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Abstract 

Ectopic lymphoid neogenesis often occurs in the target tissues of patients with chronic 

rheumatic autoimmune diseases such as: rheumatoid arthritis, Sjögren syndrome and 

other connective tissue disorders, including systemic lupus erythematosus and 

myositis. However, the mechanisms of ectopic lymphoid-like structure (ELS) formation 

and function are not entirely understood. For example, it is unclear whether ELSs 

indicate distinct disease phenotypes or whether they are evolutionary manifestations of 

chronic inflammation. Also unclear is why ELSs form in some patients but not in others. 

Nonetheless, ELSs frequently display functional features of ectopic germinal centres and 

can actively contribute to the maintenance of autoimmunity through the production of 

disease-specific autoantibodies; furthermore, they seem to influence disease severity 



and response to both synthetic and biologic DMARDs. In this Review, we discuss current 

knowledge and gaps in understanding of ELS formation and function including their 

prevalence in the above rheumatic autoimmune diseases; the mechanisms underlying 

their formation, maintenance and function, including positive and negative regulatory 

pathways; their functional relevance in the perpetuation of autoimmunity; their 

relationship with disease phenotypes, clinical outcomes and response to treatment; and 

the potential for specific targeting of ELSs through novel therapeutic modalities.  

[Main text] 

In order to fulfil the complexity of functions generally referred as immunological 

responses (including definition of B and T cell receptor repertoire diversity, mounting 

of protective antigen-specific immunity against pathogens, generation and persistency 

of immunological memory, maintenance of central and peripheral immunological 

tolerance, etc.) lymphoid tissues have evolutionally differentiated into highly organized 

structures, which can be broadly classified into primary and secondary lymphoid 

organs. Primary lymphoid organs comprise the bone marrow and the thymus and are 

primarily responsible for the selection of naive B and T lymphocytes bearing highly 

diverse B and T cell receptors in their germline sequences. Secondary lymphoid organs 

(lymph nodes, spleen, mucosal-associated lymphoid tissues such as Peyer’s patches) 

regulate the recirculation of leukocytes and are critical for mounting high-affinity 

adaptive immune responses upon antigenic challenge. 

Tertiary lymphoid organs are defined as clusters of lymphomonocytic cells that form at 

sites of chronic inflammation in peripheral, non-lymphoid organs — hence they are also 

known as ectopic lymphoid structures (ELSs) — and they acquire phenotypic features 

that are characteristic of secondary lymphoid organs. The structures show segregation 



of T cells and B cells into discrete areas (that is, B-cell follicles surrounded by T cell-rich 

areas). Furthermore, vascular structures with the appearance of high endothelial 

venules (HEVs) — specialized postcapillary venous swellings that enable lymphocytes 

expressing L-selectin to enter from the blood — develop, and networks of stromal-

derived follicular dendritic cells (FDCs) differentiate; these FDCs express the long 

isoform of complement receptor type 2 (Cr2, also known as CD21), which contributes to 

the presentation of immune complexes necessary to generate activated B cells.  

Plasmablasts and plasma cells subsequently accumulate around the follicles of T cells 

and B cells (Figure 1). In addition, a common feature of ELSs is the de novo ectopic 

expression at sites of inflammation of a discrete set of genes encoding proteins such as 

lymphoid chemokines and lymphotoxins that are implicated in the development of 

secondary lymphoid organs. A considerable proportion of ELSs also display functional 

features of ectopic germinal centres, such as the expression of the enzyme single-

stranded DNA cytosine deaminas (also known as activation-induced cytidine 

deaminase) and evidence of both in situ B cell affinity maturation and clonal selection.  

The formation of ELSs is not exclusive to rheumatic diseases, and has been 

described in other organ-specific autoimmune conditions, during solid tumorigenesis, in 

chronic infections and in graft rejection, as reviewed elsewhere1. However, in the 

context of this Review, we focus solely on rheumatic autoimmune diseases. Because 

ELSs most frequently develop in target organs that are sites of chronic, antigen-driven 

inflammation, most of the information presented herein derives from extensive studies 

of the synovium of patients with rheumatoid arthritis (RA) and salivary glands of 

patients with Sjögren syndrome; data regarding the formation of ELSs in the kidneys of 

patients with systemic lupus erythematosus (SLE) and in the muscle of patients with 



dermatomyositis or polymyositis are more limited. We discuss current knowledge, as 

well as gaps in our understanding, of ELSs, including their prevalence; the mechanisms 

underlying their formation, maintenance and function, including positive and negative 

regulatory pathways; their functional relevance in the perpetuation of autoimmunity; 

and their relationship with disease phenotypes, clinical outcomes and response to 

treatment. Finally, the potential for specific targeting of ELSs through novel therapeutic 

modalities is outlined. 

 

[H1] ELS prevalence and tissue localization  

 

Although ELSs form in virtually all organ-specific chronic autoimmune diseases, their 

prevalence ranges from almost 100% in patients with autoimmune thyroiditis to a small 

minority of patients with myositis 1. The reason underlying such variability is presently 

unknown, although genetic predisposition, environmental factors and 

immunosuppressive treatment all probably influence the development and 

maintenance of ELSs at sites of inflammation.  

[H2] Rheumatoid arthritis 

In RA, the activation of resident synovial cells and the synovial microvasculature, 

together with the infiltration of immune cells from the peripheral pool, leads to chronic 

proliferative synovitis  with the formation of the so-called pannus, which directly 

damages cartilage and subchondral bone2. Advances in our understanding of the 

complex heterogeneity of the histopathology and the underlying molecular signatures 

have enabled the definition of at least three microstructural levels of organization 



(pathotypes) of synovial tissue in RA: follicular synovitis with the presence of 

aggregates of B cells and T cells that form ELSs (lymphoid pathotype); a diffuse pattern 

of infiltration with prevalent monocyte–macrophage infiltration (myeloid pathotype); 

and a pauci-immune synovitis with scarce or no immune cell infiltration (fibroid 

pathotype)3-8. Although ELSs primarily form within the sublining of the synovial tissue 

in patients with RA, they can also be detected at extra-articular sites (including the lung 

and bone marrow)9, 10 . ELSs in RA are characterized by the formation, by T cells and B 

cells, of discrete perivascular clusters, which can also be graded (G1, G2 or G3) 

according to the aggregate radial cell count (the number of cell layers surrounding a 

central blood vessel) 4, 6, 11-14. 

 It is now generally accepted that ELSs form in approximately 40% of patients 

with RA , but this prevalence varies considerably 4, 6, 8, 11-14 depending on the site of the 

biopsy, the sampling technique (that is, joint replacement versus arthroscopy versus 

ultrasound-guided biopsy), the stage of the disease, the treatments received by an 

individual patient, and the staining and scoring procedure15.  

 

[H2] Sjögren syndrome  

Most studies have reported an estimated prevalence of ELSs of 30–40% for Sjögren 

syndrome when considering patients who present with a focus score >1 in labial 

salivary gland biopsy samples16-21, with similar results obtained from parotid gland 

tissue samples22. ELSs in the salivary glands of patients with Sjögren syndrome form 

around central ductal structures known as intercalated ducts, which suggests an 

important role for antigens exposed by ductal epithelial cells in driving the disease. In 



an analysis of almost 500 periductal foci, we demonstrated that approximately 20% of 

lymphoid aggregates develop a clear segregation of T cells and B cells in discrete areas 

as well as networks of FDCs17 that are populated by germinal centre B cells and 

surrounded by perifollicular plasmablasts and plasma cells (supporting functional 

germinal centre responses)18, 23, as discussed later.  

 

[H2] Systemic lupus erythematosus  

In one study of patients with SLE, well-defined aggregates of B cells and T cells were 

observed in the tubulointerstitium in 46% of kidney specimens from a cohort of 68 

individuals with lupus nephritis24. Fully formed germinal centres with associated FDC 

networks occurred less frequently and were observed in only 6% of patients24. In a 

second study, aggregates of B cells and T cells were found in approximately 60% of 

biopsy samples from Chinese individuals with lupus nephritis, but no individuals with 

CD21+ FDCs could be identified, suggesting that fully organised renal germinal centres 

are rare in SLE25. Despite the general absence of organised germinal centres, intrarenal 

lymphoid aggregates in lupus nephritis are surrounded by plasmablasts and express 

survival factors that promote local B-cell survival and differentiation26. Although the 

formation of ectopic germinal centres within diseased tissues such as the kidney is rarer 

in patients with SLE than in those with RA, abnormal, accelerated germinal centre 

formation within the spleen is found during lupus flares both in mouse models of lupus  

27, 28and in human patients 29, and is linked to an excessive type I interferon response, 

which is a key feature of SLE pathogenesis. Two studies published in 2016 reveal that 

IFNγ signalling is also involved in the spontaneous formation of splenic germinal 

centres in SLE, a process in which it could activate key pathways implicated in 



autoreactive B-cell development30, 31 Thus, both type I and type II interferon-driven 

aberrant germinal cell formation might function as a common link in the development 

of autoantibodies and lupus-like autoimmune disease.  

 

[H2] Myositis  

The accumulation of B cells and formation of lymphoid-like structures in autoimmune 

myositis has long been reported32, 33 but an in-depth characterization of ELSs and their 

significance in myositis is lacking. In juvenile dermatomyositis, lymphoid follicles with 

aggregates of B cells and T cells form with a preferential perimysial localization in 

approximately 20% of patients34, and these follicles can be observed in a relatively 

small minority of adult patients with myositis35. Interestingly, ELSs in myositis do not 

develop typical germinal centres and generally lack CD21+ FDC networks, suggesting 

that muscle tissue provides a less permissive environment for lymphoid neogenesis; 

however, as discussed later, a local, antigen-driven humoral response can still be 

observed in inflammatory myopathies35, 36. 

 

[H1] ELS formation, maintenance and function 

The mechanisms that regulate the formation, maintenance and function of ELSs in 

rheumatic autoimmune diseases are largely shared with those involved in the 

organogenesis, maintenance and function of secondary lymphoid organs37. 

Conveniently, the factors involved in mediating these mechanisms can be grouped 

according to their involvement in the different stages of the lymphoid neogenesis 

process: initiating factors are involved in the early activation of ectopic lymphoid 



neogenesis; propagating factors regulate the progression towards organized lymphoid 

aggregates, as well as their maintenance; functional factors are involved in the 

acquisition of features of germinal centres ; and other factors exist that mediate the 

retention and survival of germinal-centre-derived plasmablasts and plasma cells. 

Furthermore, with the identification of IL-27 as an inhibitor of ELS development in 

experimental inflammatory arthritis and RA38, negative regulators of ELSs are 

beginning to emerge.  

[H2] Mediators of initiation and maintenance  

Most mediators that are involved in the initiation of lymphoid neogenesis are also 

involved in the maintenance of the resulting lymphoid tissue, but the cellular sources of 

these mediators seem to be distinct in the early versus late stages of ELS formation. 

Furthermore, although increasing evidence indicates that the formation of ELSs in the 

inflamed microenvironment of rheumatic autoimmune diseases (for instance, the 

synovium in RA, salivary glands in Sjögren syndrome or kidneys in SLE) does not 

necessarily follow the pre-programmed ontogenic processes that regulate the 

development of secondary lymphoid organs owing to the contribution not only of 

infiltrating immune cells but also of tissue-specific cell types (Table 1), we will 

nevertheless use secondary lymphoid organ organogenesis as a reference when 

discussing ELS formation, highlighting the similarities and differences between these 

two processes.  

 

[H3] Lymphotoxin-β and lymphoid chemokines.  

The initiation of lymphoid neogenesis and its maintenance during the formation 

of ELSs or secondary lymphoid organs requires the ectopic expression, in a manner 



largely dependent on lymphotoxin-β (LT-β), of homeostatic lymphoid chemokine CXC-

chemokine ligand 13 (CXCL13, which binds to its unique receptor, CXCR5), and CCL-

chemokine ligand 19 (CCL19) and CCL21 (which engage CCR7). During lymphoid 

organogenesis, the formation of the lymphotoxin–lymphoid chemokine feedback loop is 

driven by the interaction during embryogenesis between haematopoietic cells such as 

CD3–CD4+IL-7Rα+RANK+ lymphoid tissue inducer cells and/or (their relative 

importance being related to the site of lymphoid organ development) CD3–CD4–

CD45+IL-7Ra–RANK+CD11c+CD11b+ lymphoid tissue initiator cells with 

VCAM1+ICAM1+LTβR+ mesenchymal organizer cells 39-41. Briefly, lymphoid tissue 

inducer cells receive activating signals from mesenchymal  organizer cells in the 

presence of CXCL13, IL-7 and RANK ligand (RANKL, also known as TNFSF 11); these 

activating signals regulate  the migration and survival of lymphoid tissue inducer cells 

and, critically, their expression of membrane-bound heterotrimeric LTβ (LTα1β2), a 

member of the TNF family. The interaction of LTα1β2 with LTβ receptor (LTβR) 

expressed on mesenchymal organizer cells triggers the production of the lymphoid 

chemokines CXCL13, CCL19 and CCL21, and is also critical for promoting the 

differentiation of HEVs42. In agreement with the notion that ELS development is 

controlled by reactivation at ectopic sites of the same pathways involved in the 

organogenesis and homeostasis of secondary lymphoid organs, the expression of 

lymphoid chemokines CXCL13 and CCL21 correlates strongly with the presence of ELSs 

in rheumatic autoimmune diseases. We and others have shown that the expression of 

lymphoid chemokines increases with the progressive acquisition of lymphoid features 

in the synovium of patients with RA and the salivary glands of patients with Sjögren 

syndrome,5, 6, 8, 17, 43-45 suggesting that these chemokines have an upstream role in ELS 

development. The expression of CXCL13 and CCL21 in ELSs is generally confined to the 



B-cell-rich and the T-cell-rich areas of the ectopic follicles, respectively, as occurs in 

secondary lymphoid organs6, 17. However, during chronic inflammation in ELSs, it seems 

that additional alternative cell types can express lymphoid chemokines. Within RA and 

Sjögren syndrome lymphoid aggregates, myofibroblast-like stromal cells primarily 

express CCL21, similar to the scenario observed in lymph nodes in adult life where 

CCL21 is mostly expressed by fibroblastic reticular cells in the T-cell rich area 46, 47 

whereas infiltrating immune cells, including CD14+ inflammatory monocytes, CD68+ 

macrophages and memory CD3+CD4+ T cells, express CXCL1348-51. The expression of 

CXCL13 by monocyte-derived cells concurs with evidence that the maintenance and 

function of ELSs are dependent on the influx of CD11b+CD11c+ dendritic cells producing 

CXCL13, CCL19 and CCL21 during the formation of influenza-virus-driven inducible 

bronchus-associated lymphoid tissue (iBALT)52. In the presence of functional germinal 

centres, CXCL13 is primarily released by stromal-derived FDCs6, 8, 17. Resident non-

immune cells can also be a source of CXCL13, as demonstrated for ductal epithelial cells 

and endothelial cells in the salivary glands of patients with Sjögren syndrome17, 44, 53, 54.  

 

[H3] Proinflammatory cytokines  

As ELSs form at inflammatory sites, it is not surprising that proinflammatory cytokines 

have emerged as important contributors to the development of ELSs in addition, or as 

alternative pathways, to the classical lymphotoxin-induced lymphoid neogenesis. A role 

for the IL-23–IL-17 pathway in the development of ELSs in animal models of relapsing-

remitting multiple sclerosis and in the lungs during the development of iBALT has been 

demonstrated55, 56. Interestingly, in the context of ELS development, IL-17 can be 

produced by cells of both the innate and adaptive arms of the immune system, 

suggesting that this cytokine might be involved both in the initiation and perpetuation 



of ELSs. Specifically, a subset of adult innate lymphoid cells (type 3 innate lymphoid 

cells (ILC3 cells)) can produce IL-17 during the initial steps of ELS formation;57 and 

specific subsets of T helper 17 (TH17) cells contribute to ELS development in 

experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis55. 

Consistent with the above observations, which implicate IL-17 in ELS formation, IL-17 is 

mostly produced by CD4+ T cells in synovial tissue from patients with RA; TH17-like 

cells can frequently be observed within and adjacent to ELSs in these samples58. 

Additionally, activation of the IL-23–IL-17 pathway correlates with the presence of 

synovial ELSs in patients with RA59.  

In addition to IL-17, IL-22, a member of the IL-10 superfamily (comprehensively 

reviewed elsewhere60), is reported to be required for the development and maintenance 

of ELSs61 that form in the salivary glands in a mouse model of virus-induced lymphoid 

neogenesis, which displays several features of human Sjögren syndrome62. In this 

experimental model, IL-22 directly induces the production of CXCL13 in a subset of 

GP38+ stromal cells through phosphorylation of signal transduced and activator of 

transcription 3 (STAT3); Il22–/– mice were protected from ELS development and 

autoimmunity through reduced B-cell recruitment to the salivary glands61. Notably, 

although IL-22 was mostly produced by γδ T cells and ILC3-like cells within hours of 

viral infection, by 5 days post-infection most IL-22 production was dependent on 

classical αβ T cells61. It is currently unclear whether IL-22 is capable of inducing ELSs in 

the absence of LTβ, and whether IL-22 also has a role in the maintenance of ELSs in 

rheumatic autoimmune diseases. Reports of increased IL-22 expression in CD21L+ cells 

in synovial tissue from patients with RA59  and of IL-22 production by TH17-like and 

NKp44+ natural killer cells in the salivary glands of patients with Sjögren syndrome63 



would suggest that persistent IL-22 expression also contributes to the maintenance of 

ELSs. 

The evidence outlined above reinforces the concept that whereas innate immune 

cells are critical in controlling the initiation of lymphoid neogenesis, cells of the adaptive 

immune system within days become capable of releasing key mediators that are critical 

for the progression and maintenance of ELSs.  

 

[H2] Mediators of ELS function  

In order to fulfil their role as functional germinal centres, thus promoting antigen-

driven selection of B cell clones via affinity maturation, ELSs require a series of factors, 

both soluble (that is, certain cytokines) and membrane-bound (that is, receptor–ligand 

interactions), able to activate the molecular machinery required for immunoglobulin 

somatic hypermutation and classswitching. These factors are largely provided by 

specialized T helper cell subsets migrating into the B cell follicles. 

 

 

[H3] T follicular helper cells  

T follicular helper (TFH) cells are a distinct and highly specialized CD4+ CXCR5+ memory 

T helper cell subset. In the context of ELSs, the best example of a critical role of TFH cells 

in the function of ectopic germinal centres comes from Mycobacterium tuberculosis-

induced iBALT, in which these cells are vital in controlling the clearance of pathogens 64.  



The development of functional germinal centres is largely dependent on an antigen-

driven immune response and requires cognate interactions between T cells and B cells 

65. In response to CXCL13 produced by FDCs in germinal centres66, TFH cells localize to 

B-cell follicles where they have a non-redundant role in B cell activation, antibody 

affinity maturation and germinal centre reactions. Cognate interactions between TFH 

cells and B cells are critically dependent on interactions between inducible T-cell co-

stimulator (ICOS) and its ligand, ICOSL, and between CD40 (also known as TNFRSF5) 

and its ligand, CD40L, and the release of IL-21, a potent cofactor for B-cell survival, 

proliferation and plasma-cell differentiation, particularly in the context of CD40 co-

stimulation and in synergy with B-cell-activating factor (BAFF, also known as 

TNFSF13B)67, 68. (Figure 2) 

Accumulating evidence implicates IL-21 and TFH cells in the development of ELSs 

in rheumatic autoimmune diseases, particularly in Sjögren syndrome and RA. 

Upregulated expression of IL-21 and its receptor, IL-21R, has been reported in synovial 

tissue from patients with RA,69, 70 and IL-21 expression closely correlates with the 

formation of ELSs in this context38. Additionally, blockade of IL-21R signalling using a 

fusion protein considerably ameliorates disease progression in animal models of RA,71 

and IL-21 downregulation using intra-salivary-gland delivery of a short hairpin RNA 

directed against IL-21 significantly improves disease outcome in the nonobese diabetic 

(NOD) mouse model of Sjögren syndrome, which is characterized by the formation of 

ELSs72. Interestingly, in salivary glands from patients with Sjögren syndrome, the direct 

interaction of naive CD4+ cells with activated epithelial cells might promote TFH cell 

differentiation and IL-21 production73.  

[H2] Turning off ELS development 



Given the importance of TH17 cells and TFH cells in the maintenance and function of 

ELSs, factors with the potential to alter the fate of these cells might also influence ELS 

development. In this regard, IL-27 has been shown to regulate adaptive immunity and 

to limit T-cell-dependent immunopathology by restricting the expansion of TH17 cells74. 

In collaboration with the Jones group, we reported that Il27ra–/– mice develop a more 

severe form of antigen-induced arthritis, characterized by the development of multiple 

lymphoid aggregates in the inflamed synovium, in response to immunization with 

methylated bovine serum albumin38. In parallel, increased numbers of TH17 cell in the 

draining lymph nodes and a concomitant increase in serum levels of IL-17 were 

observed, suggesting that in this system IL-17 secretion and TH17 cell differentiation 

are under the control of IL-2738. Furthermore, when translating these observations into 

the human setting, we observed that the levels of IL-27 in synovial tissue from patients 

with RA correlated inversely with ELS development, the degree of synovial infiltration 

of CD3+ T cells and CD20+ B cells, and the expression of IL-17-encoding and IL-21-

encoding transcripts38. Finally, gene therapy with IL-27 ameliorates Sjögren syndrome-

like autoimmune exocrinopathy in mice75.  

By contrast, in pristane-induced glomerulonephritis (a mouse  model that 

recapitulates some features of SLE), IL-27 supports germinal centre function and 

autoantibody production in secondary lymphoid organs by enhancing the production of 

IL-21 and the function of TFH cells76. These discordant findings could result not only 

from intrinsic differences in the role of IL-27 in regulating ELSs versus secondary 

lymphoid organ responses, but also from the relevance of the same factors to 

modulating CD4+ T-cell plasticity under different experimental conditions and in 

different inflammatory microenvironments. Nonetheless, investigating the mechanisms 

that are involved in turning off ELSs represents an important research area, as a better 



understanding of this phenomenon might lead to the development of new therapies that 

are capable of targeting these highly pathogenic structures. In this regard, the 

identification of T follicular regulatory cells and their capacity to regulate germinal 

centre responses in secondary lymphoid organs77 is likely to prove relevant for ELS 

function.  

 

 

[H1] ELSs and autoimmunity  

As described above, ELSs in rheumatic autoimmune diseases recapitulate the cellular, 

molecular and structural organization of secondary lymphoid organs and can also 

display features of functional germinal centres. Not surprisingly, therefore, they can 

facilitate he affinity maturation of germinal centre B cells through antigen-driven 

selection and their differentiation into (auto)antibody-producing cells.  

 

[H2] Affinity maturation  

Microdissection of ectopic germinal centres or isolated B cells from ELS-positive tissues 

(such as the synovium of patients with RA, the salivary glands of those with Sjögren 

syndrome or the kidneys of those with SLE) has shown conclusively that IgG-producing, 

IgA-producing and some IgM-producing B-cell clones that populate ELSs display highly 

somatically hypermutated immunoglobulin variable heavy chain (VH) and light chain 

(VL) genes, consistent with their antigen-driven selection20, 24, 78, 79. Mutations that 

accumulate in hotspots within the complementarity-determining region of the 

immunoglobulin VH and VL genes are physiologically acquired by B cells in the germinal 

centres of secondary lymphoid organs through the process of immunoglobulin gene 



somatic hypermutation (Figure 2).  Lineage-tree analysis of the immunoglobulin gene 

repertoire of B cells and perifollicular plasmablasts and plasma cells that populate ELS-

positive tissue from patients with RA, Sjögren syndrome or myositis has demonstrated 

the presence of a clonal relationship between B cells and surrounding plasmablasts and 

plasma cells, confirming that intra-tissue clonal diversification and differentiation into 

antibody-producing cells can occur within ectopic germinal centres20, 35, 78, 79. 

Furthermore, although B cells and plasmablasts that have already undergone 

hypermutation (that is, they have probably been primed in secondary lymphoid organs) 

can also migrate from the peripheral compartment and enter chronically inflamed 

tissues in rheumatic autoimmune diseases, in the absence of ELSs with functional 

germinal centres these cells do not seem to undergo any further functional 

diversification as they fail to accumulate further  somatic mutations 79. Consistent with 

the above evidence, ELSs are required for B-cell affinity maturation at ectopic sites, as 

the expression of activation-induced cytidine deaminase (AICDA, also known as single-

stranded DNA cytosine deaminase), an enzyme involved in somatic hypermutation (but 

also in class-switch recombination, which is responsible for immunoglobulin isotype 

switch and influences antibodies effector function), is restricted to ELS-positive tissue in 

the synovium of patients with RA and in the salivary glands of patients with Sjögren 

syndrome, and closely correlates  with the presence of CD21+ FDC networks and the 

mRNA-level expression of the FDC-specific gene CD21L4, 43, 80, 81. 

 

[H2] Antigen-driven disease-specific autoimmunity 

Critically, ectopic germinal centres are also intimately linked with the local production 

of autoantibodies and thus have been implicated in the perpetuation of autoimmunity 

within the target organ, although this notion has been challenged in the field of 



inflammatory arthritis on the basis of two lines of evidence. First, ELSs can be found in 

patients with ‘seronegative’ (that is, with no anti-citrullinated protein antibodies 

(ACPAs) or rheumatoid factor (RF)) arthritides, such as spondyloarthropathies.82, 83 

Second, the presence of synovial ELSs does not correlate with the levels of circulating or 

synovial fluid ACPAs12, 83, 84 (but systemic or synovial fluid detection of ACPAs does not 

necessarily reflect local production in synovial ELSs and is influenced by production at 

extra-articular sites such secondary lymphoid organs).  

Conversely, however, a large body of evidence corroborates the notion that 

functional germinal centres do indeed contribute to the perpetuation of local 

autoimmunity to disease-associated autoantigens. Synovial protein extracts from ELS-

positive RA tissues are significantly enriched in both IgM RF and IgG ACPAs85, and the 

engraftment of ELS-positive (but not ELS-negative) synovial tissue from patients with 

RA into severe combined immunodeficiency (SCID) mice in a human–mouse chimeric 

model resulted in the release of human class-switched ACPAs into the mouse 

circulation4. Additionally, within the synovium of patients with RA, perifollicular 

CD138+ plasma cells frequently display immunoreactivity against citrullinated antigens 

(Figure 3). Using an unbiased approach based on single B-cell sorting, cloning and 

recombinant monoclonal antibody production from ACPA+ ELS-positive synovia or from 

synovial fluid from patients with RA, we and others have demonstrated that >30% of 

the overall synovial B-cell response is directed towards citrullinated antigens in some 

patients78, 86, supporting the concept that an enriched selection of ACPA-producing B 

cells occurs within synovial ELSs in RA. Interestingly, the ACPA response in ELSs is not 

limited to the joints of patients with RA but can also take place in the lung in those 

patients with pulmonary involvement10. 



Similar data have emerged from studies of ectopic germinal centes developing in 

the salivary glands of patients with Sjögren syndrome. In this context, a large number of 

autoreactive CD138+ plasma cells accumulate at the border of B-cell follicles, which are 

characterized by CD21+ FDC networks and populated by AICDA+ germinal centre B cells. 

These cells are frequently reactive towards Sjögren syndrome-associated autoantigens 

such as the ribonucleoproteins Ro/SSA and La/SSB18, 44 (Figure 3). Similar to the above 

evidence, the prevalence of circulating anti-Ro/SSA and anti-La/SSB antibodies is on 

average ~20% higher in patients with Sjögren syndrome in whom ELSs are present 

compared with those without ELSs 87.  

Thus, ELSs in rheumatic autoimmune diseases effectively fail to exert physiological 

mechanisms of tolerance that regulate the follicular exclusion of autoreactive B cells, 

thereby allowing the differentiation of these cells into high-affinity autoreactive plasma 

cells81.  

Notably, although the processes underlying the formation of ELSs in the 

synovium of patients with RA and the salivary glands of those with Sjögren syndrome 

are similar, the antigen-driven autoimmune response within ELSs in their respective 

target organs seems to be disease-specific (Figure 3).  

Direct evidence for this phenomenon comes from in vivo experiments in the 

chimeric SCID mouse–human model in which engraftment of ELS-positive synovium 

from patients with RA or from the salivary glands of patients with Sjögren syndrome 

leads to the release of ACPAs and of anti-Ro/SSA and anti-La/SSB human IgG, 

respectively, but not vice versa18, 88. However, the exact nature of the (auto)antigen(s) 

that fuel the (auto)reactive immune response in rheumatic autoimmune diseases 

remains elusive. In particular, it is unclear whether immunodominant epitopes across 



different patients are responsible for driving most of the antigen selection process 

within ectopic germinal centres, and whether a process of epitope spreading 

accompanies the dynamic evolution of autoimmune responses at sites of chronic 

inflammation. Nevertheless, the identification that dominant B-cell clones with frequent 

autoreactive immunoglobulin variable regions (but also dominant T-cell clones) 

represent a significant proportion of the synovial B-cell (and T-cell) diversity within the 

tissue and across different joints strongly favours the hypothesis that dominant 

(auto)antigens indeed exist89, 90. High-throughput immunoglobulin gene sequencing in 

combination with the identification of the fine specificity of recombinant monoclonal 

antibodies derived from lesional B cells and plasma cells in rheumatic autoimmune 

diseases might clarify the nature of these dominant autoantigens and potentially pave 

the way for tolerogenic strategies.  

 

[H2] Plasma cell survival 

Once autoreactive plasma cells are generated in ELSs or have migrated from the 

peripheral compartment, an important feature of rheumatic autoimmune diseases is 

their capacity to promote retention of these cells within the target tissue. Plasma-cell 

survival in bone-marrow niches depends on signals received through adhesion 

molecules and a series of soluble factors, most notably CXCL12, IL-6 and a proliferation-

inducing ligand (APRIL, also known as TNFSF13)91. Not surprisingly, high levels of 

factors involved in plasma cell retention and survival have been described in rheumatic 

autoimmune diseases with focal lymphocytic aggregates. Szyszko et al.92 demonstrated 

the abundant expression of CXCL12 and IL-6 in labial salivary gland biopsy samples 

from patients with Sjögren syndrome with high focus score (that is, extensive lesions) 

and high infiltration of CD138+ cells. Similarly, we reported high levels of CXCL12 in 



ductal epithelial cells and CD68+ cells in the salivary glands of patients with Sjögren 

syndrome with ELSs48. In RA, fibroblast-like synoviocytes seem to have a fundamental 

role in plasma cell survival. Synovial stromal cells, but not dermal stromal cells, 

constitutively release high levels of APRIL80, and the survival of autoreactive plasma 

cells in ELS-positive RA synovial grafts from patients with RA in the SCID–RA chimera 

model is strongly associated with the persistent expression of APRIL4. Additionally, 

stromal cells from the synovia of patients with RA can release high amounts of CXCL12 

in response to IL-17,93 and polymorphisms in the promoter of the gene encoding IL-6 

cause high IL-6 expression in this cell type94. Further elucidation of the above 

mechanisms might prove relevant not only for understanding disease pathogenesis, but 

also for  disease outcome, as the number of lesional CD138+ cells have emerged as 

potentially important predictors of response to biologic therapy, as discussed below. 

 

[H1] ELSs and disease severity  

[H2] Rhematoid arthritis  

The relevance of synovial ELSs to disease severity in RA is controversial. Several studies 

have reported that ELSs are associated with increased circulating levels of inflammatory 

markers and inflammatory cytokines, autoantibody status, higher disease severity and 

higher erosive load,5, 43, 95, 96 whereas other reports have failed to find a direct 

correlation between the presence of ELSs and the disease activity score, autoantibody 

status and presence of erosive disease12, 97. Several factors could contribute to these 

conflicting results, including inconsistent definitions of ELSs, differences in cohort size 

or disease duration, and prior exposure to DMARDs and/or biologic therapies.15 Thus, 



in order to progress the field it is critical that the potential clinical use of synovial 

pathotypes in RA is further investigated in multicentre investigations based on a 

consensus definition of ELS and in homogenous patient cohorts.  

 

[H2] Sjögren syndrome  

Evidence for a role of ELSs in disease progression is more robust for Sjögren syndrome 

than for RA. The presence of ELSs in the salivary glands of patients with Sjögren 

syndrome is associated with higher levels of circulating autoantibodies and systemic 

manifestations, including lymphadenopathy and peripheral neuropathy18, 21, 44, 87. 

Approximately 5% of patients with Sjögren syndrome will develop non-Hodgkin B-cell 

lymphomas of mucosal-associated lymphoid tissue (MALT-L), most commonly arising in 

the parotid glands98. In Sjögren syndrome, evidence exists that neoplastic B-cell clones 

originate from common precursors that often display variable immunoglobulin domains 

with homology to RF 99, 100, which is already present during the polyclonal phase of the 

local humoral response. These clones are progressively enriched during the progression 

first to lymphoepithelial lesions and then to MALT-L,101 suggesting that MALT-L in 

Sjögren syndrome is an (auto)antigen-driven process. We reported in 2007 that the 

prevalence of ELSs in labial salivary gland biopsy samples was extremely high (over 

75%) in patients with Sjögren syndrome who later developed parotid MALT-L 23. 

Subsequent studies established that the presence of ELSs in labial salivary glands at 

diagnosis conferred a 16-fold increased risk of lymphoma21,87. 

[H2] SLE 



In SLE, only limited data associate the presence of renal ELSs with clinical severity. 

However, existing evidence suggests that the presence of renal B-cell aggregates and 

plasma cells is more commonly seen in patients with diffuse proliferative lupus 

nephritis (class IV) and membranous disease either alone (class V) or in combination 

with focal (classes III and IV) or diffuse (classes IV and V) proliferative nephritis than in 

those with less severe types of lupus nephritis, and might be associated with greater 

SLE disease activity and more severe renal impairment25, 102.  

 
[H1] ELSs and the response to biologic therapies 

[H2] TNF inhibitors 

Several studies have investigated the correlation between the presence of synovial ELSs 

and the response to TNF inhibitors in RA. Again, the results are conflicting. Some 

reports showed that the presence of ELSs predicted a positive response to infliximab 103 

whereas ELSs emerged as negative independent predictors of clinical improvement in 

other studies84. These discordant data might partly be reconciled by the demonstration 

in post-treatment analysis that the disruption of ELSs after TNF inhibition is selectively 

associated with a positive clinical response, whereas their persistence is not84.  

 

[H2] Rituximab 

Several studies investigated the link between clinical response and ELSs in patients with 

RA or Sjögren syndrome treated with the anti-CD20 monoclonal antibody rituximab. 

Interestingly, although no association between the change in synovial B cell number 

from baseline and clinical response to rituximab treatment has been observed in 

patients with RA104, in sequential parotid gland biopsy samples taken from patients 



with Sjögren syndrome at baseline and 12 weeks after starting treatment with 

rituximab, the median number of CD20+ B cells emerged as a positive predictor of 

clinical improvement105. Of note, although rituximab treatment invariably eradicates B 

cells from the peripheral circulating pool and significantly reduces the number of 

lesional CD20+ cells, niches of B cells and plasma cells that escape depletion are 

frequently observed in ELSs in the salivary glands of patients with Sjögren syndrome 

and the synovia of patients with RA11, 13, 85, 106-108. Additionally, the persistent 

accumulation of plasmablasts and plasma cells and the early repopulation of B cells 

after depletion are commonly observed in ELSs in patients with RA or Sjögren 

syndrome13, 85, 106, and in RA plasma cells persistence is associated with a poorer clinical 

response to rituximab 108, 109. Importantly, in patients with RA, circulating levels of 

CXCL13, which are associated with the presence of synovial ELSs3, strongly predict the 

degree of peripheral B cell repopulation 6 months following rituximab treatment.110 

This result again suggests that ELSs can influence the rate of B cell depletion and 

repopulation at the tissue level after rituximab treatment.  

[H2] Abatacept  

As described above, the function of ELSs is critically dependent on interactions between 

cognate T cells and B cells, so treatment with abatacept (a CTLA4–IgG1 fusion protein 

that inhibits interactions between CD80/CD86 on antigen-presenting cells (APCs), 

including B cells, and CD28 on T cells) would be expected to potentially influence ELS 

survival. However, only a mild reduction in the number of synovial B-cell follicles has 

been reported in patients with RA treated with abatacept following an inadequate 

response to either TNF inhibition 111 or rituximab,112 or in pilot studies in patients with  

Sjögren syndrome113. However, rather than promoting the physical disruption of ELSs, 



abatacept (or other novel biologic agents targeting T cell–B cell co-stimulation, as 

discussed in the final section) might instead mainly influence the functionality of ELSs 

and their capacity to fine-tune T-cell responses and the function of ectopic germinal 

centres. 

 

 

[H1] ELSs as new therapeutic targets 

Advances in our understanding of the mechanisms regulating the formation, 

maintenance and function of ELSs, and the increased appreciation of their importance in 

disease pathogenesis and response to treatment, as described above, have provided a 

strong rationale for targeting these structures in rheumatic autoimmune conditions for 

therapeutic purposes. Several compounds entering the clinical arena have the potential 

to interfere with ELS formation, maintenance and function (Table 2).  

The main challenge in devising an effective strategy to disrupt ELS architecture 

and/or function relates to the observed differences in the mechanisms regulating ELSs 

at different stages of the lymphoid neogenesis process — that is, from initiation to 

propagation and maintenance and finally to the development of functional ELSs. Thus, 

evidence gathered from experimental animals in which early stages of ELS formation 

are targeted generally (ELS prevention strategies through either gene depletion or 

pharmacologic blockade) might not necessarily translate into successful application in 

randomized clinical trials. For example, although pharmacologic inhibition of LTβ using 

a LTβR–Ig fusion protein results in ELS impairment and disease amelioration in 

experimental arthritis114 and in animal models of Sjögren syndrome,115 randomized 



clinical trials with baminercept-α (a fusion protein of human LTβR and human IgG1) 

failed to demonstrate clinical efficacy in RA or, in preliminary analyses reported at the 

2015 ACR meeting, in Sjögren syndrome 116. Nevertheless, neither study stratified 

patients on the basis of the presence of ELSs and, as such, probably included a 

considerable number of patients in whom the lymphoid neogenesis process was 

inactive. Blocking pathways of ELS initiation that are alternative to, and possibly 

independent from, LTβ, such as IL-17 and IL-22, also represents an attractive strategy. A 

plethora of promising compounds targeting IL-17 are currently undergoing clinical 

testing in ELS-positive rheumatic diseases but their impact on ELSs is currently 

untested. Notably, as for the baminercept studies, it will be essential to stratify patients 

according to target activity in the disease tissues, as some of the disappointing results 

seen with IL-17 blockade in RA might, once again, be related to the fact that this 

pathway is active in the joint in only 30–40% of patients with RA and is associated with 

the presence of synovial ELSs 59.  

Inhibition of co-stimulation of TFH cell–B cell interactions through the blockade 

of ICOSL–ICOS, CD40L–CD40 or IL-21–IL-21R interactions could considerably alter ELS 

function and downstream autoreactive B-cell activation. Pharmacologic blockade of 

ICOS, as well as inhibition of the signature TFH-cell cytokine, IL-21, have proven 

beneficial in experimental arthritis71, Sjögren syndrome-like sialoadenitis72 and mouse 

lupus-like disease117. Blocking agents that target ICOSL, CD40 and IL-21 have entered 

early-phase clinical trials for ELS-positive rheumatic autoimmune diseases, but the 

results are currently unavailable.  

Although a beneficial role for histopathology in predicting the clinical response to 

specific biologic drugs currently lacks sufficient evidence, the addition of a detailed 



histopathological and molecular characterization of ELS-related pathways in clinical 

studies could not only provide information about target validation and patient 

stratification, but also identify additional factors that are potentially contributing to the 

failure of novel (and existing) biologic drugs in modulating ELS function in rheumatic 

autoimmune diseases. For example, these agents might be ineffective at modulating 

other dominant mediators associated with ELSs (such as the IL-23–IL-17 and IL-21 

pathways).38, 59 Alternatively, or in addition, an alternative cytokine drive might emerge 

following pathway blockade (for example, a TH17 cell-mediated increase in IL-17 

following TNF inhibition 113, 118. Furthermore inadequate target elimination in protected 

ELS niches could occur, thus requiring more refined strategies for delivering 

therapeutic agents to the site of inflammation 119. 

[H1] Conclusions 

The study of ELSs in rheumatic autoimmune diseases over the past 10 years has 

provided important new insights into the mechanisms that link chronic inflammation 

and the perpetuation of autoimmunity. The elucidation of the cellular sources of key 

factors that drive the formation of ELSs in rheumatic autoimmune diseases has 

highlighted critical differences in the regulation of lymphoid neogenesis in adults 

compared with lymphoid organogenesis that occurs during embryonic development. 

Furthermore, the demonstration that ELSs can act as functional germinal centres and 

support antigen-driven autoreactive B cell activation has paved the way for further 

studies investigating the fine specificity of lesional B cells at the single-cell level; these 

studies have the potential to reveal new insights into the dominant antigens that drive 

disease-specific autoimmune responses, with the prospect of future tolerogenic studies 

in patients with rheumatic autoimmune diseases. Finally, the availability of novel 



compounds that target specific factors that act at different steps during the formation 

and function of ELSs will clarify whether the direct targeting of ELSs is a feasible and 

beneficial therapeutic strategy and is able to prevent disease progression — for 

example, B cell lymphoma development in patients with Sjögren syndrome. To 

effectively advance the field, it is essential that current and future studies investigating 

novel ELS-blocking strategies are not limited to the assessment of clinical improvement, 

but are accompanied by refined mechanistic studies at sites of ELS formation that 

encompass the fine-tuning of T-cell responses, the impact on ectopic germinal cell 

functionality and the inhibition of autoreactive B-cell activation. Finally, we envisage 

that a better understanding of the histopathological heterogeneity in the target tissue of 

rheumatic autoimmune diseases and the underlying molecular signatures might lead to 

the identification of specific biomarkers that, once validated in larger cohorts of patients 

and in randomized studies, would allow patients to be stratified prior to treatment 

initiation. 
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Key points 

 

• Ectopic lymphoid structures (ELSs) develop in the target organs of a subset of 

patients with rheumatic autoimmune diseases and recapitulate key cellular and 

molecular features normally present in secondary lymphoid organs 

• ELSs in rheumatic autoimmune diseases can function as germinal centres, 

favouring B-cell selection and plasma-cell differentiation 

• B cells and plasma cells associated with ELSs in rheumatic autoimmune diseases 

frequently display an autoreactive phenotype towards disease-specific 

autoantigens 

• Ectopic germinal centres in patients with Sjögren syndrome have been 

associated with more severe systemic manifestations and a higher risk of B-cell 

lymphoma  

• In rheumatoid arthritis, emerging but as-yet-inconclusive evidence suggests a 

role for ELSs in influencing disease evolution and the response to conventional 

and biologic treatments 

• Several candidate therapeutic agents that target ELS-associated pathways are 

currently in clinical trials for rheumatic autoimmune diseases 

 



Figure 1: Ectopic lymphoid structures that form in rheumatic autoimmune 

diseases share features of secondary lymphoid organs. Ectopic lymphoid structures 

(ELSs) form around the intercalated ducts in the salivary glands of patients with Sjögren 

syndrome. a| Schematic representation of ELSs showing the full acquisition of features 

of secondary lymphoid organs: segregation of T cells and B cells into separate areas; 

development of high endothelial venules (HEVs) at the periphery of the lymphoid 

aggregates in the T-cell-rich areas; differentiation of networks of follicular dendritic 

cells (FDCs) that support a functional germinal centre response; and differentiation of 

hypermutated and class-switched plasma cells, which typically acquire a perifollicular 

localization with frequent infiltration of epithelial cells (ECs) from the ducts and acini. 

b| Immunohistochemical staining for CD3 (T cells), CD20 (B cells), CD21 (FDCs) and 

CD138 (plasma cells) illustrates cellular localization within  ELSs arising in the salivary 

glands of  Sjögren’s syndrome. Original magnification x100 for CD3, CD20, CD21 and 

CD138.  

 

  

Figure 2: Schematic representation illustrating the journey of T follicular helper (TFH) 

cells from the T-cell-rich area of the ELS to the B-cell follicles where TFH cells initiate 

and sustain germinal centre responses.  

a| From left to right. Gradients of lymphoid chemokines CC-chemokine ligand 19 

(CCL19), CCL21 and CXC-chemokine ligand 13 (CXCL13) regulate the organization of T 

cells and B cells, respectively, into discrete areas, as well as the migration of specialized 

TFH cells into B-cell follicles to support B cells. Briefly, in the context of high levels of 

CCL19 and CCL21 around HEVs in the T-cell-rich area of the ELS  mature CCR7+CD62L+ 

antigen-presenting cells (APC) form cognate interactions with CCR7+CD62L+CD4+ T cells 



(i.e. central memory and naive T cells) leading to T-cell activation. In the presence of 

cytokines released in the local microenvironment, TFH cells downregulate CC-chemokine 

receptor 7 (CCR7) and upregulate inducible T-cell co-stimulator (ICOS) and CXC-

chemokine receptor 5 (CXCR5), the latter allowing TFH cells to migrate into B cell 

follicles in response to CXCL13 gradients. At the border and within ectopic germinal 

centres, TFH cells form cognate interactions with B cells and, in the context of co-

stimulation from ICOS ligand (ICOSL) expressed by B cells, release high amount of the 

TFH cell signature cytokine, IL-21. In turn, IL-21 (in synergy with other cytokines) 

induces the differentiation of germinal centre B cells by upregulating B cell lymphoma 6 

(BCL6) and leading to the de novo expression of activation-induced cytidine deaminase 

(AID), which is required for somatic hypermutation of the immunoglobulin genes 

followed by isotype class-switch recombination. B cells that acquire a higher affinity 

towards the antigen following somatic hypermutation receive strong survival and 

proliferative signals within the germinal centre and differentiate into high-affinity 

plasma cells (and memory B cells). Perifollicular plasma cells leaving ectopic germinal 

centres receive strong migratory and survival signals in the form of CXCL12 and a 

proliferation-inducing ligand (APRIL), causing the retention of long lived plasma cells in 

the tissue. 

b| Confocal multicolour immunofluorescence microscopy depicts TFH cells localizing 

within ectopic B cell follicles in ELS forming in the parotid glands of patients with 

Sjögren syndrome. TFH cells are identified as ICOS+ (depicted in blue) T cells that form 

close cell-cell contact with CD20+ (red) in B cell follicles both in the mantle zone and, 

within ectopic germinal centres, with BCL6 (green) germinal centre B cells. Original 

magnification: ×200 for CD20, ICOS and BCL6.  

 



 

Figure 3: Ectopic germinal centres sustain antigen-specific and disease-specific 

autoimmune responses.  

Ectopic lymphoid structures (ELSs) arising in the salivary glands of Sjögren syndrome 

(part a) and in the synovium of rheumatoid arthritis (RA; part b) are depicted. Although 

ELSs in RA and Sjögren syndrome display overlapping architecture and are regulated by 

similar mechanisms, they favour the affinity maturation and differentiation of plasma 

cells reactive against disease-specific autoantigens. These autoantigens are exposed as a 

result of the chronic inflammatory process and can be presented by both professional 

antigen-presenting cells (APC) and B cells to T cells.  

Left side, representative schematic of the potential source of autoantigens driving the 

formation of ELS. Briefly, in Sjögren’s syndrome (part a), after an initial unknown 

trigger (i.e. viral infection), necrotic/apoptotic epithelial cells release autoantigens. In 

the RA synovium (part b, bottom half), breach of self-tolerance to citrullinated antigens 

precedes the onset of ELS. Circulating ACPA (i.e. as immune complexes, IC) may enter 

the RA synovium due to increased vascular permeabilization (i.e. injury/infection etc). 

Once inflammation is established, citrullinated antigens can be locally released by 

several cell types, including neutrophil extracellular traps, NET. 

Right side, double immunofluorescence microscopy demonstrating that perifollicular 

CD138+ plasma cells (PCs, depicted in green) in Sjögren syndrome salivary glands (part 

a, top half) react against the Sjögren syndrome-associated autoantigen Ro52 (stained in 

red) but not against Cit-fibrinogen; conversely, CD138+ plasma cells in the RA synovium 

(part b, bottom half) display strong reactivity to Cit-fibrinogen (in red), but not Ro52. 

Original magnification: ×40 for CD20 (left side) and ×400 for CD138/Ro52 and 

CD138/Cit-Fib (right side).  



 

Table 1 | Comparison of the main cellular sources of the key factors regulating 
ectopic versus embryonic lymphoid organogenesis  

Pathway Lymphoid organogenesis 
Initiation and 

progression of ELS 
(animal models) 

ELS-positive target tissues in human 
rheumatic autoimmune diseases 

LTβ 
LTi 

LTin 
B cells (neonatal spleen) 

CD11b+CD11c+ DCs 
CD4+ αβ T cells 

B cells 

B cells 
CD4+ T cells 

CXCL13 LTo CD11b+CD11c+ DCs 
GP38+ stromal cells 

CD4+ T cells 
CD14+ monocytes 

CD68+ macrophages or DCs 
Endothelial cells 
Epithelial cells 

Fibroblast-like synoviocytes 
Follicular DCs 

CCL19 LTo CD11b+CD11c+ DCs 
Stromal cells Myofibroblast-like stroma 

CCL21 LTo CD11b+CD11c+ DCs 
Stromal cells 

Myofibroblast-like stroma 
Lymphatic endothelial cells 

DCs 

RANKL LTo Stromal cells B cells 
Fibroblast-like synoviocytes 

IL-7 LTo Stromal cells Fibroblast-like synoviocytes 
Sublining synovial macrophages 

IL-17 ND   
ILC3 

CD4+ γδ T cells 
CD4+ αβ T cells 

CD4+ T cells 
Mast cells 

IL-22 ND   
ILC3 

CD4+ γδ T cells 
CD4+ αβ T cells 

CD4+ T cells 
NKp44+ NK cells 

Abbreviations: CCL, CC-chemokine ligand; CXCL, CXC-chemokine ligand; DCs, dendritic 
cells; ELS, ectopic lymphoid structure; FCRL4, Fc receptor-like protein 4; ILC3, type 3 
innate lymphoid cells; NK cell, natural killer cell; LTβ, lymphotoxin-β; LTi, lymphoid tissue 
inducer cells; LTin, lymphoid tissue initiator cells; LTo, mesenchymal organizer cells; 
ND, not determined; RANKL, RANK ligand. 

  



Table 2: Randomized clinical trials in rheumatic autoimmune diseases of 
developmental drugs targeting pathways involved in ectopic lymphoid cell 
formation and function.  
 

Pathway 
inhibited 

Compound Class of drug Completed and ongoing clinical trials in ELS-positive 
rheumatic autoimmune diseases  

Disease Phase 
of trial 

Trial status Trial ID 

IL-17 Secukinumab IL-17A-specific 
monoclonal antibody 

RA III Recruiting NCT01377012  
NCT01350804  

Ixekizumab IL-17A-specific 
monoclonal antibody 

RA II Completed NCT00966875  

Brodalumab IL-17RA-specific 
monoclonal antibody  

RA II Completed NCT00950989  

ABT-122 TNF and IL-17 
bispecific antibody 

RA I Ongoing NCT01853033  

CNTO-6785 IL-17A-specific 
monoclonal antibody 

RA III Recruiting NCT01909427  

IL-21 NNC0114-0006 IL-21-specific 
monoclonal antibody 

RA II Completed NCT01647451  
  

SLE I Completed NCT 01689025 

NNC0114-0005 IL-21-specific 
monoclonal antibody 

RA I Completed NCT01208506  

LTαor 
LTβ 

Baminercept-α LTβR–immunoglobulin 
fusion protein  

RA II Completed NCT00664573  
SS II Recruiting NCT01552681 

Pateclizumab Anti-LTα monoclonal 
antibody 

RA II Completed NCT01225393  

RANKL Denosumab RANKL-specific 
monoclonal antibody 

RA III Ongoing NCT01973569  

ICOS–
ICOSL 

AMG557/MEDI5872 ICOSL-specific 
monoclonal antibody 

SLE I Recruiting NCT01683695  
  

SS II Recruiting NCT02334306 
CD40–
CD40L 

CFZ533 CD40-specific 
monoclonal antibody 

SS II Recruiting NCT02291029  
RA I Recruiting NCT02089087 

BAFF Belimumab BAFF-specific 
monoclonal antibody 

SS II Completed NCT01008982 (SS, 
phase II, completed) 

Belimumab and 
rituximab 

Combination of BAFF-
specific and CD20-
specific monoclonal 
antibody 

SS II Recruiting NCT02631538 (SS, 
phase II, recruiting) 

Tabalumab BAFF-specific 
monoclonal antibody 

RA III Completed NCT01202760  

SLE III Recruiting NCT01639339 

Status of studies identified in ClinicalTrials.gov current as of 8 Nov 2016, Abbreviations: 

BAFF, B-cell-activating factor; CD40L, CD40 ligand; ICOS, inducible T-cell co-stimulator; 



ICOSL, ICOS ligand; LT, lymphotoxin; LTβR, LTβ receptor; RA, rheumatoid arthritis; SLE, 

systemic lupus erythematosus; SS, Sjögren syndrome. 
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