
ar
X

iv
:1

60
2.

01
63

5v
1 

 [c
s.

C
L]

  4
 F

eb
 2

01
6

A Generalised Quantifier Theory of Natural Language
in Categorical Compositional Distributional Semantics with Bialgebras

Jules Hedges and Mehrnoosh Sadrzadeh

School of Electronic Engineering and Computer Science,
Queen Mary University of London

j.hedges, m.sadrzadeh@qmul.ac.uk

Abstract. Categorical compositional distributional semantics is a model of natural language; it combines the
statistical vector space models of words with the compositional models of grammar. We formalise in this model
the generalised quantifier theory of natural language, due to Barwise and Cooper. The underlying setting is a
compact closed category with bialgebras. We start from a generative grammar formalisation and develop an
abstract categorical compositional semantics for it, theninstantiate the abstract setting to sets and relations
and to finite dimensional vector spaces and linear maps. We prove the equivalence of the relational instanti-
ation to the truth theoretic semantics of generalized quantifiers. The vector space instantiation formalises the
statistical usages of words and enables us to, for the first time, reason about quantified phrases and sentences
compositionally in distributional semantics.

1 Introduction

Distributional semantics is a statistical model of naturallanguage; it is based on hypothesis that words
that have similar meanings often occur in the same contexts and meanings of words can be deduced
from the contexts in which they often occur. Intuitively speaking and in a nutshell, words like ‘cat’ and
‘dog’ often occur in the contexts ‘pet’, ‘furry’, and ‘cute’, hence have a similar meaning, one which
is different from ‘baby’, since the latter despite being ‘cute’ has not so often occurred in the context
‘furry’ or ‘pet’. This hypothesis has often been traced backto the philosophy of language discussed
by Firth [13] and the mathematical linguistic theory developed by Harris [19]. Distributional semantics
has been used to reason about different aspects of word meaning, e.g. similarity [42,50], retrieval and
clustering [33,31], and disambiguation [47]. A criticism to these models has been that natural language
is not only about words but also about sentences, but these models do not naturally extend to sentences,
as sentences are not frequently occurring units of corpora of text.

Models of natural language are not restricted to distributional semantics. A tangential approach puts
the focus on the compositional nature of meaning and its relationship with language constructions. This
approach is inspired by a hypothesis often assigned to Fregethat meaning of a sentence is a function
of the meanings of its parts [14]. Informally speaking and very roughly put, meaning of a transitive
sentence such as ‘dogs chase cats’ is a binary function of itssubject and object. For instance, here the
binary function is the verb ‘chase’ and the arguments are ‘dogs’ and ‘cats’. This idea has been formalised
in different ways, examples are the early works of Bar-Hillel [2] and Ajdukiewicz [1] on using classical
logic, the context free grammars of Chomsky [9], and the firstorder logical approach of Montague [38].
One criticism to all these settings, however, is that they donot say much about the meanings of the parts
of the sentence. For instance, here we do not know anything more about the meaning of ‘chase’ and of
‘dogs’ and ‘cats’, apart from the fact that they one is a function and others its arguments.

Compositional distributional semantics aims to combine the compositional models of grammar with
the statistical models of distributional semantics in order to overcome the above mentioned criticisms.
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Among the early grammar-based formalisms of the field is the work of Clark and Pulman [10], and
among the first corpus-based approaches is the work of Mitchell and Lapata [37]. The former model
pairs the distributional meaning representation of a word with its grammatical role in a sentence and de-
fines the meaning of a sentence to be a function of such pairs. The latter, takes the distributional meaning
of a sentence to be the addition or multiplication of the distributional meanings of its words. The model
of Clark and Pulman has not been experimentally successful and its theory does not allow comparing
meanings of different sentences. The model of Mitchell and Lapata has been experimentally successful
but forgets the grammatical structure of sentences, since addition and multiplication are commutative.

Categorical compositional distributional semantics is anattempt to overcome these shortcomings
and unify these models. This model was first described in [48]and later published in [11]. It is based on
two major developments: first is the mathematical models of grammar introduced in the work of Lambek
[27,28], which either explicitly or implicitly use the theory of monoidal categories; second, is the for-
mulation of the distributional representations in terms ofvectors, by many e.g. Salton and Lund [34,46].
The categorical model uses the fact that the grammatical structures of language can be described within
a compact closed category [40,30] and that finite dimensional vector spaces and linear maps form such
a category [25]. The original formulation of this model consisted of the product of these two categories,
which was later recasted using a strongly monoidal functor [39,23,12]. The theoretical constructions of
this model on an elementary fragment of language (adjectivenouns phrases and transitive sentences)
were evaluated in [17,18] and in [22,20]. Much of recent workof the field is focused on using methods
from machine learning (regression, tensor decomposition,neural embeddings) to implement them more
efficiently [36,21,16,49].

Compact Closed Category with Bialgebra

Truth Theoretic Semantics Corpus-Based Semantics

Instantiate to Rel Instantiate to FVect

Fig. 1. Abstract and Concrete Models for Generalized Quantifiers inCompositional Distributional Semantics

Despite all these, dealing with meanings of logical words such as pronouns, prepositions, quantifiers,
and conjunctives has posed challenges and open problems. Inrecent work [44,45] and also in [24]
we showed how Frobenius algebras over compact closed categories can become useful in modelling
relative pronouns and prepositions. In this paper, we take astep further and show how bialgebras over
compact closed categories model generalised quantifiers [3]. We first present a preliminary account of
compact closed categories and bialgebras over them and review how vector spaces and relations provide
instances. The contributions of the paper start from section 3, where we develop an abstract categorical
semantics for the generalised quantifier theory in terms of diagrams and morphisms of compact closed
categories with bialgebras. We present two concrete interpretations of this abstract setting: sets and
relations, as well as finite dimensional vector spaces and linear maps.

The former is the basis for truth theoretic semantics and thelatter for corpus-base distributional
semantics. We prove that the relational instantiation of the abstract model is equivalent to the truth
theoretic model of generalised quantifier theory (as presented by Barwise and Cooper). We then prove



how the relational model embeds into finite dimensional vector spaces and more importantly, show
how it generalises to a compositional distributional semantic model of language. We provide vector
interpretations for quantified sentences, based on the grammatical structure of the sentences and the
meaning vectors of their words. The meaning vectors of nouns, noun phrases, and verbs are as previously
developed. The meaning vectors of determiners and quantised phrases and sentences are novel.

The are two predecessors to this paper: [43], where Frobenius algebras were used and the equiva-
lence between relational instantiation and truth theoretic semantics could not be established, and [41],
where a two-sorted functional logic was used, but only a casefor semantics of universal quantification
was presented.

2 Preliminaries

2.1 Vector Space Models of Natural Language

Given a corpus of text, a set of contexts and a set of target words, a co-occurrence matrix has at each
of its entries ‘the degree of co-occurrence between the target word and the context’. This degree is
determined using the notion of awindow: a span of words or grammatical relations that slides across
the corpus and records the co-occurrences that happen within it. A context can be a word, a lemma,
or a feature. A lemma is the canonical form of a word; it represents the set of different forms a word
can take when used in a corpus. For example, the set{kills, killed, to kill, killing, killer, killers, · · · }
is represented by the lemma ‘kill’. A feature represents a set of words that together express a pertinent
linguistic property of a word. These properties can be topical, lexical, grammatical, or semantic. For
example the set{bark, miaow, neigh} represents a semantic feature of animal, namely the noise that it
makes, whereas the set{fiction, poetry, science} represents the topical features of a book.

The lengths of the corpus and window are parameters of the model, as are the sizes of the feature
and target sets. All of these depend on the task; for studies on these parameters, see for example [32,6].

Given anm × n co-occurrence matrix, every target wordt can be represented by a row vector of
lengthn. For each featurec, the entries of this vector are a function of the raw co-occurrence counts,
computed as follows:

rawf (t) =

∑

cN(f, t)

k

for N(f, t) the number of times thet andf have co-occurred in the window. Based onL, the total num-
ber of times thatt has occurred in the corpus, the raw count is turned into various normalised degrees.
Some common examples are probability, conditional probability, likelihood ratio and its logarithm:

Pf (t) =
rawf (t)

L
, P(f |t) =

P (f, t)

P (t)
, LR(f, t) =

P(f | t)

P(f)
, log LR(f, t) = log

P(f | t)

P(f)

We denote a vector space model of natural language produced in this way withVΣ , whereΣ is the
set of features, andVΣ is the vector space spanned by it.

As an example, consider a corpus of108 words,106 target words and105 features. Fix the window
size to be 5 and suppose the co-occurrence matrix with raw counts to be as follows, where the column
entries are the feature words and the row entries are the target words.

fish horse pet blood ... total
dolphin 500 10 700 0 ... 2000
shark 250 10 20 400 ... 1000

plankton250 10 1000 10 ... 1700
pony 10 1000 10 10 ... 1500



The vector representations of the target word ‘dolphin’ with the raw counts and its functions, as
discussed above, are as follows:

raw= (500, 10, 700, 0)

P : = (
5

20
,

1

200
,
7

20
, 0)

LR : = (25000, 500, 17500, 0)

log LR : = (1.397,−0.301, 1.2430, 0)

Various notions of distance (length, angle) between the vectors have been used to measure the degree
of similarity (semantic, lexical, information content) between the words. For instance, for the cosine of
the angle between the vectors of dolphin and other target words we obtain:

cos(
−−−−→
dolphin,

−−−→
shark) = 0.87 cos(

−−−−→
dolphin,−−→pony) = 0.009

This indicates that the degree of similarity between dolphin and shark is much higher than that
of dolphin and pony. These degrees directly follow the co-occurrence degrees we have set above, that
dolphin and shark have co-occurred often with the same fearture, but dolphin and pony have done so to
a much lesser degree.

2.2 Generalised Quantifier Theory in Natural Language

We briefly review the theory of generalised quantifiers in natural language as presented in [3]. Consider
the fragment of English generated by the following context free grammar:

S → NP VP
VP→ V NP
NP→ Det N

NP → John, Mary, something,· · ·
N → cat, dog, man,· · ·
VP → sneeze, sleep,· · ·
V → love, kiss,· · ·

Det→ a, the, some, every, each, all, no, most, few, one, two,· · ·

A model for the language generated by this grammar is a pair(U, [[ ]]), whereU is a universal
reference set and[[ ]] is an interpretation function defined by induction as follows.

– On terminals.
• The interpretation of a determinerd generated by ‘Det→ d’ is a map with the following type:

[[d]] : P(U) → PP(U)

It assigns to eachA ⊆ U , a family of subsets ofU . The images of these interpretations are
referred to asgeneralised quantifiers. For logical quantifiers, they are defined as follows:

[[some]](A) = {X ⊆ U | X ∩A 6= ∅}

[[every]](A) = {X ⊆ U | A ⊆ X}

[[no]](A) = {X ⊆ U | A ∩X = ∅}

[[n]](A) = {X ⊆ U | | X ∩A |= n}

A similar method is used to define non-logical quantifiers, for example “most A” is defined to
be the set of subsets of U that has ‘most’ elements of A, “few A”is the set of subsets of U that
contain ‘few’ elements of A, and similarly for ‘several’ and‘many’.



• The interpretation of a terminaly ∈ {np, n, vp} generated by either of the rules ‘NP→ np, N
→ n, VP→ vp’ is [[y]] ⊆ U . That is, noun phrases, nouns and verb phrases are interpreted as
subsets of the reference set.

• The interpretation of a terminaly generated by the rule V→ y is [[y]] ⊆ U × U . That is, verbs
are interpreted as binary relations over the reference set.

– On non-terminals.

• The interpretation of expressions generated by the rule ‘NP→ Det N’ is as follows:

[[Det N]] = [[d]]([[n]]) where X ∈ [[d]]([[n]]) iff X ∩ [[n]] ∈ [[d]]([[n]])

for Det→ d and N→ n

• The interpretations of expressions generated by other rules are as usual, that is

[[V NP]] = [[v]]([[np]]) [[NP VP]] = [[vp]]([[np]])

Here, forR ⊆ U × U andA ⊆ U , by R(A) we mean the forward image ofR onA, that is
R(A) = {y | (x, y) ∈ R, for x ∈ A}. To keep the notation unified, forR a unary relation
R ⊆ U , we use the same notation and defineR(A) = {y | y ∈ R, for x ∈ A}, i.e.R ∩A.

The expressions generated by the rule ‘NP→ Det N’ satisfy a property referred to byliving on or
conservativity, defined below.

Definition 1. For a terminald generated by the rule ‘Det→ d’, we say that[[d]](A) lives onAwhenever
X ∈ [[d]](A) iff X ∩A ∈ [[d]](A), for A,X ⊆ U .

The ‘meaning’ of a sentence is its truth value, defined as follows:

Definition 2. Themeaningof a sentence in generalised quantifier theory is true iff[[NP VP]] 6= ∅.

As an example, meaning of a sentence with a quantified phrase at its subject position becomes as
follows:

[[Det N VP]] =

{

true if [[vp]] ∩ [[n]] ∈ [[Det N]]

false otherwise

For instance, meaning of ‘some men sneeze’, which is of this form, is true iff [[sneeze]] ∩ [[men]] ∈
[[some men]], that is, whenever the set of things that sneeze and are men isa non-empty set. As another
example, consider the meaning of a sentence with a quantifiedphrase at its object position, whose
meaning is as follows:

[[NP V Det N]] =

{

true if [[np]] ∩ [[v]]([[np]]) ∈ [[Det N]]

false otherwise

An example of this case is the meaning of ‘John liked some trees’, which is true iff[[trees]]∩[[like]]([[John]]) ∈
[[some trees]], that is, whenever, the set of things that are liked by John and are trees is a non-empty set.
Similarly, the sentence ‘John liked five trees’ is true iff the set of things that are liked by John and are
trees has five elements in it.



2.3 From Context Free to Pregroup Grammars

A pregroup algebraP = (P,≤, ·, (−)r , (−)l) is a partially ordered monoid where every element has
a left and a right adjoint [28]. That is, forp ∈ P , there arepl, pr ∈ P that satisfy the following four
inequalities:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl

Let P be a pregroup algebra; a pregroup grammar based onP is a tupleP = (P,Σ, β, s), whereΣ
is the vocabulary of the language,s ∈ P is a designated sentence type, andβ is a relationβ ⊆ Σ × P

that assigns to words inΣ elements of the pregroupP . This relation is referred to as a ‘type dictionary’
and the elements of the pregroup as ‘types’.

A pregroup grammarP assigns a typep to a string of wordsw1 · · ·wn, for wi ∈ Σ, if there exist
typespi ∈ β(wi) for 1 ≤ i ≤ n such thatp1 · · · · · pn ≤ p. We refer to this latter inequality as the
grammatical reductionof the string. Ifp1 · · · · · pn ≤ s then the string is a grammatical sentence.

A context free grammar (CFG) is transformed into a pregroup grammar via the procedure described
in [8]. In a nutshell, one first transforms the CFG into an Ajdukiewicz grammar [1], using the procedure
developed by Bar-Hillel, Gaifman, and Shamir [52]. The procedure developed by Buszkowski is then
applied to transform the result into a Lambek calculus [7]. Via a translation between Lambek calculi
and pregroup grammars [29], the result is finally turned intoa pregroup grammar.

CFG
[1]
−→ Ajdukiewicz Grammar

[7]
−→ Lambek Calculus

[8]
−→ Pregroup Grammar

More formally, a context free grammarG = (T,N, S,R) is transformed into a pregroup grammar
P = (P,Σ, β, s) via the recursive mappingσ : T ∪ N → P , for T the set of terminals andN the set
of non-terminals ofG. On a non-terminalC in a left-to-right ruleA → BC of G, this map is defined
to beσ(C) := σ(B)r · σ(A). On a non-terminalB in a right-to-left ruleA → BC, it is defined to be
σ(B) := σ(A) · σ(C)l. A ruleA→ BC is right-to-left whenever[[A]] := [[C]]([[B]]) and symmetrically
for the left-to-right case. To a non-terminalA, this maps assigns an atomic typeσ(A). The designated
start non-terminalS gets assigned types.

In the CFG of generalised quantifiers presented in the previous subsection, the rule ‘S→ NP VP’
is right-to-left and the rules ‘VP→ V NP’ and ‘NP→ Det N’ are left-to-right, and the rest of the rules
are atomic. To the terminals S, NP, N, we assign the followingatomic types, fors, n, np ∈ P .

σ(S) = s σ(NP ) = p σ(N) = n

For the non-terminals VP, V, and Det, we obtain:

σ(V P ) := σ(NP )r · σ(S) σ(V ) := σ(V P ) · σ(NP )l σ(Det) := σ(NP ) · σ(N)l

In a pregroup grammar form, noun phrases will take typep, nouns typen, intransitive verbs typepr · s,
transitive verbs typepr · s · pl. Determiners will have typep · nl.

As an example, consider a quantified noun phrase ‘some cats’,a sentence with a quantified phrase
in its subject position ‘some cats sneeze’, and a sentence with a quantified phrase in its object position
‘John stroked some cats’. The grammatical reductions of these in a pregroup grammar are as follows:

some cats
(p · nl) ·n ≤ p · 1 = p

some cats sneeze
(p · nl) ·n ·(pr · s) ≤ p · 1 · (pr · s) = p · (pr · s) ≤ 1 · s = s

John stroked some cats
p ·(pr · s · pl) ·(p · nl) ·n ≤ 1 · (s · pl) · p · 1 = (s · pl) · p ≤ s · 1 = s



In the first example, ‘some’ inputs ‘cats’ and outputs a noun phrase; in the second example, first ‘some’
inputs ‘cats’ and outputs a noun phrase, then ‘sneeze’ inputs this noun phrase and outputs a sentence;
in the last example, again first ‘some’ inputs ‘cats’ and outputs a noun phrase, at the same time the verb
inputs ‘John’ and outputs a verb phrase of types · pl, which then inputs thep from the phrase ‘some
cats’ and outputs a sentence.

In the pregroup grammar of English presented in [29], Lambekproposes to type the quantifiers as
follows:

when modifying the subject: sslππl when modifying the object: osrsol

For the subject case, we have the identitysslππl = s(πrs)lπl, which means that the quantifier inputs
the subject (of typeπ) and the whole verb phrase and produces a sentence. Similarly, in the object case
we haveosrsol = (sol)rsol. These types are translations of the original Lambek calculus types for
quantifiers, where they were designed such that they would get a first order logic semantics through
a correspondence with lambda calculus [4]. However, as explained in [29], due to the ambiguities in
Lambek calculus-pregroup translations such a correspondence fails for pregroups. Consequently, the
above types fail to provide a logical semantics for quantifiers. In this paper, we have taken a different
approach and go by the types coming from the CFG of generalised quantifier theory. It will become
apparent in the proceeding sections how this together with the use of compact closed categories offers a
solution.

2.4 Category Theoretic and Diagrammatic Definitions

This subsection briefly reviews compact closed categories and bialgebras. For a formal presentation, see
[25,26,35]. A compact closed category,C, has objectsA,B; morphismsf : A → B; and a monoidal
tensorA ⊗ B that has a unitI, that is we haveA ⊗ I ∼= I ⊗ A ∼= A. Furthermore, for each objectA
there are two objectsAr andAl and the following morphisms:

A⊗Ar ǫr
A−→ I

ηr
A−→ Ar ⊗A Al ⊗A

ǫl
A−→ I

ηl
A−→ A⊗Al

These morphisms satisfy the following equalities, where1A is the identity morphism on objectA:

(1A ⊗ ǫlA) ◦ (η
l
A ⊗ 1A) = 1A (ǫrA ⊗ 1A) ◦ (1A ⊗ ηrA) = 1A

(ǫlA ⊗ 1A) ◦ (1Al ⊗ ηlA) = 1Al (1Ar ⊗ ǫrA) ◦ (η
r
A ⊗ 1Ar) = 1Ar

These express the fact theAl andAr are the left and right adjoints, respectively, ofA in the 1-object
bicategory whose 1-cells are objects ofC. A self adjoint compact closed category is one in which for
even objectA we haveAl ≡ Ar ≡ A.

Given two compact closed categoriesC andD a strongly monoidal functorF : C → D is defined as
follows:

F (A⊗B) = F (A)⊗ F (B) F (I) = I

One can show that this functor preserves the compact closed structure, that is we have:

F (Al) = F (A)l F (Ar) = F (A)r

A bialgebra in a symmetric monoidal category(C,⊗, I, σ) is a tuple(X, δ, ι, µ, ζ) where, forX an
object ofC, the triple(X, δ, ι) is an internal comonoid; i.e. the following are coassociative and counital
morphisms ofC:

δ : X → X ⊗X ι : X → I



Moreover(X,µ, ζ) is an internal monoid; i.e. the following are associative and unital morphisms:

µ : X ⊗X → X ζ : I → X

And finally δ andµ satisfy the four equations [35]

ι ◦ µ = ι⊗ ι (Q1)

δ ◦ ζ = ζ ⊗ ζ (Q2)

δ ◦ µ = (µ⊗ µ) ◦ (idX ⊗σX,X ⊗ idX) ◦ (δ ⊗ δ) (Q3)

ι ◦ ζ = idI (Q4)

Informally, the comultiplicationδ dispatches to copies the information contained in one object into
two objects, and the multiplicationµ unifies or merges the information of two objects into one. In what
follows, we present three examples of compact closed categories, two of which with bialgebras.

2.5 Three Examples of Compact Closed Categories

Example 1. Pregroup AlgebrasA pregroup algebraP = (P,≤, ·, (−)l, (−)r) is a compact closed
category whose objects are the elements of the setp ∈ P are the objects of the category and the partial
ordering between the elements are the morphisms. That is, for p, q ∈ P , we have thatp → q is a
morphism of the category iffp ≤ q in the partial order. The tensor product of the category is the monoid
multiplication, whose unit is 1, and the adjoints of objectsare the adjoints of the elements of the algebra.
The epsilon and eta morpshism are thus as follows:

p · pr
ǫrp
−→ 1

ηrp
−→ pr · p pl · p

ǫlp
−→ 1

ηlp
−→ p · pl

The above directly follow from the preroup inequalities on the adjoints. A pregroup with a bialgebra
structure on it becomes degenerate. To see this, suppose we have such an algebra on the objectp of
such a pregroup. Then the unit morphism of the internal comonoid of this algebra becomes the partial
orderingι : p ≤ 1; taking the right adjoints of both sides of this inequality will yield 1 = 1r ≤ pr, and
by the multiplying both sides of this withp we will obtain p ≤ p · pr, which by adjunction results in
p ≤ p · pr ≤ 1, hence we havep ≤ 1 and also1 ≤ p, thusp must be equal to 1. That is, assuming that
we have a bialgebra on an object will mean that that object is 1.

Example 2. Finite Dimensional Vector Spaces overR. These structures together with linear maps
form a compact closed category, which we refer to asFdVect. Finite dimensional vector spacesV,W
are objects of this category; linear mapsf : V → W are its morphisms with composition being the
composition of linear maps. The tensor productV ⊗W is the linear algebraic tensor product, whose
unit is the scalar field of vector spaces; in our case this is the field of realsR. Here, there is a natural
isomorphismV ⊗W ∼= W ⊗ V . As a result of the symmetry of the tensor, the two adjoints reduce to
one and we obtain the isomorphismV l ∼= V r ∼= V ∗, whereV ∗ is the dual space ofV . When the basis
vectors of the vector spaces are fixed, it is further the case that we haveV ∗ ∼= V . Thus, the compact
closed category of finite dimensional vector spaces with fixed basis is self adjoint.

Given a basis{ri}i for a vector spaceV , the epsilon maps are given by the inner product extended
by linearity; i.e. we have:

ǫl = ǫr : V ⊗ V → R given by
∑

ij

cij (ψi ⊗ φj) 7→
∑

ij

cij〈ψi | φj〉



Similarly, eta maps are defined as follows:

ηl = ηr : R → V ⊗ V given by 1 7→
∑

i

(|ri〉 ⊗ |ri〉)

LetV be a vector space with basisP(U), whereU is an arbitrary set. We giveV a bialgebra structure
as follows:

ι|A〉 = 1

δ|A〉 = |A〉 ⊗ |A〉

ζ = |U〉

µ(|A〉 ⊗ |B〉) = |A ∩B〉

Note that an arbitrary basis element ofV ⊗ V is of the form|A〉 ⊗ |B〉 for A,B ⊆ U . For example, the
verification of the bialgebra axiom (Q3) is as follows:

((µ ⊗ µ) ◦ (id⊗σ ⊗ id) ◦ (δ ⊗ δ))(|A〉 ⊗ |B〉) = ((µ ⊗ µ) ◦ (id⊗σ ⊗ id))(|A〉 ⊗ |A〉 ⊗ |B〉 ⊗ |B〉)

= (µ ⊗ µ)(|A〉 ⊗ |B〉 ⊗ |A〉 ⊗ |B〉)

= |A ∩B〉 ⊗ |A ∩B〉

= δ|A ∩B〉

= (δ ◦ µ)(|A〉 ⊗ |B〉)

Example 3. Sets and Relations. Another important example of a compact closed category isRel, the
cateogry of sets and relations. Here,⊗ is cartesian product with the singleton set as its unitI = {⋆},
and∗ is identity on objects. HenceRel is also self adjoint. Closure reduces to the fact that a relation
between setsA×B andC is equivalently a relation betweenA andB×C. Given a setS with elements
si, sj ∈ S, the epsilon and eta maps are given as follows:

ǫl = ǫr : S × S −→| I given by (si, sj)ǫ⋆ ⇐⇒ si = sj

ηl = ηr : I −→| S × S given by ⋆ η(si, sj) ⇐⇒ si = sj

For an object inRel of the formW = P(U), we giveW a bialgebra structure by taking

δ : S −→| S × S given by Aδ(B,C) ⇐⇒ A = B = C

ι : S −→| I given by Aι⋆ ⇐⇒ (always true)

µ : S × S −→| S given by (A,B)µC ⇐⇒ A ∩B = C

ζ : {⋆} −→| S given by ⋆ ζA ⇐⇒ A = U

The axioms (Q1) – (Q4) can be easily verified by the reader.
It should be noted that since bothFdVect andRel are†-categories, these constructions dualize to

give two pairs of bialgebras. However these bialgebras are not interacting in the sense of [5], and the
Frobenius axiom does not hold for either.



2.6 String Diagrams

The framework of compact closed categories and bialgebras comes with a diagrammatic calculus that
visualises derivations, and which also simplifies the categorical and vector space computations. Mor-
phisms are depicted by boxes and objects by lines, representing their identity morphisms. For instance
a morphismf : A→ B, and an objectA with the identity arrow1A : A→ A, are depicted as follows:

f

A

B

A

Morphisms fromI to objects are depicted by triangles with strings emanatingfrom them. In concrete
categories, these morphisms represent elements within theobjects. For instance, an elementa in A is
represented by the morphisma : I → A and depicted by a triangle with one string emanating from it.
The number of strings of such triangles depict the tensor rank of the element; for instance, the diagrams
for a ∈ A, a′ ∈ A⊗B, anda′′ ∈ A⊗B ⊗ C are as follows:

A B BA CA

The tensor products of the objects and morphisms are depicted by juxtaposing their diagrams side
by side, whereas compositions of morphisms are depicted by putting one on top of the other; for instance
the objectA⊗B, and the morphismsf ⊗ g andh ◦ f , for f : A→ B, g : C → D, andh : B → C, are
depicted as follows:

f

A

B D

g

C f

A

B

h

C

A B

Theǫ maps are depicted by cups,η maps by caps, and yanking by their composition and straighten-
ing of the strings. For instance, the diagrams forǫl : Al ⊗A→ I, η : I → A⊗Al and(ǫl ⊗ 1A) ◦ (1A⊗
ηl) = 1A are as follows:

Al

A Al

A
Al A Al

= A

As for the bialgebra, the diagrams for the monoid and comonoid morphisms and their interaction
(the bialgebra law Q3) are as follows:



(µ, ζ) (δ, ι) =

3 Abstract Compact Closed Semantics

Definition 3. An abstract compact closed categorical model for the language generated by the grammar
G = (T,N, S,R) is a tuple(C,W, S, [[ ]]) whereC is a self adjoint compact closed category with two
distinguished objectsW and S, whereW has a bialgebra on it, and[[ ]] : T ∪ P → C is a strongly
monoidal functor on the pregroup grammarP = (T, β, s) obtained fromG via the mappingσ : T∪N →
P , given by

[[x]] :=































W x ∈ P, x = p, x = n

S x ∈ P, x = s

I → [[σ(x)]] x ∈ P,A→ x is an atomic rule inR andA ∈ {NP,N,VP,V}

[[σ(x)]] → [[σ(x)]] same as above butA = Det

I → [[σ(x)]] x ∈ T

The categorical semantics of the CFG rules of generalised quantifiers becomes as follows:

NP→ np =⇒ [[np]] := I → [[σ(np)]] : I →W

N → n =⇒ [[n]] := I → [[σ(n)]] : I → W

VP → vp =⇒ [[vp]] := I → [[σ(vp)]] : I → W r ⊗ S

V → v =⇒ [[v]] := I → [[σ(v)]] : I →W r ⊗ S ⊗W l

Det→ d =⇒ [[d]] := I → [[σ(d)]] : W →W

with the following diagrams:

W W

[[np]] [[n]]

W rW r S S W l

[[vp]] [[v]]

[[d]]

W

W

Intuitively, noun phrases and nouns are elements within theobjectW . Verb phrases are elements within
the objectW r ⊗S; the intuition behind this representation is that in a compact closed category we have
thatW r ⊗ S ∼= W → S, whereW r → S = hom(W,S) is an internal hom object of the category,
coming from its monoidal closedness. Hence, we are modelling verb phrases as morphisms with input
W and outputS. Similarly, verbs are elements within the objectW r⊗S⊗W r, equivalent to morphisms
W⊗W → S with pairs of input fromW and outputS. Determiners are morphismsW →W that further
satisfy the categorical version of theliving on property, defined below.

Definition 4. The following morphism defines acategorical living-onproperty :

π =(1W ⊗ ǫW ) ◦ (1W ⊗ µW ⊗ ǫW ⊗ 1W ) ◦ (1W ⊗ [[d]]⊗ δW ⊗ 1W⊗W ) ◦ (1W ⊗ ηW ⊗ 1W⊗W ) ◦ (ηW ⊗ 1W )

We stipulate[[d]] = π.



Diagrammatically, this stipulation means that we have the following equality of diagrams:

[[d]]

W

W

=

[[d]]

W

W W

W

W

=

W

[[d]]

WW

W

Intuitively, semantics of[[d]] ends up being inW ⊗W , obtained by making a copy (via the bialgebra
mapδ) of one of the inputs inW , applying the determiner to one copy and taking the intersection of the
other copy (via the bialgebra mapµ) with the other input inW .

Meanings of expressions of language are obtained accordingto the following definition:

Definition 5. The interpretation of a stringw1 · · ·wn, for wi ∈ T with a grammatical reductionα is

[[w1 · · ·wn]] := [[α]]
(

[[w1]]⊗ · · · ⊗ [[wn]]
)

For example, the interpretation of an intransitive sentence with a quantified phrase in subject position
and its simplified forms are as follows:

[[n]] [[vp]]

W W S

W

[[d]]

W

W

W

=

SW

[[n]] [[vp]]

W

[[d]]

W

W

The interpretation of a transitive sentence with a quantified phrase in object position is as follows:



[[n]]

W S WW

[[np]]

W

[[v]]

S WW

[[d]]

W

W

W

=

WW

[[n]][[np]]

W

W
[[d]]

W

W

S WW

Putting the two cases together, the interpretation of a sentence with quantified phrases both at subject
and at an object position is as follows:

SW

[[d]]

W

W

[[n]]

W

W

W

WW

[[n]][[v]]

[[d]]

W

W

W

W

4 Truth Theoretic Interpretation in Rel

A model(U, [[ ]]) of the language of generalised quantifier theory is made categorical via the instantiation
toRel of the abstract compact closed categorical model.

Definition 6. The instantiation of the abstract model of definition 3 toRel is a tuple(Rel,P(U), {⋆}, [[ ]]),
for U the universe of reference. The interpretations of words in this model are defined by the following
relations:

– The interpretation of a terminalx generated by any of the non-terminals N,NP, and VP is

⋆[[x]]A ⇐⇒ A = [[x]]

– The interpretation of a terminalx generated by the non-terminal V is

⋆[[x]](A, ⋆,B) ⇐⇒ [[x]](A) = B

where[[x]](A) is the forward image ofA in the binary relation[[x]].
– The interpretation of a terminald generated by the non-terminal Det is

A[[d]]B ⇐⇒ B ∈ [[d]](A)



For the types, note that the interpretation of a terminalx generated by any of the non-terminals
N,NP, and VP has type[[x]] : {⋆} −→| P(U). The interpretation of a VP is the initial morphism to
P(U) ⊗ {⋆}, which is isomorphic toP(U), hence it gets the same concrete instantiation as N and NP.
The interpretation of a terminalx generated by the non-terminal V has type[[x]] : {⋆} −→| P(U) ⊗
{⋆} ⊗ P(U) ∼= P(U)⊗ P(U). Finally, the interpretation of a terminald generated by the non-terminal
Det has type[[d]] : P(U) −→| P(U).

Informally, the Frobeniusµ map is the analog of set-theoretic intersection and the compact closed
epsilon map is the analog of set-theoretic application. It is not hard to show that the truth-theoretic in-
terpretation of the compact closed semantics of quantified sentences provides us with the same meaning
as the generalised quantifier semantics. We make this formalas follows.

Definition 7. The interpretation of a quantified sentences is true in(Rel,P(U), {⋆}, [[ ]]) iff ⋆[[s]]⋆.

Theorem 1. ⋆[[s]]⋆ in (Rel,P(U), {⋆}, [[ ]]) iff [[S]] is true in generalised quantifier theory, as defined in
Definition 2.

Proof. If a sentence is quantified, it is either of the form ‘Det N VP’ or of the form ‘NP V Det N’. For
either case, since{⋆} is the unit of tensor inRel, theS objects and morphisms can be dropped from the
meaning morphism.

– For the first case, we have to calculate the[[s]] relation:

ǫP(U) ◦ ([[d]] ⊗ µP(U)) ◦ (δP(U) ⊗ idP(U)) ◦ ([[n]]⊗ [[vp]]) : {⋆} −→| {⋆}

We will calculate this relation in stages. First:

⋆([[n]] ⊗ [[vp]])(A,B) ⇐⇒ ⋆[[n]]A and ⋆ [[vp]]B

⇐⇒ A = [[n]] andB = [[vp]]

since(⋆, ⋆) ∼= ⋆. Second:

⋆((δP(U) ⊗ idP(U)) ◦ ([[n]]⊗ [[vp]]))(A,B,C) ⇐⇒ ⋆([[n]] ⊗ [[vp]])(A,C) andA = B

⇐⇒ A = B = [[n]] andC = [[vp]]

Third:

⋆ (([[d]] ⊗ µP(U)) ◦ (δP(U) ⊗ idP(U)) ◦ ([[n]]⊗ [[vp]]))(A,B)

⇐⇒ A′[[d]]A andB = B′ ∩ C ′ for some⋆ ((δP(U) ⊗ idP(U)) ◦ ([[n]]⊗ [[vp]]))(A′, B′, C ′)

⇐⇒ A ∈ [[d]]([[n]]) andB = [[n]] ∩ [[vp]]

Finally:

⋆ (ǫP(U) ◦ ([[d]] ⊗ µP(U)) ◦ (δP(U) ⊗ idP(U)) ◦ ([[n]]⊗ [[vp]]))⋆

⇐⇒ ⋆ (([[d]] ⊗ µP(U)) ◦ (δP(U) ⊗ idP(U)) ◦ ([[n]]⊗ [[vp]]))(A,A) for someA

⇐⇒ [[n]] ∩ [[vp]] ∈ [[d]]([[n]])

This is the same as the set theoretic meaning of the sentence in generalised quantifier theory.



– For the second case, we have:

[[s]] = ǫP(U) ◦ (µP(U) ⊗ [[d]]) ◦ (ǫP(U) ⊗ idP(U)⊗δP(U)) ◦ ([[np]]⊗ [[v]]⊗ [[n]])

Again we calculate in stages. First:

⋆([[np]]⊗ [[v]]⊗ [[n]])(A,B,C,D) ⇐⇒ ⋆[[np]]A and ⋆ [[v]](B,C) and ⋆ [[n]]D

⇐⇒ A = [[np]] andC = [[v]](B) andD = [[n]]

Second:

⋆ ((ǫP(U) ⊗ idP(U)⊗δP(U)) ◦ ([[np]]⊗ [[v]]⊗ [[n]]))(C,D,E)

⇐⇒ D = E, and ⋆ ([[np]]⊗ [[v]] ⊗ [[n]])(A,A,C,D) for someA

⇐⇒ C = [[v]]([[np]]) andD = E = [[n]]

Third:

⋆ ((µP(U) ⊗ [[d]]) ◦ (ǫP(U) ⊗ idP(U)⊗δP(U)) ◦ ([[np]]⊗ [[v]] ⊗ [[n]]))(F,G)

⇐⇒ F = C ∩D andD[[d]]G for some⋆ ((ǫP(U) ⊗ idP(U)⊗δP(U)) ◦ ([[np]]⊗ [[v]]⊗ [[n]]))(C,D,E)

⇐⇒ F = [[v]]([[np]]) ∩ [[n]] andG ∈ [[d]]([[n]])

Fourth:

⋆ (ǫP(U) ◦ (µP(U) ⊗ [[d]]) ◦ (ǫP(U) ⊗ idP(U)⊗δP(U)) ◦ ([[np]]⊗ [[v]]⊗ [[n]]))⋆

⇐⇒ ⋆ ((µP(U) ⊗ [[d]]) ◦ (ǫP(U) ⊗ idP(U)⊗δP(U)) ◦ ([[np]]⊗ [[v]]⊗ [[n]])) for someF

⇐⇒ [[v]]([[np]]) ∩ [[n]] ∈ [[d]]([[n]])

Again, this is exactly the truth theoretic definition of the meaning of the sentence in generalised
quantifier theory. This completes the proof.

5 Corpus-Based Instantiation inFdVect

The relational model embeds into a vector spaces model usingthe usual embedding of sets and relations
into vector spaces and linear maps. This embedding sends a set T to a vector spaceVT spanned by
elements ofT and a relationR ⊆ T × T to a linear mapVT → VT . By taking T to beP(U) for
the distinguished spaceW and by taking it to be{⋆} for the distinguished spaceS, this embedding
provides us with a vector space instantiation of the categorical model. This instantiation imitates the
truth theoretic model presented inRel. We refer to it by thebooleanFdVect instantiation.

Definition 8. The boolean instantiation of the abstract model of definition 3 to FdVect is the tuple
(FdVect, VP(U), V{⋆}, [[ ]]), for VP(U) the free vector space generated over the set of subsets ofU and
V{⋆} the one dimensional space. Words are interpreted by the following linear maps:

– The terminals generated by N, NP, VP, and V rules are given by:

[[x]](⋆) = |[[x]]〉

– The interpretation of a terminald generated by the Det rule is defined as follows on subsetsA ofU :

[[d]](|A〉) =
∑

B∈[[d]](A)

|B〉



The types of these linear maps are as in definition 6, sinceV{⋆}
∼= R is the unit of tensor inFdVect.

Thus, the terminals generated by N, NP, and VP rules have typeV{⋆} → VP(U); the type of terminals
generated by the V rule isV{⋆} → VP(U) ⊗ V{⋆} ⊗ VP(U)

∼= VP(U) ⊗ VP(U). A terminal generated by
the Det rule has typeVP(U) → VP(U).

Theorem 1 is carried over fromRel toFdVect by defining vector representations of sentences to be
true iff they are non-zero elements ofV{⋆}.

Definition 9. The interpretation of a quantified sentences is true in (FdVect, VP(U), V{⋆}, [[ ]]) iff

[[s]](⋆) 6= 0.

Corollary 1. [[s]](⋆) 6= 0 in (FdVect, VP(U), V{⋆}, [[ ]]) iff ⋆[[s]]⋆ in (Rel,P(U), {⋆}, [[ ]]).

Proof. The proof goes through the same cases and steps as in Theorem 1. Consider a quantified sentence
of the form ‘Det N VP’. Its interpretation is obtained by calculating [[s]](⋆), defined to be:

ǫVP(U)
◦ ([[d]]⊗ µVP(U)

) ◦ (δVP(U)
⊗ idVP(U)

) ◦ ([[n]]⊗ [[vp]])(⋆)

The four stages of this computation are as follows

([[n]]⊗ [[vp]])(⋆) = [[n]](⋆)⊗ [[vp]](⋆) = |[[n]]〉 ⊗ |[[vp]]〉 (1)

(δVP(U)
⊗ idVP(U)

)(|[[n]]〉 ⊗ |[[vp]]〉) = |[[n]]〉 ⊗ |[[n]]〉 ⊗ |[[vp]]〉 (2)

([[d]] ⊗ µVP(U)
)(|[[n]]〉 ⊗ |[[n]]〉 ⊗ |[[vp]]〉) =

∑

B∈[[d]]([[n]])

|B〉 ⊗ |[[n]] ∩ [[vp]]〉 (3)

ǫVP(U)





∑

B∈[[d]]([[n]])

|B〉 ⊗ |[[n]] ∩ [[vp]]〉



 =
∑

B∈[[d]]([[n]])

〈B | [[n]] ∩ [[vp]]〉 (4)

The interpretation of a sentence with a quantified object ‘NPV Det N’ is computed similarly, resulting
in the following expression:

∑

B∈[[d]]([[n]])

〈[[v]]([[np]]) ∩ [[n]] | B〉

The result of the first case is non zero iff there is a subsetB ∈ [[d]]([[n]]) that is equal to[[n]] ∩ [[vp]]. The
result of the second case is non zero iff there is a subsetB ∈ [[d]]([[n]]) that is equal to[[v]]([[np]]) ∩ [[n]].
These are respectively equivalent to their corresponding cases in⋆[[s]]⋆, as computed in the proof of
theorem 1.

A corpus-based distributional vector space instantiationof the model is obtained via a construction
similar to the above, but this time with real number weights (rather than boolean ones). These weights
are retrievable from corpora of text using distributional methods. The non-quantified part of this instan-
tiation closely follows that of previous work [11]: nouns and noun phrases live in distributional spaces
similar to the one described in subsection 2.1; verb phrasesand transitive verbs live in tensor spaces,
built using the methods described described in the concreteinstantiations of the theoretical model of
previous work, e.g. see [17,22].

Definition 10. The distributional instantiation of the abstract model of definition 3 toFdVect is the
tuple(FdVect, VP(Σ), Z, [[ ]]), for VP(Σ) the vector space freely generated over the setΣ andZ a vector
space wherein interpretations of sentences live. The interpretations of terminals are defined as follows:

– A terminalx generated by N or NP rules is given by[[x]](1) :=
∑

i c
x
i |Ai〉 for Ai ⊆ Σ.



– A terminalx generated by the VP rule is given by[[x]](1) :=
∑

jk c
x
jk|Aj ⊗Ak〉, for Aj ⊆ Σ and

|Ak〉 a basis vector ofZ.
– A terminal x generated by the V rule is given by[[x]](1) :=

∑

lmn c
x
lmn|Al ⊗Am ⊗An〉, for

Al, An ⊆ Σ and |Am〉 a basis vector ofZ.
– A terminal d generated by the Det rule is concretely given on subsetsA of Σ by [[d]](|A〉) =
∑

B∈[[d]](A) c
d
B |B〉.

As for the types, a terminal generated by the either of the N and NP rules has typeR → VP(Σ), a
VP terminal has typeR → VP(Σ)⊗Z; the type of a V terminal isR → VP(Σ)⊗Z⊗VP(Σ). A terminal
d generated by the Det rule has typeVP(Σ) → VP(Σ).

Examples of this model are obtained by setting three sets of parameters: (1) instantiatingZ to
different sentence spaces, (2) different ways of embeddingthe distributional vectors ofVΣ in the space
VP(Σ), and (3) different ways in which word vectors and tensors arebuilt. The concrete constructions for
the weighted interpretations of quantifiers depend on thesechoices, but can be implemented according
to the same general guidelines. The weightcdB of a quantifierd over the basisA can stand for adegree
of set membership. In this case

∑

B∈[[d]](A) c
d
B |B〉 can be implemented as ‘cdB is the degree to whichd

elements ofA are inB’. This weight can also stand for adegree of co-occurrenceand be retrieved from
a corpus. In this case,

∑

B∈[[d]](A) c
d
B |B〉 is read as ‘cdB is the degree to whichd elements ofA have

co-occurred withB’. We provide three example instantiations below.
Scalar Sentence Dimensions.SupposeZ = R. The interpretation of a sentence with a quantified

subject becomes as follows:
∑

ij

∑

B∈[[d]]([[n]])

cni c
vp
j c

d
B〈B | Ai ∩Aj〉

Similarly, the interpretation of a sentence with a quantified object becomes as follows:
∑

ijlm

∑

B∈[[d]]([[n]])

c
np
i cvjlc

n
mc

d
B〈Ai | Aj〉〈Al ∩Am | B〉

Here, takeΣ = U and one can use theRel-to-FdVect embedding and obtain a weighted version of the
boolean model of definition 8.

Distributional Sentence Dimensions.SupposeS contains the sentence dimensions of a composi-
tional distributional model of meaning and takeZ = VS . The sentence dimensions can be constructed
in different ways. In [17], they were taken to beR, whereas in [22], we took them to be the same as
the dimensions ofVΣ. In either case, there are different options on how to interpret the dimensions of
VP(Σ) in a distributional model. We present three different constructions below.

1. The singleton construction.Take the interpretation of a terminalx generated by either of the N or
NP rules to be

∑

i c
x
i |{vi}〉 whenever

∑

i c
x
i |vi〉 is the vector interpretation ofx in the distributional

spaceVΣ. Similarly, a terminalx generated by the VP rule is embedded as
∑

ij c
x
ij |{vi} ⊗ sj〉 when-

ever
∑

ij c
x
ij |vi ⊗ sj〉 is the matrix interpretation ofx in VΣ ⊗ VS . In the same fashion, a terminal

x generated by the V rule embeds as
∑

ijk c
x
ijk|{vi} ⊗ sj ⊗ {vk}〉, for

∑

ijk c
x
ijk|vi ⊗ sj ⊗ vk〉 the

cube interpretation ofx in VΣ ⊗ VS ⊗ VΣ .
The interpretation of a sentence with a quantified subject becomes as follows:

∑

ijk

∑

B∈[[d]]([[n]])

cni c
vp
jkc

d
B〈B | {vi} ∩ {vj}〉|sk〉

Similarly, for the interpretation of a sentence with a quantified object we obtain:
∑

ijklm

∑

B∈[[d]]([[n]])

c
np
i cvjklc

n
mc

d
B〈{vi} | {vj}〉|sk〉〈{vl} ∩ {vm} | B〉



The weights in the above formulae come from the underlying compositional distributional model.
The vector constructions for nouns and noun phrases are obtained by following a distributional
model; the matrix and cube constructions for verbs are constructed as detailed in [17] or in [22],
depending on the choice ofS.

2. Sets of dimensions as lemmas.A lemma is a set of different forms of a word. In this instantiation,
each dimension ofVP(Σ) stands for a lemma.
The interpretation of a sentence with a quantified sentence becomes:

∑

ijk

∑

B∈[[d]]([[n]])

cni c
vp
jkc

d
B〈B | Ai ∩Aj〉|sk〉

Similarly, the interpretation of a sentence with a quantified object becomes:
∑

ijklm

∑

B∈[[d]]([[n]])

c
np
i cvjklc

n
mc

d
B〈Ai | Aj〉|sk〉〈Al ∩Am | B〉

The weights are retrieved from a corpus by e.g. adding, normalizing, and clustering (e.g. average or
k-means) of the co-occurrence weights of the elements of the lemma set.

3. Sets of dimensions as features.A feature is the set of words that together represent a pertinent
property. In this instantiating, each such dimension ofVP(Σ) represents a set of such words. For
instance,{miaow, purr} is the sound feature for the ‘animals’,{run, sleep} is its action feature, and
{cat, kitten} is its species feature. Each dimension ofVP(Σ) stands for a feature. The interpretations
of quantified sentences are obtained by computing the same formulae as in the lemma instantiation,
but the concrete values of the weights are obtained differently.

As an example, consider the feature set instantiation and suppose the following are among the fea-
tures ofVP(Σ):

{cats, kittens}, {miaow, purr}, {sleep, snore} ∈ P(Σ)

Take the instantiation of the universal quantifier over these to be:

[[all]] |{cats, kittens}〉 |{miaow, purr}〉 |{sleep, snore}〉
|{cats, kittens}〉 small 0.7 0.5
|{miaow, purr}〉 0.9 small 0.3
|{sleep, snore}〉 0.2 0.3 small

In the first row, 0.7 is the degree to whichall elements of{cats, kittens} have feature{miaow, purr},
witnessed by the fact that, for instance, all occurrences ofcats and kittens in the corpus have occurred
in sentences which have a verb such as miaow or purr. Similarly, 0.5 is the degree to whichall elements
of {cats, kittens} have feature{sleep, snore}. The intersection of a term with itself has no information
content and is thus taken to be a very small fraction, so as notto play a role in deductions.

For the existential quantifier, a similar instantiation results in higher degrees as the quantifier is
more relaxed, witnessed by the fact that, for instance, ‘kittens’ have more of the miaow feature than
‘cats’ since they miaow more. Suppose this provides us with the following:

[[some]] |{cats, kittens}〉 |{miaow, purr}〉 |{sleep, snore}〉
|{cats, kittens}〉 small 0.9 0.6
|{miaow, purr}〉 0.9 small 0.5
|{sleep, snore}〉 0.5 0.5 small

Suppose the vectors of ‘animal’ and ‘run’ in this space are asfollows:



|{cats, kittens}〉 |{miaow, purr}〉 |{sleep, snore}〉
[[animal]] 0.5 0.4 0.3
[[run]] 0.6 |s1〉 0.4|s2〉 0.2|s3〉

In the first row, 0.5 is the degree to which the word ‘animal’ has had the feature{cats, kittens} in
the corpus, e.g. due to the fact that it has occurred in sentences such as ‘a cat is an animal’ and ‘kittens
are small and cute animals’. Similarly, 0.4 is the degree to which ‘animal’ has feature|{miaow, purr}〉
and 0.3 the degree to which it has feature|{sleep, snore}〉. The values of the|si〉 in [[run]] depend on the
concrete instantiation of the sentence dimensions, to keepthings simple we do not instantiate them.

One computes the vector interpretations of[[all]]([[animals]]) and[[some]]([[animals]]) by linearly ex-
panding[[all]] and[[some]] over the vector of ‘animal’:

[[all]]([[animals]]) = 0.5[[all]](|{cats, kittens}〉) + 0.4[[all]](|{miaow, purr}〉) + 0.3[[all]](|{sleep, snore}〉)

[[some]]([[animals]]) = 0.5[[some]](|{cats, kittens}〉) + 0.4[[some]](|{miaow, purr}〉) + 0.3[[some]](|{sleep, snore}〉)

The interpretations of the quantified sentences ‘all animals run’ and ‘some animals run’ are be computed
by substituting these numbers in the formula

∑

ijk

∑

B∈[[d]]([[n]]) c
n
i c

vp
jkc

d
B〈B | Ai ∩Aj〉|sk〉. It results in

the following summands of their corresponding linear expansions:

|s1〉 |s2〉 |s3〉

[[all animals run]] 0.5× (0.4× 0.9 + 0.3× 0.2) 0.4× (0.5× 0.7 + 0.3× 0.3) 0.3(0.5 × 0.5 + 0.4× 0.3)

[[some animals run]] 0.5× (0.4× 0.3 + 0.5× 0.2) 0.4× (0.5× 0.9 + 0.3× 0.5) 0.3(0.5 × 0.6 + 0.4× 0.5)

In the literature ondistributional inclusion hypothesis[15,51] different types of orderings on feature
vectors are used to model and experiment with word-level entailment. Wherein, a word ‘v’ entails a
word ‘w’, written as ‘v ⊢ w’, if features of ‘v’ are also features of ‘w’. The simplest such ordering is
the point wise ordering on vector dimensions. In our model, the point wise ordering on the feature sets
provide us with the following entailments:

[[all animals]] ⊢ [[some animals]] [[all animals run]] ⊢ [[some animals run]]

This opens the way to reason about entailment on quantified phrases and sentences compositionally and
using statistical data from corpora of text. Implementing some of the above instantiations and experi-
menting with their applications to entailments on datasetsconstitutes work in progress.

6 Conclusion and Future Work

After a review of the setting of distributional semantics and a context free and pregroup grammatical for-
malisation of the fragment of language concerning quantified phrases and sentences (and the necessary
preliminaries on compact closed categories and bialgebras), we developed an abstract compact closed
categorical semantics for quantifiers with the help of bialgebras. We instantiated the abstract setting to
the category of sets and relations and proved its equivalence to the thruth-theoretic semantics of gener-
alised quantifier theory of Barwise and Cooper. We extended the existing instantiation of the categorical
compositional distributional semantics to finite dimensional vector spaces and linear maps to develop a
corpus-based instantiation for our model. Implementing this setting on real data and experimenting with
it constitutes work in progress.
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