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Abstract 

Geomorphic units are the elementary spatial physical features of the river mosaic at the reach scale that are nested 

within the overall hydromorphological structure of a river and its catchment. Geomorphic units also constitute the 

template of physical habitats for the biota. The assessment of river hydromorphological conditions is required by the 

European Water Framework Directive 2000/60 (WFD) for the classification and monitoring of water bodies, and is 

useful for establishing links between their physical and biological conditions. The spatial scale of geomorphic units, 

incorporating their component elements and hydraulic patches, is the most appropriate to assess these links. Given 

the weakness of existing methods for the characterisation and assessment of geomorphic units and physical habitats 

(e.g. lack of a well-defined spatio-temporal framework, terminology issues, etc.), there is a need for a new system 

for the survey and characterisation of river geomorphic units that fits within a geomorphologically-meaningful 

framework. 

This paper presents a system for the survey and classification of geomorphic units (GUS, Geomorphic Units survey 

and classification System) aimed at characterising physical habitats and stream morphology. The method is 

embedded into a multi-scale, hierarchical framework for the analysis of river hydromorphological conditions. Three 

scales of geomorphic units are considered (i.e. Macro-units, Units, Sub-units), organised within two spatial domains 

(i.e. bankfull channel and floodplain). Different levels of characterisation can be applied, depending on the aims of 



the survey: Broad, Basic, and Detailed level. At each level, different, complementary information is collected. The 

method is applied by combining remote sensing analysis and field survey, according to the spatial scale and the level 

of description required. The method is applicable to most of fluvial conditions, and has been designed to be flexible 

and adaptable according to the objectives (e.g. reach characterisation, assessment, monitoring) and available data 

(e.g. image resolution). The method supports integrated hydromorphological assessment at the reach scale (e.g. the 

Morphological Quality Index, MQI), and therefore contributes to better establishing links between 

hydromorphological conditions at the reach scale, characteristic geomorphic units and related biological conditions. 
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1. Introduction 

Rivers are complex systems where abiotic and biotic components interact at different spatial and temporal scales. 

Rivers can thus be viewed as a set of hierarchically organised sub-systems, where the smaller spatial and temporal 

levels nest within those at larger spatial and temporal scales (see for e.g. Frissel et al., 1986; Amoros & Petts, 1993; 

Brierley & Fryirs, 2005; Rinaldi et al., 2013; Gurnell et al., 2016a) (Figure 1). Within this nested hierarchical 

system, processes and forms at larger scales dominate and determine processes and forms at smaller scales (e.g. 

Brierley et al., 2013; Gurnell et al., 2016a). 

Within the nested hierarchical framework, geomorphic units represent the pieces of the mosaic that characterises 

river morphology at the reach scale (building blocks; sensu Fryirs & Brierley, 2013), whereby a reach is "a section 

of river along which boundary conditions are sufficiently uniform that the river maintains a near consistent internal 

set of process-form interactions" (Gurnell et al. 2016a). Geomorphic units are thus the physical manifestation of the 

processes of water flow and sediment transport that are influenced by factors acting at the reach (e.g. slope, 

substrate, vegetation, valley setting) and larger scales. Indeed, reaches of the same morphological type (e.g. 

wandering, sinuous), usually exhibit similar assemblages of geomorphic units. A geomorphic unit corresponds to an 

area containing a landform created by the erosion or deposition of sediment or bedrock. River geomorphic units are 

located within the river channel (e.g. riffles, pools, bars, etc.) or on the floodplain (e.g. terraces, oxbow lakes, etc.) 

and typically occupy an area extending to 0.1 to 20 times the channel width (Gurnell et al., 2016a). They can be 

either entirely sedimentary units, or they can also incorporate living or dead vegetation (e.g. large wood). 

 

Since river hydromorphology has been incorporated into the European Water Framework Directive 2000/60 (WFD), 

river physical forms and processes have been increasingly highlighted as essential components in the analysis and 

management of river systems. In particular, river hydromorphology may allow a realistic representation of physical 

structures and dynamics to be integrated into biological and ecological theories (Poole, 2010), which is useful for 

establishing links between river physical and biological conditions. In this context, the spatial scale of geomorphic 

units, incorporating their component elements and hydraulic patches (Figure 1), is the most appropriate to assess 

these links. Indeed, these spatial units (e.g., riffles, pools, bars, islands, etc., but also individual boulders, sediment 

patches, plants or wood pieces, etc.) constitute distinct habitats for fluvial (aquatic and riparian) fauna and flora, 

including temporary habitats such as refugia from disturbance or predation, spawning, etc.. These provide the 

physical template that underpins the delivery of the key environmental conditions required to support the river’s 

biota (Wyrick et al., 2014). 



 

Several terms have been used in the literature to identify discernible physical units of river channel morphology 

including: river landform; morphological unit; hydromorphological unit; physical/hydraulic biotope; ecotope (e.g. 

Padmore, 1998; Van der Molen et al., 2003; Milan et al., 2010; Vezza et al., 2014; Wyrick et al., 2014; Wheaton et 

al., 2015). Although the precise definitions of these terms may differ to some degree, all refer to features that could 

be viewed as river geomorphic units in the context of this paper. 

 

Several methods, protocols, procedures and frameworks have been developed for the survey, characterisation, and 

classification of physical habitats in river channels and their margins since the 1980s. 

Some of them can be described as "river habitat surveys" or "physical habitat assessments", often leading to the 

assessment of indices of river habitat quality or degradation (e.g., Platts et al. 1983; Plafkin et al. 1989; Raven et al. 

1997; Ladson et al. 1999; National Environmental Research Institute 1999; LAWA 2000, 2002a, b). These methods 

provide a framework within which habitat units can be efficiently inventoried and sampled, so that the range of 

physical habitats, their heterogeneity and the contemporary physical structure of river ecosystems can be 

characterised. Although, these provide very useful information concerning the character of the river at the time of 

survey, they also have a series of limitations (Belletti et al., 2015a). For example, they view sections of river in 

rather static isolation without reference to their spatial context or the fact that they may be changing through time, 

factors that can be incorporated if a spatio-temporal framework is adopted (e.g. Montgomery and Buffington, 1997, 

1998; Benda et al., 2004; Fryirs and Brierley, 2013; Brierley et al., 2013; Gurnell et al., 2016a). Additionally, the 

terminology these procedures use to characterise channel forms and geomorphic units, often does not encompass the 

full range recognised within contemporary fluvial geomorphology. For example, there is often little consideration of 

the wide variety of bed morphologies found in steep, mountain, cobble- or boulder- bed streams, such as those 

considered by Halwas and Church (2002), Wohl (2010) and Comiti & Mao (2012), for example. In the same way, 

the variety of geomorphic units found in rivers with complex, transitional or multi-thread patterns (i.e., wandering or 

braided) is often poorly incorporated. In the case of large rivers (e.g. many piedmont Alpine rivers), most of the 

existing field-based procedures do not fully integrate remote sensing techniques capable of recognising the 

variability and complexity of features on these large systems. Many of these methods also fail to recognise that the 

natural geomorphic structure of some river types may be very simple (e.g. bedrock mountain rivers) but rather 

identify high spatial geomorphic heterogeneity with pristine or lightly modified river conditions, as has been 

highlighted, for example, by Fryirs (2003), Barquín et al. (2011). 

 

Other procedures developed since the early 1990s to map, characterise or classify river physical habitats include 

those described by Hawkins et al. (1993), Jowett (1993), Wadeson (1995), Maddock & Bird (1996), Padmore et al. 

(1996), and more recently Thomson et al. (2001), Clifford et al. (2006), Harvey & Clifford (2009), and Zavadil et al. 

(2012). These procedures generally do not include a quality assessment based on one or more synthetic indices. 

They also focus entirely on aquatic habitats, in response to the interest of scientists and river managers in aquatic 

organisms. Many are based on the identification and classification of flow types such as free fall, broken standing 

waves, etc. (e.g. Padmore, 1998; Newson & Newson, 2000; Zavadil & Stewardson, 2013), which are also 

incorporated in some of the methods described above. These are used to indicate the template of physical habitats at 

the microhabitat scale. However, it has been noted that such flow types are highly temporally variable, depending 

strongly on discharge conditions at the moment of observation (Zavadil & Stewardson, 2013). 



 

In addition to field surveys and field-based assessments, other methodological advances have allowed information 

on geomorphic units and physical habitats to be extracted in many new ways.  

First, numerous automated or semi-automated procedures have been developed for the extraction of spatial fluvial 

features including but not confined to geomorphic units (e.g. Milan et al., 2010; Belletti et al., 2013, 2014; Wyrick et 

al., 2014; Demarchi et al., 2016). 

 

Second, the development of habitat simulation models, which quantify the spatial variability of hydraulic parameters 

(e.g. flow velocity, water depth, etc.) for different flow discharges have contributed a temporal as well as spatial 

perspective on physical habitat (e.g. PHABSIM, Bovee et al., 1998; CASIMIR, Jorde et al., 2000; MesoHabsim, 

Parasiewicz, 2001, 2007; Vezza et al., 2015; MEM, Hauer et al., 2007). For instance, such methods have been 

widely used for viewing the ecohydraulic impacts of flow regulation (Maddock et al., 2013). Various 

hydromorphological and habitat indices have also been developed, providing a quantitative assessment of spatio-

temporal habitat variability (e.g., HDMI, Gostner et al., 2013; IHQ and IHSD, Vezza et al., 2015). 

 

Finally and most recently, frameworks for the delineation and analysis of geomorphic units have been devised based 

upon fluvial geomorphology theory (e.g. Brierley et al., 2013; Wyrick & Pasternack, 2014; Wheaton et al., 2015). 

For example, Brierley et al. (2013) provide an overall guided, open-ended procedure for the analysis of geomorphic 

units following a question-based approach that allows a flexible interpretation of geomorphic units in terms of 

forms, formative processes and control factors. In contrast, Wheaton et al. (2015) describe a guided framework for 

identifying and mapping geomorphic units based on specific characteristics such as topographic thresholds, unit 

shape and specific morphological attributes (e.g. unit position, sediment and vegetation characteristics).  

 

Although a relationship between river physical and biological components is increasingly recognised (Maddock et 

al., 2013), this remains poorly understood, mainly because existing methods for the survey of physical habitat 

characteristics and conditions are still limited in their application, especially at scales that are spatially and 

temporally significant for both physical and biological processes (Friberg et al., 2011). Because geomorphic units 

constitute the physical structures that underpin habitat units, an assessment of the assemblage of geomorphic units is  

needed to provide information about the range of existing habitats occurring in a given a reach and repeat 

assessments can reveal their dynamics. Therefore, there is a need for systematic procedures to collect and interpret 

information on geomorphic units and physical habitats at appropriate spatial scales and based on contemporary 

fluvial geomorphic understanding. Procedures to assess physical habitats need to be ecologically and 

geomorphologically meaningful, enabling ecologically relevant scales and physical variables to be placed into a 

geomorphological characterisation template (Brierley et al., 2013).  

 

Recently new approaches have been developed or extended within the REFORM (REstoring rivers FOR effective 

catchment Management) project, funded by the European Union’s FP7 Programme. Specifically, a set of 

hydromorphological assessment procedures have been devised incorporating clearly defined stages and steps, which 

support the assessment of river conditions in a consistent manner (Rinaldi et al., 2015 a, b; Rinaldi et al., 2016a). 

The Geomorphic Unit survey and classification System (GUS; Belletti et al., 2015b; Rinaldi et al., 2015b) integrates 

and completes these procedures, placing the focus on the geomorphic unit scale to provide classification, 



characterisation, analysis and monitoring of the set of geomorphic units present in a given reach. GUS was 

developed within REFORM. The Italian version, named SUM (Sistema di rilevamento e classificazione delle Unità 

Morfologiche), is part of the broad Italian system for river hydromorpholgical assessment, analysis and monitoring 

(IDRAIM; Rinaldi et al., 2015c) whose national guidelines have been published by the Italian National Institute for 

Environmental Protection and Research (ISPRA; Rinaldi et al. 2015d). 

 

This paper presents and synthetically describes the Geomorphic Unit survey and classification System and 

summarises its main applications. First (section 2), we present the GUS, including the rationale behind it, its main 

characteristics and aims, its structure and the methodological approach, as well as the guidebook of the main river 

geomorphic units that can be found in a wide range of river types across the world. We also provide some maps and 

pictures of an example application of the system. Second (section 3), we discuss the GUS in the context of river 

classification and indicate how to apply the system in hydromorphological surveys and in supporting the analysis of 

the spatial and temporal variation of habitats for biota. We also critically discuss its weakness and identify future 

research challenges. 

 

2. The Geomorphic Unit survey and classification System (GUS) 

2.1 Rationale 

The hierarchical view of river systems as described in the introduction is helpful for understanding process 

interactions within and between scales as well as river behaviour through time, providing important information that 

can support more effective river management. A recently-developed nested hierarchical framework and its 

application to river management under the WFD is described by Gurnell et al. (2016a) and forms the basis for the 

method described in this paper. 

 

It is commonly known that moving downstream through a fluvial system, different channel types (or patterns) and 

different associated geomorphic units may occur as a result of changing boundary conditions, such as valley and bed 

slope, discharge, sediment size, etc. (Rinaldi et al., 2016b). Despite this general rule, the assemblage may vary 

among biogeographical regions and may also be degraded or reduced by human interventions (Rinaldi et al., 2016b). 

 

Within a single geomorphic unit, it is possible to distinguish smaller scale features, notably one to several "hydraulic 

units" (i.e. spatially distinct patches of relatively homogeneous surface flow and substrate character), each of which 

can include a series of "river elements" (i.e. individuals and patches of sediment particles, plants, wood pieces, etc.) 

(Gurnell et al., 2016a). These spatial units are the most appropriate to assess the presence and diversity of physical 

habitats (Figure 1). Geomorphic and hydraulic units generally correspond to the "mesohabitat" scale (about 10-1 - 

103 m) whereas smaller spatial units (i.e. river elements) coincide with the "microhabitat" scale (approximately 1 - 

50 cm) (Frissell et al., 1986; Bain & Knight, 1996; Kemp et al., 1999; Fausch et al., 2002; Thorp et al., 2006; Hauer 

et al., 2011; Parasiewicz et al., 2013; Zavadil & Stewardson, 2013). 

 

Given these premises and the previously-reviewed weakness of existing methods for the characterisation and the 

assessment of geomorphic units and physical habitats, this paper presents a new system for the survey and 

characterisation of river geomorphic units that fits within a geomorphologically-meaningful framework and at the 

same time supports links with biological components. 



 

2.2 Main characteristics and aims of the GUS 

According to key concepts described above, this section summarises the main characteristics and aims of the GUS. 

(i) GUS is designed to provide a general framework for the survey and classification of geomorphic units, and is 

embedded within a more general spatially-nested hierarchical framework as described by Gurnell et al. (2016a). It 

adopts a top-down approach to identify, characterise and analyse the assemblage of geomorphic units within a given 

river reach. 

(ii) Spatial units within the GUS are organised and analysed at three spatial scales and three levels of 

characterisation, respectively. 

(iii) GUS is also supported by an extensive and exhaustive illustrated guidebook for the identification of the main 

geomorphic units that may be encountered. The guidebook covers a wide range of river types, from low energy 

lowland systems to high energy mountain systems, allowing for process-based classification of geomorphic units. 

(iv) Since the variability of geomorphic units is great between different river types, along a same river, and is 

affected by human impacts, the GUS does not aim to assess deviation from any reference conditions and/or to assess 

the status or quality of the stream by the use of synthetic indices. 

(v) GUS is an open-ended, flexible framework, where the operator can establish the level of characterisation and the 

specific focus of the survey, depending on the survey objectives and on available resources. 

(vi) The results of the GUS support understanding of the morphology of a given reach, the analysis of river reach 

behaviour and evolution, and the understanding of interactions among river hydromorphological conditions at the 

reach scale, characteristic geomorphic units, and related biological conditions. 

 

2.3 The spatial settings, scales and levels of characterisation of the GUS 

The overall spatial domain of application of the GUS is potentially the entire genetic floodplain, defined as the part 

of the valley floor delimited by hillslopes or ancient terraces which can be directly affected or potentially influenced 

by fluvial processes. However, the main focus of the survey is the portion of the fluvial corridor that is most directly 

or frequently connected with contemporary fluvial processes. This corresponds to the relatively natural corridor, 

which, when contemporary management permits, is occupied by spontaneous riparian vegetation (areas A and B, 

Figure 2). Nonetheless, depending on the aims of the study, the survey can be extended to human-dominated 

portions of the floodplain (agricultural lands, urbanised areas) (area C, Figure 2). 

Within this river corridor geomorphic units are organised in two spatial settings: (i) the bankfull channel (i.e. 

inundation frequency below 1÷3 years), which includes units that are both submerged (e.g. bed configuration, 

submerged vegetation) and emerged (e.g. bars, islands, large wood jams) at baseflow, as well as features located 

within the bankfull channel margins at the interface with the floodplain (e.g. banks, benches) (area A, Figure 2); (ii) 

the floodplain, which comprises all the units occupying the floodplain (e.g. recent terraces, wetlands, natural levées) 

(areas B and C, Figure 2). 

 

2.3.1 Spatial scales 

Within the GUS, geomorphic units are organised within different levels which are embedded into a nested 

hierarchical framework. The levels differ in terms of spatial scale (i.e. size) and detail of characterisation (section 

2.3.2) such that larger spatial scales are related to broad levels of analysis, whereas smaller spatial scales are 

associated with more detailed levels of characterisation. The three spatial levels are as follows: 



(1) Macro-unit. The coarse assemblage of units of the same type, mainly water, sediment, vegetation (Figure 3). The 

minimum size of a macro-unit is the size of the contained unit (e.g. a bar, an island) when the macro-unit only 

incorporates a single unit. 

(2) Unit. This is the basic spatial unit of the GUS, and corresponds to a feature with distinctive morphological 

characteristics and significant size (e.g. riffle, bar, island, recent terrace, oxbow lake, etc.) (Figure 4A-D) located 

within a macro-unit. This is the spatial scale that defines the pieces of the mosaic that characterise river morphology 

at the reach scale. More accurate criteria for the definition of such units within the GUS depend on their nature (i.e. 

water, sediment or vegetation units), the spatial setting and their location within the river corridor (Rinaldi et al., 

2015b). 

(3) Sub-unit. A relatively small patch with fairly homogeneous characteristics in terms of vegetation, sediment or flow 

conditions, located within a unit (e.g. backwater areas, ramps, isolated woody plants, small vegetated patches, etc.) 

(Figure 4E, F). 

 

All three levels of spatial unit can be analyzed at the reach or sub-reach scale (Figure 3B and C, respectively), where 

the latter is a portion of a reach that contains assemblages of geomorphic units that characterize the morphology of 

the reach in which the sub-reach is located. However, macro-units are usually analysed at the reach scale, whereas 

units and sub-units are most commonly analysed at the sub-reach scale. 

 

Five near-natural macro-units have been defined within the GUS (Figure 3), each of them includes a range of unit 

types. (i) "Base-flow or submerged channels" include all geomorphic units (n = 8 types) which are found within the 

bankfull channel and are submerged at baseflow (e.g. cascade, riffle, etc.). (ii) "Emergent sediment units" can contain 

all geomorphic units (n = 9 types) located within the bankfull channel that are exposed at baseflow (e.g. mid-channel 

bar, bedrock outcrop, etc.). (iii) "In-channel vegetation" comprises all geomorphic features (n = 5 types) of significant 

size that are dominated by vegetation (e.g. islands, vegetated banks, etc.). (iv) The "riparian zone" is the portion of the 

floodplain affected by fluvial processes (e.g. channel mobility, flooding) and characterised by spontaneous riparian 

vegetation or relatively natural conditions. It includes nine types of units of different elevation (e.g. levée, ridges and 

swales, etc.). (v) "Floodplain aquatic zones" identify the presence of water within the floodplain and include two types 

of unit (floodplain lakes and wetlands). The portion of the overall floodplain beyond the "riparian zone" that is 

dominated by human elements or activities (urbanised areas, infrastructures, agriculture) is included within an 

additional macro-unit "human-dominated areas". 

 

Each type of macro-unit and unit has an identification code. For units, this is composed of the macro-unit code plus 

the relevant unit code (e.g. EC represents mid-channel bar, incorporating the macro-unit E for "emergent sediment 

units"). Sub-types of units are identified by the unit type code plus a progressive number for mapping purposes. Sub-

units are spatially associated with unit types. 

 

Some types of units can be further subdivided into sub-types at a greater level of detail (see section 2.3.2; e.g. 

"longitudinal bar" and "diagonal bar" are sub-types of "mid-channel bar" unit). In total 33 types of units (plus 2 macro-

unit types) and 59 sub-types of units (plus 4 sub-types of macro-units) are defined within the GUS. 

 



The GUS also incorporates artificial features (e.g. check-dams, groynes, ripraps). These are not considered to be 

macro-units, units or sub-units, but they are important elements of the fluvial landscape because of their significant 

impact on fluvial processes and on the morphology and assemblage of geomorphic units. These features are 

recorded separately as "artificial elements" regardless of their location within the river corridor (i.e. bankfull, 

floodplain). Artificial elements are delineated at the broad level and then characterized at the basic level (see section 

2.3.2). 

 

2.3.2 Levels of characterisation 

Within the GUS, geomorphic units can be surveyed according to three different levels of detail as follows (Table 1): 

(1) Broad level. This corresponds to the delineation and a general characterisation of macro-units (Figure 3C), in 

terms of presence/absence, areal extent or percentage cover within the two spatial settings (i.e. bankfull channel, 

floodplain). 

(2) Basic level. A complete delineation and first level of characterisation of all types of geomorphic units, in terms 

of presence/absence, number, area or length (Figures 4B and 5). Some macro-unit types can also be described at this 

level (i.e. main and secondary channels). 

(3) Detailed level. This (i) provides more detailed information and data for geomorphic units (and some macro-

units) on genetic processes, morphological, hydrological, vegetation and sediment properties; (ii) describes macro-

unit and unit sub-types (when applicable); and (iii) characterises sub-units. 

 

(TABLE 1) 

 

2.4 Survey methods and procedures 

Both remote/proximal sensing techniques and field survey can be used to identify the units. The two approaches are 

generally used in synergy, but in some cases it may only be possible to use one of these, depending on the selected 

level of characterisation, the size of the river, and the resolution of the available remotely sensed data and imagery. 

The delineation of macro-units at the broad level is entirely based on remotely/proximally sensed data sources, 

analysed within a GIS software. Therefore, it can be typically applied to rivers of sufficient size (usually having 

channel width > 30 m) but the limits depend on the resolution and quality of the available imagery. Characterisation 

at the basic level is mainly carried out by field survey, but remote sensing and GIS analysis can also be used for 

large rivers or where very high spatial resolution imagery is available. The detailed level is always carried out by 

field survey. 

 

For remote sensing, aerial photos of sufficient resolution are usually needed. Satellite images of lower resolution 

(e.g. Google earth images) can be used for preliminary reconnaissance of morphological characteristics, but the 

delineation of macro-units and units within a GIS requires higher spatial resolution photographs and airborne[A1] 

LiDAR data, which is especially useful for defining floodplain units (e.g. distinguishing different elevations of 

recent terraces) and emergent units within the bankfull channel (e.g. bars, benches and high bars). The increasing 

development of remote/proximal sensing platforms (i.e. UAV), sensors and techniques such as ultra-light systems, 

bathymetric LiDAR, structure from motion photogrammetry, hyper spectral imaging systems as well as recent and 

upcoming high resolution satellite datasets (e.g. Carbonneau & Piégay, 2012; Bizzi et al., 2016) will very likely lead 



to their increasing use for characterising geomorphic units, although a simultaneous check and their 

geomorphological interpretation in the field is strongly recommended.  

 

The field survey at the basic and detailed levels is based on a series of survey forms (see below) and can be 

supported by available topographic instruments (e.g. GPS) as well as mobile mapping techniques and tools (e.g. 

QGIS Mobile). It is recommended that field survey proceeds from upstream to downstream, focusing in turn on 

different spatial settings (i.e. bankfull channel, floodplain), particularly for large rivers. According to the objectives, 

the field survey may be conducted by one surveyor when only presence/absence and number of units is required, but 

by at least two surveyors, if unit sizes (length or area) need to be measured. Field surveys should be conducted 

during low-flow periods because they are safer, give a better visibility of submerged units, and also because macro-

units at the broad level are most consistently identified during low flow conditions. Partially or totally dry conditions 

should be avoided, except in the case of intermittent or temporary streams (see below), because they impede the 

classification of submerged units. However, depending on the survey objectives, surveys under a range of different 

flow conditions may be informative. For example, multiple, stage-dependent surveys may help to quantify spatio-

temporal variations in habitat availability (see section 3.3). In the case of intermittent or temporary streams, the field 

survey is carried out during periods that represent the dominant hydrological regime conditions, and in any case 

under the same conditions experienced during the remote, broad level analysis. 

 

The survey is carried out by completing a set of sixteen survey sheets. These sheets are designed to support and 

guide field survey, and so should be used in a way that fits the objectives of the study. The first sheet (Survey plan) 

helps to organize the survey in the context of its objectives, by recording (i.e. using a tick) the kinds of information 

that are to be collected (i.e. which spatial setting, which level, and which spatial scale). The second sheet records 

general information about the river, the surveyed reach and sub-reach (e.g. reach/sub-reach length, location, reach 

slope, width, morphology, hydrological regime etc.) and provides a space for a general field sketch. The remaining 

sheets are the core of the survey. They list all 35 units and 63 unit sub-types that may be surveyed (broad, basic and 

detailed levels). Figure 5 shows an extract of a compiled sheet for the survey of geomorphic units at basic level. 

 

The main results of the GUS at broad, basic and detailed levels are three maps for macro-units, units and unit sub-

types (including sub-units, when relevant), respectively (e.g. Figure 3C maps macro-units). According to the survey 

level and rules (see Table 1 and section 2.3.2), the macro-unit and unit maps may also contain information on the 

spatial extent of features (areal or linear). The map for the detailed level may contain additional information on unit 

characteristics (e.g. sediment and vegetation characteristics, hydraulic conditions) as well as displaying sub-units. 

These maps can be processed to obtain multi-levels maps that combine the information collected (e.g. Figure 6 maps 

unit types and sub-types surveyed at basic and detailed levels, respectively). 

 

The time required to apply the GUS on a single reach (or sub-reach) depends on many factors, including the 

expertise and experience of the operator, the availability of necessary information and materials (particularly aerial 

photographs at good resolution) and the length and area of the reach. Approximately one day is required to survey 

one or more sub-reaches within a single reach, including desk- and field-based survey, but this time may be 

significantly reduced when surveying rivers with a simple and relatively uniform channel morphology, and may 



increase when surveying large rivers or those with a complex channel morphology (e.g. braided or wandering 

reaches). 

 

Figures 3 and 6 illustrate an application of the GUS at broad and basic level, respectively, for an unconfined reach 

which flows within a relatively narrow floodplain in the middle to lower portion of the Cecina river, Central Italy 

(location shown in Figure 3A). The channel is classified as sinuous with alternate bars, a gravel bed, a mean slope of 

approximately 0.003, and a mean width of about 50 m. The reach is classified to be in good morphological condition 

(Rinaldi et al., 2016a). The survey of macro-units at the broad level was carried out for the entire reach length (6.5 

km) and for two sub-reaches (about 1.5 km) by remote sensing. The survey of geomorphic units at the basic level 

was carried out at the sub-reach scale using high resolution aerial photos (15 cm) [A2]images followed by a field 

survey to better delineate the units and their sub-types. In particular, the field survey was useful to identify and 

delimit a bench (VB) within the bankfull channel and to define more precisely topographic differences between the 

modern floodplain (FF) and recent terraces (FT). Figure 6 shows an example of the output of the survey, including a 

basic level classification of geomorphic units at the sub-reach scale. The approximate time taken to produce the map 

in Figure 6 was one day for the image analysis, including the processing of raw images (georeferencing and 

mosaicking) and post-field corrections, and a half a day for the field survey. 

 

2.5 The GUS illustrated guidebook 

Geomorphic units, related macro-units and sub-types as well as examples of sub-units, are described in an illustrated 

guidebook (Rinaldi et al., 2015b). Each spatial unit is described in the form of a box (e.g. Figure 7) which gives the 

name of the unit; the identification code (for unit and macro-unit types); the main references that describe the unit 

type; a short but complete definition, including the river types where the unit is more likely to be found; distinctive 

characteristics compared to similar units; a picture and a sketch; some examples of equivalent terms. Similar 

definitions and descriptions of the main unit sub-types are also provided. For example, in the case of the unit "bank-

attached bar", descriptions of sub-types of units such as "side bar" or "point bar" or "counterpoint bar", etc. (e.g. 

Table 2) are included. In this example, the unit "bank-attached bar" is delineated at the basic level whereas the sub-

types can be identified at the detailed level. 

 

The guidebook allows units to be distinguished under a single classification scheme, according to their nature, their 

spatial setting and their position within the river corridor (e.g. water vs. sediment; floodplain vs. bankfull; mid-

channel vs. bank-attached); and the processes that led to their formation (e.g. a "forced riffle" is formed by bedrock 

outcrops, accumulation of coarse sediments or large wood elements). 

 

The guidebook also provides a list and short description of some examples of sub-units along with the main artificial 

features that may be encountered. 

 

Almost all geomorphic units included within the guidebook are drawn from fluvial geomorphology, take into 

account recent progress in river science research (e.g. Surian et al., 2009; Comiti & Mao, 2012; Buffington & 

Montgomery, 2013; Fryirs & Brierley, 2013; Gurnell, 2014; Gurnell et al., 2014; Rinaldi et al., 2016b). 

 

 



2.6 The analysis of geomorphic units: GUS indices 

In order to provide a consistent analysis of geomorphic units mapped, classified and characterised through the GUS, 

two synthetic indices have been developed that use information from the survey of the geomorphic units. The two 

GUS indices (GUSI) describe the spatial heterogeneity of a given reach in terms of geomorphic units and can be 

used (i) to better characterise the assemblage of geomorphic units, and (ii) to monitor the trend of changes in 

geomorphic units in a given reach, in terms of a decrease or increase in richness and density of geomorphic units. 

Such changes may reflect natural morphological dynamics or they may indicate impacts of pressures or 

interventions. The results obtained by applying the GUS and its indices at the sub-reach or reach scale need to be 

combined with a morphological assessment at reach-scale (e.g. the MQI, Rinaldi et al., 2013; Rinaldi et al., 2016a) 

to properly interpret the significance and relevance of the composition and heterogeneity of geomorphic units. This 

means that high or low values of the indices (e.g. more or less geomorphic units) are not meaningful in absolute 

terms, but the indices help to summarize results and facilitate comparison for management purposes (e.g. 

monitoring). 

 

2.6.1 Geomorphic Units Richness Index (GUSI-R) 

The Geomorphic Units Richness Index (GUSI-R) evaluates how many types of geomorphic units and macro-units 

(e.g. bar, island, riffle, secondary channel) are observed within a given reach in comparison with the maximum 

number of possible units: 

GUSI-R = Σ NTGU / n 

where NTGU is the total number of types of units and macro-units within the investigated reach (or sub-reach) (e.g., 

where riffles, pools and side bars are present, NTGU =3), whereas n is the total number of possible types of units and 

macro-units, i.e. 35. 

For the calculation of this index, the presence/absence of each type of unit is required (carried out at the basic level 

of survey). 

 

2.6.2 Geomorphic Units Density Index (GUSI-D) 

The Geomorphic Units Density Index (GUSI-D) calculates the total number of geomorphic units (independent of 

type) within the investigated reach per unit length: 

GUSI-D = Σ NGU / L 

where NGU is the total number of geomorphic units observed along the investigated reach (or sub-reach) (e.g., in the 

case of 7 riffles, 6 pools and 3 bars, NGU = 16), whereas L is the length (in km) of the investigated reach (or sub-

reach). 

 

The calculation of this index requires the number of units and macro-units of each type to be measured (this is 

carried out at the basic level of survey). 

 

 

  



2.6.3 Sub-indices 

The method allows a series of sub-indices to be calculated, expressing the abundance and density of geomorphic 

units for each spatial setting, i.e. bankfull channel and floodplain. The following richness and density sub-indices are 

defined: 

GUSI-RBC = Σ NTBCGU / n 

GUSI-RFP = Σ NTFPGU / n 

GUSI-DBC = Σ NBCGU / n 

GUSI-DFP = Σ NFPGU / n 

 

where GUSI-RBC is the richness sub-index of bankfull channel geomorphic units, NTBCGU is the total number of 

types of bankfull channel geomorphic units, GUSI-RFP is the richness sub-index of floodplain geomorphic units, 

NTFPGU is the total number of types of floodplain geomorphic units, GUSI-DBC is the density sub-index of bankfull 

channel geomorphic units, NBCGU is the total number of bankfull channel geomorphic units (independent of the 

type), GUSI-DFP is the density sub-index of floodplain geomorphic units, NFPGU is the total number of floodplain 

geomorphic units (independent of the type). 

 

Lastly, it is possible to calculate a series of sub-indices expressing the density of geomorphic units for each macro-

unit. The calculation requires measurements of the area of each macro-unit (this is carried out at the broad level). 

The sub-indices are defined as follows: 

GUSI-DC = Σ NCGU / AC 

GUSI-DE = Σ NEGU / AE 

GUSI-DV = Σ NVGU / AV 

GUSI-DF = Σ NFGU / AF 

GUSI–DW = Σ NWGU / AW 

 

where, for bankfull channel macro-units, GUSI-DC is the density sub-index of baseflow channel geomorphic units, 

NCGU is the number of baseflow channel geomorphic units, AC is the area (in km2) of the baseflow channel macro-

unit, GUSI-DE is the density sub-index of emergent sediment geomorphic units, NEGU is the number of emergent 

sediment geomorphic units, AE is the area (in km2) of the sediment emergent macro-unit, GUSI-DV is the density 

sub-index of in-channel vegetation geomorphic units, NVGU is the number of in-channel vegetation geomorphic 

units, AV is the area (in km2) of the in-channel vegetation macro-unit; for floodplain macro-units, GUSI-DF is the 

density sub-index of riparian zone geomorphic units, NFGU is the number of riparian zone geomorphic units, AF is the 

area (in km2) of the riparian zone geomorphic units, GUSI-DW is the density sub-index of floodplain aquatic zones 

geomorphic units, NWGU is the number of floodplain aquatic zones geomorphic units, AW is the area (in km2) of 

floodplain aquatic zones macro-unit. 

 

Table 3 summarises the results of applying the GUS indices and sub-indices to the sub-reach shown in Figure 6. 

 

3. Discussion: the GUS and the analysis of river hydromorphology and physical habitats 

The analysis of geomorphic units through application of the GUS represents a first step in an overall analysis of 

river conditions. The data and information collected through the GUS should be integrated and interpreted within a 



broader and more general spatio-temporal context in order to understand the character and behaviour of geomorphic 

units within a given river system (e.g. Brierley et al., 2013). In this way it would be possible to assess overall river 

conditions and guide effective river management. Indeed, geomorphic maps based on geomorphic units provide a 

template to interpret and quantify process relationships and their controls, to evaluate river change, and to assess 

evolutionary trajectories (Wheaton et al., 2015). 

 

This section discusses the contribution of the GUS in terms of river geomorphic units in the field of river 

classification; presents some potential applications of the method; and summarises weakness and future challenges 

to improve its application. 

 

3.1 The GUS and the classification of river geomorphic units 

River classification is a well-known issue in river geomorphology and is relevant to several applications (see for 

instance Rinaldi et al., 2016b). In this context, the hierarchical approach, the survey system, and the illustrated 

guidebook for geomorphic units described in this paper are in line with recent progress in fluvial geomorphology. 

 

Compared to recent methodological frameworks for the identification and classification of geomorphic units (e.g. 

Wheaton et al., 2015), the GUS does not use specific topographic, hydraulic or sedimentary thresholds to identify 

geomorphic units. However, the GUS provides a detailed guidebook concerning the main geomorphic units that can 

be found in a large range of river types, as well as a rational, process-oriented guided system for the delineation, 

classification and analysis of geomorphic units. In particular, it consists of: (i) an illustrated guidebook for the 

identification of 35 types plus 63 sub-types of geomorphic units (including macro-units) compiled by a group of 

fluvial geomorphologists, covering a wide range of sub-domains and thus of types of units (e.g. vegetation, bed 

configuration, sedimentary units) and types of rivers (e.g. lowland systems, mountain systems, highly dynamic 

systems, etc.); (ii) a system for unit survey based on a spatially-nested hierarchical framework which includes three 

spatial scales associated with three levels of characterization.  

 

The guidebook (i), which resulted from an extensive review of existing and consolidated literature, combines the 

knowledge inherited from the long tradition on river classification to recent progress for example in the study of 

steep mountain systems (e.g. Comiti & Mao, 2012), and in the study of the interaction between vegetation and 

physical processes (e.g. Gurnell et al., 2016c). The guidebook also includes a wide range of vegetation units that are 

usually poorly considered by classic river classification approaches (e.g. benches, berms and shelves). A clear, 

process-based definition and description of distinctive characteristics of each unit is reported (e.g. genetic processes, 

topographic or sedimentary characters, presence of vegetation), as well as equivalent terms adopted by different 

authors for equivalent units worldwide.  

 

The GUS system (ii) adopts a top-down approach. The delineation of units is provided at first accounting for their 

nature and their location within the river corridor (i.e. sediment, water or vegetation and bankfull vs. floodplain, 

respectively). The definition of each unit is then contextualised within the river type to which it belongs and thus it 

includes the interpretation of processes. The distinction between "main" and "secondary" geomorphic units (unit 

types and sub-types, respectively) is also consistent with the hierarchical structure of the survey system that 

considers different levels of survey detail according to survey aims. This represents a good compromise and a 



considerable effort in order to embrace similar unit descriptions under a common classification scheme that accounts 

for process-based classification (e.g. "side bar" and "point bar" are sub-types of "bank-attached bars" formed under 

different conditions). Indeed, it often happens that different authors adopt different terms to describe similar or even 

the same spatial units, as illustrated in Table 2 for the unit "bank-attached bar". Thus, although the mapping of river 

features, whether based on field or remote sensing surveys, may be subject to some subjectivity and accuracy, the 

GUS system and its guidebook help to achieve identification of distinctive geomorphic units linked to specific 

channel and river processes with a low margin of human error. 

 

The system also foresees the delineation and characterization of a potentially unlimited number of smaller spatial 

units at a scale lower than those of geomorphic units, allowing links to be established with the biota (i.e. sub-units; 

see section 3.3). 

 

In the context of general frameworks for geomorphic unit analysis that consider forms, basic processes, and control 

factors (e.g. Brierley et al., 2013), the GUS fits well within them providing a first step for the survey and 

characterisation of geomorphic units. Indeed, the identification and delineation of geomorphic units within the GUS 

requires some interpretation of the processes that generated them (e.g. distinguishing between a modern floodplain 

and a recent terrace). 

 

In summary, the GUS could be considered as complementary to frameworks such as those recently published by 

Brierley et al. (2013) and Wheaton et al. (2015). It provides detailed unit characterisation at different spatial scales 

(from landscape to a single river element) that can be adopted for many applications, as described in the following 

sections. 

 

3.2 Characterising geomorphic units to understand river reach hydromorphology 

The outputs from application of the GUS can be used for spatial and temporal analyses of geomorphic units to 

support understanding of river hydromorphology at the reach scale for a variety of aims, including: 

(i) to provide a more detailed characterisation of the morphology at the reach scale, for example to support the 

classification of the river type (e.g. the Extended River Typology; Rinaldi et al., 2016b); 

(ii) to support the analysis of morphological quality of the reach by integrating GUS with a morphological 

assessment method (e.g. the MQI; Rinaldi et al., 2013); 

(iii) as a monitoring tool, in order to detect small scale morphological changes (e.g. the effect of different 

hydrological conditions) and to support the survey of the evolution of the morphology at the reach scale through 

time by integrating GUS with existing monitoring tools (e.g. the Morphological Quality Index for monitoring; 

Rinaldi et al., 2015c); 

(iv) to evaluate the effects of management actions on hydromorphology (e.g. after an intervention or restoration). 

 

The outputs from applying the GUS can thus support different stages of the hydromorphological assessment 

framework developed within REFORM to achieve more effective river and catchment management (Rinaldi et al., 

2015a; Rinaldi et al., 2016a). In particular, the in-depth identification and characterization of problems at the scale 

of geomorphic units through application of the GUS in combination with the MQI and the MQIm can provide an 



overall assessment of river reaches that is useful for understanding their functioning and, therefore, for supporting 

the identification of appropriate management actions (see also Rinaldi et al., 2016a). 

 

It is important to stress that the outputs of the GUS must be interpreted in combination with the results of a 

morphological assessment at the reach scale in order to better interpret the significance and relevance of the 

diversity of geomorphic units. Indeed, changes in the composition and number of geomorphic units depend on 

controls and processes acting at the reach or larger scales. For example, an increase in the abundance and diversity 

of geomorphic units in a given reach is not necessarily related to an improvement of morphological conditions but 

may be associated with the presence of artificial structures (e.g. weirs). On the contrary, a low diversity of 

geomorphic units can be the result of the ‘natural’ simple geomorphic structure of a particular river type (e.g. a 

bedrock mountain channel; Rinaldi et al., 2016a). This is why the GUS indices do not aim to assess better or poorer 

river conditions. For example, in the case of the Cecina river reach, which displays good morphological conditions, 

the typical assemblage of geomorphic units at the sub-reach scale corresponds to what expected for the type of 

channel morphology (sinuous with alternate bars); it comprises riffles, pools, glides, lateral bars (with occasional 

braiding), a highly sinuous low-flow channel, secondary channels, a modern floodplain, and recent terraces (Rinaldi 

et al., 2016a) (Figure 6). GUS indices have been designed to reflect existing natural differences amongst river types, 

given that they account for all geomorphic units and thus river types together. Such differences are also apparent 

when sub-indices are compared for different spatial settings or macro-units within the same reach (Table 3). For 

example the sub-reach in Figure 6 shows a higher complexity of units in the bankfull (GUSI-RBC) than in the 

floodplain (GUSI-RFP) spatial setting, as expected for this quite dynamic type of river reach (Table 3). In contrast, 

the high density of channel units (GUSI-DC) is the results of the hydrological stress conditions experienced by the 

river reach in this agricultural area. 

 

The GUS is also a promising monitoring tool for observing the evolution of geomorphic units through time as a 

consequence of interventions or restoration, as well as in response to variable hydrological conditions under climate 

change. For these purposes, geomorphic units are first defined at base-flow, corresponding to the flow conditions 

associated with the definition of units in the present work. Repeat surveys under low flow conditions can establish 

changes through time, whereas survey under other flow conditions can help to observe the variation in unit extent, 

connectivity, etc. The results of application of the GUS can also be used to compare similar river types, for example 

to evaluate the effects of different management actions, because similar river types usually display a similar range of 

geomorphic units thus enabling comparison of expected versus observed units. 

 

3.3 The spatial and temporal variation of physical habitats for biota 

The survey and classification of geomorphic units can support understanding of the links between 

hydromorphological conditions, ecological conditions and biota, because geomorphic units represent physical 

habitats for the flora and fauna that inhabit rivers. However, investigation of geomorphic units alone at a given time 

cannot provide information about the condition of physical habitats and thus the conditions for biota. Physical 

habitats in rivers show high turnover rates as well as high spatial heterogeneity in response to hydromorphological 

dynamics driven mainly by the hydrological regime (e.g. Tockner et al., 2006; Poole, 2010). As a consequence, key 

properties of habitat conditions (e.g. size, water depth, turbulence, shear stress, substrate composition, temperature, 

availability of cover and food) that affect habitat use by the river biota, change over time. For these reasons it is 



more appropriate to consider geomorphic units and physical habitats as dynamic instead of static features, to study 

them through time, and to study the biota synchronously (in space and time) in order to link the physical to the 

biological environments and their dynamics. 

 

As previously stated, the GUS units and sub-units correspond to the mesohabitat scale and small sub-units can also 

correspond to the microhabitat scale (i.e. river elements). This means that the spatial and temporal analyses of 

geomorphic units can be used for the survey and characterisation of physical habitats at meso (units, sub-units) and 

microhabitat (substrates, flow types, etc.) scales, thus allowing links to be established with organisms even to the 

scale of individuals (Biggs et al., 2005). Moreover, the macro-unit analysis is also useful for the investigation of the 

broad fluvial landscape (riverine landscape ecology; e.g. Ward et al., 2002). These kinds of spatial analyses can 

incorporate both landscape description metrics (e.g. patch form, connectivity, ecotones length, etc.) and diversity 

indices (e.g. Shannon, richness, dominance, etc.). 

 

The analysis of relationships between geomorphic units (i.e. physical habitats) and biota through application of the 

GUS and its indices can provide a physical basis for biological surveys in terms of habitat heterogeneity, 

composition and attributes at a scale that is geomorphologically meaningful. This is true for example for organisms 

like fishes and odonates, which given their size and habitat needs are sensitive to habitat types and diversity at the 

scale of geomorphic units (e.g. Wolter et al., 2016; Golfieri et al., 2016; for fishes and odonates, respectively).  

 

Additionally, the GUS provides basic maps for the survey and characterisation of mesohabitats that can be used to 

(i) apply habitat simulation models for river habitat evaluation and environmental flow assessment (e.g. 

MesoHABSIM, Parasiewicz et al., 2013; Figure 8); (ii) calculate the spatio-temporal variation of habitats through 

the calculation of habitat indices in relation to aquatic fauna (e.g. Vezza et al., 2014, 2015). In particular, the 

integration of mesoscale habitat models and GUS can define a more consistent modelling framework that (i) can 

allow data to be collected at different flow conditions and a more appropriate scale for addressing environmental 

river management problems; and (ii) may allow results to be upscaled to river sectors or entire catchments, which 

represent more relevant scales for the life-history strategies of many riverine species (Rinaldi et al., 2015a). A robust 

link between geomorphic classification frameworks and common eco-hydraulic tools, such as habitat simulation 

models, is still in the early stage of development (Maddock et al., 2013) and GUS can be considered one step for 

further research and applications in this interdisciplinary field. 

 

River floodplains also show high spatial complexity due to variability in their topography and spatial extent (e.g. 

Scown et al., 2015). This complexity is poorly addressed in applied river science given the greater interest of 

scientists and river managers in the most active zone of the river systems (i.e. channel, banks and nearby riparian 

areas; Belletti et al., 2015a). As a consequence, most methods, procedures, and models developed for the survey and 

assessment of physical habitats in relation to biota focus on the river aquatic components (e.g. Hawkins et al., 1993; 

Raven et al., 1997; Vezza et al., 2015). Existing procedures that take account of the relationship between physical 

habitats and biota in the more terrestrial zones of the river corridor generally address river-riparian vegetation 

interactions (e.g. Merritt et al., 2010; Egger et al., 2012; Gurnell et al., 2012; Garofano-Gomez et al., 2014; Gurnell 

et al., 2016b). Therefore, the fluvial terrestrial fauna and the terrestrial life stages of aquatic fauna have received 

relatively little attention (e.g. ground-dwelling terrestrial arthropods; Datry et al., 2014). There is a need to develop 



models of terrestrial habitats within the floodplain and the bankfull channel and combine them with ecological and 

biological models, in order to obtain more complete and deeper assessments of river conditions at the ecosystem 

scale. The GUS maps characterise terrestrial habitats (i.e. bankfull emergent and floodplain units), thus representing 

a valid supporting tool for terrestrial habitat modelling and biological surveys. 

 

3.4 Limitations and future challenges 

Despite the several applications that it supports, the GUS has some limitations that require further research and 

testing as well as greater synergy with ongoing technological advances.  

 

Current limitations of the GUS can be summarized as follows: 

(i) Application of the GUS requires quite a good level of expertise in fluvial geomorphology. 

(ii) To date, it depends quite heavily on field-based surveys. 

(iii) Although the GUS is based on clear, specific and consolidated description of geomorphic units, identification of 

each unit type could be improved by developing, testing and supplying thresholds definitions. 

(iv)  Although the method is recommended to be applied under low-flow condition, river spatial features are stage-

dependent. Therefore, further tests are needed to compare unit recognition under different flow conditions. 

(v) The GUS needs to be more extensively tested across a wide range of river types, mainly to improve its 

application as tool for the analysis of physical habitats and thus to establish robust links with all the biological 

components. 

 

In relation to technological advances, although field survey is a fundamental step in hydromorphological analysis, 

especially in some specific conditions (e.g. narrow and deep valleys, dense vegetation cover, small channels), recent 

and growing technological developments are leading to an increasing application of remote sensing for 

characterising river hydromorphology (Bizzi et al., 2016). Such technological advances have the potential to allow 

more objective, high-frequency assessments, and repeatable and large scale monitoring of river systems (e.g. Casado 

et al., 2015; Bizzi et al., 2016). In this context, combining the science that underpins the GUS with remote/proximal 

sensing and GIS has enormous potential to provide a precise, robust and repeatable delineation of geomorphic units 

and physical habitats within a well-framed geomorphological framework. The next step is to devise tools (e.g. 

algorithms, GIS procedures) to enable the translation of procedures incorporated in the GUS into automatic or semi-

automatic mapping of geomorphic units for the extraction of map-derived indicators of river hydromorphology (e.g. 

Bizzi & Lerner, 2012; Casado et al., 2015; Roux et al., 2015; Demarchi et al., 2016). 

 

4. Final remarks 

The assessment of river hydromorphological conditions is now recognised as a fundamental step in the evaluation of 

river ecological conditions. Indeed hydromorphological pressures are often one of the main causes of river system 

degradation, and existing biological tools are often rather insensitive to these pressures (Friberg, 2014; Rinaldi et al., 

2015c), preventing the link between river hydromorphology and biota to be fully explored and understood. 

The GUS has been developed to survey, classify and characterise geomorphic units and thus physical habitats 

according to a well-defined spatially- (and temporally-) nested hierarchical framework for river hydromorphology 

(Gurnell et al., 2016a; Rinaldi et al., 2016a). This work is part of a wider effort to develop tools for river survey that 

can be shared across Europe in the context of the Water Framework Directive. The GUS is a qualitative tool for the 



characterisation of reach hydromorphology at the scale of geomorphic units which supports an in-depth evaluation 

of river conditions. It is also a monitoring tool for assessing the impact of management actions on river 

hydromorphology at the scale of geomorphic units and the evolution of physical habitats through time. It thus 

constitutes a key tool to link morphological status at the reach scale with biological status at the site scale. 

The GUS has been developed within a European context to cover a wide range of river conditions and types, but 

further improvements may be needed to cover specific situations or to include new findings and technological 

developments. In particular, the advances in remote and proximal sensing sensors and platforms (e.g. UAVs and 

new generation satellites) and techniques (e.g. application of information and communication technologies 

procedures) will aid the application of GUS to remote areas and at large scales. 

 

Acknowledgments 

The work leading to this paper has received funding from ISPRA (Istituto Superiore per la Protezione e la Ricerca 

Ambientale, Roma) (Project “Development of a system for the survey and classification of geomorphic units of 

streams”), and from the European Union’s FP7 programme under Grant Agreement No. 282656 (REFORM 2011-

2015). Johan Kling (DHI) is acknowledged for his support. More details on the GUS can be obtained from part 4 of 

Deliverable D6.2 (Rinaldi et al. 2015b), which is downloadable from 

http://www.reformrivers.eu/results/deliverables. 

 

 

References 

Amoros, C., Petts, G.E. (Eds.), 1993. Hydrosystèmes fluviaux. Collection d'écologie, Masson. 

 

Bain, M.B., Knight, J.G., 1996. Classifying stream habitat using fish community analysis. In: Leclerc M., Valentin 

S., Boudreau A., Cote Z. (Eds), Ecohydraulics 2000, 2nd International Symposium, INRS-Eau, Quebec City, 

Canada, pp.107–117. 

 

Barquín, J, Fernández, D, Álvarez, M, Peñas, F, 2011. Riparian quality and habitat heterogeneity assessment in 

Cantabrian rivers. Limnetica 30 (2), 329-346. 

 

Belletti, B., Dufour, S., Piégay, H., 2013. Regional variability of aquatic pattern in braided reaches (example of the 

French Rhône basin). Hydrobiologia 712, 25-41. DOI:10.1007/s10750-012-1279-6 

 

Belletti, B., Dufour, S., Piégay, H., 2014. Regional assessment of braided riverscape multi-decadal changes 

following large floods (Example of 12 reaches in South East of France). Advances in Geosciences 37, 57-71. 

DOI:10.5194/adgeo-37-57-2014 

 

Belletti, B., Rinaldi, M., Buijse, A.D., Gurnell, A.M., Mosselman, E., 2015. A review of assessment methods for 

river hydromorphology. Environmental Earth Sciences 73 (5), 2019-2100. DOI:10.1007/s12665-014-3558-1 

 



Belletti, B., Rinaldi, M., Comiti, F., Nardi, L., Mao, L., Bussettini, M., 2015b. Development of a system for the 

classification of geomorphic units aimed at characterizing physical habitats and stream morphology. In: 

Angelopoulos, N., Buijse, A.D. et al. (Eds.), Proceedings of the International Conference on River and Stream 

Restoration “Novel Approaches to Assess and Rehabilitate Modified Rivers”. FP7 REFORM deliverable 7.5, pp- 

86-91. 

 

Belletti, B., Rinaldi, M., Comiti, F., Nardi, L., Mao, L., Bussettini, M., 2015. The Geomorphic Units survey and 

classification System (GUS). I.S. Rivers - Integrative sciences and sustainable development of rivers, Lyon, France, 

06/2015. 

 

Benda, L., Poff, N.L., Miller, D., Dunne, T., Reeves, G., Press, G. and Pollock, M.M., 2004. The Network 

Dynamics Hypothesis: How Channel Networks Structure Riverine Habitats. BioScience 54 (5), 413-427. 

 

Biggs, B.J.F., Nikora, V.I., Snelder, T.H., 2005. Linking scales of flow variability to lotic ecosystem structure and 

function. River Research and Applications 21, 283–298. 

 

Bizzi, S., Lerner, D.N., 2012. Characterizing physical habitats in rivers using map-derived drivers of fluvial 

geomorphic processes. Geomorphology 169-170, 64–73. 

 

Bovee, K.D., Lamb, B.L., Bartholow, J.M., Stalnaker, C.B., Taylor, J., Henriksen, J., 1998. Stream Habitat Analysis 

Using the Instream Flow Incremental Methodology. Report USGS/BRD-(1998)-004. U.S. Geological Survey, 

Biological Resources Division Information and Technology. 

 

Brierley, G.J., Fryirs, K.A., 2005. Geomorphology and river management: applications of the river styles 

framework, Blackwell, Oxford. 

 

Brierley, G.J., Fryirs, K., Cullum, C., Tadaki, M., Huang, H.Q., Blue, B., 2013. Reading the landscape: integrating 

the theory and practice of geomorphology to develop place-cd understandings of river systems. Progress in Physical 

Geography 37 (5), 601–621. 

 

Buffington, J.M., Montgomery, D. R., 2013. Geomorphic classification of rivers. In: Schroder, J., Wohl, E. (Eds.), 

Treatise on Geomorphology, Academic Press, San Diego, 9, 730-767. 

 

Carbonneau, P., Piégay, H., 2012. Fluvial Remote Sensing For Science and Management. J. Wiley and Sons, 

Chichester. 

 

Casado, M.R., Gonzalez, R.B., Kriechbaumer, T., Veal, A., 2015. Automated Identification of River 

Hydromorphological Features Using UAV High Resolution Aerial Imagery. Sensors 15, 27969-27989. 

DOI:10.3390/s151127969. 

 



Clifford, N.J., Harmar, O.P., Harvey, G., Petts, G., 2006. Physical habitat, eco-hydraulics and river design: a review 

and re-evaluation of some popular concepts and methods. Aquatic Conservation: Marine and Freshwater 

Ecosystems 16 (4), 389–408. 

 

Comiti, F., Mao, L., 2012. Recent advances in the dynamics of steep channels. In: Church, M., Biron, P.M., Roy, 

A.G. (Eds.), Gravel-bed rivers: processes, tools, environments. John Wiley and Sons Ltd., Chichester, West Sussex, 

England, pp. 353-377. 

 

Datry, T., Corti, R., Belletti, B., Piégay, H., 2014. Ground-dwelling arthropod communities across braided river 

landscape mosaics: a Mediterranean perspective. Freshwater Biology 59, 1308-1322. DOI:10.1111/fwb.12350. 

 

Demarchi, L., Bizzi, S., Piégay, H., 2016. Remote Sensing Hierarchical Object-Based Mapping of Riverscape Units 

and in-Stream Mesohabitats Using LiDAR and VHR Imagery. Remote Sensing 8 (2), 97. 

 

Egger, G., Politti E., Woo, H., Cho, K.-H., Park, M., Cho, H., Benjankar, R., Lee, N.-J., Lee, H., 2012. Dynamic 

vegetation model as a tool for ecological impact assessments of dam operation. Journal of Hydro-Environment 

Research 6 (2), 151-161. 

 

Fausch, K.D., Torgersen, C.E., Baxter, C.V., Li, H.W., 2002. Landscapes to Riverscapes: Bridging the Gap between 

Research and Conservation of Stream Fishes. BioScience, 52 (6), 483-498. 

 

Friberg, N., Bonada, N., Bradley, D.C., Dunbar, M.J., Edwards, F.K., Grey, J., Hayes, R.B., Hildrew, A.G., 

Lamouroux, N., Trimmer, M., Woodward, G., 2011. Biomonitoring of Human Impacts in Freshwater Ecosystems: 

The Good, the Bad and the Ugly. Advances in Ecological Research 44, 1–68. DOI:10.1016/B978-0-12-374794-

5.00001-8. 

 

Friberg, N., 2014. Impacts and indicators of change in lotic ecosystems. WIREs Water 1, 513-531. 

 

Frissell, C.A., Liss, W.J., Warren, C.E., Hurley, M.D., 1986. A hierarchical framework for stream habitat 

classification: Viewing streams in a watershed context. Environmental Management 10 (2), 199-214. 

 

Fryirs, K.A., 2003. Guiding principles for assessing geomorphic river condition: application of a framework in the 

Bega catchment, South Coast, New South Wales, Australia. Catena 53, 17–52. 

 

Fryirs, K.A., Brierley, G.J., 2013. Geomorphic Analysis of River Systems: An Approach to Reading the Landscape. 

John Wiley and Sons, Chichester, UK. 

 

Garofano-Gomez, V., Vezza, P., Martínez-Capel, F., Francés, F., Egger, G., Ferreira, T., 2014. Key drivers of 

riparian vegetation successional pathways in a Mediterranean river system. 10th International Symposium on 

Ecohydraulics 2014, Trondheim, Norway. 

 



Golfieri, B., Hardersen, S., Maiolini, B., Surian, N., 2016. Odonates as indicators of the ecological integrity of the 

river corridor:Development and application of the Odonate River Index (ORI) in northern Italy. Ecological 

Indicators 61, 234–247. 

 

Gostner, W., Alp, M., Schleiss, A.J., Robinson, C.T., 2013. The hydro-morphological index of diversity: a tool for 

describing habitat heterogeneity in river engineering projects. Hydrobiologia 712, 43-60. 

 

Gurnell, AM., 2014. Plants as river ecosystem engineers. Earth Surface Processes and Landforms 39 (1), 4–25. 

 

Gurnell, A.M., Bertoldi, W., Corenblit, D., 2012. Changing river channels: the roles of hydrological processes, 

plants and pioneer landforms in humid temperate, mixed load, gravel bed rivers. Earth Science Reviews 111, 129-

141. 

 

Gurnell, A.M., Belletti, B., Bizzi, S., Blamauer, B., Braca, G., Buijse, A.D., Bussettini, M., Camenen, B., Comiti, F., 

Demarchi, L., García De Jalón, D., González Del Tánago, M., Grabowski, R., Gunn, I., Habersack, H., Hendriks, D., 

Henshaw, A., Lastoria, B., Latapie, A., Marcinkowski, P., Martínez Fernández, V., Mosselman, E., Mountford, J.O., 

Nardi, L., Okruszko, T., O’Hare, M.T., Palma, M., Percopo, C., Rinaldi, M., Surian, N., Weissteiner, C., Ziliani, L., 

2014. A multi-scale framework and indicators of hydromorphological processes and forms. Deliverable 2.1, a report 

in four parts of REFORM (REstoring rivers FOR effective catchment Management), a Collaborative project (large-

scale integrating project) funded by the European Commission within the 7th Framework Programme under Grant 

Agreement 282656. 

 

Gurnell, A.M., Corenblit, D., García De Jalón, M. González Del Tánago, R.C. Grabowski, R.C., O’Hare, M.T., 

Szewczyk, M., 2016c. A conceptual model of vegetation-hydromorphology interactions within river corridors. River 

Research and Applications 32, 142-163. 

 

Gurnell, A.M., Rinaldi, M., Belletti, B., Bizzi, S., Blamauer, B. Braca, G., Buijse, A.D., Bussettini, M., Camenen, 

B., Comiti, F., Demarchi, L., García De Jalón, D., González Del Tánago, M., Grabowski, R., Gunn, I., Habersack, 

H., Hendriks, D., Henshaw, A., Klösch, M., Lastoria, B., Latapie, A., Marcinkowski, P., Martínez Fernández, V., 

Mosselman, E., Mountford, J.O., Nardi, L., Okruszko, T., O’Hare, M.T., Palma, M., Percopo, C., Surian, N., van de 

Bund, W., Weissteiner, C., Ziliani, L., 2016a. A multi-scale hierarchical framework for developing understanding of 

river behaviour to support river management. Aquatic Sciences 78 (1), 1-16. DOI:10.1007/s00027-015-0424-5. 

 

Gurnell, A.M., Corenblit, D., Garcia de Jalong, D., Gonzalez del Tanago, M., Grabowski, R.C., O’Hare, M.T., 

Szewczyk, M., 2016b. A conceptual model of vegetation-hydrogeomorphology interactions within river corridors. 

River Research and Applications 32, 142-163. 

 

Halwas, K.L., Church, M., 2002. Channel units in small, high gradient streams on Vancouver Island, British 

Columbia. Geomorphology 43, 243-256. 

 



Harvey, G.L., Clifford, N.J., 2009. Microscale hydrodynamics and coherent flow structures in rivers: implications 

for the characterization of physical habitat. River Research and Applications 25, 160–180. DOI:10.1002/rra.1109. 

 

Hauer, C., Unfer, G., Schmutz, S., Habersack, H., 2007. The importance of morphodynamic processes at riffles used 

as spawning grounds during the incubation time of nase (Chondrostoma nasus). Hydrobiologia 579, 15-27. 

 

Hauer, C., Unfer, G., Tritthart, B.M., Formanna, A.E., Habersack, H.M., 2011. Variability of mesohabitat 

characteristics in riffle-pool reaches: testing an integrative evaluation concept (FGC) for MEM-application. River 

Research and Applications 27, 403–430. DOI:10.1002/rra.1357. 

 

Hawkins, C.P., Kershner, J.L., Bisson, P.A., Bryant, M.D., Decker, L.M., Gregory, S.V., McCullough, D.A., 

Overton, C.K., Reeves, G.H., Steedman, R.J., Young, M.K., 1993. A hierarchical approach to classifying stream 

habitat features. Fisheries 18 (6), 3-12. DOI:10.1577/1548-8446(1993)018<0003:AHATCS>2.0.CO;2. 

 

Jorde, K., Schneider, M., Zöllner, F., 2000. Analysis of instream habitat quality – preference functions and fuzzy 

models. In: Hu, W. (Ed.), Stochastic Hydraulics 2000. Balkema, Rotterdam, pp. 671–680. 

 

Jowett, I.G., 1993. A method for objectively identifying pool, run and riffle habitats. New Zealand Journal of 

Marine and Freshwater Research 27, 241–248. 

 

Kemp, J.L., Harper, D.M., Crosa, G.A., 1999. Use of “functional habitats” to link ecology with morphology and 

hydrology in river rehabilitation. Aquatic Conservation: Marine and Freshwater Ecosystems 9 (1), 159-178. 

 

Ladson, A.R., White, L.J., Doolan, J.A., Finlayson, B.L., Hart, B.T., Lake, P.S., Tilleard, J.W., 1999. Development 

and testing of an index of stream condition for waterway management in Australia. Freshwater Biology 41, 453–

468. 

 

LAWA (2002a) Gewässerstrukturkartierung in der Bundesrepublik Deutschland. Verfahren für mittelgroße bis 

große Fließgewässer. Länderarbeitsgemeinschaft Wasser, Schwerin. 

 

LAWA (2002b) Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland - Übersichtsverfahren. 

Empfehlungen Oberirdische Gewässer. Entwurf April 2002. Länderarbeitsgemeinschaft Wasser. 

 

Maddock, I., Bird, D., 1996. The application of habitat mapping to identify representative PHABSIM sites on the 

River Tavy, Devon, UK. In: Lecerc, M., Capra, H., Valentin, S., Boudreault, A., Cote, Y. (Eds.), Proceedings of the 

2nd International Symposium on Habitat Hydraulics. IRS-EAU; FQSA; IAHRAIRH, Quebec, Canada, pp. 203–214. 

 

Maddock, I., Harby, A., Kemp, P., Wood, P.J. (Eds.), 2013. Ecohydraulics: An Integrated Approach, Wiley-

Blackwell. 

 



Merritt, D.M., Scott, M.L., Poff, L.N., Auble, G.T., Lytle, D.A., 2010. Theory, methods and tools for determining 

environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology 55 (1), 

206-225. DOI:10.1111/j.1365-2427.2009.02206.x. 

 

Milan, D.J., Heritage, G.L., Large, A.R.G., Entwistle, N.S., 2010. Mapping hydraulic biotopes using terrestrial laser 

scan data of water surface properties. Earth Surface Processes and Landforms 35 (8), 918-931. 

 

Montgomery, D.R., Buffington, J.M., 1997. Channel reach morphology in mountain drainage basins. Geological 

Society of America Bulletin 109, 596-611. 

 

Montgomery, D.R., Buffington, J.M., 1998. Channel processes, classification and response potential. In: Naiman 

R.J., Bilby R.E. (Eds.), River ecology and management. Springer-Verlag Inc., New York, pp. 13-42. 

 

Mosselman, E., Angelopoulos, N., Belletti, B., Brouwer, R., Gurnell, A.M., Friberg, N., Kail, J., Reichert, P., 

Geerling, G., 2015. Guidance and decision support for cost-effective river and floodplain restoration and its benefits. 

Deliverable 6.3 of REFORM (REstoring rivers FOR effective catchment Management), a Collaborative project 

(large-scale integrating project) funded by the European Commission within the 7th Framework Programme under 

Grant Agreement 282656. 

 

National Environmental Research Institute, 1999. National physical habitat index. In: Mc Ginnity, P.M., Mills, P., 

Roche, W., Müller, M. (Eds.), A desk study to determine a methodology for the monitoring of the ‘morphological 

conditions’ of Irish Rivers. Final report. Environmental RTDI Programme 2000–2006. Central Fisheries Board - 

Compass Informatics - EPA. 

 

Newson, M.D., Newson, C.L., 2000. Geomorphology, ecology and river channel habitat; mesoscale approaches to 

basin-scale challenges. Progress in Physical Geography 24 (2), 195–217. 

 

Padmore, C.L., 1998. The role of physical biotopes in determining the conservation status and flow requirements of 

British rivers. Aquatic Ecosystem Health and Management 1, 25–35. 

 

Padmore, C.L., Newson, M.D., Charlton, M.E., 1996. Instream habitat: Geomorphological guidance for habitat 

identification and characterisation. In: Rowntree, K.M. (Ed.), Thehydraulics of Phisical Biotopes - Terminology, 

Inventory and Calibration. Report of a workshop held at Citrusdal 4-7 February 1995. WCR Report KV84/96, 

Citrusdal, pp. 27-41. 

 

Parasiewicz, P., 2001. MesoHABSIM: a concept for application of instream flow models in river restoration 

planning. Fisheries Research 26, 6–13. 

 

Parasiewicz, P., 2007. The MesoHABSIM model revisited. River Research and Applications 23, 893-903. 

 



Parasiewicz, P., Rogers, J.N., Vezza, P., Gortazar, J., Seager, T., Pegg, M., Wiśniewolski, W., Comoglio, C., 2013. 

Applications of the MesoHABSIM Simulation Model. In: Maddock, I., Kemp, P., Wood, P. (Eds.), Ecohydraulics: 

an integrated approach. John Wiley & Sons Ltd, 109-124. 

 

Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K., Hughes, R.M., 1989. Rapid bioassessment protocols for use 

in streams and rivers- Benthic macroinvertebrates and fish. USEPA/440/4-89-001. US Environmental Protection 

Agency. Washington, D.C. In: Barbour, M.T., Gerritsen, J., Snyder, B.D., Stribling, J.B. (Eds.), Rapid 

bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish, 

2nd edn. EPA 841-B-99-002 U.S. 

 

Platts, W.S., Megahan, W.F., Minshall, G.W., 1983. Methods for evaluating stream, riparian, and biotic conditions. 

US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. Ogden, UT. 

 

Poole, G.C., 2010. Stream hydrogeomorphology as a physical science basis for advances in stream ecology. Journal 

of the North American Benthological Society 29,(1), 12-25. 

 

Raven, P.J., Fox, P.J.A., Everard, M., Holmes, N.T.H., Dawson, F.H., 1997. River Habitat Survey: a new system for 

classifying rivers according to their habitat quality. In: Boon, P.J., Howell, D.L. (Eds.), Freshwater Quality: 

Defining the indefinable?, The Stationery Office, Edinburgh, pp. 215-234. 

 

Rinaldi, M., Surian, N., Comiti, F., Bussettini, M., 2013. A method for the assessment and analysis of the 

hydromorphological condition of Italian streams: the Morphological Quality Index (MQI). Geomorphology 180–

181, 96–108. 

 

Rinaldi, M., Gurnell, A.M., Belletti, B., Berga Cano, M.I., Bizzi, S., Bussettini, M., Gonzalez del Tanago M., 

Grabowski, R., Habersack, H., Klösch, M., Magdaleno Mas, F., Mosselman, E., Toro Velasco, M., Vezza, P., 2015a. 

Final report on methods, models, tools to assess the hydromorphology of rivers, Deliverable 6.2, Part 1, of 

REFORM (REstoring rivers FOR effective catchment Management), a Collaborative project (large-scale integrating 

project) funded by the European Commission within the 7th Framework Programme under Grant Agreement 

282656. 

 

Rinaldi, M., Belletti, B., Comiti, F., Nardi, L., Bussettini, M., Mao, L., Gurnell, A.M., 2015b. The Geomorphic 

Units survey and classification System (GUS), Deliverable 6.2, Part 4, of REFORM. 

 

Rinaldi, M., Surian, N., Comiti, F., Bussettini, M., 2015c. A methodological framework for hydromorphological 

assessment, analysis and monitoring (IDRAIM) aimed at promoting integrated river management. Geomorphology 

251, 122-136. 

 

Rinaldi, M., Belletti, B., Comiti, F., Nardi, L., Mao, L., Bussettini, M., 2015d. Sistema di rilevamento e 

classificazione delle unità morfologiche dei corsi d'acqua (SUM). ISPRA, Manuali e Linee Guida 122/2015. Roma, 

aprile 2015. 



 

Rinaldi, M., Belletti, B., Bussettini, M., Comiti, F., Golfieri, B., Lastoria, B., Marchese, E., Nardi, L., Surian, N., 

2016a. New tools for hydromorphological assessment and monitoring of European streams. Journal of 

Environmental Management. DOI: 10.1016/j.jenvman.2016.11.036. 

 

Rinaldi, M., Gurnell, A.M., González del Tánago, M., Bussettini, M., Hendriks, D., 2016b. Classification and 

characterization of river morphology and hydrology to support management and restoration. Aquatic Sciences 78, 

17-33. 

 

Roux, C., Alber, A., Bertrand, M., Vaudor, L., Piégay, H., 2014. “FluvialCorridor”: a new ArcGIS toolbox package 

for multiscale rivers cape exploration. Geomorphology. DOI:10.1016/j.geomorph.2014.04.018. 

 

Scown, M.W., Thoms, M.C., De Jager, N.R., 2015. Measuring floodplain spatial patterns using continuous surface 

metrics at multiple scales. Geomorphology 245, 87-101. 

 

Surian, N., Mao, L., Giacomin, M., Ziliani, L., 2009. Morphological effects of different channel forming discharges 

in a gravel-bed river. Earth Surface Processes and Landforms 34, 1093-1107. 

 

Thomson, J.R., Taylor, M.P., Fryirs, K.A., Brierley, G.J., 2001. A geomorphological framework for river 

characterization and habitat assessment. Aquatic Conservation, Marine and Freshwater Ecosystems 11, 373-389. 

 

Thorp, J.H., Thoms, M.C. and Delong, M.D., 2006. The riverine ecosystem synthesis: biocomplexity in river 

networks across space and time. River Research and Applications 22 (2), 123-147. 

 

Tockner, K., Paetzold A., Karaus U., Claret C., Zettel J., 2006. Ecology of braided rivers. In: Sambrook Smith, 

G.H., Best J.L., Bristow C.S., Petts G.E. (Eds.), Braided Rivers: Process, Deposits, Ecology and Management. 

Special Publication. International Association of Sedimentologists, Kingston University, Surrey, pp. 339-359. 

 

Van der Molen, D.T., Geilen, N., Backx, J.J.G.M., Jansen, B.J.M., Wolfert, H.P., 2003. Water Ecotope 

Classification for integrated water management in the Netherlands. European Water Management Online 2003/3. 

http://www.ewaonline.de/journal/2003_03.pdf. 

 

Vezza, P., Parasiewicz, P., Spairani, M., Comoglio, C., 2014. Habitat modelling in high gradient streams: the meso-

scale approach and application. Ecological Applications 24, 844-861. 

 

Vezza, P., Goltara, A., Spairani, M., Zolezzi, G., Siviglia, A, Carolli, M., Bruno, M.C., Boz, B., Stellin, D., 

Comoglio, C., Parasiewicz, P., 2015. Habitat indices for rivers: quantifying the impact of hydro-morphological 

alterations on the fish community. In: Lollino G. et al. (Eds.), Engineering Geology for Society and Territory - 

Volume 3, Springer International Publishing Switzerland 2015. DOI: 10.1007/978-3-319-09054-2_75. 

 



Wadeson, R.A., 1995. The development of the hydraulic biotope concept within a catchment based hierarchical 

geomorphological model. Unpublished PhD thesis, Rhodes University, South Africa. 

Ward, J.V., Tockner K., Arscott D.B., Claret C., 2002. Riverine landscape diversity. Freshwater Biology 47, 517–

539. 

 

Wheaton, J.M., Fryirs, K.A., Brierley, G., Bangen, S.G., Bouwen, N., O'Brien, G., 2015. Geomorphic mapping and 

taxonomy of fluvial landforms. Geomorphology 248, 273-295. 

Wohl, E., 2010. Mountain Rivers Revisited. American Geophysical Union, Water Resources Monograph Series, 

Volume 19. 

 

Wolter, C., Buijse, A.D., Parasiewicz, P., 2016. Temporal and spatial patterns of fish response to 

hydromorphological processes. River Research and Applications 32 (2), 190-201. 

 

Wyrick, J.R., Pasternack, G.B., 2014. Geospatial organization of fluvial landforms in a gravel–cobble river: beyond 

the riffle–pool couplet. Geomorphology 213, 48-65. http://dx.doi.org/10.1016/j.geomorph.2013.12.040. 

 

Wyrick, J.R., Senter, A.E., Pasternack, G.B., 2014. Revealing the natural complexity of fluvial morphology through 

2D hydrodynamic delineation of river landforms. Geomorphology 210, 14-22. 

http://dx.doi.org/10.1016/j.geomorph.2013.12.013. 

 

Zavadil, E.A., Stewardson, M.J., Turner, M.E., Ladson, A.R., 2012. An evaluation of surface flow types as a rapid 

measure of channel morphology for the geomorphic component of river condition assessments. Geomorphology 

139–140, 303–312. DOI:10.1016/j.geomorph.2011.10.034. 

 

Zavadil, E.A., Stewardson, M.J., 2013. The Role of Geomorphology and Hydrology in Determining Spatial-Scale 

Units for Ecohydraulics: In: Maddock, I., Harby, A., Kemp, P., Wood, P. (Eds.), Ecohydraulics : an integrated 

approach. Chapter 7, pp. 125-142.  



Tables 

Table 1. The units investigated, methods used, types of information collected and characterisation achieved at the 
three different levels of application of the GUS. 

  Broad Basic Detailed (optional) 

Spatial unit  Macro-units 
 

Macro-units 
(some) 

Macro-units 
(some) 

  Units Units 
   Sub-units 

Method Remote sensing Field survey 
Remote sensing 
(when possible) 

Field survey 

Type of 
collected 
information 

Presence/absence 
(minimum level) 

Presence/absence 
(minimum level) 

Presence/absence 
(Sub-types / Sub-units) 

 Area (optional) 
(necessary for application of 
GUS sub-indices) 
Frequency (%) 
(optional) 

Number 
(minimum information for 
application of GUS 
indices) 
Linear or areal extension 
(%) 
(optional) 

Number 
Formative processes, 
morphological characteristics, 
hydraulic conditions, 
vegetation type, sediment 
Specific measures 

Applications Required for large rivers (all 
morphologies) 

Required for single-thread 
and small rivers 
 

Always optional 

  Required for unconfined / 
partly confined large rivers  
(floodplain units) 

Optional for multi-thread 
and transitional channels 
(always required for 
application of GUS 
indices) 

 

 

 

 

Table 2. Sub-types of "bank-attached bar" within the GUS (see Figure 7 for definition). The GUS terms and the key 
references used to provide the definition within the GUS are reported, as well as other terms employed in the 
literature, which are reported in the guidebook as "equivalent terms". 

GUS terms Other terms 
Side bar 
(Kellerhals et al., 1976; Church & Jones, 1982; Hooke, 
1995) 

Lateral bar, alternate bar (Thorne, 1998) 
Bank-attached or attached bar (Hooke, 1995) 
Lateral bar (Wheaton et al., 2015) 

Point bar 
(Kellerhals et al., 1976; Church & Jones, 1982; Hooke, 
1995; Thorne, 1998) 

/ 

Counterpoint bar 
(Thorne and Lewin, 1979; Page and Nanson, 1982; 
Lewin, 1983; Hickin, 1984) 

Concave bar (Hooke, 1995) 

Junction bar 
(Kellerhals et al., 1976; Thorne, 1998) 

Tributary confluence bar (Brierley& Fryirs, 
2005) 

Forced bank-attached bar 
(Brierley& Fryirs, 2005) 

/ 

 

  



Table 3. Summary of the GUS indices and sub-indices obtained for each (a) spatial setting and (b) macro-units of 
the sub-reach shown in Figure 6. (GUSI-R, Geomorphic Units Richness Index; GUSI-RBC, richness sub-index for 
the bankfull channel; GUSI-RFD, richness sub-index for the floodplain; GUSI-D, Geomorphic Units Density Index; 
GUSI-DBC, density sub-index for the bankfull channel; GUSI-DFD, density sub-index for the floodplain; GUSI-DC, 
density index for the baseflow channel; GUSI-DE, density index for the emergent sediment units; GUSI-DV, density 
index for the in-channel vegetation; GUSI-DF, density index for the riparian zone). 

(a) GUS indices and sub-indices for each spatial setting 

GUSI-R 0.40 GUSI-D 65.33 

GUSI-RBC 0.31 GUSI-DBC 56.67 

GUSI-RFP 0.09 GUSI-DFP 8.67 

(b) GUS sub-indices for each macro-unit 

GUSI-DC 2988.3 GUSI-DV 1256.1 

GUSI-DE 558.7 GUSI-DF 85.7 

  



Figure captions 

Figure 1. Relation between spatial units and physical habitats within the nested hierarchical framework (modified 
from Mosselman et al., 2015; physical habitats picture by G. Sansoni). 

 

 

Figure 2. Spatial settings of the GUS. A, bankfull channel; B+C, floodplain; A+B, natural corridor; C, human 
dominated areas. 

 

  



Figure 3. Examples of macro-units for a sub-reach of the Cecina river, Italy. (A) Location of the studied reach (i) 
displayed in (B) within the Cecina river catchment. (B) Aerial photo of the analysed reach (i) and location of the 
sub-reach (ii) mapped in C and detailed in Figure 6, and sub-reach (iii) detailed in Figure 4. (C) Map of the macro-
units for the sub-reach (ii) at the broad level: C/S, baseflow or submerged channels; E, emergent sediment units; V, 
in-channel vegetation; F, riparian zone; W, floodplain aquatic zones. 

 

 

Figure 4. Sub-reach (iii) (see Figure 3 for location) illustrating GUS units and sub-units. (A) Aerial image of the 
sub-reach. (B) Map of geomorphic units within the sub-reach (see Figure 6 for explanation of the unit codes). (C) A 
log-step unit. (D) A grassy island unit. (E) A small wood accumulation sub-unit. (F) An isolated boulder sub-unit. 
(A and B modified from Rinaldi et al., 2016; C and D from Rinaldi et al., 2015b; E and F from Belletti et al,. 
2015c). 

 



Figure 5. Extract of a field sheet for the survey of units at basic level. It displays parts of the in-channel vegetation 
units and part of the floodplain units recorded for the example reported in Figure 6. 

 

 

 

 

 

Figure 6. Application of the GUS (basic level) to a sub-reach (sub-reach (ii) in Figure 3) of the Cecina river, 
showing an aerial image of the sub-reach and a map of the types of geomorphic units present (C/S, base flow / 
secondary channels; CP, pool. EA, bank-attached bar; EAh, bank-attached high bar; ED, dry channel; EK, 
unvegetated bank; VI, island; VJ, large wood jam; VA, aquatic vegetation; VB, bench; FF, modern floodplain; FT, 
recent terrace; FC, secondary channel (within the floodplain)). 

 

 

  



 

Figure 7. Example of a box from the GUS guidebook providing the definition of a "bank-attached bar" geomorphic 
unit (from Rinaldi et al., 2015b). 

 

 

Figure 8. Example of the application of the GUS for the survey and evaluation of mesohabitats for the Taro River 
(Parma, Italy). (A) Spatial distribution of geomorphic units (bankfull channel and floodplain units). (B) Evaluation 
of the habitat suitability in terms of bed configuration units for adult barbel (Barbus sp.). Mesohabitats are classified 
in three categories: not suitable, suitable and optimal. The flow rate at the time of the survey is also reported. 
Modified from Rinaldi et al. (2015d). 

 


