hij′p
n
j′

(
∑

i′∈Uj′ ,i
′ 6=i a

n
i′j′) + σ2

(4.1)

where Uj denotes the set of users in cell j and σ2 is the noise power. The achievable

data rate on RB n is given by Shannon capacity formula

rnij = 4flog2(1 + γnij) (4.2)

where 4f is the bandwidth of one RB. The transmission data rate of user i in cell

j can be calculated by

rij =
N∑

n=1

anijr
n
ij (4.3)
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To be specific, the data rate of user i is determined by the power and RB

allocation in both its own cell and the interfering cells. The inter-cell interference,

however, is unknown before the resource allocation. To address this problem,

cloud based information sharing of the power matrix P and RB assignment set A

is introduced. In addition, the BBU pool is utilised to manage the co-channel RB

allocation. The BBU pool is interfaced with each HPN to exchange the resource

allocation and user satisfaction parameters.

4.2.2 Problem Formulation

This section takes the minimum data rate requirement as a QoS indicator into

consideration. Specifically, every user has an independent QoS requirement de-

noted by Ri. The objective of the proposed scheme is to maximise the number of

satisfied users whose required data rate is achieved:

max
P,A

I∑
i=1

u(rij −Ri), ∀j s.t. 1 ≤ j ≤ L (4.4)

where u(a) is the step function defined as:

u(a) =

 1 a ≥ 0

0 otherwise
(4.5)

subject to:

0 ≤
N∑

n=1

pnj ≤ Pmax, ∀j (4.6)

anij =

 1 if RB n is assigned to user i

0 otherwise
(4.7)
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∑
i∈Uj

anij ≤ 1, ∀n, j (4.8)

The objective function (4.4) formulates the joint RB and power allocation prob-

lem aimed at optimising the system in the view of the user satisfaction. Given the

QoS requirement, whether a user is satisfied or not depends on its transmission data

rate in equation (4.3). This is related to the power matrix P and RB assignment set

A. It compares every individual user’s actual data rate against its minimum data

rate requirement. If the QoS requirement is met, this user is counted as a satisfied

user who is satisfied with the provided service. Otherwise, this user is identified as

an unsatisfied user who is unsatisfied with the current resource allocation, which

is regarded as not good enough resulting in a degraded experience.

Constraint (4.6) states that the total transmit power of every HPN is con-

strained to be less than Pmax. Equation (4.7) indicates the RB assignment matrix

for each cell. What is noteworthy is the RB assignment constraint condition (4.8).

On the one hand, it captures the character of an OFDMA system that within one

cell each RB can be allocated to no more than one user. On the other hand, it re-

veals that this work chooses a resource-economical approach that does not exhaust

all the RBs.

Referring to (4.1) for the inter-cell interference in particular, the interfering cell

set for cell j becomes:

N int
j = {j ′ |1 ≤ j

′ ≤ L and j 6= j
′
and

∑
i′∈Uj′ ,i

′ 6=i

ani′j′ = 1} (4.9)

It indicates that although all the cells in the network share the same bandwidth,

the interfering cell set is no longer fixed L − 1 cells (excluding itself). Thus the

co-channel assignment on every RB becomes more important.
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4.2.3 The Proposed Resource Allocation Algorithm

In the resource allocation problem formulated in the previous section, each HPN

uses a two-dimensional power-RB strategy to decide the power allocation over all

RBs, and the RB assignment to its total serving users with the goal of maximising

the satisfied user ratio in the corresponding cell. The challenging part is that each

HPN is only responsible for the resource allocation within its own cell. However,

the SINR in (4.1) also depends on the power and RB allocation in interfering cells,

which remains unknown before the resource allocation. Therefore, the mutual

dependency of SINR complicates the problem. The proposed QoS-aware user sat-

isfaction oriented joint resource block and power allocation algorithm with cloud

based information sharing in this section is designed to solve the problem.

The users in the network are divided into two sets: a satisfied user (SU) set

and an unsatisfied user (USU) set. The definitions of SU and USU can be found

in the “Problem Formulation” section. The main policies involved in the proposed

allocation algorithm are summarised as below:

Policy 1: for the SU set, the HPN remains the current RB assignment and

conducts the power control in order to reduce inter-cell interference caused by SU

set.

Policy 2: for the USU set, the HPN will allocate the available RBs to them

in the expectation that the new RB may have less inter-cell interference on it for

a particular USU. This policy helps USU obtain RB resource in better condition

and then become SU in an opportunistic way. However, this policy brings the risk

that incurs new inter-cell interference to some existing SU and results in turning

it unsatisfied.
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Policy 3: to solve the dilemma in Policy 2, information concerning the current

power matrix P, RB assignment set A, SU set and USU set is shared over the

entire network through the BBU pool. However, each HPN still makes its own

decision about the next resource allocation. In addition, the BBU pool is used to

disable specific RB reassignment to USU if this would cause other SU to become

unsatisfied.

The detailed procedure about the proposed algorithm is described by following

steps:

A. Initial resource allocation

To every serving user within the cell, each HPN estimates the data rate that can

be achieved per RB, employing a simplified form of (4.1) with interference omitted

since no interference is available at the initial stage. According to individual user’s

minimum data rate requirement, Ri, the HPN determines the number of RBs

assigned to it. This number, denoted by numij is assumed to be the ideal RB

number one user needs to achieve its QoS requirement and will not change in the

following steps. Thus the average data requirement can be calculated by Ri/numij.

By using (4.2) and (4.1), an interference threshold Thnij can be calculated indicating

the maximum inter-cell interference that user i in cell j can tolerant to maintain

it satisfied. At this stage, HPN equally distributes the total power over all RBs:

pnj = Pmax/N,∀j (4.10)

B. Unsatisfying RB release

After the initial allocation, every user will calculate its actual data rate using

(4.3) with interference considered and compare it with its QoS requirement then
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categorized as SU or USU.

Then for every USU, the actual interference is compared with Thnij. If the

interference value is higher than the threshold, this RB is regarded as unsatisfying

RB and is released immediately.

C. SU-power strategy

For the SU set, denoted by {SU}:

anij(t) = anij(t− 1),∀i ∈ {SU} (4.11)

pnij(t) =

 pnij(t− 1)− pstep if pnij(t− 1) > pmin

pnij(t− 1) otherwise
(4.12)

where pnij(t) is the transmit power over the RB n in cell j assigned to user i in the

current iteration t.

Equation (4.11) indicates that for every SU, the HPN assumes the RB assigned

to it in the last allocation iteration is good enough to maintain it as SU and will

not change it in the current iteration t. Equation (4.12) reveals that the HPN

will reduce the power on all the RBs occupied by SU by the same level pstep if the

previous value is higher than the SU protection threshold pmin, which is defined

as the minimum signal power that can maintain this user as satisfied using the

previous iteration’s interference value.

D. USU-RB strategy

For the USU set, each HPN will first construct an RB reassignment pool consisting

of the released RBs and idle RBs from last iteration; this is also the complement

of the RB set occupied by SU. Assuming in cell j, the RB set occupied by SU is
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RBSU
j , then the pool can be denoted by:

RBpool
j = {n|1 ≤ n ≤ N and n /∈ RBSU

j } (4.13)

The power distribution over the RB pool set remains the same, namely:

pnij(t) = pnij(t− 1),∀n ∈ RBpool
j (4.14)

The basic idea of USU RB reallocation is that: for user i in cell j, the HPN

randomly chooses some RBs from RBpool
j which adds up numij and expects that

this reassignment will have less inter-cell interference to make user i satisfied.

However, an undesirable situation for the SU could arise due to USU RB real-

location (Policy 2). To protect SU and prevent the undesirable situation arising,

the approach employed is to utilise the SU information over the entire network in

the previous iteration to restrict the random RB reallocation for USU from RBpool
j .

Thus, for USU i, the RB reallocation procedure is shown in the following flowchart:

E. Overall resource allocation algorithm

The overall resource allocation algorithm is as follows:

i) Initial resource allocation and interference threshold calculation.

ii) SU/USU categorization and unsatisfying RB release.

iii) SU resource reallocation-power strategy.

iv) USU resource reallocation-RB strategy using cloud based information shar-

ing.
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Figure 4.1: Flowchart for USU RB reallocation

v) Update interference threshold information and go back to step ii) and then

continue the process until the allocation ends.

4.2.4 Simulation Set-up and Results

The algorithm is evaluated using a system level simulation and the main parameters

are shown in Table 4-B. The values chosen follow the 3GPP standards [Acc16a].

The wrap-around diagram is illustrated in Fig. 4.2. The classic resource allocation
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Table 4-B: System parameters for simulation

Parameter Value
Network topology 7 cells with wrap-around

Cell radius 500 m
Carrier frequency 2.0 GHz

Downlink bandwidth 5 MHz
RB bandwidth 180 kHz

Downlink RB number 25
Maximum HPN transmit power 43 dBm

User rate requirements
User rate-class 1(UR1): 256 kbps
User rate-class 2(UR2): 512 kbps
User rate-class 3(UR3): 1 Mbps

Path loss model (dB) 128.1 + 37.6log10(d) (d in km)
Shadowing standard deviation 10 dB

Noise density -174 dBm/Hz

algorithm MaxSINR is used as the baseline for comparison purposes [XWTS13].

The objective of MaxSINR is to maximise system throughput. The optimal solu-

tion can be obtained by using a greedy approach. Specifically, each RB is assigned

to the user who tends to yield the maximum SINR. In our implementation of MaxS-

INR algorithm, system throughput with increasing number of users is validated

against the result of Figure 3 in [XWTS13].

For each load presented in following results, the result is averaged over 500

drops of simulation. In every drop of simulation, users are uniformly and randomly

distributed over the seven-cell network. The number of users in each cell does not

have to be the same. Moreover, the major performance indicators: satisfaction

and power consumption are measured at the system level over the entire network.

How the satisfaction increases and system total transmit power consumption

decreases over allocation iterations are illustrated in Fig. 4.3 with the number of

users varying from 40 to 160. Satisfaction is measured by the total number of

satisfied user over the total number of users in the entire network. Generally, the
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Figure 4.2: Wrap-around matching up virtual cells with real cells

proposed algorithm achieves the objective of maximising the satisfaction over a

wide range of load scenarios with an underlying decreasing power consumption,

which saves energy and mitigates the inter-cell interference.

Fig. 4.4 compares the proposed algorithm with the MaxSINR algorithm and

shows significant superior effectiveness in terms of satisfying the users’ QoS re-

quirements. When the system is lightly loaded, the proposed algorithm is able to

achieve 100% satisfaction. Compared with the MaxSINR algorithm, the proposed

algorithm can sustainably provide around 20%-30% greater satisfaction regardless
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Figure 4.3: Satisfaction and system power consumption over iterations
with different loads

of the load situation.

Further investigation of the QoS provisioning across different user rate classes

is shown in Fig. 4.5. The proposed algorithm outperforms the other scheme for all

three user rate classes (Table 4-B). For 256 kbps and 512 kbps requirements, the

proposed algorithm can always achieve over 75% satisfaction in all load scenarios

considered. When the service demand is relatively low (load less than 100), the

proposed algorithm can achieve over 95% and even 100% satisfaction. However,

for user rate-class 3 with a 1 Mbps rate requirement, MaxSINR is not able to

provide very high satisfaction in all load situations. In addition, it is difficult for

the proposed algorithm to maintain a high user satisfaction, especially at heavy

loads. This is because no extra protection is given to the users with very high date

rate requirements.
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4.3 Energy-Effective Network Deployment Scheme

In C-RAN, the light remote radio heads (RRHs) installed with antennas are densely

deployed and connected to the baseband unit (BBU) pool through fronthaul links.

Under dense C-RAN architecture with a large number of RRHs, a critical issue

is introduced which is how to select appropriate RRHs to adapt to the temporal

and spatial data dynamics in order to optimise the energy consumption. In this

section, we propose an energy-effective network deployment (EEND) scheme with

traffic demand satisfaction. The BBU is empowered with the ability to respond

to the varying traffic demand by selecting a certain subset of RRHs. To the best

of our knowledge, this is a pioneering work investigating the RRH deployment

scheme for dense C-RAN. The network deployment problem is decomposed into
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Figure 4.5: User satisfaction for different QoS requirement scenarios

two sub-optimal problems: RRH-traffic demand node association and active RRH

set determination. The first sub-optimal problem is modelled as a multiple-choice

multidimensional knapsack problem and solved by Lagrange multipliers. In order

to solve the second sub-optimal problem, we deactivate the underutilised RRHs

based on sleeping techniques.

4.3.1 System Model

We consider a C-RAN where the RRHs are densely deployed to provide seamless

coverage. The transmit power budget of RRH j is Pmax
j . Let L denote the set of

RRHs. To ensure full coverage in the defined area, we adopt the concept of traffic

demand node (TDN) [ZWWW14a]. A TDN can be seen as an abstraction of the
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average traffic demand in a small area. It is located at a centre of a predefined

sub-area that represents an aggregated QoS requirements resulting from individual

QoS demands of all potential users in this sub-area. We use minimum data rate

requirement as the QoS indicator. The QoS requirement for a TDN corresponds

to the aggregated expected traffic over the respective area (Fig. 4.6). We assume

in total there are I TDNs in the given area. Each TDN has a rate requirement Ri.
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RRH
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Figure 4.6: C-RAN deployment illustration with RRH and TDN

Denote hij as the channel gain between RRH j and TDN i, which is a function

of the distance between the RRH and the TDN with a predefined path loss prop-

agation model. Assuming the power budget is equally distributed over resource

blocks (RBs) for all the RRHs, then for RRH j, the power allocated to each of

its RB is Pmax
j /N , where N is the total RB number for every RRH. Then the
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achievable rate of RRH j to TDN i on each RB can be calculated as

rij = 4flog2(1 +
hijP

max
j /N

σ2
) (4.15)

where 4f is the bandwidth of an RB. σ2 is the noise power. The amount of the

traffic load of TDN i in RRH j is

εij =
dRi/rije

N
(4.16)

where dxe is the minimum integer larger than x. It is only determined by its rate

requirement and achievable spectrum efficiency.

The total power consumption of RRH j is the sum of the radio frequency (RF)

energy and the circuit energy, denoted by Pin. We adopt the parameters from

EARTH project [AGD+11]

Pin =

 P 0
j + δjyjP

max
j yj > 0

P s
j yj = 0

(4.17)

where P 0
j is the static power consumption as long as RRH j is active, P s

j is the

power consumption when RRH j is inactive. δj represents the slope of the load-

dependent power consumption, and yj is the traffic load of RRH j. As we can see

from equation (4.17), Pin is a discontinuous function of the cell load.

Let x = [xij]|L|×I be the assignment matrix where

xij =

 1 if TDN i is assigned to RRH j

0 otherwise
(4.18)

with |L| denotes the number of elements in set L. Assume each TDN can only be
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connected to one RRH. Then the cell load

yj =
I∑

i=1

εijxij. (4.19)

We define a boolean variable βj to indicate the operation mode of RRH j

βj =

 1 yj > 0

0 otherwise
(4.20)

Then the total energy consumption of the network

P =
∑
j∈L

Pin (4.21)

=
∑
j∈L

I∑
i=1

εijxijδjP
max
j +

∑
j∈L

(βjP
0
j + (1− βj)P s

j )

where
∑

j∈L
∑I

i=1 εijxijδjP
max
j is the RF energy consumption of the network, and∑

j∈L(βjP
0
j + (1− βj)P s

j ) is the static circuit energy consumption of the network.

4.3.2 Problem Formulation

Spatial-temporal redundancies resulting from traffic demand fluctuations present

great opportunities for energy savings. Selecting a subset of RRHs corresponding to

the most energy-effective network deployment is one appealing approach. Indeed, if

the traffic demand decreases, partial or all rate requirements will become relatively

small. This can be utilised to reduce the total network energy consumption by

minimise the objective function in (4.21) subject to load constraints.

The objective of the network deployment is to minimise the overall power con-
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sumption of the system while satisfying the traffic requirements and the allocated

bandwidth of each RRH cannot exceed its budget. Then the problem can be

written as the following optimisation problem with radio resource cost constraint:

min P (4.22a)

s.t.
I∑

i=1

εijxij ≤ 1 ∀j ∈ L (4.22b)

∑
j∈L

xij = 1 i ∈ {1, 2 . . . I} (4.22c)

xij ∈ {0, 1} (4.22d)

The constraint in (4.22b) ensures no more radio resources than available is used

in each RRH. (4.22c) states that each TDN should be connected to one RRH. The

final constraint avoids partial assignment of TDNs to RRHs, which in turn leads

to the combinatorial nature of the problem.

The above problem is very similar to the multi-choice multidimensional knap-

sack problem (MMKP). Due to the circuit power component considered in objec-

tive function (4.22a), we cannot decide the profit of each TDN-RRH association

since it depends on the previous states of the packing process. This makes the

above formulated problem not strict MMKP. We cannot directly use existing tech-

niques for MMKP. Moreover, the fact that P s
j is usually much smaller than P 0

j

according to the EARTH project makes the network tends to reduce the number

of active RRHs to save energy. So the network topology is no longer static which

makes the problem more difficult.

To tackle the challenges, we decompose problem (4.22) into two sub-optimal
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problems:

Sub-optimal problem 1: Find the optimal TDN-RRH association for given ac-

tive RRH set.

Sub-optimal problem 2: Determine the active RRH set for given TDN-RRH

association matrix.

4.3.3 Proposed Network Deployment Scheme

To solve sub-optimal problem 1: we map it to the multi-choice multidimensional

knapsack problem (MMKP) and use Lagrange multipliers to solve it.

To solve sub-optimal problem 2: we adopt sleep mode technique to deactivate

the underutilised RRHs.

4.3.3.1 MMKP Mapping

The C-RAN with L RRHs is considered as an L dimensional knapsack. The

available resources of the knapsack can be represented by W = {W1,W2 . . .WL}.

Since we consider the radio resource, Wj is the total number of resource blocks of

RRH j and equals to N . Each TDN i is regarded as a class and the RRHs are the

items in the class. Each item j of class i has a profit vij and requires resources

from each dimension of the knapsack wij = {w1
ij, w

2
ij, ..., w

L
ij}. In terms of energy

efficiency, the profit can be defined as

vij = rij/P
max
j (4.23)
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Since the allocation of TDN i only requires radio resources in the associated RRH

j, we have

wij/W = {ε1ij, . . . εsij, . . . εLij} (4.24)

where

εsij =

 εij s = j

0 otherwise
(4.25)

Thus, the first sub-optimal problem can be written as

max
xij

I∑
i=1

L∑
j=1

vijxij (4.26a)

s.t.
I∑

i=1

L∑
j=1

(
ws

ij

Ws

)xij ≤ 1 ∀s ∈ L (4.26b)

∑
j∈L

xij = 1 i ∈ {1, 2 . . . I} (4.26c)

xij ∈ {0, 1} (4.26d)

4.3.3.2 Lagrange Multipliers

By introducing the Lagrange multiplier λj associated with the radio resource con-

straint of each RRH, we can transform the constrained maximisation problem into

unconstrained problem

max
xij

(
I∑

i=1

L∑
j=1

vijxij −
I∑

i=1

L∑
j=1

λjεijxij) (4.27)

From expression (4.27), it is noted that if the Lagrange multiplier λj is known,
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the optimisation problem can be solved. In fact, rewrite (4.27) as

max
xij

(
I∑

i=1

L∑
j=1

(vij − λjεij)xij) (4.28)

the optimal solution is given by

x∗ij =

 1 if %ij = vij − λjεij > 0

0 otherwise
(4.29)

where %ij is defined as the utility, a metric that combines the profit, radio resource

cost and the Lagrange multiplier. Since one TDN can only associate to one RRH,

we can choose one assignment from (4.29) with the maximum utility. Hence, the

optimisation problem can be solved by computing the L Lagrange multipliers. The

main difficulty is how to efficiently compute the λj set. Based on the concept of

graceful degradation of the most valuable choices in [MJS97][GZF10], an initial

solution xij is derived from (4.29) by setting all λj equal to 0. In this way, the

utility equals to the profit. So each TDN will choose the best RRH regardless of

the radio resource cost.

Then the total radio resource cost of each RRH πj is calculated, denoted by a

cost set ψ = {π1, π2, . . . , πL}. If the initial assignment if feasible, which means none

of πj is larger than 1, then that is an optimal solution. Otherwise, the Lagrange

multiplier associated to the most violated constraint is iteratively increased to force

the reassignment till a feasible solution is found. In each iteration, the RRH j∗

with the most constraint violation is found at first. Then for every TDN currently

allocated to the RRH j∗, the Lagrange multiplier increase of the most violated
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constraint required to move TDN i from RRH j∗ to another RRH j is defined as

4 λij∗→j =
vij∗ − vij − (λj∗εij∗ − λjεij)

εij∗
(4.30)

The TDN I∗ and another RRH J∗ causing the least4λij∗→j is chosen for exchange.

The process is repeated until a feasible solution not exceeding the resource con-

straints is found.

4.3.3.3 Deactivate Underutilised RRHs

The following Algorithm 1 describes the RRH deactivation process. It assumes

initially all the RRHs are active (line 01) and obtains the initial TDN-RRH as-

sociation solution (line 02). Then it calculates the resource utilisation ratio for

each RRH (line 04) and sets the median value of the resource utilisation ratio

set as the reference deactivation threshold (line 05). Then the algorithm would

repeatedly deactivate the RRHs whose resource utilisation ratios are below the

threshold (line 06) and solve the TDN-RRH association (line 07) until there are

not enough RRHs to satisfy all the TDNs’ QoS requirements. Lines 08-13 explain

the threshold update process.

4.3.4 Simulation Parameters and Results

Based on 3GPP standard [Acc16a] and the EARTH project [AGD+11], the setting

of system parameters and power parameters are listed in Table 4-C.

Due to the lack of existing comparison work, we adopt a widely-used heuristic

search and optimisation method genetic algorithm (GA) as the comparison scheme.
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Algorithm 1: RRH deactivation
01 Initialise the active RRH set L
02 Run MMKP-Lagrange algorithm to get the initial TDN-RRH association

[xij]
03 if the RRHs are enough for the traffic demands
04 Calculate the RRH utilisation ratios then get the ψ
05 Set the threshold the median of ψ
06 Deactivate the RRHs whose utilisation ratios are below the threshold

and get a new active RRH set L′

07 Run MMKP-Lagrange algorithm to get a new TDN-RRH association
[xij′ ]

08 if the RRHs are enough for the traffic demands
09 Update the threshold as the minimum value larger than the old

threshold
10 Go to line 06
11 else
12 if iteration==1 || threshold values descend
13 Update the threshold as the maximum value smaller than the old

threshold
14 Go to line 06
15 else
16 End the deactivation process
17 end
18 end
19 else
20 End the deactivation process
21 end

Value encoding is used to represent the solution [REBTH12]. A chromosome is

defined having I genes corresponding to I groups of items, the ith gene takes an

integer number from the set L = {1, 2, . . . , L}. This value means the item/RRH

selected from the group. This encoding scheme assures that only one item is chosen

from each group.

To handle the constraints, the following criteria are used to evaluate the fit-

ness of a solution [Deb00]: any feasible solution is preferred to an infeasible so-

lution; among two feasible solutions, the one having better objective function is

preferred; among two infeasible solutions, the one having small constraint violation
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Table 4-C: Simulation parameters

Parameter Value

Scenario

Dense: 250 m × 250 m region
with 9 RRHs

Light: 500 m × 500 m region
with 16 RRHs

[LPDCJ15]
TDN grid 50 m × 50 m [ZWWW14b]

RRH power budget 30 dBm
Circuit power consumption (active) 84.0 W
Circuit power consumption (sleep) 56.0 W

Load-dependent power slope 2.8
RB bandwidth 180 kHz

Downlink RB number 25
Path loss model (dB) 140.7 + 36.7log10(d) (km)

Thermal noise -174 dBm/Hz

is preferred. Then the fitness function considering both the objective function and

constraints is

F (x) =

 f(x) if x is a feasible solution

fworst + v(x) otherwise
(4.31)

where f(x) is the objective function and v(x) is the violation function. fworst

is the objective function of the worst feasible solution in the population. Thus

the fitness of a feasible solution equals to its objective, while the fitness of an

infeasible solution not only depends on the amount of constraint violation, but

also on the population of solutions in the current generation. The parameters for

genetic algorithm comparison are listed in Table 4-D.

Fig. 4.7 shows the comparison of active power consumption over different load

in dense scenario. For each traffic load, 10 drops of simulation are conducted to

get the average values. The total traffic demand is uniformly distributed across
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Table 4-D: GA parameters

Parameter Value
Population size 50

Generation number 200
Crossover probability 0.8
Mutation probability 0.05

the TDNs in considered region. Due to the assumption that all the RRHs are

originally in sleep mode, the active power consumption means the extra power

needed to activate the selected RRHs (P 0 − P s = 84.0 − 56.0 = 28 W ) plus

the RF power. The blue-stripe bars show the proposed EEND algorithm. The

red-dash bars are the results from constraints based genetic algorithm aiming to

minimise the total energy consumption including RF power and static power in

one step. The gray-grid bars represent the power consumption under the same

traffic distribution when system is full-on as the baseline (BASE).

The proposed EEND scheme performs superior than that of GA in all load

scenarios. This is because the EEND scheme works on the two factors of TDN-

RRH association and the number of RRH repeatedly to obtain the final result.

However the one-step GA only deals with TDN-RRH associations as chromosomes

which is not as effective as the EEND scheme. In the BASE scheme, all the RRHs

are active regardless of the varying traffic demand. The comparison of EEND

and BASE scheme proves EEND achieves energy saving especially in light load

scenarios. In average, EEND gives 25.20% power saving compared to GA and

achieves even 45.77% power saving compared with BASE scheme.

When expanding the area to 500 m × 500 m (light scenario), the result is

presented in Fig. 4.8. In light scenario, EEND achieves even greater energy saving

benefits, specifically, it saves 49.93% power consumption compared to GA scheme

in average of all traffic demand scenarios. As to the BASE scheme, EEND saves
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Figure 4.7: Power consumption with different load in dense scenario

averagely 57.97% energy.

The performances of the EEND are compared in two scenarios (Fig. 4.9). The

configurations of the two scenarios are shown in Table 4-C. Although there are

more RRHs in light scenario than that of dense scenario, the density is actually

looser in light scenario as the area is four times of dense scenario. Although the

total traffic demand is the same in two scenarios, the TDN distribution is sparser

in light scenario, which leads to more RRHs needed to be active to ensure the

traffic demand. That explains higher power consumption in light scenario than

that of dense scenario.

Since EEND and GA work on very different principles, we use iteration number

to compare the complexity. In the proposed scheme, the iteration number is de-
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Figure 4.8: Power consumption with different load in light scenario

pendent on the number of RRHs. In the worst case, the iteration number is L− 1.

However in GA, the iteration number is related to the population size Npo and the

generation number Nge and equals to NpoNge. In both scenarios in the previous

simulations, the complexity of the proposed scheme is much lower than GA.

4.4 Joint Remote Radio Head Selection and User

Association Scheme

The cloud radio access network (C-RAN) has been proposed recently as a promis-

ing network architecture to meet the explosive data traffic growth in 5G wireless
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Figure 4.9: Power consumption comparison in dense and light scenarios

communication systems. In C-RAN, all baseband signal processing is centralised at

one baseband unit (BBU) pool powered by cloud computing technologies. Whilst

the remote radio heads (RRHs), left off on the cell sites, are connected to the BBU

pool through fronthaul networks and can be densely deployed with low cost. How-

ever, a large number of active RRHs located close to each other may result in severe

interference and inefficient energy consumption. To tackle the above challenges,

we formulate a network power consumption minimisation (NPCM) problem, which

selects a set of active RRHs and constructs the user association with the active

RRHs. The capacity limitation of the fronthaul network is considered in the prob-

lem. Since the NPCM problem, formulated as an integer programming problem,

is NP-hard, we propose a low complexity approximation algorithm that yields
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the performance guarantees: joint RRH selection and user association (JRSUA)

scheme. A simulation platform is developed to evaluate the performance of JRSUA

under three fronthaul network scenarios: fibre, wireless and mixed. Simulation

results show that the proposed JRSUA algorithm is able to provide near-optimal

performance with reduced complexity and also outperforms the other counterparts.

4.4.1 System Model

We consider the deployment of a C-RAN in an urban area A ∈ R2. There is a

macro RRH located at the centre of this area to ensure the coverage and deliver

signallings . A number of pico RRHs are deployed in A to support the peak traffic

load. The BBU pool, working as a centralised controller, manages the macro RRH

and all the pico RRHs. In this thesis, we assume the BBU pool is resilient to

processing and network failures. The RRHs are connected to the BBU pool via

fronthaul links.

The index set of the RRHs in A is denoted by L = {0, 1, 2...L}, where index

zero represents the macro RRH. The cells have the same indices corresponding to

their RRHs. The fronthaul link connecting RRH j to the BBU pool is assumed

to have finite capacity Cj. Let U denote the set of users in the area A. The QoS

requirement of an arbitrary user i corresponds to the traffic demand at this location

per time unit, which can be expressed in terms of minimum rate requirement Ri.

It is assumed that all users can receive signals from both macro RRH and any pico

RRH in A.

The pico RRHs and the macro RRH work on different frequency band to avoid

inter-tier interference. So a user served by the macro RRH will not receive in-

terference from any of the pico RRHs. This guarantees that the macro RRH can



Chapter 4. Resource Management Schemes in Cloud Radio Access Networks 116

reach all users within area A. We assume that all the pico RRHs reuse the same

frequency band.

The macro RRH is assumed to work in active mode all the time since it is

responsible to provide seamless coverage. As to the pico RRH, there are two

operation modes: active or sleep. Let Lon denote the set of active RRHs. If a pico

RRH does not belong to Lon, then it’s been deactivated into sleep mode by the

BBU pool for energy saving consideration.

Since the downlink traffic is much higher than that of uplink in wireless multi-

media services [FSAA15], in designing the JRSUA scheme, we focus on downlink

transmission.

The SINR of user i with respect to RRH j can be yielded as

γij =


Pjhij∑

j′∈Lon\({j}∪{0}) Pj′hij′ + σ2
j ∈ {1, 2, . . . , L} (4.32)

Pjhij
σ2

j = 0 (4.33)

where Pj is the transmit power of RRH j. hij is the channel gain of user i with

respect to RRH j, which includes path loss and shadowing. Note that fast fading

is not considered here since the time scale of user association is much larger than

the time scale of fast fading [SKYK11]. σ2 denotes the thermal noise power.

Lon \ ({j} ∪ {0}) is the set of all pico RRHs in A excluding RRH j. (4.32) is the

SINR measured by user i from a pico RRH. (4.33) is the SINR from the macro

RRH to the user.

Accordingly, the spectral efficiency for user i, if it is served by RRH j, denoted
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by cij, can be expected as [BB15],

cij = log2(1 + γij) (4.34)

Without loss of generality, the spectral efficiency cij can be regarded as the

achievable rate on an RB by multiplying the RB bandwidth.

Given that nij RBs are given to user i by RRH j, the data rate seen by user i

is

rij = nijcij (4.35)

In the case of rate QoS constraint, each user intends to keep its rate above its

requested rate threshold. In the beginning phase of RRH association, each user

i requests a certain rate QoS class in terms of minimum required data rate Ri.

Therefore, if user i is associated with RRH j, it is the duty of RRH j to satisfy

the following the rate QoS constraint

rij ≥ Ri (4.36)

By substituting (4.35) in the above inequality, we have

nij ≥
Ri

cij
(4.37)

We indicate the smallest integer greater than the right hand side of the above

inequality by n̄ij as follows

n̄ij =

⌈
Ri

cij

⌉
(4.38)

where d·e represents the ceil function. Inequalities (4.36) and (4.37) and equation



Chapter 4. Resource Management Schemes in Cloud Radio Access Networks 118

(4.38) indicate that if user i requires rate QoS class of minimum rate Ri, RRH j

will be obliged to allocate at least n̄ij RBs to that user

nij ≥ n̄ij (4.39)

Assume that RRH j has Nj RBs in total available to allocate to all the users

associated with it, we have

εij =
n̄ij

Nj

(4.40)

where εij is defined as the radio resource cost, meaning the number of RBs required

to satisfy the rate requirement of user i from RRH j, divided by the total available

RBs in cell j.

According to the frequency reuse mentioned above in our system model, we can

further assume that the macro RRH has NM RBs available. Since the frequency

reuse factor of pico RRHs in A is 1, let each pico RRH has NP RBs in total, then

we can rewrite the above equation as

εij =


n̄ij

NP

j ∈ {1, 2, . . . , L} (4.41)

n̄ij

NM

j = 0 (4.42)

(4.41) is the radio resource cost for pico RRH-user association and (4.42) is that

of the macro RRH-user association.

If user i is served by RRH j, the BBU needs to send the baseband signal to

RRH j over its fronthaul link at the estimated rate rij [LZ16]. For the fronthaul

links, the fronthaul resource cost, denoted by ηij, is defined as the ratio of the data
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rate of user i, to the available fronthaul capacity of RRH j [HLo16][DY14], that is

ηij =
rij
Cj

(4.43)

4.4.2 JRSUA Scheme

4.4.2.1 Problem Formulation and Analysis

With the goal of minimising the network power consumption while satisfying the

QoS requirements of the users in area A, the proposed JRSUA scheme determines

the active set of the pico RRHs and the user association with the active RRHs.

Let x be the user association indicator of which value is 1 if user i is associated

with RRH j, and 0 otherwise. The user association matrix can be represented by

x = [xij]|L|×|U|, with |S| denotes the number of elements in set S.

A. Power model

We adopt the following empirical linear model [AGD+11] for the power consump-

tion of an RRH, denoted by Pin:

Pin =

 P 0
j + δjyjPj yj > 0

P s
j yj = 0

(4.44)

where P 0
j is the static circuit power consumption as long as RRH j is active, P s

j is

the static circuit power consumption when RRH j is in sleep mode. δj is the slope

of the load-dependent power consumption. yj is the traffic load of RRH j, which

can be calculated by

yj =
∑
i∈U

εijxij. (4.45)
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Then the network power consumption can be expressed as

Ptotal =
∑
j∈L

Pin (4.46)

=
∑
j∈Lon

(P 0
j + δjyjPj) +

∑
j∈L\Lon

P s
j

=
∑
j∈Lon

(P 0
j +

∑
i∈U

δjεijxijPj) +
∑

j∈L\Lon

P s
j

=
∑
j∈Lon

∑
i∈U

δjεijxijPj + (P 0
j − P s

j )|Lon|+ P s
j |L|

Since the last term is constant, we can re-define the NPCM problem by omitting

the constant term P s
j |L| as follows

P(x,Lon) =
∑
j∈Lon

∑
i∈U

δjεijxijPj + (P 0
j − P s

j )|Lon| (4.47)

B. The network power consumption minimisation problem

The network power consumption minimisation (NPCM) problem, which aims to

minimise the network power consumption while satisfying user QoS requirement
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in the considered area, can be formulated as:

min
x,Lon

P(x,Lon) (4.48a)

s.t.
∑
i∈U

εijxij ≤ 1 ∀j ∈ Lon (4.48b)

∑
i∈U

ηijxij ≤ 1 ∀j ∈ Lon (4.48c)

∑
j∈Lon

xij = 1 ∀i ∈ U (4.48d)

xij ∈ {0, 1} (4.48e)

ri ≥ Ri (4.48f)

γi ≥ Λth (4.48g)

Constraint (4.48b) indicates that the total bandwidth allocated to the associ-

ated users by each RRH cannot exceed the bandwidth budget. Constraint (4.48c)

assures no more fronthaul capacity than available is used in each RRH connected

to BBU pool. Constraint (4.48d) indicates that each user in A is associated with

only one RRH, either one of the pico RRHs or the macro RRH. To avoid partial

assignment of users to RRHs, constraint (4.48e) is enforced, which in turn leads

to the combinatorial nature of the problem. Constraint (4.48f) ensures that the

expected bit rate of user i, denoted as ri, meets the minimum data rate require-

ment of each user. The last constraint sets the association rule that user i should

associate to the RRH with received SINR γi exceeding the minimum threshold Λth.
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4.4.2.2 Proposed JRSUA solution

Solving the above problem is quite challenging since it has the set variables as well

as integer variables. To tackle the difficulties, we first solve the user association

problem (P-UA) which minimises the network power consumption for given Lon.

Then we propose an iterative algorithm for solving the NPCM problem, which

finds the best set of active RRHs (P-RS) by solving the P-UA iteratively with

different Lon at each iteration.

A. P-UA

When Lon is given, the P-UA can be formulated as

min
x

P(x,Lon) (4.49a)

s.t.
∑
i∈U

εijxij ≤ 1 ∀j ∈ Lon (4.49b)

∑
i∈U

ηijxij ≤ 1 ∀j ∈ Lon (4.49c)

∑
j∈Lon

xij = 1 ∀i ∈ U (4.49d)

xij ∈ {0, 1} (4.49e)

ri ≥ Ri (4.49f)

γi ≥ Λth (4.49g)

As for the given Lon, the last term in (4.47) is fixed, so we can rewrite the above
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P-UA as

ζ(Lon) =min
x

∑
j∈Lon

∑
i∈U

δjεijxijPj (4.50a)

s.t.
∑
i∈U

εijxij ≤ 1 ∀j ∈ Lon (4.50b)

∑
i∈U

ηijxij ≤ 1 ∀j ∈ Lon (4.50c)

∑
j∈Lon

xij = 1 ∀i ∈ U (4.50d)

xij ∈ {0, 1} (4.50e)

ri ≥ Ri (4.50f)

γi ≥ Λth (4.50g)

The P-UA can be mapped into a multiple-choice multidimensional knapsack

problem (MMKP). In the MMKP, we are given I classes of items, where each

class i has Ji items. Each item j of class i has a profit, and requires multidimen-

sional resources wij = {w1
ij, w

2
ij, ..., w

m
ij }. The amounts of available resources of the

knapsack are given by W = {W1,W2, ...,Wm}. The aim of the MMKP is to pack

exactly one item from each class in order to maximise or minimise the total profit

value, subject to the resource constraints. In our work, the number of I maps to

the number of users |U|, the set of Ji corresponds to the active RRH set Lon. The

dimension of the resources is 2|Lon| including |Lon| dimensional radio resources

and |Lon| dimensional fronthaul resources. The portion of resources required to

associate user i to RRH j is given by

wij/W = {ε1ij, ε2ij, ..., ε
|Lon|
ij , η1ij, η

2
ij, ..., η

|Lon|
ij } (4.51)
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Since user i only needs resources from the associated RRH j, we have

εsij =

 εij s = j

0 otherwise
(4.52)

ηsij =

 ηij s = j

0 otherwise
(4.53)

Since the user association problem (P-UA) is transformed into an MMKP, any

technique available to solve the MMKP can be used. There exist two different

types of algorithms to solve the MMKP, namely: exact and heuristic algorithms.

Due to its high computational complexity, exact algorithms are not suitable for

most real-time decision-making applications [HMS04]. So the alternative is to

use approximate heuristic approaches with polynomial time complexity. In this

work, we develop a heuristic user association algorithm based on [MJS97]. The

algorithm of Moser et al. [MJS97] relies on a theorem proven by Everett [EI63]

that makes Lagrange multipliers applicable to discrete optimisation problems, such

as the MMKP. In this regard, algorithm in [MJS97] has already been considered

as a useful tool in some works [KNY08][GZF10] to solve resource management

problems in OFDMA wireless networks. Therefore, we have adapted the algorithm

of [GZF10] to our specific user association problem.

We can transform the constrained minimisation problem into unconstrained

problem by introducing the Lagrange multipliers λ and ξ related to the radio

resource constraint and fronthaul resource constraint of each RRH

min
x

(
∑
j∈Lon

∑
i∈U

(δjεijPj + λjεij + ξjηij)xij) (4.54)
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If denoting the utility as

%ij = δjεijPj + λjεij + ξjηij (4.55)

then the optimal user association solution is given by

x∗ij =

 1 j = argmin(%ij)

0 otherwise
(4.56)

The main difficulty in solving the problem is how to efficiently compute the

Lagrange multipliers. In this regard, [MJS97] uses an approach based upon the

concept of graceful degradation of the most valuable choices. First, an initial

temporary solution is derived from (4.54) by considering all Lagrange multipliers

equal to zero (i.e., the utility equals to the profit, so that each user is assigned

to the “best” RRH irrespective of its radio or fronthaul resource cost). Then,

Lagrange multipliers associated to RRHs that would exceed available resources

are iteratively increased until a feasible solution is found. That is, the increase of

Lagrange multiplier associated to an RRH causes an increase in the utility of its

served users, so that some of them could be reassigned to other RRHs providing

lower utility.

The P-UA algorithm, shown in Algorithm 2, consists of two phases, namely:

initialisation (line 01-08) and drop (line 09-28). Firstly, Lagrange multipliers are

set to zero (line 01), and then user profits and resource costs are computed (lines

02-04) for each user. In order to reduce the computational complexity, not all

RRHs are viewed as potential choices. Instead, each user i is assumed to have

a candidate set, denoted as zi, composed by the RRHs providing the γij ≥ Λth.

Then, an initial association is obtained by selecting the most valuable RRH for
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Algorithm 2: P-UA algorithm
01 Set Lagrange multipliers to zero: λj ← 0, ξj ← 0
02 for each user i = 1, 2, ...|U|
03 for each RRH j = 1, 2, ...|zi| on the candidate set for i compute profit

and costs
04 δjεijPj (4.50a), εij (4.40), ηij (4.43)
05 Find the most valuable RRH j = argminj{δjεijPj} for each user

i and update its association accordingly xij ← 1
06 for each RRH j compute the total radio/fronthaul resource costs
07 πj =

∑
j∈U εijxij, τj =

∑
j∈U ηijxij

08 Conform total resource cost set ψ =
{
π1, π2, ..., π|Lon|, τ1, τ2, ..., τ|Lon|

}
09 while ψj > 1 for any j do
10 Find the RRH j∗ holding the most offending constraint violation

s = argmaxj{ψj}, where j∗ = s if s = 1, 2, ...|Lon| and j∗ = s− |Lon|+ 1
otherwise

11 Compute the increase of the multiplier associated to constraint s
(radio/fronthaul) of RRH j∗

12 for {i|xij∗ = 1}
13 for {j = 1 : |zi|}
14 Compute the increase of the utility

4%ij∗→j = δjεijPj − δj∗εij∗Pj∗ + λjεij − λj∗εij∗ + ξjηij − ξj∗ηij∗
15 if j∗ = s
16 4λij∗→j = 4%ij∗→j/εij∗
17 else
18 4ξij∗→j = 4%ij∗→j/ηij∗
19 Find the user to change its association and re-evaluate the

corresponding Lagrange multiplier
20 if j∗ = s
21 I∗J∗ = argminij{4λij∗→j}, I ′J ′ = argminij{4λij∗→j}, I ′ 6= I∗

22 λj∗ ← λj∗ + (4λI∗j∗→J∗ +4λI′j∗→J ′)/2
23 else
24 I∗J∗ = argminij{4ξij∗→j}, I ′J ′ = argminij{4ξij∗→j}, I ′ 6= I∗

25 ξj∗ ← ξj∗ + (4ξI∗j∗→J∗ +4ξI′j∗→J ′)/2
26 xI∗j∗ ← 0, xI∗J∗ ← 1
27 πj∗ ← πj∗ − εI∗j∗ , τj∗ ← τj∗ − ηI∗j∗
28 πJ∗ ← πJ∗ + εI∗J∗ , τJ∗ ← τJ∗ + ηI∗J∗
29 Final user association x = [xij]|Lon|×|U|

each user (line 05). The total radio and fronthaul costs at each RRH j, denoted

by πj and τj, respectively, are computed (lines 06-07) and the resource cost set

ψ = {π1, π2, ..., π|Lon|, τ1, τ2 . . . τ|Lon|} is conformed (line 08).
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If the initial assignment is feasible (i.e., none of the elements of ψ is greater

than 1), that is an optimal solution. Otherwise, the algorithm continues in the

drop phase. Within the drop phase, Lagrange multiplier associated to the most

offending constraint violation is repeatedly increased to force user reassignments

till a solution not exceeding resource constraints is found. In each iteration of this

phase, the RRH j∗ with the most offending constraint violation s is determined

(line 10), where

j∗ =

 s s = 1, 2, ...|Lon|

s− |Lon|+ 1 otherwise
(4.57)

For each user i currently allocated to the RRH j∗ (line 12), the Lagrange multi-

plier increase of the most offending constraint s required to move user i from RRH

j∗ to another RRH j in its candidate set is computed (lines 12-18). This is done

so that the utility of user i at the overloaded RRH j∗, %ij∗ , is increased to a value

larger than or equal to the utility on the candidate RRH j, %ij.

Thus, if the most offending constraint violation at RRH j∗ is on radio resources,

namely RB, the increment to Lagrange multiplier λj∗ should be that:

(δj∗εij∗Pj∗ + (λj∗ +4λij∗→j)εij∗ + ξj∗ηij∗) ≥ (δjεijPj + λjεij + ξjηij) (4.58)

So the increment 4λij∗→j to the radio Lagrange multiplier can be computed

as:

4 λij∗→j ≥
δjεijPj − δj∗εij∗Pj∗ + λjεij − λj∗εij∗ + ξjηij − ξj∗ηij∗

εij∗
(4.59)

Similarly, if the most offending constraint violation is on fronthaul resources,
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the increment to Lagrange multiplier ξj∗ should be that:

(δj∗εij∗Pj∗ + λj∗εij∗ + (ξj∗ +4ξij∗→j)ηij∗) ≥ (δjεijPj + λjεij + ξjηij) (4.60)

So the increment4ξij∗→j to the fronthaul Lagrange multiplier can be computed

as:

4 ξij∗→j ≥
δjεijPj − δj∗εij∗Pj∗ + λjεij − λj∗εij∗ + ξjηij − ξj∗ηij∗

ηij∗
(4.61)

where the numerator in (4.59) and (4.61) is the increase of the utility of user i,

denoted as %ij∗→j. For each RRH j in the candidate set zi of users currently

allocated to RRH j∗, the increase of the corresponding Lagrange multiplier is

computed in lines 12-18. Then, the user I∗ and candidate RRH J∗ causing the least

increase of the corresponding multiplier is chosen for exchange (lines 19-25) as this

choice minimises the gap between the optimal solution characterized by (4.56) and

the new P-UA solution obtained at this point. However, if the multiplier increase

is just computed as the equality, users may have the same utility towards multiple

RRHs. To avoid this problem, we compute the increment to be added to the

corresponding multiplier as the average between the least increase, corresponding

to user I∗ and RRH J∗, and the second least increase obtained with user I ′ and

RRH J ′. This choice guarantees that only one user is reassigned at each iteration

and the next P-UA solution is stable (equal utilities due to the update of the

multipliers are avoided). The reassignment of the selected user is performed (line

26), and radio and transport resource costs are updated accordingly (lines 27-

28). The process is repeated until a solution not exceeding resource constraints is

determined, which is the final user association (line 29).
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B. P-RS

Since the RRHs are typically deployed on the basis of peak traffic volume and

stayed turned-on irrespective of traffic load, it is possible to save huge energy by

switching off some underutilised RRHs during off-peak times. In this section, we

shall start by discussing the effect of switching off one RRH. Based on the study of

this simple case, we propose a sequential (continuous) algorithm, in which RRHs

get switched off one by one while ensuring users’ QoS.

Let us consider a simple case in which one RRH is turned off. Apparently,

this would result in an increase in the system load of neighbouring RRHs. This

is not only because those users originally associated with the switched off RRHs

need to be transferred to the neighbour RRHs, but also because this will result

lower service rates due to farther distances between the users and their new serving

RRHs. However, on the other hand, turning off a RRH may bring positive impact

on the system load due to reduced inter-cell interference, in particular, some users

originally associated with neighbouring RRHs will see potentially higher service

rates.

Now we focus on determining the active RRH set such that L∗on = argminζ(Lon).

The P-RS problem is a challenging combinatorial problem with O(2L) possible

cases, which makes it very difficult to find an optimal solution through exhaustive

search, especially when L is large. Thus, we propose a heuristic algorithm to solve

the NPCM problem iteratively.

Our proposed algorithm starts from the point where all RRHs are set active

(line 01 in Algorithm 3). Then it finds the best RRH to deactivate into sleep mode

for energy conservation in each iteration. Specifically, at the beginning of each

iteration, it calculates the dynamic power consumption ζ when excluding the pico
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Algorithm 3: proposed JRSUA algorithm

01 Initialise Lon ← L
02 minNPC← ζ(Lon)
03 do
04 for ∀j ∈ Lon
05 calculate ζ(Lon \ {j})
06 end
07 l← argminζ(Lon \ {j})
08 if ζ(Lon \ {l})− ζ(Lon) < P 0

j − P s
j where j 6= 0

09 Lon ← Lon \ {l}
10 minNPC← ζ(Lon)
11 else
12 break
13 end
14 end

RRH from current Lon one by one. Then it selects the pico RRH l with lowest ζ.

In line 08, the algorithm checks whether there is a net energy saving. If so, we put

RRH l into sleep and update the network power consumption value (minNPC in

line 10). Otherwise, we stop the algorithm.

4.4.3 Simulation Parameters and Results

4.4.3.1 Simulation Parameters

In order to validate and evaluate the performance of the proposed scheme, we

present numerical and simulation results in this section. Simulation set-up mainly

follows the guidelines of 3GPP technical reports [Acc16a][Acc16c]. We adopt the

power consumption model from [AGD+11] and set the value of power consumption

for macro RRH and pico RRH accordingly. The primary system parameters are

summarised in Table 4-E.
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Table 4-E: Simulation parameters

Parameter Value

Area
1 km × 1 km

[EYF+15]
Number of macro RRH 1
Number of pico RRH 12 [EYF+15]

Number of RBs 25
RB bandwidth 180 kHz

Maximum transmit power of macro RRH 43 dBm
Maximum transmit power of pico RRH 30 dBm

Load-dependent power slope of macro RRH 4.7
Load-dependent power slope of pico RRH 4.0

Circuit power consumption of pico RRH (active) 6.8 W
Circuit power consumption of pico RRH (sleep) 4.3 W

Path loss for macro RRH 128.1 + 37.6log10(d)
Path loss for pico RRH 140.7 + 36.7log10(d)

Shadowing standard deviation 10 dB
Thermal noise -174 dBm/Hz

SINR threshold -5 dB
User data rate requirement 512 kbps

4.4.3.2 User Association Validation

Since the key module of the proposed JRSUA algorithm (Algorithm 3) is user

association (UA), we first validate the user association module (Algorithm 2) with

reduced network scale. We consider 500 m × 500 m area with one macro RRH

and 4 pico RRHs. The channel bandwidth is 1.4 MHz and configured with 6

RBs [Acc16c]. Here we validate the user association algorithm with radio resource

constraint by setting all the Cj into infinity.

Fig. 4.10 illustrates the basic settings before running any algorithms. As we can

interpret from Fig. 4.10, there is one macro RRH located at the centre of A. Four

pico RRHs are installed in predefined locations. Here the users representing traffic

demands are randomly distributed. And we can adopt other kinds of distributions

mapping to different traffic dynamics.
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Figure 4.10: Settings of macro RRH, pico RRHs and users

Fig. 4.11(a) and Fig. 4.11(b) shows the initial user association result with

15 users. In Fig. 4.11(a), the solid lines connecting the RRH to the user show

the initial association. Fig. 4.11(b) indicates the RB utilisation ratios of all the

RRHs. RRH with ID 0 is the macro RRH. Since none of the RB utilisation ratios

are larger than 1, the initial association solution is feasible. The algorithm executes

line 08 and then directly goes to line 29 (Algorithm 2). We can verify that in initial

phase, all the users associate with the RRHs consumes the least power to provide

the rate QoS: since we only consider path loss model here, the user association

result at initialisation phase is to connect user with the nearest pico RRH to

attain highest data rate, thus consumes least load-dependent power (referring to

equations (4.38)(4.40) and (4.50a)). We can observe that all the users prefer pico
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Figure 4.11: UA initial result and RB initial utilisation ratios with 15
users

RRH rather than macro RRH even macro RRH is nearer since the transmit power

of macro RRH is much larger than that of pico RRH.

Then we add 1 user in the system to make RRH 3 overloaded. In Fig. 4.12(a),

the red stars represent the original users and the magenta cross represents the

added user. The solid lines shows the initial association (line 05 in Algorithm 2).

All users still tend to connect to the best pico RRHs. The problem is that RRH 3

uses more than 100% RBs, which is shown in Fig. 4.12(b). This violates the radio

resource constraint (lines 06-08).

Then the algorithm enters into the drop phase (lines 09-28) to resolve the con-

straints violation problem. After drop phase, the final user association and RB

utilisation ratios are shown in Fig. 4.13(a) and Fig. 4.13(b). From the compar-

ison of initial user association in Fig. 4.12(a) and the final user association in

Fig. 4.13(a), the added user originally connected to RRH 3 (the solid line in Fig.

4.12(a)) is changed to connect to the macro RRH (the dotted line in Fig. 4.13(a)).
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Figure 4.12: UA initial result and RB initial utilisation ratios with 16
users
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Figure 4.13: UA final result and RB final utilisation ratios with 16 users

By moving the user to the less preferred RRH, the RB utilisation ratios of all

RRHs are able to stay no larger than 1, shown in Fig. 4.13(b).
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4.4.3.3 Performance Evaluation

To show the effectiveness of the JRSUA, we first compare it against other coun-

terparts using the parameters in Table 4-E. To the best of our knowledge, there is

no similar work investigating joint RRH selection and user association in C-RAN

scenario, so we compare it with two methods adopted in conventional green cellular

networks: SWES [OSK13] and GA [CD14]. Here we set the fronthaul capacity to

infinity to eliminate the effect of fronthaul constraint. If not mentioned specifically,

all the results are the average values under 100 realizations.

The SWES [OSK13] associates users to the cell which provides the highest

signal strength and puts the base stations (BSs) into sleep which will cause the

neighbour cells the least load increasing. In [CD14], genetic algorithm (GA) is used

to determine the active BS set for reducing overall network energy consumption in

OFDMA cellular networks. And the performance of GA is up to the search domain,

related to the population and generation number. In our simulation, we set the

population size as 50, the generation number as 50, the crossover probability as

0.8 and the mutation probability as 0.05, suggested by [CD14]. To calculate the

fitness and handle the constraints, we use

F (x) =

 f(x) if x is a feasible solution

fmax + v(x) otherwise
(4.62)

where f(x) is the objective function, equals to (4.48a). v(x) is the violation func-

tion. fmax is the objective of the worst feasible solution in the population. Thus

the fitness of a feasible solution equals to its objective, while the fitness of an in-

feasible solution not only depends on the amount of constraint violation, but also

on the population of solutions in the current generation. It can be interpreted into
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the following criteria to evaluate the fitness of a solution:

• Any feasible solution is preferred to an infeasible solution;

• Among two feasible solutions, the one having better objective function is

preferred;

• Among two infeasible solutions, the one having small constraint violation is

preferred [Deb00].

In our simulations, SWES scheme is validated against the result of Fig. 5 in

[OSK13] and GA scheme is validated against the result of Fig. 4 in [CD14].
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Figure 4.14: Network power consumption comparison among JRSUA,
SWES and GA schemes with 12 pico RRHs

The comparison in Fig. 4.14 shows the JRSUA algorithm achieves averagely

10.67% energy saving than GA and 15.25% energy saving than SWES. We also
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investigate the performance in a larger network scale: we consider the simulation

scenario with one macro RRH and 24 pico RRHs in a 1.6×1.6 km2 area [ZHZ+15].

The comparison in Fig. 4.15 shows the JRSUA algorithm is able to save even more

energy than the other two counterparts with user number range from 100 to 200

since it stands at a global view and the two components (P-UA and P-RS) are

coupled properly. However, the user association and BS deactivation in SWES are

both based on local view. On average, JRSUA saves 13.81% energy than GA and

18.37% than SWES. The trend also reveals that JRSUA can achieve larger scale

of energy saving with heavier traffic load. Less active pico RRHs is required than

the other two counterparts which is shown in Fig. 4.16.
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Figure 4.15: Network power consumption comparison among JRSUA,
SWES and GA schemes with 24 pico RRHs

The simulation elapsed time of the three algorithms is compared in Table 4-F.

The value in the first column is the user number. We use the normalised elapsed

time to show the elapsed time difference of the three algorithms: the elapsed time

of JRSUA is set as one unit time. From the table we can see, SWES consumes less
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Figure 4.16: Active pico RRHs number comparison among JRSUA,
SWES and GA schemes with 24 pico RRHs

time due to the local view. However GA on the other hand consumes several-fold

time than JRSUA because of its searching nature. It mainly depends on the values

of population size and generation number.

Table 4-F: Simulation elapsed time comparison

User number JRSUA SWES GA

100 1 0.92 7.59

120 1 0.82 7.64

140 1 0.81 9.08

160 1 0.75 9.75

180 1 0.76 11.6

200 1 0.71 13.4

Then we investigate the performance of JRSUA using the network power con-

sumption and the number of active pico RRHs indicators under three fronthaul

network scenarios using simulation parameters in Table 4-E.
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Figure 4.17: Performance comparison between optimal solution and JR-
SUA algorithm in fibre fronthaul

A. Fibre fronthaul

The results in Fig. 4.17(a) and Fig. 4.17(b) evaluate the proposed JRSUA perfor-

mance in terms of network power consumption and the number of active pico RRHs

against optimal solution from exhaustive search in fibre scenario. The capacity of

the fibre fronthaul link is set to 10 Gbps [PSSSS14]. Fig. 4.17(a) confirms the

JRSUA is able to perform closely to the optimal solution. However, the complex-

ity of JRSUA is O(L2) (Algorithm 3), which is greatly reduced from O(2L) of the

exhaustive search solution, where each pico RRH can be either active or sleep, es-

pecially when L is large in practical scenes. As the user number increases, it shows

the closer trend of performance against the optimal solution. This is because in

heavier load situation, Algorithm 3 switches off less pico RRHs which reduces the

difference with the optimal solution. We also investigate the number of active pico

RRHs needed correspondingly in Fig. 4.17(b). Regardless of the increasing traffic,

the number difference of active pico RRHs between JRSUA and optimal solutions

is less than 1.
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Figure 4.18: Performance comparison between optimal solution and JR-
SUA algorithm with 5 Mbps wireless fronthaul

B. Wireless fronthaul

With wireless fronthaul links, we investigate two cases where in the first case, all

the pico RRHs are assumed to have limited fronthaul capacity as 5 Mbps [HA15].

The network power consumption and number of active pico RRHs comparisons in

JRSUA against those in exhaustive search are given in Fig. 4.18(a) and 4.18(b).

When doubling the fronthaul capacity limitation to 10 Mbps [DDSK13], the cor-

responding results are illustrated in Fig. 4.19(a) and 4.19(b). Similarly with the

result in fibre scenario, the JRSUA achieves proximity to the optimal solution,

especially in heavy loads.

Take a vertical comparison between the results in Fig. 4.18(a) and 4.19(a), we

find that within the network power consumption range from 10 W - 50 W and the

active pico RRHs number range from three to eleven, the number of served users

is different. When the power consumption is within relatively low range, say 10 W

- 20 W power consumption and three to five active pico RRHs, the C-RAN with

10 Mbps fronthaul can serve about 20 more users than that with 5 Mbps fronthaul

links. However when the network is heavily loaded, the 10 Mbps fronthaul C-RAN
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Figure 4.19: Performance comparison between optimal solution and JR-
SUA algorithm with 10 Mbps wireless fronthaul

can support 40 more users consuming the same level power (e.g., 40 W - 50 W)

and using nine to eleven active pico RRHs.

C. Mixed fronthaul

In this section, we investigate a more complicated scenario with mixed fronthaul

configuration (Table 4-G). Fig. 4.20 compares the power consumption with three

different mixed fronthaul link combinations. The C-RAN can support around 90

users in scenario 1 and 100 users in scenario 3. For comparison reason, the user

range in Fig. 4.20 is set from 20 to 80. From the comparison of the JRSUA in three

scenarios, we can see that using more fibre fronthaul links consumes less energy

since the fibre fronthaul have very large capacity allowing more user associations.

And the fronthaul capacity have greater influence in heavy loaded C-RAN.

Fig. 4.21 indicates how many users are associated with the macro RRH and

the pico RRHs respectively in mixed-scenario 2. The big gaps imply that users

prefer to associate with pico RRHs due to lower dynamic power consumption.
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Table 4-G: Mixed fronthaul settings

Scenario Number of fibre / wireless fronthaul

mixed-scenario 1 6 / 6

mixed-scenario 2 3 / 9

mixed-scenario 3 9 / 3
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Figure 4.20: Network power consumption comparison among different
fronthaul combinations

4.5 Summary

This chapter studies radio resource management schemes in C-RAN architecture.

In Section 4.2, a joint power and resource block allocation algorithm is proposed

aimed at maximising the user satisfaction. It takes into account diverse QoS

requirements and inter-cell interference. Users are firstly divided into satisfied

and unsatisfied sets. Then different policies are devised using power-RB strategies

to mitigate inter-cell interference and optimise user satisfaction. Through BBU

pool, a cloud based information sharing mechanism is used to direct co-channel

RB reassignment. Simulation results show that the proposed algorithm achieves
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Figure 4.21: User associations with macro and pico RRHs in mixed-
scenario 2

higher user satisfaction with QoS requirements.

In Section 4.3, an energy-effective network deployment (EEND) scheme is pro-

posed to optimise the network energy consumption for dense C-RAN. Under mul-

tiple constraints, EEND achieves saving energy consumption by selecting only a

subset of RRHs without harming traffic demand. A combination of MMKP La-

grange multipliers and sleeping technique is designed in EEND to meet the target.

The simulation results illustrate 40% energy reduction compared to GA scheme.

To address the energy efficiency issue in downlink C-RAN, in Section 4.4, by

understanding the fronthaul limitation, we have proposed a joint RRH selection

and user association (JRSUA) scheme with the goal of network energy minimi-

sation given that all the users within this network are served with required data

rate. We first formulate the NPCM problem considering the RRH selection, user
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association and fronthaul capacity constraint, which have not been considered all

together before. Based on the analysis of the formulated NPCM problem, an it-

erative JRSUA algorithm including two coupled components P-UA and P-RS is

proposed to solve the optimisation problem. From the simulation, we can conclude

that the proposed JRSUA algorithm not only outperforms other counterparts with

about 15% average network energy saving, but also performs in close proximity

within only around 10% difference to the optimal exhaustive search approach in

average yet with greatly reduced complexity in various fronthaul scenarios.

Chapter 3 and 4 harness the idea of dynamic network topology to achieve

adaptive resource management. Chapter 3 utilises semi-smart antennas at BS level

to achieve adaptive cell coverage responding to the load distribution. In Chapter

4, RRH selection is adaptive to the traffic dynamics on the network scale.



Chapter 5

Conclusions and Further Work

5.1 Conclusions

This thesis focuses on QoS-aware radio resource management schemes adaptive to

traffic dynamics in different OFDMA multi-cell network scenarios.

By identifying the utility of GBR traffic and the unbalanced traffic among

cells, a user satisfaction maximisation resource management scheme is proposed

in Chapter 3 working on antenna pattern adaptation and subcarrier allocation

jointly. Based on the idea of non-cooperative game, subcarrier is allocated in a

distributed way taking into QoS requirements including minimum rate requirement

and user/traffic priorities into account. Genetic algorithm is applied to optimise

the semi-smart antennas. A dynamic optimisation of QoS for moving users in an

OFDMA network with semi-smart antennas is further developed. The traffic dis-

tribution is monitored periodically and semi-smart antennas based optimisation is

only triggered when the satisfaction improvement drops below a threshold. Simu-

lation results show that the proposed algorithms are able to achieve 10% to 20%

145
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greater user satisfaction compared to fixed antenna gain scenarios.

Benefiting from cloud based information sharing through the BBU pool, a joint

resource block (RB) and power allocation scheme is proposed at the beginning

of Chapter 4 to maximise the number of satisfied users whose required QoS is

provided in multi-cell OFDMA downlink served with high power nodes only. Sim-

ulation results show that the proposed joint RB and power allocation algorithm is

capable of achieving 20%-30% satisfaction improvement compared to the conven-

tional MaxSINR approach. By utilising network densification, system bandwidth

can be reused across a geographic area to reduce the number of users competing

the resources at each access node and ensure the QoS provisioning. Two network

energy optimisation algorithms with QoS guarantee are proposed for C-RANs in

Chapter 4. An energy-effective network deployment (EEND) scheme is devised

to cover the traffic demand nodes with appropriate subset of small cell RRHs in

dense C-RAN. The proposed network deployment algorithm achieves 40% energy

saving compared with genetic algorithm based traffic demand node association

scheme and 50% energy saving respect to the “full-on” baseline algorithm. At the

end, a joint RRH selection and user association (JRSUA) scheme is proposed with

the goal of network power consumption minimisation (NPCM) given that all the

users within this network are served with required data rate. Firstly, the NPCM

problem is decoupled into user association sub-problem and RRH selection sub-

problem. Secondly, we solve the user association for given active RRH set using

multiple-choice multidimensional knapsack model with consideration of both radio

resource and fronthaul capacity constraints. Thirdly, we devise a low complexity

heuristic algorithm that selects the best active RRHs by repeatedly solving the

user association problem. The effectiveness of the proposed JRSUA is validated

by simulation, which outperforms the other counterparts with 10%-20% network
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energy saving and provides near-optimal performance with reduced complexity.

5.2 Lesson and Learn

• The most important thing is to find a research topic which you are interested

in. Four years’ PhD study is never easy. Especially during the hardships,

real interest will be the biggest motivation rather than any deadline, paper

or certificate.

• Always do thorough background research before any implementation work.

Spending time on background research especially in early PhD stages is never

too much.

• Thinking is as important as doing in the research world. Keep your research

up to date. You should have a clear mind of every connection from your

research to the latest progress in both industry and academia.

• You may have several pieces of works, but make them a complete story in your

thesis. Have both horizontal and vertical views on your research. Horizontal

means having a comprehensive perspective of every possible related work.

Only knowing your work is not enough. Vertical means finding the “hole”

from broad literature review as your research interest and digging deep into

details.

• Communicate with your supervisor, especially when you are frustrated. Rely

on yourself doing the research including figuring out the topic and finding

the solutions. Also communicate and discuss with your supervisor on every

step. Feeling blue is normal and talk it with your supervisor. They will give
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you the strongest support.

• Stay motivated, keep learning. Be curious and insightful. Build your own

way to understand the world and solve problems. PhD is a once a lifetime

thing and make it worthwhile.

5.3 Future Work

In this section, extensions to current work and some future research directions are

proposed.

5.3.1 Extension to Current Work

In this thesis, power allocation is either equal over subcarriers or using a prede-

fined policy. As one possible extension, power allocation can be jointly formulated

in the user satisfaction maximisation problem and network power consumption

minimisation problem as well.

Since in almost all wireless communications the most important factor to de-

termine a user’s satisfaction is its data transmission rate, the main QoS indicator

considered in this thesis is the minimum rate requirement. However in future

work, cross layer optimisation can be redesigned taking other QoS indicators such

as delay bound and loss probability into account with queueing model for real-time

flows.
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5.3.2 Joint Transmission in C-RAN

This thesis assumes that each user is only associated with one RRH which is simple

to implement. In order to moving the networks toward user-centric architectures,

joint transmission should be considered which allows users to communicate via

several RRHs [DDD+15].

5.3.3 Delay Performance in C-RAN

Apart from energy efficient design considering fronthaul capacity constraints, delay

performance of C-RANs should also be optimised especially for real-time applica-

tions [WLP15]. Latency can be jointly considered with capacity on the fronthaul

constraints.

5.3.4 Resilience Mechanism Design in BBU Pool

The centralisation nature of C-RAN imposes higher requirement on the resiliency

of cloud BBU hotelling [WTT+16] since a single network and/or processing unit

failure might produce large disruptions [CMDTM16]. Dedicated virtual link pro-

tection like redundant virtual links can be used to deal with connectivity failure.

Resilient virtual machine placement, for example backup BBU can survive pro-

cessing failure [CCMM16].

5.3.5 RRH Selection with Traffic Prediction

In this thesis, RRH selection is based on historical traffic demand information. In

certain typical traffic patterns, by using machine learning based prediction tech-
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niques [SRK16], we can further optimise long-term network energy consumption

considering traffic prediction.
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