
Authors’ version of the accepted manuscript.  
Published version available at http://pubs.rsc.org/en/content/articlehtml/2016/sm/c6sm01106c 

 

Low Stress Ion Conductance Microscopy 
of Sub-Cellular Stiffness 
Richard Clarke,a,1,2 Pavel Novak,b,1 Alexander Zhukov,a Eleanor J. Tyler,c Marife Cano-

Jaimez,d Anna Drews,a Owen Richards,a Kirill Volynski,d Cleo Bishopc and David 

Klenermana,2 

a. University Chemical Laboratories, Lensfield Road, Cambridge, CB2 1EW.  
b. School of Engineering and Materials Science, Queen Mary University of London, Mile End 

Road, London, E1 4NS.  
c. Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, 4 

Newark Street, London, E1 2AT.  
d. UCL Institute of Neurology, Queen Square, London, WC1N 3BG.  
1 These authors contributed equally.  
2 Correspondence to: rwc25@cam.ac.uk; dk10012@cam.ac.uk 

Abstract 

Directly examining subcellular mechanics whilst avoiding excessive strain of a live cell 

requires the precise control of light stress on very small areas, which is fundamentally difficult. 

Here we use a glass nanopipet out of contact with the plasma membrane to both exert the stress 

on the cell and also accurately monitor cellular compression. This allows the mapping of cell 

stiffness at a lateral resolution finer than 100 nm. We calculate the stress a nanopipet exerts on 

a cell as the sum of the intrinsic pressure between the tip face and the plasma membrane plus 

its direct pressure on any glycocalyx, both evaluated from the gap size in terms of the ion 

current decrease. A survey of cell types confirms that an intracellular pressure of approximately 

120 Pa begins to detach the plasma membrane from the cytoskeleton and reveals that the first 

0.66±0.09 µm of compression of a neuron cell body is much softer than previous methods have 

been able to detect. 

Introduction 

In Ion Conductance Microscopy (ICM), insulating surfaces in conducting solution are detected 

by their slight occlusion of the ion current through the tip aperture of a nanopipet probe.1 A 

picoampere drop in this nanoampere ion current between the capillary and bath electrodes can 

be detected within a millisecond using a patch-clamp amplifier, allowing piezoelectric 

positioning of the nanopipet to map a cell’s topography2 and to patch to an exact point of 

interest.3 It was long thought that ICM imaging exerts almost no stress on a cell simply  because 

the feedback control keeps the tip from making contact with it. However, during approaches to 

cells the ion current decreases far more slowly with height than its rapid drop next to a hard 

surface, indicating the glass tip face repels the cell membrane before contact. We were recently 

able to characterize this interaction by considering energetic barrier to gigaseal formation in 

terms of colloid theory4 and now develop the theory to fit data of ion current versus height from 

deep pushes of cell surfaces. We then show how this understanding allows the quantitative 

mapping of stiffness across individual cells at low stress, using a variety of cell types in culture 

– Hippocampal Neuron (HN)5 cells, a prion protein knockout (Prnp-/-) cell line (HpL),6 and 

normal, finite lifespan Human Mammary Fibroblast (HMF)7, 8 cells.  
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This method is an important technical advance, principally because it allows very soft features 

of cells to be studied at nanoscale resolution, both in the vertical and lateral directions. To 

study cells using cantilever techniques, relatively large spheres are typically attached to the tips 

in order to lower the stress exerted, but this averages out the spatial resolution of differences in 

stiffness, as well as topography. This same limitation applies to using hydrostatic pressure in 

ICM as it needs apertures >140 nm9, 10 in practice (this reduces blockages from unfiltered 

particulates carried by the flow), and the flow profile is four times wider than this.9 Fortunately, 

we find that removing the complication of applying hydrostatic pressure and evaluating the 

unavoidable forces instead actually makes it more straightforward and less perturbative to 

image subcellular stiffness, and with higher resolution. The ability to discern native subcellular 

structures via stiffness as a second label-free coordinate in addition to topography is itself 

intrinsically useful, especially given that nanopipets can also deliver reagents to the vicinity11 

and make electrochemical measurements.12 The detailed knowledge of the actual structural and 

mechanical properties in vivo is just as important though, as these determine the overall 

mechanical properties of the cell, and their rapid and clearly resolved measurement will further 

the understanding of how cells respond to forces and changes in their environments. 

Results and discussion 

Approach curves 
The tip-face of a typical nanopipet usually remains 50-100 nm distant from the plasma 

membrane during an ICM scan, not approaching closely enough to make contact with cell-

surface macromolecules. To minimise the stress on the cell we avoid the complication of 

applying hydrostatic pressure9, 13 and ensure the slight weight of the column of solution is 

balanced14 by surface tension in the capillary. Thus in these experiments the stress on most cell 

types is entirely due to the intrinsic colloidal pressure between the cell surface and the glass tip 

face. This intrinsic pressure σ varies with the size of the gap between the tip face and the plasma 

membrane as 𝐻⁄6𝜋𝑔3 where the Hamaker constant H for the glass-cell interaction across 

physiological saline is estimated to be 4zJ4 and the gap g is found from an empirical model for 

the drop in ion current as the nanopipet approaches a surface, 𝐼 = 𝐼0 (1 − 𝑒−𝑥𝑔⁄𝑟). 

 

Figure 1 At low decreases in ion current the colloidal interaction between the glass tip face of 

a nanopipet and the cell membrane exerts a miniscule but quantifiable stress. (a) Stress versus 

ion current decrease calculated for a 100 nm aperture nanopipet. The total stress (purple) is the 
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sum of the intrinsic stress (blue) and, if present, the direct stress on glycocalyx (red), here set 

to 70.5 nm; 390 Pa 16. Over 120 Pa (dashes), the cell membrane begins to detach from its 

anchor-points on the cytoskeleton leading to blebbing17. Over 8 kPa the tip-face patches to the 

membrane4. (b) Ion current through an 84 nm aperture nanopipet approaching a hard flat 

polystyrene surface. 

In such approaches, shown in Figures 1 and S1, the aperture radius 𝑟 is determined from the 

limiting ion current far from the surface via 𝐼0 = 𝜋𝑟𝜅𝑉 tan(𝛼),15 where the halfcone angle α is 

3 degrees, 𝜅 is 1.35 Sm-1 and 𝑉 is 200 mV. The tip radius 𝑟 also determines, along with the 

empirically determined constant 𝑥 = 3.6 ± 0.2, the scale of the fall in ion current as the gap 

narrows. With these values as fixed parameters it is then possible to fit approach data to cells 

as well, because both ion current and the stresses are fixed functions of the tip-cell gap. For 

example, the intrinsic stress in terms of the decrease in ion current ΔI is 

𝜎 = 𝐻 6𝜋((𝑟⁄𝑥) ln(𝐼0⁄Δ𝐼))3  [1] 

When combined with the simplest possible models of cell stiffness, this stress already fits 

approach data to glycocalyx–free cells exactly, as shown in Figures 2(a,b) and S2: To fit the 

first sections of these approaches to neuronal cells just two variables apart from 𝐼0 are needed, 

stiffness and rest height. The height of a cell column of elastic modulus 𝐸 is ℎ = ℎ0(1 − (𝜎⁄𝐸)), 

while the height of the tip face above the substrate is 𝑧 = ℎ + 𝑔. Writing both 𝐼 and 𝑧 

parametrically in terms of 𝑔 then fits approaches to HN cells, on average at 𝐸 = 93±11 Pa up 

to the first 0.66±0.09 μm of compression. After pushing this far the current usually begins to 

decrease faster with height than expected, corresponding to an increase in stiffness. This must 

correspond to neurons having a stiffer cortex in series with an initially softer range of travel 

that reaches full compression when conformational slack in the cytoskeleton and in its 

attachments to the plasma membrane is used up, or when the plasma membrane pushes against 

the cortex. Thus fitting both sides of the discontinuity in gradient requires a soft portion 

restricted to non-negative height, with its own stiffness and rest height parameters in series 

with the cortical parameters. We estimate that for HN cells the cortex is 10.9±0.5 μm at 213±44 

Pa plus 0.30±0.05 μm slack at 3.7±0.5 Pa. For HpL cells the cortex is 8.1±0.4 μm at 320±37 

Pa plus 0.40±0.03 μm slack at 7.9±1.1 Pa. The different characteristics of slack in HpL cells 

may be related to absence of PrP or to ectopic expression of Dpl,18 and hence to ataxia in HpL 

mice.18 Having detected the plasma membrane at low stress it is remarkable that if our 

measurements had not pushed far enough to use up the slack there would have been no 

indication of its existence, for in the initial regime of compression the dual stiffness fit is 

identical to the uniform model. Its stiffness and rest height parameters for the cortex and slack 

even combine analytically in the following simple formula to give exactly the same apparent 

stiffness: 

𝐸 = (ℎ𝐶 + ℎ𝑆)⁄((ℎ𝐶⁄𝐸𝐶) + (ℎ𝑆⁄𝐸𝑆))  [2] 
This initial slack in neurons is interesting as it would account for observed changes in the 

volume of the brain’s interstitial space19 if there were to be a slight rise in interstitial fluid 

pressure during the transition to sleep. A distributed pressure differential like this could arise 

osmotically, or from upregulation of astrocytic AQP4 aquaporins, which would lower their 

resistance to cerebrospinal fluid pressure20 and arterial pulsation.21 The absence of active 

cellular contraction in this mechanism avoids opposing forces that would break synapses, while 

the gentle compression of each neuron would allow it to efficiently expunge waste metabolites 

and misfolded proteins through cellular pores, to be washed away by glymphatic flow.  

Some other cell types are coated by a porous network of proteoglycans called the glycocalyx. 

The tip face compresses this elastically when in contact, allowing the stiffness of such cells 

also to be determined without close approach to the plasma membrane. Any glycocalyx is only 

strained when the gap 𝑔 is less than its thickness 𝑡, generating a direct stress 𝜍 = 𝑌(1 − (𝑔⁄𝑡)) 
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that adds to the intrinsic pressure on the membrane as shown in Figure 1. In this paper we take 

the elastic modulus of HMF glycocalyx 𝑌 to be that of human umbilical vein endothelial cell 

glycocalyx, 390 Pa.16 The decrease in ion current with height is then fully determined by the 

elastic modulus of the cell and the thickness of the glycocalyx around it. Conversely, these 

parameters can be inferred in order to fit data of ion current versus tip height, as shown in 

Figures 2(c) and S2. Our HMF approach data fit means of 3.9±0.6 kPa cell stiffness and 

70.5±1.6 nm glycocalyx thickness, comparable to the 39.5 nm thickness determined for 

erythrocytes22 and 3.2 – 75.0 nm for endothelial cells.23 Although the intrinsic stress increases 

sharply with Δ𝐼, it fully compresses most cells well before reaching its 8 kPa maximum when, 

in the absence of glycocalyx, the tip face seals to the membrane.3,4 Thus soft cells like neurons 

cannot be patched without applying negative hydrostatic pressure, and ion current during 

approaches is rarely asymptotic to zero. At full compression, where the apical and basal 

membranes are pushed together against the substrate, sealing would be quickly followed by 

membrane rupture, at 3 MPa.24 We did not push the cells this far. A much earlier consideration 

when compressing a cell is the piece-wise detachment of the plasma membrane from its anchor-

points on the cytoskeleton, which begins at intracellular pressures of 45-300 Pa.17 This 

phenomenon allows a cell to accommodate distortion without bursting, and is known as 

blebbing. Cells actively re-attach folds of plasma membrane to the cytoskeleton, so a live cell 

is able to wrinkle blebs back into place. However, not exceeding the blebbing stress in the first 

place maintains a passive elastic response that does not require this energy expenditure. A good 

estimate of the stress at which these effects typically begin is the log-mean of the above range, 

120 Pa. Around this point, where the lines in all figures become dashes, the ion current can 

decrease slower than expected due to gradual membrane detachment decreasing the effective 

stiffness, thereby maintaining the tip-cell gap. Any sudden blebbing can reduce the intracellular 

pressure to such an extent that the gap actually re-widens, whereupon the ion current jumps 

upwards, as in Figures 2(b) and S2. The ion current sometimes decreases faster than expected 

instead, indicating a second increase in cortical stiffness. 

 

Figure 2 With stress characterized in terms of ion current decrease, approach data fits simple 

models of cell mechanics: (a) HN cell, apparent stiffness 107 Pa for 0.48 μm, fits 260 Pa, 9.14 

μm cortex with 5.5 Pa, 0.29 μm slack. (b) HpL cell, apparent stiffness 52 Pa for 0.70 μm, fits 

350 Pa, 8.4 μm cortex with 4 Pa, 0.6 μm slack. (c) HMF cell fits 9.0 kPa, 2.2 μm height with 

62 nm glycocalyx. The fit lines are shown dashed at the membrane detachment stress of 120 

Pa. 

Low stress mapping. 
In contrast to the approach data which extend to large decreases in ion current, to map cell 

stiffness we determine the height of each point above the substrate at two low set decreases in 

ion current, typically only 0.3% and 1.5%. Two fields of nanopipet heights are thus measured 

at two constant stresses; at a minimal stress of 0.1-10 Pa and at a compressive stress of 1-100 

Pa, where both are precisely determined in any particular scan by its specific parameters, 

described earlier. The nanopipet heights are converted to cell heights by subtracting the tip-cell 
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gap, which typically decreases from 50 to 30 nm for neuronal cells (or from 80 to 50 nm for 

fibroblasts, where the pipet must be wide enough to detect the cell surface before pushing into 

the glycocalyx). The stresses and corresponding cell heights are thereby accurately evaluated 

even though the imaging process only momentarily pushes the cell surface around 100 nm on 

average at each point. The two simultaneous equations 𝐸 = 𝛴1⁄𝜀1 = 𝛴2⁄𝜀2, where 𝛴 is the total 

stress 𝜎 + 𝜍 and 𝜀 denotes strain, then give the cell stiffness as: 

𝐸 = ((𝛴2 − 𝛴1)ℎ1⁄(ℎ1 − ℎ2)) + 𝛴1   

= (Δ𝛴(𝑧1 − 𝑔1)⁄(Δ𝑧 − Δ𝑔)) + 𝛴1  [3] 

 

Figure 3 Stiffness and topography of three cell types imaged at high resolution by nanopipet 

ICM. (a, b) HN neuron mapped by a 110 nm aperture nanopipet at ΔI=0.3%, 2% exerting stress 

of 0.29 Pa, 0.96 Pa at tip-cell gaps of 90 nm, 60 nm that typically push the cell soma 0.1-0.2 

μm. (c, d) HpL cell mapped by a 52 nm aperture nanopipet at ΔI=0.6%, 3% exerting stress of 

4.27 Pa, 13.26 Pa at gaps of 37 nm, 25 nm. (e, f) HMF fibroblast mapped by a 100 nm aperture 

nanopipet at ΔI=0.3%, 3% exerting stress of 0.4 Pa, 122.5 Pa at gaps of 81 nm, 49 nm, resolving 

the stiffness of stress fibres. The substrate stiffness is masked out in dark blue. The lateral scale 

bar is 4 μm. 

Taking account of the changes in separation and stress in this way allows the nanopipet to 

discern differences in stiffness across individual cells, for example over actin stress fibres and 

apparent endocytotic events that are not visible in the topographies, as shown in Figures 3, 4 

and S3-S7. Note that the stiffness maps of fibroblasts need an independent estimate of 

glycocalyx stiffness and also its thickness as determined from approach data. Glycocalyx 

stiffness does depends on cell type; it is 250 Pa for pulmonary endothelial cells for example,25 

but the dominant direct stress is linear in this parameter so changing it does not affect the 

contrast in stiffness that will usually be of primary interest. To compare our measurements with 

other techniques that have assayed cell body stiffness we calculated the mean stiffness of 

somatal regions in our scans as identified by topography, demonstrated in Figure S3. The 

hippocampal neurons have an apparent cell body stiffness of 56±9 Pa, corresponding to a 

cortical stiffness of 310±109 Pa. When assessed by 6 μm diameter polystyrene spheres on a 

cantilever tip the stiffness of similar cell bodies was reported to be 900 Pa,26 suggesting the 
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cantilever spring constant was too high to detect the initial slack and instead measured the 

cortical stiffness directly. Some HN cells we measured did have a cortex this stiff but others 

were much softer; we suspect that in earlier cantilever studies this softer subpopulation would 

have been flattened against the substrate and missed.  

 

Figure 4 Stiffness and topography of three cell types imaged at high resolution by nanopipet 

ICM. (a, b) HN soma mapped by a 62 nm aperture nanopipet at ΔI=0.5%, 1%, exerting stress 

of 2.23 Pa, 3.40 Pa at gaps of 46 nm, 40 nm. The lateral scale bar is 1 μm. (c, d) HpL soma 

mapped by a 52 nm aperture nanopipet at ΔI=0.6%, 4.2%, exerting stress of 4.27 Pa, 17.95 Pa 

at gaps of 37 nm, 23 nm. (e, f) Apical area of HMF fibroblast mapped by a 100 nm aperture 

nanopipet at ΔI=0.3%, 3%, exerting stress of 0.4 Pa, 122.5 Pa at gaps of 81 nm, 49 nm. Cell 

surface structures, probably endocytotic events, are visible in the stiffness map but not in the 

topography. 

HpL cells had an apparent cell body stiffness of 64±4 Pa, corresponding to a cortical stiffness 

of 702±22 Pa. The stiffness we find for HMF cells, 2.25±0.27 kPa, is comparable to an average 

stiffness from force microscopy of fibroblasts,27, 28 2.89±0.28 kPa. These cells are stiffened by 

the enhanced lateral force transmission of the numerous stress fibres29 seen in Figures 3(e) and 

4(e). As a reference for future studies, the dependencies and limiting factors of the stresses in 

ICM are illustrated in Figure S8. Each curve begins at the minimum detectable ion current 

decrease in 1 ms, calculated for a signal to noise ratio of three times the thermal noise, 𝐼𝑅𝑀𝑆 =

√4𝑘𝑇∆𝑓/𝑅 30. These values increase for smaller aperture diameters but it would be possible to 

detect smaller changes in ion current for higher resistance nanopipets by extending the 

acquisition time. The bandwidth Δ𝑓 = 1 kHz corresponds to the rate of data acquisition 

typically necessary for imaging experiments. 

Conclusions 
These are general methods for assaying and imaging cell stiffness but they have already 

identified here some specific features of interest. We have shown how to determine the 

thickness of the glycocalyx from approach data, and have found that some subcellular 

structures exhibit strong contrast in stiffness but none in topography. We have also identified 
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that the initial deformation of most points of the plasma membrane of neurons is extremely 

soft, indicating that we must often be encountering the spaces between its non-tethered points 

and the cortical cytoskeleton, and/or conformational slack in the cytoskeleton itself. Overall, 

these results demonstrate that it is possible to map the stiffness of cells at very high resolution, 

both laterally and vertically, without the considerable effort of modifying ICM apparatus to 

apply hydrostatic pressure. The absence of flow also allows narrower nanopipets to be used 

that would otherwise be prone to blockages, and for which the forces we describe would have 

to be evaluated in any case. Further advantages stem from minimizing the offset from the tip-

face to the cell surface – if applying hydrostatic pressure this offset is necessarily larger to 

accommodate the flow profile, which lowers resolution and begins pushing the cell before its 

surface is detected. The equations developed here also indicate that it may be possible to patch 

hard cells without the requirement of applying negative hydrostatic pressure. Besides its ability 

to map a vast range of stiffness at the nanoscale, stress-quantitative ICM will now enable many 

other interesting studies of live cells, including fundamentally non-invasive assays of 

differentiation, subcellular response, and mechanosensation. It will be possible for example to 

assay the exact stresses at which mechanosensitive ion channels open. Thus this advance in 

understanding of ICM greatly increases its versatility for nanoscale biophysics and the study 

of cellular mechanics. 
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