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Abstract

Spectrum scarcity is an important challenge faced by high-speed wireless communica-

tions. Meanwhile, caused by current spectrum assignment policy, a large portion of

spectrum is underutilized. Motivated by this, cognitive radio (CR) has emerged as one

of the most promising candidate solutions to improve spectrum utilization, by allow-

ing secondary users (SUs) to opportunistically access the temporarily unused spectrum,

without introducing harmful interference to primary users. Moreover, opening of TV

white space (TVWS) gives us the confidence to enable CR for TVWS spectrum. A cru-

cial requirement in CR networks (CRNs) is wideband spectrum sensing, in which SUs

should detect spectral opportunities across a wide frequency range. However, wideband

spectrum sensing could lead to unaffordably high sampling rates at energy-constrained

SUs. Compressive sensing (CS) was developed to overcome this issue, which enables

sub-Nyquist sampling by exploiting sparse property. As the spectrum utilization is low,

spectral signals exhibit a natural sparsity in frequency domain, which motivates the

promising application of CS in wideband CRNs.

This thesis proposes several effective algorithms for invoking CS in wideband CRNs.

Specifically, a robust compressive spectrum sensing algorithm is proposed for reducing

computational complexity of signal recovery. Additionally, a low-complexity algorithm is

designed, in which original signals are recovered with fewer measurements, as geolocation

database is invoked to provide prior information. Moreover, security enhancement issue

of CRNs is addressed by proposing a malicious user detection algorithm, in which data

corrupted by malicious users are removed during the process of matrix completion (MC).

One key spotlight feature of this thesis is that both real-world signals and simulated

signals over TVWS are invoked for evaluating network performance. Besides invoking

CS and MC to reduce energy consumption, each SU is supposed to harvest energy from
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radio frequency. The proposed algorithm is capable of offering higher throughput by

performing signal recovery at a remote fusion center.
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Chapter 1

Introduction

Radio frequency (RF) spectrum is a valuable but tightly regulated resource due to its

unique and important role in wireless communications. The demand for RF spectrum

is increasing due to a rapidly expanding market of multimedia wireless services, while

the usable spectrum is becoming scarce due to current rigid spectrum allocation policies.

Specifically, according to reports from the Federal Communications Commission (FCC)

and the Office of Communications (Ofcom), localized temporal and geographic spectrum

utilization is extremely low in reality [1, 2]. Cognitive radio (CR) has become a promis-

ing solution to solve the spectrum scarcity problem, by allowing secondary users (SUs)

to opportunistically access a licensed band when the primary user (PU) is absent [3].

Additionally, it is demonstrated that TV spectrum, which used to be allocated to analog

TV signals, has been cleaned and opened to access due to the digital switch-over (DSO)

around the world [1, 2]. These underutilized TV spectra are named as TV white space

(TVWS). Lately, FCC issued a report and order for permitting the cognitive usage of

TVWS spectrum [4]. Most recently, Ofcom has enabled licence exempt use of TVWS to

harness the benefits of such an innovative wireless technology [5], which motivates the

further research on the cognitive access to TVWS spectrum.

In order to avoid any harmful interference to the PUs in TVWS, SUs in CR networks

1
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(CRNs) should be aware of the spectrum occupancy over TV band. Spectrum sensing

is the first and one of the most challenging tasks in CR, which is performed to detect

the spectrum holes over TV spectrum. As the radio environment changes over time and

space, an efficient spectrum sensing technique should be capable of tracking these fast

changes [6]. A good approach for detecting the primary transmitters is to adopt the

traditional narrowband sensing algorithms, which include energy detection, matched-

filtering, and cyclostationary feature detection. Here, the term “narrowband” implies

that the frequency range is sufficiently narrow, such that the channel frequency response

can be considered as flat. In another word, the bandwidth of interest is less than the

coherence bandwidth of the channel [7].

While the present spectrum sensing algorithms have focused on exploiting spectral

opportunities over narrow frequency range, CRNs will eventually be required to exploit

spectral opportunities over wide frequency range from hundreds of megahertz (MHz)

to several gigahertz (GHz), in order to improve spectrum efficiency and achieve higher

opportunistic throughput. In wideband spectrum sensing, as driven by the Nyquist sam-

pling theory, a simple approach is to acquire the wideband signal directly by a high-speed

analog-to-digital converter (ADC). So far, wideband spectrum sensing has been investi-

gated in [8–11] with the implementation of a high-speed ADC. However, the high-speed

ADC is particularly challenging or even unaffordable for energy-constrained devices,

such as smart phones or even battery-free devices in a wireless power transfer (WPT)

model [12]. Subsequently, Landau [13] demonstrated that sampling rate should be no

less than the measure of occupied part of the spectrum, with the purpose of guarantee-

ing the stable reconstruction of multiband signals. However, the energy consumption is

still unaffordable for energy-constrained SUs in CRNs. Therefore, revolutionary wide-

band spectrum sensing techniques become more than desired to release the burden on

high-speed ADCs .

Recent developments on compressive sensing (CS) theory inspires sub-Nyquist sam-

pling, by utilizing the sparse nature of signals [14]. Driven by the inborn nature of
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the signal sparsity in wireless communications, e.g., the sparse utilization of spectrum,

CS theory is capable of enabling sub-Nyquist sampling possible for wideband spectrum

sensing. More particularly, CS theory has been firstly applied to wideband spectrum

sensing by Tian and Giannakis [8], where fewer compressed measurements are required

on the basis of Nyquist sampling theory. Subsequently, the application of CS theory on

wideband spectrum sensing in CRNs has attracted much attention.

1.1 Motivations and Contributions

Along with the developments on CS theory, my Ph.D spans the sub-Nyquist based wide-

band spectrum sensing with particular emphasis on CS technique. These proposed algo-

rithms are capable of improving the robustness and security of CRNs, with low computa-

tional complexity at energy-constrained SUs. The specific motivations and contributions

of my Ph.D research are summarized in the following.

1.1.1 Robust Compressive Spectrum Sensing

With the use of CS at SUs, each SU would only collect compressed samples at sub-

Nyquist sampling rate. Subsequently, signal recovery would be performed at SUs or a

fusion center (FC), where the data from the spatially located SUs are fused. It is noticed

that the signal-to-noise ratio (SNR) of the CS measurements would be decreased by 3dB

for every octave increasing in the subsampling factor for acquisition of a noisy signal

with fixed sparsity level [15]. This makes the exact signal recovery more difficult for

compressive spectrum sensing under heavy channel noise. Therefore, a robust spectrum

sensing algorithm based on CS with low computational complexity is needed.

As motivated by this, two robust compressive spectrum sensing algorithms are designed

for the single SU case and the case with multiple SUs, respectively. The proposed algo-

rithms contain two phases. In the case with single SU, where signal recovery is to be
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performed at the SU locally, a new wideband channel division scheme is proposed to

reduce the computational complexity of signal recovery in the first phase. In the second

phase, a denoising algorithm is performed to improve detection performance by enabling

the compressive spectrum sensing algorithm being more robust to channel noise. For the

case with multiple cooperative SUs, where spatial diversity among participating SUs is

utilized to improve the sensing performance [16, 17], the sparse property of spectral sig-

nals can be transformed into a low-rank property [18]. In the first phase, the proposed

wideband channel division scheme is invoked to reduce the costs of signal acquisition

at SUs. Subsequently, only the compressed measurements are sent to the FC, which

reduces amount of transmission overhead in CRNs. Matrix completion (MC), as a fur-

ther development of CS, is invoked at the FC to recover the unsensed channels from the

sensed channels. In the second phase, detection performance is further improved by the

proposed denoising algorithm. To this end, the proposed robust compressive spectrum

sensing algorithm is tested on the real-world signals over TVWS after being validated

by the simulated TV signals.

1.1.2 Data-Assisted Low-Complexity Compressive Spectrum Sensing

Besides the robustness to channel noise, adaptive compressive spectrum sensing with

low complexity has attracted much attention [7]. Theoretically, the required number

of measurements will proportionally change when the sparsity level of wideband signal

varies. However, in practice, the sparsity level of wideband signal is uncertainty, because

of either the dynamic activities of PUs or the time-varying fading channels between

PUs and SUs. Consequently, most of sub-Nyquist wideband sensing systems should

pessimistically choose the number of measurements to ensure exact recovery, leading to

more energy consumption at SUs. Moreover, the computational complexity of signal

recovery may be unaffordable for the energy-constrained SUs as it is dependent on the

number of collected compressed measurements. Therefore, a low-complexity compressive

spectrum sensing algorithm is needed, which should be adaptive to the dynamic spectrum
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occupancy.

Inspired by the geolocation database for TVWS, which is another approach to make

SUs aware of spectrum occupancy, a hybrid framework combining compressive spectrum

sensing and geolocation database is proposed to achieve adaptive CS with low complex-

ity. More specifically, a geo-location database algorithm is proposed to be implemented

at SUs locally to provide prior information on the spectrum occupancy. As a result,

SUs collect samples at the minimum rate without loss any information. Additionally,

with the availability of prior information, a data-assisted non-iteratively reweighted least

squares (DNRLS) based compressive spectrum sensing algorithm is proposed to reduce

the computational complexity of signal recovery. In order to further improve accuracy

and efficiency of the geolocation database algorithm implemented at SUs, an efficient

approach for calculating the maximum allowable equivalent isotropic radiated power

(EIRP) is proposed. Furthermore, the proposed hybrid framework and algorithms are

tested on the real-world signal and data over TVWS after being approved by the simu-

lated data.

1.1.3 Malicious User Detection Based on Matrix Completion

Along with improving the robustness, adaption and reducing the complexity of compres-

sive spectrum sensing algorithm, another challenge for CRNs comes from the malicious

users, which will send out dishonest data to degrade system performance. In current

CSS networks, all cooperative SUs are assumed to be honest and genuine. However,

the existence of malicious users would severely degrade the performance of cooperative

spectrum sensing (CSS) networks. Moreover, malicious users can degrade the detection

performance heavily in sub-Nyquist based CSS networks. If part of the compressed mea-

surements are corrupted by malicious users, signal recovery would be unstable at the

FC.

In order to guarantee the security of CSS networks, a malicious user detection frame-
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work is proposed by invoking the low-rank MC technique. More specifically, with the

purpose of improving the detection accuracy and reducing the costs of data acquisitions

at SUs, the data corrupted by malicious users are removed during the MC process at

the FC. Additionally, in order to avoiding requiring any prior information of the CSS

networks, a rank order estimation algorithm and a malicious user number estimation

strategy are proposed. The proposed framework is tested on the real-world signals over

TVWS after being validated by the simulated TV signals. Numerical results show that

the proposed malicious user detection framework achieves higher detection accuracy with

lower costs of data acquisition at SUs or less number of active SUs.

1.1.4 Wireless Powered Cognitive Radio Networks

Along with the invoking of CS technique to reduce the energy consumption at energy-

constrained SUs, energy harvesting provides another approach to improve the energy

efficiency at SUs. Different from harvesting energy from traditional energy sources (e.g.,

solar, wind, water, and other physical phenomena) [19], the emerging WPT further

underpins the trend of green communications by harvesting energy from RF [20].

In wireless powered CRNs, CS and MC techniques are invoked for improving the

energy efficiency and spectrum efficiency. With the purpose of optimizing the through-

put in wireless powered CRNs, a new frame structure design is proposed, in which

sub-Nyquist sampling is performed at SUs. The throughput of CRNs is optimized by

scheduling the time slots for energy harvesting, spectrum sensing, data transmission and

transmission power of SUs. As sub-Nyquist sampling is performed at SUs, time slot

allocated to spectrum sensing would be reduced significantly, which allows more time

for energy harvesting and data transmission. Additionally, CS and MC techniques are

invoked to perform the signal recovery at a remote data FC, which allows SUs per-

form energy harvesting again before data transmission. Throughput optimization of the

proposed frame structure is formulated into two linear constrained problems with the

purpose of maximizing the throughput of a single SU and the whole cooperative networks,
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respectively. The formulated problems are solved by using three different methods to

obtain the maximal achievable throughputs. Numerical results show that the proposed

frame structure design outperforms the traditional one in terms of throughput.
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1.3 Outline of the Thesis

Chapter 2 covers background of the CS and MC techniques, and their applications

in CRNs. Additionally, the fundamental concept of TVWS is introduced.

Chapter 3 proposes a robust compressive spectrum sensing algorithm for the cases

of a single SU and multiple cooperative SUs, respectively. Performance is verified by both

the simulated signals and real-world signals to show the effectiveness and robustness of

the proposed algorithm.

Chapter 4 presents a low-complexity compressive spectrum sensing framework with

prior information from geolocation database for TVWS. Performance of the proposed

framework is verified by both the simulated and the real-world data.

Chapter 5 designs malicious user detection framework based on low-rank MC.

Numerical results validate the effectiveness and robustness of the proposed approach.

Chapter 6 investigates the throughput optimization of wireless powered CRNs, with

invoking of CS and MC techniques for improving the achievable throughput. Numerical

results are presented to show the effectiveness of the proposed frame structure.

Chapter 7 draws the conclusions and a plan for future work.



Chapter 2

Background

This chapter provides an overview of the background knowledge used in this thesis,

including basic principles of CS and MC techniques, CR, compressive spectrum sensing,

and dynamic spectrum access (DSA) to TVWS.

2.1 Compressive Sensing

CS theory, as proposed by David Donoho, Emmanuel J. Candes, Justin Romberg and

Terence Tao, states that certain signals are able to be recovered from far fewer samples

or measurements than the samples required by Nyquist sampling theory [14, 21–23].

The key concepts of CS theory include two principles: 1) sparsity, which requires the

signals to be recovered should be able to be represented in a certain sparse domain;

2) Incoherence, which refers to extract the maximum information using the minimum

number of measurements. In this following, the CS theory is introduced in detail.

11
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2.1.1 Compressible Signals

Generally speaking, sparse signals are those that contain much less information than

their ambient dimension suggests. Sparsity of a signal is defined as the number of non-

zero elements in the signal under certain domain. Let us define f as an N -dimensional

signal of interest, Ψ ∈ CN×N is the orthonormal transformation basis where f is sparse,

and s is the sparse representation of f over the basis Ψ. Therefore, signal f can be given

by

f = Ψs. (2.1)

Apparently, f can be the time or space domain representation of a signal, and s is the

equivalent representation of the same signal in the Ψ domain. Signal f is said to be

K-sparse in Ψ domain as there are only K out of the N coefficients in s that are non-

zero. The study of CS is mainly focused on the case where K ≤ N . In practice, the

condition for sparse signal is relaxed to the following: if the representation (2.1) has a

few large coefficients and many small coefficients, signal f is considered as sparse. Here,

the implication of sparsity is that one can discard the small coefficients without much

perceptual loss, when a signal has a sparse expansion.

In traditional data acquisition systems (for example, digital cameras), the full signal

f with N samples is acquired firstly. Subsequently, the complete set of transform coef-

ficients is computed via s = ΨT f. Then the K largest coefficients are located and the

(N −K) smallest coefficients are discarded. Meanwhile, the values and locations of the

K largest coefficients are encoded. Unfortunately, this sample-then-compress framework

suffers from three inherent areas of inefficiency. First, the initial number of samples N

may be large even if the desired K is small. Second, the set of all N transformation coef-

ficients in s must be computed even though all but K of them will be discarded. Third,

the locations of the large coefficients must be encoded, thus introducing an overhead [24].

For such a case, it is naturally to think whether there is an approach to obtaining the

compressed signal directly.
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2.1.2 Compressed Measurements

If a signal is able to be represented in a certain sparse domain, CS technique can be

invoked to obtain the compressed signal, by taking only a small amount of linear and

non-adaptive measurements [21, 23]. Specifically, when an analog signal arrives, it should

be processed by the measurement matrix to get the compressed version of the signal.

Let us define Φ as an P ×N measurement matrix, where P ≤ N . Then the compressed

samples to be collected can be expressed as

x = Φf = ΦΨs=Θs, (2.2)

where Θ = ΦΨ is a P×N matrix. As Φ is independent on signal f, the projection process

is non-adaptive. The key of CS theory is finding out a stable basis Θ or measurement

matrix Φ to allow the exact recovery of the length-N signal from P measurements. This

seems an undetermined problem. However, if s is K-sparse, and the restricted isometry

property (RIP) is satisfied, as given in the following, the exact recovery is possible [22, 23].

Definition 1. Restricted Isometry Property (RIP): For any vector v sharing the same

K non-zero elements as s, if

1− ε ≤
‖Θv‖2
‖v‖2

≤ 1 + ε. (2.3)

for some ε, then the matrix Θ preserves the information of the K-sparse signal.

An alternative approach to guarantee the stability of Θ is to ensure that the measure-

ment matrix Φ is incoherent with the sparsifying basis Ψ. More specifically, incoherence

property requires that the rows of Φ cannot sparsely represent the columns of Ψ and

vice verse. However, in practice, the RIP condition and incoherence property are com-

putationally complex to verify [24].

By following the RIP condition for exact recovery, different types of measurement

matrices have been investigated, with consideration of the universality, recovery com-
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plexity, recovery speed, minimum number of measurements required exact recovery, and

the implementation costs. The common measurement matrices include random matrices

and structured matrices, which are discussed in detail as following.

2.1.2.1 Random Matrices

It is pointed out that both the RIP and incoherence property can be achieved with

high probability simply by selecting Φ as a random matrix [24]. The common random

matrices include Gaussian matrix [25], Bernoulli matrix [26], or almost all others matrices

which are independent and identically distributed (i.i.d.). It has been approved that

an P × N Gaussian i.i.d. random measurement matrix guarantees exact recovery if

P ≥ cK log (N/K) [22, 23]. Besides, with the properties of Gaussian i.i.d distributed

matrix Φ, the matrix Θ = ΦΨ also follows Gaussian i.i.d. distribution, regardless

of the choice of Ψ. Therefore, the random matrices are universal as they are random

enough to be incoherent with any sparsifying matrix. Additionally, for Gaussian random

matrices, the number of compressed measurements required for exact reconstruction is

almost minimal. However, random matrices inherently have two major drawbacks in

practical applications: huge memory buffering for storage of matrix elements, and high

computational complexity due to their completely unstructured nature [27].

2.1.2.2 Structured Random Matrices

The classic structured random matrices include random demodulator [28], modulated

wideband converter (MWC) [29] and multi-coset sampler [30], which are introduced

in detail in the following. As they are well structured, the computational complexity is

relatively low and physically implementable. However, the main drawbacks of structured

random matrices are that they are harder to analyze.

• Random demodulator [28]: As shown in Fig. 2.1(a), the random demodulator

consists of a pseudo-random number generator, a mixer, an accumulator, and a
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low-rate sampler. When the signal r (t) arrives, it is demodulated by the mixer,

which multiples the signals with a high-rate pseudo-random sequence. As a result,

the tones are smeared across the entire spectrum. Subsequently, the demodu-

lated signal is summed by the accumulator for every 1/R seconds, where R is the

sub-Nyquist sampling rate which is much lower than the Nqyuist sampling rate.

Additionally, a low-rate ADC sampler is implemented to capture the signal by

sampling it at a relatively low rate. The main advantage of this approach is that it

bypasses the need for a high-rate ADC, thus allowing the use of robust, low-power

and readily available components. Unfortunately, it has been identified that signal

recovery performance of the random demodulator is computationally intensive, as

the recovery process is highly nonlinear.

• MWC [29]: In the MWC, a parallel channel structure is proposed by implementing

multiple sampling channels. Each sampling channel contains a general low-pass

filter to replace the accumulator. As shown in Fig. 2.1(b), the analog signal is firstly

multiplied with a periodic waveform, whose period corresponds to the multiband

model parameters. Subsequently, the product is low-pass filtered and sampled

uniformly at a low rate. One significant benefit of introducing a parallel channel

structure is that the dimension of the measurement matrix is reduced, making the

spectral reconstruction more computationally efficient. Besides the theory analysis,

the implementation of MWC has been built on existing hardware devices as the

first sub-Nyquist sampling demonstration system for handling wideband analog

signals. However, the implementation is specifically designed for MWC, and it is

difficult to extend the implementation to make it match well with the other existing

CS algorithms.

• Multi-coset sampler [30]: An alternative multichannel sub-Nyquist sampling

approach is multi-coset sampling. As shown in Fig. 2.1(c), multi-coset sampler

chooses some samples from a uniform grid, which can be obtained by using a

sampling rate fs higher than the Nyquist rate. The uniform grid is then divided
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Figure 2.1: Block diagrams for measurement matrices: a) random demodula-
tor; b) modulated wideband converter; c) multi-coset sampler.

into blocks of m consecutive samples, and in each block v (v < m) samples are

retained, while the rest of samples are skipped. Thus, multi-coset sampler is nor-

mally implemented by using v sampling channels with sampling rate of fs/m,

which is m times lower than the Nyquist rate. Moreover, among the different

sampling channels, different time offsets are invoked. To obtain a unique solution

for the wideband spectrum from the partial measurements, the sampling pattern

should be carefully designed. Therefore, one drawback of the multi-coset sampler is

that accurate time offsets between sampling channels should be satisfied for robust

spectral reconstruction.
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2.1.3 Signal Reconstruction

After the compressed measurements are collected, the original signal should be recovered.

For signal reconstruction, since most of the basis coefficients in s are negligible, an

estimation of it can be obtained by finding out the minimum set of coefficients that

match the set of compressed measurements x. Therefore, if the RIP holds, the original

signal is able to be reconstructed by solving

min ‖ŝ‖p, subject to Θŝ = x, (2.4)

where p = 0. Since the l0-norm of vector s counts the number of non-zero elements, it is

both numerically unstable and NP-hard [14].

Another classical approach to this type of inverse problems is to find the vector in the

translated null space with the smallest l2 norm. The closed-form solution can be given

as ŝ = ΘT
(
ΘΘT

)−1
x. Unfortunately, l2 minimization will almost never find a K-sparse

solution, returning instead a non-sparse Θŝ with many non-zero elements [14].

So far, there are two types of relaxations to problem (2.4) to find a sparse solution.

The first type is convex relaxation, which leads to l1 minimization, also named as basis

pursuit (BP) [31]. Another type of solution is to use greedy algorithms.

2.1.3.1 l1-Norm Minimization

By invoking l1-norm minimization, the original signal is able to be reconstructed by

choosing p = 1 in (2.4). With the existence of noise, the signal reconstruction problem

becomes

min ‖ŝ‖1, subject to ‖Θŝ− x‖2 < ε, (2.5)

where ε refers to the noise tolerance level. It has been proved that a length-N signal

can be reconstructed from the P samples by BP, if P ≥ cK log (N/K) for some absolute
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Table 2-A: Compressive sensing solvers

Problems Solvers

min ‖s‖1, subject to Θs = x LP [35]

min ‖s‖1, subject to ‖Θs− x‖2 ≤ ε NESTA [36], SPGL1 [37]

min
(

1
2 ‖Θs− x‖22 +λ‖s‖1

)
FPC [38], Bregman [39], SpaRSA [40]

min ‖Θs− x‖22 , subject to ‖s‖1 ≤ ε SPGL1 [37]

constant c [22, 23]. However, numerical experiments suggest that most K-sparse signals

can be recovered exactly once P ≥ 4K. Based on this, a strengthened RIP is proved

by Candes and Tao [32]. It is supposed that Θ obeys the RIP, if every collection of 4K

columns of it are almost orthogonal and the top 4K singular values range from 0.9 to 1.1.

In this case, any given K-sparse signal s can be recovered from Θs by BP. Therefore,

it can be concluded that if the measurement matrix Θ satisfies the RIP, the convex

optimization problem with l1-norm and that with l0-norm have the same solution.

An easy way to solve the l1-norm optimization is to use a general-purpose convex

programming toolbox, such as the cvx toolbox maintained by Stanford [33]. However,

when the problem size becomes large, such a toolbox normally requires a considerable

length of computational time. To reduce the time, the proper structures of different

optimization problems and the suitable solvers have been investigated and summarized

in Table 2-A. The details of these CS solvers can be found in [34].

2.1.3.2 Greedy Algorithms

Greedy algorithms provide another approach for sparse recovery by finding out the sup-

ports of signal x iteratively. Existing greedy algorithms include various matching pursuits

(MP) [41], orthogonal matching pursuits (OMP) [42], compressive sampling matching

pursuit (CoSaMP) [43], etc. Taking OMP as an example, the residual rd is defined as

rd = x− Φs. (2.6)
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At each iteration, the observation vector is set as s = Φ∗rd, based on that Φ∗Φs is a

good local approximation of s. Then the coordinate of the observation vector’s largest

coefficient is added to index set I. Subsequently, by solving a least-squares problem

s = arg min
s∈RI

‖x− Φs‖2, (2.7)

the residual is updated to remove this coordinate’s contribution. These iterations are

repeated K times, and then yields an index set of K coordinates corresponding to the

support of signal s. It is proved that OMP is capable of recovering a sparse signal with

high probability [41].

In general, l1-norm minimization outperforms greedy algorithms in the sense of recov-

ered mean square error for sparse reconstruction. However, greedy algorithms are still

popular and well accepted as they are straightforward for hardware implementations and

thus suitable for embedded and real-time architectures. For example, [44] offered FPGA

implementation examples.

2.1.3.3 Other Approaches Towards Sparse Recovery

Besides the aforementioned l1-norm minimization and greedy algorithms, there are a

number of computational approaches for solving the original sparse recovery problem (2.4).

1. lp-norm minimization: One approach is to relax the l0-norm to lp-norm, where

p ∈ (0, 1). The lp minimization problem is non-convex and it is more difficult to

solve than l1 optimization. However, it is able to recover the original sparse signal

with fewer measurements [45, 46]. Meanwhile, lp minimization can also increase the

robustness against noise as well as signal recovery stability. Iteratively re-weighted

least-square (IRLS) has been proposed to compute local minima of the lp-norm

minimization problem [47, 48].

2. Sparse Bayesian framework: Another approach is to adopt the Bayesian framework
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to solve the CS problem. It has been pointed that the performance of l1 minimiza-

tion and greedy algorithms would become poor when the restrictions for CS are

not satisfied well. Additionally, it has been proved that the iterative reweighted

l1 minimization can provide the sparsest solution [49, 50]. In order to obtain the

sparsest solution, sparse Bayesian framework has been proposed to be invoked in

CS as an equivalent to iterative reweighted l1 minimization. More particularly, in

sparse Bayesian framework, a prior distribution for the unknown vector is assumed

to improve the recovery performance with fewer measurements, especially for the

cases where the correlation of rows in the measurement matrix is high, noise level

is high, or the sparsity of signal s is poor [51, 52]. The more details of sparse

Bayesian framework based CS model is out of the scope of this thesis but can be

found in [51, 52].

2.2 Compressive Sensing in Matrix Form

2.2.1 Distributed Compressive Sensing

In a typical setup, large groups of cheap and individually unreliable nodes may collab-

orate to perform a variety of data processing tasks, such as sensing, data collection,

classification, modeling, tracking, and so on. In such type of networks, each individual

node is normally energy-constrained. Therefore, they are sensitive to energy consumption

and crucial to the reduction of data transmission costs. It is noted that, in most cases,

the signal received at each individual sensor is itself sparse. Thus, the CS framework can

be utilized to encode and decode each one separately. However, it is further noticed that

data of sensors networks and arrays exhibit strong spatial correlations, which exhibits

a joint sparsity property. Based on the concept of joint sparsity, distributed CS [53] is

proposed to reduce the data transmission costs substantially, and thus enhancing battery

life.
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Figure 2.2: Joint sparsity illustration of a matrix.

An illustration of joint sparsity can be given as signals received at different sensors

share common sparse supports. As shown in Fig. 2.2, the signal received at each sensor is

supposed to be sparse in frequency domain, as only a few channels are occupied. For the

matrix constructed at a data FC, the columns of it share the common sparse supports

even though each sensor operates without cooperation. Additionally, it is noted that the

samples of the same channel received at different locations are various, which is caused

by the fading variance at different locations. Existing distributed CS solvers include

Simultaneous Orthogonal Matching Pursuit (SOMP) [54] and multiple measurement

vector (MMV) Order Recursive Matching Pursuit (M-ORMP) [55].

2.2.2 Matrix Completion

In many practical problems, one wants to recover a matrix from a sampling of its entries,

in which some of the observations are missed or corrupted by malicious errors and noise.

Normally, the matrix to be recovered is known to be structured in the sense that it is

low-rank or approximately low-rank, e.g. matrix with I rows and J columns has rank

K if its rows or columns span an K-dimensional space. Different from CS, which utilize

the sparsity property of signals under ceratin basis, MC utilizes the sparsity property
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of the matrix’s singular values, which is named as low rank property. Furthermore, it

is pointed out that the joint sparsity can be transformed into low-rank property of a

matrix. Here, the low-rank MC model proposed by Candes in [56] is introduced.

The singular value decomposition of a I × J matrix M with rank K can be given by

M =
K∑
k=1

σkukv
∗
k, (2.8)

where the uk and vk are the left and right singular vectors, and the σk are the singular

values, which are square roots of eigenvalues of matrix M. A generic low-rank matrix can

be regard as: the family {uk}1≤k≤K is selected uniformly at random among all families of

K orthogonal vectors, and similarly for the family {vk}1≤k≤K . In a general MC problem,

we try to recovery matrix M from a subset Ω of its elements. The MC problem can be

formulated as

min rank(M̂),

subject to M̂ij = Mij (i, j) ∈ Ω,

(2.9)

where M̂ is the reconstructed matrix, and rank
(
M̂
)

is defined as the number of singular

values of M̂. If the rank of a matrix is K, this matrix has exactly K non-zero singular

values. Therefore, the rank function in (2.9) is simply counting the number of nonva-

nishing singular values. However, the matrix rank function is non-convex. As a result,

the rank minimization in (2.9) is an NP-hard problem [14]. Similar as in CS model that

l1-norm minimization is considered as a good approximation of l0-norm minimization,

nuclear-norm minimization is taken as a good approximation for rank minimization.

Accordingly, the MC problem can be formulated as

min
∥∥∥M̂∥∥∥

∗
,

subject to M̂ij = Mij (i, j) ∈ Ω,

(2.10)

where
∥∥∥M̂∥∥∥

∗
is denoted as the sum of singular values of M̂.
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So far, numerous MC solvers have been developed for solving problem (2.10). Existing

MC solvers include, but not limited to, cvx [33], SVT [57], APGL [58] and FPCA [59].

If the rank K of the matrix M is known in advance, (2.9) can also be approximated

by

min
∥∥∥PΩ

(
M̂
)
− PΩ (M)

∥∥∥
F
,

subject to rank
(
M̂
)
≤ K,

(2.11)

where PΩ stands for the projection onto the subspace of matrices with non-zeros restricted

to the index subset Ω, and ‖·‖F refers to the Frobenius norm, which is defined as

‖A‖F =

√√√√ I∑
i=1

J∑
j=1

|Aij |2, (2.12)

for any matrix A = (Aij)I×J . The existing MC solvers that are suitable for prob-

lem (2.11) include, but not limited to, OPTSPACE [60], ADMiRA [61], LMaFit [62] and

RTRMC [63].

2.3 Applications of Compressive Sensing in Cognitive Radio

The last decade has witnessed the rapid explosion of wireless devices all over the world,

which gives rise to the increasing demand for wireless spectral resource. As reported

by FCC and Ofcom [1, 2], there are significant temporal and spatial variations in the

allocated spectrum. Given this fact, CR has been proposed as an intelligent system

to detect spectrum holes for unlicensed usage [3]. More specifically, the basic idea of

CR is to match the requirements of higher layer applications or users with the available

resources. The available resources include available power, spectrum and other resources

that can be utilized by unlicensed SUs. CR is a radio that is capable of sensing the

available resources and learning from the user behaviours and its previous decisions and

mistakes, in order to provide a better response to the new resource request from SUs.

So far, CR has been widely investigated [64].
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2.3.1 Spectrum Sensing Methods

In CR, spectrum sensing is one of the most challenging tasks, which allows SUs to

have the knowledge of spectrum occupancy. Once a spectrum hole is detected, SUs

can make use of it for data transmission. Spectrum sensing requires high accuracy and

low complexity for DSA [65]. There is extensive research work on spectrum sensing

techniques being carried out. Many theoretical models for spectrum sensing techniques

have been proposed, such as matched filter detection, cyclostationary feature detection,

and energy detection. The matched filter detection is an optimal detection method that

requires the prior information of PUs [66]. However, it requires SUs to have a dedicated

sensing receiver for each type of PU signals. Cyclostationary feature detection can

distinguish the PUs and noise by utilizing the periodicity in the received primary signal.

However, it requires high computational complexity and prior information of the primary

signals. Among these three approaches for spectrum sensing, energy detection is a non-

coherent detection method, which avoids the requirement for prior knowledge of PUs.

Additionally, energy detection approach does not require complicated receivers as the

other two approaches do. Therefore, it is easy to be implemented, and the computational

complexity is relatively low, but with a drawback of poor detection performance under

low SNR scenarios. In this thesis, energy detection is adopted due to its simplicity.

2.3.2 Spectrum Sensing Model

In spectrum sensing, the received signal can be expressed as

r (t) = s (t) + w (t) , (2.13)

where s (t) is the signal to be detected, w (t) is the Additive White Gaussian Noise

(AWGN) samples with noise variance σ2
n. It is noted that s (t) = 0 when there is no
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transmission by PU. The energy of sensed signals can be writhen as

E =

∫ T

0
|r (t)|2dt, (2.14)

where T is the sensing period. When Nyquist sampling is performed, N samples are col-

lected during one sensing period T . The decision on spectrum occupancy can be obtained

by comparing the energy E of the received signal with a threshold λ. Particularly, the

sensing decision can be formulated into a binary hypothesis problem

H0 : r (t) = w (t),

H1 : r (t) = s (t) + w (t),

(2.15)

where H0 and H1 denote the hypothesis that PU is absent and present, respectively.

Additionally, the performance of energy detection algorithm can be measured by two

probabilities: probability of detection Pd and probability of false alarm Pf . Pd is the

probability of detecting a signal on the considered frequency when it actually is present.

Pf is the probability that the test incorrectly decides that the considered frequency

is occupied when it actually is not. With a target probability of false alarm P̄f , the

threshold λ is given by

λ = σ2
n

(
1 +

Q−1
(
P̄f
)√

N/2

)
. (2.16)

If the target probability of detection P̄d is given, the threshold can be calculated as

λ =
(
σ2
s + σ2

n

)(
1 +

Q−1
(
P̄d
)√

N/2

)
, (2.17)

where σ2
s refers to the power of the transmitted primary signal.
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2.3.2.1 Cooperative Spectrum Sensing

In practice, many factors such as multipath fading, shadowing may significantly degrade

the detection performance in spectrum sensing [17]. To mitigate the impact of these

issues, cooperative spectrum sensing has been shown to be an effective method to improve

the detection performance by exploiting spatial diversity [67]. The common CSS schemes

include the centralized [17] and decentralized structure [68], which are briefly introduced

in the following.

1. Centralized Cooperative Spectrum Sensing: In a centralized CSS scheme, as shown

in Fig. 2.3, an FC is implemented for data fusion. The mechanism of a centralized

CSS scheme can be summarized into the following three steps [17].

• The FC chooses spectrum of interest for sensing and all SUs (e.g. SU1 to SU5

in Fig. 2.3) in the CSS network conduct local sensing individually via sensing

channels.

• All the SUs send their local sensing information to the FC via reporting

channel.

• The FC combines all the information received from each SU to make a final

decision on the spectrum occupancy, and then diffuses the final decision back

to those participating SUs.

This is a simple way to implement CSS networks, in which participating SUs do

not need to make decisions on spectrum occupancy by themselves. Therefore,

the energy consumption at each individual SU is reduced, which is really suitable

for the energy-constrained SUs. However, the bandwidth required for reporting

channels becomes large in the case of a large number of SUs, and the link failure

between SUs and FC also causes loss of data.

2. Decentralized cooperative spectrum sensing: Different with the centralized CSS
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Figure 2.3: Centralized cooperative spectrum sensing.

scheme, the FC is removed in a decentralized CSS network. As shown in Fig. 2.4,

each SU communicates with its neighbour SUs within the transmission range. Sub-

sequently, each SU would make its local decision based on the received information

when the network reaches global convergence. The decentralized scheme is robust

to link failure in comparison with the centralized one, as it does not need a back-

bone infrastructure. However, the overhead in the reporting channel becomes very

high when network scale becomes large. It is further proposed that SUs can trans-

mit the local information only to their neighbour SUs within limited hops (e.g.

one-hop) in the CSS network, in order to reduce the overhead during the conver-

gence process. However, this type of scheme may cause longer convergence time.

2.3.3 Nyquist Wideband Spectrum Sensing

In CR, wideband spectrum sensing has attracted much attention. Wideband spectrum

sensing techniques aim to sense a frequency bandwidth that exceeds the coherence band-

width of the channel. For example, for exploiting spectral opportunities in the whole

ultra-high frequency (UHF) TV band (between 300 MHz and 3 GHz), wideband spectrum

sensing techniques should be employed. It is noted that narrowband sensing techniques
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Figure 2.4: Decentralized cooperative spectrum sensing.

cannot be directly used for wideband spectrum sensing, as the narrowband technique

normally makes a single binary decision for the whole spectrum, which cannot identify

individual spectral opportunities that lie within the wideband spectrum [7]. Addition-

ally, it is more efficient for spectrum detection if SUs could sense multiple channels

simultaneously in a sensing period.

A direct approach of wideband spectrums sensing is to directly acquire the wideband

signal by a standard ADC, and then digital signal processing techniques are utilized

to detect spectral opportunities. So far, some research on wideband spectrum sensing

have been done in [8–11] with the implementation of a high-speed ADC. Taking scheme

proposed in [10] as an example, a multi-band joint detection algorithm sensing the PUs

over multiple bands is as shown in Fig. 2.5. The wideband signal is directly sampled

by a standard ADC. Subsequently, the received sinal is processed by a serial-to-parallel

conversion circuit to divide sampled data into parallel data streams. Additionally, fast

Fourier transform (FFT) is implemented to covert the wideband signals to frequency

domain. As a result, the wideband spectrum signal is divided into series of narrowband

channels labelled as rk (n). The energy of each channel is then calculated. Finally, spec-

trum occupancy of each narrow channel is determined by using an optimized threshold

to achieve a better detection performance than the traditional narrowband spectrum
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Figure 2.5: Multiband joint detection for wideband spectrum sensing.

sensing approaches.

However, special attention should be paid to the signal sampling procedure. As lim-

ited by the Shannon theorem, the sampling rate must be at least twice of the maximum

frequency presented in the signal (known as Nyquist rate), in order to avoid spectral

aliasing. Supposing that the wideband signal spans over frequency domain from 0 to 10

GHz, it should be uniformly sampled by a standard ADC at or above the Nyquist rate

of 20 GHz. However, such an ADC is unaffordable for most of the devices in CRNs or

sensor networks in terms of sampling rates and energy consumption. Therefore, wide-

band spectrum sensing presents significant challenges on hardware that operates at a

sufficiently high rate. With current hardware technologies, high-rate ADCs with high

resolution and reasonable power consumption (e.g., 20 GHz sampling rate with 16 bits

resolution) are difficult to be achieved. Even if it were possible, the real-time digital

signal processing of high-rate samples could be very expensive.

2.3.4 Compressive Wideband Spectrum Sensing

Inspiring by the most recent developments on CS and MC techniques, the bottleneck

of Nyquist wideband sensing in CRNs can be broken through compressive spectrum
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Figure 2.6: Block diagram for compressive spectrum sensing model.

sensing. The compressive spectrum sensing at a single SU is taken as an example. In the

considered model, it is assumed that bandwidth of the whole spectrum is divided into I

channels. A channel is either occupied by a PU or unoccupied. Meanwhile, there is no

overlap between different channels. The number of occupied channels K is assumed to

be much less than the total number of channels I. As shown in Fig. 2.6, the compressive

spectrum sensing model includes the following four steps:

1. Signal arrives at SUs;

2. Compressed measurements collection at SUs;

3. Signal recovery;

4. Decision making for spectrum occupancy.

2.3.4.1 Signals Arrives at Secondary Users

The signals transmitting over the spectrum of interest are defined as s (t) ∈ CN×1, where

N is the number of samples when s (t) is sampled at or above Nyquist rate. Consequently,
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the signals received at an SU is given by

r (t) = h (t) ∗ s (t) + w (t) , (2.18)

where h (t) is the channel gain between the transmitter and receiver, and w (t) ∼

CN (0, σ2
nIN ) refers to AWGN. Here, σ2

n refers to noise variance, and IN is the iden-

tity matrix.

In order to make sure CS technique working well at SUs, the received signal r (t)

should be able to be expressed in a sparse domain. In spectrum sensing, as shown in

Fig. 2.6, the signals r (t) received at an SU are assumed to be sparse in the frequency

domain, as the spectrum utilization is low in reality. Here, the sparse representation of

the received signal can be expressed as

rf = hfsf + wf , (2.19)

where rf , hf , sf and wf refer to the discrete Fourier transform (DFT) of r (t), h (t), s (t)

and w (t), respectively.

2.3.4.2 Compressed Measurements Collection

After the CS technique is invoked at an SU, the compressed measurements collected at

the SU can be expressed as:

x = ΦF−1rf = Θrf = Θ (hfsf + wf ) , (2.20)

where Φ ∈ CP×N (P ≤ N) is a measurement matrix to collect the compressed measure-

ments x ∈ CP×1, with P/N ≤ 1 being the compression ratio. The measurement matrix

can be a matrix which contains a single spike in each row. Then the case P/N = 1

corresponds to Φ = IN . Additionally, Θ = ΦF−1, where F−1 is inverse DFT (IDFT)

matrix which is used as the sparsifying matrix. In practical settings, structured random
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matrices are often employed for improved implementation affordability.

2.3.4.3 Signal Recovery

With the available compressed measurements, the original signal should be recovered

before making decision on spectrum occupancy. As l0-norm minimization is an NP-hard

problem, it has been proved in [14] that l1-norm is a good approximation for l0-norm.

Taking the l1-norm minimization as the CS solver, signal recovery can be performed at

an SU by solving the following convex optimization problem

min ‖ŝf‖1,

subject to ‖Θ · hf ŝf − x‖22 ≤ ε,
(2.21)

where ŝf refers to the recovered signal, and ε refers to the noise tolerance. In the case

of CS based CSS, each participating SU sends the compressed measurements to the FC,

which is the place to perform signal recovery.

2.3.4.4 Decision Making

When the reconstructed signal ŝf is obtained, energy detection can be performed to deter-

mine the spectrum occupancy. More specifically, the energy density of each recovered

channel is compared with a predefined threshold to determine whether the corresponding

channel is occupied or not. The predefined threshold λ is as defined in (2.16) or (2.17),

which is dependent on whether a target Pd or Pf is given.

In practice, the noise variance σ2
n can be calibrated in a given channel, which is

known for sure to be idle. For example, some channels, such as channel 21 in TVWS, are

supposed to be vacant currently in the UK [2]. If the energy density of the considered

channel is higher than the threshold, the corresponding channel is determined as occupied

by PUs. Consequently, SUs are forbidden to access it. Otherwise, the corresponding
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channel is determined as vacant. Therefore, SUs can access it to transmit the unlicensed

signals.

2.4 TV White Space

2.4.1 Overview of TV White Space

TVWS refers to the frequencies made available for unlicensed use at locations where

the spectrum is not being utilized by the licensed broadcasting services. TVWS offers

attractive features due to the large amount of spectrum resources and better propagation

properties. FCC has published its final regulations to allow unlicensed radio devices

to operate in the broadcast television spectrum at locations where that spectrum is

vacant [69]. More recently, Ofcom has enabled licence exempt use of TVWS [5]. The

opening of TVWS spectrum for cognitive access is one of the first tangible steps to solve

spectrum scarcity problem in current wireless networks.

The reason for the arising of TVWS is the DSO movement from traditional analog

to digital transmission. It is noticed that there is always a geographical zone for a given

frequency channel, in which the use of high power broadcasting is impossible, due to

the co-channel or adjacent channel interference caused by the high power broadcasting.

Therefore, it is natural to think about the use of low or moderate powered devices,

provided they are carefully designed to be compatible with the primary digital terrestrial

television (DTT) station and programme making and special events (PMSE) users. An

example of spectrum usage over TVWS spectrum at London is shown in Fig. 2.7. It

can be observed that a large portion of TVWS spectrum can be utilized to conduct the

unlicensed power transmission.
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Figure 2.7: Illustration for the spectrum usage in London (Crystal Palace).

2.4.2 Geolocation Database Access to TV White Space Spectrum

The successful operation of CR in TV bands relies on the ability of white space devices

(WSDs) to detect TVWS without causing harmful interference to primary services, such

as TV broadcasting and wireless microphones. Besides the spectrum sensing approach,

geolocation database access approach is regarded as the most important mechanism for

TVWS spectrum detection as suggested by Ofcom [2] and FCC [70]. Specifically, geoloca-

tion database is a centralized database to output the maximum allowable EIRP for each

TVWS channel at a specific location and time [1]. So far, several geo-location database

providers such as Spectrum Bridge, Nominet, Google, etc. have been approved by

Ofcom [71]. The advantages of geo-location database approach include easy implemen-

tation, high frequency utilisation in comparison with spectrum sensing techniques [72].

The operation of geo-location database access approach is described as follows: a

geo-location database is firstly set up, which contains all the information of PUs (named

as DTT database). Through the available DTT database, the geolocation database algo-

rithm can compute the protected service contour for each DTT station, and determine

the available frequency list at a specific location. A CR device would only need to report

its location to the database, and in return receive information with regards to the max-

imum emission levels with which it can radiate. These devices would only radiate where
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interference to the DTT service is deemed unlikely.

The framework developed in the UK, and being adopted more widely in Europe, is

based on the premise that the impact of harmful interference on a DTT receiver is a

function of the quality of DTT coverage in a geographical area, where the DTT receiver

is located. In order to afford appropriate levels of protection to the DTT service, it

is necessary for the database to specify the maximum permitted WSD emission levels

across all DTT channels and in all geographic locations, where the DTT service is being

used. DTT location probability is a measure for quantifying the quality of national DTT

coverage [73, 74]. Location probability is widely used in the planning of DTT networks

in order to quantify the quality of coverage. In the UK, it is typically calculated for

every 100m× 100m pixel across the country.

The DTT location probability is defined as the probability with which a DTT receiver

could operate accurately at a specific location, i.e., the probability with which the average

received wanted signal level is greater than a minimum required value. Fig. 2.8 shows

the location probability model for the geo-location database. It is assumed that a DTT

reception is located on the edge area of a DTT base station, which receives the lowest

wanted power from the DTT base station. The average received power of the wanted

DTT signal is labelled as Pas, and Pas(dBm) is modeled as a Gaussian random variable

with mean mas and standard deviation σas. R is the coverage radius of the DTT base

station and d is distance between the DTT receiver and the mobile WSD, which can be

obtained from the DTT transmitter’s database [75]. A mobile WSD radiates an in-bound

EIRP PIB with a power attenuation factor coupling gain (G). More particularly, DTT

location probability can be expressed in linear domain as follows [76]:

q1 = Pr

{
Pas ≥ Pas,min +

∑K̃

k=1
rU,kPU,k

}
, (2.22)

q2 = Pr
{
Pas ≥ Pas,min +

∑K̃
k=1 rU,kPU,k + r (∆f,mas)GPIB

}
, (2.23)

where q1 refers to the DTT receiver’s location probability in the absence of interference
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Figure 2.8: DTT location probability model.

from WSDs, and q2 is the DTT receiver’s location probability when considering the

additional interference caused by WSDs. Here, Pas,min refers to DTT receiver’s reference

sensitivity level. Parameter PU,k refers to received power of the kth unwanted DTT

signals, and K̃ is the total number of received unwanted DTT signals. The parameter

rU,k is the protection ratio of the received wanted DTT power and received kth unwanted

DTT power at the point where DTT receiver fails. The difference ∆f = fWSD − fDTT,

where fWSD is the frequency in which a WSD operates and fDTT is the DTT carrier

frequency. When the interference from WSDs is considered, it results in a reduction

in location probability ∆q = q1 − q2. To identify the maximum allowable EIRP PIB

in (2.23), ∆q is maximized by assigning a maximal allowable value ∆qT to ∆q.

Equation (2.22) can be further expressed as follows [77]:

q1 = Pr
{
Pas ≥ Pas,min +

∑K̃
k=1 rU,kPU,k

}
= Pr {Pas ≥ Pas,min + V }

= Pr
{

1 ≥ Pas,min

Pas
+ V

Pas

}
= Pr {1 ≥ A+B}

= Pr {1 ≥ X} ,

(2.24)

where V(dBm) is modeled as a Gaussian random variable with mean mV and standard
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deviation σV . Furthermore, A(dB) and B(dB) can be modeled as Gaussian random vari-

ables. Additionally, X(dB) can be modeled as a Gaussian random variable with mean

mX and standard deviation σX . As a result, (2.24) can be given by

q1 = Pr
{

0 ≥ X(dB)

}
= 1

2erfc
(

mX√
2σX

)
. (2.25)

Similarly, q2 can be further expressed as follows:

q2 = Pr
{
Pas ≥ Pas,min +

∑K̃
k=1 rU,kPU,k + r (∆f,mas)GPIB

}
= Pr {Pas ≥ Pas,min + V + r (∆f,mas)GPIB}

= Pr
{

1 ≥ Pas,min

Pas
+ V+r(∆f,mas)GPIB

Pas

}
= Pr

{
1 ≥ A+ V+C

Pas

}
= Pr

{
1 ≥ A+ D

Pas

}
= Pr {1 ≥ A+ E}

= Pr {1 ≥ Y } ,

(2.26)

where C and V are two uncorrelated log-normal random variables. Additionally, C(dBm)

and V(dBm) can be modeled as Gaussian random variables with mean mC , mV and

standard deviation σC and σV , respectively. Furthermore, as D and PS are both log-

normal random variables, E(dB) is also Gaussian variable with mE = mD − mas and

σE =
√
σ2
D + σ2

as. Eventually, as A and E are both log-normal random variables, Y(dB)

can be modeled as a Gaussian random variable with mean mY and standard deviation

σY . Furthermore, (2.26) can be expressed as

q2 = Pr
{

0 ≥ Y(dB)

}
= 1

2erfc
(

mY√
2σY

)
. (2.27)

Once q2 is obtained, the corresponding PIB can be calculated to indicate the maxi-

mum allowable EIRP of each channel as the output of the geo-location database.
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2.5 Summary

This chapter presents the fundamental concepts of CS and MC techniques, as well as

model of CS based wideband spectrum sensing in CRNs. Additionally, the concept of

TVWS is demonstrated in this chapter.



Chapter 3

Robust Compressive Spectrum

Sensing

In this chapter, the existing work on compressive spectrum sensing in CRNs and the

main contributions are firstly reviewed in Section 3.1. In Section 3.2, the proposed robust

compressive spectrum sensing working at a single CR user is presented. Section 3.3 gives

the related simulation results. Additionally, the proposed robust sub-Nyquist spectrum

sensing algorithm for the CSS scenario is demonstrated in Section 3.4, in which the

low-rank MC technique is invoked to perform signal recovery. The numerical results are

presented in Section 3.5. Finally, Section 3.6 concludes this chapter.

3.1 Introduction

3.1.1 Related Work

CS theory was firstly applied to wideband spectrum sensing in CRNs by Tian and Gian-

nakis [8] to perform sub-Nyquist sampling without loss any information. Subsequently,

Wang et al. [78] proposed a two-step CS scheme for minimizing the sampling rates when

39
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the sparsity level is varying. In this approach, the actual sparsity level is estimated

firstly and the number of compressed measurements to be sampled are then adjusted

before sampling. Subsequently, Sun et al. [79] proposed to adjust the number of com-

pressed measurements adaptively without sparsity estimation by acquiring compressed

samples step by step in continuous sensing slots. Signal acquisition is terminated once

the number of collected samples were enough for successful spectral recovery. Along

with these existing work on compressive spectrum sensing, it is noted that most of the

existing algorithms [8, 18, 79–81] normally do not specify or quantify the noise. It is

pointed that the SNR of the CS measurements would be decreased by 3dB for every

octave increasing in the subsampling factor for acquisition of a noisy signal with fixed

sparsity [15], which makes exact signal recovery more difficult for the case with high

channel noise. Therefore, a robust compressive spectrum sensing algorithm with low

computational complexity is more than desired.

Single node spectrum sensing faces the challenges that detection performance is sig-

nificantly degraded if an SU experiences multipath fading and hidden terminals [17, 82].

This may cause miss detection. As a result, the SU may unwittingly transmit signals in

channels with active PUs, which may cause serious interference to the PUs. In order to

reduce the influence of imperfect channel environment, multiple nodes spectrum sensing,

named as CSS, was proposed to efficiently combat fading problems by utilizing a spatial

diversity of cooperative multiple SUs [10, 16, 81].

In CSS networks, there are two types of data fusion: centralized and decentralized

fusion. In decentralized CSS, each SU only communicates with its neighbour SUs within

one hop to reduce the transmission power consumed during sensing. After convergence,

all SUs will have the fused sensing result without the implementation of an FC. Several

decentralized CSS schemes [83–85] have been proposed where the average value of all

the local spectrum sensing decisions is computed to get the final decision. As a result,

the final decision obtained might be sub-optimal. Additionally, Zeng et al. [81] proposed

a distributed CSS algorithm in which sensing samples rather than sensing decisions are
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exchanged with the neighbour SUs within multi-hops to reach a global fusion at the

cost of increasing network load. The convergence speed of decentralized CSS is an issue

in large scale networks. In the centralized CSS scheme, all SUs report to an FC to

make a final decision. In existing algorithms [86, 87], each SU makes a local decision

about the spectrum of interest, and then the local decisions are sent to an FC to make a

final decision. For a multi-channel sensing algorithm, such a separate approach of local

spectrum estimation followed by a global decision fusion is suboptimal, which it does not

take full advantage of the spatial diversity of the cooperative SUs [18]. In [81, 88, 89],

an SU senses the whole spectrum of interest, and then the SU sends all the collected

compressed measurements to an FC to get a global decision. As a result, the optimal

decision can be obtained but the transmission load in the reporting channel between SUs

and the FC is heavy. In [18], in order to reduce the sampling costs and transmission load

between SUs and the FC, the length of received signal’s frequency domain representations

is set to be equal to the number of channels in the spectrum of interest rather than the

original length of received signal in time domain, which results in a very poor resolution

in the frequency domain and serious spectral leakage in each channel. Consequently,

the Pf would increase and the Pd would decrease. Additionally, as aforementioned, the

noise becomes critical after signals are collected at sub-Nyquist rate [15]. Therefore, a

robust sub-Nyquist sampling based CSS algorithm with high spectrum resolution and

low computational complexity is required.

3.1.2 Contributions

The main contributions of this chapter are summarized as follows:

1. A robust compressive spectrum sensing algorithm is proposed, in which the data

acquisition and signal recovery are both conducted at a SU locally. In the proposed

algorithm, the computational complexity is significant reduced by a new channel

division scheme. Additionally, a denoising algorithm is performed to improve detec-

tion performance and make the algorithm robust to channel noise.
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2. A robust sub-Nyquist sampling based CSS algorithm is proposed to reduce the

signal acquisition costs at SUs, improve the spectrum resolution and the robust-

ness to channel noise, by invoking the low-rank MC technique. In the considered

system, signal recovery is performed at an FC. In the proposed algorithm, the com-

putational complexity is reduced significantly by the new channel division scheme.

Additionally, the robustness to channel noise is improved by the proposed denoising

algorithm.

3. The proposed robust sub-Nyquist sampling based spectrum sensing algorithms are

both tested on the real-world signals over TVWS after being validated by the

simulated TV signals.

3.2 Robust Compressive Spectrum Sensing at Single User

3.2.1 System Model

In the single node case, the compressive spectrum sensing model is same as aforemen-

tioned in Section 2.3.4 of Chapter 2. As no prior information of PUs is required, l1 norm

minimization is invoked to perform signal recovery. In order to reduce the computa-

tional complexity during signal recovery process and enhance algorithm’s robustness to

imperfect channel noise, a robust spectrum sensing algorithm is proposed for the single

node case based on CS. In the first phase, a new efficient channel division scheme is

proposed to reduce the computation complexity for signal recovery. In the second phase,

a denoising algorithm is proposed to make the algorithm robust against high channel

noise.
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Figure 3.1: System model of the proposed channel division scheme in the single
node spectrum sensing based on compressive sensing.

3.2.1.1 Proposed Channel Division Scheme

When an l1 norm minimization based spectrum sensing algorithm is implemented at

an SU, the computational complexity of signal recovery is dependent on the number of

samples to be recovered. In the considered model, it is assumed that the spectrum of

interest can be divided into I channels. A new channel division scheme is proposed, in

which only L (L < I) out of I channels are expected to be sensed in one sensing period

at SUs to reduce the number of samples to be recovered. As shown in Fig. 3.1, each

L-channel group is indexed by i
(
i = 1, 2, · · · , IL

)
. If any vacant channel is detected, SU

would stop sensing and start data transmission. Otherwise, SU begins to sense the next

L-channel group in the next sensing period. As a result, the required sampling rates at

SUs for exact recovery are further reduced by implementing the CS technique at SUs.

Once signal of the L-channel group rfi = hfisfi + wfi ∈ Cn×1 (n = LN
I ) arrives at the

receiver, where N is the number of samples for the whole spectrum at Nyquist rates. The

compressed measurements xi ∈ Cp̃×1 are collected at sub-Nyquist sampling rates, with

compression ratio is defined as γ = p̃
n . Here, hfi, sfi, wfi refer to the frequency domain

representations of channel coefficients, transmitted primary signal and channel noise in
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the L-channel group channel. The noise variance is σ2
n. Subsequently, the reconstructed

frequency domain representations of the ith L-channel group ŝfi can be obtained by

solving l1 norm minimization as:

min ‖ŝfi‖1,

subject to ‖Θi · hfiŝfi − xi‖22 ≤ ε,
(3.1)

where Θi ∈ Cp̃×n, and ε is the tolerance for noise level.

3.2.1.2 Proposed Denoised Spectrum Sensing Algorithm

When making a decision for spectrum occupancy, the decision accuracy is influenced by

the signal recovery errors. The recovery performance of traditional l1 norm minimization

algorithm is degraded by high channel noise and low compression ratio. Furthermore, it

is noticed that the amplitudes of recovered signal ŝfi may be negative with high absolute

values. Here, the nonpositive power spectrum amplitudes are caused by the unsuccessful

signal recovery after solving problem (3.1). The first possible reason for unsuccessful

signal recovery is that the number of collected measurements p̃ is not enough for exact

signal recovery. The second possible reason for unsuccessful signal recovery is caused

by the high noise level that dominates the compressed measurements xi. However, the

power spectrum sfi is nonnegative. If those negative values are used to calculate the

energy density, it would become higher than the real energy value. As a result, the Pf of

spectrum sensing would increase, which means the vacant channels might be determined

as occupied. In order to improve the recovery performance and detection performance,

a denoising algorithm is proposed.

In the denoising algorithm, the amplitude of the bth sample in the recovered signal ŝfi

is compared with the corresponding noise level σn(b), where b (1 ≤ b ≤ n) is the index

of the recovered signal. If ŝfi (b) is higher than σn(b), the compressed measurement

collected at SUs rfi (b) is kept for the recovered signal. Otherwise, the corresponding
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value will be set to zero to reduce the recovery error. Here, the recovery error may

caused by the high channel noise or not enough number of compressed measurements.

The denoised signal ŝfi d can be expressed as:

ŝfi d (b) =


rfi (b), if ŝfi (b) ≥ σn(b),

0, otherwise.

(3.2)

After the denoising algorithm is performed, the energy density of each considered

L-channel group in the denoised signal is compared with the corresponding threshold as

defined in (2.16) to determine the spectrum occupancy of the corresponding L-channel

group. If any L-channel group are determined as vacant, they can be used by SUs to

transmit the unlicensed signals. Otherwise, the SU should continue sensing the next L-

channel group until any vacant channel is found out or the IL sensing periods, named as a

sensing loop, are run out. As there is a high probability that the spectrum vacant in last

loop remains free in the current sensing loop, an SU should firstly sense the L-channel

group determined as free in the last sensing loop at the beginning of a new sensing loop

if any vacant L-channel group are detected in the most recent sensing loop. Otherwise,

an SU should keep sensing from the first L-channel group. The whole process of the

proposed robust spectrum sensing algorithm at single node based on CS is summarized

as Algorithm 1.

3.2.2 Computational Complexity and Spectrum Usgae Analyses

In compressive spectrum sensing algorithm, the computational complexity mainly comes

from the signal recovery process by solving the l1 norm minimization problem. It is

determined by the number of samples (N) to be recovered to represent the spectrum of

interest. Specially, when the whole wideband spectrum of interest is sensed in one sensing

period by an SU, the computational complexity of solving the l1 norm minimization
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Algorithm 1 Proposed Robust Compressive Spectrum Sensing Algorithm at Single User

Initialization: Set threshold λ as (2.16), i = 1.
1: while i ≤ IL or E (̂sfi d) > λd do

Phase I:
2: The SU takes measurements at sub-Nyquist rate for the ith L-channel group

to collect compressed measurements xi in the ith sensing period.
3: Perform signal recovery by l1 algorithm as (3.1) to get the recovered signal ŝfi.

Phase II:
4: Perform denoising to ŝfi to get ŝfi d according to (3.2).

5: Increase i by 1.
6: end while
7: if E (̂sfi d) < λ then
8: return SU access the ith L-channel group.
9: else

10: return SU senses from the L-channel group vacant in last sensing loop or from
the first L-channel group in the new sensing loop.

11: end if

problem can be expressed as:

C1 = O
(
N3
)
. (3.3)

In the adaptive compressive spectrum sensing algorithm [79] for wideband CRs, the

required computational complexity C2 can be expressed as follows. In order to simplify

the comparison, the spectrum sensed in each sensing period is assumed to be L out of I

channels and the system starts data transmission after i sensing periods.

C2 = O
((

L
I ×N

)3
+
(

2L
I ×N

)3
+ . . .+

(
iL
I ×N

)3)
= O

((
1 + 23 + . . .+ i3

)
×
(
L
I
)3 ×N3

)
= O

((
(1+i)i

2

)2
×
(
L
I
)3 ×N3

)
,

(3.4)

where i = 1, . . . , IL is the number of sensing periods that an SU needs to perform exact

signal recovery to determine the accessible channels.

When the proposed new channel division scheme is used for single node wideband
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spectrum sensing, computational complexity of the signal recovery process is expressed

as:

C3 = O

(
i×
(
L

I

)3

×N3

)
. (3.5)

As analysed above, an SU may need multiple sensing periods to find out the accessible

spectrum holes. Assuming there is at least one vacant channel in the spectrum of interest,

the required sensing periods by the proposed channel division scheme is dependent on

the number of channels in a L-channel group and the number of active PUs among the

spectrum of interest. The worst case for the proposed scheme is that an SU does not find

any vacant channel until the ILth sensing period. In such a case, C3 = O
((

L
I
)2 ×N3

)
as i = I

L . In practice, there are multiple vacant channels in the spectrum of interest

due to the low spectrum utilization. Therefore, the required sensing periods would be

less than IL in reality. As a result, C1 > C3 in all cases. The proposed channel division

scheme relaxes the requirement on high speed ADC at the expense of compromised

spectrum usage efficiency. This tradeoff is shown in the simulation part in Section 3.3.

It seems the tradeoff is acceptable as the proposed algorithm is designed for networks

in which SUs have limited computational power and infrequent low-speed transmission

requirements. Comparing C2 and C3, it shows C2 = C3 if i = 1, which refers to the

scenario that vacant channels can be found after signal recovery is only performed once.

Otherwise, C2 > C3. Therefore, the proposed channel division scheme achieves a lower

computational complexity than existing algorithms.

3.3 Numerical Analyses for Single User Case
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3.3.1 Analyses on Simulated Signals

In the simulation, signals are orthogonal frequency division multiplexed (OFDM) gen-

erated as PUs, which are used in digital video broadcasting-terrestrial (DVB-T) over

TVWS spectrum from 470MHz to 790MHz in the UK. There are I = 40 channels in

TVWS with bandwidth of 8MHz for each channel. Pf is set to be 0.01. SNR = σ2
s

/
σ2
n

is the ratio of signal power over noise power of a L-channel group. In the following

simulations, the aforementioned tradeoff between spectrum usage efficiency and compu-

tational complexity is demonstrated firstly. Additionally, the influence of compression

ratio, sparsity order and the classic receiver operating characteristics (ROC) curves are

presented to validate the proposed algorithm.

Fig. 3.2 shows the average number of sensing periods which is required at SUs to

find out the vacant channel for unlicensed usage. As aforementioned, the size of L-

channel group which is sensed in each sensing period at SUs would influence the spectrum

usage efficiency of the proposed channel division scheme. If L = 1, the case becomes a

narrow band spectrum sensing which requires low-speed sampling rates at SUs. But the

spectrum usage efficiency is low. With increasing L, it becomes a multichannel wideband

spectrums sensing case in which the spectrum usage efficiency is increased with cost

of expensive sampling acquisition. From Fig. 3.2, it can be observed that the vacant

channels can be detected efficiently even with increasing L. Here, sparsity level refers

to the ratio of occupied channels and the total number of channels. Higher sparsity

level refers to higher spectrum occupancy, as the active PUs would result in nonzero

amplitude in frequency domain. With higher sparsity level, the average required sensing

periods to find the vacant spectrum holes increases. As the spectrum is underutilized

in practice, the required number of sensing periods is relatively low. In the following

simulation, it is assumed that the number of channels sensed by the SU in each sensing

period is set to be L = 8.

Fig. 3.3 shows Pd for the traditional l1 norm minimization based spectrum sensing
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Figure 3.2: Average number of required sensing periods at SUs with different
sparsity levels and number of channels L sensed in one sensing
period, SNR=-5dB.

algorithm, and the proposed robust single node spectrum sensing algorithm based on

CS under different number of compressed measurements with varying SNR values. Its

detection performance is also compared with that of spectrum sensing algorithm without

CS implemented, as well as the theoretical values derived from [90, 91]:

Pd = Q

 λ
σ2
n
−
(

1 + σ2
s
σ2
n

)
(

1 + σ2
s
σ2
n

)
/
√
n/2

 , (3.6)

where λ is the threshold for energy detection as calculated by (2.16), and σ2
s refers to the

power of transmitted primary signal. Here, n refers to the number of samples sampled

from a L-channel group at Nyquist rate.

Fig. 3.3 shows that the performance of l1 norm minimization based spectrum sensing

algorithm (labeled as traditional CS based SS) and the proposed robust single node spec-

trum sensing algorithm based on CS (labeled as robust CS based SS) are both the same

with that of spectrum sensing algorithm without CS implemented at the SU (labeled

as no CS) and the theoretical curves obtained by (3.6). In Fig. 3.3, SS is the abbrevia-

tion for spectrum sensing which is only used in the legend. In this case, the number of
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Figure 3.3: Proposed robust compressive spectrum sensing algorithm at a sin-
gle user achieves higher Pd than the traditional algorithms with
simulated signals under different compression ratios γ and different
SNR values.

occupied channels is 1 among 8. Therefore, the sparsity level is set to be 12.5%. When

the number of collected measurements decreases, the detection performance degrades. It

also shows that performance of the proposed robust single node spectrum sensing based

on CS is better than that of the CS based spectrum sensing without denoising when the

compression ratio is 25% and 10%. This gain benefits from the proposed denoising algo-

rithm which can improve the signal recovery accuracy. As the recovery accuracy becomes

higher with the higher compression ratio, detection performance of the proposed robust

spectrum sensing algorithm gets closer to the theoretical curves. The simulation result

shows that the proposed robust spectrum sensing algorithm can reduce the sampling

rates by 75% without degrading detection performance.

Fig. 3.4 shows the detection performance of the proposed robust single node spectrum

sensing based on CS with different sparsity levels and different compression ratios. In

this scenario, the different sparsity levels refer to different number of active PUs in

the spectrum of interest. The positions of these active PUs are set to be random.

The detection performance becomes worse with increasing sparsity level and decreasing
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Figure 3.4: Pd comparison with different sparsity levels and different compres-
sion ratios γ, SNR=-5dB.

compression ratio as shown in Fig. 3.4. As the sparsity level increases, sparse property of

signal to be recovered becomes less sparse, and therefore more compressed measurements

should be collected for signal recovery to make sure the detection performance not being

degraded. It is noticed that the detection performance would only be slightly degraded

when the proposed algorithm is applied to the practical signals in TVWS spectrum as

the its occupancy ratio is normally 15% to 20% in practice [1, 2].

The ROC curves under different SNR values are shown in Fig. 3.5, where the com-

pression ratio is set to be 25%. In this case, the sparsity level is set to be 12.5%. It can

be observed that the proposed robust spectrum sensing algorithm based on CS exhibits

better performance than the traditional spectrum sensing algorithm based on CS. Mean-

while, it is also noticed that the performance of the proposed robust spectrum sensing

algorithm is almost as good as that of spectrum sensing algorithm without CS applied.

This gain arises from the proposed denoising algorithm. This result matches with Fig. 3.3

when compression ratio is set to be 25%. It should be pointed that the increasing Pf

refers to decreasing threshold level if the number of samples is fixed as defined in (2.16).

Therefore, the detection performance becomes degraded with increasing threshold level
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Figure 3.5: Proposed robust compressive spectrum sensing algorithm at a sin-
gle node achieves higher ROC curves than the traditional algo-
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as shown in Fig. 3.5.

3.3.2 Analyses on Real-World Signals

After the proposed robust single node spectrum sensing algorithm has been validated

with simulated signals, it is further tested on the real-world signals recorded by the RFeye

node [92]. The RFeye node is a scalable and cost-effective node which can provide real-

time 24/7 monitoring of radio spectrum. It is capable of sweeping spectrum from 10MHz

to 6GHz, and can capture signals of all types, including transient transmission such as

pulsing or short-burst signals. It is even sensitive to very low power signals. The RFeye

node used for measurement is located at Queen Mary University of London (QMUL)

(51.523021◦N 0.041592◦W) as shown in Fig. 3.6 with the height about 15 meters above

ground. The real-world signal recorded by the RFeye node is for TVWS ranging from

470MHz to 790MHz.

When the recorded real-world signal is used as source signal for the proposed robust

single node spectrum sensing algorithm, Fig. 3.7 shows Pd and Pf of the spectrum sensing
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(a). Measurement setup at Queen 
Mary University of London

(b). RFeye sensing node

(c). Real-time TVWS signal observed by RFeye 
sensing node

Figure 3.6: Measurement setup for real-world TVWS signals recorded at
Queen Mary University of London.

without CS implemented, traditional CS based spectrum sensing, and the proposed

robust spectrum sensing algorithms under different threshold values. Here, the thresholds

are experimental values. In this scenario, the compression ratio is set to be 15%. It

can be observed that both Pd and Pf decrease with increasing threshold values. IEEE

802.22 demands a stringent sensing requirement. For the maximum Pf of 10%, a sensing

algorithm should achieve 90% for Pd [93]. According to the Fig. 3.7, it shows that the

detection performance of the spectrum sensing without CS implemented can achieve the

target performance required in IEEE 802.22 when threshold is set to be -73.5 dBm or

higher. However, the Pd of the algorithms with CS would be degraded with increasing

threshold. Therefore, -73.5 dBm is chosen as the suitable threshold to get a better

tradeoff of Pd and Pf in the following analyses. From Fig. 3.7, it is also noticed that the

proposed robust single node spectrum sensing algorithm outperforms the traditional one

when threshold is 1.5. It can be observed that the Pd increases with decreasing threshold

level which is matched with the simulation results shown in Fig. 3.5.

Fig. 3.8 shows the Pd and Pf of the traditional spectrum sensing algorithm based on
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Figure 3.7: Pd and Pf comparison of single node spectrum sensing with real-
world signals under different thresholds λ, and compression ratio
γ = 15%.

CS and the proposed robust spectrum sensing algorithm with real-world signals under

different compression ratios from 1% to 100%. In this scenario, the threshold value is set

to be -73.5 dBm according to Fig. 3.7. It can be observed that the detection performance

gets better with increasing number of compressed measurements collected at the SU, and

the proposed robust spectrum sensing algorithm outperforms the traditional one, which

is similar with the results of simulated signals as shown in Fig. 3.3. It is further noticed

that there is sharp dropping for Pf when the compression ratio γ is increased from 20%

to 30%. This is caused by that the signal recovery becomes exact when the compression

ratio γ is no less than 20%. Once the signal recovery is exact, Pf caused by recovery

errors would be alleviated.
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and threshold λ is -73.5 dBm.

3.4 Matrix Completion Based Robust Spectrum Sensing

at Cooperative Multiple Users

Based on the proposed robust spectrum sensing algorithm for single node in CRNs, a new

robust CSS algorithm based on low-rank MC is proposed to overcome the deep fading

problem. In the considered network, the whole spectrum of interest can be divided into

I channels, and K out of the I channels are occupied by PUs. It is assumed that the

positions of active PUs are random among the whole spectrum of interest. The proposed

algorithm includes two phases. In the first phase, the proposed channel division scheme

is extended to the CSS scenario, in which each SU is implemented to sense a L-channel

group of the I channels to reduce sampling rates. Here, each L channels are sensed by the

same SU. As a result, at least S (S = I
L) SUs should be implemented to sense the whole

spectrum in one sensing period. Due to deep fading, J SUs are spatially implemented

to sense the same L-channel group. Therefore, the jth SU implemented to sense the

ith L-channel group is labeled as SUij . The whole scenario is shown in Fig. 3.9. In the
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Figure 3.9: System model of the proposed channel division scheme in cooper-
ative spectrum sensing based on low-rank matrix completion.

second phase, a denoising algorithm is proposed to improve the detection performance

of CSS, which is introduced in Section 3.4.2.

3.4.1 System Model

Based on the scenario shown in Fig. 3.9, the CSS algorithm based on low-rank MC can

be formulated into a four-step model:

1. Sparse signals received at SUs.

2. Incomplete matrix generation at an FC.

3. MC at the FC.

4. Decision making at an FC.
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3.4.1.1 Signals Arrives at Secondary Users

As noise exists in the transmission channels, signals received at SUij is rij (t) = hij (t) ∗

sij (t) + wij (t), where sij (t) ∈ Cn×1 refers to time domain signals of the ith L-channel

group received at the jth receiver SUij , hij (t) refers to the channel gain for the ith

L-channel group between transmitter and SUij , wij (t) refers to AWGN in the related

transmission channels. The frequency domain representations of signals in the ith L-

channel group which is received by SUij can be expressed as:

rfij = hfijsfij + wfij, (3.7)

where rfij, hfij, sfij and wfij are the DFT of rij (t), hij (t), sij (t) and wij (t).

At SUij , a random demodulator Φ̂ij ∈ Cp̃×n is implemented to collect the compressed

measurements as follows:

xij = Φ̂ij

(
hfijF−1sfij + F−1wfij

)
(3.8)

= Θ̂ij (hfijsfij + wfij) .

3.4.1.2 Incomplete Matrix Construction at Fusion Center

As spectrum utilization is low, the stack of received frequency domain representations

rfj =
S∑
i=1

rfij are approximately sparse. Each SU only sends p̃ compressed measurements

to an FC where p̃ < n. At the FC, the matrix Rf ∈ CN×J (N = S × n) to be recovered

shows a low-rank property transformed from the sparse property of signals received

at SUs as shown in Fig. 3.10. In Fig. 3.10, the circled items refer to the observed

measurements as the CS technique is implemented at each SU. In order to avoid poor

spectrum resolution in frequency domain and high spectral leakage in each channel, the

number of the rows N is set to be equal to the original number of samples for the whole

spectrum of interest S × n rather than the number of channels I, which is invoked
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Figure 3.10: Matrix to be recovered at the fusion center.

in [18, 94].

At the FC, only a subset Ω ⊆ CM×J of Rf are collected where P = S × p̃. Here, the

compression ratio is defined as γ = P
N . We stack all columns rj of Rf into a long vector

as vec (Rf ). The incomplete matrix X is obtained by:

vec (X) = Θ̂vec (Rf ) = Θ̂Hvec (Sf ) + Θ̂Hvec (Wf ) , (3.9)

where hf = diag(diag(hf11, ...,hf1J), ...,diag(hfI1, ...,hfIJ)), H = vec(hf ), and Θ̂ =

diag
{

Θ̂11, . . . , Θ̂ij, . . . Θ̂IJ

}
is the block diagonal matrix. It is assumed Sf is the corre-

sponding noiseless matrix of Rf , and Wf = Rf − Sf is the matrix of the corresponding

noise contained in Rf . The unobserved measurements in Sf should be recovered from

X.

3.4.1.3 Matrix Completion at Fusion Center

The size of the matrix and the computational cost would increase when the number of

the rows N is equal to the length of samples S×n, which is the samples size of the whole

spectrum of interest, to improve the frequency resolution. The signal recovery process is

normally performed at SUs in the single node spectrum sensing algorithm, and SUs are

normally power limited devices [95]. Therefore, the signal recovery process may cause

long delay which will make the final decision invalid for the dynamic spectrum. However,
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in a CSS network, the MC process can be performed by a powerful device such as the

FC to replace the power limited SUs.

With the low-rank property, the complete matrix Sf can be recovered from a random

subset of its elements in X at the FC. This MC problem is defined as [96]

min rank
(
Ŝf

)
,

subject to
∥∥∥Θ̂ ·Hvec(Ŝf )− vec(X)

∥∥∥2

2
≤ ε,

(3.10)

where Ŝf refers to the reconstructed matrix. Here, solving problem (3.10) refers to find

a matrix with the minimal singular values but satisfies the constraints.

However, (3.10) is an NP-hard problem [96]. It has been proved that such an NP-

hard problem can be well approximated by nuclear norm minimization problem. Then,

the MC problem can be formulated as

min
∥∥∥Ŝf

∥∥∥
∗
,

subject to
∥∥∥Θ̂ ·Hvec(Ŝf )− vec(X)

∥∥∥2

2
≤ ε.

(3.11)

Here,
∥∥∥Ŝf

∥∥∥
∗

refers to the sum of singular values of Ŝf .

3.4.1.4 Decision Making at an Fusion Center

When the complete matrix Ŝf is obtained by solving (3.11), the average energy density

of each L-channel group can be calculated and compared with the threshold λ defined

in (2.16) to make the final decision on spectrum occupancy. Once the final decision is

made, it should be sent back to each SU participating the cooperative networks to enable

them getting access to the vacant channels.
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3.4.2 Denoised Cooperative Spectrum Sensing Algorithm

Similarly to the denoising algorithm in the proposed robust single node spectrum sensing

algorithm in (3.2), the bth sample in the recovered signal ŝfij is compared with the corre-

sponding noise level σn (b). If ŝfij (b) is higher than σn (b), the measurement observed at

the FC rfij (b) is kept. Otherwise, the corresponding value is set to be zero to eliminate

the influence of noise. Here, the recovery error may caused by the high channel noise or

not enough number of compressed measurements. This process can be illustrated as:

ŝfij d (b) =


rfij (b) , if ŝfij (b) ≥ σn (b),

0, otherwise.

(3.12)

3.4.3 Computational Complexity and Performance Analyses

In the low-rank MC based CSS scenario, the computational complexity of solving the

MC problem is at the level of O
(
N3
)
, and the MC is performed at a very powerful FC.

As a result, the complexity introduced by MC would not be a key issue to be considered.

In such a case, the key issue is the high sampling requirement for wideband spectrum at

SUs with limited sensing capability.

In the proposed robust CSS algorithm based on low-rank MC, the bandwidth to be

sensed at each SU is reduced to L out of I channels. Additionally, each SU performs

sub-Nyqusit sampling and only the collected samples p are sent to the FC which would

lower the transmission load in the networks in comparison with the scenario where all

the n samples are sent to an FC. Meanwhile, IL SUs are needed to employ at different

locations to sense the whole spectrum of interest. As the spatial diversity of SUs are

utilized to avoid the deep fading problem in CSS network, the more SUs participating

in the CSS network, the better detection performance can be achieved. In such a case,

if each SU only senses part of the spectrum, detection performance will be degraded.

This tradeoff is illustrated in the following simulations. In large scale CRNs, such kind
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of performance degradation can be compensated as the number of participating SUs are

large.

3.5 Numerical Analyses for Cooperative Multiple Users

Case

3.5.1 Analyses on Simulated Signals

In the multiple node scenario, the spectrum of interest is TVWS with I = 40 channels.

Each SU is assumed to sense a non-overlapping L-channel (L = 8) group which is the

same as the simulation setup of the single node spectrum sensing scenario in Section 3.3.

The target Pf is set to be 0.01. Transmission channels between the transmitters to the

SUs experience frequency-selective fading. In each sensing period, the fading on each

channel is time-invariant and it is modeled by setting a random delay and independent

Rayleigh fading gains for the multipath fading channels. Without loss of generality, the

first SU participating in the cooperative networks is assumed to experience deep fading

and the rest of SUs are experiencing Rayleigh fading. In the following simulations, the

performance of proposed robust CSS algorithm is presented by considering the influence

of multipath deep fading, different number of measurements observed at the FC and

different network sizes are analyzed.

The detection performance of single node spectrum sensing under deep fading chan-

nels in comparison with CSS algorithm with fading channels, AWGN channels, and the

theoretical curves defined in (3.6) are shown in Fig. 3.11. It can be seen that Pd of the

single node spectrum sensing, which can be considered as the number of SU implemented

to sense each L-channel group is J = 1, becomes much lower than the theoretical curves

when the transmission channels experience deep fading. As the spatial diversity gain
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Figure 3.11: Pd comparison of theoretic curves, CSS under AWGN channels
and deep fading channels, and single node spectrum sensing under
deep fading channels with simulated signals.

of CSS, the detection performance of CSS algorithm is much improved even though the

SUs experiencing deep fading are also in the cooperative network. In the CSS network,

the number of SUs being implemented to sense each L-channel group is J = 10. It can

be observed that the detection performance of CSS experiencing deep fading is still a bit

lower than that of the theoretical curves and the CSS under AWGN channels.

Furthermore, it is noticed that the signal recovery step introduces most of the compu-

tational complexities among the four-step process for the single node spectrum sensing

and the CSS algorithms. In the single node spectrum sensing algorithm based on CS,

the signal recovery process is performed at the SU. However, in the CSS algorithm based

on low-rank MC, signal recovery process is performed at the FC. SU devices, such as

mobile phones and the slave WSDs, are normally battery powered [95] or even battery

free for those nodes in WPT model in which the energy is harvested from power beacons.

Therefore, the computation complexity should not be too high at the SUs. Otherwise,

SUs cannot afford the sensing and signal recovery locally, and the delay caused by sig-

nal recovery would be intolerable. As a result, the spectrum sensing decision may not

be meaningful since spectrum occupancy may have changed during the period of signal



Chapter 3. Robust Compressive Spectrum Sensing 63

recovery. However, for the FC, they are normally powerful devices such as base stations

and master WSDs. In fact, size of the to be solved matrix at the FC is much greater

than the number of samples to be recovered at SUs in the single node spectrum sensing,

and the size of the matrix to be solved at the FC would also influence the performance

of the proposed algorithm.

Fig. 3.12 illustrates the detection performance comparison of the proposed robust CSS

algorithm based on low-rank MC, low-rank MC based CSS without denoising algorithm,

CSS algorithm without CS technique implemented at SUs and the theoretical values as

defined in (3.6) under different number of observed measurements at the FC. In this

scenario, the number of SUs being implemented to sense the same L-channel group is

J = 10. The number of active PUs in each L-channel group is 1 with random position,

corresponding to the sparsity level of 12.5% in the whole spectrum of interest, which

is close to the real spectrum occupancy scenario [1, 2]. It is noticed the Pd increases

when the number of observed measurements at the FC increases from 10% to 25%. As

the MC error becomes lower with more observed measurements at the FC, the detection

performance of proposed robust MC based CSS algorithm can almost match with that

of CSS algorithm without CS implemented at SUs when the observed measurements at

the FC is increased to 25%.

Fig. 3.13 presents the Pd of the proposed robust CSS algorithm under different net-

work sizes. In this scenario, the number of SUs being implemented to sense the same

L-channel group is J = 1, 2, 5, 10, 20 and J = 25, respectively. In this scenario, the

number of observed measurements at the FC is set to be 25% of the total measurements.

With decreasing number of SUs participating in the CSS networks, the cooperative gain

of CSS networks degrades. When the number of SUs implemented to sense the same

L-channel group is decreased to J = 1, it becomes a single node spectrum sensing sce-

nario, and the cooperative gain for CSS networks is decreased to zero. In such a case,

it becomes a single node case which provides a benchmark for the comparison. It shows

that the detection performance increases with increasing number of SUs implemented
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Figure 3.12: Pd comparison of the proposed robust cooperative spectrum sens-
ing algorithm with simulated signals under different compression
ratios γ.

to sense the same L-channel group. It is also noticed that the performance gap for the

number of SUs implemented to sense the same L-channel group increased from 5 to 10

is higher than that of the number of SUs changing from 10 to 20. As more information

about the spectrum is sent to the FC for the final decision making, which refers to more

SUs implemented to sense the same L-channel group, the detection performance becomes

closer to the theoretical curves. However, when the network size is enlarged, the com-

putational complexity of MC increases. Therefore, it is a balance between the detection

performance and the computational complexity of MC. In addition, in the case J = 5,

there are 25 SUs participating in the CSS network as each IL = 5 SUs are implemented

to sense the whole spectrum of interest at the same location. It can be observed that

the detection performance reaches the theoretic curves with increasing number of SUs.

Therefore, the performance degradation caused by the proposed channel division scheme

would not be an issue in large scale networks.
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Figure 3.13: Pd comparison of the proposed robust cooperative spectrum sens-
ing algorithm with simulated signals under different network
sizes, compression ratio γ = 25%.

3.5.2 Analyses on Real-WorldSignals

When the performance of proposed robust CSS algorithm based on low-rank MC is

verified by the simulated signals, it is further tested on real-world signals collected by

the RFeye sensing node installed in our lab as shown in Fig. 3.6 and a portable RFeye

sensing node implemented at different locations in London.

Fig. 3.14 shows the detection performance comparison of the traditional and the

proposed robust CSS algorithms under different compression ratios when the real-world

signals recorded by the RFeye node are utilized as the signal resources. In this scenario,

the number of SUs used to sense the same channels is J = 5 and the threshold is set to

be -73.5 dBm. It is noticed that detection performance of the proposed algorithm would

reach the target performance (Pd is higher than 90% and Pf is lower than 10%) when

the compression ratio γ is no lower than about 25%. In addition, the detection per-

formance of the proposed robust CSS algorithm is better than the traditional one with

increasing compression ratio at the SU, which is the benefit of the proposed denoising

algorithm. When compared with Fig 3.12, it can be observed that the detection perfor-
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Figure 3.14: Proposed robust cooperative spectrum sensing algorithm achieves
higher Pd and lower Pf than the traditional algorithm with real-
world signals under different compression ratios γ, and threshold
λ is -73.5 dBm.

mance becomes better when the compression ratio increases. This is also matched with

the single node spectrum sensing algorithm based on CS in Fig. 3.8. Similar as the single

node case shown in Fig. 3.8, there is a sharp dropping on Pf when the compression ratio

γ becomes higher than 20%. The reason for the drop is that the MC becomes exact when

the compression ratio is increased to be more than 20%, which lower the probability to

falsely determine the unoccupied channels as occupied.

3.6 Summary

In this chapter, two algorithms for wideband spectrum sensing at sub-Nyquist sampling

rates were proposed to reduce the computational complexity and improve the robustness

to channel noise, which are designed for the cases of single SU and cooperative multiple

SUs, respectively. The proposed algorithms were further tested on real-world signals

after being validated by the theoretical results and the simulated signals. The analyses

results showed that computational complexity of the proposed algorithms is much less
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than other state-of-the-art methods. Furthermore, simulation results demonstrated that

the detection performance of the proposed spectrum sensing algorithms on both single

and multiple nodes were more robust to channel noise than the traditional algorithms.



Chapter 4

Data-Assisted Compressive

Spectrum Sensing

In this chapter, the related work and the main contributions are firstly introduced in

Section 4.1. In Section 4.2, the proposed data-assisted compressive spectrum sensing

framework is presented, in which geolocation database is used to provide prior infor-

mation for signal recovery. Additionally, Section 4.3 gives the numerical results of the

proposed framework. Finally, Section 4.4 concludes this chapter.

4.1 Introduction

In order to avoid any harmful interference to primary services in TVWS, SUs, also

named as WSDs, should have the knowledge of spectrum occupancy. Two approaches

have been proposed to make SUs aware of the spectrum occupancy. One approach is

geolocation database which is a centralized database to output the maximum allowable

EIRP for each vacant TVWS channel for a specific location and time [1]. Geolocation

database typically calculates the interference generated in wireless communication sys-

tems through theoretical propagation models rather than actual measurements, which

68
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may result in inaccurate results for spectrum occupancy [97]. Furthermore, geolocation

database approach can only protect the registered users. However, some SUs may not be

registered, which may pose significant challenges to a geolocation database. For exam-

ple, PMSE devices such as wireless microphone operate mostly on an unlicensed basis,

without any record in TVWS [98]. The approach to protect unregistered applications

is spectrum sensing. Spectrum sensing requires SUs to have the capability to detect

spectrum holes that are not occupied by PUs. This approach provides instant channel

occupancy information, but it may cause interference to some reserved channels which

would be determined as vacant by sensing only. Therefore, a geolocation database can

be utilized to improve the accuracy of spectrum sensing.

4.1.1 Related Work

So far, some work has been researched on the combination of spectrum sensing and geolo-

cation database. Wang et al. [99] proposed a framework combining spectrum sensing with

geolocation database was proposed, in which the utilization of spatial-temporal spectrum

hole is maximized. Wang and Gao et al. [100] proposed to combine the advantages of

spectrum sensing and geolocation database, in which different spectrum sensing mod-

ules are performed based on the output of geolocation database. Furthermore, Ribeiro et

al. [98] implemented a framework into an experimental platform by combining wireless

microphone sensors with a web-based geolocation database access for PMSE. However,

all the existing frameworks required that SUs should build a direct link to the remote

geolocation database. This direct link causes increasing loads in CR networks.

Besides the work on framework combining spectrum sensing and geolocation database,

wideband spectrum sensing has attracted much attention. As limited by the Nyquist

sampling theory, CS has been proposed to achieve sub-Nyquist rate by utilizing the nat-

ural sparse property of signals [14]. So far, amount of work has been done on compressive

spectrum sensing [8, 18, 78, 79]. Many of the existing algorithms utilize l1-norm mini-

mization. However, as pointed out in [49], large coefficients are penalized more heavily
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than smaller coefficients in l1 minimization, which may lead to performance degenera-

tion. In order to rectify a key difference between l0 and l1 minimization and balance

the penalty on large coefficients and smaller coefficients of the sparse signal, Candes et

al. [49] proposed an iteratively reweighted l1 minimization algorithm by introducing

weight for each bin of the signal to be recovered. Another approach to recover a sparse

signal with fewer measurements is to replace the l1 norm with lp norm. In order to

solve the lp norm problem, an IRLS algorithm was proposed to perform sparse signal

reconstruction [45, 46, 48, 101–103].

Moreover, recovering signals from compressed measurements by utilizing prior infor-

mation has been studied in [104–107]. More specifically, Oscar et al. [104] proposed

the prior information assisted sparse signal approximation algorithms: weighted basis

pursuit denoising and weighted match pursuit. Additionally, two partial support infor-

mation assisted CS algorithms were proposed respectively in [105] and [106], in which the

weighted l1 minimization approach with fixed weights on the known support is utilized

to find the sparse solution for CS problems. Furthermore, Miosso et al. [107] proposed an

IRLS based CS recovery algorithm utilizing the prior information, in which the weights

are updated in each iteration of the IRLS algorithm. The different iterative approaches

for weight setting in IRLS were compared in [50]. However, the iterative weight updating

approach in IRLS introduces extra computational complexities for signal recovery.

4.1.2 Contributions

Motivated by the challenges identified above, the main contributions of this chapter are

listed as follows:

1. A data-assisted compressive spectrum sensing framework is proposed, in which

a geolocation database algorithm is implemented at SUs locally to provide prior

information for the compressive spectrum sensing.

2. In the proposed framework, a DNRLS based compressive spectrum sensing algo-
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rithm with lower computational complexity and fewer compressed measurements

is proposed. In the proposed DNRLS, data generated by the locally stored geolo-

cation database algorithm is utilized to replace the iterative process of weights

updating in IRLS algorithm. Convergence and computational complexity of the

proposed DNRLS are analysed.

3. Additionally, an efficient approach for calculating the maximum allowable EIRP is

proposed to further improve the accuracy and efficiency of the geolocation database

algorithm stored at SUs.

4. Furthermore, based on recent work on the trial within the Ofcom TVWS pilot [108],

the proposed framework and algorithms are tested on real-world signals and data

after being validated by the simulated signals and data.

4.2 Data-Assisted Compressive Spectrum Sensing Frame-

work

In the wideband spectrum sensing scenario, as shown in Fig. 4.1 (a), multiple PUs exist

in the multiband spectrum of interest and each SU is capable to detect the active PUs

accurately and efficiently. The traditional hybrid frameworks with geolocation database

and spectrum sensing proposed in [98–100] require a direct link to the remote geoloca-

tion database as shown in Fig. 4.1 (b). Dynamic changes of the spectrum would not

be reflected unless the users are registered and updated in the centralized geolocation

database. This process introduces several information exchanges such as the two-way

transmissions between the SU and the geolocation database. Additionally, each trans-

mission link introduces extra energy consumption at SUs and requires bandwidth for

information exchange.

In order to reduce the necessary sampling rates at SUs and alleviate both the network

load and the transmission errors between geolocation database and SUs, a framework is
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proposed by combining compressive spectrum sensing with geolocation database algo-

rithm, which is named as DNRLS framework as shown in Fig. 4.1 (c). In the proposed

framework, the DTT database is maintained at the SU locally, which includes the DTT

transmitter (TV base station) information. The geolocation database calculation algo-

rithm is employed locally at the SU to calculate the maximum allowable EIRP PIB of

each TV channel based on the DTT database and geography location information of

the SU. Before starting a new sensing period, the SU firstly collects its own geography

location information by GPS. Then the location information is utilized as the input of

geolocation database calculation algorithm to calculate PIB of each TV channel at the

SU locally. Subsequently, the obtained PIB of each channel is mapped to the instant

spectrum occupancy information and then fused with the historical spectrum occupancy

information. The fused results can provide an estimation on the sparsity level of the

spectrum of interest. According to the estimated sparsity level, SU can determine the

minimal sampling rate to collect compressed measurements that can guarantee exact

signal recovery. After the compressed measurements are obtained, fused channel occu-

pancy information is utilized as the prior information for solving signal recovery problem

for compressive spectrum sensing. As a result, necessary sampling rates for exact signal

recovery and computational complexities are reduced at SUs. After the original signal is

recovered, the decision on spectrum occupancy can be made by employing energy detec-

tion method. Furthermore, in order to further relax the SU, a Wilkinson’s method [109]

is adopted to calculate the maximum allowable EIRP PIB of each TV channel efficiently.

4.2.1 Iteratively Reweighted Least Square Based Compressive Sensing

Before introducing the proposed DNRLS based compressive spectrum sensing algorithm,

the IRLS algorithm is introduced. As aforementioned, l1-norm has been proved as a

good approximation for the NP-hard l0-norm problem. However, as pointed out in [49],

large coefficients are penalized more heavily than smaller coefficients in l1 minimization,
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Figure 4.1: (a). Scenario of wideband spectrum sensing with multiple primary
users (PUs); (b). the existing framework with a conventional spec-
trum sensing at Nyquist rate and a direct link to remote database;
and (c). the proposed DNRLS framework.

which may lead to performance degeneration. In order to balance the penalty on large

coefficients and small coefficients in the signal to be recovered, an iterative process to

construct the weights is introduced. Additionally, lp-norm (0 < p < 1) is utilized to lower

the computational complexity of signal recovery process caused by solving the l1-norm

optimization problem. Furthermore, IRLS based compressive sensing has been proposed

to utilize the lp-norm to reduce computational complexity of signal recovery [45, 46, 48,

101–103]. Meanwhile, the signal recovery performance is improved by introducing the

iteratively updated weights.

Based on the compressive spectrum sensing model introduced in Section 2.3.4 of

Chapter 2, with the IRLS algorithm, the original signal ŝf can be obtained by solving

the following problem in Lagrangian form

min ‖Θ · hf ŝf − x‖22 + λLWŝf
2, (4.1)

where ŝf refers to the signal to be reconstructed, and hf refers to the related channel

coefficients. W = diag
{

1
w1
, . . . , 1

wn
, . . . , 1

wN

}
is a diagonal matrix which is computed
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from the previous iteration and updated in each iteration. Here, wn refers to the weight

for the sample indexed by n, and x ∈ CP×1. The compression ratio is defined as γ = P
N .

Additionally, λL is the Lagrangian factor. In the lth (l = 0, 1, . . . , Imax) iteration of the

IRLS algorithm, the weights are calculated with the recovered signal ŝ
(l−1)
f n in the (l−1)th

iteration as

w(l)
n =

((
ŝ

(l−1)
f n

)2
+ ζ(l)

) p
2
−1

. (4.2)

In (4.2), ζ(l) is updated in each iteration, and it is a positive value to make sure that a

zero-valued component in ŝf does not strictly prohibit a non-zero estimate in the next

iteration of weights update. Additionally, the solution of (4.1) at the lth iteration can

be expressed as

ŝ
(l)
f n = W(l)ΘT

(
hfΘW(l)ΘT + λLIP

)−1
x, (4.3)

where the initial value for the weights wn in W is 1, and then W(0) = IN . As a result,

ŝ
(0)
f n = ΘT(hf + λLIP )−1x. It is noted that (4.1) is a convex optimization problem when

p = 1, and a non-convex optimization problem when 0 < p < 1. As such, the solution

to (4.1) can be local minima when 0 < p < 1. Even though no theoretic guarantee, the

numerical results in [45, 46, 48] has shown that the computed local minimizer of (4.1) is

global minimizer when it is solved by IRLS.

Definition 2. The RIP guarantees the stable and robust recovery by solving the opti-

mization problem (2.21). We say that a matrix Θ satisfies the property (a,K, p) if it

satisfies

δaK + a
2
p
−1
δ(a+1)K < a

2
p
−1 − 1, (4.4)

where a > 1, and K is sparsity level of the spectrum of interest.

Theorem 1. Let 0 < p ≤ 1. If a P ×N matrix satisfies P (a,K, p), then [102]

‖ŝf − sf‖p2 ≤ C
1η + C2

‖sf − sf ,K‖pp
K

2
p
−1

, (4.5)
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where C1 = 2p
1+a( p2−1)( p2−1)

− p
2

(1−δ(a+1)K)
p
2−(1+δaK)

p
2 a( p2−1)

, and

C2 =
2
(

p
2−p

) p
2

a(1− p
2 )

1 +

(
( p2−1)

− p
2 +a( p2−1)

)
(1+δaK)

p
2

(1−δ(a+1)K)
p
2−(1+δaK)

p
2 a( p2−1)

.

4.2.2 Non-Iteratively Reweighted Least Square Based Compressive Sens-

ing

In the traditional IRLS based CS given by (4.1), the key challenge is to find the optimal

set of weights W in an iterative process for a better estimate of the original signals.

It should be noted that the iterations generate more computational complexities dur-

ing the signal recovery process. When part of the maximum allowable EIRP is avail-

able in advance, the iterative process can be removed without degrading the recovery

performance heavily. In this chapter, a DNRLS based compressive spectrum sensing

algorithm is proposed. In the proposed algorithm, a geolocation database algorithm is

implemented at SUs locally to provide data for weights calculation. It is achieved by

a non-iterative method, so that SUs do not need any additional link to a centralized

geolocation database. Based on (4.2), the proposed calculation yields the weights as

wn =
(
|γ̄n|2 + ζ

) p
2
−1
, (4.6)

where ζ is a positive value same as ζ(l) in (4.2), and γ̄ = {γ̄1, . . . γ̄n, . . . γ̄N} is constructed

by the channel historical data and the output of geolocation database algorithm. By

introducing weights to solving the optimization problem (4.1), the samples with high

power density will be penalty by relative light weights. While for the samples with low

power density, the weighted penalty will be relative large. By doing so, the optimization

result of (4.1) will be more close to the solution of the original l0-norm problem. The

construction of γ̄ in detail is introduced in the following.

In the (t+ 1)th sensing period, the maximum allowable EIRP PIB (t+ 1) is calculated

for the current period by the proposed Wilkinson’s method based DTT location proba-
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bility calculation algorithm introduced in Section 4.2.3. Subsequently, the PIB (t+ 1) is

mapped to γ (t+ 1). Furthermore, the averaged γ̄ (t+ 1) is updated by fusing γ̄ (t+ 1)

with γ̄ (t) as

γ̄ (t+ 1) = ξγ̄ (t) + (1− ξ)γ (t+ 1), (4.7)

where γ̄ (t) is the historical data for the weights construction at the tth sensing period

with t = {0, 1, . . . , T}, and ξ (0 < ξ < 1) is the weight for γ̄ (t). Herein T is the window

size for SUs to fuse the current allowable maximum PIB with the historical data. At

a SU, only the γ̄ (t) is stored locally after the tth sensing period. If there is any new

unregistered user showing up in the spectrum of interest in tth period, the related DTT

transmitter information used for geolocation database calculation algorithm is updated

locally. This makes the proposed weights calculation robust to the new unregistered

users. Meanwhile, the geolocation database at other SUs would not be influenced. In

the (t+ 1)th period, the γ (t+ 1) provided by the local geolocation database calculation

algorithm would be updated accordingly by considering the unregistered users. After

γ̄ (t+ 1) for the current sensing period is obtained to calculate the weights, a more

accurate spectrum estimation can be obtained by solving the following non-iterative

problem

ŝf = W̃ΘT
(
hf ŝfW̃ΘT + λLIP

)−1
x. (4.8)

In (4.8), W̃ = diag
(

1
w1
, . . . , 1

wn
, . . . , 1

w1

)
is a diagonal matrix in which wn is calculated

by (4.6) to replace the iterative update process in (4.2). In the proposed DNRLS based

compressive spectrum sensing algorithm, the accuracy of γ̄ would affect the recovery

performance.

4.2.2.1 Convergence Analyses

If there is no unregistered user in the spectrum of interest, which means the values of

γ̄ used to construct the weights are accurate, the recovery performance of DNRLS is
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very good. When the unregistered users show up in the spectrum of interest at the 1st

sensing period, the γ̄ (1) becomes inaccurate on the corresponding bins as the output

of the local geolocation database algorithm γ (1) for the 1st period is inaccurate. As a

result, the signal recovery and detection performance would be degraded accordingly. In

the tth period after the unregistered user shows up in the spectrum of interest, γ (t) is

fused with the historical data γ̄ (t− 1) of the (t− 1)th period. The accuracy of weights

γ̄ (T ) are dependent on the window size T for the weights fusion at SUs. The weights

fusion process is shown as follows:

γ̄ (1) = ξγ̄ (0) + (1− ξ)γ (1) , (1st period)

γ̄ (1) = ξγ̄ (1) + (1− ξ)γ (2) , (1st period)

γ̄ (T ) = ξγ̄ (T − 1) + (1− ξ)γ (T ) , (Tth period)

(4.9)

where γ̄ (0) is the historical data for weights construction before unregistered user show-

ing up, and γ (1) is the output of the locally implemented geolocation database algo-

rithm for the period when unregistered users show up in the spectrum of interest. As

γ (2) = · · · = γ (T ) = γ, which represents the real spectrum status with consideration

of the unregistered users in the spectrum of interest, γ̄ (T ) can be expressed as

γ̄ (T ) = ξT × γ̄ (0) + (1− ξ) ξT−1 × γ (1) +
(1− ξ)× γ ×

(
1− ξT−1

)
1− ξ

(4.10)

= ξT × γ̄ (0) + (1− ξ) ξT−1 × γ (1) +
(

1− (ξ)T−1
)
× γ.

It is noted that γ̄ (T ) will converge fast to γ after unregistered users show up in the

spectrum of interest. The smaller ξ, the convergence speed goes faster. Additionally, part

of channels in TVWS are fixed and utilized by DTV signals, and some of the channels

are reserved for other purposes. As result, at least the weights for those fixed channels in

γ̄ (0) and γ (1) are accurate. This characteristic provides a guarantee that the recovery

performance would not be degraded heavily when unregistered users show up in the

spectrum of interest. With increasing window size T , the influence of inaccurate weights
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in γ̄ (0) and γ (1) degrades. The influence of the window size T is shown in the numerical

analyses part in Section 4.3.

4.2.2.2 Complexity Analyses

The computational complexity reduction of the proposed DNRLS based compressive

spectrum sensing comes from following three parts. Firstly, in the traditional IRLS

algorithm, the inverse of
(
hfΘW(l)ΘT + λLIP

)
takes O

(
P 3
)

and it is required in each

iteration. In large size CS problem, solving a problem with complexity O
(
P 3
)
Imax

times is unacceptable. As summarized in Algorithm 2, the proposed DNRLS based

CS algorithm solves the signal recovery problem in a non-iterative approach. There-

fore, the computational complexity is 1/Imax of the traditional IRLS based compressive

spectrum sensing in which Imax iterations are required to get an accurate estimation of

the spectrum. Secondly, the computational complexity reduction is contributed by the

fewer measurements required by the proposed DNRLS algorithm to achieve exact signal

recovery. In the proposed DNRLS algorithm, the minimal number of measurements P

for exact recovery is reduced to P̃
(
P̃ < P

)
. It leads to a large computational com-

plexity reduction as the complexity of solving the inverse of
(
hfΘW(l)ΘT + λLIP

)
is

O
(
P̃ 3
)

. The performance analyses are further shown in numerical analyses. Thirdly, the

computational complexity reduction comes from the calculation of PIB in the proposed

DNRLS framework. Specifically, to minimize the necessary computational complexity

at SUs, the Wilkilson’s method is utilized to calculate the PIB for each TVWS chan-

nel. The details of the Wilkilson’s method based DTT location probability calculation

algorithm are introduced in section 4.2.3.
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Algorithm 2 Data-assisted non-iteratively reweighted least squares based compressive
spectrum sensing

Input: p, λ, Θ, x, ζ, γ̄ (t).
1: Calculate PIB (t+ 1) by the proposed Wilkinson’s method based DTT location prob-

ability model introduced in Section 4.2.3.
2: Map PIB (t+ 1) to γ (t+ 1).
3: Calculate γ̄ (t+ 1) by γ̄ (t) and γ (t+ 1) based on (4.7).
4: Perform signal recovery by (4.8) to get ŝf .
5: Make decision d on spectrum occupancy by comparing ŝf with λ defined in (2.16).
6: return d.

4.2.3 Proposed Wilkinson’s Method Based DTT Location Probability

Calculation Algorithm

At a SU, the calculation of maximum allowable EIRP PIB of each channel in TVWS

should be efficient and accurate. Monte Carlo method and Schwartz-Yeh’s method are

the two algorithms approved by regulators to calculate the maximum allowable EIRP

PIB. Schwartz-Yeh’s method is an approximate algorithm in which infinite loops are

used to calculate the mean and standard deviation of log-normal distribution variables

such as variables A, B and E in (2.24) and (2.26) [74]. However, the large computational

complexity and low efficiency of the Schwartz-Yeh’s method are difficult to overcome at

power-limited SUs. In this chapter, the Wilkinson’s method is invoked to calculate q1,

q2 and PIB in a much more efficient way.

4.2.3.1 Maximum Allowable Equivalent Isotropic Radiated Power Calcula-

tion

Based on the Wilkinson’s method given in Appendix A, q1 and q2 can be calculated

accordingly. Taking the calculation of q1 as an example, as shown in (2.24),
Pas,min

Pas
+ V
Pas

=

A+B ≤ 1. 10log10 (A+B) ≤ 0, which is equivalent toX(dB) = 10log10

(
10

AdB
10 + 10

BdB
10

)
≤

0. It can be fitted into the precondition of Wilkinson’s method to get 10
AdB
10 + 10

BdB
10 =

10XdB = eΛ1 + eΛ2 . Therefore, Λ1 = ρ × A(dB) and Λ2 = ρ × B(dB). The relevant
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correlation coefficient of A and B can be given as

rA,B =
cov

(
A(dB), B(dB)

)√
var
(
A(dB)

)
var
(
B(dB)

) =
σas√

σ2
as + σ2

V

, (4.11)

where σas and σV can be calculated based on the DTT transmitter information used for

geolocation database calculation algorithm. Based on (A.1) and (A.2), µ1 and µ2 can

be obtained. Furthermore, mX and σX can be calculated according to (A.3) and (A.4),

and then q1 is obtained by (2.25) consequently.

Similarly, q2 can be calculated by the Wilkinson’s method by the following procedure:

1. Input mas, σas, mV , σV , mC and σC as shown in (2.26), which can be calculated

based on the DTT transmitter information used for geolocation database calcula-

tion algorithm;

2. Calculate mD and σD by Wilkinson’s method based on mV , σV , mC and σC ;

3. Calculate mA, σA, mE and σE by Wilkinson’s method based on mas, σas, mD and

σD;

4. Calculate mY and σY by Wilkinson’s method based on mA, σA, mE and σE ;

5. Calculate q2 by (2.27) based on mA, σA, mE and σE .

With q1 and q2 calculated by the Wilkinson’s method, the procedure of calculating

PIB is shown in Fig. 4.2. Firstly, input the mean and standard derivation of the received

power of wanted DTT signal, i.e., Pas, and the minimum required power of wanted DTT

signal, i.e., V , which can be obtained from the DTT transmitter information used for

geolocation database calculation algorithm. As defined in IEEE 802.22 standard, the

maximum allowable EIRP that can be utilized in TV frequency band is 4 watts [93].

Therefore, the predefined maximum allowable value (4 watts) is assigned to PIB for each

TVWS channel. Subsequently, the mean and standard derivation of C can be calculated

based on initial value of PIB. Additionally, q1 and q2 are calculated by the Wilkinson’s
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Calculate q1 and q2 by  Wilkinson’s method

2 1 Tq q q> − ∆ Decrease  PIB

Output  PIB

, , , , ,as V C as V Cm m m σ σ σ
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Figure 4.2: The procedure of calculating maximum allowable PIB.

method with inputs mas, mV , mC , σas, σV , σC . Consequently, the corresponding PIB

is updated, which is utilized to calculate the new q1 and q2 until q2 ≤ q1 − ∆qT . The

output of this procedure is the maximum allowable EIRP PIB for each TVWS channel.

4.3 Numerical Analyses

The analyses of the proposed stand-alone DNRLS framework on the simulated signals

and data are presented in this section. Furthermore, the proposed framework is tested on

the real-world signals collected by RFeye node and the data obtained from the geolocation

database provided by Nominet.

4.3.1 Numerical Analyses on Simulated Signals and Data

In the simulations, OFDM signals are simulated as PUs, which is used by the DVB-T

signals in TVWS from 470MHz to 790MHz in the UK. There are a total of 40 channels

in TVWS with a bandwidth of 8MHz for each channel. It is assumed that each PU is

independent and only locates at one channel. The transmission channel for signals is

modeled as an AWGN channel. The target Pf is set to be 0.01.
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Table 4-A: Error rates comparison.
q1 q2 PIB

Schwartz-Yeh’s method 31.25% 4.76% 7.87%

Wilkinson’s method 9.36% 1.31% 1.54%

The comparison of the proposed and traditional methods for calculating maximum

allowable EIRP are presented firstly. Since Monte Carlo simulation is based on no

assumption and approximation, its results can be considered precise as long as the

number of trials is large enough. With 10,000 points, Monte Carlo simulation shows

a relatively stable performance. By taking the results obtained by Monte Carlo sim-

ulation as a benchmark, the accuracy of the Schwartz-Yeh’s method and Wilkinson’s

method can be measured by the error rate ∆Q (·) /Q(MonteCarlo) (·), whereQ(MonteCarlo) (·)

refers to values calculated by Monte Carlo simulation and ∆Q (·) refers to the abso-

lute difference of parameters’ values between Schwartz-Yeh’s method or Wilkinson’s

method and the Monte Carlo simulation. More specifically, ∆Q (q1) =
∣∣∣qS,W1 − qM1

∣∣∣,
∆Q (q2) =

∣∣∣qS,W2 − qM2
∣∣∣ and ∆Q (PIB) =

∣∣∣PS,WIB − PMIB
∣∣∣, where qS,W1 , qS,W2 and PS,WIB

refer to the corresponding values calculated by the Schwartz-Yeh’s method or Wilkin-

son’s method respectively, and qM1 , qM2 and PMIB refer to the corresponding values cal-

culated by Monte Carlo simulation. The error rates of q1, q2 and PIB calculated by the

Schwartz-Yeh’s method and Wilkinson’s method are shown in Table 4-A. It shows that

the proposed Wilkinson’s method outperforms the Schwartz-Yeh’s method in terms of

the calculation accuracy.

Similarly as the error rate calculation, running time of Monte Carlo simulation with

10,000 points is chosen as a benchmark when measuring the running time for the calcu-

lation of q1, q2 and qIB. Table 4-B shows the running time comparison of the Schwartz-

Yeh’s and Wilkinson’s methods. It can be observed that the Wilkinson’s method reduces

the running time significantly in comparison with the Schwartz-Yeh’s method. There-

fore, the proposed Wilkinson’s method is very suitable for SUs with limited power to

obtain the q1, q2 and PIB efficiently.
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Table 4-B: Running time comparison.
q1 q2 PIB

Schwartz-Yeh’s method 15966.04% 153278.65% 75462.57%

Wilkinson’s method 99.06% 98.89% 99.47%

Table 4-C: Comparison of actual maximum allowable EIRP PIB in Oxford.
Actual Maximum Allowable EIRP PIB (Watt)

The latest release of Ofcom TV white
space model by Wilkinson’s method

Available
Channel

Open Suburban Urban
Power

control model

22 0 4.0000 4.0000 4.0000

25 0 4.0000 4.0000 4.0000

28 0 4.0000 4.0000 4.0000

29 0.0025 4.0000 4.0000 4.0000

40 0 4.0000 4.0000 4.0000

43 0 4.0000 4.0000 4.0000

46 0 4.0000 4.0000 4.0000

49 0.0013 4.0000 4.0000 4.0000

51 0.3981 1.2589 4.0000 0.0002

54 0.0013 4.0000 4.0000 4.0000

58 0.0013 4.0000 4.0000 4.0000

After validating the accuracy and efficiency, a national grid reference (NGR) based

geolocation database is built with the proposed Wilkinson’s method. By utilizing the

DTT transmitter information for geolocation database calculation algorithm, PIB can be

calculated by the proposed Wilkinson’s method based DTT location probability model

for any specific location. Taking an NGR number of SP515065 in Oxford as a test

location, the maximum allowable EIRP calculated by the power control and the proposed

location probability model are shown in Table 4-C.

As shown in Table 4-C, there are 11 available channels at SP515065 in total. In

the proposed location probability model, the transmission environment is classified into

three situations: open, suburban and urban. Coupling gain in different situations is

treated differently, leading to different interference toleration levels of DTT receivers. It

is obvious that the power attenuation in open areas is much lower than suburban and

urban areas. As a result, the actual maximum allowable EIRP PIB in open areas is
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Figure 4.3: Detection performance on the simulated signals and data under
different SNR values, p = 0.1, compression ratio γ = 20%.

smaller than the other two situations at a certain NGR location. Taking channel 51 as

an example, the PIB is 0.0002 watts in power control model. However, the spectrum of

interest could be utilized more effectively if the transmission environment is classified,

which is 0.3981 watts in open areas, 1.2589 watts in suburban areas and 4.0000 watts in

urban areas.

Based on the obtained PIB from the local geolocation database algorithm, the weights

are constructed by fusing the current PIB with historical data in the proposed DNRLS

based compressive spectrum sensing. Fig. 4.3 shows detection performance of the sensing

only approach and the proposed DNRLS framework implemented at SUs, where p is set to

be 0.1. It is observed that the detection performance of the sensing only approach without

CS implemented at a SU is matched with the theoretical curve, which is presented as a

benchmark and expressed as (3.6).

Fig. 4.3 shows that detection performance of the sensing only approach with IRLS

is smaller than the theoretic curve due to the signal recovery errors caused by the sub-

Nyquist sampling (γ = 20%). When the proposed DNRLS framework is performed,

detection probability increases greatly which can almost match with the theoretic curve.
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The reason for the large performance improvement is that the data used to construct the

weights is the exact representation of the spectrum of interest if there is no unregistered

user. Additionally, it is noted that the sensing only approach with IRLS requires an

iterative process to update the weights. This iterative process introduces a higher com-

putational complexity. As a result, the proposed DNRLS based compressive spectrum

sensing can achieve better detection performance with (Imax − 1)/Imax − 1 of computa-

tional complexity reduced in comparison with the sensing only approach with IRLS.

Fig. 4.4 shows detection probability of the sensing only approach with IRLS and

the proposed DNRLS framework with varying compression ratios. In this scenario, the

spectrum occupancy ratio is assumed to be 12.5%, p is 0.1 and the SNR value is -5dB. It

is noted that there is a big difference on the necessary number of measurements between

the proposed DNRLS framework and the sensing only approach to achieve the same

detection probability. Specifically, as shown in Fig. 4.4, the proposed DNRLS framework

can achieve 90% detection probability when the compression ratio is no higher than 7%.

However, the sensing only approach requires the compression ratio to be about 20% in

order to achieve the same performance. As a result, the sampling rates can be reduced

by 13% without degrading the detection performance.

The detection performance of the proposed DNRLS framework is shown in Fig. 4.5

with different spectrum occupancy ratios in TVWS and different p values for lp. In this

scenario, SNR is set to be -5dB and the positions of these active PUs are set to be

random. In compressive spectrum sensing, increasing spectrum occupancy in spectrum

of interest refers to higher sparsity levels of the signal to be recovered. It can be observed

that the detection performance becomes improved with decreasing value of p and fixed

sparsity level. Meanwhile, the detection performance is degraded slightly with increasing

sparsity level increases when the value for p is fixed. As a result, more compressed

measurements should be collected at SUs to avoid performance degradation when sparsity

level increases.

Fig. 4.6 shows the detection probability of the proposed DNRLS framework under



Chapter 4. Data-Assisted Compressive Spectrum Sensing 86

γ

10-1 100

P
d

0

0.2

0.4

0.6

0.8

1

Sensing only, IRLS
Porposed DNRLS

7% 20%

Figure 4.4: Detection performance on the simulated signals and data under
different compression ratios γ, p = 0.1, SNR=-5dB.
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Figure 4.5: Detection performance on the simulated signals and data under
different sparsity levels and p values, compression ratio γ = 10%,
SNR=-5dB.

different window sizes T with new unregistered users showing up in the spectrum of

interest. In this scenario, the spectrum occupancy is 12.5%, p is 0.1 and compression

ratio is 10%. With unregistered users in TVWS, only half of the weights for the chan-

nels with active PUs are exact. It can be observed that the detection performance

is degraded from 98% to 85% in the first sensing period after a new unregistered user
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Figure 4.6: Detection performance on the simulated signals and data under
different window sizes T with unregistered users existing, com-
pression ratio γ = 10%, p = 0.1, SNR=-5dB.

shows up in TVWS. However, after one sensing period has passed, which refers to T = 2,

the detection performance is improved to about 95%. This improvement benefits from

the weights are constructed by fusing the output of the geolocation database algorithm

with the historical data. The geolocation database algorithm utilizes the self-maintained

geolocation database at SU locally which contains the new unregistered users’ informa-

tion. Furthermore, the detection performance converges to 98% after four updates of

the weights. With increasing window size T , the improvement on detection performance

becomes slower after the first updating on the weights. However, if the unregistered user

shows up again in the same position of TVWS, detection probability of the proposed

DNRLS framework falls between 85% and 95%, which is dependent on the window size

T . If T is large enough, the detection probability would get close to 95%.

4.3.2 Numerical Analyses on Real-World Signals and Data

After the proposed DNRLS compressive spectrum sensing algorithm is validated by the

simulated signals and data, the proposed framework is tested on real-world signals col-
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Figure 4.7: Detection performance on the real-world signals under different
window sizes T with unregistered users existing, compression ratio
γ = 10%, p = 0.1.

lected by the CRFS RFeye node and the real data provided by the geolocation database

from Nominet qualified by Ofcom. The setup for RFeye node as shown in Fig. 3.6 in

Section 3.3.2 of Chapter 3. Some pilots in TVWS have been undertaken in the UK as

launched by the Ofcom. In the trials run at QMUL, an unregistered user is transmit-

ted in TVWS channel 27 (518MHz to 526MHz). In this case, the historical data and

PIB from the geolocation database would not be exact for the channel 27 as it is the

first time for the unregistered user showing up in TVWS. As a result, the output of

the geolocation database would still allow a high EIRP in channel 27. The simulation

results for the case with unregistered users under different window sizes T are shown in

Fig. 4.7. It can be observed that the detection performance would be degraded once the

unregistered user shows up in TVWS. This is caused by the inexact weights constructed

by the inaccurate PIB in channel 27. Similarly as Fig. 4.6, the detection performance is

increased largely after window size T is increased to 2. With increasing window size, the

detection performance of the proposed DNRLS framework converges efficiently.

Based on the fast convergence performance shown in Fig. 4.6 and Fig. 4.7, it can

be indicated the practicability of the proposed DNRLS framework is reasonable. The



Chapter 4. Data-Assisted Compressive Spectrum Sensing 89

implementation of compressive spectrum sensing with a geolocation database algorithm

can improve the energy efficiency at SUs by reducing its computational complexities.

Therefore, such an energy efficient algorithm could be applied to multiple scenarios with

energy-constrained devices.

4.4 Summary

This chapter introduced a stand-alone DNRLS framework combining compressive spec-

trum sensing with geolocation database for wideband spectrum. In particular, a DNRL

based compressive spectrum sensing algorithm was proposed to reduce the sampling rates

and lower the computational complexities by invoking geolocation database. Addition-

ally, the proposed framework was tested on the real-world signals and data after having

been validated by the simulated signals and data over TVWS. The numerical results

showed that the computational complexities of signal recovery process were reduced

with improved detection performance. Furthermore, it is noted the proposed frame-

work can also provide benefits to relax the requirement on sparsity level estimation in

compressive spectrum sensing. More specifically, the compression ratio at SUs is diffi-

cult to determine in existing CS algorithms, as the sparsity level is unknown before the

compressive spectrum sensing is performed. By the proposed framework, an estimation

of the sparsity level can be easily obtained by invoking of geolcoation database. As a

result, the lowest compression ratio guaranteing exact recovery can be determined by the

well-known relationship between necessary measurements and the sparsity level, which

further leads to lower complexity and less energy consumption at SUs.



Chapter 5

Malicious User Detection Based

on Low-Rank Matrix Completion

In this chapter, a malicious user detection model is proposed to improve the security

of CSS networks. The low-rank MC technique is invoked in the proposed model. More

specifically, Section 5.1 introduces the related work and main contributions of the work

in this chapter. Section 5.2 describes the system model of CSS networks with malicious

users. Section 5.3 presents the proposed low-rank MC based malicious user detection

framework along with the proposed rank estimation algorithm and the estimation strat-

egy for the number of malicious users. Section 5.4 shows the numerical analyses of the

proposed framework on both simulated and real-world signals. Section 5.5 concludes this

chapter.

5.1 Introduction

In CRNs, CSS is an effective approach to offer significant performance gain in incumbent

detection by exploiting the spatial diversity of the collaborative SUs [16, 17]. However,

due to the openness of low-layer protocol stacks, CSS networks are vulnerable to endure

90
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attacks from spectrum sensing data falsification (SSDF). This characteristic of CSS net-

works blocks the application of CR technique in large-scale networks.

In CSS networks, SUs that launch SSDF attackers are named as malicious users. The

main goals of malicious attacks come from two aspects: 1) decreasing detection proba-

bility for disturbing the normal operations of PUs; 2) increasing false alarm probability

to deprive access opportunities of the honest SUs [110]. In decentralized CSS networks,

sensing results are exchanged between neighbor SUs for improving the network reliability

to link failure. However, this characteristic makes decentralized CSS more vulnerable to

malicious attacks [111], as the observations at honest SUs would be known by malicious

users during the convergence process. Furthermore, fake data can be integrated into the

decisions of honest neighbor SUs, which eventually brings significant performance degra-

dation of the whole CSS networks [112]. In centralized CSS networks, all SUs report

their local sensing data to an FC, at which the final decision on spectrum occupancy

is made. By doing so, all participating SUs including malicious users can only obtain

the spectrum occupancy knowledge from the FC. Thus, the observations at honest SUs

in CSS networks would not leak to malicious users directly. However, as the fake data

are still considered in decision making process, existence of malicious users may lead to

false decisions at the FC. Generally, regardless of the types of malicious attacks and CSS

networks, malicious users have posed significant challenges on the security in CSS net-

works. As a result, detection accuracy of malicious users is quite essential to guarantee

the security of CSS networks.

Along with improving the security of CSS networks through malicious user detection,

another key challenge for secure CSS networks comes from the data acquisition costs

reduction at SUs. As the spectrum is normally underutilized, spectral signal exhibits a

sparse property [8] in the frequency domain. It is further noted that this sparse property

can be transformed to a low-rank property of the matrix constructed by spectral signals

received at spatially distributed SUs [18], since nearby locations or adjacent channels

are supposed to share the similar spectrum occupancies. The MC technique [96] can
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be applied to recover the complete matrix with only partial of observable elements.

Specifically, by invoking MC technique at the FC, SUs in CSS networks can sense less

number of channels as the unsensed channels can be reconstructed from the sensed

channels based on the low-rank property.

5.1.1 Related Work

So far, malicious user detection has been widely researched for enhancing the security

of CSS networks [113–121]. Specifically, the performance of CSS networks with single

and multiple malicious users were investigated by Wang et al. in [113, 114], respec-

tively. Particularly, based on the historical reports from SUs, the suspicious level of each

SU as well as consistency values were calculated to alleviate the influences of malicious

users. Chen et al. [115] proposed a reputation-based mechanism to defense the mali-

cious attacks. However, these historical data based algorithms take a long time to build

a reliable reputation. Additionally, Kaligineedi et al. [117] proposed a robust outlier

detection to identify “Always Yes” malicious users by utilizing outlier factors and spa-

tial information of SUs. Kalamkar et al. [118] proposed an outlier detection scheme to

detect malicious users sending true or false power values randomly to confuse other SUs

in CSS networks. Furthermore, some work has been done on the attacks detection from

intelligent malicious users. Li et al. [119] proposed an abnormality-detection approach

for secure CSS networks, in which the attack strategy adopted by malicious users is

unknown. Wang et al. [120, 121] constructed a moral hazard principal-agent framework

for malicious user detection. More specifically, an incentive compatible mechanism was

designed for thwarting the malicious behaviors from rational and irrational intelligent

malicious users. By doing so, the proposed approach was more practical to be imple-

mented in CR networks.

Besides the existing work on malicious user detection, the MC based CSS networks

have been studied in [18, 89, 122], with the purpose of alleviating the costs of data

acquisition at SUs. Meng et al. [89] firstly introduced the concept of MC to CSS networks.
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It was proposed that each SU linearly combined the information of multiple channels

at sub-Nyquist sampling rates. Subsequently, each SU sent a small number of such

linear combinations to a FC to perform MC. Additionally, Wang et al. [18] proposed a

robust wideband spectrum sensing algorithm with sub-Nyquist sampling performed at

each active SU in the considered CSS networks. Once the compressed measurements

were sent to the FC, nuclear norm minimization was adopted to solve the low-rank MC

problem. By doing so, the costs of data acquisition at SUs are reduced significantly.

Furthermore, Li [122] firstly applied belief propagation framework to MC for making it

implementable and efficient on reconstructing spectrum occupancies in wideband CSS

networks.

5.1.2 Motivations and Contributions

The aforementioned work has played a vital role and laid solid foundation for developing

new strategies on malicious user detection. However, many of them are trust based,

which utilizes the historical information of malicious users’ behaviours. In practice,

reliable reputation information is not always available since well-established historical

statistics may be too expensive or even unrealistic in a fast-changing CR environment.

Additionally, intelligent malicious users sending random values are more challenging than

the types of malicious users considered in [117, 118]. Motivated by these, a malicious user

detection dealing with malicious users sending random values is desirable for secure CSS

networks. Another motivation of the work comes from reducing the number of active SUs

in CSS networks and data acquisition costs at SUs without loss any information. Here,

the active SUs refer to SUs send data to the FC. All the aforementioned work on MC

based CSS focus on reducing the costs of data acquisition at SUs without considering

any secure issue in CSS networks. Therefore, a malicious user detection algorithm with

energy efficiency at SUs is extremely challenging and desired.

In this chapter, compared to the CSS network without MC,a malicious user detection

model with fewer number of active SUs is considered. To the best of my knowledge, this
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is the first work which invokes MC technique to achieve the malicious user detection in

CSS networks. The contributions of this chapter are summarized as follows:

• A malicious users detection framework is proposed without requiring prior infor-

mation of networks. In the proposed framework, along with the reduction of the

number of active SUs and the data acquisition costs at SUs, the accuracy of mali-

cious user detection is improved.

• In the proposed framework, compared to the CSS network without MC, fewer

number of sensed channels is required, as MC technique is invoked at the FC to

recover the information of unsensed channels. As a result, less number of active SUs

are required. If there are enough active SUs in CSS networks, with the invoking of

MC technique, each active SU can sense less number of channels without degrading

the recovery performance. At the FC, sensed channels but corrupted by malicious

users are removed during the MC process by utilizing the adaptive outlier pursuit

(AOP) algorithm [123].

• A dynamic rank estimation algorithm is proposed to provide the rank order as one

of the inputs for AOP algorithm. By doing so, the proposed framework does not

require any prior information of the considered CSS networks for malicious user

detection at the FC.

• An estimation strategy on the number of malicious users is proposed for the mali-

cious user detection framework. With the new strategy, the estimated number of

malicious users can be used as one of the inputs for AOP algorithm to make the

malicious user detection algorithm completely blind.

• The proposed framework is tested on the real-world signals after being validated

by the simulated signals. Numerical results show that the proposed malicious user

detection framework can achieve high detection accuracy with low costs of data

acquisition at SUs or less number of active SUs.
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5.2 System Model of Cooperative Spectrum Sensing with

Malicious Users

5.2.1 Networks Description

We take a typical CSS scenario as the considered network model, as shown in Fig. 5.1(a).

It is assumed that the whole spectrum of interest with bandwidth D can be divided

into I channels. A channel is either occupied by a PU or unoccupied. There is no

overlap between different channels. The number of occupied channels K is assumed to

be much less than the total number of channels, i.e. K � I. Each channel is sensed by

SUs at J different locations, which are spatially randomly distributed. At an arbitrary

location indexed by j (1 ≤ j ≤ J), it is assumed that Bj (1 ≤ Bj ≤ I) SUs, indexed by

b (1 ≤ b ≤ Bj), are implemented to sense the spectrum of interest. In a conventional

CSS network, the whole spectrum is sensed by an SU at each location, which results in

Bj = 1. However, high sampling rates are challenging for SUs in a CSS network, as the

SUs are normally energy-constrained with limited sensing capabilities.

In this chapter, a few SUs are implemented at each location j of the CSS network

(Bj > 1), where each SU only needs to sense a segment of the whole spectrum at Nyquist

rates, which means that some of the channels are unsensed at one location as shown in

Fig. 5.1(a). Consequently, costs of data acquisition at SUs can be reduced significantly,

in comparison with the case that each SU senses the whole spectrum. After sampling is

performed, each SU calculates the power values of the sensed channels, and then sends

this information to an FC to contribute to the final decisions on spectrum occupancies. It

is further noticed that some of the SUs experience deep fading or shadowing. They would

send very low power values to the FC in a CSS network, which are labeled as the blocks

with ‘+’ in Fig. 5.1(a) and Fig. 5.1(b). The transmitted signal has a sparsity property

in the frequency domain [8] and the nearby locations are assumed to share the similar

spectrum occupancies [122], so the matrix constructed by the received signals at different
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locations exhibits a low-rank property [18]. Fig. 5.1(b) illustrates the transformation of

the sparsity property of transmitted signals into the low-rank property of the matrix at

the FC, where the matrix is constructed by signals received at different locations. In

such a CSS network, we propose to reconstruct the unsensed channels from the sensed

channels by a low-rank MC technique.

In the case of a sensing malfunction, some of the active SUs in the CSS network,

labelled as the blocks with ‘X’ in Fig. 5.1(a) and Fig. 5.1(b), send corrupted power

values to the FC. Malicious users appear randomly in the considered CSS network.

Malicious users that keep sending high power values or low power values are easily

detected. However, malicious users that send random but very close to the true values

are much more difficult to detect. This is the case we consider in this work. We propose

to remove these malicious users during the MC at the FC, so that recovery performance

is not degraded significantly as the corrupted power values are used for the MC process.

5.2.2 Signal Processing Model

Let us define s (t) ∈ CN×1 as the transmitted signals from unknown PUs, where N refers

to the number of samples. All active SUs in CSS networks are assumed to keep silent.

Additionally, rij (t) refers to the signals of the ith channel received at the jth SU (SUij),

which can be given by

rij (t) = d
−χ/2
ij hij (t)s (t), (5.1)

where dij refers to the distance from PUs to SUij when the ith channel with response

hij (t) is used for transmission, and χ is the propagation loss factor.

Once signals of the ith channel are received at SUij , the power value of the sensed

channel pij can be calculated as

pij =
1

N

∫ fi+D/2I

fi−D/2I
Frij (t)df, (5.2)
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Figure 5.1: Network model

where F denotes the DFT matrix. Defining Ω as the index set for complete matrix at
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the FC, then the complete matrix PΩ can be illustrated as

PΩ =



p1,1 ... p1,j ... p1,J

...
...

...
...

...

pi,1 · · · pi,j · · · pi,J

...
...

...
...

...

pI,1 · · · pI,j ... pI,J


IxJ

, (5.3)

where the ith row of PΩ represents the power values of the ith channel sensed by J SUs

located spatially. The jth column of PΩ refers to the power values of different channels

sensed by SUs at the jth location.

As each SU senses only one or a few channels among the whole spectrum of interest,

power values collected at the FC PE is incomplete, where E is defined as an index set

of the sensed channels at the FC. Therefore, power values of sensed channels in the

incomplete matrix PE can be expressed as

pE
ij =


pij , (i, j) ∈ E,

0, otherwise.

(5.4)

If malicious users appear in CSS networks, part of the power values of the sensed

channels would be corrupted during the data transmission from SUs to the FC. Let us

define O as a subset of E, which donates the sensed channels without corruption from

malicious user. p̃ij is defined as the power value of corrupted channels. The value of p̃ij

falls in the range of [pEC
min, p

EC
max], where pEC

min and pEC
max refer to the minimal and maximal

values of the power values collected at the FC, respectively. Consequently, the partly
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corrupted matrix PEC generated at the FC can be expressed as

pEC
ij =


pij , (i, j) ∈ O,

p̃ij , (i, j) ∈ E/O,

0, otherwise,

(5.5)

5.3 Malicious User Detection Framework

In order to enhance the security of the CSS network, a malicious user detection framework

based on low-rank MC is proposed in this section. Based on the network model described

in Section 5.2.1, each SU is proposed to sense only a segment of the spectrum rather than

the whole spectrum, in order to reduce the number of active SUs in the CSS network

and the costs of data acquisition at each active SU. We propose to remove corrupted

channels at the FC by invoking the AOP algorithm [123]. It is further noted that the

rank of the matrix at the FC and the number of channels corrupted by the malicious

users is normally unknown in reality, but are required by the proposed malicious user

detection algorithm with AOP. To make the proposed malicious user detection framework

completely blind, a rank estimation algorithm and an estimation strategy on the number

of malicious users are proposed in this section. As a result, the malicious user detection

process in the CSS network does not require any prior information. Once the exact

matrix is obtained by the proposed framework, spectrum occupancies can be determined

by a conventional energy detection method. The whole procedure of the proposed low-

rank MC based malicious user detection framework in the CSS network is illustrated in

Fig. 5.2.

5.3.1 Malicious User Detection Based on Adaptive Outlier Pursuit

As the spectrum is normally underutilized in reality, power values of all the channels

received at SUij exploits a sparse property. This sparse property can be transformed
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Figure 5.2: Flowchart of the proposed malicious user detection framework
with low-rank matrix completion.

into a low-rank property of the complete matrix PΩ at the FC. Therefore, the rank

order of PΩ is equal to the number of active PUs in the spectrum of interest. Here,

it is assumed that there is at least one active PU in the spectrum of interest, which

guarantees the rank order is not equal to zero. Therefore, this low-rank property makes

it possible to recover the unsensed channels at the FC by invoking MC technique.

As aforementioned, the sensed channels are partly corrupted by malicious users, which

affects the recovery accuracy of sensed channels at the FC. It is assumed that the cor-

rupted channels are distributed sparsely and randomly in the incomplete matrix at the

FC. The indices of corrupted channels are unknown at the FC. Additionally, in order

to make attacks more difficult to be detected, fake data corrupted by malicious users

are assumed to be in a bounded range as aforementioned, which are close to their true

values. These fake data can be removed during the process of MC by invoking the AOP

algorithm. In such a case, the malicious user detection problem can be formulated as

follows:

min
U,V,Λ

1
2

∑
(i,j)∈Ω

Λij

(
(UV)ij − pEC

ij

)2
,

subject to
∑

(i,j)∈Ω

(1− Λij) ≤ Lc, Λij ∈ {0, 1},
(5.6)

where U ∈ CI×K and V ∈ CK×J . The number of corrupted channels collected at the

FC is Lc, and Λ is a binary matrix denoting the uncorrupted channels by one and the

others are set be to zeros. An illustration for the structure of Λ is given in Fig. 5.3.
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More particularly, an arbitrary element Λij in Λ is defined as

Λij =


1, (i, j) ∈ O,

0, otherwise.

(5.7)

Here, O is updated in each iteration of solving problem (5.6). The details about how to

update O will be given in Algorithm 3 in the following.

It is noted that the problem (5.6) is non-convex, since it has both continuous and

discrete variables. The following two steps can be performed to find a local optimal

solution to (5.6).

1. Fix Λ and update U, V. If (i, j) /∈ O, the objective function of (5.6) would become

zero. Therefore, U and V can be obtained by solving the simplified problem as

follows:

min
U,V

∑
(i,j)∈O

(
(UV)ij − p

EC
ij

)2
. (5.8)

This problem can be easily solved by Riemannian trust-region for MC (RTRMC) [63].
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2. With fixed U and V, Λ can be updated by solving

min
Λ

1
2

∑
(i,j)∈Ω

Λij

(
(UV)ij − pEC

ij

)2
,

subject to
∑

(i,j)∈Ω

(1− Λij) ≤ Lc, Λij ∈ {0, 1}.
(5.9)

The problem is to choose (I × J − Lc) elements with least sum from

SΩ =

{(
(UV)ij − pEC

ij

)2
, (i, j) ∈ Ω

}
. Given τ as the Lcth largest element in SΩ,

Λij can be updated as

Λij =


1, (i, j) ∈ Ω,

(
(UV)ij − pEC

ij

)2
< τ,

0, otherwise.

(5.10)

If the Lcth and (Lc + 1)th largest elements in SΩ are equal, we can choose any Λ

such that
∑

(i,j)∈Ω

(1− Λij) = Lc. Meanwhile, SΩ/O ≥ SO should be satisfied, where

SΩ/O = min
(i,j)/∈O

(
(UV)ij − pEC

ij

)2
and SO = min

(i,j)∈O

(
(UV)ij − pEC

ij

)2
, respectively.

During the process of solving problem (5.6), corrupted channels are removed from the

observed ones at the FC to alleviate the influences of malicious users. Once the complete

matrix P̂Ω is recovered at the FC, final decision on spectrum occupancies can be deter-

mined by invoking the conventional energy detection. The ith channel is determined as

occupied if the average energy of it is higher than the empirical threshold λd = (µ/2)2,

where µ =
∥∥∥vec

(
P̂Ω
)∥∥∥

1

/∥∥∥vec
(
P̂Ω
)∥∥∥

0
is the average absolute value of all the J ×K

nonzero elements in vec
(
P̂Ω
)

[18]. Here, vec (·) stacks all columns of matrix P̂Ω into a

long vector. The final binary decisions d = {di, ∀i = 1, . . . , I} on spectrum occupancies

can be determined as

di =

 1

J

J∑
j=1

|p̂ij | ≥ λd

 , ∀i, (5.11)

where p̂ij is recovered power value of the ith channels sensed by SUij .

The proposed AOP based malicious user detection is summarized in Algorithm 3.
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Algorithm 3 Proposed Malicious User Detection by Adaptive Outlier Pursuit

Initialization: Ω, P , Imax, L, K, and λd.
Input: l = 0, Λij = 1 for (i, j) ∈ Ω, O = Ω.
1: while l ≤ Imax do
2: Update U(l) and V(l) with RTRMC as in (5.8);
3: Update Λ(l) with (5.10);
4: Update O(l) to be indices in Ω where Λl

ij
= 1;

5: if O(l) = O(l−1) then
6: break;
7: end if
8: l = l + 1.
9: end while

10: p̂ij =
(
U(l)V(l)

)
ij

.

11: Making final decisions d on spectrum occupancy by (5.11).
12: return d.

In the considered model, if the whole spectrum of interest are all sensed by SUs at

different locations, the number of sensed channels at the FC is P = I × J . In such as

case, a complete matrix is available at the FC. Otherwise, only an incomplete matrix

can be constructed at the FC with P < I ×J . Herein, the compression ratio γ = P
I×J is

defined as the ratio of number of the sensed channels P in the corrupted matrix PEC to

the total number of channels I × J in the complete matrix PΩ at the FC. Additionally,

the maximal number of iterations for solving (5.6) is predefined as Imax, which means

the iterative process for solving (5.6) will be terminated when iteration number reaches

Imax, even though the break condition of Algorithm 3 is not satisfied. In the lth

iteration, Λ(l) is used to identify the locations of corrupted channels based on the newly

constructed
(
P̂Ω
)(l)

= U(l)V(l). After the complete matrix is recovered, final decisions

d on spectrum occupancies are made according to (5.11).

As demonstrated in Algorithm 3, the rank order of the matrix K and the number

of corrupted channels Lc are required as the inputs at the FC. Therefore, a rank order

estimation algorithm and an estimation strategy on the number of malicious users are

proposed, as introduced in the following, to enable the proposed malicious user detection

framework.
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5.3.2 Rank Order Estimation Algorithm

It is pointed out that the rank order estimation can be converted into a sparsity order

estimation problem [18]. With the sensed channels at the FC, the rank order of a matrix

can be estimated by the following two steps:

1. Recover the complete matrix by solving

min
∥∥∥vec

(
P̂Ω
)∥∥∥

1
,

subject to A
(
P̂Ω
)

= PEC,

(5.12)

where A is a operator from Ω to Ω/E. Here, the sparsity level of vec
(
P̂Ω
)

is

equal to J ×K.

2. The estimated rank order K̂ is given by

K̂ =

I∑
i=1

∣∣∣∣∣∣ 1J
J∑
j=1

p̂ij

∣∣∣∣∣∣ ≥ λr
, (5.13)

where λr is a threshold for rank order estimation. By applying data fusion at the

FC, the power value of each channel is calculated by averaging power values of the

same channel sensed by spatially distributed SUs. During the rank order estimation

process, it is assumed that the existence of malicious users in CSS networks would

not influence the rank order, as they are distributed randomly. This assumption

can be guaranteed by the AOP algorithm [123].

It is proved that exact signal recovery can be guaranteed when the number of sensed

channels satisfies P = c (K × J) log (I/K) + d [14]. However, the number of sensed

channels guaranteing exact rank order estimation and exact MC are different. When

Monte Carlo simulations and curve fitting techniques are adopted to find the values of

the constants c and d, the following two results can be obtained with given I, J and K:
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Result 1 [78]: A successful rank order estimation can be guaranteed when the

number of sensed channels is not less than P1 where

P1 = c1(Kmax × J) log
(
I/Kmax + d1

)
, (5.14)

where Kmax is the statistical upper bound of the rank order K.

Result 2 [78]: A successful MC can be guaranteed when the number of sensed

channels is not less than P , which is defined as follows:

P = c2 (K × J) log
(
I/K + d2

)
. (5.15)

According to the results presented in [78], it always holds that P > P1 with given I, J

and K. Therefore, c1 < c2 and d1 < d2.

Normally, the maximal rank order Kmax is adapted as a statistical upper bound of the

real rank order K. In practice, spectrum occupancies are normally dynamic. Therefore,

Kmax would not be a suitable upper bound in a dynamic spectrum environment. In order

to obtain the exact rank order of the matrix at the FC, a novel dynamic rank order upper

bound adjustment scheme is proposed to adjust Kmax adaptively. One possible scenario

is that Kmax is much larger than K, which leads to that the number of data collected for

rank order estimation is more than that for MC. Here, it is a waste on the costs of data

acquisition at SUs or the number of active SUs implemented for sensing. As shown in

Algorithm 4, the rank order upper bound adjustment can be achieved by the proposed

shrink algorithm. Jmax is defined the maximal iteration number which is adopted in

Algorithm 4 to update Kmax. It is assumed that the sensed channels PEC, step size

∆1, threshold λr, Jmax and the initial rank order upper bound Kmax are known as the

inputs at the FC. Then the value of P1 by (5.14) can be calculated. Additionally, the

complete matrix can be obtained with the P1 sensed channels by (5.12), and K̂ can be

determined by (5.13). Furthermore, the number of sensed channels required for exact

recovery is obtained by (5.15). Subsequently, P2 is updated as P2 = P − P1. In the next
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Algorithm 4 Proposed Shrink Algorithm

Input: PEC, ∆1, Kmax, λr, and Jmax.

Initialization: j = 1, P
(1)
2 < 0, K

(1)
max = Kmax.

1: while P
(j)
2 < 0 or j ≤ Jmax do

2: Calculate P
(j)
1 by (5.14);

3: Calculate K̂(j) by (5.12) and (5.13) with P
(j)
1 channels;

4: Calculate P (j) with K̂(j) by (5.15);

5: Calculate P
(j)
2 =P (j)−P (j)

1 ;

6: Update K
(j)
max = K

(j)
max −∆1 and j = j + 1.

7: end while
8: return Updated Kmax.

Algorithm 5 Proposed Enlargement Algorithm

Input: PEC, ∆2, Kmax, λr, ε and Jmax.

Initialization: j = 1, K̂(1) = 0, K̂
(1)
max = Kmax.

1: while
(
K

(j)
max − K̂(j)

)
> ε or j ≤ Jmax do

2: Update K
(j)
max = K

(j)
max + ∆2 and j = j + 1;

3: Calculate P
(j)
1 by (5.14);

4: Calculate K̂(j) by (5.12) and (5.13) with P
(j)
1 channels.

5: end while
6: return Updated Kmax.

loop, Kmax is reduced by step size ∆1 and this process is repeated until P2 > 0 or the

maximal iteration Jmax is researched.

Another scenario is that the rank order upper bound Kmax is much smaller than

the real rank order K, which is caused by the over-utilizing of shrink algorithm or the

dynamic spectrum occupancies. It leads to the result that P1 is not enough for the

exact rank order estimation K̂. As shown in Algorithm 5, the enlargement algorithm

is proposed to enlarge Kmax until that the exact rank order estimation can be achieved.

In the proposed enlargement algorithm, sensed channels PEC, step size ∆1, threshold

λr, tolerance ε and the initial rank order upper bound Kmax are known as inputs at the

FC. Subsequently, P1 is determined by (5.14) to achieve exact rank order estimation.

Additionally, K̂ is determined by (5.12) and (5.13). In the following loop, Kmax is

increased by step size ∆2 to get the updated K̂ until the difference between Kmax and

K̂ becomes less the error tolerance ε or the maximal iteration Jmax is researched.
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Figure 5.4: Flowchart of the proposed dynamic rank order upper bound
adjustment scheme.

The whole process of the proposed dynamic rank order upper bound adjustment

scheme is summarized as follows. As shown in Fig. 5.4, sensed channels PEC, step size

∆1, threshold λr, tolerance ε, Jmax, and the initial rank order upper bound Kmax are the

inputs of the proposed scheme. The updated Kmax is as the output. Once the inputs are

available, the proposed shrink algorithm starts working. The output of Algorithm 4

Kmax is adopted as one of the input for Algorithm 5. During this process, exact

recovery cannot be achieved if the number of sensed channels P is smaller than P1. As

such, the FC should coordinate the number of active SUs in CSS networks to sense

more channels. After the enlargement algorithm is performed, the updated Kmax can

be obtained and used as the rank order input K for Algorithm 3. According to the

logic flow shown in Fig. 5.4, the step size should be carefully designed. If the step size

is too small, more iterations are required before the algorithm converges, which results

in high computational complexity. If the step size is too big, Kmax might keep updating

by Algorithm 4 and Algorithm 5 until the maximal iteration Jmax is reached.
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5.3.3 Malicious User Number Estimation

As aforementioned, the number of corrupted channels Lc is one of the inputs for Algo-

rithm 3. However, it is usually unknown and needs to be estimated in practice. In the

rest of this section, each SU is assumed to sense one channel to simplify the description.

The number malicious user is equal to the number of corrupted channels. Therefore, the

malicious user number estimation refers to estimate the number of corrupted channels

in the following of this chapter.

If the estimated malicious user number L̂c is smaller or greater than its real value Lc,

the performance of Algorithm 3 would be degraded significantly. More specifically, if L̂c

is underestimated, part of the corrupted channels will still be used to perform MC at the

FC, which results in recovery errors in the reconstructed matrix. If L̂c is overestimated,

some of the uncorrupted channels would be removed during the MC process. The MC

process would result in more than one solution. Consequently, exact MC is difficult

to achieve as the number of available uncorrupted channels may not be enough. As

proved in [123], a sufficient condition for the non-uniqueness of a matrix PΩ is given as

follows: suppose the number of sensed channels is P , and they are randomly distributed

among the complete matrix PΩ ∈ CI×J . Let us define ∆Lc as the difference between

the overestimated number of corrupted channels L̂c and the real number of corrupted

channels Lc. If ∆Lc > (P − Lc)/max (I, J) −K > 0, then the reconstructed matrix is

non-unique.

In the proposed framework, after the rank order estimation is performed, an initial

guess for malicious user number is used as one input for the AOP algorithm illustrated

as Algorithm 3. It is an iterative process to update the number of malicious users

in combining with the AOP algorithm. In each iteration, after the AOP algorithm is

performed, the value of the L̂cth largest term in set SΩ should be checked. If it is less

than the tolerance ltol, L̂c is determined as overestimated, and some of the removed

channels are uncorrupted. The numerical analyses in [123] has proven that ∆Lc can
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be bounded by (lmin −K), where lmin is defined as the minimum number of sensed

channels in one row or one column of the incomplete matrix with (P − Lc) elements at

the FC. More specifically, let us define l̂min as the minimal number of sensed channels

in one row or one column of the incomplete matrix with
(
P − L̂c

)
elements. If l̂min is

less than the rank order K, the estimated number of corrupted channels L̂c is updated

as L̂c = L̂c + l̂min − K. If l̂min is no less than K and
((

PΩ
)
ij
− pEC

ij

)2
is less than

τ , the exact matrix is reconstructed. Consequently, the iterative process for MC is

terminated. Otherwise, if l̂min is greater than K and
((

PΩ
)
ij
− pEC

ij

)2
is greater than

τ , L̂c is considered to be underestimated. As a result, the value of L̂c should be updated

to be ρ1L̂c, where ρ1 > 1 is a properly selected constant. Following this, the updated L̂c

is taken as the input for AOP algorithm in the next iteration until the exact matrix is

obtained or the iteration number reaches its upper bound Imax.

5.3.4 Analyses on Minimal Number of Active Secondary Users

As aforementioned, each SU can sense one or multiple channels depending on its sensing

capability. To simplify the comparison, it is assumed that each SU only senses one of the

I channels. Without the invoking of MC technique, regardless of malicious users, the

total number of SUs to be implemented in the CSS networks is C1 = I×J . Additionally,

with the invoking of MC at the FC, a CSS network without malicious users is considered.

Without loss of any cooperative gain, the minimal number of SUs to be implemented in

the CSS networks is given by

C2 = γmin × I × J, (5.16)

where γmin ∈ (0, 1] is the lower bound of compression ratio for exact MC, which is

dependent on the specific MC algorithm. Furthermore, based on the CSS networks

considered in this chapter, in which malicious users exist and the AOP algorithm is

invoked for MC, the minimal number of SUs required to be implemented in the CSS

networks can be given by

C3 = P = γ̂min × I × J, (5.17)
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where γ̂min ∈ [γmin, 1] is the minimal compression ratio that can be achieved by the AOP

algorithm. The exact value of γ̂min is dependent on the malicious user ratio κ. When the

malicious user ratio κ = 0, C3 = C2 < C1. If κ > 0, C2 < C3 < C1. No matter whether

the malicious users exist in CSS networks, with MC invoked at the FC, the number of

active SUs required to send data to the FC is less the case that MC is not invoked.

Besides reducing the number of active SUs in the considered CSS networks, the

costs of data acquisition can be reduced significantly from another perspective. Here,

it is assumed that each SU senses multiple channels. With the proposed malicious

user detection framework, if the number of active SUs is fixed, each SU can sense less

number of channels as the MC technique is invoked to recover the complete matrix with

less number of sensed channels. By sensing less number of channels, the costs of data

acquisition at each SUs can be lowered significantly.

5.4 Numerical Analyses

In this section, numerical analyses on the proposed malicious user detection framework

are presented. Particularly, the proposed framework is tested on the real-world signals

after being verified by the simulated signals over TVWS.

In simulations, the total number of channels in the spectrum of interest is assumed to

be I = 40, which is the number of TVWS channels in the UK. The size of CSS networks

changes from small scale (J = 40) to large scale (J = 400). Here, the size of CSS

networks is equal to the number of active SUs implemented to sense the same channel

at different spatial locations. Additionally, the malicious user ratio κ = Lc
I×J is defined

as the ratio of the number of corrupted channels Lc to the total number of channels

(I × J) to be sensed by different SUs in the considered CSS networks. Imax = 500 and

Imax = 10.
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Figure 5.5: Saved measurements for exact MC with dynamic spectrum occu-
pancies at the fusion center.

5.4.1 Numerical Results Using Simulated Signals

5.4.1.1 Results of the Proposed Rank Order Estimation

The simulation results of the proposed rank order estimation algorithm is presented

in Fig. 5.5, with varying spectrum occupancies. In this scenario, dynamic spectrum

occupancies result in changing rank order of the matrix at the FC. As shown in Fig. 5.5,

when the rank order K changes, it can be observed that the saved number of channels

to be sensed for exact MC is degraded at the changing point. However, performance of

the proposed rank order estimation algorithm would be improved after the sensing slot

during which rank order K changes. In practice, spectrum occupancies are assumed to

be the same within a limited periods. Therefore, the proposed rank order estimation

algorithm is reliable for practical scenario. As shown in Fig. 5.5, with longer sensing

period, the proposed rank order estimation algorithm outperforms the traditional two-

step compressive spectrum sensing algorithm (TS-CSS) [78] in terms of the saved number

of channels to be sensed for exact MC.



Chapter 5. Malicious User Detection Based on Low-Rank Matrix Completion 112

5.4.1.2 Results of the Case with Unknown Number of Malicious Users

In Fig. 5.6, the influences of incorrect estimation on the number of malicious users L̂c

are analyzed. Therefore, the proposed estimation strategy on the number of malicious

users is not invoked here. In this case, we choose J = 40 and K = 1 to simplify the

simulation process. Additionally, the estimated number of corrupted channels L̂c = ρLc

varies from 0.7Lc to 1.3Lc. Here, ρ, named as estimation accuracy ratio, is defined as

the ratio of estimated number of corrupted channels to the actual number of corrupted

channels. Here, the compression ratio is set to be 100%, which refers to the case that no

MC is adopted. This kind of setting is to eliminate any possible performance degrada-

tion caused by recovery error. As a result, the performance difference shown in Fig. 5.6

is only caused by the incorrect estimation on the number of malicious users. Particu-

larly, in Fig. 5.6, it is shown that the detection probability of the proposed malicious

user detection framework gets degraded significantly if the estimated number of cor-

rupted channels L̂c is overestimated, especially in the case with high level of malicious

user ratio. It is further noted that the detection performance would only be degraded

slightly if the number of corrupted channels L̂c is underestimated. In the following sim-

ulations, by invoking the proposed an estimation strategy on the number of malicious

users, the correct estimation of the corrupted channels L̂c is taken as the input of the

AOP algorithm.

5.4.1.3 Results of the Proposed Malicious User Detection

Fig. 5.7 shows the detection performance of the proposed malicious user detection frame-

work versus different compression ratios γ. Additionally, the detection performance of

a traditional CSS network is also shown as a benchmark,in which malicious users do

not exist and no MC technique is invoked at the FC. Therefore, for the case of the

traditional CSS networks, matrix observed at the FC is complete. In this scenario, the

number of active PUs in the spectrum of interest is one, which results in the rank order
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Figure 5.6: Detection performance of the proposed malicious user detection
framework versus different estimation accuracy ratio ρ and mali-
cious user ratios κ, compression ratio γ = 100%, and J = 40.

as K = 1. The number of active SUs implemented to sense each channel is assumed to

be J = 40. As shown in Fig. 5.7, with 10% of sensed channels corrupted by malicious

user, the detection probability and false alarm probability of the proposed framework

can almost match with the benchmark, when the compression ratio γ is increased to

30%. This means the detection performance of the CSS networks would not be degraded

if the number of sensed channels are no less than 30% of the total number of channels

I × J , even though 10% of them are corrupted by malicious users.

Fig. 5.8 shows the detection performance of the proposed malicious user detection

framework versus varying malicious user ratios κ. In this case, the number of active PUs

is set to be K = 1. The total number of active SUs implemented to sense each channel

is J = 40. It is noted that detection probability of the proposed malicious user detection

algorithm decreases with increasing number of channels corrupted by malicious users.

More specifically, when malicious user ratio is increased to 60%, detection probability

of the proposed framework is heavily degraded regardless of the compression ratio. It is

reasonable because that the number of uncorrupted channels is not enough to guarantee

the exact MC at the FC.
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Figure 5.7: Detection performance of the proposed malicious user detection
framework versus different compression ratios γ, malicious user
ratio κ = 10%, and J = 40.
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Figure 5.8: Detection performance of the proposed malicious user detection
framework versus different compression ratios γ, malicious user
ratio κ varies from 0 to 60%, and J = 40.

Fig. 5.9 shows the detection performance of the proposed malicious user detection

framework versus different number of active SUs J for sensing the same channel. Here,

different number of active SUs for sensing the same channel leads to different sizes of

CSS networks. In this scenario, the active of active PUs is set to be K = 4 with random



Chapter 5. Malicious User Detection Based on Low-Rank Matrix Completion 115

κ

0.1 0.2 0.3 0.4 0.5 0.6

P
d &

 P
f

0

0.2

0.4

0.6

0.8

1
Pd J=40

Pd J=200

Pd J=400

Figure 5.9: Detection performance of the proposed malicious user detection
framework versus different sizes of CSS networks J , malicious user
ratio κ changes from 10% to 60%, and compression ratio γ = 100%.

positions. The size of CSS networks J varies from 40 to 400. The malicious user ratio

varies from 10% to 60%. If the malicious user ratio is fixed, the number of corrupted

channels would increase accordingly with the increasing size of CSS networks. Therefore,

as illustrated in Fig. 5.9, with the same malicious user ratio, the case with larger CSS

network size may have worse detection performance than the case with smaller CSS

networks. Additionally, as circled in Fig. 5.9, for the scenarios of J = 200 and J = 400,

the number of corrupted channels becomes the same if the malicious user ratio is set

to be 0.4 and 0.2, respectively. In such a case, it can be also noticed that detection

performance of CSS networks with J = 400 is much higher than that with J = 200.

Therefore, it can be concluded that the more number of active SUs in CSS networks

(larger size of CSS networks), the better defense to the same number of malicious users.

In Fig. 5.10, detection performance of the proposed malicious user detection frame-

work is presented versus different malicious user ratios κ and different rank orders K.

As aforementioned, the rank order of the matrix at the FC is determined by the number

of active PUs in the spectrum of interest. Positions of the active PUs are randomly
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Figure 5.10: Detection performance of the proposed malicious user detection
framework versus different rank orders K and different malicious
user ratios κ, compression ratio γ = 100%, J = 400.

generated in the spectrum of interest. In this case, compression ratio is set to be 100%

to avoid any possible performance degradation caused by not enough number of sensed

channels at the FC. The number of active SUs to sense each channel is set to be J = 400.

It shows that the detection performance can be improved accordingly with decreasing

rank order as well as decreasing malicious user ratio. This observation is reasonable, as

increasing rank order and malicious user ratio would make the exact MC more difficult

or even impossible at the FC.

5.4.2 Numerical Results Using Real-World Signals

As aforementioned, Ofcom has conducted serial trials on the TVWS pilots. One of

the trials is conducted in our campus. In this trial, the DVB-T signal is allowed to

be transmitted over TVWS channel 27 (518 MHz to 526 MHz), which is used to be

vacant. During this trial, the real-world signals over TVWS are collected by a portable

CRFS RFeye node [92] as shown in Fig. 3.6. To simulate the CSS networks with malicious

users, the signal transmitted in channel 27 is regarded as the malicious users over TVWS.
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Signals collected at different time slots are recorded to formulate the CSS networks by

utilizing the time diversity. Malicious users may show up in any time slot during the

signals recording period. The proposed low-rank MC based malicious user detection

framework is tested on the collected real signals.

In this case, the number of active PUs is K = 9. The total number of channels is

I = 40 over TVWS. The number of active SUs implemented to sense the same channel

is J = 50. Malicious users show up in channel 27 randomly because the trial signal is set

to be discontinuously. With the real signals, Fig. 5.11 shows the detection performance

of the proposed malicious user detection algorithm versus varying compression ratios γ.

The detection performance comparison is demonstrated for the cases with and without

malicious users in the CSS networks. When no malicious user shows up in the CSS

networks, it shows that the perfect detection performance (Pd=100% and Pf=0%) can

be achieved by choosing the suitable threshold for decision making. If malicious users

show up in the CSS networks, false alarm probability becomes higher than the case

without malicious users. This is because the false alarm happens if the corrupted value on

TVWS channel 27 is not removed properly during the MC process. With the increasing

compression ratio, the false alarm probability gets closer to the case without malicious

users, as the exact MC can be guaranteed with more sensed channels at the FC.

5.5 Summary

In this chapter, a low-rank MC based malicious user detection framework was proposed

for secure CSS networks, with the purpose of alleviating the costs of data acquisition

at SUs and improving the malicious user detection accuracy. Each SU only sensed a

segment of the spectrum of interest. The number of active SUs in CSS networks was

less than the case that MC technique is not invoked at the FC. More particularly, a

low-rank MC based malicious user detection algorithm was proposed by adopting the

AOP algorithm, in which the channels corrupted by malicious users were removed during
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Figure 5.11: Detection performance of the proposed malicious user detection
algorithm with real signals under different compression ratio γ,
rank order K = 9.

the MC process. In order to make the malicious user detection process blind, a rank

order estimation algorithm and an estimation strategy on the number of malicious users

were proposed to provide the required inputs for the AOP algorithm. Furthermore, the

proposed malicious users detection framework was tested on both the simulated signals

and the real-world signals over TVWS. Numerical analyses showed that the proposed

framework achieved good detection performance with limited number of active SUs or

lower costs of data acquisition at each participating SU. It can be concluded that the

proposed malicious user detection framework is a good candidate for the secure CSS

networks.



Chapter 6

Throughput Analyses of Wireless

Powered Cognitive Radio

In this chapter, the throughput of wireless powered CRNs is analyzed, in which the SUs

are powered by harvesting energy from the RF. Section 6.1 introduces the related work

and main contributions of the work in this chapter. Section 6.2 describes the considered

WPT model and spectrum sensing model with a new proposed frame structure. Sec-

tion 6.3 presents the throughput analyses of single SU scenario with the CS technique

invoked. Section 6.4 provides the throughput analyses of multiple SUs with the MC

technique invoked. Furthermore, Section 6.5 shows the numerical analyses of the con-

sidered network model with the optimized throughput of single SU and multiple SUs,

respectively. Section 6.6 concludes this chapter.

6.1 Introduction

Energy efficiency and spectrum efficiency are two critical issues in designing wireless

networks. Recent developments in energy harvesting provides a promising technique to

improve the energy efficiency in wireless networks. Different from harvesting energy from

119
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traditional energy sources (e.g., solar, wind, water, and other physical phenomena) [19],

the emerging WPT further underpins the trend of green communications by harvesting

energy from RF signals [20]. Inspiring by the great convenience offering by WPT, several

pieces of work have been studied to investigate the performance of different kinds of

energy constraint networks [12, 124–127]. Two practical receiver architectures, namely a

time switching receiver and a power splitting receiver, were proposed in a multi-input and

multi-output (MIMO) system in [12], which laid a foundation in the recent research of

WPT. In [124], a new hybrid network architecture is designed to enable charging mobiles

wirelessly in cellular networks. For cooperative systems, new power allocation strategies

are proposed in a cooperative networks where multiple sources and destinations are

communicated by an energy harvesting relay [125]. For non-orthogonal multiple access

(NOMA) networks, in [127], a new cooperative simultaneously wireless information and

power transfer NOMA protocol is proposed with considering the scenario where all users

are randomly deployed.

Along with improving energy efficiency through energy harvesting, CR techniques can

improve the spectrum efficiency and capacity of wireless networks through DSA [128].

Therefore, in order to design networks which are both spectrum and energy efficient, SUs

in CRNs can be equipped with the energy harvesting capability. For the SUs powered

by energy harvested from wireless RF, high sampling rate is difficult to be achieved. To

overcome this issue, CS, which was initially proposed in [14], is introduced to wideband

spectrum sensing in [8] to reduce the power consumption at SUs. Additionally, when

dealing with matrices containing limited sensed channels, low-rank MC [96] was proposed

to recover the unsensed channels.

6.1.1 Related Work

Some throughput optimization work has been recently developed in wireless powered

communication networks. Che et al. [129] considered the throughput maximization

problem for both battery-free and battery-deployed cases by optimizing the time slots
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for energy harvesting and data transmission. Additionally, recent work [130–132] on

the CRNs powered by energy harvesting mainly focuses on the spatial throughput opti-

mization under various constraints. Park et al. [130] considered CRNs with an energy-

harvesting SU with infinite battery capacity. The goal is to determine an optimal spec-

trum sensing policy that maximizes the expected total throughput subject to an energy

causality constraint and a collision constraint. In order to improve both energy effi-

ciency and spectral efficiency, Park et al. [131] considered a similar network model and

the stochastic optimization problem is formulated into a constrained partially observable

Markov decision process. At the beginning of each time slot, a SU needs to determine

whether to remain idle so as to conserve energy, or to execute spectrum sensing to acquire

knowledge of the current spectrum occupancy state. The throughput is maximized by

the design of a spectrum sensing policy and a detection threshold. Chung et al. [132]

considered an energy constraint RF-powered CRN by optimizing the pair of the sensing

duration and the sensing threshold to maximize the average throughput of the secondary

network.

6.1.2 Motivations and Contributions

The aforementioned work has played a vital role and laid solid foundation for developing

new strategies for frame structure design. However, spectrum sensing is not considered

in the frame structure designin [129]. Additionally, in [130–132], the proposed frame

structure designs mainly aim to maximize the throughput by optimizing the threshold

and time slots. When considering the energy efficiency and spectrum efficiency, it is

meaningful to introduce sub-Nyquist sampling to reduce the energy consumption at SUs

in wireless powered CRNs. In this chapter, a new frame structure design is proposed for

wireless powered CRNs with implementing sub-Nyquist sampling at SUs. The CS and

MC techniques are adopted to perform the signal recovery at a remote FC for making

decision on spectrum occupancy. To the best of my knowledge, this is the first piece

of work on the frame structure design employing the sub-Nyquist sampling rates based
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spectrum sensing in wireless powered CRNs.

The summarized contributions of this chapter are illustrated as follows:

• A new frame structure is proposed for wireless powered CRNs, which includes

four time slots: energy harvesting, spectrum sensing, energy harvesting and data

transmission. A WPT model and a spectrum sensing model with sub-Nyquist

sampling are introduced for the considered networks.

• In the WPT model, a new bounded WPT scheme is proposed where each SU

selects a PB nearby with the strongest channel to harvest energy. The closed-form

expressions is detrived for the power outage probability.

• In the spectrum sensing model, sub-Nyquist sampling is performed at each SU to

reduce the energy consumption during spectrum sensing period. Two scenarios

are considered: single SU scenario and multiple SUs scenario. In the single SU

scenario, CS technique is invoked to obtain the original signals. In the multiple

SUs scenario, low-rank MC technique is invoked to obtain the complete matrix at

the FC. When the signal recovery process is performed at the remote FC, energy

harvesting can be performed again at the SUs locally in the third time slot.

• Throughput optimizations of the proposed frame structure are formulated into two

linear constrained problems with the purpose of maximizing the throughput of a

single SU and the whole cooperative networks, respectively. The formulated prob-

lems are solved by using three different methods to obtain the maximal achievable

throughput respectively.

• Simulation results show that the proposed frame structure design outperforms the

traditional one in terms of throughput. It is noted that the multiple SUs scenario

can achieve better outage performance than the single SU scenario.
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6.2 Network Model

6.2.1 Network description

A CRN with energy-constrained SUs is considered. The whole spectrum of interest

can be divided into I channels. A channel is either occupied by a PU or unoccupied.

Meanwhile, there is no overlap between different channels. The number of occupied

channels is assumed to be K, where K ≤ I. Each SU is supposed to perform sensing

on the whole spectrum. It is assumed that all SUs keep quiet as forced by protocols,

e.g., at the media access control layer during spectrum sensing period. Thus the received

signals only contain the signals of active PUs and channel noise. As shown in Fig. 6.1,

for each SU, it is assumed that the sensing and transmission can only be scheduled

by utilizing energy harvested from power beacons (PBs). The spatial topology of all

PBs are modeled using homogeneous poisson point process (PPP) Φp with density λp.

Without loss of generality, a typical SU is considered to be located at the origin in a two-

dimensional plane. Each SU is equipped with a single antenna and has a corresponding

receiver with fixed distance. Each PB is furnished with M antennas and maximal ratio

transmission is employed at PBs to perform WPT to the energy constrained SU. The

energy harvesting channels are assumed to be quasi-static fading channels where the

channel coefficients are constant for each transmission block but vary independently

between different blocks. The spectrum of interest is wideband and each SU performs

wideband spectrum sensing to discover spectrum holes for data transmission. Once the

spectrum holes are identified, SUs can start data transmission. It is assumed that the

time of each frame is T . In the considered networks, single SU and multiple SUs scenarios

are analyzed to achieve different throughput targets.

1. Single SU scenario: in the considered spectrum sensing network with single SU, a

frame period at a single SU includes four time slots as outlined in the blue oval

in Fig. 6.1: 1) energy harvesting time slot, in which each SU harvests the energy

from PBs during the α1T period, with α1 being the fraction of energy harvesting
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in one frame period; 2) spectrum sensing time slot, in which each SU performs sub-

Nyquist sampling by applying the CS technique. The compressed measurements

are then sent to a remote powerful FC during the βT period by using the harvested

energy during the α1T period; 3) energy harvesting time slot for data transmission,

in which each SU harvests the energy from PBs during the α2T period, with α2

being the fraction of energy harvesting in one frame period. As the spectrum is

typically underutilized in practice, signals received at each SU exhibits a sparse

property. In this time slot, the original signals can be recovered based on the

collected measurements. The sensing decisions are sent back to the corresponding

SU at the end of the third time slot; and 4) data transmission slot, in which each

SU performs data transmission during the (1− α1 − β − α2)T period.

2. Multiple SUs scenario: as shown in Fig. 6.1, in the considered networks with

multiple SUs, named as CSS, SUs are spatially randomly distributed. The total

number of participating SUs is J (J ≥ 1) in the CSS networks. Before performing

spectrum sensing, each participating SU compare the energy EH1 harvested during

the first time slot with the energy consumption for spectrum sensing ES = PH1βT

at the first time slot. If EH1 is greater than ES , the SU would continue performing

spectrum sensing. This kind of SUs are named as active SUs. The frame structure

of active SUs is same as that of single SU as described above. If EH1 is less

than ES , the SU would switch to energy harvesting model again and wait for the

decision on spectrum occupancies from the FC before starting data transmission.

Therefore, the framework structure of inactive SUs would only includes two time

slots: (α1 + β + α2)T for energy harvesting and the rest for data transmission. In

the case of CSS, only measurements from active SUs are collected at the FC. The

signals received at SUs exhibit a sparsity property that yields a low-rank matrix of

compressed measurements at the FC. Therefore, the full information of spectrum

occupancies can be obtained by adopting low-rank MC methods.
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Figure 6.1: Proposed frame structure design with energy harvesting, spectrum
sensing and data transmission.

6.2.2 Wireless Power Transfer Model

A bounded power transfer model with a protection zone with a radius d0 is considered,

which means that no PB is allowed to exist in this zone. If PBs are really close to the

SU, the harvested energy would mathematically go to infinity [133]. It is assumed that

the SU is battery-free [127, 134], which means that there is no battery storage energy

for future use and all the harvested energy during energy harvesting time slots is used to

perform spectrum sensing and data transmission in the current frame period. From the

implementation point of view, this rechargeable storage unit can be a supercapacitor or

a short-term/high-efficiency battery to support the switching between energy harvesting

and information transmission [135]. It is worth pointing out that “Power from the

Air” has been listed as one of the ten breakthrough technique by the MIT technology

review. The idea is to enable battery-free devices connect with conventional devices by

backscattering Wi-Fi signals.
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A power transfer scheme is adopted, where the SU selects the PB with the strongest

channel to harvest energy. At each SU, the energy harvested from the selected PB in

the first and the third time slots can be obtained as follows:

EH = max
p∈Φp,‖dp‖≥d0

{
‖hp‖2L (dp)

}
ηPpγpT, (6.1)

where γp is the ratio of the time used for energy harvesting to the total time of a frame,

η is the power conversion efficiency at the SU, Pp is the transmission power of PBs.

Here, hp is a CM×1 vector, whose entries are independent complex Gaussian distributed

with zero mean and unit variance employed to capture the effects of small-scale fading

between PBs and the SU. L (dp) = Ad−ξp is the power-law path-loss exponent. The

path-loss function depends on the distance dp, a frequency dependent constant A, and

an environment/terrain dependent path-loss exponent ξ ≥ 2. All the channel gains are

assumed to be i.i.d.

For the active SUs, based on (6.1), defining EH1 as the energy harvested during the

first time slot of the frame, the maximum sensing power at the SU is given by

PH1 =
EH1

βT
= max

p∈Φp,‖dp‖≥d0

{
‖hp‖2L (dp)

} ηPpα1

β
. (6.2)

As energy can only be stored in the current frame, the total energy for data trans-

mission is the sum of the remaining energy in the second slot and the energy harvested

in the third time slot, which is given by

ET2 = (EH1 − ES) + EH2 , (6.3)

where Es is the energy consumed for spectrum sensing at an SU.
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Based on (6.1) and (6.3), the corresponding power for data transmission is given by

PT2 =

max
p∈Φp,‖dp‖≥d0

{
‖hp‖2L (dp)

}
ηPp (α1 + α2)− Psβ

1− α1 − β − α2
. (6.4)

For those inactive SUs, the harvested energy before data transmission is given by

EH3 = max
p∈Φp,‖dp‖≥d0

{
‖hp‖2L (dp)

}
ηPp(α1 + β + α2)T. (6.5)

Based on (6.5), the maximum sensing power at the SU can be expressed as

PH3 =
EH3

(1− α1 − β − α2)T
. (6.6)

6.2.3 Compressive Spectrum Sensing Model

The considered compressive spectrum sensing model is similar as that introduced in

Section 2.3.4 of Chapter 2. To avoid any confusion, a brief introduction for specific

model used in this chapter is given. In the considered spectrum sensing model, when

J = 1, the considered network becomes a single node scenario. At the jth SU (SUj) in

the considered network, the received signals can be expressed as

rj (t) = hj (t) ∗ s (t) + wj (t) , (6.7)

where s (t) ∈ Cn×1 refers to the transmitted primary signals in time domain with power

σ2
s , and hj (t) is the channel gain between the transmitter and receiver, and wj (t) ∼

CN (0, σ2
nIn) refers to AWGN with zero mean and variance σ2

n.

With CS technique invoked, the compressed measurements collected at SU j can be
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expressed as

xj = ΦjF−1rfj = Θj (hfjsf + wfj) , (6.8)

where Φj ∈ Cp×n (p < n) is the measurement matrix utilized to collect the compressed

measurements xj ∈ Cp×1, and sf and nfj refer to the transmitted signals and the

AWGN received in frequency domain. The compression ratio at SUs is defined as

γ = p
n , (0 ≤ γ ≤ 1). Additionally, Θj = ΦjF−1, where F−1 is IDFT matrix.

After the compressed measurements are collected, SUs will send them to a remote FC

by a error-free reporting channel. In both the single node and multiple nodes scenarios,

FC is proposed to perform signal recovery efficiently. By adopting such a powerful FC,

energy constrained SUs can get rid of signal recovery process and continue harvesting

energy from PSs. At the FC, the compressed measurements X can be expressed as

X = ΘRf = Θ (HSf + Wf ) , (6.9)

where Rf = [rf1, rf2, . . . , rfJ] which is in size of n × J , H = diag (hf1,hf2, . . . ,hfJ)

and Sf , and Wf refer to the matrix constructed by transmitted signals and AWGN.

Additionally, the measurement matrix is a diagonal matrix Θ = diag (Θ1,Θ2, . . . ,ΘJ)

in size of P ×N , with P = p× J and N = n× J . After the compressed measurements

are collected at the FC, signal recovery can be formulated as a convex optimization

problem. As aforementioned, the considered network becomes a single node case when

J = 1. Then the existing algorithm for CS can be utilized to recover the original

signals. In the cooperative networks (J > 1), existing algorithms for low-rank MC can

be implemented to complete the matrix. It has been proved that the exact signal or

matrix can be recovered if the number of available measurements are no less than the

minimum bound. With enough number of measurements, exact transmitted signals can

be obtained at the FC. Then energy detection is adopted to determine the spectrum

occupancies, in which the decision is made by comparing the energy of recovered signal
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with a threshold defined as (2.17) [136]. Once the sensing decisions are determined at

the FC, they would be sent back to the participating SUs in the CSS network by the

reporting channel to start the data transmission period.

6.3 Throughput Analyses of Single User

In this section, the closed form expressions are derived for the power outage probability of

spectrum sensing and data transmission, respectively. With CS technique implemented,

the analyses with the target of maximizing throughput of each SU locally is provided in

this section.

6.3.1 Power Outage Probability Analyses

It is assumed that there exists a threshold transmission power, below which the spectrum

sensing in the second slot or the data transmission in the fourth slot cannot be scheduled.

We introduce power outage probability, i.e., probability that the harvested energy is not

sufficient to perform spectrum sensing or carry out the data transmission at a certain

desired quality-of-service level. In practical scenarios, a constant power for the data

transmission is expected. Therefore, the power threshold Ps can be denoted as the

sensing power in the second slot and Pt as the transmission power of the SU, respectively.

The following theorem provides the exact analyses for the power outage probability at

the single SU scenario.

Theorem 2. The power outage probability of spectrum sensing P outs in the second time

slot and the power outage probability of data transmission P outt in the fourth time slot

can be expressed in closed-form as follows:

P outζ = exp

−πλpδ
µδζ

M−1∑
m=0

Γ
(
m+ δ, µζd

ξ
0

)
m!

 , (6.10)
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where ζ ∈ (s, t), µs = βPs
ηPpAα1

, µt = Pt(1−α1−β−α2)+Psβ
ηPpA(α1+α2) , δ = 2/ξ, and Γ(·, ·) is the upper

incomplete Gamma function.

Proof. Based on (6.2), the power outage probability of spectrum sensing can be expressed

as

P outs = Pr {PH1 ≤ Ps}

= EΦp

 ∏
p∈Φp,‖dp‖≥d0

Pr
{
‖hp‖2 ≤ dξpµs

}
= EΦp

 ∏
p∈Φp,‖dp‖≥d0

F‖hp‖2
(
dξpµs

), (6.11)

where F‖hp‖2 is the cumulative density function (CDF) of ‖hp‖2 and is given by

F‖hp‖2 (x) = 1− e−x
(
M−1∑
m=0

xm

m!

)
. (6.12)

Applying the moment generating function, (6.11) can be rewritten as

P outs = exp

−λp ∫
R2

(
1− F‖hp‖2

(
dξpµs

))
ddp

 . (6.13)

Then changing to polar coordinates and substituting (6.12) into (6.13), we obtain

P outs = exp

−2πλp

M−1∑
m=0

µms
∫∞
d0
dp
mξ+1e−µsd

ξ
pddp

m!

 . (6.14)

Applying [137, Eq. (3.381.9)] to calculate the integral, (6.10) can be obtained.

Similarly, based on (6.4), the power outage probability of data transmission P outt can

be expressed as follows:

P outt = Pr {PT2 ≤ Pt} = Pr

{
max

p∈Φp,‖dp‖≥d0

{
‖hp‖2dp−ξ

}
≤ µt

}
. (6.15)
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Following the similar procedure as (6.14) and applying µt → µs, P
out
t in (6.10) is

obtained.

The proof is completed.

6.3.2 Compressive Spectrum Sensing Analyses

In the scenario of CS based single SU with WPT, the original signals can be obtained

by solving the l1 norm optimization problem as follows:

min ‖ŝfj‖1,

subject to ‖Θj · hfjŝfj − xj‖22 ≤ ε, (6.16)

where ŝfj refers to the reconstructed signal, and ε is the error bound related to the noise

level. This optimization problem can be solved by many existing algorithms for CS, such

as by adopting many existing algorithms such as CoSaMP [43], etc.

The performance metric of spectrum sensing at single SU can be measured by Pd

and Pf . For a target probability of detection, P̄d, with which the PUs are sufficiently

protected, the threshold can be determined by (2.17) accordingly, with the number of

samples is n. As a result, Pf at a single SU can be derived as follows:

Pf =Q

(
Q−1

(
P̄d
)√σ2

s + σ2
n

σ2
n

+

√
n

2

σ2
s

σ2
n

)
. (6.17)

Assuming the energy cost per sample es in spectrum sensing is fixed, the energy

consumption of spectrum sensing is proportional to the number of collected samples as

given by

n =
βTPs
es

. (6.18)

In fact, the number of collected samples n is determined by the sensing time slot. In this
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case, the energy consumed by reporting collected measurements and receiving decision

results between SUs to the FC is ignored. Substituting (6.18) into (6.17), we obtain

Pf =

(
1−Q

(
Q−1

(
P̄d
)(

1 +
σ2
s

σ2
n

)
+

√
βTPs
2es

σ2
s

σ2
n

))
. (6.19)

6.3.3 Throughput Analyses

By considering the power outage probability, the throughput at the single SU in the

CRNs can be expressed as

τ =
(
1− P outs

)
×
(
1− P outt

)
× (1− Pf )× (1− α1 − β − α2) τt, (6.20)

where τt = log2

(
1 + Pt

N0

)
is the throughput for the data transmission slot, and N0 refers

to the AWGN level in the data transmission channel. Here, the data transmission process

is simplified without consideration the fading, which means the throughput τt is only

determined by the transmit SNR.

When implementing CS technique to achieve sub-Nyquist sampling rate at an SU,

It has been proven that the exact signal recovery can be guaranteed if the number of

collected measurements satisfies p ≥ c ·K log (n/K), where c is some constant depending

on each instance [138]. If the signal is recovered successfully by Λ samples, the achieved

Pf would be the same as that no CS technique is implemented with n samples. Therefore,

the necessary sensing time slot to achieve the same Pf can be reduced to γβ with CS

implemented. Replacing P outs , P outt and Pf in (6.20) by (6.10) and (6.19) respectively,
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the full expression of the throughput with CS implemented can be expressed as follows:

τcs =
∏

ζ={s,t}

1− exp

− πλpδ(
µcsζ

)δ M−1∑
m=0

Γ
(
m+ δ, µcsζ d

ξ
0

)
m!




×

(
1−Q

(
Q−1

(
P̄d
)(

1 +
σ2
s

σ2

)
+

√
βTPs
2es

σ2
s

σ2

))

× (1− α1 − γβ − α2)× log2

(
1 +

Pt
N0

)
. (6.21)

If there is no CS technique implemented at SUs, the time slot fraction for spectrum

sensing follows the condition that 0 ≤ β ≤ 1. When the CS technique is implemented

at SUs, the time slot for spectrum sensing follows the condition that cK log (n/K) ≤
γβTPs
es
≤ n. By combining these two conditions, the constraint for β becomes es(cK log(n/K))

γTPs
≤

β ≤ 1. With the implementation of CS, the β in (6.10) is replaced by γβ.

Furthermore, the throughput can be maximized by solving the following problem:

(P0) : max
α1,β,α2,Pt

τcs, (6.22)

subject to C1 : 0 ≤ α1 ≤ 1,

C2 :
es (cK log (n/K))

γTPs
≤ β ≤ 1,

C3 : α2,min ≤ α2 ≤ 1,

C4 : 0 ≤ 1− α1 − γβ − α2 ≤ 1,

C5 : Pt,min ≤ Pt ≤ Pt,max,

where α2,min refers to the minimum time slot fraction for signal recovery at the FC and

data transmission between the SU and FC. Pt,min and Pt,max refer to the allowed mini-

mum and maximum power levels for data transmission period. It is noticed that (6.22)

is a constrained nonlinear optimization problem and the objective function is very com-

plex. However, the constraints are linear, which motives us to solve the optimization

problem by the following three methods:
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Algorithm 6 Grid Search for Solving (6.22)

1: Initialization: ∆1, ∆2, ∆3, ∆4, and τtemp = ∅.
2: for all α1 ∈ (0 : ∆1 : 1), β ∈

(
es(cK log(n/K))

γTPs
: ∆2 : 1

)
, α2 ∈ (α2,min : ∆3 : 1), Pt ∈

(Pt,min : ∆4 : Pt,max) do
3: while 0 ≤ 1− α1 − γβ − α2 ≤ 1 do
4: τtemp = [τtemp, τcs] where τcs is expressed as (6.21).
5: end while
6: end for
7: return τmax = τtemp.

1. Grid search: The grid search algorithm for solving (6.22) can be described in

Algorithm 6. The grid search algorithm can find out the global optimal value

if the step size ∆i (i = 1, 2, 3, 4) for α1, β, α2, Pt are small enough. However,

the computational complexity would greatly increase if the step is set to be small

enough.

2. fmincon: fmincon is a toolbox in MATLAB which is efficient but it may return a

local optimal value.

3. Random sampling : A set {v1, v2, · · · , vZ} that satisfies the conditions in (6.22)

is generated randomly, where vi = (α1, β, α2, Pt) (i ∈ {1, 2, · · · ,Z}) is a tuple of

generated random samples, and Z is the number of generated tuples. The accuracy

of this method depends on number of tuples Z generated for calculation. This

method is efficient for solving (6.22) as it does not rely on advanced optimization

techniques and the method of generating (α1, β, α2, Pt) is efficient.

6.4 Throughput Analyses of Multiple Cooperative Users

In this section, the closed-form expressions for the power outage probability of data

transmission are deprived for both the active and inactive SUs, respectively. After con-

sidering the throughput optimization of a single SU locally in Section III, we optimize

the throughput of the CSS networks with multiple SUs including the active and inactive

ones with implementing MC technique.
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6.4.1 Power Outage Probability Analyses

In this subsection, we provide power outage probability analyses for spectrum sensing

and data transmission for both active and inactive SUs. In the considered CSS networks,

the number of active participating SUs is J1 and the number of inactive SUs is J2.

6.4.1.1 Power Outage Probability of Spectrum Sensing

Note that the power outage probability of sensing is always zero. This behavior can be

explained as follows: 1) For active SUs, it is assumed that the harvested energy from the

first time slot is enough for them to take measurements for spectrum sensing. Therefore,

the power outage probability of spectrum sensing for active SUs are zero; and 2) For

the inactive SUs, they will not perform spectrum sensing and only transmit data. As a

consequence, there is no spectrum sensing outage.

6.4.1.2 Power Outage Probability of Data Transmission

For those active SUs, the power outage probability of data transmission is same that

of the single SU scenario. For those inactive SUs, as all the time slots before data

transmission are used for energy harvesting, the power outage probability is different

as that of active SUs. The following theorem provides the exact analyses for the power

outage probability of data transmission for both active and inactive SUs in CSS networks.

Theorem 3. The power outage probability of data transmission at the active and inactive

SUs in the fourth time slot can be expressed in closed-form as follows:

P outψ = exp

−πλpδ
µδψ

M−1∑
m=0

Γ
(
m+ δ, µψd

ξ
0

)
m!

 (6.23)

where ψ ∈ (a, i), µa = Pt(1−α1−β−α2)+Psβ
ηPpA(α1+α2) , and µi = Pt(1−α1−β−α2)

ηPpA(α1+β+α2) .
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Proof. Based on (6.6), the power outage probability of data transmission at the active

SUs is the same as P outt as given in (6.10) by replacing µa → µζ .

Similarly, based on (6.6), the power outage probability of data transmission at the

inactive SUs can be expressed as follows:

P outi = Pr {PH3 < Pt} = Pr

{
max

p∈Φp,‖dp‖≥d0

{
‖hp‖2dp−ξ

}
< µi

}
. (6.24)

Following the similar procedure as (6.14) and applying µi → µs, P
out
i in (6.23) can be

obtained.

The proof is completed.

6.4.2 Matrix Completion Based Cooperative Spectrum Sensing Anal-

yses

As the spectrum is normally underutilized in practice, the transmitted signals exhibit a

sparse property in frequency domain, which can be transformed into a low-rank property

of the matrix X at the FC. When only the J1 active SUs send compressed samples to

the FC, the matrix with collected samples is incomplete at the FC. The exact matrix

can be obtained by solving the following problem:

min
∥∥∥Ŝf

∥∥∥
∗
,

subject to
∥∥∥Θ · vec

(
HŜf

)
− vec (X)

∥∥∥2

2
≤ ε.

(6.25)

where Ŝf refers to the reconstructed matrix, and ε = [ε1, . . . , εJ ]. This problem can be

solved by amount of existing MC solvers.

Once the exact matrix is recovered, energy detection can be used to determine the

spectrum occupancy. In the CSS networks, as all the participating SUs send the col-

lected samples to the FC, the data fusion is considered. Suppose the channel coefficients

from the PUs to each participating SUs are known. When the channel coefficients are
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unknown, the weighting factor associated with the jth SU is set to be gj = 1√
J

. By

using the maximal ratio combining, probability of false alarm of the CSS networks Qf

becomes

Qf = Q

(
Q−1

(
P̄d
)√

1 +
σ2
s

Jσ2
n

H1 +

√
n

2J

σ2
s

σ2
n

H1

)
. (6.26)

where H1 =
J∑
j=1
|hfj|2 refers to the channel coefficients for all the participating SUs in

the considered CSS networks. In order to simplify the case, all coefficients in hfj as set

to be one. Consequently, Qf can be expressed as

Qf = Q

(
Q−1

(
P̄d
)√

1 +
σ2
s

σ2
+

√
nJ

2

σ2
s

σ2

)
. (6.27)

6.4.3 Throughput Analyses

By applying the MC technique at the FC, β in (6.23) should be replaced by γβ. Addi-

tionally, the throughput of considered CSS networks with multiple SUs can be expressed

as

τmc =

J∏
j=1

(
1− P outψ (j)

)
× (1−Qf )× (1− α1 − γβ − α2) τt, (6.28)

where γ is defined as the compression ratio at active SUs. ψ = a refers to the J1 number

of active SUs and ψ = i refers to the rest of inactive SUs in the considered networks. If

no MC technique is implemented at the FC and each SU is supposed to take samples at

Nyquist rate, all the participating SUs will send samples to the FC. Then the throughput

of the considered networks can be given by replacing P outψ (j) in (6.28) with P outa (j) and

γ = 1. The constraints for the multiple nodes case are the same as that for the single

node case except the condition for β. In the multiple nodes case, the condition for β

follows cµ2νKlog6ν ≤ γβTPsJ1
es

≤ nJ . Combining the condition for β in case of no MC

implemented, β should satisfy
es(cµ2νKlog6ν)

γTPsJ1
≤ β ≤ 1.
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The throughput can be maximized by solving the following problem:

(P1) : max
α1,β,α2,Pt

τmc , (6.29)

subject to C1, C3, C4 and C5,

C6 :
es
(
cµ2νklog6ν

)
ρTPsJ1

≤ β ≤ 1,

where cµ2νklog6ν is the lower bound of the number of observed measurements at the FC

to guarantee the exact matrix recovery [139]. Here, ν = max (n, J) and µ = O
(√

log ν
)
.

It is noticed that the structure of (P1) is similar as (P0). Thus, the similar methods can

be utilized to obtain the optimal throughput for the CSS network.

6.5 Numerical Results

In the simulation, the frame period is set to be T = 1 s, the transmission power of PBs

to be Pp = 43 dBm, the number of antennas of PB to be M = 32, the carrier frequency

for power transfer to be 900 MHz, and the energy conversion efficiency of WPT to be

η = 0.8. Additionally, it is assumed that the target probability of detection P̄d is 90%.

In this chapter, d0 ≥ 1 m, in order to make sure the path loss of WPT is equal or greater

than one.

6.5.1 Numerical Results on Optimizing Throughput of Single User

In this subsection, simulation results of the optimized throughput of single SU are demon-

strated after the derived power outage probability in (6.10) and Pf in (6.19) are verified

by Monte Carlo simulations.

Fig. 6.2 plots the power outage probability of spectrum sensing versus density of

PBs with different power threshold Ps. The black solid and dash curves are used to

represent the analytical results with d0 = 1 m and d0 = 1.5 m, respectively, which
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Figure 6.2: Power outage probability of spectrum sensing versus density of
PBs with M = 32, Pp = 43 dBm, α1 = 0.25, α2 = 0.2, and
β = 0.25.

are both obtained from (6.10). Monte Carlo simulations are marked as “•” to verify

the derivation. The figure shows the precise agreement between the simulation and

analytical curves. One can be observed is that as density of PBs increases, the power

outage probability dramatically decreases. This is because the multiuser diversity gain

is improved with increasing number of PBs when charging with WPT. The figure also

demonstrates that the outage occurs more frequently as the power threshold Ps and the

radius of protection zone d0 increase.

Fig. 6.3 plots the probability of false alarm Pf versus SNR in sensing channels with

different compression ratio γ. It is observed that Pf decreases with higher SNR, which

would improve the throughput of secondary network. The black solid curve is used to

represent the analytical result which is obtained from (6.19) with enough protection

to PUs being provided. Monte Carlo simulations with compression ratio γ = 100%

are marked as “◦” to verify the derivation, which represents the scenario without CS

technique implemented. The figure shows precise agreement between the simulation and

analytical curves. When γ is reduced to 50%, it is noticed that Pf is still well matched

with the analytical result, which means the performance of spectrum sensing would not
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Figure 6.3: Probability of false alarm versus SNR in sensing channels with
different compression ratio γ, P̄d = 90%, and sparsity level =
12.5%.

be degraded when only 50% of the samples are collected at an SU. When γ is further

reduced to 25%, Pf is increased, which means the signal recovery is not exact any more.

As a result, throughput of the secondary network would be degraded correspondingly.

Actually, the lowest compression ratio for successful signal recovery is dependent on the

sparsity levels of received signals and the available prior information. This is out of the

scope of this chapter and would not be discussed further.

Fig. 6.4 plots the achievable throughput τcs versus the lower bound of time allocated

to the third slot α2. Here α2 is reserved for signal recovery at the FC and data trans-

mission between the SU and the FC. In this figure, several observations are drawn as

follows: 1) The maximal throughput achieved by grid search method is slight higher

than that of fmincon method as fmincon relies on the initial input and may return a

local optimal value. However, the accuracy of grid search method is dependent on the

step sizes; 2) The random sampling method achieves lower throughput than grid search

and fmincon methods, which demonstrates the benefits of the presented grid search and

fmincon methods. When the generated sets increase for random sampling, the achieved

maximal throughput get closer to the optimal but the computational complexity is much
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Figure 6.4: Throughput of single SU τcs versus lower bound of the third time
slot α2,min, SNR = −10 dB, and compression ratio γ = 100%.

increase; 3) It is seen that the optimal value of time assigned to the third slot α2 always

equals to the lower bound α2,min. This gives a sign that the throughput can be improved

if the time slot for the signal recovery at the FC and data transmission between SUs

and the FC is reduced. In other words, the energy harvesting should be done mainly in

the first time slot α1 to reduce the power outage probability in the following spectrum

sensing slot if the signal recovery and data transmission between the SU and FC can be

promised.

Fig. 6.5 plots the achieved optimal throughput τcs versus lower bound α2 and com-

pression ratio γ when solving the problem in (6.22). It shows that the achieved maximal

throughput increases with decreasing γ and increasing α2,min. This behavior can be

explained as follows: as γ decreases, the number of samples to be collected for spectrum

sensing at an SU is reduced as the signal in original size of N × 1 can be recovered from

less number of Λ measurements by utilizing CS technique. When the time slot assigned

for spectrum sensing is reduced, the energy consumption for spectrum sensing is reduced.

As a result, the time which can be assigned for data transmission is increased. Therefore,

the throughput of the secondary network is improved. By optimizing the transmission



Chapter 6. Throughput Analyses of Wireless Powered Cognitive Radio 142

0.60.4

α
2,min

0.201

0.5
γ

0.1

0.2

0.3

0.5

0.6

0.4

0

Th
ro

ug
hp

ut
 (b

it/
s/

H
z)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 6.5: Optimized throughput of single SU τcs versus lower bound of the
third time slot α2,min and compression ratio γ, and SNR = −10
dB in sensing channels.

power Pt, the energy harvested in the current frame period would be fully utilized and

the maximal throughput can be achieved accordingly. It should be noted that when the

compression ratio γ is set to 100% and the lower bound of the third time slot α2,min is

zero, the achieved throughput can be regarded as that of the traditional frame structure

design without considering sub-Nyquist sampling. The case when γ is set to 100% can

be regarded as a benchmark for the performance metric.

6.5.2 Numerical Results on Optimizing Throughput of Multiple Coop-

erative Users

In the case of optimizing the throughput of the CSS networks, the total number of

participating SUs is set be to J = 50, including both the active and inactive SUs.

Comparing the format of (P1) and (P0), it can be observed that both of them are linear

constrained. Therefore, similar as (P0), the grid search method can be applied to obtain

the optimal throughput but with non-negligible complexity, especially for the case of

optimizing throughput of the whole cooperative network. The fmincon method can be
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adopted to obtain the sub-optimal throughput efficiently. In the following simulations,

the fmincon method is utilized to solve the optimization problem (P1). Additionally, as

aforementioned, many algorithms have been proposed for the low-rank MC based CSS.

With P̄d = 90%, the detection performance with different compression ratios is presented

in the work represented in Chapter 3 of this thesis, which would not be demonstrated here

again to reduce redundancy. In the following simulations, how the achieved throughput

is influenced by parameters, such as the number of active SUs J1, compression ratio γ

and the lower bound of the third time slot α2,min, would be demonstrated.

Fig. 6.6 plots the power outage probability Pout versus density of PBs with different

power threshold Ps. In this case, the power outage probability here is for the whole

system, which can be calculated as Pout = 1 − (1− P sout) ×
(
1− P tout

)
. Both the single

SU scenario and multiple SUs scenario are illustrated in the figure. It can be observed

that as density of PBs increases, the power outage probability dramatically decreases,

which is caused by that the multiuser diversity gain is improved with increasing number

of PBs when charging with WPT. It can be also observed that the Pout of multiple SUs

scenario is lower than that of single SU scenario. This is because the power outage

probability of spectrum sensing is always zero in multiple SUs scenario, which in turn

lower the power outage probability of the whole system. For the multiple SUs scenario,

the Pout of the active SUs, inactive SUs and the average Pout of the CSS networks are

all presented in the figure. It is noted the averaged Pout falls between the Pout of active

SUs and inactive SUs, which is as expected.

Fig. 6.7 plots the throughput averaged on per SU τmc with different number of active

SUs J1 and different compression ratios γ. In this case, it is assumed that the exact

MC can be guaranteed when the number of active SUs J1 is in the range of 10 to

50 with compression ratio γ changes from 20% to 100%. It shows that the average

throughput achieves the best performance when the number of active SUs J1 is set to

be the minimal number in comparison with that of case J1 = J . This benefits from the

non-active SUs, which can save energy for spectrum sensing and harvest more energy
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for data transmission. With compression ratio γ decreasing from 75% to 20%, the

achieved optimal throughput is increased as the necessary time slot for spectrum sensing

is reduced.
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−10 dB in sensing channels.

Fig. 6.8 plots the achieved maximum throughput averaged on per SU versus different

compression ratio γ and lower bound for the third time slot α2,min. In this case, the

number of active SUs is J1 = 30. The achieved throughput shown in Fig. 6.8 is based

on the condition that the exact matrix recovery can be guaranteed with the given com-

pression ratio. As shown in the figure, the maximum achieved throughput increases with

decreasing γ and α2,min. The minimal compression ratio guaranteing the exact matrix

recovery is nondeterministic, which is dependent on the rank order of the matrix to be

recovered. If the rank order J1 is fixed, the larger network size J , the lower minimal

compression ratio which can guarantee the exact matrix recovery.

6.6 Summary

In this chapter, a wireless powered CRNs has been considered. In the considered net-

works, while protecting the PUs, a new frame structure was proposed, which includes

energy harvesting, spectrum sensing, energy harvesting and data transmission. In the

proposed frame structure, closed-form expressions in terms of power outage probability
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was derived for the proposed WPT scheme. Additionally, sub-Nyquist sampling was

performed at wireless powered SUs in CRNs to reduce the energy consumption during

spectrum sensing, by invoking CS and MC techniques. By optimizing the four time slots,

throughput of a single SU and the whole cooperative networks were maximized, respec-

tively. Simulation results showed that the throughput can be improved by the proposed

new frame structure. It can be further concluded that by carefully tuning the parameters

for different time slots and transmission power, WPT can be used along with CS and

MC to provide a high quality of throughput performance for CRNs, with significantly

energy computation reduction at energy-constrained SUs.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis presented research work on the promising applications of compressive sens-

ing (CS) technique in wideband spectrum sensing, which is regarded as one of the most

challenging tasks in cognitive radio networks (CRNs). It has been demonstrated that

CS is capable of enabling sub-Nyquist sampling at secondary users (SUs), by exploiting

the natural sparsity of spectral signals. By invoking CS technique, the signal sampling

costs at SUs are significantly reduced, which is of great significance in CRNs as the

SUs are normally energy-constrained devices. During my Ph.D research, the fundamen-

tal research has been carried out on the design of novel compressive spectrum sensing

algorithms, with particular efforts to improve energy efficiency, robustness and secu-

rity of CRNs. Moreover, the performance of wireless powered CRNs with CS has been

investigated with particular emphasis on throughput optimization.

In Chapter 3, through proposing new channel division schemes for single SU and

multiple cooperative SUs scenarios, the amount of both data sensing at SUs and data

transmission among the whole CRNs were significantly reduced. Additionally, a denois-

ing algorithm was proposed to improve the robustness to channel noise. Inspired by

147
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the TV white space (TVWS) pilots conducted in the UK, the proposed algorithms were

tested on both the simulated and real-world signals over TVWS. Furthermore, numerical

results demonstrated that: i) the computational complexity of signal recovery process

was significantly reduced, and the robustness of the proposed algorithm to channel noise

was dramatically improved.

In Chapter 4, a novel compressive spectrum sensing algorithm was proposed to

improve the recovery performance, in which geolocation database was invoked for provid-

ing prior information over TVWS. By doing so, original signals were able to be recovered

with requiring fewer measurements, which lowered the computational complexity of sig-

nal recovery compared to that without prior information. Simulations have been done on

both the real-world and the simulated data for evaluating performance of the proposed

algorithm. It is worth pointing out that SUs are capable of estimating the sparsity level

efficiently by utilizing the geolocation database, which makes the proposed algorithm be

more adaptive to dynamic spectrum variation. Consequently, the unnecessary energy

consumption at SUs can be eliminated.

Aiming at enhancing the security in CRNs, a malicious user detection framework

was proposed in Chapter 5, by invoking low-rank matrix completion (MC) technique.

The channels corrupted by malicious users were removed during the process of MC.

Additionally, in order to ensure the malicious user detection process be independent

on the prior information of networks and spectrum diversity, a rank order estimation

algorithm and a malicious user number estimation strategy were proposed. Furthermore,

the proposed framework was tested on both the simulated and real-world signals over

TVWS. It was demonstrated that the proposed framework was capable of achieving good

detection performance, with limited number of active SUs or low costs of data acquisition

at each individual SU.

Finally, in Chapter 6, the throughput of wireless powered CRNs was analyzed with

invoking of CS and MC techniques. Besides invoking CS and MC techniques to reduce

energy consumption, each SU is supposed to harvest energy through wireless power
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transfer to further power itself. Additionally, the signal recovery process was proposed

to be conducted at a powerful data fusion center to relax SUs. Both the throughput

of a single SU and the whole network can be optimized by opportunistically scheduling

the time slots assigned for energy harvesting, spectrum sensing and data transmission.

Numerical results demonstrated that CS and MC techniques are capable of offering a

higher throughput performance for wireless powered CRNs.

In a summary, in this thesis, novel compressive spectrum sensing designs were pro-

posed with particular emphasis on the robustness, computational complexity, security

and throughput optimization in CRNs. Amount of simulations have been done on the

real-world signals over TVWS, which demonstrated that the effectiveness of applying

CS in wideband spectrum sensing, for improving the spectrum efficiency and energy

efficiency of CRNs.

7.2 Future Work

The following three research issues have been identified and are to be addressed in future

work, for the applications and implementations of CS in CRNs.

7.2.1 Implementable Measurement Matrices Design

Before invoking CS technique to practical scenario, the implementable measurement

matrices should be designed carefully. As mentioned in Section 2.1.2 of Chapter 2,

the existing structured measurement matrices have their own drawbacks, which limit

their applications in reality. Moreover, the current structured measurement matrices are

designed for the implementation of CS in a general case. For the application of CS in

CRNs, more specific measurement matrices should be designed, with particular consid-

erations on the universality, recovery complexity, recovery speed, minimum number of

measurements required exact recovery, and the implementation costs. Some available
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information, such as geolocation database for TVWS, might be utilized to construct a

structured measurement matrix for CRNs particularly, with affordable costs and accept-

able performance.

7.2.2 Performance Limitations under Practical Constraints

To date, most of work on CS based CRNs were based on ideal operating conditions.

However, in practice, there may occur various imperfections, such as noise uncertainty,

channel uncertainty, dynamic spectrum occupancy, and transceiver hardware imperfec-

tions like analog-to-digital converter errors, synchronization errors, etc. Taking the cen-

tralized compressive collaborative approach as an example, it considers ideal reporting

channels, which is not the case in practice. These imperfections may lead to significant

performance degradation of a compressive spectrum sensing algorithm in the implemen-

tation of CRNs. Therefore, it is a big challenge to further investigate the compressive

spectrum sensing in the presence of practical imperfections, and to develop a common

framework to combat their aggregate effects in a CS based CRNs.

7.2.3 Generalized Hardware Platform for Compressive Spectrum Sens-

ing

For the existing hardware implementation of CS, the theoretic algorithm is specifically

designed based on available hardware devices. However, it is difficult or even impossible

to extend current hardware architecture for implementing other algorithms on compres-

sive spectrum sensing. Meanwhile, it has been noted that there is a bright future for

the application of CS in networks with energy-constrained devices, such as CRNs. Thus,

a generalized hardware platform or test-bed is quite desired for conducting the real

implementations of CS. Therefore, a more generalized hardware platform for compres-

sive spectrum sensing for CRNs is strongly desired, in which the different functional

components of compressive spectrum sensing can be easily extended, in an effort to test
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the various algorithms with different types of measurement matrices and signal recovery

algorithms.
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Wilkinson’s Method

Assuming Ik

(
k = 1, 2, . . . , K̃

)
is a log-normal random variable, then Mk = 10log10Ik

can be modeled as a Gaussian random variable and M = 10log10

(∑K̃
k=1 10

Mk
10

)
. It is

assumed that eΛ1 + eΛ2 + · · · + eΛK̃ = eZ = 10M , Z = ρM , and ρ = 1
10 ln 10 = 0.2302,

the mean and standard deviation of parameter M could be calculated by introducing

two parameters µ1 and µ2, which are given as follows:
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where mΛi and σΛi are the mean and standard deviation of Λi, and rij are the correlation

coefficients of Λi and Λj . Consequently, the mean and standard deviation of M can be

calculated as
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, (A.3)
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