Manuscript

Financial conditions and density forecasts for US
output and inflation.

January 4, 2017

Abstract

If the links between credit markets and real economy tighten in a crisis,
financial indicators might be particularly useful in forecasting the macroeco-
nomic outcomes associated with episodes of financial distress. We examine this
conjecture by using a range of linear and nonlinear VAR models to generate
predictive distributions for US inflation and industrial production growth. Fi-
nancial variables display significant predictive power over the Great Recession
period, particularly if used within a threshold model that captures the struc-
tural break associated to the crisis. However, the Great Recession is unique:
financial information and thresholds make little difference for forecasting prior
to 2008.
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1 Introduction

The economic slowdown that followed the financial crisis of 2008 suggests that the
link between financial markets and the real economy might be nonlinear and that
severe financial shocks might have disproportionately large costs in terms of economic
activity. If that is the case, financial market information might be particularly useful
in forecasting the macroeconomic outcomes associated with episodes of financial
distress. In order to test this conjecture, we use monthly observations on the USA
between 1973 and 2012 to analyze the predictive power of financial market indicators
in vector autoregression models that allow for a range of nonlinearities, including
stochastic volatility and finance-driven shifts in regimes. We find that financial
variables improve output forecasts over the Great Recession period. Their predictive
power emerges clearly in specifications with and without stochastic volatility, and
it turns out to be stronger in a threshold model that captures changes in the size
and transmission of financial shocks over time. However, the Great Recession is a
unicum. Unlike stochastic volatility, threshold effects do not yield reliable forecast
improvements prior to 2008. Furthermore, the good performance of the threshold
model over the crisis would have been hard to anticipate based on the model’s track
record, so the warnings issued by the model in 2007 would have been very likely to

go unheeded.

The question of whether financial markets predict economic activity has a long
history in economics. The conclusion by [Stock and Watson| (2003) that "some asset
prices predict inflation or output growth in some countries in some periods” epit-
omizes the common view among econometricians that financial indicators are too
noisy and erratic to be exploited for macroeconomic forecasting. Yet macroecono-
mists have got to the conclusion that financial shocks are an important source of
business cycles (Jermann and Quadrini| (2012)), Gilchrist and Zakrajsekl (2012)), Liu,
Wang, and Zha| (2013)), which implies that financial information should, in the right
circumstances, be useful in predicting macroeconomic fluctuations. In this paper we
offer two contributions to the debate. First, we focus on distributions rather than

just point forecasts. Density forecasts have been studied extensively in finance and



macroeconomics[[] However, they have not been used to study the relation between fi-
nancial variables and macroeconomic aggregates, which has so far been investigated
almost exclusively using point forecasts and linear models (see Stock and Watson
(2003) for an earlier survey; more recent discussions can be found in [Stock and Wat-
son| (2012) and Ng and Wright (2013))). Second, we examine nonlinear VAR models
that are capable of capturing two potentially crucial features of the data: changes in

aggregate volatility and structural breaks associated to financial crises.

Our claim that nonlinearities may be important in this context rests on two simple
considerations. The first consideration is that "volatility matters". Heteroscedastic-
ity is a pervasive feature in US data and it is known to play a significant role for
forecasting (Sims and Zha| (2006), |Justiniano and Primiceri (2008); (Clark (2011]),
Carriero, Clark, and Marcellino (2015)). Accounting for it is in our case particularly
important. Financial markets price aggregate risk. If changes in the volatility of the
fundamentals are one of the reasons why asset prices move in the first place, then
exploiting their fluctuations to predict the fundamentals might be intrinsically very
difficult. The second consideration is that perhaps "crises are different". Sims| (2012)
and Ng and Wright (2013) suggest that structural breaks played an important role
during and after the financial crisis of 2008. Macroeconomic models with financial
frictions provide a natural way to formalize this possibility. Firms and households
are subject to borrowing constraints that limit their access to credit markets and
financial crises might constitute episodes where these constraints bind at the aggre-
gate level, amplifying the propagation of real and financial shocks with potentially
dramatic implications for the dynamics of the economyf| This mechanism has first-
order implications for forecasting: financial variables might become more informative

if and when borrowing constraints tighten and these amplification effects are acti-

LA non exclusive list of density forecasting applications includes |Clements and Smith| (2000),
Cogley, Morozov, and Sargent| (2005)), |Geweke and Amisano| (2010)), |[Jore, Mitchell, and Vahey
(2010), |Clark| (2011)), De Nicolo and Lucchettal (2012)), (Carriero, Clark, and Marcellino| (2015)).

“See e.g. |Bianchi and Mendozaj (2010)), Bianchi (2011)), [He and Krishnamurthy]| (2011, [Brun-
nermeier and Sannikov| (2014). Empirical evidence in support of this possibility is provided for
instance by McCallum)| (1991)), Balke (2000), [Li and Dressler| (2011)), Guerrieri and Iacoviello| (2013))
and Hubrich and Tetlow| (2015)).



vatedﬂ By studying threshold vector autoregressions (TARs) where the dynamics
of the economy change at times of financial distress we can allow for this possibil-
ity and test its relevance for forecasting. In a similar spirit, Del Negro, Hasegawa,
and Schortheide (2016) compare DSGE models with and without financial frictions,
showing that the former delivers better forecasts in periods of financial turmoil but

not in normal times.

Our analysis confirms that heteroscedasticity helps a great deal in forecasting
output and inflation. Thresholds may help too, but not in a systematic way. Al-
though there is clear evidence of two distinct financial regimes in US history, the
2008-2009 period is the only one where this knowledge turns out to be useful for
forecasting. Furthermore, since the defining characteristic of the ‘crisis’ regime is
an increase in the variance of the shocks rather than a change in their transmission
mechanism, the line between TAR and heteroscedastic VAR models is thinner than
one could expect. The warning issued by the TAR at the end of 2007 is fairly forceful:
the model predicts a 20% recession probability for 2008, compared to only 5% for a
heteroscedastic VAR based on the same data. But the rarity of the event, combined
with the impossibility to foresee the improvement in the relative performance of the
TAR, implies that it would have been extremely hard for policy makers to act upon

this signal.

The structure of the paper is the following. Sections[2] and [3| describe respectively
our data and forecasting models. Section [4] presents empirical evidence on the exis-
tence of finance-driven regimes in the USA. In Section [5| we document the results of
the forecasting exercises and discuss the accuracy of the models before and after the
Great Recession. Section [6] examines a number of robustness issues and extensions.

Section [T concludes.

31n the online appendix to the paper we flesh out the link between financial frictions and forecast-
ing using a stylized partial equilibrium model with an occasionally binding borrowing constraint.
When agents are close to their borrowing limits credit shocks have a stronger impact on their
consumption-saving decisions and consumption is both lower and more volatile, illustrating why
studying distributions as well as point forecasts may be important.



2 Data and forecasting methodology

We use monthly data covering the period between March 1973 and August 2012.
Industrial production index, consumer price index and the effective federal funds
rate (an average of daily figures) are taken from the Federal Reserve Bank of St.
Louis (FRED) Database. Industrial production and prices are transformed into
annualized log changes between month t-1 and month t, while the monetary policy
rate is used in levels. We do not use real-time data. Hence, our forecasts and statistics
are not comparable to those presented e.g. in |Clark (2011). To capture the state
of financial markets we use the Financial Condition Index (FCI) constructed and
maintained by the Chicago Fed. FCI is constructed using dynamic factor analysis
from a set of 120 series that relate to money, debt and equity markets, as well as the
leverage of financial intermediaries, and it represents an extremely broad indicator
of aggregate financial conditions in the USA (Brave and Butters (2012))). This has
two key advantages. First, by including FCI we effectively turn our VARs into factor
models based on a larger information set, thus minimizing the risk that the small
number of series we consider biases the results in favour of nonlinear models. Second,
since the predictive power of different financial variables can change over time, using
a broad indicator reduces the risk of obtaining results that are too heavily affected

by the idiosyncratic behavior of specific variables in specific periods/]

The forecasting models we consider include a linear VAR, a VAR with stochastic
volatility and a Threshold VAR. Models and estimation are described in Section
All models are estimated recursively over an expanding data window. Starting from
an initial 1973.03-1983.04 window, this gives a set of 354 out-of-sample forecasts.
We examine horizons of one, three, six and twelve months. Forecasts at horizons
greater than one month are obtained recursively. For output and inflation, which
are modelled in first differences, we look at cumulative growth rates. All predictive
densities are estimated using kernel methods rather than parametric approximations

as in e.g. Clark (2011)) in order to take into account the nonlinear nature of the

4The choice of the financial indicator and the information set are obviously important for our
analysis. We discuss them in greater detail in Section @
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models| Point forecasts are calculated as the arithmetic means of the predictive
densities and evaluated in terms of root mean square errors (RMSE). The accuracy of
the densities is evaluated mainly through the models’ log-scores (LS), which measure
the (log) likelihood that the model assigns to the actual observations based on lagged
information (see Mitchell and Wallis| (2011]) and references therein). RMSE and LS
are routinely used to compare the average performance of a set of models over a given
period. Another important issue is how a forecaster would choose among the models
on the basis of the information available at various points within the sample period.
We investigate this problem in two ways. First, we calculate log-predictive Bayes
factors that summarize the differences between the models’ cumulative log-scores at
every date ¢t (Mitchell and Wallis (2011); Geweke and Amisano| (2010)). Second,
following (Giacomini and White (2006]), we test whether the differences in accuracy
among models can themselves be predicted out of sample. These tests are based on
the principle that, given a pair of models {A, B} and some accuracy criterion X,
one can define a decision criterion C;* = (X! — X), regress C; on a set of time-t
covariates, and then select the model that is expected to work better in the future
(that is, prefer A to B whenever F; X1 > 0). [

3 Forecasting models

3.1 Linear VAR
The benchmark model that we use is the following Bayesian VAR(13) model:
P

Yi=c+ Y BY,;+9" %, e N(0,1) (1)

J=1

® Although the densities generated by linear VARs are Gaussian by construction, the densities
from the threshold VARs are generally mixtures of Gaussians, the mixing being caused by en-
dogenous changes in regime occurring over the forecasting horizon. Kernel methods are thus more
reliable than parametric approximations in our case (see the online appendix for details).

6We refer the reader to the Technical Appendix for a more detailed description of the evaluation
criteria based on |Giacomini and White, (20006).



where Y; denotes the T x N data matrix of endogenous variables described below.
We introduce a natural conjugate prior for the VAR parameters a la [Sims and Zha)
(1998)) (see also Banbura, Giannone, and Reichlin (2010))):

diag(y101..YNON)
T
Jp®diag(01...oN)

0N><(P—1)><N P Onpx1

.............. 0 0
YDl _ . ,and XD,l _ NxNP Nx1 (2)

where v, to vy denotes the prior mean for the coefficients on the first lag, 7 is the
tightness of the prior on the VAR coefficients and ¢ is the tightness of the prior
on the constant terms. In our application, the prior means are chosen as the OLS
estimates of the coefficients of an AR(1) regression estimated for each endogenous
variable using a training sample. As is standard for US data, we set 7 = 0.1. The
scaling factors o; are set using the standard deviation of the error terms from these
preliminary AR(1) regressions. Finally we set ¢ = 1/10000 in our implementation
indicating a flat prior on the constant. We also introduce a prior on the sum of the

lagged dependent variables by adding the following dummy observations:

YD72 _ dzag (71#;7]\[#]\[)) XD72 — ( (11xp)®diag(>\'ylu1...’yNuN) 0N><1 ) (3)
where ; denotes the sample means of the endogenous variables calculated using the
training sample. As in|Banbura, Giannone, and Reichlin (2010)), the tightness of this
sum of coefficients prior is set as A\ = 107. Given the natural conjugate prior, the
conditional posterior distributions of the VAR parameters B = vec([c, By; Bs..; B;| )

and €) take a simple form and are defined as

G(B|Q) ~ N(B*, Q& (X*X*)™) (4)



G (Q|B) ~ IW(S*,T). (5)

The posterior means are given by B*=(X*X*)™" (X*Y*) and S*=(Y*— X*)B'(Y* —
X*B), where Y*=[Y;Yp1; Ypa], X*=[X; Xp1; Xps] and B is the draw of the VAR
coefficients B reshaped to be conformable with X*. T™* denotes the number of rows
of Y*. A Gibbs sampler offers a convenient method to simulate the posterior dis-
tribution of B and 2 by drawing successively from these conditional posteriors. We
employ 20,000 iterations using the last 5000 for inference. In particular, these 5000

draws are used to produce the forecast density:
G ik ) = [ G0k ¥T) x GO I¥) ar (©

where K = 1,2,..12 and I = { B, Q}. The forecast density can be easily obtained by
simulating Y; forward using the Gibbs draws for B and 2. We use two versions of this
model: the first one, henceforth labelled VAR, only contains our macroeconomic
variables (Y; = {y, ¢, m}), while the second one, labelled V ARy, also includes the
Financial Condition Index (Y; = {v, r¢, 7, fi })-

3.2 VAR with stochastic volatility
The VAR with stochastic volatility (VAR?) is defined by the following equation:

P
Yi=c+ Y B+ (7)

=1

Following (Cogley and Sargent| (2005)), the time-varying covariance matrix is factored
as Q, = A'H,A™" where A is lower triangular and H, = diag ([hy, hat, .., ha)).
The log stochastic volatility associated with the i'" orthogonal error, In h;; follows a
random walk:

Inhy =Inhy+ Gy, Gy " N(0, g;) (8)



The priors for the VAR coefficients remain as in the linear VAR model. The prior for
the free elements of A are assumed to be normal with the prior mean equal to zero and
the variance set at 1000. The prior for g; is inverse Gamma with a scale parameter
equal to le—4 and degrees freedom set at 1. In short, we employ uninformative priors
for these parameters. As shown in |Cogley and Sargent (2005), a Metropolis within
Gibbs algorithm can be used to approximate the marginal posterior distributions.
The independence Metropolis step of [Jacquier, Polson, and Rossi| (1994) is used
to draw from the conditional posterior distribution of h;. Given the stochastic
volatilities, the model collapses to a heteroscedastic VAR and standard Gibbs steps
can be used to draw the remaining parameters. As in the case of the linear VAR, we
estimate a version of this model that only contains macroeconomic variables (VAR?)

and one that also includes the financial indicator (V ARF).

3.3 Threshold VAR
The Threshold VAR model (T'ARy) is defined as follows:

P P

Y.= |1 + Z Bl,j)/t—j + 91/2615 Sy + | e + Z Bg,j}/t_j + Q;/Qet (1 — St) , (9)
j=1 j=1
where
S =1 z_4 < 2" (10)

The vector of endogenous variables is Y; = {y, 7+, 7, fi:}. As in the case of VAR and
VAR, a financial shock is thus implicitly added to the set of fundamental shocks
driving the dynamics of the economy. This model, however, allows for the possibility
of two distinct regimes depending on the level taken by some variable z;_; relative
to an unknown threshold z*. In our application the threshold variable is assumed to
be the d'" lag of the financial conditions indicator f;_4, and both the delay d and the
threshold z* are assumed to be unknown parameters. This means that the size and
propagation mechanisms of both real and financial shocks are allowed to change when

the economy is experiencing financial distress. This formulation is appealing because



the parameters {cs, B; j, {25} can be regarded as the reduced-form counterparts of the
two sets of first-order conditions that arise in a general equilibrium model with an
occasionally binding credit constraint. As such, they should capture the behavior of

the US economy in periods when the constraint binds (s = 0) and when it does not

(s=1).

We again impose a natural conjugate prior on the VAR parameters that appear in
equation @, and we set the prior tightness in an identical fashion to the linear case
discussed in Section [3.1] Importantly, we choose identical priors for the two regimes.
This assumption is clearly counterintuitive — the model is motivated precisely by the
presumption that the dynamics differ across regimes, particularly after a financial
shock — but it is also conservative in the sense that it ‘lets the data speak’ on
how relevant such differences are in practice. In principle one could exploit the
restrictions implied by the models discussed in Section 7?7 to parameterize the regimes
in a different way; this extension is left to future work. As far as equation is
concerned, we assume a flat prior on the delay d, limiting its maximum value to
12, and we assume a normal prior for z* ~ N(Z,0), where z = 1/TZiT:1zt and
v = 10. Given the scale of the Financial Condition Index this represents a fairly
loose prior. We employ the Gibbs sampler introduced in |Chen and Lee| (1995) to
simulate the posterior distribution of the unknown parameters. Given an initial value
for z* and d, the conditional posterior for the VAR parameters in the two regimes is
standard and given by equations[d and [f] Given a draw for the VAR parameters and
a value for d, a random walk Metropolis Hastings step can be employed to sample
z*. We draw candidate value of 27, from 2, = 2}, + VY% ¢ ~ N(0,1). The
acceptance probability is given by f (Y |2k, Z) /f (Yi |25y, Z), where f(.) denotes
the posterior density and = represents all other parameters in the model. We choose
the scaling factor ¥ to ensure that the acceptance rate remains between 20% and
40%. |Chen and Lee| (1995) show that the conditional posterior for d is a multinomial
distribution with probability L (V; |d,Z) /S 52, L(Y;|d, Z), where L (.) denotes the
likelihood function. We employ 20,000 iterations of the Gibbs sampler discarding the
first 15,000 as burn-in. The forecast density for TAR; is defined as in equation @,

10



but in this case the set of parameters is given by T' = {By, Qy, By, Qa, 2*, d}. Given
draws from the Gibbs sampler, the density can be easily computed by iterating
equations @D and K periods in the future. We also consider a variant of this
model where the level dynamics are driven by a threshold structure, as in equations
@— while the residual covariance matrix follows the smoothly-changing process
described in equation . This model, labelled TAR%, allows us to check whether
the combination of regime switching and stochastic volatility yields any improvement

over models that only account for one of the two nonlinearities.

4 Financial regimes in the US

Before moving to forecasting we discuss the features of the financial regimes identified
by the T'AR; model described in Section The regimes are displayed in Figure 1[]
The shaded area represents the median estimate of 1—.5;, which is equal to one when
the Financial Condition Index is above the estimated critical threshold (see equation
(10))). For the sake of brevity we refer to this as the “crisis” regime. The US economy
enters this regime in 1974-1975, in the early 1980s and around 1987, after which the
economy remains in the normal regime for about two decades. The last crisis breaks
out in 2008 and lasts roughly two years, covering the period from the peak in the
FCI to the end of the contraction in industrial production. Given the structure
of the model, the sub-periods identified as crises are by construction characterized
by high financial volatility and tight credit markets. With the exception of 1987,
they also turn out to be periods of weak or negative growth. This association,
however, does not say anything on causality. To check whether financial shocks
slow down economic activity and whether their impact is larger during crises we
resort to structural impulse-response analysis. The impulse responses are calculated

using Monte Carlo integration as described in Koop, Pesaran, and Potter| (1996)). In

TAll results in this section are based on full-sample estimates of the TAR model. The lag length
is set to 24 to insure well-behaved residuals.
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particular, the responses are based on the following definition:
IRES = E (Yih |0, Y70 1) = E (Yoo |00, Y724) (11)

where W, denotes all the parameters and hyperparameters of the VAR model, £ is the
horizon under consideration, S = 0,1 denotes the regime and p denotes the shock.
Equation states that the impulse-response functions are calculated as differences
between two conditional expectations representing, respectively, a forecast of the en-
dogenous variables conditioned on one of the structural shocks u, and a baseline
forecast where all shock equal zero. These conditional expectations can be approx-
imated via a stochastic simulation of the model. We condition the responses on
observations in each regime. The impulse-response corresponding to regime S = 0,
for instance, is obtained simulating the model for all possible starting values in that
regime, Y%, and then calculating the average of the responses. To identify the
shocks we adopt a simple recursive scheme where y,;, m; and r, appear in this order,
reflecting as customary the relative sluggishness of output and prices in responding to
exogenous disturbances, and the financial indicator f; is ordered last. This assump-
tion is consistent with financial variables moving quickly in response to any news on
the macroeconomic outlook, including changes in the monetary policy stance. It is
also conservative from our perspective because by placing f; last we minimize the
risk of overestimating the role played by genuine financial shocks in explaining the

dynamics of the system.

Figure 2 displays the estimated impact of an adverse financial shock, i.e. an
increase in FCI. To save space we focus on the responses of industrial production
(left column) and the FCI itself (right column) f| The dynamics associated to normal
times and crises are shown respectively in black and in red. For each regime we report
median responses and 68% confidence bands. The model allows for changes in both

the volatility and the transmission of the shocks across regimes, and both can play

8The online appendix to the paper provides impulse-responses for all variables included in the
model, confidence bands for the differences across regimes, and a set of responses calculated on a
pre-crisis sample ending in December 2007 (these are qualitatively similar to the full-sample IRFs
discussed below).
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a role in a financial crisis. To disentangle these two factors we run two experiments.
In the first case (row 1) the shock is defined as a one standard deviation increase
in FCI, so its absolute size is allowed to change across regimes. In the second case
(row 2) the shock is normalized to 0.1 units in both regimes. The responses generally
resemble those generated by a negative demand shock, with a contraction in output
and inflation and a fall in the policy rate. In the first experiment, the quantitative
difference between regimes is stark. The drop in output and prices is deeper and
more abrupt in a crisis: output falls by up to 3% on an annual basis, against roughly
0.5% in normal times. The size of the shock plays an important role in generating the
asymmetry: as the right panel shows, the standard deviation of the financial shock
is estimated to be roughly three times larger during a crisis (0.3 versus 0.1). In the
second experiment we shut down this mechanism by simulating a shock of the same
size (0.1 units) in both regimes. The median responses are again more pronounced
in the crisis regime, with a trough in output that is roughly twice as deep as in
normal times. However, the confidence bands are wide and largely overlap across
regimes; the differences turn out to be statistically significant for inflation and the
policy rate but not for output (see online appendix). This suggests that, although
the transmission mechanism contributes to the overall asymmetry of the IRF's across
regimes, its contribution is smaller and statistically more uncertain than that of
the variance of the shock. From a density forecasting perspective these mechanisms
are complementary: a combination of larger variance and stronger amplification,
whatever the relative weight of the two factors, implies that the predictive power of
FCI should indeed be higher when the economy enters the crisis regimef| At the
same time, the results suggest that the evidence on the role of borrowing constraints
is far from being overwhelming, and that the wedge between threshold and stochastic

volatility specifications might be smaller than expected.

We find that an alternative TAR specification where volatilities change over time but the
level dynamics are kept constant has a worse forecasting performance (see Section @ A similar
combination of changes in volatilities and transmission mechanisms is documented by [Hubrich and
Tetlow| (2015)).
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5 Forecast analysis

5.1 Average forecasting accuracy

Table 1 shows the average root mean square errors (RMSE) and log-scores (LS)
produced by the models over the entire evaluation period, which runs from April 1983
to August 2012[""] We adopt as benchmark the 4-variable linear VAR that includes
industrial production (y), prices (7), fed funds rate (r) and the Financial Condition
Index (f;). The model is labelled VAR;. Using it as a benchmark is convenient
because it is the simplest model that generates predictions for all variables including
FCI. For VAR, the RMSEs and LS are reported in levels, while for all alternative
specifications the RMSEs are ratios and the LS differences relative to benchmark,
as in e.g. |Clark| (2011). Moving down the table, the alternative models are a linear
VAR without the financial indicator (V AR), two stochastic volatility VARs with and
without the financial indicator (VARS, VAR?), the threshold model with finance-
driven regimes (T'ARy), and a threshold model with stochastic volatility (T'AR?).
The subscript f thus identifies models whose information sets includes the financial

indicator and the superscript ¢ those that incorporate stochastic volatility.

The RMSE for industrial production are broadly similar across specifications,
although V AR} tends to be marginally more accurate than the benchmark. For all
other variables, introducing stochastic volatility significantly improves the accuracy
of the forecasts. The improvement is of the order of 3% to 5% for 7, it can reach 10-
20% for the two financial variables r; and f;, and is fairly stable across horizons. In
the case of inflation and interest rates, these gains emerge irrespective of whether FCI
is included in the model or not. T'AR; delivers lower RSMEs for r, and f; but not for
7. In terms of LS, V AR} emerges clearly as the best model of the pool. It beats the
benchmark for all variables and horizons, with the only exception of the one-month

ahead output projections, and it performs at least as well as the two threshold models

10 Calibration diagnostics such as probability integral transforms and probability coverage ratios

are similar across models and thus not particularly informative from our perspective. Details are
available upon request.
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if not better. The improvements relative to benchmark are quantitatively significant.
In the case of the 12-month ahead output forecasts, for instance, the log-scores
increase by roughly 20% thanks to the inclusion of heteroscedasticity. VAR’ works
well for for r; and 7; but not for 3;: in this case the model is far less accurate than
the benchmark. Like VAR, TAR; improves over the benchmark for all variables
and horizons. The improvements are of the same order of magnitude than those
delivered by VAR in the case of 7, and f; but tend to be smaller for y, and 7.
TAR§ beats the benchmark in forecasting r; but tends to perform poorly for all
remaining variables, and particularly for 3. The online appendix provides some
evidence on the statistical significance of the figures reported in Table 1 based on
pairwise tests of the null hypothesis of equal unconditional or conditional predictive
ability across models. Since the models are estimated recursively, rather than using a
fixed moving window, the tests are only indicative. Subject to this important caveat,
though, the tests indicate that most of the differences that emerge from Table 1 are
significant, particularly in conditional terms, suggesting that the relative accuracy

of the models varies widely over time and that some of this variation is predictable.

Figure 3 displays a set of industrial production forecasts from the three main
models of interest, namely VAR?, VAR] and TAR;. For each model the figure shows
50% and 80% prediction intervals at the three-month horizon. Although VAR’ and
V AR{ generate broadly similar predictions for most of the sample period, financial
information turns out to be important in the GR. From 2007 onwards V AR’ becomes
less accurate because it captures a large increase in variance that spreads the density
symmetrically, suggesting that large positive outcomes are also more likely than
before. Thanks to the presence of FCI, VAR} combines instead an increase in
the variance of the distribution with a downward revision of the central forecast.
Compared to VARS, TAR; generates wider densities throughout the sample. This
larger dispersion is the reason why the model assigns a higher probability for instance
to the 2001 recessions. The GR episode is different. In this case the model also
captures a switch into the “crisis” regime, and this allows it to predict a trough of

about -7%, compared to -5% for VAR$, and to generate prediction intervals that lie
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entirely below the zero line. TAR] (not shown) performs even better in the GR, but
this result is of limited interest because the distributions generated by this model
are very wide throughout the evaluation sample. During the GR we observe that
(i) VAR? underperforms the benchmark, (ii) both VAR] and TAR; outperform it
in terms of both RMSE and LS, and (iii) TAR; has the best overall performance ][]
However, figure 3 shows clearly that the GR is an exception. If one focuses instead
on the average performance of the models in ‘bad times’, defined as occurrences of
the crisis regime according to the TTAR; model, then the statistics turn out to be
roughly similar to those reported in table 1. In particular, in this case the models
(T'AR; included) beat the benchmark in LS space but not in RMSE space (see table
D.1 in the online appendix for details). The timeliness and economic significance of

the warnings issued by the models ahead of the GR are discussed further in Sections

6.2 and [5.3]

A first clear message from Table 1 is that heteroscedasticity is a clear asset for
density forecasting across models, variables and evaluation criteria. This result cor-
roborates the evidence in |Clark| (2011), where heteroscedasticity is also found to
improve point as well as density forecasts. A second message is that the financial
indicator helps on average in predicting output growth, as adding f; to VAR leads
to a (small) reduction in RMSE and a (large) increase in LS. Indeed, the ranking
among the models’ average log-scores (VAR? < VAR; < VAR]) points to the
twofold conclusion that (i) accounting for the role of FCI as well as heteroscedastic-
ity might be important, and (ii) the advantages of a stochastic volatility specification
become more substantial if the model also includes financial information. However,
figure 3 suggests that the relevance of f; might hinge heavily on the GR episode: the
gap between VAR? and the finance-augmented models VARG and T ARy effectively
opens up only after 2007. Furthermore, the presence of f; in the information set

does generally improve the forecasts for inflation and interest rates.

UTn particular, between December 2007 and June 2009 (the GR as dated by the NBER), the
average RMSE ratios of VAR, VAR;, TARy, TAR;? for annual output growth are 1.03, 0.97,
0.96, 0.98, and the corresponding log-score differences are -28.1, 0.6, 1.2 and 2.2.
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The evidence on threshold effects is more mixed. The regime structure embedded
in TAR; improves both RMSE and LS for r; and f;. In the case of y, and 7, however,
the model only beats the benchmark along the LS dimension; the only exception is
the GR period, where its RMSEs are also lower. This suggests that switches in
level dynamics might help in capturing the behavior of financial markets and/or
the monetary policy rule rather than that of output and prices. It might be that
the changes in transmission mechanisms associated to financial distress episodes are
not powerful enough to be exploited from a forecasting perspective (see Section .
Whatever the interpretation, this result suggests that in general the value of the
threshold model originates mostly from its ability to capture the variance of the
densities, that is, to quantify risks around the underlying central forecasts. It is only
in exceptional circumstances — in our data, the GR — that this is complemented by

a more accurate prediction of the level dynamics.

5.2 Model selection over time

In figure 4 we plot the evolution over time of the root mean square errors and log-
scores for the 12-month ahead industrial production forecasts generated by VAR”, V AR}
and TARfF_ZI The RMSE ratios (top panel) vary widely over time and their insta-
bility makes it hard to identify periods of clear dominance of either model over the
benchmark and/or its other competitors. T AR is penalized by large errors in the
earlier part of the sample, possibly on account of larger fluctuations in the estimated
parameters. There are timid signals that the model works better around the 2001
and 2008-2009 recessions, but the improvements are small and disappear or reverse
quickly after the recession. The comparison between VAR and VAR] shows that
the GR is one of the very few periods when omitting FCI carries a cost in terms of
accuracy (the RMSE of VAR?, which does not include the indicator, exceed those
of VAR by roughly 10% on average between 2008 and 2010).

2Tn all cases RMSEs (LS) are calculated as ratios (differences) relative to the linear benchmark
V ARy, as in Table 1. All models become less accurate in absolute terms during recessions (see
online appendix for details).
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The log-scores (figure 4, bottom panel) are less volatile. Before 2008 VAR and
V AR} turn out to be virtually identical, confirming that the presence of FCI in
the information set makes little difference. T'AR; appears to be very similar to the
benchmark VAR;. Except for a few observations at the end of the 1980s, the Great
Moderation decades are indeed entirely classified as ‘normal times’ so these models
have the same structur, though of course not exactly the same posterior. VAR’
and VARF consistently outperform the benchmark (and hence TAR; too) as long
as output growth is positive, but their relative performance deteriorates in both the
1991 and the 2001 recession. The subsequent outbreak of the GR has three major
consequences: a dramatic and persistent drop in the score of VAR?; a large swing
in that of VARS, which drops in 2008 and then rebounds, leading to an average
performance analogous to that of the benchmark; and a rise in the score of TAR;
relative to both the benchmark and VAR?. In short, as suggested by figure 3, the
omission of FCI turns out to be a significant liability and the threshold model works
better than the stochastic volatility models. Unfortunately these changes were largely
unpredictable prior to the beginning of the recession. The log-Bayes factors show
that the evidence in favor of the stochastic volatility VARs builds up consistently
over time, whereas the evidence in favor of using FCI and/or allowing for a financial
threshold when predicting output growth is limited to the GR episode (see online
appendix for details). Furthermore, the Giacomini-White selection criteria confirm
that a forecasters would have had no reason to abandon VAR{ in favor of TARy
before the recession: both in 2001 and in 2008/9 the log-score of TAR; for output
growth is predicted to exceed that of VAR, only after the recession has begun. In
the case of inflation, VARY is (rightly) predicted to consistently beat TAR;. Hence,
the case for dropping VAR would have been even weaker for someone aiming to

jointly forecast output and inflation.

5.3 The Great Recession

In the last five years central banks around the world have been grappling with the

challenge of designing and setting up new "macroprudential" policy regimes with
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the aim of monitoring and possibly mitigating the consequences of financial crises.
Predictive densities can in principle be exploited to construct indicators that can
be used in this process. In particular, a macroprudential authority could use the
distributions to estimate the ex ante probability of a tail event, such as a large
output loss, and intervene if and when this exceeds a predefined threshold. How
useful would our VAR models be in this respect? Figure 5 displays a set of predicted
tail probabilities for the Great Recession period. We focus on the probability of a
contraction in industrial production of 5% or more over a six-month horizon, and
compare the predictions of the two stochastic volatility models with and without
financial indicator (VAR? and VAR?) and those of the threshold model (TARf)H
All models fail to anticipate the beginning of the slowdown. In the case of VAR,
the probability remains low and approximately constant for most of the relevant
time window, reaching a maximum of around 30% only in 2009. The presence of
the financial indicator allows both V AR} and T ARy to do relatively better. Among
these, AR performs better in terms of both timing and likelihood: it assigns a 20%
probability to a contraction in output in the first half of 2008 (against 5% for VAR?),
and this rises to 80% in correspondence with the actual trough of the recession in
2009. The records show that on August 7th 2007 the Federal Reserve Board voted
to hold the target for the federal funds rate constant at 5.25 percent. On August
17th the primary credit rate was cut by 50 basis points, to 5.75 percent, noting
that “downside risks to growth [had] increased appreciably”. Further cuts to both
federal funds rate and primary credit rate were decided on September 18th. Given
this timeline, the estimates could have been a useful input for the Board, at least in
principle. A first caveat though is that we do not use real time data. A second and
perhaps more important one is that, as of September 2007, the track record of the
models gave no indication of the upcoming improvement in the accuracy of TAR;

(see Section [5.2). Neither formal statistical criteria nor a qualitative assessment

13Formally, the plot shows Py =Pr (Eﬁ;lytfhﬂ‘ <c |Yt,h), where h = 6 and ¢ = —5%. The
¢ = —5% threshold is meant to mimic the beginning of a "great" recession. The timing convention
is such that P;;_; indicates the probability of a contraction between ¢ — h and ¢ estimated using
information dated ¢ — h. This should ideally increase exactly when the recession begins, facilitating
the interpretation of the figure.
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of its performance in previous recessions suggested that the threshold model would
outperform the (generally more accurate) stochastic volatility specification. This
suggests that, barring an extremely high degree of risk aversion, the Board would

have been likely to pay little attention to the warning signals coming from the TAR.

6 Discussion

Two important concerns raised by our analysis relate to the information set on which
the models are based and the possible occurrence of structural changes that have little
to do with financial frictions and might consequently confound our model compar-
isons. We discuss them in turn below, and conclude by examining the possibility of
combining forecasts from different models. More details on the models discussed in
this section can be found in the online appendix to the paper. Replacing the Finan-
cial Condition Indicator with the Excess Bond Premium of |Gilchrist and Zakrajsek
(2012), which is constructed using exclusively spreads on non-financial corporate
bonds, does not alter the key results. In particular, TAR; generates better predic-
tive densities than VAR for all variables including output, particularly during the
Great Recession. Since the small size of the models may leave room to spurious non-
linearities, we also consider as a linear benchmark a larger VAR (V ARL9¢) where
the baseline specification is augmented to include employment and unemployment
rate, hours worked, money stock, housing starts, the Reuters/Jefferies CRB spot
commodity price index and the NAPM-ISM Purchasing Managers Index. V AREar9e
predicts output growth better than VAR, in terms of both point and density fore-
casts, confirming that there are gains from expanding the information set, but it
performs generally worse than T'AR; in terms of log-scores. This suggests that nei-
ther the choice of the indicator nor the small number of series used in our baseline

analyses influence our results in a significant way.

In order to probe the nature of the regimes in the data, we study a Markov-
switching VAR with endogenous transition probabilities (M S-V AR). This model

includes output, prices and interest rates and, like T ARy, it assumes a double-regime
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structure. However, it does not mechanically link the transitions across regimes to
changes in the financial indicator. The transitions are driven instead by a latent
variable whose connection with the financial indicator is estimated from the data.
The posterior estimates show that the financial indicator (either FC'I or EBP) loads
very significantly on the latent variable, implying that financial conditions are a key
driver of changes in economic regimes. In terms of accuracy, MS-V AR produces
better forecasts than VAR, but it turns out to be on average more or less accurate
than TAR; depending on whether EBP or FCI is used as a financial indicator,
suggesting that using a more flexible specification does not necessarily pay off in
terms of forecasting accuracy. To shed more light on the role of volatility we also
introduce an additional threshold model where the covariance matrix of the shocks
changes but the conditional mean parameters are assumed to be constant across
regimes (TTAR"!). This model is obtained by simply restricting the coefficients of
the TAR; model in equation @D and it allows us to isolate the contribution given by
switching volatilities to the results documented in Section [5, We find that T AR
is on average more accurate than TAR; in terms of root mean square error but less
accurate in terms of log-scores. In other words, the restriction embedded in T ARV
is useful for point forecasts (which is consistent with the success of linear VARs on

this front) but detrimental for density forecasts.

Since the models tend to work well in different periods and their calibration is less
than perfect, it is also natural to ask what the forecaster could gain by combining
them in an opinion pool (Hall and Mitchell (2007)), |Geweke and Amisano| (2011))).
Furthermore, the pooling weights can provide useful information on the evolution
of the economy. [Del Negro, Hasegawa, and Schorfheide (2016 follow this route to
investigate the role of credit markets, and document that a structural model with
financial frictions generates better forecasts than its frictionless counterpart (and
is thus given a larger weight in an optimal pool) only during periods of financial
distress. We examine two simple pools: the first one () includes VAR and V ARy,
while the second one (%) also includes TARy. In each case we consider a naive

weighting scheme that attaches constant equal weights to all models or alternatively
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the optimal weighting scheme of |(Geweke and Amisano (2011)), where the weights are
updated recursively over time. Naive pools often outperform the VAR specification
but struggle to do better than VAR;. Optimal pools are more accurate than both
VAR and VAR, but do not generally beat TAR;. In the case of P;, the optimal
weight on V ARy increases in periods of financial distress and it is equal to one in
the Great Recession, consistent with Del Negro, Hasegawa, and Schorfheide, (2016)),
but the weights do not change as quickly as the TAR; regimes. More importantly,
linear VARs estimate the size of the shocks and the strength of the transmission
mechanisms on average over the entire sample: insofar as either of these changes in
a crisis, a pool of linear models may still be dominated by a threshold specification.
Indeed, it is only in predicting the depth of the GR that P, looses ground relative
to TARy (the two are virtually indistinguishable until 2008).

7 Conclusions

Is it possible to exploit financial market information to predict the macroeconomic
outcomes associated with financial distress episodes, such as the Great Recession of
2008-20097 To answer this question, we estimate a set of linear and nonlinear VAR
models using US data for the 1973-2012 period and check to what extent financial
variables improve point and density forecasts for inflation and industrial production
growth. The analysis delivers three main results. First, stochastic volatility models
perform generally better than linear models, confirming that heteroscedasticity is a
first-order feature of the data. Second, adding a financial indicator to the information
set improves the forecasts for output growth irrespective of whether or not the model
includes stochastic volatility. This result is however heavily influenced by the Great
Recession: prior to 2008 a forecaster would have had little reason to add financial
variables to a small heteroscedastic VAR. Third, the Great Recession is also pivotal
in building up evidence on financial threshold effects. The data clearly point to the
coexistence of two distinct regimes in US history, where periods of financial distress
have been typically associated with the occurrence of larger financial shocks and, to

a minor extent, changes in their transmission mechanism. However, the 2008-2009
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period is the only one where these forms of non-linearity turn out to be useful for
forecasting. At the end of 2007 a Threshold VAR model would have predicted a
20% probability of a sharp output contraction in 2008, compared to only 5% for
a stochastic volatility VAR based on the same data. But the rarity of the event,
combined with the impossibility to anticipate the forthcoming improvement in the
TAR’s forecasting performance, implies that it would have been very hard for policy

makers to act upon this signal.
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RMSE LS

1M 3M 6M 12M 1M 3M 6M 12M

VARy y | 0454 0.514 0.547 0.576 -3.6568  -3.156 -3.032 -2.964
r| 0.177 0.8365 0.602 0.989 -0.645 -1.357 -1.723 -2.101

m | 0.172 0.218 0.237 0.260 -2.583  -2.550 -2.339 -2.171
fl0102 0198 0.289 0.356 0.135 -0.649 -0.957 -1.130

VAR y|1.029 1.048 1.038 1.015 -0.121  -0.182 -0.386 -0.984
r 0944 0978 0.993 0.996 -0.030 -0.023 -0.031 -0.017

m | 1.005 0.995 0.990 0.988 0.000 -0.108 0.073 0.034

f _ _ _ _ _ _ _ _
VAR, vy |0987 1.011 1.009 0.997 -0.004 -0.742 -0.937 -1.167
r 0825 0.792 0.802 0.856 0.956  0.702 0.392 0.122
w0974 0958 0.945 0.933 0.238  0.023 -0.295 -0.466

f _ _ _ _ _ _ _ _
VAR y | 0950 0.986 0.998 0.996 -0.307  0.202 0.107 0.199
r | 0.808 0.789 0.804 0.899 0.899 0.722 0.405 0.085
w0970 0956 0.946 0.938 0.237  0.371 0.285 0.171
f10.971 0.899 0.872 0.907 0.601 0.449 0.485 0.320

TAR; 1y |1.008 1.003 1.005 1.003 0.062  0.004 0.027 0.079
r 10944 0.926 0.922 0.953 0.667  0.579 0.359 0.102

m | 1.023 1.018 1.009 1.000 0.081  0.135 0.144 0.091
f11.020 0.960 0.938 0.951 0.361  0.527 0.526 0.413
TAR; y|0948 0971 0.983 0.988 -0.101  -0.448 -0.689 -0.562
r0.825 0.784 0.786 0.797 0.696  0.772 0.480 0.270

m | 0977 0966 0.954 0.926 0.210 0.036 -0.239 -0.477
f11.000 0.894 0.834 0.832 0.517  0.565 0.609 0.470

Table 1: Forecast evaluation. The table shows the average root mean square errors
(RMSE) and predictive log-scores (LS) generated by six alternative forecasting models over
the period April 1983 — August 2012. The variables are US industrial production growth
(y), federal funds rate (r), consumer price inflation (7) and the Financial Condition Index
(f). For the benchmark model VAR, a linear VAR in the four variables, the statistics are
reported in levels (top panel). For all remaining models, RMSEs (LS) are reported as ratios
(differences) relative to the benchmark. VAR is a three-variable linear VAR without f;.
VARG and VAR’ are two stochastic volatility VAR models with and without f;. TAR;
is a threshold VAR model where the regime is determined by f;. TAR? is an analogous
threshold model with stochastic volatility.

27



!' l.r. “ 12

1§ 41
il J!‘.q ‘
L@!‘ﬁ% | “"‘ rhn ﬂl ' | r Ihluh‘ l “u;ﬂ i . "h;'ll.L.ll M D

1 1 1 1 1 1 1
1975 1950 1985 1990 1995 2000 2005 2010

Figure 1: Financial regimes in the USA. Gray bands identify periods when the US
economy is estimated to be in financial distress by the TAR described in equations @D—
.The lines represent the monthly series used to estimate the model, namely industrial

production growth (), consumer price inflation (), the federal funds rate (r)and the
Chicago Fed Financial Condition Index (f).
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Figure 2: Impact of financial shocks in good and bad times. The figure shows the
responses of industrial production (column one) and the Chicago Fed Financial Condition
Index (column two) to an adverse financial shock. The responses are estimated using the
TAR model of equations @D— and a recursive identification scheme where FCI is ordered
last, and they are simulated conditioning separately on normal times (black) and financial
distress episodes (red). For each regime the figure reports the median responses with a
68% confidence band. In the top row the shock is defined as a one standard deviation
increase in FCI and its size varies across regimes (see top right panel). In the bottom row
it is normalized to a 0.1 units increase in FCI and held constant across regimes.
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Figure 3: prediction intervals. The panels show the three-month ahead prediction
intervals for industrial production growth generated by three alternative forecasting models.
All models are estimated recursively using monthly data on industrial production, consumer
price inflation, the nominal federal funds rate and the Chicago Fed Financial Condition
Index (FCI). VAR] and VAR are two stochastic volatility VAR models that, respectively,
do and do not include the FCI. TARyis a threshold VAR model where the switch across
regimes is determined by FCI. The sample begins in March 1973 and the forecasts are
calculated starting from April 1983.
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Figure 4: root mean square error and log-score patterns. The top panel shows the
RMSE associated to the 12-month ahead industrial production growth forecasts generated
by three alternative models. VAR is a stochastic volatility VAR model estimated using
data on industrial production, inflation and the nominal federal funds rate.. VAR; is an
analogous model that also includes the Chicago Fed Financial Condition Index. T' ARy is
a threshold VAR model based on the same data, where FCI determines the regime. All
RMSEs are expressed as ratios relative to a linear benchmark VAR. The top panel shows
the log-scores associated to the same set of predictions. These are displayed as differences
relative to the benchmark model.
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Figure 5: Recession probabilities. Model-implied probabilities of observing a cumula-
tive contraction in industrial production of 5% or more over a six-month window ending at
the date shown on the horizontal axis. VV AR’is a stochastic volatility VAR that includes
industrial production growth, inflation and the nominal federal funds rate. VAR?also
includes the Financial Condition Index. T'AR; is a regime-switching model that includes
the same four series and allows for a regime change when the Financial Condition Index
exceeds a critical threshold.
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