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Abstract. Categorical compositional distributional semantics isadei of natural language; it combines the
statistical vector space models of words with the compmsiti models of grammar. We formalise in this model
the generalised quantifier theory of natural language, dBatwise and Cooper. The underlying setting is a
compact closed category with bialgebras. We start from &m¢inve grammar formalisation and develop an
abstract categorical compositional semantics for it, timstantiate the abstract setting to sets and relations
and to finite dimensional vector spaces and linear maps. e ghe equivalence of the relational instanti-
ation to the truth theoretic semantics of generalized dfiers. The vector space instantiation formalises the
statistical usages of words and enables us to, for the fing, tieason about quantified phrases and sentences
compositionally in distributional semantics.

1 Introduction

Distributional semantics is a statistical model of natlaaguage; it is based on hypothesis that words
that have similar meanings often occur in the same contexdst@eanings of words can be deduced
from the contexts in which they often occur. Intuitively aging and in a nutshell, words like ‘cat’ and
‘dog’ often occur in the contexts ‘pet’, ‘furry’, and ‘cutehence have a similar meaning, one which
is different from ‘baby’, since the latter despite beingt&uhas not so often occurred in the context
‘furry’ or ‘pet’. This hypothesis has often been traced bagkhe philosophy of language discussed
by Firth [13] and the mathematical linguistic theory deysld by Harris[[18]. Distributional semantics
has been used to reason about different aspects of word mgeang. similarity [[42,50], retrieval and
clustering [33,311], and disambiguation [47]. A criticismthese models has been that natural language
is not only about words but also about sentences, but thedelmdo not naturally extend to sentences,
as sentences are not frequently occurring units of corploiext

Models of natural language are not restricted to distriimai semantics. A tangential approach puts
the focus on the compositional nature of meaning and itsioakship with language constructions. This
approach is inspired by a hypothesis often assigned to Ehegieneaning of a sentence is a function
of the meanings of its part5s [14]. Informally speaking andyweughly put, meaning of a transitive
sentence such as ‘dogs chase cats’ is a binary function stilifect and object. For instance, here the
binary function is the verb ‘chase’ and the arguments argstand ‘cats’. This idea has been formalised
in different ways, examples are the early works of Bar-H[2 and Ajdukiewicz [1] on using classical
logic, the context free grammars of Chomsky [9], and the dirder logical approach of Montague [38].
One criticism to all these settings, however, is that thepatosay much about the meanings of the parts
of the sentence. For instance, here we do not know anything atmut the meaning of ‘chase’ and of
‘dogs’ and ‘cats’, apart from the fact that they one is a fiorcand others its arguments.

Compositional distributional semantics aims to combireedbmpositional models of grammar with
the statistical models of distributional semantics in ortdeovercome the above mentioned criticisms.
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Among the early grammar-based formalisms of the field is thekvef Clark and Pulmari_[10], and
among the first corpus-based approaches is the work of Miitahd Lapata([3[7]. The former model
pairs the distributional meaning representation of a wath its grammatical role in a sentence and de-
fines the meaning of a sentence to be a function of such pdieslatter, takes the distributional meaning
of a sentence to be the addition or multiplication of theriistional meanings of its words. The model
of Clark and Pulman has not been experimentally successtllta theory does not allow comparing
meanings of different sentences. The model of Mitchell aaddta has been experimentally successful
but forgets the grammatical structure of sentences, siditi@n and multiplication are commutative.

Categorical compositional distributional semantics isatempt to overcome these shortcomings
and unify these models. This model was first described ing#@]later published in [11]. It is based on
two major developments: first is the mathematical modelsarignar introduced in the work of Lambek
[27128], which either explicitly or implicitly use the thgoof monoidal categories; second, is the for-
mulation of the distributional representations in termseaftors, by many e.g. Salton and Luhd|[34,46].
The categorical model uses the fact that the grammaticaitsties of language can be described within
a compact closed category [40,30] and that finite dimensiator spaces and linear maps form such
a category [25]. The original formulation of this model ciatesd of the product of these two categories,
which was later recasted using a strongly monoidal fun@€i23,12]. The theoretical constructions of
this model on an elementary fragment of language (adjeciiwes phrases and transitive sentences)
were evaluated ir [17,18] and in[22]20]. Much of recent wafrkhe field is focused on using methods
from machine learning (regression, tensor decompositiearal embeddings) to implement them more
efficiently [36,21,16,49].

Compact Closed Category with Bialgebra

Instantiate to R/\ Instantiate to FVect

Truth Theoretic Semantics Corpus-Based Semantics

Fig. 1. Abstract and Concrete Models for Generalized Quantifie@dmpositional Distributional Semantics

Despite all these, dealing with meanings of logical word$sas pronouns, prepositions, quantifiers,
and conjunctives has posed challenges and open problenmscédnt work [[44,45] and also in_[24]
we showed how Frobenius algebras over compact closed caegan become useful in modelling
relative pronouns and prepositions. In this paper, we taste@further and show how bialgebras over
compact closed categories model generalised quantifiprgvgsfirst present a preliminary account of
compact closed categories and bialgebras over them arairbeiw vector spaces and relations provide
instances. The contributions of the paper start from se@&javhere we develop an abstract categorical
semantics for the generalised quantifier theory in termsagirdms and morphisms of compact closed
categories with bialgebras. We present two concrete irg&fions of this abstract setting: sets and
relations, as well as finite dimensional vector spaces aedtimaps.

The former is the basis for truth theoretic semantics anddtier for corpus-base distributional
semantics. We prove that the relational instantiation ef dbstract model is equivalent to the truth
theoretic model of generalised quantifier theory (as pteseby Barwise and Cooper). We then prove



how the relational model embeds into finite dimensional mespaces and more importantly, show
how it generalises to a compositional distributional setisamodel of language. We provide vector
interpretations for quantified sentences, based on themgatical structure of the sentences and the
meaning vectors of their words. The meaning vectors of naums phrases, and verbs are as previously
developed. The meaning vectors of determiners and qudrglsases and sentences are novel.

The are two predecessors to this paper! [43], where Frobetiiebras were used and the equiva-
lence between relational instantiation and truth theorgtimantics could not be established, and [41],
where a two-sorted functional logic was used, but only a éassemantics of universal quantification
was presented.

2 Preliminaries

2.1 Vector Space Models of Natural Language

Given a corpus of text, a set of contexts and a set of targedsyar co-occurrence matrix has at each
of its entries ‘the degree of co-occurrence between theetaxgrd and the context’. This degree is
determined using the notion ofweindow a span of words or grammatical relations that slides across
the corpus and records the co-occurrences that happemtitiii context can be a word, a lemma,
or a feature. A lemma is the canonical form of a word; it repnés the set of different forms a word
can take when used in a corpus. For example, thélsks, killed, to kill, killing, killer, killers, ---}
is represented by the lemma ‘kill’. A feature representstabeords that together express a pertinent
linguistic property of a word. These properties can be tpiexical, grammatical, or semantic. For
example the sefbark, miaow, neigh represents a semantic feature of animal, namely the ncsét th
makes, whereas the sdiction, poetry, sciencerepresents the topical features of a book.

The lengths of the corpus and window are parameters of thesinasl are the sizes of the feature
and target sets. All of these depend on the task; for studi¢sase parameters, see for example [32,6].

Given anm x n co-occurrence matrix, every target wardan be represented by a row vector of
lengthn. For each feature, the entries of this vector are a function of the raw co-o@me counts,
computed as follows:
for N(f,t) the number of times theand f have co-occurred in the window. Based bythe total num-
ber of times that has occurred in the corpus, the raw count is turned into vanmrmalised degrees.
Some common examples are probability, conditional prditgHikelihood ratio and its logarithm:
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We denote a vector space model of natural language prododbdsiway withVs,, whereX is the
set of features, anty, is the vector space spanned by it.
As an example, consider a corpuslof words,10° target words and0°® features. Fix the window
size to be 5 and suppose the co-occurrence matrix with ramtsaa be as follows, where the column
entries are the feature words and the row entries are thet taayds.

P(fIt) =

fishihorse pet |blood]...|total
dolphin|500 10 | 700| O |...[2000
shark {250 10 | 20 | 400 |...[1000
plankton250 10 (1000 10 |...1700
pony |10[1000{ 10 | 10 |...|1500




The vector representations of the target word ‘dolphin’hwilie raw counts and its functions, as
discussed above, are as follows:

raw = 500 10 700,0)

7
207200 20’ ,0)
25000, 500, 17500, 0)

log LR : = (1.397, —0.301, 1.2430, 0)

(
- (=
= (

Various notions of distance (length, angle) between theovebave been used to measure the degree
of similarity (semantic, lexical, information content)tiseen the words. For instance, for the cosine of
the angle between the vectors of dolphin and other targedswee obtain:

cos(dolphin, shark = 0.87 cos(dolphin, pony) = 0.009
(dolphin, phin, pony

This indicates that the degree of similarity between deipdnid shark is much higher than that
of dolphin and pony. These degrees directly follow the codoence degrees we have set above, that
dolphin and shark have co-occurred often with the sameuierrbut dolphin and pony have done so to
a much lesser degree.

2.2 Generalised Quantifier Theory in Natural Language

We briefly review the theory of generalised quantifiers irurgtlanguage as presented|in [3]. Consider
the fragment of English generated by the following conteséfgrammar:

NP — John, Mary, something; -

S == NPVP N — cat, dog, man,- -
VP — VNP VP — sheeze, sleep,
NP — Det N V — love, kiss, - -

Det— a, the, some, every, each, all, no, most, few, one, two,

A model for the language generated by this grammar is a (@aif |), whereU is a universal
reference set anfl] is an interpretation function defined by induction as foow

— On terminals.
e The interpretation of a determindrgenerated by ‘Det» d’ is a map with the following type:

[d]: P(U) — PP(U)

It assigns to eackl C U, a family of subsets ot/. The images of these interpretations are
referred to agieneralised quantifierd-or logical quantifiers, they are defined as follows:

[somd(A) ={X CU|XnNA#0D}
[evenj(A) ={X CU|AC X}
[noJ(A) ={X CU|AnX =0}
[p[(A) ={X CU || XNnA[=n}

A similar method is used to define non-logical quantifiers,eéfample “most A’ is defined to
be the set of subsets of U that has ‘most’ elements of A, “fevisAhe set of subsets of U that
contain ‘few’ elements of A, and similarly for ‘several’ ahdany’.



e The interpretation of a termingl € {np,n,vp} generated by either of the rules ‘NP np, N
—n, VP — vp'is [y] € U. Thatis, noun phrases, nouns and verb phrases are inttast
subsets of the reference set.

e The interpretation of a terminal generated by the rule V> yis [y] C U x U. That is, verbs
are interpreted as binary relations over the reference set.

— On non-terminals.
e The interpretation of expressions generated by the rule-NBet N’ is as follows:

[DetN] = [d]([n]) where X € [d]([n])iff X N [n] € [d]([n])
for Det— dand N— n

e The interpretations of expressions generated by othes arkeas usual, that is

[VNP] = [v]([np]) NP VP = [up]([np])

Here, forR C U x U andA C U, by R(A) we mean the forward image @t on A, that is
R(A) = {y | (z,y) € R,for z € A}. To keep the notation unified, fdR a unary relation
R C U, we use the same notation and defited) = {y | y € R,forxz € A},i.e. RN A.

The expressions generated by the rule ‘NPDet N’ satisfy a property referred to biwing on or
conservativity defined below.

Definition 1. For a terminald generated by the rule ‘Det d’, we say thaf[d](A) lives onA whenever
X e[d]j(A)iff XNAe[d](A),forA, X CU.

The ‘meaning’ of a sentence is its truth value, defined asvidll
Definition 2. Themeaningof a sentence in generalised quantifier theory is trughfP VA # 0.

As an example, meaning of a sentence with a quantified phtatesabject position becomes as
follows:
true if Jup] N [n] € [Det N
false otherwise

[DetN VP = {

For instance, meaning of ‘some men sneeze’, which is of thisfis true iff [sneezg N [men €
[some mefy that is, whenever the set of things that sneeze and are naemois-empty set. As another
example, consider the meaning of a sentence with a quanpfiease at its object position, whose
meaning is as follows:

INPV DetN| — {true f [np) 1 [ ([np]) € [DetN]
false otherwise

An example of this case is the meaning of ‘John liked sometredich is true iff[treegN[like] ([Johr])

[some treek that is, whenever, the set of things that are liked by Jolihaae trees is a non-empty set.

Similarly, the sentence ‘John liked five trees’ is true ife thet of things that are liked by John and are

trees has five elements in it.



2.3 From Context Free to Pregroup Grammars

A pregroup algebra® = (P, <,-,(—)",(—)!) is a partially ordered monoid where every element has
a left and a right adjoini [28]. That is, fgr € P, there arep!,p” € P that satisfy the following four
inequalities:

pp<1<p-p pp<1<p-p

Let P be a pregroup algebra; a pregroup grammar basdd isra tupleP = (P, X, 3, s), whereX
is the vocabulary of the languagege P is a designated sentence type, @hd a relations C X x P
that assigns to words By elements of the pregroup. This relation is referred to as a ‘type dictionary’
and the elements of the pregroup as ‘types’.

A pregroup grammapP assigns a type to a string of wordaw - - - wy,, for w; € X, if there exist
typesp; € B(w;) for1 < i < nsuchthatp, - --- - p, < p. We refer to this latter inequality as the
grammatical reductiorof the string. Ifp; - --- - p, < s then the string is a grammatical sentence.

A context free grammar (CFG) is transformed into a pregraapngnar via the procedure described
in [8]. In a nutshell, one first transforms the CFG into an Aj@wicz grammari[ll], using the procedure
developed by Bar-Hillel, Gaifman, and Shamir[[52]. The eare developed by Buszkowski is then
applied to transform the result into a Lambek calculus [1& & translation between Lambek calculi
and pregroup grammais [29], the result is finally turned afwegroup gramma.

CFG H Ajdukiewicz Grammalm> Lambek Calculus[8—1> Pregroup Grammar

More formally, a context free grammé&t = (7', N, S, R) is transformed into a pregroup grammar
P = (P, X, j3,s) via the recursive mapping: 7'U N — P, for T the set of terminals andy’ the set
of non-terminals of7. On a non-terminal in a left-to-right ruleA — BC of G, this map is defined
to beo(C) := o(B)" - 0(A). On a non-terminaB in a right-to-left ruleA — BC, it is defined to be
o(B) :=a(A) - o(C). Arule A — BC is right-to-left whenevefA] := [C]([B]) and symmetrically
for the left-to-right case. To a non-termindl this maps assigns an atomic typeA4). The designated
start non-terminab' gets assigned type

In the CFG of generalised quantifiers presented in the pus\soibsection, the rule ‘S» NP VP’
is right-to-left and the rules ‘VP» V NP’ and ‘NP — Det N’ are left-to-right, and the rest of the rules
are atomic. To the terminals S, NP, N, we assign the folloveitmgnic types, fos, n,np € P.

o(S)=s o(NP)=p o(N)=n
For the non-terminals VP, V, and Det, we obtain:
o(VP):=c(NP)" -0(S) o(V):=a(VP) -o(NP)'  o(Det):=o(NP)-o(N)

In a pregroup grammar form, noun phrases will take typ@ouns type, intransitive verbs type” - s,
transitive verbs type” - s - p'. Determiners will have typg - n'.

As an example, consider a quantified noun phrase ‘some aatghtence with a quantified phrase
in its subject position ‘some cats sneeze’, and a sentertbeavguantified phrase in its object position
‘John stroked some cats’. The grammatical reductions it a pregroup grammar are as follows:

some cats

(p-nt) <p-l=p
some cats sheeze
(p-nt)  m (prs) <p-1-(p-s)=p-(p-s)<1l-s=s

John stroked some cats
p @ sp)(pent) m < 1(sph)pl=(s-p)p<s-l=s



In the first example, ‘'some’ inputs ‘cats’ and outputs a nolarape; in the second example, first ‘some’
inputs ‘cats’ and outputs a noun phrase, then ‘sneeze’ snitiig noun phrase and outputs a sentence;
in the last example, again first ‘'some’ inputs ‘cats’ and atg@ noun phrase, at the same time the verb
inputs ‘John’ and outputs a verb phrase of typep!, which then inputs the from the phrase ‘some
cats’ and outputs a sentence.

In the pregroup grammar of English presented_if [29], Lanfirelposes to type the quantifiers as
follows:

l l

when modifying the subjectss'nr when modifying the objectos” so

For the subject case, we have the identi#yrn! = s(7"s)'x!, which means that the quantifier inputs
the subject (of typer) and the whole verb phrase and produces a sentence. Syyiifetthe object case
we haveos"so! = (s0')"so!. These types are translations of the original Lambek casctypes for
guantifiers, where they were designed such that they woula@ diest order logic semantics through
a correspondence with lambda calculus [4]. However, asamed in [29], due to the ambiguities in
Lambek calculus-pregroup translations such a correspaedéails for pregroups. Consequently, the
above types fail to provide a logical semantics for quamgfién this paper, we have taken a different
approach and go by the types coming from the CFG of genedatisantifier theory. It will become
apparent in the proceeding sections how this together Witluse of compact closed categories offers a
solution.

2.4 Category Theoretic and Diagrammatic Definitions

This subsection briefly reviews compact closed categorida@lgebras. For a formal presentation, see
[25]26/,35]. A compact closed categoy, has objectsd, B; morphismsf: A — B; and a monoidal
tensorA ® B that has a unif, that is we haved ® I = I ® A = A. Furthermore, for each object
there are two objectd” and A' and the following morphisms:

A A" 1M srga  Aled 2 17 ag A
These morphisms satisfy the following equalities, whiefas the identity morphism on object:
(la®ey)o(nh®1a)=1a (€a®1a)o(la®ny) =14
(y@1a) o (Ly @) =14 (Lar @ €4) 0 (N3 ® 1ar) = 1ar

These express the fact the and A™ are the left and right adjoints, respectively, 4fin the 1-object
bicategory whose 1-cells are objects(fA self adjoint compact closed category is one in which for
even objectd we haved! = A™ = A.

Given two compact closed categoriésindD a strongly monoidal functoF': C — D is defined as
follows:

F(A® B) = F(A) ® F(B) FI)=1
One can show that this functor preserves the compact closesdise, that is we have:
F(AY) = F(A)!Y  F(A") = F(A)"

A bialgebra in a symmetric monoidal categdty, ®, I, o) is a tuple(X, 4, ¢, u, ) where, forX an
object ofC, the triple(X, 4, ¢) is an internal comonoid,; i.e. the following are coassoetgatind counital
morphisms of’:

0 X —=XX v X — 1



Moreover(X, u, ¢) is an internal monoid; i.e. the following are associativd anital morphisms:
p: XX =X ¢:I—-X

And finally 6 andyu satisfy the four equations [35]

Lo =1Q¢ (Q1)
00(=(®¢ (Q2)
dop=(p®p)o(idy ®xx ®@idx)o (6 ®0J) (Q3)
Lo ¢ =ids (Q4)

Informally, the comultiplicationy dispatches to copies the information contained in one thjéx
two objects, and the multiplicatiom unifies or merges the information of two objects into one. hatv
follows, we present three examples of compact closed cagsgdwo of which with bialgebras.

2.5 Three Examples of Compact Closed Categories

Example 1. Pregroup AlgebrasA pregroup algebra® = (P, <,-,(—)!,(—)") is a compact closed
category whose objects are the elements of the sefP are the objects of the category and the partial
ordering between the elements are the morphisms. Thatrig, fo€ P, we have thap — ¢ is a
morphism of the category iff < ¢ in the partial order. The tensor product of the categoryastionoid
multiplication, whose unit is 1, and the adjoints of objeants the adjoints of the elements of the algebra.
The epsilon and eta morpshism are thus as follows:

r r 1 l
pep -1 pPop-2 12 pp

The above directly follow from the preroup inequalities twe &adjoints. A pregroup with a bialgebra
structure on it becomes degenerate. To see this, supposawsestich an algebra on the objecof
such a pregroup. Then the unit morphism of the internal candboaof this algebra becomes the partial
ordering:: p < 1; taking the right adjoints of both sides of this inequalitiiwield 1 = 1" < p", and

by the multiplying both sides of this with we will obtainp < p - p", which by adjunction results in
p <p-p" <1, hence we have < 1 and alsal < p, thusp must be equal to 1. That is, assuming that
we have a bialgebra on an object will mean that that object is 1

Example 2. Finite Dimensional Vector Spaces oveR. These structures together with linear maps
form a compact closed category, which we refer t&"d¥ect. Finite dimensional vector spacésW
are objects of this category; linear mafisVV — W are its morphisms with composition being the
composition of linear maps. The tensor produc W is the linear algebraic tensor product, whose
unit is the scalar field of vector spaces; in our case thisaditid of realsR. Here, there is a natural
isomorphismV @ W =2 W ® V. As a result of the symmetry of the tensor, the two adjointisice to
one and we obtain the isomorphigil = V" =~ V*, whereV* is the dual space df. When the basis
vectors of the vector spaces are fixed, it is further the dasevte haved’* = V. Thus, the compact
closed category of finite dimensional vector spaces withdfbasis is self adjoint.

Given a basiqr; }; for a vector spac&’, the epsilon maps are given by the inner product extended
by linearity; i.e. we have:

d=¢:VeV >R gienby ZCij(¢i®¢j) > Zcz‘j<¢i’¢j>
ij

ij



Similarly, eta maps are defined as follows:

"=n":R—=V®V givenby 1 — Z(lm ® |ri))

LetV be a vector space with bagigU), whereU is an arbitrary set. We givE a bialgebra structure
as follows:

tA) =1
6|4) = |A) ® [A4)
¢=10)
n(|A) ® [B)) = |[AN B)

Note that an arbitrary basis elementiofz V' is of the form|A) ® |B) for A, B C U. For example, the
verification of the bialgebra axiom (Q3) is as follows:

(@ p)o(ideo®id) o (6 ®0))(|A) ®[B)) = ((r® p) o (id®o ®id))(|4) ® [A) @ |B) @ |B))
= (rep)([4) ®|B)® |A) ®[B))
=|ANB)®|ANB)
=0|ANB)
=(0op)(|4) ®|B))

Example 3. Sets and RelationsAnother important example of a compact closed categoRelsthe
cateogry of sets and relations. Hegejs cartesian product with the singleton set as its dini¢ {x},
and* is identity on objects. Henc&el is also self adjoint. Closure reduces to the fact that aioslat
between setgl x B andC is equivalently a relation betweehandB x C. Given a sefS with elements
si, 85 € S, the epsilon and eta maps are given as follows:

=€ :9xS 1 givenby (s;,s;)ex & s, =5;
n=n":1—-SxS givenby xn(si,s;) < s;=s;

For an object ikel of the formW = P(U), we giveW a bialgebra structure by taking

0:S—4>SxS givenby A4(B,C) <= A=B=C
1S -1 given by Awx < (always true)
u: Sx8S -8 givenby (A, B)uC <— ANnB=C
C:{x} 8 givenby x(A < A=U

The axioms (Q1) — (Q4) can be easily verified by the reader.
It should be noted that since boFhlVect andRel are t-categories, these constructions dualize to

give two pairs of bialgebras. However these bialgebras arénteracting in the sense afl[5], and the
Frobenius axiom does not hold for either.



2.6 String Diagrams

The framework of compact closed categories and bialgetmages with a diagrammatic calculus that
visualises derivations, and which also simplifies the aaiegl and vector space computations. Mor-
phisms are depicted by boxes and objects by lines, repiegeheir identity morphisms. For instance
a morphismf: A — B, and an object with the identity arroml 4: A — A, are depicted as follows:

Morphisms from/ to objects are depicted by triangles with strings emanditorg them. In concrete
categories, these morphisms represent elements withiobjleets. For instance, an elemenin A is
represented by the morphisim: 7 — A and depicted by a triangle with one string emanating from it.
The number of strings of such triangles depict the tensde ohthe element; for instance, the diagrams
fora e A,d’ € A® B,andd” € A® B ® C are as follows:

/I\ || 1]
A A B ABC

The tensor products of the objects and morphisms are ddgigtguxtaposing their diagrams side
by side, whereas compositions of morphisms are depictedtting one on top of the other; for instance
the objectd ® B, and the morphismg ® g andh o f,for f: A— B,g: C — D,andh: B — C, are
depicted as follows:

N
oy
S R S
o4 < QO
O = o =

Thee maps are depicted by cupsmaps by caps, and yanking by their composition and straighte
ing of the strings. For instance, the diagramsdorA! @ A — I,7: I — A@ Aland(€f®14)o0 (14 ®
n') = 1,4 are as follows:

AU Af\l L _
A N2

As for the bialgebra, the diagrams for the monoid and comibnurphisms and their interaction
(the bialgebra law Q3) are as follows:
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3 Abstract Compact Closed Semantics

Definition 3. An abstract compact closed categorical model for the laggugenerated by the grammar
G = (T,N,S,R)is atuple(C, W, S,ﬂ) where( is a self adjoint compact closed category with two
distinguished object8) and S, whereW has a bialgebra on it, an(ﬂ: T U P — Cis a strongly
monoidal functor on the pregroup grammar= (T, (3, s) obtained front via the mapping : TUN —

P, given by

w rePr=px=n
S r€Px=s
[2] = I = Jo(@)] x € P, A — zis an atomic rule inR and A € {NP,N, VP, V}
[o(x)] — [o(x)] same as above but = Det
I — Jo(z)] zeT

The categorical semantics of the CFG rules of generalisadtiiers becomes as follows:

NP—np = [np]:=1-=]Jonp)]:I1—->W
Non = [n=I-[c)]:1—-W
VP = [op]:=I—=Jo(wp)]:I-W"®S
Voo = []=I-=Jc@)]:I-W o8W!
Det—wd = [d:=1-=][c(d)]:W =W
with the following diagrams:
S — — — W
[np] [n] [vp] [v] |
A
W W wrs wr s wt V|V

Intuitively, noun phrases and nouns are elements withioijectV. Verb phrases are elements within
the objectiV’” ® S; the intuition behind this representation is that in a coohpéosed category we have
thatW” @ S 2 W — S, whereW” — S = hom(W, S) is an internal hom object of the category,
coming from its monoidal closedness. Hence, we are modelanb phrases as morphisms with input
W and outputS. Similarly, verbs are elements within the objéEt ® S @ W, equivalent to morphisms
WW — S with pairs of input fromi’” and outputS. Determiners are morphisni® — W that further
satisfy the categorical version of theing on property, defined below.

Definition 4. The following morphism definescategorical living-orproperty :

m=(lw Q@ew)o(lw @ uw Qew @ 1lw)o (lw ® [d] @ dw @ lwew) o (lw @ nw ® lwew) o (nw ® 1w)

We stipulate]d] = 7.



Diagrammatically, this stipulation means that we have tiewing equality of diagrams:

W
wW w
| - _
1] 5
%4 w w

Intuitively, semantics ofd] ends up being ifV ® 1V, obtained by making a copy (via the bialgebra
mapd) of one of the inputs i1/, applying the determiner to one copy and taking the int¢iseof the
other copy (via the bialgebra mag) with the other input iri1/.

Meanings of expressions of language are obtained accotalitig following definition:

Definition 5. The interpretation of a stringy; - - - w,,, for w; € T with a grammatical reductioi is

[wr - wa] =[] (f] @ -+~ @ wa]

For example, the interpretation of an intransitive sergemith a quantified phrase in subject position
and its simplified forms are as follows:

—
QL

—

Q

The interpretation of a transitive sentence with a quatifierase in object position is as follows:



_ _ [np] [2]
[np] o] [n

=

I I [ I A W Wéw W
W OWwSwW | [T O W N O
_ L] -
. woow L
y [d]
SW W W W w

w
Putting the two cases together, the interpretation of a&sestwith quantified phrases both at subject
and at an object position is as follows:

[] [v] []

N R N
w wWSw w
w W

W W
d] [d]

| {
W W W W

N N

4 Truth Theoretic Interpretation in Rel

=

A model (U, []) of the language of generalised quantifier theory is madegosdtal via the instantiation
to Rel of the abstract compact closed categorical model.

Definition 6. The instantiation of the abstract model of definifion Rtd is a tuple(Rel, P(U), {x}, [ ]),
for U the universe of reference. The interpretations of word$iis model are defined by the following
relations:

— The interpretation of a terminat generated by any of the non-terminals N,NP, and VP is

*[z]A <= A=[z]

— The interpretation of a terminat generated by the non-terminal V is

*[z](A,x,B) < [z](A) =B

where[z](A) is the forward image ofl in the binary relation]z].
— The interpretation of a terminal generated by the non-terminal Det is

Ald]B < B € [d](A)



For the types, note that the interpretation of a termingenerated by any of the non-terminals
N,NP, and VP has typgz] : {x} — P(U). The interpretation of a VP is the initial morphism to
P(U) ® {*}, which is isomorphic t&P(U ), hence it gets the same concrete instantiation as N and NP.
The interpretation of a terminal generated by the non-terminal V has typd : {x} -~ P(U) ®
{x}@PU) = PU) @ PU). Finally, the interpretation of a termindlgenerated by the non-terminal
Det has typdd] : P(U) —+ PU).

Informally, the Frobeniug: map is the analog of set-theoretic intersection and the actnposed
epsilon map is the analog of set-theoretic applicatiors tdt hard to show that the truth-theoretic in-
terpretation of the compact closed semantics of quantiBatesces provides us with the same meaning
as the generalised quantifier semantics. We make this fasifallows.

Definition 7. The interpretation of a quantified sentencis true in(Rel, P(U), {x}, [ ]) iff x[s]*.

Theorem 1. x[s]x in (Rel, P(U), {x},[]) iff [S] is true in generalised quantifier theory, as defined in
Definition[2.

Proof. If a sentence is quantified, it is either of the form ‘Det N VIP’ad the form ‘NP V Det N'. For
either case, sincgx} is the unit of tensor irkel, the S objects and morphisms can be dropped from the
meaning morphism.

— For the first case, we have to calculate feerelation:

epw) © ([d] ® ppw)) © (Spuy @ idpwy) © ([n] @ [op]) : {x} = {x}
We will calculate this relation in stages. First:

*([n] ® [up])(A, B) <= x[n]A and  [vp] B
<= A= [n]andB = [vp]

since(x, x) = %. Second:

*((0py @ idpay) © ([n] @ op]))(A, B,C) <= *([n] @ [vp])(A,C) andA = B
<= A= B =[n]andC = [vp]

Third:

* (([d] ® ppan) © Opay ®idpay) o (In] @ [vp]))(A, B)
= A'ld[AandB = B' N C’ for somex ((5ps) @ idpsy) o ([n] @ [vp])) (4", B',C")
< A€ [d]([n]) andB = [n] N [vp]

Finally:

* (epasy © ([d] ® ppsy) © (Spasy ® idpgyy) © ([n] @ [vp]))*
= * (([d] ® ppw)) © (6pey @ idpesy) o ([n]  [vp]))(A, A) for someA

< [l N [vp] € [d]([n])

This is the same as the set theoretic meaning of the sentegeméralised quantifier theory.



— For the second case, we have:
ISl = epw)o (wpay @ [d]) o (epw) @ idp) @5pan) © (Inp] ® [v] @ [n])
Again we calculate in stages. First:

*([np] ® [v] ® [n])(A, B,C, D) <= x[np]A and « [v](B,C) and % [n] D
<= A= [np]andC = [v](B) andD = [n]

Second:
* ((ep) @ idpwy @pa) © ([Inp] @ [v] @ [n]))(C, D, E)
< D =E, and* ([np] ® [v] ® [n])(4, A, C, D) for someA
< C = [v]([np]) andD = E = [n]
Third:

* (1@ @ [d]) o (epy @ idp) @3py) o (Tnp] @ [o] ® [n])(F, G)
< F =CnDandD[d]G for somex ((ep(r ® idp(r) @5pw) © ([np] @ [v] ® [n]))(C, D, E)
> F = [v]([np]) N[n] andG € [d]([n])

Fourth:

*(em o (ipoy @ [d]) o (ep(w) @ idp) @0pay) © ([np] © o] @ Tnl))
* ((Lpan @ [d]) o (epwy @ idpry @5p)) © ([np] @ [v] © [n])) for someF
— [[v]]([[ pl) Nln] € [[d]]([[n]])
Again, this is exactly the truth theoretic definition of theeaming of the sentence in generalised
quantifier theory. This completes the proof.

5 Corpus-Based Instantiation inFdVect

The relational model embeds into a vector spaces model tlngsual embedding of sets and relations
into vector spaces and linear maps. This embedding sends7atsea vector spac®; spanned by
elements ofl" and a relationR C T x T to a linear mapl’y — Vp. By takingT' to be P(U) for
the distinguished spadd” and by taking it to be{x} for the distinguished spac®, this embedding
provides us with a vector space instantiation of the categlomodel. This instantiation imitates the
truth theoretic model presentedtel. We refer to it by thébooleanFdVect instantiation.

Definition 8. The boolean instantiation of the abstract model of definibto FdVect is the tuple
(FdVect, Vpuy, Viuy, [ 1), for Vp,) the free vector space generated over the set of subséisaofi
Vi, the one dimensional space. Words are interpreted by thewoll linear maps:

— The terminals generated by N, NP, VP, and V rules are given by:
[z](») = |[=])
— The interpretation of a terminal generated by the Det rule is defined as follows on sub$et/:

[d(ay= > 1B

Be[d](A)



The types of these linear maps are as in definition 6, sigge= R is the unit of tensor ifF'd Vect.
Thus, the terminals generated by N, NP, and VP rules haveltype— Vp(y); the type of terminals
generated by the V rule i, — Vpy @ Vi @ Vpyy) = Ve ® Vpy- A terminal generated by
the Det rule has typ&p ) — Vpw)-

Theorent 1 is carried over frofel to FdVect by defining vector representations of sentences to be
true iff they are non-zero elements\df,, .

Definition 9. The interpretation of a quantified sentengds true in (FdVect,Vp(M),V{*},ﬂ) iff
[sI(*) # 0
Corollary 1. s[(x) # 0in (FdVect, Vpuyy, Viuy, [1) iff [s]xin (Rel, PU), {x},[])-

Proof. The proof goes through the same cases and steps as in ThiédCemsider a quantified sentence
of the form ‘Det N VP'. Its interpretation is obtained by callating [s](x), defined to be:

Vpuy © (m ® MV’P(M)) © (5V7><u) ® ide(u)) o ([n] ® [vp])(*)

The four stages of this computation are as follows

(In] @ [opD) (+) = [n](+) ® [op] () = [[n]) ® [[vp]) @

(Ovp iy ® idvig,, ([ [n]) @ |lvp])) = [[n]) @ [[n]) @ [[vpl) )

([ ® ppe)ID @ o) @ [[opl) = Y 1B) @ |[n] N [vp]) (3)
Be[d]([n])

V) ( > IB)®]n [[vp]]>) = Y (Bl[N[w]) (4)
Be[d]([n]) Beld]([n])

The interpretation of a sentence with a quantified object\NPet N’ is computed similarly, resulting
in the following expression:
> (Nmwh nin] | B)

Be[d]([n])
The result of the first case is non zero iff there is a sulset [d] ([n]) that is equal tdn] N [vp]. The
result of the second case is non zero iff there is a suiset[d] ([»]) that is equal tduv]([np]) N [»].
These are respectively equivalent to their correspondasgs inx[s]*, as computed in the proof of
theorentL.

A corpus-based distributional vector space instantiatibtihe model is obtained via a construction
similar to the above, but this time with real number weighéther than boolean ones). These weights
are retrievable from corpora of text using distributionadthods. The non-quantified part of this instan-
tiation closely follows that of previous work [11]: nounsdanoun phrases live in distributional spaces
similar to the one described in subsection| 2.1; verb phrasdgransitive verbs live in tensor spaces,
built using the methods described described in the conanstantiations of the theoretical model of
previous work, e.g. see [[L7,)22].

Definition 10. The distributional instantiation of the abstract model e@ffidition[3 toFdVect is the
tuple (FdVect, Vp(s), Z, [ ]), for V(5 the vector space freely generated over theXseind Z a vector
space wherein interpretations of sentences live. Thepraations of terminals are defined as follows:

— Aterminalz generated by N or NP rules is given py(1) := >, ¢7|A;) for A; C X.



— A terminalz generated by the VP rule is given fy](1) := >k CelAj; ® Ay, for A; € X and
|Ax) a basis vector of. L

— A terminal z generated by the V rule is given Hy](1) = >, .. ¢ |4 ® A, ® A,), for
A, A, C X and|A4,,) a basis vector of. o

— A terminal d generated by the Det rule is concretely given on subgetsf X' by [d](|4)) =

> Befa)a) B B)-

As for the types, a terminal generated by the either of the dNNiA rules has typ& — Vp (s, @
VP terminal has typ& — Vp(x) ® Z; the type of a V terminal iR — Vp(x) ® Z ® Vp(s). A terminal
d generated by the Det rule has typgx) — Vp(x).

Examples of this model are obtained by setting three setsardnpeters: (1) instantiating to
different sentence spaces, (2) different ways of embedthi@glistributional vectors df’y; in the space
Vp (s, and (3) different ways in which word vectors and tensorsdai. The concrete constructions for
the weighted interpretations of quantifiers depend on tbheies, but can be implemented according
to the same general guidelines. The weightof a quantifierd over the basisi can stand for aegree
of set membershign this case)_ gy a) ¢4|B) can be implemented agd, is the degree to which
elements ofd are inB’. This weight can also stand fordegree of co-occurrencand be retrieved from
a corpus. In this casey pc4(a) cL|B) is read as¢4 is the degree to which elements ofA have
co-occurred withB’. We provide three example instantiations below.

Scalar Sentence DimensionsSupposeZ = R. The interpretation of a sentence with a quantified

subject becomes as follows:
> GdPeR(B| Ain Ay)
ij Be[d]([n])
Similarly, the interpretation of a sentence with a quardifidject becomes as follows:

ST P ch(Ai | A (AN Ay, | B)
ijlm Be[d]([n])

Here, takeX = U/ and one can use tiel-to-FdVect embedding and obtain a weighted version of the
boolean model of definitiolnl 8.

Distributional Sentence DimensionsSupposeS contains the sentence dimensions of a composi-
tional distributional model of meaning and takKe= Vs. The sentence dimensions can be constructed
in different ways. In[[17], they were taken to [ whereas in[[22], we took them to be the same as
the dimensions of’x. In either case, there are different options on how to imegrfhe dimensions of
Vp(xy in a distributional model. We present three different cargtons below.

1. The singleton construction.Take the interpretation of a terminalgenerated by either of the N or
NP rules to bé _, cF|{v; }) whenever) , c¥|v;) is the vector interpretation af in the distributional
spaceVy. Similarly, a terminal: generated by the VP rule is embedde@ as c;;|{vi } ® s;) when-
ever) ;. ci;|v; @ s;) is the matrix interpretation of in Vx; @ Vs. In the same fashion, a terminal
z generated by the V rule embeds a5, cf. [{vi} ® s; ® {vy}), for 3. cfiplvi @ s; @ vg) the
cube interpretation of in Vy, ® Vs ® V.

The interpretation of a sentence with a quantified subjecbipes as follows:

Yoo D k(B {vi}n{v})lsk)
ijk Be[d]([n])
Similarly, for the interpretation of a sentence with a qifeed object we obtain:

Yoo D dPucmeb ot [ {uNlse) ({u} N {va} | B)

ijklm Be[d]([n])



The weights in the above formulae come from the underlyingpasitional distributional model.
The vector constructions for nouns and noun phrases arénebtéy following a distributional
model; the matrix and cube constructions for verbs are oectsid as detailed in [17] or in_[22],
depending on the choice 6.

2. Sets of dimensions as lemmas# lemma is a set of different forms of a word. In this instatitia,
each dimension of’p (5 stands for a lemma.
The interpretation of a sentence with a quantified senteacerbes:

S S (B AN A)lsy)

ijk Be[d]([n])

Similarly, the interpretation of a sentence with a quardifddject becomes:

S b | AN (AN Ay | BY
ijklm Be[d]([n])

The weights are retrieved from a corpus by e.g. adding, niarimg, and clustering (e.g. average or
k-means) of the co-occurrence weights of the elements otthenla set.

3. Sets of dimensions as featuredA feature is the set of words that together represent a gaitin
property. In this instantiating, each such dimensiorV/gfy; represents a set of such words. For
instance {miaow, purt is the sound feature for the ‘animalgtun, sleep is its action feature, and
{cat, kitter} is its species feature. Each dimensior/g{ ;) stands for a feature. The interpretations
of quantified sentences are obtained by computing the saimeifi@e as in the lemma instantiation,
but the concrete values of the weights are obtained diffigten

As an example, consider the feature set instantiation applcse the following are among the fea-
tures ofVp(s):
{cats, kitten$, {miaow, pur, {sleep, snorf € P(X)

Take the instantiation of the universal quantifier over é¢hesbe:

[all] |{cats, kitten$)||{miaow, purt)||{sleep, snorg)
|{cats, kitten$) smal | 0.7 0.5
[{miaow, purg) 0.9 smal | 0.3
|{sleep, snorg) 0.2 0.3 smal |

In the first row, 0.7 is the degree to whielil elements of cats, kitten$ have featurg miaow, purs,
witnessed by the fact that, for instance, all occurrencesatsf and kittens in the corpus have occurred
in sentences which have a verb such as miaow or purr. Sigia8 is the degree to whidl elements
of {cats, kitten$ have featurgsleep, snorp The intersection of a term with itself has no information
content and is thus taken to be a very small fraction, so akrglay a role in deductions.

For the existential quantifier, a similar instantiationules in higher degrees as the quantifier is
more relaxed, witnessed by the fact that, for instancete®®#®’ have more of the miaow feature than
‘cats’ since they miaow more. Suppose this provides us wigHfallowing:

[somd |{cats, kitten$)||{miaow, purt})||{sleep, snorp
|{cats, kitten$) smal | 0.9 0.6
[{miaow, purt) 0.9 smal | 0.5
|{sleep, snorp) 0.5 0.5 smal |

Suppose the vectors of ‘animal’ and ‘run’ in this space arfobews:



|{cats, kitten$)||{miaow, purt)||{sleep, snorg)
[animal 0.5 0.4 0.3

[[run]] 0.6’81> 0.4|82> 0.2‘83>

In the first row, 0.5 is the degree to which the word ‘animals led the featurécats, kittens in
the corpus, e.g. due to the fact that it has occurred in see$esuch as ‘a cat is an animal’ and ‘kittens
are small and cute animals’. Similarly, 0.4 is the degree li@kv‘animal’ has featuré{miaow, purs)
and 0.3 the degree to which it has feat{frleep, snorp). The values of thés;) in [run] depend on the
concrete instantiation of the sentence dimensions, to #@egs simple we do not instantiate them.

One computes the vector interpretationdaif] (Janimalg) and[somd([animalg) by linearly ex-
panding[all] and[somg over the vector of ‘animal’:

[all]([animalg) = 0.5[all](]{cats, kitten$)) + 0.4[all](]{miaow, puri)) + 0.3[all](|{sleep, snorp))
[somd([animalg) = 0.5]somg (|{cats, kitten})) + 0.4[somg (|{miaow, pur})) + 0.3[somd(|{sleep, snork))

The interpretations of the quantified sentences ‘all arsmai’ and ‘some animals run’ are be computed
by substituting these numbers in the formdla,,. > pepay gy areteh(B | AN Aj)lsy). It results in
the following summands of their corresponding linear expams:

|s1) |s2) |s3)
[all animals ruf 0.5 x (0.4 x 0.9 + 0.3 x 0.2)]0.4 x (0.5 x 0.7+ 0.3 x 0.3)]0.3(0.5 x 0.5 + 0.4 x 0.3)
[some animals run0.5 x (0.4 x 0.3 + 0.5 x 0.2)]0.4 x (0.5 x 0.9 + 0.3 x 0.5)]0.3(0.5 x 0.6 4+ 0.4 x 0.5)

In the literature ordistributional inclusion hypothesifi5/51] different types of orderings on feature
vectors are used to model and experiment with word-levailement. Wherein, a wordy® entails a
word ‘w’, written as v F w’, if features of v’ are also features ofy’. The simplest such ordering is
the point wise ordering on vector dimensions. In our modhe,goint wise ordering on the feature sets
provide us with the following entailments:

[all animalg + [some animals [all animals rufi - [some animals ryn

This opens the way to reason about entailment on quantifiebph and sentences compositionally and
using statistical data from corpora of text. Implementioghe of the above instantiations and experi-
menting with their applications to entailments on datasetsstitutes work in progress.

6 Conclusion and Future Work

After a review of the setting of distributional semanticsl@context free and pregroup grammatical for-
malisation of the fragment of language concerning quadtifierases and sentences (and the necessary
preliminaries on compact closed categories and bialggbresdeveloped an abstract compact closed
categorical semantics for quantifiers with the help of ialgs. We instantiated the abstract setting to
the category of sets and relations and proved its equivalanthe thruth-theoretic semantics of gener-
alised quantifier theory of Barwise and Cooper. We extende@xisting instantiation of the categorical
compositional distributional semantics to finite dimensiovector spaces and linear maps to develop a
corpus-based instantiation for our model. Implementirg gbtting on real data and experimenting with

it constitutes work in progress.
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