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Abstract

This paper investigates model predictive control (MPC) of a single sea wave
energy converter(WEC). By using control schemes which constrain certain
quantities, such as the maximum size of the feedback force, the energy storage
for actuators and relative heave motion, it is possible for control to not only
improve performance but to directly impact strongly on design and cost.
Motivated by this fact, a novel objective function is adopted in the MPC
design, which brings obvious benefits: First, the quadratic program (QP)
derived from this objective function can be easily convexified, which facili-
tates the employment of existing efficient optimization algorithms. Second,
this novel design can trade off the energy extraction, the energy consumed
by the actuator and safe operation. Moreover, an alternative QP is also for-
mulated with the input slew rate as optimization variable, so that the slew
rate limit of an actuator can be explicitly incorporated into optimization.
All these benefits promote the real-time application of MPC on a WEC and
reduced cost of hardware.
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1. Introduction

A sea wave energy converter (WEC) is a device used to harvest sea wave
energy. Extracting the maximum possible time average power from WECs,
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while reducing the risk of device damage and at the same time minimizing the
device cost, involves a combination of good fundamental engineering design of
a device and effective control of its operation. The linking of control and basic
design is not the conventional approach because control schemes are typically
overlaid upon existing designs. However, minimizing certain quantities such
as feedback force, stored energy for actuators and the relative heave motion
using some control strategy has very marked direct effects upon design/cost.

In this paper, we investigate the control aspect of WECs. In particular,
we focus on a typical type of WECs, called point absorbers, whose dimensions
are small compared with the wave length of incoming waves.

Various control methods have been explored to improve energy extrac-
tion, such as impedance matching by tuning the dynamical parameters of
the devices [1–4], and latching control by locking the body at some moments
to keep the velocity in phase with the excitation force [5–10]. There are also
some optimization based control strategies developed for WECs. [5] uses
Lagrange multipliers to determine the optimal velocity profile. In [11] an
linear quadratic Gaussian (LQG) control problem is formulated, with the
assumption that no constraints are present. However, all these control meth-
ods are only suboptimal. More recent works [12–17] show that maximizing
energy extraction while maintaining the safe operation of WEC is essentially
a constrained optimization problem and the concept of model predictive con-
trol (MPC), or receding horizon control (RHC), can be potentially employed
as the WEC control strategy. [18] uses a MPC as a benchmark for com-
parative evaluation of the performance of a simple controller. MPC is an
online optimization technique. It resolves an optimization problem at each
sampling instant to yield an optimal control sequence, the first of which is
applied to the plant as the control input. This online optimization feature
requires a fast optimization algorithm, especially when it is applied to me-
chanical systems, e.g. [19]. Conventionally, the optimization is formulated
as a convex quadratic programm (QP) [16], so that efficient optimization al-
gorithms such as the interior point method and the active set method can be
employed. However, the optimization associated with the WEC control may
not be guaranteed to be convex as shown later in this paper. This problem
impedes the implementation of these efficient algorithms. In this paper we
show how to overcome this problem by adopting a novel cost function.

To present the point absorber control problem, we use the Power Buoy
device PB150 developed by OPT Inc, see [20], as a concrete example, which
is illustrated in Fig. 1 and is studied in [16]. On the sea surface is a float,
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Figure 1: Schematic diagram of the point absorber

below which hydraulic cylinders are vertically installed. These cylinders are
attached at the bottom to a large area anti-heave plate whose vertical motion
is designed to be negligible compared to that of the float. The heave motion of
the float drives the pistons inside the hydraulic cylinders to produce a liquid
flow. The liquid drives hydraulic motors attached to a synchronous gener-
ator. From here, the power reaches the grid via back-to-back AC/DC/AC
converters; see [21] for more details related to the power electronics. Here zw
is the water level, zv is the height of the mid-point of the float. The control
input is the q-axis current in the generator-side power converter, to control
the electric torque of the generator [22]. The generator torque is proportional
to the force fu acting on the pistons from the fluid in the cylinders. Since
the motion of the float imposes a velocity v = żv on the piston, the extracted
power P (t) at time t is expressed as

P = −fuv (1)

Note that, different from [16], it is assumed here the directions of fu and v
are the same, so that a minus sign in (1) is needed. This is merely a matter of
expression for the formulation of the QP. The extracted energy over a period
[0, T ] is therefore

−
∫ T

0

fuvdt (2)

MPC aims to maximize the energy in its discrete time version, which amounts

3



to minimize the cost function

J =

N∑
k=0

fu(k)v(k) (3)

where fu(k) and v(k) are the discrete time values of fu(t) and v(t) sampled
with a sampling period Ts. To avoid damage, and for overall performance
reasons, two constraints have to be considered in any real WEC. One concerns
the relative motion of the float to the sea surface (it should neither sink nor
raise above the water and then slam), which can be expressed as

|zw − zv| ≤ Φmax. (4)

Since zw−zv is proportional to the buoyancy force fs, (4) can be equivalently
represented as

|fs| ≤ zmax. (5)

The other constraint is on the control signal set by limitations on the allow-
able converter current. This constraint can be expressed as

|fu| ≤ γ. (6)

The control objective is to maximize the extracted energy subject to the
constraints (5) and (6).

However, this constrained optimization problem leads to a non-convex
QP, which prevents us from using efficient optimization algorithms to re-
solve it efficiently online. Some methods have been proposed to overcome
this problem. In [23], the WEC control is formulated as a constrained op-
timization problem which is approximated by a resulting concave quadratic
function. In [16], we aim to resolve this non-convex optimization problem
directly. This constrained optimal control problem is analyzed using Pon-
tryagin’s minimum principle, and the analysis result facilitates the employ-
ment of dynamic programming (DP) for the online optimization. This is
because the resulting control takes a bang-bang type of control, that is, only
the maximum or minimum of the allowed control signal is used as input at
each sampling instant. This allows the cost function to be evaluated only
along two trajectories generated by the two boundary input values, so that
the computational burden is significantly reduced. However, there are two
drawbacks related to this control method. Firstly, although simulations show
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that the computational speed is fast enough to guarantee the real time im-
plementation of DP for a second order model, the exponentially increased
computational burden for a higher order model, namely “the curse of dimen-
sionality of DP”, can invalidate its application. Secondly, since the control
input only takes the maximum and minimum values, this has two impacts on
the actuator: on the one hand, the physical design of the actuator may not
allow the switch between the two boundary values at a very high frequency;
on the other hand, the energy consumed by the actuator can be very large.

An alternative approach is to use a modified objective function to ap-
proximate the original one (3). This modified objective function takes the
form of

J =

N∑
k=0

fu(k)v(k + 1) (7)

which contains one sampling instant delay from input to output. In [13, 14],
similar approaches are used, and the QP resulting from this approximated
objective function is assumed convex, which enables the application of the
conventional MPC. It is noticed that, possibly by mistake, the power ex-
pression in the objective function in [14] does not involve the delay term.
We acknowledge the efficacy of this approximation method for many cases.
However, in this paper, we show by examples that the assumption on the
QP’s convexity associated with the modified cost function may not always
hold for all the possible parameter selections. Moreover, we demonstrate by
simulations that the MPC based on this modified cost function can cause
significant loss of extracted energy for a WEC in some cases.

Motivated by the existing results, the present paper aims to propose an
efficient MPC control strategy to directly optimize the energy output and
control signal. The MPC employs the following objective function

J =

N∑
k=0

[
fu(k)v(k) + rf 2

u(k) + qf 2
s (k)

]
(8)

with the weight r > 0 and q > 0. Here the weighted term rf 2
u(k) represents

the consumed energy of the input signal, and q is used to penalize fs. The
adoption of this objective function has the following benefits:

(i) The QP can be guaranteed to be convexified when the weight r is chosen
bigger than a certain value, and this value can be easily calculated;
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(ii) The energy consumed by the actuator can be dramatically reduced at
the expense of a moderate loss of extracted energy, and the balance be-
tween the consumed energy and extracted energy can be flexibly traded
off by tuning the weight;

(iii) The control signal can be smoothed, so that the requirement for the
actuator’s response limit is less stringent.

(iv) The purpose of penalizing fs in the cost function is mainly for guar-
anteeing the feasibility of the optimization problem. Since fs, as a
component of state variable, must be within a limit for safety reason,
it is possible to have such a scenario that there is no way for any pos-
sible input force within given allowable limits to constrain fs within
its safety limit. If this happens, then the optimization problem cannot
yield a solution and thus the optimization is infeasible. This is not
supposed to happen during the implementation of online constrained
optimal control. Large incoming waves are more likely to cause such
an infeasibility problem. Thus the weight q provides an extra degree
of freedom for tuning, so that the constraint on the heave motion of
the buoy can be satisfied for large incoming waves. Of course, this ex-
tra cost can lead to a reduction of energy output. This is exactly the
flexibility of this novel cost function can achieve for a trade-off between
the safe operation (or design limit) of the WEC and the energy output
under different wave conditions.

Based on (8), we also formulate another QP with the input slew rate as the
optimization variable, which makes it possible to additionally restrict the ac-
tuator’s slew rate within a certain range. The limitation on some actuators’s
slew rate can be crucial for its safe operation, and therefore significantly af-
fects the actuator’s cost. All these efforts make the real-time application of
an MPC controller more realistic.

The approach developed in this paper is based on the assumption that
at each sampling instant the wave profile for a certain future period can be
estimated by some wave prediction algorithms, e.g. deterministic sea wave
prediction (DSWP) [24–33], as presented in [16]. However, the methodology
behind it is still valid when other alternative wave prediction algorithms
are employed, e.g. [17]. We do not conduct robustness and performance
analysis of the proposed methods regarding the wave prediction accuracy
and prediction horizon, as this can be completed in a similar way as [16].
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Table 1: Nomenclature
Notation Description
MT transpose of matrix M
λmin(M) minimum eigenvalue of the matrix M
M > 0 M is a positive definite matrix
He(M) equals M +MT

� term-by-term inequality for two vectors
v̂(k + i|k) estimate of v(k + i) based on the measurement up to time k;

v(k) := v̂(k|k) for conciseness.
V b
a (v̂, k)

[
v̂(k + a|k)T , · · · , v̂(k + b|k)T ]T with a, b ∈ N and a < b;
V b
a (v̂, k) := V b

a for conciseness.
Δu(k) slew rate of u(k), i.e. Δu(k) = u(k)− u(k − 1)

The structure of this paper is as follows. In Section 2, the dynamic model
of the point absorber is established. In Section 3, we present the WEC op-
timization problem in a standard format and the quadratic programme as-
sociated with the cost function (8) is formulated. Section 4 addresses the
convexity problems associated with the cost functions (3) and (7), and justi-
fies the necessity of including the extra weighted term rf 2

u in the cost function
(8); moreover, to make a direct comparison of the QP solutions related to the
cost functions (3) and (7), the difference-convex optimization is introduced.
In Section 5, the MPC framework for WEC control is presented together
with the Kalman observer design. Simulation results are demonstrated in
Section 6. Finally, the paper is concluded in Section 7.

The nomenclature and the notation for the WEC modelling are summa-
rized in Table 1 and Table 2 respectively.

2. Model setup

There are many existing approaches for modelling a point absorber in
literature. We assume that the device under investigation of this paper is
designed so that the vertical movement of the anti-heave plate is negligible
compared with that of the float. With this assumption, the cylinder below the
float can be considered to be attached to the seabed. For a more thorough
investigation of the modeling issues of point absorbers, see [7, 34, 35]. In
this section, we adopt a similar modelling procedure as [14]. We assume
the oscillation of the device relative to the wave elevation is within some
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Table 2: WEC modelling variables and parameters

Notation Description
ms mass of the float
ma added mass
m sum of added mass and the float mass
k hydrodynamic stiffness of the float
D constant damping coefficient

D̂(jω) frequency-dependant damping coefficient

hr impulse response of D̂(jω)
zw sea surface elevation
zv float elevation
fu force of the piston (control input)
fs force associated with the stiffness
fd force associated with damping
ρ water density
S cross sectional area of the float
g gravitational constant

reasonable limit that the linear theory is applicable, which makes it possible
to use a linear model to describe the WEC [36]. However, different from [14]
where wave elevation is assumed to be small enough to be negligible, here
the wave elevation is explicitly incorporated into the modelling, since we are
concerned about the constraint satisfaction in terms of the difference of the
elevations of the wave and float.

The mathematic model for this WEC can be described by

msz̈v = −fs − fr − ff + fu (9)

Here the buoyancy force fs := k(zw − zv), with the hydrostatic stiffness
k = ρgS; the mechanical force ff := Df żv due to friction and viscosity [36];
the force applied on the piston used as the control input, fu; the radiation
force is calculated by fr :=

∫ t

−∞ hr(τ)[żv(t − τ) − żw(t − τ)]dτ + maz̈v with
the convolution part hr computed by boundary element methods (e.g. [37],
WAMIT [38]) or approximated using analytical solutions for specific float
geometry [39, 40]. If we represent the convolution term by fd and assume
the Fourier transform of h(t) is D̂(jω), then D̂(jω) has an equivalent state
space realization (Ar, Br, Cr, Dr), so that fd can be equivalently represented
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as a state space model

ẋr = Arxr +Br(żv − żw) (10a)

fd = Crxr (10b)

where xr ∈ R
nr . Using these relations, we can express the ODE (9) by a

state-space model

ẋ = Acx+Bucu+Bwcw (11a)

y = Ccx (11b)

z = Czx (11c)

where w := żw, u := fu, y := żv, z := fs and x := [fs, żv, xr]
T ,

Ac =

⎡
⎣ 0 −k 0

1
m
−Df

m
−Cr

m

0 Br Ar

⎤
⎦ Bwc =

⎡
⎣ k

0
−Br

⎤
⎦ Buc =

⎡
⎣ 0

1
m

0

⎤
⎦

Cc =
[
0 1 01×nr

]
Cz =

[
1 0 01×nr

]
with m := ms + ma. In this model, D̂(jω) can be deemed as a damping
coefficient which varies with frequency. The added mass ma is also frequency
dependent, but this dependence is relatively weak, as shown in e.g. [41]. So
here we only incorporate the dynamics of the damping coefficient into the
state space model as shown in [7, 14, 36]; the case for the added mass can be
followed in a similar way, if required.

If the convolution term fd is approximated by fd := D(żv − żw), then the
state space model is simplified to a second order model with state variable
x := [fs, żv]

T , and

Ac =

[
0 −k
1
m
−D+Df

m

]
Bwc =

[
k
D
m

]
Buc =

[
0
1
m

]

Cc =
[
0 1

]
Cz =

[
1 0

]
Note that normally system identification methods together with some

numerical tools are required to derive D̂(jω) and even the dynamics of the
whole WEC from experimental data. The model we derived here is mainly
for the purpose of demonstration of the MPC strategies by numerical simu-
lation, although experimental data are used to roughly estimate the model
for D̂(jω), as shown in section 6.

9



3. Quadratic programming formulation for the WEC optimal con-
trol problem

To develop MPC scheme, (11) needs to be discretized to a discrete time
model

x(k + 1) = Ax(k) +Buu(k) +Bww(k) (12a)

y(k) = Cx(k) (12b)

z(k) = Czx(k) (12c)

Based on (12), the constrained optimization problem is

min
UN
0

N∑
k=0

[
y(k)u(k) + ru2(k) + qz2(k)

]
(13a)

s.t. |z(k)| ≤ zmax for k = 0, 1, . . . , N (13b)

|u(k)| ≤ umax for k = 0, 1, . . . , N (13c)

|Δu(k)| ≤ Δumax for k = 0, 1, . . . ,M (13d)

where the state constraint (13b) and input constraint (13c) correspond to (5)
and (6) respectively. (13d) represents the constraint on the input slew rate.

In order to resolve (13), it needs to be converted into a QP form. This
is done next for two cases. We start with the case in section 3.1 when the
input magnitudes are used as optimization variables; in this case, the input
slew rate constraint cannot be incorporated. Then in section 3.2, we extend
to the case when the input slew rates are used as the optimization variables
so that these quantities can be incorporated.

3.1. MPC with input magnitudes as optimization variables

For the ease of presentation, the objective function (13a) is rewritten in
an equivalent concise form

J := (UN
0 )TY N

0 + (UN
0 )TRUN

0 + (ZN
0 )TQZN

0 (14)

where R = r×IN+1 and Q = q×IN+1. Propagating the state equation (12a)
and using (12b) through the control horizon N gives

ŷ(k+ i|k) = CAiy(k)+

i−1∑
j=0

CAi−j−1Buû(k+ j|k)+
i−1∑
j=0

CAi−j−1Bwŵ(k+ j|k)

(15)
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where ŷ(k+ i|k) denotes the state y(k+ i) estimated at time k, and the same
meaning holds for ŵ(k + j|k). (15) can be written in a matrix form

Y N
0 = Λxx+ ΦUU

N
0 + ΦWWN−1

0 (16)

with Λx ∈ R
(N+1)×n, ΦU ∈ R

(N+1)×(N+1), ΦW ∈ R
(N+1)×(N+1), and more

explicitly

Λx =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAN

⎤
⎥⎥⎥⎥⎥⎦ ΦU =

⎡
⎢⎢⎢⎢⎢⎣

0
CBu 0
CABu CBu 0

...
...

. . .
. . .

CAN−1Bu CAN−2Bu · · · CBu 0

⎤
⎥⎥⎥⎥⎥⎦ (17)

ΦW =

⎡
⎢⎢⎢⎢⎢⎣

0
CBw

CABw CBw
...

...
. . .

CAN−1Bw CAN−2Bw · · · CBw

⎤
⎥⎥⎥⎥⎥⎦ (18)

In a similar way, we can derive

ZN
0 = Λx,zx(k) + ΦU,zU

N
0 + ΦW,zW

N−1
0 (19)

where Λx,z, ΦU,z and ΦW,z take the same forms as (17) and (18), but with
C replaced by Cz. Here the time derivative of the wave elevation at the
current instant k is w(k); we assume that at instant k, the future estimated
values, ŵ(k+1|k), · · · , ŵ(k+N−1|k), are available. These future wave data
can be derived by some form of deterministic sea wave prediction (DSWP)
algorithm.

Substituting (16) into (14) leads to a quadratic form

J =
1

2
(UN

0 )THuU
N
0 + FT

u U
N
0 (20)

where

Hu := ΦU + ΦT
U + 2R + 2ΦT

U,zQΦU,z,

Fu := (Λx + 2ΦT
U,zQΛx,z)x(k) + (ΦW + 2ΦT

U,zQΦW,z)W
N−1
0
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with Hu ∈ R
N×N and Fu ∈ R

N .
The control input constraint (13c) and the state constraint (13b) can be

written in a componentwise inequality

AuU
N
0 � bu (21)

where

Au =

⎡
⎢⎢⎣

I
−I
ΦU,z

−ΦU,z

⎤
⎥⎥⎦ , bu =

⎡
⎢⎢⎣

Umax

Umax

Zmax − Λx,zx(k)− ΦW,zW
N−1
0

Zmax + Λx,zx(k) + ΦW,zW
N−1
0

⎤
⎥⎥⎦

with Umax = [1, . . . , 1︸ ︷︷ ︸
N+1

]T × umax and Zmax = [1, . . . , 1︸ ︷︷ ︸
N+1

]T × zmax.

In summary, the QP with the cost function (20) subject to the constraint
(21) is

U∗ = argmin
Uk
0

1

2
(UN

0 )THuU
N
0 + FT

u U
N
0

s.t. AuU
N−1
0 � bu

(22)

3.2. MPC with input changing rates as optimization variables

If the actuator’s slew rate needs to be limited, the input slew rate has to be
used as optimization variable, which is defined as Δû(k+ j|k) = û(k+ j|k)−
û(k+j−1|k). We assume M control moves of Δû(k+j|k) with j = 1, . . . ,M
and a prediction horizon of N steps for the output, with M ≤ N . Then we
have the following relations

û(k + i|k) = u(k − 1) +

i∑
j=0

Δû(k + j − 1|k) with i = 0, 1, . . . ,M, (23a)

û(k +M |k) = û(k +M + 1|k) = · · · = û(k +N |k). (23b)

Equations (23a) and (23b) can be expressed by a matrix equation as

UN
0 = Tuu(k − 1) + TΔUΔUM−1

0 (24)
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where

Tu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I
I
...
I
...
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

TΔU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0
I I 0 0
...

...
. . .

I I · · · I
...

... · · · ...
I I · · · I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(25)

with I ∈ R
nu, Tu ∈ R

(N+1)nu×nu and TΔU ∈ R
(N+1)nu×Mnu .

Substitution of (24) into (16), then into (14) leads to

J =
1

2
(ΔUM−1

0 )THΔuΔUM−1
0 + (ΔUM−1

0 )TFΔu (26)

where

HΔu =T T
ΔU(ΦU + ΦT

U + 2R + 2ΦU,zQΦU,z)TΔU ,

FΔu =T T
ΔU

[
(Λx + 2ΦT

U,zQΛx,z)x(k)

+ (ΦU + ΦT
U + 2R + 2ΦT

U,zQΦU,z)Tuu(k − 1)

+(ΦW + 2ΦT
U,zQΦW,z)W

N−1
0

]
,

with HΔu ∈ R
Mnu×Mnu and FΔu ∈ R

Mnu .
The constraints on input slew rate, input magnitude and state can be

written in a componentwise inequality

AΔuΔUM−1
0 � bΔu (27)

where

AΔu =

⎡
⎢⎢⎢⎢⎢⎢⎣

IN
−IN
TΔU

−TΔU

ΦU,zTΔU

−ΦU,zTΔU

⎤
⎥⎥⎥⎥⎥⎥⎦
, bΔu =

⎡
⎢⎢⎢⎢⎢⎢⎣

ΔUmax

ΔUmax

Umax − Tuu(k − 1)
Umax + Tuu(k − 1)

Zmax − Λx,zx(k)− ΦU,zTuu(k − 1)− ΦW,zW
N−1
0

Zmax + Λx,zx(k) + ΦU,zTuu(k − 1) + ΦW,zW
N−1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and ΔUmax = [1, . . . , 1︸ ︷︷ ︸
M

]T ×Δumax.
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Hence the QP with input slew rate constraint can be expressed as solving
a QP with the cost function (26) and subject to the constraint (27):

ΔU∗ = arg min
ΔUM−1

0

1

2
(ΔUM−1

0 )THΔuU
M−1
0 + FT

ΔuΔUM−1
0

s.t. AΔuΔUM−1
0 � bΔu

(28)

4. The convexity of the QPs and difference-convex optimization

In this section, we discuss some issues related to the convexity of the QPs
associated with the cost functions (3) and (7). Then we introduce how to use
the difference-convex (DC) optimization method to approximately resolve the
non-convex QP associated with (3).

4.1. The convexity of the QP formulations

We use simple examples to justify the necessity of including the weighted
term ru2(t) in the cost function (13a) and demonstrate that convexity of (7)
is not always guaranteed.

When q = 0 and r = 0 in the cost function (13a), the Hessian matrices
Hu in (22) and HΔu in (28) degenerate to Hu = ΦU + ΦT

U and HΔu =
T T
ΔU(ΦU + ΦT

U)TΔU respectively. In a similar way, we can also derive the
Hessian matrices of the QPs corresponding to the cost function (7). When
UN+1
1 is used as the optimization variable, the Hessian matrix is Ha = Φ̄U +

Φ̄T
U ; when ΔUN+1

1 is used as the optimization variable, the Hessian matrix is
Hb = T̄ T

ΔU(Φ̄U + Φ̄T
U)T̄ΔU . Here

Φ̄U =

⎡
⎢⎢⎢⎣

CBu

CABu CBu
...

...
. . .

CAN−1Bu CAN−2Bu · · · CBu

⎤
⎥⎥⎥⎦

and Φ̄W take the same form with Φ̄U but with Bu replaced by Bw; T̄ΔU is
derived by deleting the last row of TΔU .

In [14], the QPs corresponding to the cost function (7) are assumed con-
vex, i.e. Ha > 0 and Hb > 0. However, we can show by simple examples that
this claim does not always hold. Suppose the second order state space model,
with the assumption Df = 0 without loss of generality, is discretized using
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the zero-order hold method with a sampling period of Ts and Df = 0 is as-
sumed without loss of generality. The matrices associated with this discrete
time model are

A := I + TsAc =

[
1 −kTs

Ts/m 1−DTs/m

]
(29)

Bu = TsBcu =

[
0

Ts/m

]
(30)

Bw = TsBcw =

[
kTs

DTs/m

]
(31)

C = Cc =
[
0 1

]
(32)

Suppose prediction horizons are N = 2, M = 2, then

TΔU =

⎡
⎣1 0
1 1
1 1

⎤
⎦ ΦU =

⎡
⎣ 0 0 0

CBu 0 0
CABu CBu 0

⎤
⎦ (33)

T̄ΔU =

[
1 0
1 1

]
Φ̄U =

[
CBu 0
CABu CBu

]
(34)

In this scenario, we can investigate the convexity of the QPs corresponding to
the cost function (7) by checking the positive definiteness of their associated
Hessian matrices. Examples 1 and 2 in Appendix demonstrate that the
convexity of the QPs corresponding to the cost function (7) can only be
guaranteed within a limited range of values for parameters, and the range
for the case with input slew rates as optimization variables is bigger than that
for the case with input magnitudes as optimization variables. This means
the QP formulated when using slew rate as optimization variable is more
likely to be convex.

Next, the convexity of the QPs corresponding to the cost function (3) can
also be demonstrated by Examples 3 and 4 in Appendix, which show that the
positive definiteness of the Hessian matrices Hu and HΔu cannot be satisfied
for any possible parameter values. This means that the corresponding non-
convex QPs cannot be resolved efficiently using optimization algorithms such
as active set method and interior-point method. However, the inclusion of
the extra term ru2(k) with r > 0 in the cost functions (8) or (13a) makes
it possible to convexify the QPs, since this is equivalent to adding positive
diagonal entries to the QPs. Suppose the Hessian of the QP associated
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with the cost function (3), i.e.
∑N

k=0 fu(k)v(k), is H. Then we can choose
r > −λmin(H)I such that Hp := H + rI > 0. Here Hp is the Hessian of the

convex QP corresponding to the cost function
∑N

k=0 [fu(k)v(k) + rf 2
u(k)].

Furthermore, note that the conditions for guaranteeing the positive defi-
niteness of the Hessian matrices are necessary and sufficient conditions when
the discrete time model has matrices (29)-(31) and the prediction horizon is
N = 2. These conditions become only necessary when N > 2. Moreover,
the conditions can also be changed when a different discretization method,
e.g. first-order-hold sampling, is used. Nevertheless, the properties of the
positive definiteness of these Hessian matrices do not change.

4.2. Difference-convex (DC) optimization

Based on the analysis in the last subsection, we can develop a method
to find the suboptimal solution of the cost function (3). We can use DC as
a benchmark optimization method to make a direct comparison of the QP
solutions corresponding to the two cost functions (3) and (7) respectively.

The Hessian matrices of the QPs associated with the cost function (3),
i.e.

∑N
k=0 fu(k)v(k) can be expressed as

U∗
k = argmin

Uk

[
1

2
UT
k HUk + UT

k F
]

= argmin
Uk

[
1

2
UT
k (H +He)Uk + UT

k F −
1

2
UT
k HeUk

] (35)

with He > −λmin(H)I. Here λmin(H) denotes the minimum eigenvalue of the
matrix H. Since H is not positive definite, we have −λmin(H) > 0, so that
He > 0 and Hp := H +He > 0. Define

f(Uk) :=
1

2
UT
k HpUk + UT

k F (36)

g(Uk) :=
1

2
UT
k HeUk (37)

Then both f(Uk) and g(Uk) are convex. Alternatively, they can be defined as
the convex QPs corresponding to the cost functions

∑N
k=0[fu(k)v(k)+rf 2

u(k)

+qf 2
s (k)] and

∑N
k=0[rf

2
u(k)+qf 2

s (k)] respectively. Optimization of (35) is thus
equivalent to minimizing the difference between the two convex functions,
which is known as a difference-convex (DC) optimization problem [42]. The
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first order Taylor series expansion of g(Uk) is

g(Uk) =
1

2
UT
k HeUk =

1

2
UT
k−1HeUk−1 + UT

k−1He(Uk − Uk−1) +O(Uk − Uk−1)

= UT
k HeUk−1 − 1

2
UT
k−1HeUk−1 +O(Uk − Uk−1)

= ḡ(Uk)− 1

2
UT
k−1HeUk−1 +O(Uk − Uk−1)

(38)

We approximate (35) by replacing g(Uk) in (35) by ḡ(Uk)

U∗
k = argmin

Uk

[
1

2
UT
k HpUk + UT

k F − UT
k HeUk−1

]

= argmin
Uk

[
1

2
UT
k HpUk + UT

k (F −HeUk−1)

] (39)

Then the suboptimal solution can be found by resolving the convex QP (39)
iteratively. The algorithm is summarized in Algorithm 1.

Algorithm 1 Difference of convex optimization

given U0, k = 1, ε > 0
repeat
Compute U∗

k = argminUk

[
1
2
UT
k (H +He)Uk + UT

k (F −HeUk−1)
]
.

s.t. constraints.
Stopping criterion. quit if ‖f(U∗

k ) − g(U∗
k ) − f(Uk−1) + g(Uk−1)‖2 < ε,

or k > maximum iterations.
k ← k + 1.

5. MPC control framework

The MPC WEC control framework is shown in Fig. 2. At the sampling
instant k, the state x̂ of the WEC’s model is estimated by an observer O(z),
and if possible, the future wave’s profile is predicted (using e.g. DSWP,
[16]). With this information available, the evolution of the WEC’s motion
is predicted based on the WEC’s dynamic model, over a certain fixed future
period (called prediction horizon). This prediction can be formulated into a
constrained optimization problem as demonstrated early in this paper. The
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Figure 2: MPC WEC control framework

optimization algorithm is resolved online to yield a sequence of control input
U∗. Only the first element of U∗, i.e. u∗ is used as the control input of the
WEC. Note that if the optimization algorithm produces a sequence of control
input changing signals, then a discrete time integration block z/(z − 1) is
needed after the block Ē to derive u∗. At the next sampling instant k+1, the
optimization is resolved again based on the new estimated state and predicted
wave, and the whole process is repeated with the prediction horizon moving
forward for one sampling period. For the details of the DSWP algorithm,
refer to [24–33]. Here we briefly present the Kalman observer design for
completeness, although Kalman filter is used for sea wave prediction [43, 44].

Consider a discrete time system

x(k + 1) = Ax(k) +Buu(k) +Bww(k)

y(k) = Cx(k) + v(k)

where w(k) is the the time derivative of wave elevation, and v(k) is the
measurement noise. We suppose w(k) ∼ N (0, Rw) and v(k) ∼ N (0, Rv).

The estimator’s equations are as follows

Time Update:

x̂(k + 1|k) = Ax̂(k|k) +Buu(k) +Bww(k) (40)

Measured Updates:

x̂(k|k) = x̂(k|k − 1) + L[y(k)− ŷ(k|k − 1)] (41)

Predicted Output Computation:

ŷ(k|k − 1) = Cx̂(k|k − 1) (42)
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Then by substitutions, we have the state space representation of O(z)

x̂(k + 1|k) = Ax̂(k|k − 1) + AL[y(k)− ŷ(k|k − 1)] +Buu(k) +Bww(k)

= Ax̂(k|k − 1) + AL[y(k)− Cx̂(k|k − 1)] +Buu(k) +Bww(k)

= (A− LAC)x̂(k|k − 1) +Bww(k) +Buu(k) + Ly(k)

(43)

The Kalman gain L is

L = PCT (CPCT +Rv)
−1 (44)

and the matrix P is the solution of a discrete time algebraic Recatti equation:

P = APAT −APCT (CPCT +Rv)
−1CPAT +BwRwB

T
w (45)

6. Numerical simulation

In this section, we present the simulation results using the MPC control
strategies based on the cost functions (3), (7) and (8) respectively. For the
ease of presentation, we refer to the MPC based on (3) as exact MPC (i.e.
the MPC with the cost function exactly reflecting the extracted energy), the
MPC based on (7) as approximated MPC, while the MPC based on (8) as
the novel MPC. The model adopted contains a frequency dependent added
damping term D̂(jω). Apart from damping, this model has similar dynamics
to the 2nd order model in [16]. The stiffness is k = 6.39 × 105 N/m. The
mass of the float is ms = 1× 104kg. The frequency independent added mass
is ma = 7 × 104kg. Then the total mass is m = 8 × 104kg. Df = 0 is
assumed. The input magnitude constraint is umax = 3× 105 N and the slew
rate constraint is Δumax = 0.4× 105 N. The heave motion limit of the buoy
is Φmax = 1.2 m. The frequency dependent added damping is

D̂(jω) =
1.5× 104 × (jω + 0.01)(jω + 0.02)

(jω + 0.1)(jω + 0.2)2
(46)

This transfer function is estimated from real experimental data provided by
OPT Inc. for the PB150 device. Its bode diagram is illustrated in Fig. 3.
It shows that the maximum damping coefficient is 90 dB at 0.2 rad/sec; this
roughly matches the magnitude of the constant damping coefficient termD =
2×105 Nm/s in the second order model used in [16]. The resulting 5th order
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Figure 3: The bode diagram of the frequency-dependent damping coefficient.

continuous-time model rules out the implementation of the DP algorithm
on computational ground. This model is discretized with a sampling rate
Ts = 0.02 sec. Real sea wave data gathered off the coast of Cornwall, UK is
used.

6.1. Comparison between the exact MPC and approximated MPC

The wave heave magnitude and its derivative for a period of 50 seconds
used for simulations are shown in Fig. 4. This period of wave data is rel-
atively moderate compared to the wave date used in the next simulation.
This is because the main purpose of this simulation is to show the energy
loss brought by the approximation error of the approximated MPC, and
therefore we do not want constraint violation to become the major issue,
which will be demonstrated in the next simulation.

The input slew rate constrained is not incorporated into QP optimization
and the optimization variable is the input magnitude sequence. The predic-
tion horizon is N = 25. The DC optimization is employed for the online
optimization of the exact MPC. The weights for the Kalman observer design
are chosen as Rw = 1 and Rv = 1 × 10−8. The input and state constraints
are satisfied for both MPC control strategies. Fig. 5 shows that the energy
output of the WEC controlled by approximated MPC is less than that of the
exact MPC. This result is merely used to show roughly the approximated
error brought by the one sampling instant delay in the cost function (7); it
does not mean the exact MPC is a superior method used for WEC control.
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Figure 4: The wave amplitude and its derivative data used in simulations
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Figure 6: The wave amplitude and its derivative data used in simulations

6.2. Comparison between the novel MPC, approximated MPC and exact MPC

The wave heave magnitude and its derivative for a period of 50 seconds
used for simulations are shown in Fig. 6; the same data are also used in [16].

The sequence of input slew rates is used as the optimization variable and
the input slew rate constraint is incorporated into QP formulation. Pre-
diction horizons are N = 50 and M = 30. The weights for the Kalman
observer design are chosen as Rw = 1 and Rv = 1 × 10−8. For the novel
MPC, the weights in the cost function (8) are chosen as r = 3 × 10−7 and
q = 2 × 10−7, which guarantees the positive definiteness of the Hessian ma-
trix. It is noted that when the constraint on the relative heave motion is
[−1.2, 1.2] m, the approximated MPC cannot always yield feasible solutions
during simulations. For this reason, this limit is relaxed to [−1.4, 1.4] m for
the case of the approximated MPC simulations.

In the Figs. 7-11, the solid lines and dashed lines correspond to the simu-
lation results from the novel MPC and the approximated MPC respectively.

Fig. 7 shows the heave motion trajectories: solid line is for the novel
MPC and dashed line is for the approximated MPC. When the WEC is con-
trolled by the proposed novel MPC, the relative heave motion constraint is
satisfied for the whole period. But when the WEC is control by the approx-
imated MPC, the constraint on relative heave motion is violated around 1.6,
10.3, 12.3, 13.5 and 30.5 seconds. These constraint violations can potentially
damage the WEC.

Fig. 8 shows the control inputs generated by the two control algorithms:
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Figure 8: The control input magnitude and slew rate as a function of time. The magnitude
and slew rate generated by both controllers satisfy the constraints. The solid line is for
the MPC with the novel cost function (8). The dashed line is for the MPC with the
approximated cost function (7), and the dotted line is for the exact MPC with DCQP as
the optimization algorithm.
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The input magnitude and input slew rate are both limited within the con-
straints. The benefit of imposing the slew rate constraint is reflected in the
smooth change of the control signal provided to actuator, as shown in Fig.
8(b), which would lead to a reduction of the actuator’s cost. For example,
just around 10 seconds, the input changes from −3×105 N to 3×105 N grad-
ually within 0.36 seconds, rather than jumping suddenly within one sampling
period 0.02 second.

Fig. 9 shows the sum square of inputs (SSI) generated by each MPC
controller. The SSI reflects the energy consumed by the actuator or the
electricity needed to be provided to the actuator. This figure shows that the
SSIs associated with the novel MPC and the exact MPC are indistinguishable
and both slightly smaller than that of the approximated MPC. In fact, the
magnitude of SSI can be tuned even smaller by increasing the value of r in the
cost function (8). Since the operation of the actuator needs electricity storage
capacity to provide current, the smaller SSI also indicates the requirement
of a smaller electricity storage device.

Fig. 10 and Fig. 11 show the power and energy generated by the three
MPC WEC controllers respectively. The energy generated by the novel MPC
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Figure 10: Extracted power as a function of time, over 50 sec.

and exact MPC are still indistinguishable and slightly less than that of the
approximated MPC. This indicates two aspects: First, it should be noted
that this relative smaller energy output is traded off by the smaller energy
consumption by the actuator, and most importantly, the relative motion
constraint is always satisfied for the whole simulation period compared with
the constrained violation by the approximated MPC controller. In reality,
this comparison is not even necessary because the approximate MPC violates
the state constraints and so could not even be used under the real conditions.
Second, the the extra terms involved in the novel MPC for penalizing the
input variable and constrained state variable are nearly negligible compared
with the case when only the output energy is used as the objective function.

7. Conclusion

We have proposed a novel MPC strategy for WEC control. This novel
MPC can trade off the amount of energy output against the input energy
consumption requirements of the actuator. It also explicitly penalizes the
relative heave motion of the WEC, which guarantees feasible optimal so-
lution and safe operation. The quadratic programme associated with this

26



−0.5

0.5

1.5

2.5
7

 

 

The novel MPC
The approxiamted MPC
Exact MPC (by DCQP)

×10

5

2

1

0

0 10 15 20 25 30 35 40 45 50

Time (sec)

E
n
er
g
y
(J
)

Figure 11: Extracted energy over time. The energy generated by the novel MPC is slightly
less.

novel MPC can be tuned to be convex, which facilitates efficient online im-
plementation. A typical type of point absorber is used as a study case. The
simulation results confirm the efficacy of the proposed novel MPC strategy
for WEC control.
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Appendix A. Examples for the convexity of QPs in Section 4

Example 1:
For N = 2, the Hessian matrix Ha is

Ha = He(Φ̄U ) = He

([
CBu 0
CABu CBu

])

=

[
2Ts/m Ts/m(1−DTs/m)

Ts/m(1−DTs/m) 2Ts/m

] (A.1)
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Since Ts/m > 0, we have Ha > 0 if and only if

4− (1−DTs/m)2 > 0

This inequality is satisfied if and only if −1 < DTs/m < 3. Since D > 0,
Ts > 0 and m > 0, this condition can be replaced by 0 < DTs/m < 3.

Example 2:
For N = 2, M = 2, the Hessian matrix Hb is

Hb = He(T̄ T
ΔU Φ̄U T̄ΔU) = He

([
CABu + 2CBu CBu

CABu + CBu CBu

])

= He

([
Ts/m(1−DTs/m) + 4Ts/m 2Ts/m
Ts/m(1−DTs/m) + 2Ts/m 2Ts/m

]) (A.2)

Hb > 0 if and only if[
2(5−DTs/m) 5−DTs/m
5−DTs/m 4

]
> 0 (A.3)

By simple manipulations and considering DTs/m > 0, we see that (A.3) is
satisfied if and only if 0 < DTs/m < 5.

Example 3: If N = 2, then the Hessian matrix Hu is

Hu = He(ΦU ) =

⎡
⎣ 0 (CBu)

T (CABu)
T

CBu 0 (CBu)
T

CABu CBu 0

⎤
⎦ (A.4)

Clearly, Hu is not positive definite due to the zero diagonal.
Example 4:
If N = 2, M = 2, then the Hessian matrix HΔu is

HΔu = He(T T
ΔUΦUTΔU) = He

([
CABu + 2CBu CBu

CABu + 2CBu CBu

])

= He

([
Ts/m(1−DTs/m) + 4Ts/m 2Ts/m
Ts/m(1−DTs/m) + 4Ts/m 2Ts/m

]) (A.5)

HΔu > 0 if and only if[
2(5−DTs/m) 7−DTs/m
7−DTs/m 4

]
> 0 (A.6)

(A.6) is satisfied if and only if DTs/m < 5 and (DTs/m− 3)2 < 0, which do
not hold.
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