
1 
 

Identification of a neuropeptide precursor protein that gives rise to a “cocktail” of 

peptides that bind Cu(II) and generate metal-linked dimers 

 

Christopher E. Jonesa┴*, Meet Zandawalab┴, Dean C. Semmensb, Sarah Andersonb, 

Graeme R. Hansonc║,  Daniel A. Janiesd  and Maurice R. Elphickb* 

 

a.School of Science and Health, Western Sydney University, Locked bag 1797, 

Penrith, 2751, New South Wales, Australia.   

b.School of Biological & Chemical Sciences, Queen Mary University of London, 

Mile End Road, London, E1 4NS, UK. 

 c. Centre for Advanced Imaging, The University of Queensland, Brisbane, 

 Queensland, 4072, Australia 

 d.Department of Bioinformatics and Genomics, University of North Carolina at Charlotte,  

Charlotte, NC 28223 USA 

*To whom correspondence should be addressed: 

Christopher E. Jones, School of Science and Health, Western Sydney University, Locked bag 

1797, Penrith, NSW, 2759, Australia. Tel: +61 29685 9908; Fax: +61 2 9685 9915; E-mail: 

c.jones@uws.edu.au 

or 

Maurice R. Elphick, School of Biological & Chemical Sciences, Queen Mary University of 

London, Mile End Road, London, E1 4NS, UK. Tel: 0207 882 6664; Fax: 0207 882 7732; E-

mail: m.r.elphick@qmul.ac.uk 

┴ These authors contributed equally. 
 
║ Deceased, 16/07/1955 – 25/02/2015 
 
 

*REVISED Manuscript (text UNmarked)
Click here to view linked References

mailto:c.jones@
mailto:m.r.elphick@qmul.ac.uk


2 
 

Abstract 

Background 

Neuropeptides with an Amino Terminal Cu(II), Ni(II) Binding (ATCUN) motif (H2N-xxH) 

bind Cu(II)/Ni(II) ions. Here we report the novel discovery of a neuropeptide precursor that 

gives rise to a “cocktail” of peptides that bind Cu(II)/Ni(II) and form ternary complexes – the 

L-type SALMFamide precursor in the starfish Asterias rubens. 

Methods 

Echinoderm transcriptome sequence data were analysed to identify transcripts encoding 

precursors of SALMFamide-type neuropeptides. The sequence of the L-type SALMFamide 

precursor in the starfish Asterias rubens was confirmed by cDNA sequencing and peptides 

derived from this precursor (e.g. AYHSALPF-NH2, GYHSGLPF-NH2 and LHSALPF-NH2) 

were synthesised. The ability of these peptides to bind metals was investigated using UV/Vis, 

NMR, circular dichroism and EPR spectroscopy. 

Results 

AYHSALPF-NH2 and GYHSGLPF-NH2 bind Cu(II) and Ni(II) and generate metal-linked 

dimers to form ternary complexes with LHSALPF-NH2. Investigation of the evolutionary 

history of the histidine residue that confers these properties revealed that it can be traced to 

the common ancestor of echinoderms, which is estimated to have lived ~500 million years 

ago. However, L-type precursors comprising multiple SALMFamides with the histidine 

residue forming an ATCUN motif appears to be a feature that has evolved uniquely in 

starfish (Asteroidea). 

General Significance 

The discovery of a SALMFamide-type neuropeptide precursor protein that gives rise to a 

“cocktail” of peptides that bind metal ions and generate metal-linked dimers provides a new 

insight on ATCUN motif-containing neuropeptides. This property of L-type SALMFamides 
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in the Asteroidea may be associated with a role in regulation of the unusual extra-oral feeding 

behavior of starfish.  
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1.0 Introduction 

Neuropeptides are neuronal intercellular signalling molecules that act as 

neurotransmitters, neuromodulators or neurohormones and regulate many physiological 

processes and behaviours in humans and other animals [1]. They are derived from larger 

precursor proteins and are subject to post-translational modifications that are important for 

function; for example, in many neuropeptides a C-terminal glycine residue is converted to an 

amide group. Furthermore, in some neuropeptides the presence of a histidine residue can 

confer the ability to bind metal ions. In particular, the presence of an Amino Terminal Cu(II), 

Ni(II) Binding (ATCUN) motif, where a histidine residue is specifically located in the third 

position from the N-terminus (i.e. H2N-xxH, where x is variable), has been found to confer 

high affinity binding of Cu(II) and Ni(II). The ATCUN motif was originally characterized in 

albumins but subsequently it has been demonstrated that other peptides/proteins with an 

ATCUN motif also bind Cu(II) and/or Ni(II) ions [2, 3]. In 1995 Harford and Sarkar 

demonstrated that the mammalian neuropeptide neuromedin C, which has the N-terminal 

sequence Gly-Asn-His, binds both Cu(II) and Ni(II) specifically. Furthermore, the authors 

speculated that this property of neuromedin C may have relevance to neurological deficits 

associated with copper metabolism disorders, such as Menkes disease and Wilson disease [4]. 

More recently, Russino et al. reported that the mammalian tachykinin-type peptide 

neurokinin B, which contains an ATCUN motif, binds Cu(II) ions in an unusual 

[CuII(NKB)2] complex [5].  Furthermore, although Cu(II) binding substantially alters the 

structure of neurokinin B, the ability of [CuII(NKB)2] to activate the NKB receptor was not 

impeded. It was speculated that NKB may have a role in protecting cells from the effects of 

neuronally released copper. Several other members of the tachykinin peptide family have also 

been shown to coordinate copper ions, yet the physiological consequences remain to be 

determined [6, 7].   



5 
 

Here we report the novel discovery of a neuropeptide precursor protein that gives rise 

to a “cocktail” of neuropeptides that bind Cu(II) – the starfish L-type SALMFamide 

precursor. SALMFamide neuropeptides occur in species belonging to the phylum 

Echinodermata, which includes starfish, brittle stars, sea urchins, sea cucumbers and feather 

stars [8]. The first members of this neuropeptide family to be identified, S1 and S2, were both 

isolated from the starfish species Asterias rubens and Asterias forbesi. S1 is an octapeptide 

with the amino acid sequence GFNSALMF-NH2 and S2 is a dodecapeptide with the amino 

acid sequence SGPYSFNSGLTF-NH2 [9, 10]. Subsequently, SALMFamides were identified 

in other echinoderms, including GFSKLYF-NH2 and SGYSVLYF-NH2 from the sea 

cucumber Holothuria glaberrima and GYSPFMF-NH2 and FKSPFMF-NH2 from the sea 

cucumber Apostichopus japonicus [11]. Identification of these holothurian neuropeptides 

revealed the existence of two types of SALMFamides. Firstly, L-type SALMFamides that 

have the C-terminal motif SxLxF-NH2 (e.g. S1, S2, GFSKLYF-NH2 and SGYSVLYF-NH2) 

and secondly, F-type SALMFamides that have the C-terminal motif SxFxF-NH2 

(GYSPFMF-NH2 and FKSPFMF-NH2). 

 Investigation of the bioactivity of SALMFamides in echinoderms has revealed that 

both L-type and F-type SALMFamides act as muscle relaxants [12]. For example, S1 and S2 

both cause dose-dependent relaxation of apical muscle, tube foot and cardiac stomach 

preparations from the starfish A. rubens [13, 14]. Furthermore, S2 exhibits higher 

potency/efficacy than S1, which provided a rationale for investigation of a structural basis for 

this difference in bioactivity. By testing chimeric analogs of S1 and S2, it was found that it is 

the C-terminal region of the peptides that is the primary determinant of their differing 

potency/efficacy [15, 16]. However, the N-terminal tetrapeptide (SGPY) of S2 contributes to 

its bioactivity and confers on S2 the property to self-associate and form highly structured 

multimers at high concentrations [15]. Interestingly, addition of the SGPY tetrapeptide to the 
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N-terminus of S1 confers structure that is not observed with the S1 peptide, but without 

enhancing bioactivity. Thus, the differing bioactivity of S1 and S2 is determined by a 

complex interplay of sequence and conformation.  

 Advances in genome/transcriptome sequencing have enabled determination of the 

sequences of SALMFamide neuropeptide precursor proteins. For example, sequencing of the 

genome and transcriptome of the starfish Patiria miniata revealed: 1) an “L-type” precursor 

comprising S1 and six other L-type SALMFamides and 2) an “F-type” precursor comprising 

eight F-type or F-type-like SALMFamides and an S2-like peptide (L-type). Furthermore, 

comparative analysis of sequence data from a variety of echinoderm species has enabled 

investigation of the evolution of SALMFamide precursors [17, 18]. The phylum 

Echinodermata comprises five extant classes, Asteroidea (starfish), Ophiuroidea (brittle 

stars), Echinoidea (sea urchins, sand dollars), Holothuroidea (sea cucumbers) and Crinoidea 

(feather stars and sea lilies), and the phylogenetic relationships of these classes have been 

determined. Thus, the Asteroidea and Ophiuroidea are sister classes (the Asterozoa) and the 

Echinoidea and Holothuroidea are sister classes (the Echinozoa), with the Crinoidea basal to 

the Asterozoa and Echinozoa [19-26]. This phylogeny has provided a framework to 

reconstruct the evolution of SALMFamide precursors in the phylum Echinodermata. In 

crinoid species only a single SALMFamide precursor has been identified, whereas asterozoan 

and echinozoan species have both an L-type and an F-type precursor. It has therefore been 

postulated that the L-type and F-type precursors found in asterozoans and echinozoans may 

have arisen by duplication of a common ancestral-type precursor similar to that found in 

extant crinoids [17].       

 Here we have obtained additional sequences of SALMFamide precursors in 

echinoderm species representing the five extant classes. Comparative analysis of the 

sequences of echinoderm SALMFamide precursors revealed that several neuropeptides 
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derived from L-type SALMFamide precursors in starfish have an ATCUN motif. For 

example AYHSALPF-NH2, a neuropeptide that has been identified previously in the starfish 

species Marthasterias glacialis [27]. In addition, one of the peptides derived from L-type 

SALMFamide precursors in starfish (e.g. LHSALPF-NH2) has a histidine in the same 

position as the tripeptide Gly-His-Lys (GHK), a well-studied naturally occurring human 

copper-binding growth factor [28]. We show here that L-type SALMFamides in the starfish 

A. rubens that have an ATCUN motif are able to bind Cu(II) and Ni(II). Furthermore, Cu(II) 

binding to these peptides facilitates formation of ternary complexes with LHSALPF-NH2. 

The evolutionary and functional significance of these properties of neuropeptides derived 

from the L-type SALMFamide precursor in starfish is discussed. 
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2.0 Materials and Methods 

2.1 Transcriptome sequencing 

 The sequences of SALMFamide precursors have been determined in species 

representing all five echinoderm classes, as reported previously [17, 18]. Here we have 

obtained additional transcriptome sequence data from other species belonging to each of the 

five echinoderm classes: the starfishes Asterias rubens and Remaster gourdoni (class 

Asteroidea), the brittle stars Ophioderma brevispinum and Astrophyton muricatum (class 

Ophiuroidea), the sea urchins Arbacia punctulata and Eucidaris tribuloides (class 

Echinoidea), the sea cucumbers Psolus spp, Stichopus chloronatus and Pannychia moseleyi 

(class Holothuroidea) and the feather stars Isometra vivipara and Oligometra serripinna 

(class Crinoidea).  

Asterias rubens radial nerve cord transcriptome sequence data were obtained as 

reported previously [29]. For the other echinoderm species, RNA was extracted from tube 

feet (Remaster gourdoni), arms (Ophioderma brevispinum, Astrophyton muricatum), body 

wall (Arbacia punctulata, Eucidaris tribuloides, Psolus spp, Stichopus chloronatus, 

Pannychia moseleyi) or pinnules (Isometra vivipara, Oligometra serripinna) and then 

subjected to RNA-Seq sequencing on an Illumina Hiseq 2000 platform (100 base pairs, 

paired end). Reads for each of the samples were filtered by quality score (cutoff threshold > 

Q20) using fastxtrimmer and Illumina adapters were removed using fastxclipper, which are 

both components of the fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). De novo 

assembly of contigs was then performed using Trinity on a high memory computer cluster 

using 500 GB of RAM and 24 CPUs [30].   
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2.2 Cloning and sequencing of the L-type SALMFa precursor cDNA from A. rubens 

SALMFamides derived from the A. rubens L-type SALMFamide precursor were 

selected for the metal-binding studies described below. To facilitate this it was first necessary 

to confirm, by cDNA cloning and sequencing, the sequence of the precursor predicted from 

Illumina transcriptome sequencing. Total RNA from radial nerve cords of A. rubens was 

isolated using the Total RNA Isolation System (Promega) and used for cDNA synthesis using 

the Quantitect Reverse Transcription Kit (QIAgen). The full-length cDNA of the A. rubens 

L-type SALMFa precursor, including 5′ and 3′ untranslated regions (UTR), was amplified by 

PCR using Phusion high-fidelity PCR master mix (NEB) and the oligos 5′-

TAGCTACTTGACACA-3′ and 5′-ATATGACTAGTTGAGAGAGG-3′, which were 

designed using Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/). The PCR product was 

gel-extracted and purified using a QIAquick gel extraction kit (QIAgen) before being blunt-

end cloned into a pBluescript SKII (+) vector (Agilent Technologies) cut with a EcoRV-HF 

restriction endonuclease (NEB). The clone was then sequenced (Eurofins Genomics) from the 

T7 and pCR3.1-BGH-rev sequencing primer sites. 

 

2.3 Neuropeptide synthesis and metal titrations 

The A. rubens L-type SALMFamides AYHSALPF-NH2, GYHSGLPF-NH2 and 

LHSALPF-NH2 were synthesised by Synpeptide (Shanghai, China) and were >95% pure as 

determined by mass spectrometry and NMR. The lyophilized peptides were weighed and 

dissolved in the required buffer (10 mM nEM unless otherwise stated) on the day of use. The 

peptide concentration was estimated using the extinction coefficient of the single tyrosine 

amino acid (H280nm = 1280 M-1cm-1) or from the measured mass taking into consideration the 

presence of ~30% water. Stock (0.5 M) solutions of copper and nickel were prepared as 

CuCl2·2H2O and NiCl2·2H2O in water and diluted to working solutions on the day of use. 
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Metal addition during titrations was achieved using a 10 PL Hamilton gastight syringe. The 

spectrum of metal-free peptide was subtracted from the spectrum after each metal addition 

and dilution effects were taken into account during processing of the spectra.  

 

2.4 Electronic Spectroscopy 

UV/Visible electronic spectra (300 nm – 700 nm) were acquired on a Perkin-Elmer U-3100 

using a 10 mm pathlength cuvette.  

 

2.5 Circular dichroism (CD) Spectroscopy 

CD spectra were collected on a Jasco J810 spectrometer. Spectra were routinely collected 

over the range 300 nm to 700 nm using a 10 mm cuvette with sampling every 1 nm. A 

minimum of 10 spectra were obtained and averaged, prior to smoothing using an 11-point 

moving average method in the Jasco software. 

 

2.6 Electron Paramagnetic Resonance (EPR) Spectroscopy 

Continuous wave EPR spectra at ~9.4 GHz (X-band) were obtained on a Bruker Elexsys 

E500 spectrometer operated with Bruker Xepr software and equipped with a super high-Q 

cavity. Calibration of the field was achieved using an ER036TM teslameter and the 

microwave frequency was calibrated with an EIP548B frequency counter. Stable 

temperatures of 150 ± 5K were achieved using a nitrogen gas flow through system linked to a 

Eurotherm B-VT-2000 variable temperature controller. Instrument settings were: modulation 

frequency 100 kHz; modulation amplitude 0.63G; microwave power 10 – 20 mW; number of 

scans 40 – 60; time constant 5.12 ms; sweep time 84 s. Spectra were baseline corrected using 

a polynomial function and high frequency noise was removed using Fourier filtering 

available in the Xepr software. Spectra were simulated using the least-squares fitting 
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algorithm in Easyspin running in Matlab R2014a [31]. The copper hyperfine and Zeeman 

interactions were initially simulated using matrix diagonalization, and perturbation theory 

was used after inclusion of nitrogen nuclei to simulate the nitrogen superhyperfine 

interactions. Where the presence of multiple absorbing species was apparent (i.e. 

[CuIILHSALPF-NH2]) the magnetic parameters were estimated directly from the spectrum. 

Linewidths were fit using a correlated distribution of g- and A-values [32].   

   

2.7 Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR spectra were acquired on a Bruker Avance 500 MHz spectrometer equipped with a 5 

mm TXI BBI probe and controlled using TopSpin 2.1 (Bruker Biospin, Germany). Samples 

were prepared in 90% H2O/10% D2O and the pH was adjusted using aliquots of concentrated 

HCl or NaOH. Proton spectra were acquired over a 10 ppm spectral width comprising 64K 

complex points, and the residual water signal was supressed using a W5 watergate sequence.  

Spectra were processed using a S/2 shifted sine squared window function in SpinWorks 4 

[33]. 
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3.0 Results 

3.1 Identification of novel SALMFamide precursor sequences    

Sequences encoding SALMFamide precursors have been identified previously in 

species representing each of the five classes in Echinodermata [17, 18]. These include 

sequences from Patiria miniata (Class Asteroidea; Order Valvatida), Luidia senegalensis 

(Class Asteroidea; Order Paxillosida), Ophionotus victoriae (Class Ophiuroidea; Order 

Ophiurida), Ophiothrix angulata (Class Ophiuroidea; Order Ophiurida), Strongylocentrotus 

purpuratus (Class Echinoidea; Order Echinoida), Lytechinus variegatus (Class Echinoidea; 

Order Temnopleuroida), Apostichopus japonicus (Class Holothuroidea; Order 

Aspidochirotida), Leptosynapta tenuis (Class Holothuroidea; Order Apodida) and Antedon 

mediterranea (Class Crinoidea; Order Comatulida) and Aporometra wilsoni (Class Crinoidea; 

Order Comatulida). 

Here, by analysis of new transcriptome sequence data, we have identified 

SALMFamide precursors in other echinoderm species, which include Asterias rubens (Class 

Asteroidea, Order Forcipulatida), Remaster gourdoni (Class Asteroidea, Order Velatida), 

Ophioderma brevispinum (Class Ophiuroidea, Order Ophiurida), Astrophyton muricatum 

(Class Ophiuroidea, Order Euryalida), Arbacia punctulata (Class Echinoidea, Order 

Arbacioida), Eucidaris tribuloides (Class Echinoidea, Order Cidaroida), Psolus spp (Class 

Holothuroidea; Order Dendrochirotida), Stichopus chloronatus (Class Holothuroidea; Order 

Aspidochirotida), Pannychia moseleyi (Class Holothuroidea, Order Elasipodida), Isometra 

vivipara (Class Crinoidea, Order Comatulida) and Oligometra serripinna (Class Crinoidea, 

Order Comatulida). 

 

3.2 Comparative analysis of echinoderm SALMFamide neuropeptide sequences: 

identification of conserved histidine residues  
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 Determination of the sequences of SALMFamide precursors in species from each of 

the five echinoderm classes enabled comparison of the sequences of the constituent 

neuropeptides and identification of conserved characteristics. Thus, Figure 1 shows C-

terminally aligned neuropeptides derived from L-type SALMFamide precursors in asterozoan 

and echinozoan species, with data from three species in each class shown. The presence of a 

leucine or an isoleucine residue (highlighted in red) in the third position from the C-terminal 

amide is characteristic feature of the majority of the neuropeptides, as expected for L-type 

SALMFamide precursor derived peptides. Furthermore, another conserved feature is the 

presence of a histidine residue (highlighted in turquoise) in the sixth position from the C-

terminal amide, with at least one of the peptides in all but one of the twelve species having 

this feature. However, it is most strikingly apparent in starfish species, where six out of seven 

or five out of six of the SALMFamides have this characteristic. With respect to the N-

terminus, the position of the conserved histidine residue is variable, ranging from position 

two to position eight. However, in starfish four of the five or six peptides with a histidine 

residue have the histidine in the third position from N-terminus. This is noteworthy because, 

as highlighted in the introduction, the presence of a histidine residue in this position is known 

to confer on peptides and proteins the ability to bind copper and nickel ions with high 

affinity. Hence, the H2N-xxH motif is known as an Amino Terminal Cu(II), Ni(II) Binding 

(ATCUN) motif. 

 

<<INSERT FIGURE 1>>  

 

Having identified the occurrence of conserved histidine residues in SALMFamides 

derived from L-type precursors, we investigated if this is also a conserved feature of 

SALMFamides derived from F-type precursors. Thus, Figure 2 shows C-terminally aligned 
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neuropeptides derived from F-type SALMFamide precursors in asterozoan and echinozoan 

species, with data from three species in each class shown. The presence of a phenylalanine 

residue or a structurally similar tyrosine residue (highlighted in yellow) in the third position 

from the C-terminal amide is a characteristic feature of the majority of the neuropeptides, as 

expected for F-type SALMFamide precursor derived peptides. However, unlike in L-type 

SALMFamide precursor derived peptides, histidine residues are not prevalent in F-type 

SALMFamide precursor derived peptides (Fig. 2) and only one peptide (in the sea urchin 

Arbacia punctulata) has a histidine residue in the sixth position from the C-terminal amide. 

 

<<INSERT FIGURE 2>>  

 

Lastly, we analysed the sequences of neuropeptides derived from the singular 

SALMFamide precursors that have been identified in crinoids. This revealed an interesting 

pattern in the occurrence of histidine residues, with conserved histidines present in L-type 

peptides located at the extremities of the precursors. Thus, in all three crinoid species 

analysed here, the first and last neuropeptide in the precursor proteins is an L-type 

SALMFamide with a histidine residue located at the sixth position from the C-terminal 

amide, a feature that they share with the majority of SALMFamides derived from L-type 

SALMFamide precursors in asterozoan and echinozoan species (Fig. 3). By way of contrast, 

the twelve neuropeptides that form the core of the crinoid SALMFamide precursors mostly 

have phenylalanine, tyrosine or leucine residues at position three with respect to the C-

terminal amide and typically do not have histidine residues. The occurrence at the extremities 

of crinoid SALMFamide precursors of L-type SALMFamides that have a histidine residue at 

position six with respect to C-terminal amide is interesting because it suggests that peptides 

with these characteristics may have given rise to the structurally related peptides that are 
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found in asterozoan and echinozoan L-type SALMFamide precursors. Accordingly, our data 

indicate that the evolutionary origin of L-type SALMFamides with a conserved histidine 

residue at position six with respect to the C-terminal amide can be traced back to the common 

ancestor of extant echinoderms. However, it is in the Asteroidea that peptides with this 

characteristic are most prevalent and furthermore the histidine typically occupies the third 

position from the N-terminus, forming a potential Cu(II) and Ni(II) binding site. This feature 

of SALMFamides derived from the L-type SALMFamide precursor in starfish is interesting 

from an evolutionary and functional perspective and therefore, as described below, we have 

investigated if these peptides do indeed bind Cu(II) and Ni(II) ions. To do this we synthesized 

and analysed neuropeptides derived from the L-type SALMFamide precursor in the common 

European starfish A. rubens.  

 

<<INSERT FIGURE 3>> 

 

3.3 Determination of the sequence of a cDNA encoding the L-type SALMFamide 

precursor in A. rubens 

 Cloning and sequencing of a 1028 bp cDNA encoding the A. rubens L-type 

SALMFamide precursor confirmed the predicted amino acid sequence obtained from 

transcriptome sequence data. Thus, the A. rubens L-type SALMFamide precursor is a 210 

residue protein with a predicted 23-residue signal peptide and seven L-type SALMFamides 

that are bounded by dibasic cleavage sites (Fig.  S1). Four of these peptides (AYHSALPF-

NH2, AYHTGLPF-NH2, GYHSALPF-NH2 and GYHSGLPF-NH2) contain the ATCUN 

motif H2N-xxH (Fig. 1 and S1). Two other peptides (PAGASAFHSALSY-NH2 and 

LHSALPF-NH2) contain a histidine residue but it is not in the third position from the N-

terminus, whilst the peptide S1 (GFNSALMF-NH2) lacks a histidine residue altogether.  
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3.4 Electronic and circular dichroism spectroscopy highlights coordination of copper 

and nickel to L-type SALMFamides      

To investigate the copper binding ability of peptides derived from the A. rubens L-

type SALMFamide precursor, we chose three representative peptides potentially containing 

copper sites: AYHSALPF-NH2, GYHSGLPF-NH2 and LHSALPF-NH2. We initially used 

electronic spectroscopy to probe metal binding. Figure 4A shows the spectra obtained after 

titration of Cu2+ or Ni2+ into AYHSALPF-NH2. Addition of Cu2+ to AYHSALPF-NH2 gives 

rise to an absorption band centred on 520 nm and the intensity tends to stop increasing with 

copper addition at around one equivalent (Fig. 4B). An absorption maximum of 520 nm is 

indicative of Cu2+ bound with only nitrogen coordination [2]. Titration of Ni2+ generates an 

absorption band at 420 nm (Fig. 4A) and, in contrast to Cu2+, the slope of the binding curve 

changes, rather than plateauing, at one equivalent (Fig. 4B). A peak at 420 nm is suggestive 

of Ni2+ bound in a square-planar, four-coordinate geometry [34]. Both the stoichiometry and 

wavelength maxima of Cu2+ and Ni2+ binding are entirely consistent with coordination of 

these metals to an ATCUN site. As expected, titration of these metals into GYHSGLPF-NH2 

produced identical results (Fig. 4C, D). The ATCUN motif generally binds copper and nickel 

via the N-terminal nitrogen, the histidine imidazole nitrogen, and intervening amide nitrogens 

(i.e. {Na, 2N-, NIm}) and therefore the nature of the amino acid side chains is of less 

importance, especially in this case where only the presence of a glycine or alanine 

differentiates the motif in AYHSALPF-NH2 and GYHSGLPF-NH2. A feature of an ATCUN 

site is the lack of changes to the absorption maximum as a function of pH [2]. Accordingly, 

the maximum wavelength of [CuIIGYHSGLPF-NH2] (520 nm) remains constant from ~ pH 5 

(Fig. S2A). In contrast to AYHSALPF-NH2 and GYHSGLPF-NH2, titration of Cu2+ into 

LHSALPF-NH2 generates a peak at 600 nm, but, similar to the previous peptides, the 

absorbance plateaus at around one equivalent Cu2+ (Fig. 4E, F). An absorbance at 600 nm 
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suggests this peptide contains one or more oxygen ligands in its coordination sphere. A pH 

titration of this peptide shows the 600 nm wavelength maximum remains constant until 

higher pH values (> pH 9) where increasing absorption at wavelengths <600 nm suggests 

incorporation of an additional nitrogen donor (Fig. S2B) [28]. 

 

<<INSERT FIGURE 4>> 

 

  To further examine the copper binding sites we used NMR. The presence of low 

concentrations of paramagnetic Cu2+ tends to broaden peaks associated with protons lying 

within ~7Å of the metal. Addition of ~0.1 equivalent Cu2+ to GYHSGLPF-NH2 results in 

selective broadening of the C2H (7.68 ppm) and C4H (6.92 ppm) protons of the imidazole 

ring (Fig. 5A) which tends to confirm His3 is a nitrogen donor. Some broadening of peaks 

due to the His3 HE protons (~3.61 ppm, shifted downfield due to ring current effects of Tyr2) 

is also observed (see Fig. S3 for expanded regions). Coordination of copper to the His3 amide 

and imidazole nitrogen (NG�) could account for the perturbation of the beta protons. 

Additionally, peaks due to Tyr2 HE protons also show some broadening consistent with 

coordination to the nearby amide of Tyr2 (Fig. 5A, Fig. S3). In a similar manner addition of 

Cu2+ to LHSALPF-NH2 results in a loss of peaks due to histidine imidazole protons (Fig. 

5B). It is difficult to assess changes to the His3 HE peaks (~ 3.15 ppm, Fig. 5B) given overlap 

with Phe8 HE. A change in both the broadness and chemical shift is readily observed for the 

Leu1 HE peaks (~1.6 ppm), and to some extent the HG peaks (~0.9 ppm) (Fig. S3B), which 

suggests coordination to the nearby amide nitrogen of the amino acid. Intriguingly, despite 

having the same ratio of copper to peptide in both GYHSGLPF-NH2 and LHSALPF-NH2 the 

His imidazole peaks in the [CuIILHSALPF-NH2] sample have completely broadened and 

disappeared, but remain to some extent in the [CuIIGYHSGLPF-NH2] sample (Fig. 5). This 
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suggests that the different copper-binding sites in these peptides have different copper on/off 

rates (on the NMR timescale) with [CuIILHSALPF-NH2] at a comparatively faster rate than 

[CuIIGYHSGLPF-NH2]. The C2H and C4H peaks observed in the slowly exchanging 

[CuIIGYHSGLPF-NH2] spectrum (Fig. 5A) presumably arise from the apo form of the 

complex.         

 

<<INSERT FIGURE 5>> 

 

We next analysed the copper-complexes by circular dichroism (CD) spectroscopy. 

CD spectroscopy is a useful tool to analyse Cu2+ complexes because the d-d transitions that 

overlap to give a single broad peak in electronic spectroscopy can often be resolved into 

positive and negative peaks in CD [35]. The CD spectrum of [CuIIGYHSGLPF-NH2] is 

shown in Figure 6A (the spectrum of [CuIIAYHSALPF-NH2] has identical bands and is not 

shown). Positive bands are apparent at 316 nm and 490 nm and a weaker negative band 

appears at 570 nm. The bands at 490 nm and 570 nm can be attributed to d-d transitions, 

whereas a band around 320 nm may be attributed to an amide nitrogen → Cu2+ charge 

transfer (CT). In line with the absorption spectroscopy, the intensity of the bands tends to 

stop increasing at one equivalent Cu2+ (Fig. 6B). The visible CD spectrum of 

[CuIIGYHSGLPF-NH2] is strikingly similar to the copper-bound peptides GGH and DAHK, 

as well as that of copper-bound full length human serum albumin, suggesting similar 

coordination in all [35, 36]. The ATCUN motif is known to have high affinity for copper (Kd 

~ 10-12 – 10-14 M) and should out-compete the weaker copper chelator glycine [37]. Titration 

of [CuIIGYHSGLPF-NH2] with glycine (up to 7× molar excess vs. copper) caused no 

apparent change to the CD spectrum of [CuIIGYHSGLPF-NH2] which tends to support 

binding via a high affinity ATCUN motif (data not shown). Further analysis of the copper 
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affinity of the SALMFamide peptides was not undertaken. The CD spectra obtained during a 

Cu2+ titration of LHSALPF-NH2 are shown in Figure 6C. The spectra have a negative peak at 

300 nm, a positive peak at 346 nm and a broad positive feature around 600 nm, and all are 

relatively low intensity and largely identical to the CD spectrum of [CuIIGHK] [36]. The peak 

at 300 nm may be attributed to an amide nitrogen → Cu2+ CT, whereas the 346 nm peak is 

likely due to an imidazole nitrogen → Cu2+ CT, which is further supported by an absence of 

this peak in copper-bound tripeptides that lack a histidine [28, 35]. 

 

<<INSERT FIGURE 6>> 

 

3.5 EPR spectroscopy predicts presence of a copper-linked ternary complex between 

GYHSGLPF-NH2 and LHSALPF-NH2.  

The X-band (~9 GHz) EPR spectra of [CuIIGYHSGLPF-NH2] and [CuIILHSALPF-

NH2], each with a Cu2+:peptide ratio of 0.96, are shown in Figure 7A and 7B respectively 

(the spectrum of [CuIIAYHSALPF-NH2] is identical to that of [CuIIGYHSGLPF-NH2] and is 

not shown) . The EPR spectra for both reveal an axially symmetric Cu(II) centre (i.e. gx   gy 

z gz). For [CuIIGYHSGLPF-NH2] nitrogen superhyperfine (shf) coupling is apparent in the 

gx, gy (perpendicular, g┴ ) region between 315 – 350 mT and analysis of the characteristic 

parallel gz and Az(63Cu) values suggests that the copper ion is in a 4-nitrogen environment 

(Table 1) at this pH (7.2) [38]. In [CuIILHSALPF-NH2], the peak at g┴ is considerably 

broadened, suggesting the presence of multiple species, however some nitrogen coupling is 

apparent. The presence of multiple species is supported by Cu(II) speciation studies with 

GHK where the presence of mono- and bis-complexes was indicated at pH values similar to 

those used here [3]. The parallel values (Table 1) of [CuIILHSALPF-NH2] are different to 

those of [CuII(GYHSGLPF-NH2)] and suggest inclusion of oxygen donors which has 
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increased gz and decreased Az relative to that observed for [CuIIGYHSGLPF-NH2]. Most 

likely the predominant [CuIILHSALPF-NH2] species contains a CuN2O2 site which previous 

work suggests has average values of gz = 2.238 – 2.265 and Az   0.0182 – 0.0187 cm-1 and is 

consistent with the electronic spectrum (Fig. 1E) [39].  When apo-GYHSGLPF-NH2 is added 

to [CuIILHSALPF-NH2] such that the peptides are equimolar (i.e. [Cu]:[total peptide] is 

~0.5:1) then the spectrum in figure 7C is obtained. In this case the spectrum was best fit with 

CuII in a rhombically distorted environment (i.e. gx z gy z gz). The gz and Az values are 

different to those of the pure copper-peptides and suggest that an additional nitrogen atom/s 

has been added to the coordination sphere [38]. Nitrogen coupling is not observed on the 

parallel components of the spectrum, however, compared to [CuIILHSALPF-NH2] the 

linewidth in the perpendicular region has narrowed and the nitrogen shf coupling is more 

apparent. To improve resolution at gx,y the spectrum was differentiated and the expanded 

region (Fig. 7c) reveals the 14N shf coupling in more detail. Theoretically, each copper 

hyperfine coupling is split into (2nI + 1) (I =1) lines, where n is the number of magnetically 

equivalent nitrogen ligands. Although it is instructive to examine the features at g┴, in reality 

the number of lines is complicated by various factors such as the presence of multiple 

species, non-equivalent nitrogens and overlap with parallel features [40]. The experimental 

[CuIILHSALPF-NH2] + apo-GYHSGLPF-NH2 spectrum (Fig. 7c, exp) was fit assuming four 

and three nitrogens and the results (Fig. 7c 4N, 3N) suggest that the most likely coordination 

involves four nitrogen ligands. In neither case are the lines on the low field (320 – 325 mT) 

side of g┴ well simulated, however on the high field side (335 – 338 mT) the four nitrogen 

simulation clearly fits the experimental spectrum more closely in both the line position and 

intensity than the three nitrogen simulation. The high field transitions are known to be 

particularly sensitive to the number of nitrogen ligands [40]. Thus, we predict that the 

predominant species formed when apo-GYHSGLPF-NH2 is added to [CuIILHSALPF-NH2] 



21 
 

has CuII in a four-nitrogen environment. The EPR spectrum does not resemble 

[CuIIGYHSGLPF-NH2] indicating that apo-GYHSGLPF-NH2 has not just abstracted all the 

copper from [CuIILHSALPF-NH2]. It is likely that the oxygen donors observed in 

[CuIILHSALPF-NH2] have been replaced by nitrogens from apo-GYHSGLPF-NH2 to form a 

copper-linked ternary complex. We predict that the histidine imidazole from GYHSGLPF-

NH2 is a nitrogen contributor the ternary complex. This result is not unprecedented, as a 

previous study showed addition of the amino acid histidine to a solution of [CuIIGHK] 

generated a 4N complex where the oxygen donor in [CuIIGHK] was displaced by a nitrogen 

from the histidine imidazole group [36]. Collection of spectra at alternative frequencies, such 

as S-band (~ 4 GHz) which avoids broadening due to g- and A-strain correlations, may allow 

nitrogen coupling to be more completely analysed.                  

We next wondered that if [CuIILHSALPF-NH2] can form 4N complexes with apo-

GYHSGLPF-NH2, then why does copper titration of LHSALPF-NH2 by UV/Vis 

spectroscopy (Fig. 4E, F) show a simple 1:1 stoichiometry with a peak at 600 nm indicative 

of N/O coordination, when the 4N mononuclear binary complex [CuII(LHSALPF-NH2)2] can 

presumably be formed? Given that NMR shows different copper on/off rates for the 

complexes then maybe the timescale of the UV/Vis experiment accounts for the observed 

result. To explore this [CuIILHSALPF-NH2] (Fig. 7D) was scanned, left at room temperature 

for 2 hours then re-scanned. The resultant spectrum (Fig. 7D) shows that the d-d transitions 

are now much broader than in the initial sample and there is increased absorption at 

wavelengths shorter than 600 nm (no evidence of aggregation was observed). Taken together 

with the EPR data, this suggests that initially a simple [CuIILHSALPF-NH2] complex with a 

2N2O donor set is formed, but over time other species such as a 4N [CuII(LHSALPF-NH2)2] 

having absorption around 500 nm also occur. Along with ternary complexes, these species 
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may also contribute to the EPR spectrum (Fig. 7c) which increases the difficulty of accurately 

simulating the nitrogen coupling.   

 

<<INSERT FIGURE 7>> 

 

4.0 Discussion 

In this study we analysed SALMFamide neuropeptide precursor sequences from 

species belong to the five extant classes of the phylum Echinodermata and established that 

peptides derived from the L-type SALMFamide precursor in starfish (class Asteroidea) were 

over represented with the N-terminal sequence H2N-xxH. This sequence is a well-known 

copper-binding site termed an ATCUN-motif and suggested that these peptides should bind 

the metal. Using a range of spectroscopic techniques we show that the L-type SALMFamides 

in the starfish species A. rubens that contain the motif (e.g. GYHSGLPF-NH2) do indeed bind 

Cu(II) as well as Ni(II) ions. Taken together, the spectroscopic evidence indicates Cu(II) 

binding to these peptides involves the His3 imidazole nitrogen, the N-terminal nitrogen and 

intervening amide nitrogen atoms. Ni(II) binds in a similar manner resulting in a square-

planar diamagnetic complex. In addition, we show that LHSALPF-NH2, a heptapeptide 

derived from the A. rubens L-type SALMFamide precursor, can also bind copper but instead 

of four nitrogen atoms as ligands the complex initially includes oxygen atoms. Displacement 

of the oxygen ligand/s in the presence of GYHSGLPF-NH2 resulted in the formation of a 

copper-linked ternary complex (a heterodimer). To the best of our knowledge, this is the first 

study to report the identification of a neuropeptide precursor that contains multiple Cu(II)-

binding neuropeptides.  

 Comparative analysis of the sequences of SALMFamide precursors in echinoderms 

has provided a basis for investigation of the evolutionary history of the histidine residue that 
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confers on starfish L-type precursor-derived SALMFamides the ability to bind Cu(II) ions. 

Crinoids, which occupy a basal position in echinoderm phylogeny, appear to have only a 

single SALMFamide precursor, unlike asterozoans (starfish, brittlestars) and echinozoans 

(sea urchins, sea cucumbers), which have an L-type and F-type SALMFamide precursor (Fig. 

8). The crinoid SALMFamide precursor contains a core of twelve peptides that include F-

type-like SALMFamides. However, at both the N- and C-terminal extremities of the 

precursor there are single L-type SALMFamides that have a histidine residue in the sixth 

position from the C-terminus, in common with the majority of SALMFamides derived from 

L-type precursors in asterozoans and echinozoans. We postulate, therefore, that following 

duplication of a SALMFamide precursor gene in a common ancestor of the Asterozoa and 

Echinozoa, one copy retained the L-type peptides with a histidine residue at position six with 

respect to the C-terminal amide, lost other peptides and then gave rise to the L-type 

SALMFamide precursors that occur in extant asterozoans and echinozoans. Conversely, the 

other copy retained the core peptides that do not have conserved histidine residues, lost the L-

type peptides with a histidine residue at position six with respect to the C-terminal amide and 

then gave rise to the F-type SALMFamide precursors that occur in extant asterozoans and 

echinozoans. In surveying the occurrence in echinoderms of L-type SALMFamides with a 

histidine residue at position six with respect to the C-terminal amide, it is striking that in 

starfish (Asteroidea) these peptides are most abundant and have acquired the ATCUN motif 

by virtue of the histidine occupying the third position from the N-terminus (Fig. 8).  

 

<<INSERT FIGURE 8>> 

 

The concentration of free copper ions in seawater is estimated in the range of 10-11 – 

10-13 M, whilst the total dissolved copper concentration, which includes organically 
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complexed copper, is ~ 10-8 M [41-43]. It is likely that the copper content of the extracellular 

milieu in starfish is similar to that of seawater because these animals, like other marine 

invertebrates, are osmoconformers. Therefore, upon release from neurons L-type 

SALMFamides are likely to encounter copper ions at concentrations near the Kd established 

for ACTUN motif-containing peptides (10-12 – 10-14 M [37]) and therefore will compete for 

copper ions, even when taking into consideration the ligands present in seawater which can 

have high binding constants [42]. Interestingly, the SALMFamides, like other amidated 

neuropeptides, traffic through the Golgi network where they are C-terminally amidated by the 

copper-metalloenzyme peptidyl-glycine alpha-amidating monooxygenase [44]. The trans-

Golgi contains copper because several proteins are loaded with copper in this cellular 

compartment during their biosynthesis. Although copper is pumped into the trans-Golgi as 

Cu+ by the Menkes ATPase [45], it is not clear whether it stays as Cu+ or if there is some 

oxidation to Cu2+. It is therefore interesting to speculate that, rather than being metallated 

after release, L-type SALMFamides containing an ATCUN motif may in fact have copper 

already bound to them prior to release from starfish neurons. 

At the molecular level, how may the presence of bound Cu(II) ions affect the 

bioactivity of L-type SALMFamides? Our previous studies on the prototypical 

SALMFamides S1 and S2, L-type SALMFamides that do not bind metal, indicate that their 

bioactivity is primarily determined by the C-terminal region of the peptides. The N-terminal 

tetrapeptide of S2 (SGPY) does, however, influence peptide structure by causing S2 to self-

associate at high concentrations and form highly-structured multimers [15]. We predicted that 

S2’s structure and activity may change as it diffuses away from sites of release and becomes 

less concentrated. Further, addition of the SGPY tetrapeptide to the N-terminus of S1 confers 

structure on this chimeric peptide that is not observed with the S1 peptide. Now we show that 

the L-type SALMFamide precursor-derived peptide LHSALPF-NH2 can form a copper-
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linked ternary complex (a heterodimer) with GYHSGLPF-NH2, and the chemistry suggests 

that LHSALPF-NH2 will form similar ternary complexes with any of the ATCUN-containing 

L-type SALMFamides. The formation of these copper complexes (monomers and dimers) 

may modify receptor binding or make the peptides more resistant to proteolysis. Interestingly, 

evidence that copper binding affects enzymatic degradation of neuropeptides has been 

reported recently. Herman et al. [46] reported that human gonadotropin-releasing hormone 

(GnRH), which has a histidine residue at position two, binds Cu2+ ions and this confers on 

GnRH increased resistance to enzymatic degradation in extracts of hypothalamic and 

pituitary tissue. Accordingly, the copper-linked ternary complexes of LHSALPF-NH2 and 

ACTUN motif-containing L-type SALMFamides may likewise be more resistant to 

enzymatic degradation than the monomeric peptides in the absence of copper.  

At the physiological level, previous studies have revealed that SALMFamide 

neuropeptides S1 and S2 cause dose-dependent relaxation of the starfish cardiac stomach in 

vitro and trigger cardiac stomach eversion in vivo (Melarange et al., 1999). This 

pharmacological effect of SALMFamides is of interest because starfish feed by everting their 

cardiac stomach over prey and partially digesting prey tissue externally. Therefore, it is 

proposed that SALMFamides may mediate neural control of cardiac stomach eversion during 

starfish feeding behaviour [12]. Furthermore, extraoral feeding is unique to starfish (Class 

Asteroidea) amongst extant echinoderms [47]. We speculate, therefore, that the acquisition 

and proliferation of L-type SALMFamides that have an ATCUN motif and bind copper ions 

in starfish may be associated with a role in regulating stomach eversion. For example, the 

secretion of proteases by cells in the mucosal epithelium of the cardiac stomach during 

feeding creates a proteolytic environment [47], which may have favoured acquisition of 

structural characteristics that protect SALMFamides from aminopeptidases. Therefore, in this 
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context, our findings may provide a basis for experimental studies in which the physiological 

significance of copper-binding neuropeptides could be further investigated. 
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Figure Legends 
 
Figure 1. C-terminally aligned sequences of SALMFamide neuropeptides derived from L-

type SALMFamide precursors in the Asteroidea (Patiria miniata, Asterias rubens and 

Remaster gourdoni) [1], Ophiuroidea (Ophionotus victoriae, Ophioderma brevispinum and 

Ophiothrix angulata [2], Echinoidea (Strongylocentrotus purpuratus, Arbacia punctulata and 

Eucidaris tribuloides) [3] and Holothuroidea (Apostichopus japonicus, Psolus spp and 

Pannychia moseleyi) [4]. The third amino acid residue from the C-terminal amide has been 

highlighted in red if it is leucine or isoleucine, yellow if phenylalanine or tyrosine and grey if 

any other residue. Histidine residues located in the sixth position from C-terminal amide have 

been highlighted in turquoise.  

Figure 2. C-terminally aligned sequences of SALMFamide neuropeptides derived from from 

F-type SALMFamide precursors in the Asteroidea (Patiria miniata, Asterias rubens and 

Remaster gourdoni) [1], Ophiuroidea (Ophionotus victoriae, Astrophyton muricatum and 

Ophiothrix angulata [2], Echinoidea (Strongylocentrotus purpuratus, Arbacia punctulata and 

Lytechinus variegatus) [3] and Holothuroidea (Apostichopus japonicus, Psolus spp and 

Stichopus chloronatus) [4]. The third amino acid residue from the C-terminal amide has been 

highlighted in red if it is leucine or isoleucine, yellow if phenylalanine or tyrosine and grey if 

any other. Histidine residues located in the sixth position from C-terminal amide have been 

highlighted in turquoise. 

Figure 3. SALMFamide neuropeptides derived from SALMFamide precursors in the 

Crinoidea (Antedon mediterranea, Isometra vivipara and Oligometra serripinna). The third 

amino acid residue from the C-terminal amide has been highlighted in red if it is leucine or 

isoleucine, yellow if phenylalanine or tyrosine and grey if any other residue. Histidine located 

in the sixth position from C-terminal amide residues have been highlighted in turquoise. 

Figure 4. Copper(II) and nickel(II) titrations monitored by electronic spectroscopy.  
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(A) Titration of Cu2+ (solid black line) into AYHSALPF-NH2 (100 PM, 10 mM nEM, pH 

7.44) results in the formation of a peak at 520 nm. Titration of Ni2+ (dashed red line) results 

in an increase in absorption at 420 nm. (B) Plots of the absorbance at 520 nm (Cu2+) and 420 

nm (Ni2+) as a function of added metal. Both curves plateau around 100 PM metal, 

suggesting 1:1 stoichiometry. (C) Titration of Cu2+ (solid black line) and Ni2+ (dashed red 

line) into GYHSGLPF-NH2 (80 PM, 10 mM nEM, pH 7.44) results in the formation of peaks 

at 520 nm and 420 nm, respectively. (D) Plots of the absorbance at 520 nm (Cu2+) and 420 

nm (Ni2+) as a function of added metal. Both curves plateau around 80 PM metal, suggesting 

1:1 stoichiometry. (E) Titration of Cu2+ into LHSALPF-NH2 (110 PM, 10 mM nEM, pH 

7.44) generates an absorption band at 600 nm and the binding curve (F) suggests a 

stoichiometry of 1:1.   

Figure 5.  Paramagnetic copper causes broadening of GYHSGLPF-NH2 and LHSALPF-NH2 

1H NMR spectra. (A) 1H NMR spectra of ~500 PM apo-GYHSGLPF- NH2 in 10% D2O/90% 

H2O, pH 7.2 (bottom trace) and after the addition of 0.1 equivalent Cu2+ (top trace). 

Assignment of selected perturbed peaks is shown in top trace. (B). 1H NMR spectra of ~500 

PM apo-LHSALPF- NH2 in 10% D2O/90% H2O, pH 7.2 (bottom trace) and after the addition 

of 0.1 equivalent Cu2+ (top trace). Assignment of selected perturbed peaks is shown in top 

trace. Expansion of assigned peaks in both A and B are shown in supplementary material 

figure S3. 

Figure 6. Copper(II) titrations monitored by circular dichroism spectroscopy. (A) CD spectra 

(300 – 700 nm) were collected as Cu2+ was titrated into apo-GYHSGLPF-NH2 (93 PM, 10 

mM nEM, pH 7.7). Peaks at 490 nm and 570 nm are due to d-d transitions and the peak in the 

near-UV (316 nm) can be attributed to an amide N-→ Cu(II) CT. (B) The intensity of the 

peaks at 316 nm (■) and 490 nm (x) plotted as a function of [Cu(II)]/[GYHSGLPF-NH2] 

plateaus at a ratio near one. (C) CD spectra obtained during a titration of apo-LHSALPF-NH2 
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(96 PM, 10 mM nEM, pH 7.7) with Cu2+ show low intensity peaks at 300 nm (amide N→ 

Cu(II) CT), 346 nm (imidazole N→ Cu2+ CT)  and 600 nm (d-d transition). (D) The intensity 

of the peaks at 300 nm (■) and 346 nm (x) plotted as a function of [Cu(II)]/[LHSALPF-NH2] 

plateaus at a ratio near one.   

Figure 7. X-band EPR spectra of CuII-bound peptides. (A) First derivative spectrum of 

[CuII(GYHSGLPF-NH2)] (Q = 9.433547, 262 PM, 10 mM nEM, pH 7.2, 0.98 equivalents 

Cu2+), dashed line is simulated spectrum, (B) first derivative spectrum of [CuII(LHSALPF-

NH2)] (Q = 9.433526, 1 mM, 10 mM nEM, pH 7.2, 0.96 equivalents Cu2+), (C) first 

derivative spectrum of a mixture of [CuII(LHSALPF-NH2)] (Q = 9.432792, 260 PM, 10 mM 

nEM, pH 7.2) and apo-GYHSGLPF-NH2 (243 PM,10 mM nEM, pH 7.2). Inset (c) shows the 

second derivative spectrum of (C) highlighting the perpendicular region (exp), along with the 

same region after simulation assuming four (4N) or three (3N) nitrogen donors. (D) Titration 

of Cu2+ into LHSALPF-NH2 (110 PM, 10 mM nEM, pH 7.44) generates an absorption band 

at 600 nm. Leaving the sample at room temperature for 2 hrs generated a spectrum with 

broadened d-d transitions.  

Figure 8. The occurrence and properties of SALMFamide precursors in species representing 

each of the five extant echinoderm classes. A. rub is the starfish Asterias rubens (Asteroidea), 

O. vic is the brittlestar Ophionotus victoriae (Ophiuroidea), S. pur is the sea urchin 

Strongylocentrotus purpuratus (Echinoidea), A. jap is the sea cucumber Apostichopus 

japonicus (Holothuroidea) and A. med is the feather star Antedon mediterranea (Crinoidea). 

Signal peptides are shown in blue, spacer peptides are in white, monobasic or dibasic 

cleavage sites are in green, SALMFamides with a C-terminal FXXamide motif are in yellow, 

a LXXamide motif are in red and a XXXamide motif are in grey. In addition, SALMFamides 

containing a histidine residue at the sixth position from the C-terminal amide are marked with 

H and peptides in which this histidine residue forms an ATCUN motif have been marked 



35 
 

with an asterisk. The data indicate that the common ancestor of all extant echinoderms had a 

single SALMFamide precursor, including histidine-containing L-type SALMFamides, as in 

extant crinoids. Then duplication (x2) of the SALMFamide precursor in the common ancestor 

of extant Eleutherozoa followed by divergence gave rise to two types of precursor: the L-type 

precursor, which typically includes SALMFamides with a conserved histidine residue, and 

the F-type precursor. Figure modified from Elphick et al. [17]. 

 

 

 

Table 1. Spin Hamiltonian parameters for CuIISALMFamide peptides. 
 

Complex gx gy gz Ax (63Cu)a  Ay (63Cu)a  Az (63Cu)a  
[CuII(GYHSGLPF-NH2)] 2.044 2.044 2.176 22.1 22.1 200.9 
[CuII(LHSALPF-NH2)] 2.042 2.042 2.220 - - 187.5 
[CuII(LHSALPF-NH2) + 
apoGYHSGLPF-NH2 

2.045 2.067 2.207 11.5 12.1 197.3 

a. units 10-4 cm-1 
 

 



1 
 

Identification of a neuropeptide precursor protein that gives rise to a “cocktail” of 

peptides that bind Cu(II) and generate metal-linked dimers 

 

Christopher E. Jonesa┴*, Meet Zandawalab┴, Dean C. Semmensb, Sarah Andersonb, 

Graeme R. Hansonc║,  Daniel A. Janiesd  and Maurice R. Elphickb* 

 

a.School of Science and Health, Western Sydney University, Locked bag 1797, 

Penrith, 2751, New South Wales, Australia.   

b.School of Biological & Chemical Sciences, Queen Mary University of London, 

Mile End Road, London, E1 4NS, UK. 

 c. Centre for Advanced Imaging, The University of Queensland, Brisbane, 

 Queensland, 4072, Australia 

 d.Department of Bioinformatics and Genomics, University of North Carolina at Charlotte,  

Charlotte, NC 28223 USA 

*To whom correspondence should be addressed: 

Christopher E. Jones, School of Science and Health, Western Sydney University, Locked bag 

1797, Penrith, NSW, 2759, Australia. Tel: +61 29685 9908; Fax: +61 2 9685 9915; E-mail: 

c.jones@uws.edu.au 

or 

Maurice R. Elphick, School of Biological & Chemical Sciences, Queen Mary University of 

London, Mile End Road, London, E1 4NS, UK. Tel: 0207 882 6664; Fax: 0207 882 7732; E-

mail: m.r.elphick@qmul.ac.uk 

┴ These authors contributed equally. 
 
║ Deceased, 16/07/1955 – 25/02/2015 
 
 

*REVISED Manuscript (text with changes Marked)
Click here to view linked References

mailto:c.jones@
mailto:m.r.elphick@qmul.ac.uk


2 
 

Abstract 

Background 

Neuropeptides with an Amino Terminal Cu(II), Ni(II) Binding (ATCUN) motif (H2N-xxH) 

bind Cu(II)/Ni(II) ions. Here we report the novel discovery of a neuropeptide precursor that 

gives rise to a “cocktail” of peptides that bind Cu(II)/Ni(II) and form ternary complexes – the 

L-type SALMFamide precursor in the starfish Asterias rubens. 

Methods 

Echinoderm transcriptome sequence data were analysed to identify transcripts encoding 

precursors of SALMFamide-type neuropeptides. The sequence of the L-type SALMFamide 

precursor in the starfish Asterias rubens was confirmed by cDNA sequencing and peptides 

derived from this precursor (e.g. AYHSALPF-NH2, GYHSGLPF-NH2 and LHSALPF-NH2) 

were synthesised. The ability of these peptides to bind metals was investigated using UV/Vis, 

NMR, circular dichroism and EPR spectroscopy. 

Results 

AYHSALPF-NH2 and GYHSGLPF-NH2 bind Cu(II) and Ni(II) and generate metal-linked 

dimers to form ternary complexes with LHSALPF-NH2. Investigation of the evolutionary 

history of the histidine residue that confers these properties revealed that it can be traced to 

the common ancestor of echinoderms, which is estimated to have lived ~500 million years 

ago. However, L-type precursors comprising multiple SALMFamides with the histidine 

residue forming an ATCUN motif appears to be a feature that has evolved uniquely in 

starfish (Asteroidea). 

General Significance 

The discovery of a SALMFamide-type neuropeptide precursor protein that gives rise to a 

“cocktail” of peptides that bind metal ions and generate metal-linked dimers provides a new 

insight on ATCUN motif-containing neuropeptides. This property of L-type SALMFamides 



3 
 

in the Asteroidea may be associated with a role in regulation of the unusual extra-oral feeding 

behavior of starfish.  

 

 

Keywords: ATCUN, SALMFamide, copper, neuropeptide, starfish, echinoderm  
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1.0 Introduction 

Neuropeptides are neuronal intercellular signalling molecules that act as 

neurotransmitters, neuromodulators or neurohormones and regulate many physiological 

processes and behaviours in humans and other animals [1]. They are derived from larger 

precursor proteins and are subject to post-translational modifications that are important for 

function; for example, in many neuropeptides a C-terminal glycine residue is converted to an 

amide group. Furthermore, in some neuropeptides the presence of a histidine residue can 

confer the ability to bind metal ions. In particular, the presence of an Amino Terminal Cu(II), 

Ni(II) Binding (ATCUN) motif, where a histidine residue is specifically located in the third 

position from the N-terminus (i.e. H2N-xxH, where x is variable), has been found to confer 

high affinity binding of Cu(II) and Ni(II). The ATCUN motif was originally characterized in 

albumins but subsequently it has been demonstrated that other peptides/proteins with an 

ATCUN motif also bind Cu(II) and/or Ni(II) ions [2, 3]. In 1995 Harford and Sarkar 

demonstrated that the mammalian neuropeptide neuromedin C, which has the N-terminal 

sequence Gly-Asn-His, binds both Cu(II) and Ni(II) specifically. Furthermore, the authors 

speculated that this property of neuromedin C may have relevance to neurological deficits 

associated with copper metabolism disorders, such as Menkes disease and Wilson disease [4]. 

More recently, Russino et al. reported that the mammalian tachykinin-type peptide 

neurokinin B, which contains an ATCUN motif, binds Cu(II) ions in an unusual 

[CuII(NKB)2] complex [5].  Furthermore, although Cu(II) binding substantially alters the 

structure of neurokinin B, the ability of [CuII(NKB)2] to activate the NKB receptor was not 

impeded. It was speculated that NKB may have a role in protecting cells from the effects of 

neuronally released copper. Several other members of the tachykinin peptide family have also 

been shown to coordinate copper ions, yet the physiological consequences remain to be 

determined [6, 7].   
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Here we report the novel discovery of a neuropeptide precursor protein that gives rise 

to a “cocktail” of neuropeptides that bind Cu(II) – the starfish L-type SALMFamide 

precursor. SALMFamide neuropeptides occur in species belonging to the phylum 

Echinodermata, which includes starfish, brittle stars, sea urchins, sea cucumbers and feather 

stars [8]. The first members of this neuropeptide family to be identified, S1 and S2, were both 

isolated from the starfish species Asterias rubens and Asterias forbesi. S1 is an octapeptide 

with the amino acid sequence GFNSALMF-NH2 and S2 is a dodecapeptide with the amino 

acid sequence SGPYSFNSGLTF-NH2 [9, 10]. Subsequently, SALMFamides were identified 

in other echinoderms, including GFSKLYF-NH2 and SGYSVLYF-NH2 from the sea 

cucumber Holothuria glaberrima and GYSPFMF-NH2 and FKSPFMF-NH2 from the sea 

cucumber Apostichopus japonicus [11]. Identification of these holothurian neuropeptides 

revealed the existence of two types of SALMFamides. Firstly, L-type SALMFamides that 

have the C-terminal motif SxLxF-NH2 (e.g. S1, S2, GFSKLYF-NH2 and SGYSVLYF-NH2) 

and secondly, F-type SALMFamides that have the C-terminal motif SxFxF-NH2 

(GYSPFMF-NH2 and FKSPFMF-NH2). 

 Investigation of the bioactivity of SALMFamides in echinoderms has revealed that 

both L-type and F-type SALMFamides act as muscle relaxants [12]. For example, S1 and S2 

both cause dose-dependent relaxation of apical muscle, tube foot and cardiac stomach 

preparations from the starfish A. rubens [13, 14]. Furthermore, S2 exhibits higher 

potency/efficacy than S1, which provided a rationale for investigation of a structural basis for 

this difference in bioactivity. By testing chimeric analogs of S1 and S2, it was found that it is 

the C-terminal region of the peptides that is the primary determinant of their differing 

potency/efficacy [15, 16]. However, the N-terminal tetrapeptide (SGPY) of S2 contributes to 

its bioactivity and confers on S2 the property to self-associate and form highly structured 

multimers at high concentrations [15]. Interestingly, addition of the SGPY tetrapeptide to the 
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N-terminus of S1 confers structure that is not observed with the S1 peptide, but without 

enhancing bioactivity. Thus, the differing bioactivity of S1 and S2 is determined by a 

complex interplay of sequence and conformation.  

 Advances in genome/transcriptome sequencing have enabled determination of the 

sequences of SALMFamide neuropeptide precursor proteins. For example, sequencing of the 

genome and transcriptome of the starfish Patiria miniata revealed: 1) an “L-type” precursor 

comprising S1 and six other L-type SALMFamides and 2) an “F-type” precursor comprising 

eight F-type or F-type-like SALMFamides and an S2-like peptide (L-type). Furthermore, 

comparative analysis of sequence data from a variety of echinoderm species has enabled 

investigation of the evolution of SALMFamide precursors [17, 18]. The phylum 

Echinodermata comprises five extant classes, Asteroidea (starfish), Ophiuroidea (brittle 

stars), Echinoidea (sea urchins, sand dollars), Holothuroidea (sea cucumbers) and Crinoidea 

(feather stars and sea lilies), and the phylogenetic relationships of these classes have been 

determined. Thus, the Asteroidea and Ophiuroidea are sister classes (the Asterozoa) and the 

Echinoidea and Holothuroidea are sister classes (the Echinozoa), with the Crinoidea basal to 

the Asterozoa and Echinozoa [19-26]. This phylogeny has provided a framework to 

reconstruct the evolution of SALMFamide precursors in the phylum Echinodermata. In 

crinoid species only a single SALMFamide precursor has been identified, whereas asterozoan 

and echinozoan species have both an L-type and an F-type precursor. It has therefore been 

postulated that the L-type and F-type precursors found in asterozoans and echinozoans may 

have arisen by duplication of a common ancestral-type precursor similar to that found in 

extant crinoids [17].       

 Here we have obtained additional sequences of SALMFamide precursors in 

echinoderm species representing the five extant classes. Comparative analysis of the 

sequences of echinoderm SALMFamide precursors revealed that several neuropeptides 
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derived from L-type SALMFamide precursors in starfish have an ATCUN motif. For 

example AYHSALPF-NH2, a neuropeptide that has been identified previously in the starfish 

species Marthasterias glacialis [27]. In addition, one of the peptides derived from L-type 

SALMFamide precursors in starfish (e.g. LHSALPF-NH2) has a histidine in the same 

position as the tripeptide Gly-His-Lys (GHK), a well-studied naturally occurring human 

copper-binding growth factor [28]. We show here that L-type SALMFamides in the starfish 

A. rubens that have an ATCUN motif are able to bind Cu(II) and Ni(II). Furthermore, Cu(II) 

binding to these peptides facilitates formation of ternary complexes with LHSALPF-NH2. 

The evolutionary and functional significance of these properties of neuropeptides derived 

from the L-type SALMFamide precursor in starfish is discussed. 
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2.0 Materials and Methods 

2.1 Transcriptome sequencing 

 The sequences of SALMFamide precursors have been determined in species 

representing all five echinoderm classes, as reported previously [17, 18]. Here we have 

obtained additional transcriptome sequence data from other species belonging to each of the 

five echinoderm classes: the starfishes Asterias rubens and Remaster gourdoni (class 

Asteroidea), the brittle stars Ophioderma brevispinum and Astrophyton muricatum (class 

Ophiuroidea), the sea urchins Arbacia punctulata and Eucidaris tribuloides (class 

Echinoidea), the sea cucumbers Psolus spp, Stichopus chloronatus and Pannychia moseleyi 

(class Holothuroidea) and the feather stars Isometra vivipara and Oligometra serripinna 

(class Crinoidea).  

Asterias rubens radial nerve cord transcriptome sequence data were obtained as 

reported previously [29]. For the other echinoderm species, RNA was extracted from tube 

feet (Remaster gourdoni), arms (Ophioderma brevispinum, Astrophyton muricatum), body 

wall (Arbacia punctulata, Eucidaris tribuloides, Psolus spp, Stichopus chloronatus, 

Pannychia moseleyi) or pinnules (Isometra vivipara, Oligometra serripinna) and then 

subjected to RNA-Seq sequencing on an Illumina Hiseq 2000 platform (100 base pairs, 

paired end). Reads for each of the samples were filtered by quality score (cutoff threshold > 

Q20) using fastxtrimmer and Illumina adapters were removed using fastxclipper, which are 

both components of the fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). De novo 

assembly of contigs was then performed using Trinity on a high memory computer cluster 

using 500 GB of RAM and 24 CPUs [30].   
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2.2 Cloning and sequencing of the L-type SALMFa precursor cDNA from A. rubens 

SALMFamides derived from the A. rubens L-type SALMFamide precursor were 

selected for the metal-binding studies described below. To facilitate this it was first necessary 

to confirm, by cDNA cloning and sequencing, the sequence of the precursor predicted from 

Illumina transcriptome sequencing. Total RNA from radial nerve cords of A. rubens was 

isolated using the Total RNA Isolation System (Promega) and used for cDNA synthesis using 

the Quantitect Reverse Transcription Kit (QIAgen). The full-length cDNA of the A. rubens 

L-type SALMFa precursor, including 5′ and 3′ untranslated regions (UTR), was amplified by 

PCR using Phusion high-fidelity PCR master mix (NEB) and the oligos 5′-

TAGCTACTTGACACA-3′ and 5′-ATATGACTAGTTGAGAGAGG-3′, which were 

designed using Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/). The PCR product was 

gel-extracted and purified using a QIAquick gel extraction kit (QIAgen) before being blunt-

end cloned into a pBluescript SKII (+) vector (Agilent Technologies) cut with a EcoRV-HF 

restriction endonuclease (NEB). The clone was then sequenced (Eurofins Genomics) from the 

T7 and pCR3.1-BGH-rev sequencing primer sites. 

 

2.3 Neuropeptide synthesis and metal titrations 

The A. rubens L-type SALMFamides AYHSALPF-NH2, GYHSGLPF-NH2 and 

LHSALPF-NH2 were synthesised by Synpeptide (Shanghai, China) and were >95% pure as 

determined by mass spectrometry and NMR. The lyophilized peptides were weighed and 

dissolved in the required buffer (10 mM nEM unless otherwise stated) on the day of use. The 

peptide concentration was estimated using the extinction coefficient of the single tyrosine 

amino acid (H280nm = 1280 M-1cm-1) or from the measured mass taking into consideration the 

presence of ~30% water. Stock (0.5 M) solutions of copper and nickel were prepared as 

CuCl2·2H2O and NiCl2·2H2O in water and diluted to working solutions on the day of use. 
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Metal addition during titrations was achieved using a 10 PL Hamilton gastight syringe. The 

spectrum of metal-free peptide was subtracted from the spectrum after each metal addition 

and dilution effects were taken into account during processing of the spectra.  

 

2.4 Electronic Spectroscopy 

UV/Visible electronic spectra (300 nm – 700 nm) were acquired on a Perkin-Elmer U-3100 

using a 10 mm pathlength cuvette.  

 

2.5 Circular dichroism (CD) Spectroscopy 

CD spectra were collected on a Jasco J810 spectrometer. Spectra were routinely collected 

over the range 300 nm to 700 nm using a 10 mm cuvette with sampling every 1 nm. A 

minimum of 10 spectra were obtained and averaged, prior to smoothing using an 11-point 

moving average method in the Jasco software. 

 

2.6 Electron Paramagnetic Resonance (EPR) Spectroscopy 

Continuous wave EPR spectra at ~9.4 GHz (X-band) were obtained on a Bruker Elexsys 

E500 spectrometer operated with Bruker Xepr software and equipped with a super high-Q 

cavity. Calibration of the field was achieved using an ER036TM teslameter and the 

microwave frequency was calibrated with an EIP548B frequency counter. Stable 

temperatures of 150 ± 5K were achieved using a nitrogen gas flow through system linked to a 

Eurotherm B-VT-2000 variable temperature controller. Instrument settings were: modulation 

frequency 100 kHz; modulation amplitude 0.63G; microwave power 10 – 20 mW; number of 

scans 40 – 60; time constant 5.12 ms; sweep time 84 s. Spectra were baseline corrected using 

a polynomial function and high frequency noise was removed using Fourier filtering 

available in the Xepr software. Spectra were simulated using the least-squares fitting 
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algorithm in Easyspin running in Matlab R2014a [31]. The copper hyperfine and Zeeman 

interactions were initially simulated using matrix diagonalization, and perturbation theory 

was used after inclusion of nitrogen nuclei to simulate the nitrogen superhyperfine 

interactions. Where the presence of multiple absorbing species was apparent (i.e. 

[CuIILHSALPF-NH2]) the magnetic parameters were estimated directly from the spectrum. 

Linewidths were fit using a correlated distribution of g- and A-values [32].   

   

2.7 Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR spectra were acquired on a Bruker Avance 500 MHz spectrometer equipped with a 5 

mm TXI BBI probe and controlled using TopSpin 2.1 (Bruker Biospin, Germany). Samples 

were prepared in 90% H2O/10% D2O and the pH was adjusted using aliquots of concentrated 

HCl or NaOH. Proton spectra were acquired over a 10 ppm spectral width comprising 64K 

complex points, and the residual water signal was supressed using a W5 watergate sequence.  

Spectra were processed using a S/2 shifted sine squared window function in SpinWorks 4 

[33]. 
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3.0 Results 

3.1 Identification of novel SALMFamide precursor sequences    

Sequences encoding SALMFamide precursors have been identified previously in 

species representing each of the five classes in Echinodermata [17, 18]. These include 

sequences from Patiria miniata (Class Asteroidea; Order Valvatida), Luidia senegalensis 

(Class Asteroidea; Order Paxillosida), Ophionotus victoriae (Class Ophiuroidea; Order 

Ophiurida), Ophiothrix angulata (Class Ophiuroidea; Order Ophiurida), Strongylocentrotus 

purpuratus (Class Echinoidea; Order Echinoida), Lytechinus variegatus (Class Echinoidea; 

Order Temnopleuroida), Apostichopus japonicus (Class Holothuroidea; Order 

Aspidochirotida), Leptosynapta tenuis (Class Holothuroidea; Order Apodida) and Antedon 

mediterranea (Class Crinoidea; Order Comatulida) and Aporometra wilsoni (Class Crinoidea; 

Order Comatulida). 

Here, by analysis of new transcriptome sequence data, we have identified 

SALMFamide precursors in other echinoderm species, which include Asterias rubens (Class 

Asteroidea, Order Forcipulatida), Remaster gourdoni (Class Asteroidea, Order Velatida), 

Ophioderma brevispinum (Class Ophiuroidea, Order Ophiurida), Astrophyton muricatum 

(Class Ophiuroidea, Order Euryalida), Arbacia punctulata (Class Echinoidea, Order 

Arbacioida), Eucidaris tribuloides (Class Echinoidea, Order Cidaroida), Psolus spp (Class 

Holothuroidea; Order Dendrochirotida), Stichopus chloronatus (Class Holothuroidea; Order 

Aspidochirotida), Pannychia moseleyi (Class Holothuroidea, Order Elasipodida), Isometra 

vivipara (Class Crinoidea, Order Comatulida) and Oligometra serripinna (Class Crinoidea, 

Order Comatulida). 

 

3.2 Comparative analysis of echinoderm SALMFamide neuropeptide sequences: 

identification of conserved histidine residues  
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 Determination of the sequences of SALMFamide precursors in species from each of 

the five echinoderm classes enabled comparison of the sequences of the constituent 

neuropeptides and identification of conserved characteristics. Thus, Figure 1 shows C-

terminally aligned neuropeptides derived from L-type SALMFamide precursors in asterozoan 

and echinozoan species, with data from three species in each class shown. The presence of a 

leucine or an isoleucine residue (highlighted in red) in the third position from the C-terminal 

amide is characteristic feature of the majority of the neuropeptides, as expected for L-type 

SALMFamide precursor derived peptides. Furthermore, another conserved feature is the 

presence of a histidine residue (highlighted in turquoise) in the sixth position from the C-

terminal amide, with at least one of the peptides in all but one of the twelve species having 

this feature. However, it is most strikingly apparent in starfish species, where six out of seven 

or five out of six of the SALMFamides have this characteristic. With respect to the N-

terminus, the position of the conserved histidine residue is variable, ranging from position 

two to position eight. However, in starfish four of the five or six peptides with a histidine 

residue have the histidine in the third position from N-terminus. This is noteworthy because, 

as highlighted in the introduction, the presence of a histidine residue in this position is known 

to confer on peptides and proteins the ability to bind copper and nickel ions with high 

affinity. Hence, the H2N-xxH motif is known as an Amino Terminal Cu(II), Ni(II) Binding 

(ATCUN) motif. 

 

<<INSERT FIGURE 1>>  

 

Having identified the occurrence of conserved histidine residues in SALMFamides 

derived from L-type precursors, we investigated if this is also a conserved feature of 

SALMFamides derived from F-type precursors. Thus, Figure 2 shows C-terminally aligned 
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neuropeptides derived from F-type SALMFamide precursors in asterozoan and echinozoan 

species, with data from three species in each class shown. The presence of a phenylalanine 

residue or a structurally similar tyrosine residue (highlighted in yellow) in the third position 

from the C-terminal amide is a characteristic feature of the majority of the neuropeptides, as 

expected for F-type SALMFamide precursor derived peptides. However, unlike in L-type 

SALMFamide precursor derived peptides, histidine residues are not prevalent in F-type 

SALMFamide precursor derived peptides (Fig. 2) and only one peptide (in the sea urchin 

Arbacia punctulata) has a histidine residue in the sixth position from the C-terminal amide. 

 

<<INSERT FIGURE 2>>  

 

Lastly, we analysed the sequences of neuropeptides derived from the singular 

SALMFamide precursors that have been identified in crinoids. This revealed an interesting 

pattern in the occurrence of histidine residues, with conserved histidines present in L-type 

peptides located at the extremities of the precursors. Thus, in all three crinoid species 

analysed here, the first and last neuropeptide in the precursor proteins is an L-type 

SALMFamide with a histidine residue located at the sixth position from the C-terminal 

amide, a feature that they share with the majority of SALMFamides derived from L-type 

SALMFamide precursors in asterozoan and echinozoan species (Fig. 3). By way of contrast, 

the twelve neuropeptides that form the core of the crinoid SALMFamide precursors mostly 

have phenylalanine, tyrosine or leucine residues at position three with respect to the C-

terminal amide and typically do not have histidine residues. The occurrence at the extremities 

of crinoid SALMFamide precursors of L-type SALMFamides that have a histidine residue at 

position six with respect to C-terminal amide is interesting because it suggests that peptides 

with these characteristics may have given rise to the structurally related peptides that are 
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found in asterozoan and echinozoan L-type SALMFamide precursors. Accordingly, our data 

indicate that the evolutionary origin of L-type SALMFamides with a conserved histidine 

residue at position six with respect to the C-terminal amide can be traced back to the common 

ancestor of extant echinoderms. However, it is in the Asteroidea that peptides with this 

characteristic are most prevalent and furthermore the histidine typically occupies the third 

position from the N-terminus, forming a potential Cu(II) and Ni(II) binding site. This feature 

of SALMFamides derived from the L-type SALMFamide precursor in starfish is interesting 

from an evolutionary and functional perspective and therefore, as described below, we have 

investigated if these peptides do indeed bind Cu(II) and Ni(II) ions. To do this we synthesized 

and analysed neuropeptides derived from the L-type SALMFamide precursor in the common 

European starfish A. rubens.  

 

<<INSERT FIGURE 3>> 

 

3.3 Determination of the sequence of a cDNA encoding the L-type SALMFamide 

precursor in A. rubens 

 Cloning and sequencing of a 1028 bp cDNA encoding the A. rubens L-type 

SALMFamide precursor confirmed the predicted amino acid sequence obtained from 

transcriptome sequence data. Thus, the A. rubens L-type SALMFamide precursor is a 210 

residue protein with a predicted 23-residue signal peptide and seven L-type SALMFamides 

that are bounded by dibasic cleavage sites (Fig.  S1). Four of these peptides (AYHSALPF-

NH2, AYHTGLPF-NH2, GYHSALPF-NH2 and GYHSGLPF-NH2) contain the ATCUN 

motif H2N-xxH (Fig. 1 and S1). Two other peptides (PAGASAFHSALSY-NH2 and 

LHSALPF-NH2) contain a histidine residue but it is not in the third position from the N-

terminus, whilst the peptide S1 (GFNSALMF-NH2) lacks a histidine residue altogether.  
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3.4 Electronic and circular dichroism spectroscopy highlights coordination of copper 

and nickel to L-type SALMFamides      

To investigate the copper binding ability of peptides derived from the A. rubens L-

type SALMFamide precursor, we chose three representative peptides potentially containing 

copper sites: AYHSALPF-NH2, GYHSGLPF-NH2 and LHSALPF-NH2. We initially used 

electronic spectroscopy to probe metal binding. Figure 4A shows the spectra obtained after 

titration of Cu2+ or Ni2+ into AYHSALPF-NH2. Addition of Cu2+ to AYHSALPF-NH2 gives 

rise to an absorption band centred on 520 nm and the intensity tends to stop increasing with 

copper addition at around one equivalent (Fig. 4B). An absorption maximum of 520 nm is 

indicative of Cu2+ bound with only nitrogen coordination [2]. Titration of Ni2+ generates an 

absorption band at 420 nm (Fig. 4A) and, in contrast to Cu2+, the slope of the binding curve 

changes, rather than plateauing, at one equivalent (Fig. 4B). A peak at 420 nm is suggestive 

of Ni2+ bound in a square-planar, four-coordinate geometry [34]. Both the stoichiometry and 

wavelength maxima of Cu2+ and Ni2+ binding are entirely consistent with coordination of 

these metals to an ATCUN site. As expected, titration of these metals into GYHSGLPF-NH2 

produced identical results (Fig. 4C, D). The ATCUN motif generally binds copper and nickel 

via the N-terminal nitrogen, the histidine imidazole nitrogen, and intervening amide nitrogens 

(i.e. {Na, 2N-, NIm}) and therefore the nature of the amino acid side chains is of less 

importance, especially in this case where only the presence of a glycine or alanine 

differentiates the motif in AYHSALPF-NH2 and GYHSGLPF-NH2. A feature of an ATCUN 

site is the lack of changes to the absorption maximum as a function of pH [2]. Accordingly, 

the maximum wavelength of [CuIIGYHSGLPF-NH2] (520 nm) remains constant from ~ pH 5 

(Fig. S2A). In contrast to AYHSALPF-NH2 and GYHSGLPF-NH2, titration of Cu2+ into 

LHSALPF-NH2 generates a peak at 600 nm, but, similar to the previous peptides, the 

absorbance plateaus at around one equivalent Cu2+ (Fig. 4E, F). An absorbance at 600 nm 
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suggests this peptide contains one or more oxygen ligands in its coordination sphere. A pH 

titration of this peptide shows the 600 nm wavelength maximum remains constant until 

higher pH values (> pH 9) where increasing absorption at wavelengths <600 nm suggests 

incorporation of an additional nitrogen donor (Fig. S2B) [28]. 

 

<<INSERT FIGURE 4>> 

 

  To further examine the copper binding sites we used NMR. The presence of low 

concentrations of paramagnetic Cu2+ tends to broaden peaks associated with protons lying 

within ~7Å of the metal. Addition of ~0.1 equivalent Cu2+ to GYHSGLPF-NH2 results in 

selective broadening of the C2H (7.68 ppm) and C4H (6.92 ppm) protons of the imidazole 

ring (Fig. 5A) which tends to confirm His3 is a nitrogen donor. Some broadening of peaks 

due to the His3 HE protons (~3.61 ppm, shifted downfield due to ring current effects of Tyr2) 

is also observed (see Fig. S3 for expanded regions). Coordination of copper to the His3 amide 

and imidazole nitrogen (NG�) could account for the perturbation of the beta protons. 

Additionally, peaks due to Tyr2 HE protons also show some broadening consistent with 

coordination to the nearby amide of Tyr2 (Fig. 5A, Fig. S3). In a similar manner addition of 

Cu2+ to LHSALPF-NH2 results in a loss of peaks due to histidine imidazole protons (Fig. 

5B). It is difficult to assess changes to the His3 HE peaks (~ 3.15 ppm, Fig. 5B) given overlap 

with Phe8 HE. A change in both the broadness and chemical shift is readily observed for the 

Leu1 HE peaks (~1.6 ppm), and to some extent the HG peaks (~0.9 ppm) (Fig. S3B), which 

suggests coordination to the nearby amide nitrogen of the amino acid. Intriguingly, despite 

having the same ratio of copper to peptide in both GYHSGLPF-NH2 and LHSALPF-NH2 the 

His imidazole peaks in the [CuIILHSALPF-NH2] sample have completely broadened and 

disappeared, but remain to some extent in the [CuIIGYHSGLPF-NH2] sample (Fig. 5). This 
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suggests that the different copper-binding sites in these peptides have different copper on/off 

rates (on the NMR timescale) with [CuIILHSALPF-NH2] at a comparatively faster rate than 

[CuIIGYHSGLPF-NH2]. The C2H and C4H peaks observed in the slowly exchanging 

[CuIIGYHSGLPF-NH2] spectrum (Fig. 5A) presumably arise from the apo form of the 

complex.         

 

<<INSERT FIGURE 5>> 

 

We next analysed the copper-complexes by circular dichroism (CD) spectroscopy. 

CD spectroscopy is a useful tool to analyse Cu2+ complexes because the d-d transitions that 

overlap to give a single broad peak in electronic spectroscopy can often be resolved into 

positive and negative peaks in CD [35]. The CD spectrum of [CuIIGYHSGLPF-NH2] is 

shown in Figure 6A (the spectrum of [CuIIAYHSALPF-NH2] has identical bands and is not 

shown). Positive bands are apparent at 316 nm and 490 nm and a weaker negative band 

appears at 570 nm. The bands at 490 nm and 570 nm can be attributed to d-d transitions, 

whereas a band around 320 nm may be attributed to an amide nitrogen → Cu2+ charge 

transfer (CT). In line with the absorption spectroscopy, the intensity of the bands tends to 

stop increasing at one equivalent Cu2+ (Fig. 6B). The visible CD spectrum of 

[CuIIGYHSGLPF-NH2] is strikingly similar to the copper-bound peptides GGH and DAHK, 

as well as that of copper-bound full length human serum albumin, suggesting similar 

coordination in all [35, 36]. The ATCUN motif is known to have high affinity for copper (Kd 

~ 10-12 – 10-14 M) and should out-compete the weaker copper chelator glycine [37]. Titration 

of [CuIIGYHSGLPF-NH2] with glycine (up to 7× molar excess vs. copper) caused no 

apparent change to the CD spectrum of [CuIIGYHSGLPF-NH2] which tends to support 

binding via a high affinity ATCUN motif (data not shown). Further analysis of the copper 
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affinity of the SALMFamide peptides was not undertaken. The CD spectra obtained during a 

Cu2+ titration of LHSALPF-NH2 are shown in Figure 6C. The spectra have a negative peak at 

300 nm, a positive peak at 346 nm and a broad positive feature around 600 nm, and all are 

relatively low intensity and largely identical to the CD spectrum of [CuIIGHK] [36]. The peak 

at 300 nm may be attributed to an amide nitrogen → Cu2+ CT, whereas the 346 nm peak is 

likely due to an imidazole nitrogen → Cu2+ CT, which is further supported by an absence of 

this peak in copper-bound tripeptides that lack a histidine [28, 35]. 

 

<<INSERT FIGURE 6>> 

 

3.5 EPR spectroscopy predicts presence of a copper-linked ternary complex between 

GYHSGLPF-NH2 and LHSALPF-NH2.  

The X-band (~9 GHz) EPR spectra of [CuIIGYHSGLPF-NH2] and [CuIILHSALPF-

NH2], each with a Cu2+:peptide ratio of 0.96, are shown in Figure 7A and 7B respectively 

(the spectrum of [CuIIAYHSALPF-NH2] is identical to that of [CuIIGYHSGLPF-NH2] and is 

not shown) . The EPR spectra for both reveal an axially symmetric Cu(II) centre (i.e. gx   gy 

z gz). For [CuIIGYHSGLPF-NH2] nitrogen superhyperfine (shf) coupling is apparent in the 

gx, gy (perpendicular, g┴ ) region between 315 – 350 mT and analysis of the characteristic 

parallel gz and Az(63Cu) values suggests that the copper ion is in a 4-nitrogen environment 

(Table 1) at this pH (7.2) [38]. In [CuIILHSALPF-NH2], the peak at g┴ is considerably 

broadened, suggesting the presence of multiple species, however some nitrogen coupling is 

apparent. The presence of multiple species is supported by Cu(II) speciation studies with 

GHK where the presence of mono- and bis-complexes was indicated at pH values similar to 

those used here [3]. The parallel values (Table 1) of [CuIILHSALPF-NH2] are different to 

those of [CuII(GYHSGLPF-NH2)] and suggest inclusion of oxygen donors which has 
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increased gz and decreased Az relative to that observed for [CuIIGYHSGLPF-NH2]. Most 

likely the predominant [CuIILHSALPF-NH2] species contains a CuN2O2 site which previous 

work suggests has average values of gz = 2.238 – 2.265 and Az   0.0182 – 0.0187 cm-1 and is 

consistent with the electronic spectrum (Fig. 1E) [39].  When apo-GYHSGLPF-NH2 is added 

to [CuIILHSALPF-NH2] such that the peptides are equimolar (i.e. [Cu]:[total peptide] is 

~0.5:1) then the spectrum in figure 7C is obtained. In this case the spectrum was best fit with 

CuII in a rhombically distorted environment (i.e. gx z gy z gz). The gz and Az values are 

different to those of the pure copper-peptides and suggest that an additional nitrogen atom/s 

has been added to the coordination sphere [38]. Nitrogen coupling is not observed on the 

parallel components of the spectrum, however, compared to [CuIILHSALPF-NH2] the 

linewidth in the perpendicular region has narrowed and the nitrogen shf coupling is more 

apparent. To improve resolution at gx,y the spectrum was differentiated and the expanded 

region (Fig. 7c) reveals the 14N shf coupling in more detail. Theoretically, each copper 

hyperfine coupling is split into (2nI + 1) (I =1) lines, where n is the number of magnetically 

equivalent nitrogen ligands. Although it is instructive to examine the features at g┴, in reality 

the number of lines is complicated by various factors such as the presence of multiple 

species, non-equivalent nitrogens and overlap with parallel features [40]. The experimental 

[CuIILHSALPF-NH2] + apo-GYHSGLPF-NH2 spectrum (Fig. 7c, exp) was fit assuming four 

and three nitrogens and the results (Fig. 7c 4N, 3N) suggest that the most likely coordination 

involves four nitrogen ligands. In neither case are the lines on the low field (320 – 325 mT) 

side of g┴ well simulated, however on the high field side (335 – 338 mT) the four nitrogen 

simulation clearly fits the experimental spectrum more closely in both the line position and 

intensity than the three nitrogen simulation. The high field transitions are known to be 

particularly sensitive to the number of nitrogen ligands [40]. Thus, we predict that the 

predominant species formed when apo-GYHSGLPF-NH2 is added to [CuIILHSALPF-NH2] 
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has CuII in a four-nitrogen environment. The EPR spectrum does not resemble 

[CuIIGYHSGLPF-NH2] indicating that apo-GYHSGLPF-NH2 has not just abstracted all the 

copper from [CuIILHSALPF-NH2]. It is likely that the oxygen donors observed in 

[CuIILHSALPF-NH2] have been replaced by nitrogens from apo-GYHSGLPF-NH2 to form a 

copper-linked ternary complex. We predict that the histidine imidazole from GYHSGLPF-

NH2 is a nitrogen contributor the ternary complex. This result is not unprecedented, as a 

previous study showed addition of the amino acid histidine to a solution of [CuIIGHK] 

generated a 4N complex where the oxygen donor in [CuIIGHK] was displaced by a nitrogen 

from the histidine imidazole group [36]. Collection of spectra at alternative frequencies, such 

as S-band (~ 4 GHz) which avoids broadening due to g- and A-strain correlations, may allow 

nitrogen coupling to be more completely analysed.                  

We next wondered that if [CuIILHSALPF-NH2] can form 4N complexes with apo-

GYHSGLPF-NH2, then why does copper titration of LHSALPF-NH2 by UV/Vis 

spectroscopy (Fig. 4E, F) show a simple 1:1 stoichiometry with a peak at 600 nm indicative 

of N/O coordination, when the 4N mononuclear binary complex [CuII(LHSALPF-NH2)2] can 

presumably be formed? Given that NMR shows different copper on/off rates for the 

complexes then maybe the timescale of the UV/Vis experiment accounts for the observed 

result. To explore this [CuIILHSALPF-NH2] (Fig. 7D) was scanned, left at room temperature 

for 2 hours then re-scanned. The resultant spectrum (Fig. 7D) shows that the d-d transitions 

are now much broader than in the initial sample and there is increased absorption at 

wavelengths shorter than 600 nm (no evidence of aggregation was observed). Taken together 

with the EPR data, this suggests that initially a simple [CuIILHSALPF-NH2] complex with a 

2N2O donor set is formed, but over time other species such as a 4N [CuII(LHSALPF-NH2)2] 

having absorption around 500 nm also occur. Along with ternary complexes, these species 
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may also contribute to the EPR spectrum (Fig. 7c) which increases the difficulty of accurately 

simulating the nitrogen coupling.   

 

<<INSERT FIGURE 7>> 

 

4.0 Discussion 

In this study we analysed SALMFamide neuropeptide precursor sequences from 

species belong to the five extant classes of the phylum Echinodermata and established that 

peptides derived from the L-type SALMFamide precursor in starfish (class Asteroidea) were 

over represented with the N-terminal sequence H2N-xxH. This sequence is a well-known 

copper-binding site termed an ATCUN-motif and suggested that these peptides should bind 

the metal. Using a range of spectroscopic techniques we show that the L-type SALMFamides 

in the starfish species A. rubens that contain the motif (e.g. GYHSGLPF-NH2) do indeed bind 

Cu(II) as well as Ni(II) ions. Taken together, the spectroscopic evidence indicates Cu(II) 

binding to these peptides involves the His3 imidazole nitrogen, the N-terminal nitrogen and 

intervening amide nitrogen atoms. Ni(II) binds in a similar manner resulting in a square-

planar diamagnetic complex. In addition, we show that LHSALPF-NH2, a heptapeptide 

derived from the A. rubens L-type SALMFamide precursor, can also bind copper but instead 

of four nitrogen atoms as ligands the complex initially includes oxygen atoms. Displacement 

of the oxygen ligand/s in the presence of GYHSGLPF-NH2 resulted in the formation of a 

copper-linked ternary complex (a heterodimer). To the best of our knowledge, this is the first 

study to report the identification of a neuropeptide precursor that contains multiple Cu(II)-

binding neuropeptides.  

 Comparative analysis of the sequences of SALMFamide precursors in echinoderms 

has provided a basis for investigation of the evolutionary history of the histidine residue that 
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confers on starfish L-type precursor-derived SALMFamides the ability to bind Cu(II) ions. 

Crinoids, which occupy a basal position in echinoderm phylogeny, appear to have only a 

single SALMFamide precursor, unlike asterozoans (starfish, brittlestars) and echinozoans 

(sea urchins, sea cucumbers), which have an L-type and F-type SALMFamide precursor (Fig. 

8). The crinoid SALMFamide precursor contains a core of twelve peptides that include F-

type-like SALMFamides. However, at both the N- and C-terminal extremities of the 

precursor there are single L-type SALMFamides that have a histidine residue in the sixth 

position from the C-terminus, in common with the majority of SALMFamides derived from 

L-type precursors in asterozoans and echinozoans. We postulate, therefore, that following 

duplication of a SALMFamide precursor gene in a common ancestor of the Asterozoa and 

Echinozoa, one copy retained the L-type peptides with a histidine residue at position six with 

respect to the C-terminal amide, lost other peptides and then gave rise to the L-type 

SALMFamide precursors that occur in extant asterozoans and echinozoans. Conversely, the 

other copy retained the core peptides that do not have conserved histidine residues, lost the L-

type peptides with a histidine residue at position six with respect to the C-terminal amide and 

then gave rise to the F-type SALMFamide precursors that occur in extant asterozoans and 

echinozoans. In surveying the occurrence in echinoderms of L-type SALMFamides with a 

histidine residue at position six with respect to the C-terminal amide, it is striking that in 

starfish (Asteroidea) these peptides are most abundant and have acquired the ATCUN motif 

by virtue of the histidine occupying the third position from the N-terminus (Fig. 8).  

 

<<INSERT FIGURE 8>> 

 

The concentration of free copper ions in seawater is estimated in the range of 10-11 – 

10-13 M, whilst the total dissolved copper concentration, which includes organically 
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complexed copper, is ~ 10-8 M [41-43]. It is likely that the copper content of the extracellular 

milieu in starfish is similar to that of seawater because these animals, like other marine 

invertebrates, are osmoconformers. Therefore, upon release from neurons L-type 

SALMFamides are likely to encounter copper ions at concentrations near the Kd established 

for ACTUN motif-containing peptides (10-12 – 10-14 M [37]) and therefore will compete for 

copper ions, even when taking into consideration the ligands present in seawater which can 

have high binding constants [42]. Interestingly, the SALMFamides, like other amidated 

neuropeptides, traffic through the Golgi network where they are C-terminally amidated by the 

copper-metalloenzyme peptidyl-glycine alpha-amidating monooxygenase [44]. The trans-

Golgi contains copper because several proteins are loaded with copper in this cellular 

compartment during their biosynthesis. Although copper is pumped into the trans-Golgi as 

Cu+ by the Menkes ATPase [45], it is not clear whether it stays as Cu+ or if there is some 

oxidation to Cu2+. It is therefore interesting to speculate that, rather than being metallated 

after release, L-type SALMFamides containing an ATCUN motif may in fact have copper 

already bound to them prior to release from starfish neurons. 

At the molecular level, how may the presence of bound Cu(II) ions affect the 

bioactivity of L-type SALMFamides? Our previous studies on the prototypical 

SALMFamides S1 and S2, L-type SALMFamides that do not bind metal, indicate that their 

bioactivity is primarily determined by the C-terminal region of the peptides. The N-terminal 

tetrapeptide of S2 (SGPY) does, however, influence peptide structure by causing S2 to self-

associate at high concentrations and form highly-structured multimers [15]. We predicted that 

S2’s structure and activity may change as it diffuses away from sites of release and becomes 

less concentrated. Further, addition of the SGPY tetrapeptide to the N-terminus of S1 confers 

structure on this chimeric peptide that is not observed with the S1 peptide. Now we show that 

the L-type SALMFamide precursor-derived peptide LHSALPF-NH2 can form a copper-
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linked ternary complex (a heterodimer) with GYHSGLPF-NH2, and the chemistry suggests 

that LHSALPF-NH2 will form similar ternary complexes with any of the ATCUN-containing 

L-type SALMFamides. The formation of these copper complexes (monomers and dimers) 

may modify receptor binding or make the peptides more resistant to proteolysis. Interestingly, 

evidence that copper binding affects enzymatic degradation of neuropeptides has been 

reported recently. Herman et al. [46] reported that human gonadotropin-releasing hormone 

(GnRH), which has a histidine residue at position two, binds Cu2+ ions and this confers on 

GnRH increased resistance to enzymatic degradation in extracts of hypothalamic and 

pituitary tissue. Accordingly, the copper-linked ternary complexes of LHSALPF-NH2 and 

ACTUN motif-containing L-type SALMFamides may likewise be more resistant to 

enzymatic degradation than the monomeric peptides in the absence of copper.  

At the physiological level, previous studies have revealed that SALMFamide 

neuropeptides S1 and S2 cause dose-dependent relaxation of the starfish cardiac stomach in 

vitro and trigger cardiac stomach eversion in vivo (Melarange et al., 1999). This 

pharmacological effect of SALMFamides is of interest because starfish feed by everting their 

cardiac stomach over prey and partially digesting prey tissue externally. Therefore, it is 

proposed that SALMFamides may mediate neural control of cardiac stomach eversion during 

starfish feeding behaviour [12]. Furthermore, extraoral feeding is unique to starfish (Class 

Asteroidea) amongst extant echinoderms [47]. We speculate, therefore, that the acquisition 

and proliferation of L-type SALMFamides that have an ATCUN motif and bind copper ions 

in starfish may be associated with a role in regulating stomach eversion. For example, the 

secretion of proteases by cells in the mucosal epithelium of the cardiac stomach during 

feeding creates a proteolytic environment [47], which may have favoured acquisition of 

structural characteristics that protect SALMFamides from aminopeptidases. Therefore, in this 
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context, our findings may provide a basis for experimental studies in which the physiological 

significance of copper-binding neuropeptides could be further investigated. 
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Figure Legends 
 
Figure 1. C-terminally aligned sequences of SALMFamide neuropeptides derived from L-

type SALMFamide precursors in the Asteroidea (Patiria miniata, Asterias rubens and 

Remaster gourdoni) [1], Ophiuroidea (Ophionotus victoriae, Ophioderma brevispinum and 

Ophiothrix angulata [2], Echinoidea (Strongylocentrotus purpuratus, Arbacia punctulata and 

Eucidaris tribuloides) [3] and Holothuroidea (Apostichopus japonicus, Psolus spp and 

Pannychia moseleyi) [4]. The third amino acid residue from the C-terminal amide has been 

highlighted in red if it is leucine or isoleucine, yellow if phenylalanine or tyrosine and grey if 

any other residue. Histidine residues located in the sixth position from C-terminal amide have 

been highlighted in turquoise.  

Figure 2. C-terminally aligned sequences of SALMFamide neuropeptides derived from from 

F-type SALMFamide precursors in the Asteroidea (Patiria miniata, Asterias rubens and 

Remaster gourdoni) [1], Ophiuroidea (Ophionotus victoriae, Astrophyton muricatum and 

Ophiothrix angulata [2], Echinoidea (Strongylocentrotus purpuratus, Arbacia punctulata and 

Lytechinus variegatus) [3] and Holothuroidea (Apostichopus japonicus, Psolus spp and 

Stichopus chloronatus) [4]. The third amino acid residue from the C-terminal amide has been 

highlighted in red if it is leucine or isoleucine, yellow if phenylalanine or tyrosine and grey if 

any other. Histidine residues located in the sixth position from C-terminal amide have been 

highlighted in turquoise. 

Figure 3. SALMFamide neuropeptides derived from SALMFamide precursors in the 

Crinoidea (Antedon mediterranea, Isometra vivipara and Oligometra serripinna). The third 

amino acid residue from the C-terminal amide has been highlighted in red if it is leucine or 

isoleucine, yellow if phenylalanine or tyrosine and grey if any other residue. Histidine located 

in the sixth position from C-terminal amide residues have been highlighted in turquoise. 

Figure 4. Copper(II) and nickel(II) titrations monitored by electronic spectroscopy.  
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(A) Titration of Cu2+ (solid black line) into AYHSALPF-NH2 (100 PM, 10 mM nEM, pH 

7.44) results in the formation of a peak at 520 nm. Titration of Ni2+ (dashed red line) results 

in an increase in absorption at 420 nm. (B) Plots of the absorbance at 520 nm (Cu2+) and 420 

nm (Ni2+) as a function of added metal. Both curves plateau around 100 PM metal, 

suggesting 1:1 stoichiometry. (C) Titration of Cu2+ (solid black line) and Ni2+ (dashed red 

line) into GYHSGLPF-NH2 (80 PM, 10 mM nEM, pH 7.44) results in the formation of peaks 

at 520 nm and 420 nm, respectively. (D) Plots of the absorbance at 520 nm (Cu2+) and 420 

nm (Ni2+) as a function of added metal. Both curves plateau around 80 PM metal, suggesting 

1:1 stoichiometry. (E) Titration of Cu2+ into LHSALPF-NH2 (110 PM, 10 mM nEM, pH 

7.44) generates an absorption band at 600 nm and the binding curve (F) suggests a 

stoichiometry of 1:1.   

Figure 5.  Paramagnetic copper causes broadening of GYHSGLPF-NH2 and LHSALPF-NH2 

1H NMR spectra. (A) 1H NMR spectra of ~500 PM apo-GYHSGLPF- NH2 in 10% D2O/90% 

H2O, pH 7.2 (bottom trace) and after the addition of 0.1 equivalent Cu2+ (top trace). 

Assignment of selected perturbed peaks is shown in top trace. (B). 1H NMR spectra of ~500 

PM apo-LHSALPF- NH2 in 10% D2O/90% H2O, pH 7.2 (bottom trace) and after the addition 

of 0.1 equivalent Cu2+ (top trace). Assignment of selected perturbed peaks is shown in top 

trace. Expansion of assigned peaks in both A and B are shown in supplementary material 

figure S3. 

Figure 6. Copper(II) titrations monitored by circular dichroism spectroscopy. (A) CD spectra 

(300 – 700 nm) were collected as Cu2+ was titrated into apo-GYHSGLPF-NH2 (93 PM, 10 

mM nEM, pH 7.7). Peaks at 490 nm and 570 nm are due to d-d transitions and the peak in the 

near-UV (316 nm) can be attributed to an amide N-→ Cu(II) CT. (B) The intensity of the 

peaks at 316 nm (■) and 490 nm (x) plotted as a function of [Cu(II)]/[GYHSGLPF-NH2] 

plateaus at a ratio near one. (C) CD spectra obtained during a titration of apo-LHSALPF-NH2 
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(96 PM, 10 mM nEM, pH 7.7) with Cu2+ show low intensity peaks at 300 nm (amide N→ 

Cu(II) CT), 346 nm (imidazole N→ Cu2+ CT)  and 600 nm (d-d transition). (D) The intensity 

of the peaks at 300 nm (■) and 346 nm (x) plotted as a function of [Cu(II)]/[LHSALPF-NH2] 

plateaus at a ratio near one.   

Figure 7. X-band EPR spectra of CuII-bound peptides. (A) First derivative spectrum of 

[CuII(GYHSGLPF-NH2)] (Q = 9.433547, 262 PM, 10 mM nEM, pH 7.2, 0.98 equivalents 

Cu2+), dashed line is simulated spectrum, (B) first derivative spectrum of [CuII(LHSALPF-

NH2)] (Q = 9.433526, 1 mM, 10 mM nEM, pH 7.2, 0.96 equivalents Cu2+), (C) first 

derivative spectrum of a mixture of [CuII(LHSALPF-NH2)] (Q = 9.432792, 260 PM, 10 mM 

nEM, pH 7.2) and apo-GYHSGLPF-NH2 (243 PM,10 mM nEM, pH 7.2). Inset (c) shows the 

second derivative spectrum of (C) highlighting the perpendicular region (exp), along with the 

same region after simulation assuming four (4N) or three (3N) nitrogen donors. (D) Titration 

of Cu2+ into LHSALPF-NH2 (110 PM, 10 mM nEM, pH 7.44) generates an absorption band 

at 600 nm. Leaving the sample at room temperature for 2 hrs generated a spectrum with 

broadened d-d transitions.  

Figure 8. The occurrence and properties of SALMFamide precursors in species representing 

each of the five extant echinoderm classes. A. rub is the starfish Asterias rubens (Asteroidea), 

O. vic is the brittlestar Ophionotus victoriae (Ophiuroidea), S. pur is the sea urchin 

Strongylocentrotus purpuratus (Echinoidea), A. jap is the sea cucumber Apostichopus 

japonicus (Holothuroidea) and A. med is the feather star Antedon mediterranea (Crinoidea). 

Signal peptides are shown in blue, spacer peptides are in white, monobasic or dibasic 

cleavage sites are in green, SALMFamides with a C-terminal FXXamide motif are in yellow, 

a LXXamide motif are in red and a XXXamide motif are in grey. In addition, SALMFamides 

containing a histidine residue at the sixth position from the C-terminal amide are marked with 

H and peptides in which this histidine residue forms an ATCUN motif have been marked 
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with an asterisk. The data indicate that the common ancestor of all extant echinoderms had a 

single SALMFamide precursor, including histidine-containing L-type SALMFamides, as in 

extant crinoids. Then duplication (x2) of the SALMFamide precursor in the common ancestor 

of extant Eleutherozoa followed by divergence gave rise to two types of precursor: the L-type 

precursor, which typically includes SALMFamides with a conserved histidine residue, and 

the F-type precursor. Figure modified from Elphick et al. [17]. 

 

 

 

Table 1. Spin Hamiltonian parameters for CuIISALMFamide peptides. 
 

Complex gx gy gz Ax (63Cu)a  Ay (63Cu)a  Az (63Cu)a  
[CuII(GYHSGLPF-NH2)] 2.044 2.044 2.176 22.1 22.1 200.9 
[CuII(LHSALPF-NH2)] 2.042 2.042 2.220 - - 187.5 
[CuII(LHSALPF-NH2) + 
apoGYHSGLPF-NH2 

2.045 2.067 2.207 11.5 12.1 197.3 

a. units 10-4 cm-1 
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P. miniata 
PAGSPVFHSALTYa 

AFHSALPFa 
GLHSALPFa 
GFNSALMFa 
IHTALPFa 

GYHSALPFa 
GYHTGLPFa 

A. rubens 
PAGASAFHSALSYa 

AYHSALPFa 
AYHTGLPFa 
GFNSALMFa 
LHSALPFa 

GYHSALPFa 
GYHSGLPFa 

R. gourdoni 
Absent 

 AAYHSGLPFa  
AYHSAMPFa 
GYNSALMFa 
MHSALPFa 

 GYHSGLPFa  
 SFHSGLPFa  

O. victoriae 
SGRRNPSLNSGLIFa 

SRLPFHSGLMQa 
SRPQFHTGFMMa 

KAGQRLRFSDGMLFa 

O. brevispinum 
THSLNSGLLFa 

NKLPFHSGLMQa 
TRPVFHSGFLMa 

KAGARLRWSDGMLFa 

O. angulata 
SGRSRTYLNSGLLFa 

SKLPFHSALMQa 
GKQKAKFHSAMLLa 
KGSRLRWSNGMAFa 

S. purpuratus  
NMGSIHSHSGIHFa 

MRLHPGLLFa 

A. punctulata  
SRGIYKNSGINFa 

MRYHKGISFa 

E. tribuloides 
SRGIYKNSGINFa 

MRYHKGISFa 

A. japonicus 
VVSRAWSPLVGQTGIAFa 

TRSRSMFGNTALPFa 
MGFTGNTGILLa 

Psolus spp 
GMRSRWNPLVGQSGLSLa 

TRSRSSFFGHSALSYa 
GGIRGFSGNSAILMa 

P. moseleyi 
TARRWSPLVGQTGIAFa 

TRSRAMFGHSALAFa 
MGFTGNTGILLa 
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P. miniata 
DVSDRQREIDLAAQQPFYPYa 

TDVPGRPSGFVFa 
SNGPYSMSGLRSLTFa 

ADLFRSYAFa 
ALGSNFAFa 
GYSSFDFa 

AGLGSSFTFa 
ALGSSFSFa 
SGLSSFTFa 

A. rubens 
pQQSDREREVEAAQTQFYPYa 

TDPRKASGGFTFa 
SGPYSFNSGLTFa 

NIFGSYDFa 
AYGNNFSFa 
GMGVSSFSFa 

Absent 
AFGDFSFa 

NNGLSSFTFa 

R. gourdoni 
NNNDRQLEMDMAAARAQQPFYPYa 

TDVPGRPSGFVFa  
GRLSGLGSLSFa 

Absent 
ALGSNFAFa 

GYAGLSSFNFa 
AGLGSSFAFa 
ALGSSFTFa  
GNSLSSFAFa  

O. victoriae 
pQAVRPGGGAPMNVPVKMSGFSFa 

Absent 
SAGATPSKLAGFAFa 

GAMDAFAFa 
 PSGDPMSAFSFa 
 NPMNSLSALAFa 

 AGMDPNSLNAFNFa 
 DPLSAFSFa 

 GMDSLSAFNFa 
 GRDHLSAFSFa 

 GRNPMNGLSAFDFa 
 GGMDAFAFa 

 GYENGLSGYAFa 

A. muricatum 
pQAGNRPSSGVPMKVPAKMSGFAFa  

SAKAAAGSAKMSGFAFa  
 SASAGSKPVKLAGFAFa  

 GAMQAFTFa  
 LSSDPAGLSAFSFa 

 YPVSLSALTFa 
 GMNPSGISAFNFa 

 DPFSTFSFa 
 GMESSGLSAFNFa 
 GYDQSGLSAFSFa 
 WPTNSLSAFDFa 

 GMNAFTFa 
Absent 

O. angulata 
pQAATPRSGGSGLPMNVPVKMSGFAFa  

Absent 
 SAKSGGDKPVKLAGFAFa 

 AAMDAFTFa 
Absent 

 DPTGLSALTFa 
GMHPSSMSAFSFa 
 RMDPLSAFSFa 

 AMDPAGLSAFSFa 
 GMDPSALSAFSFa 
 GTGPSGLSAFSFa 

 MGMNAFTFa 
 AGYNGLSQFTFa 

S. purpuratus  
Absent 

PPVTTRSKFTFa 
DAYSAFSFa 
GMSAFSFa 
 AQPSFAFa 
 GLMPSFAFa 
PHGGSAFVFa 
GDLAFAFa 

A. punctulata  
AQGPNRPQREIRARAHTMIPSa 

NPVTRSKFTFa 
DAYSAFSFa 
GLSSFAFa 
GMPAFSFa 
 GLSSFAFa 

 FPGGSAFNFa 
ADLAFAFa 

L. variegatus 
TTGSNRPQREIRARAQFAa 

PPITTRSKFTWa 
DAFSSFSFa 
GMSPFSFa 
SMPSFAFa 
GLMSSFAFa 
PHGGSAFIFa 
GNVAFSFa 

A. japonicus 
GVPPYVVKVTYa 

FKSPFMFa 
 GYSPFMFa 
 ARYSPFTFa 
 GGYSALYFa 

 VPELAESDGGQSKLYFa 
 GHRGGQFSQFKFa 

FKSSFYLa 

Psolus spp 
EGIPPNLMKLSYa 

Absent 
AYSKFMFa 
ANYSPLMFa 
AYSRFFFa 
Absent 

AIPGKYSKFMFa 
Absent 

S. chloronatus 
GVPPTMLKLSYa 

FQNPFYFa 
GYSPFMFa 
GYSPLIFa 
AGYSALYFa 

Absent 
GHYSKFIFa 

Absent 
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A. mediterranea 
ANTSSEPINNWIRALPVLHRGLYFa 

NPALSEFMLa 
DPSFSSYMLa 
NPRLSDLMLa 
DPRLSDLMLa 
DPRLSDLMLa 
DPRLSDLMLa 
DPGFSDFTFa 
 DALGDFMMa 

 EARLSDYIMa 
 DPRISDFIMa 

 KAKFQRPVYPGNa 
 TPSQIWDTFGAa 
FPPAALHKGLYFa 

I. vivipara 
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1    ctcgagagtagctacttgacacatacacactgcgtaacactcgggtcgcaagctacttct 
61   ttgctcgctggccgtagacaactctttgatatctctcgaccaccatcaaaaacgcagaca 
121  caacacaatttcgcgtggtttatttaaacgcacacgaggggcctacctgccttgggtttt 
181  ttccgggtgtttaattttgtgtactcaccgtcccaaatgaagggccaacaccttctagcc 
                                          M  K  G  Q  H  L  L  A    8  
241  gtagcagtggttgtcgtcgccggttcgtttggaatcatcgaggcgtactctccatttggg 
      V  A  V  V  V  V  A  G  S  F  G  I  I  E  A  Y  S  P  F  G   28  
301  ggctataaccgagcaccttttgacaatgtttgggtgcgagcggacagcatggctcgtgga 
      G  Y  N  R  A  P  F  D  N  V  W  V  R  A  D  S  M  A  R  G   48  
361  ggctcgacgggggaggacgaagccaacgaacagcgaatgacgggagccaagcgaccggct 
      G  S  T  G  E  D  E  A  N  E  Q  R  M  T  G  A  K  R  P  A   68  
421  ggtgcctcagcgttccactccgctctgtcgtacggcaaacgaggcgacgatgacagcgcc 
      G  A  S  A  F  H  S  A  L  S  Y  G  K  R  G  D  D  D  S  A   88  
481  gaagtggagcgccgagcctaccactcggccctgcccttcggcaagagaacacccatcgag 
      E  V  E  R  R  A  Y  H  S  A  L  P  F  G  K  R  T  P  I  E  108  
541  aaacgcgcctaccacacaggtctccccttcggaaagagggacgacgaagccgccgaacaa 
      K  R  A  Y  H  T  G  L  P  F  G  K  R  D  D  E  A  A  E  Q  128  
601  gacgccatgatggagaggcgtggcttcaactcggccctgatgttcggtaaacgactacac 
      D  A  M  M  E  R  R  G  F  N  S  A  L  M  F  G  K  R  L  H  148  
661  agtgctctaccgttcggtaagcgcggctaccacagtgctctgccgttcgggaagagattg 
      S  A  L  P  F  G  K  R  G  Y  H  S  A  L  P  F  G  K  R  L  168  
721  gataccactgatgaaggagatatcatcgagagaagaggttaccatagcgggctaccgttc 
      D  T  T  D  E  G  D  I  I  E  R  R  G  Y  H  S  G  L  P  F  188  
781  ggcaagcgcgctactgacgatgaagccgttaatgacatactagaccaattaagaagcgaa 
      G  K  R  A  T  D  D  E  A  V  N  D  I  L  D  Q  L  R  S  E  208  
841  gagaattgacttttataaagaactgtaatccttaaaaatcagcttatatactaatctaac 
      E  N  *                                                     210 
901  agtgcttaggatacgacaatatcggttggtgatcagtttagttaccttacaaaaccctct 
961  ctcaactagtcatatcaaccttagcgaggacaacgcgggttacacaatgtttcgcatact 
1021 taaaaaaa 
 
 
Figure S1: Asterias rubens L-type SALMFamide precursor. The DNA sequence of 
a transcript (lowercase, 1028 bases) encoding an L-type SALMFamide precursor 
protein (uppercase, 210 amino acid residues). The sequence data was first determined 
by manual assembly of four overlapping contig sequences (1073975, 192719, 104468 
and 1057915) and then cDNA sequencing was employed to confirm the section of the 
DNA sequence bounded by the PCR primer sequences (bold, underline). Bases in the 
sequenced cDNA that differ from the assembled transcript sequence are shown in 
underlined italics. The predicted signal peptide of the precursor protein is shown in 
blue and the seven putative SALMFamide peptides are shown in red, with C-terminal 
glycine residues that are likely substrates for amidation shown in orange. Putative 
dibasic cleavage sites (KR, RR) are shown in green and the asterisk shows the 
position of the stop codon. 
 



 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. pH titration of [CuII(GYHSGLPF-NH2)] and [CuII(LHSALPF-NH2)]. (A). 
[CuIIGHYSGLPF-NH2] (93.3 PM) was prepared in H2O at an initial pH of 4.1. The pH was 
increased by the addition of small aliquots of NaOH and the visible electronic spectra 
obtained at pH values of 4.9, 6.5 and 8.3. (B). [CuIILHSALPF-NH2] (100 PM) was prepared 
in H2O at an initial pH of 3.8. The pH was incrementally increased via addition of NaOH and 
the visible electronic spectra obtained at pH values of 4.16, 5.38, 7.02 and 8.39. Spectra were 
collected using a Perkin Elmer U-3100 spectrometer and a 10 mm pathlength cuvette. 
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Figure S3. Copper titration of [CuII(GYHSGLPF-NH2)] and [CuII(LHSALPF-NH2)]. 
(A) 1H NMR spectra of ~500 mM apo-GYHSGLPF- NH2 in 10% D2O/90% H2O, pH 7.2 
(bottom trace) and after the addition of 0.1 equivalent Cu2+ (top trace). Assignment of 
selected perturbed peaks is shown in top trace. (B). 1H NMR spectra of ~500 mM apo-
LHSALPF- NH2 in 10% D2O/90% H2O, pH 7.2 (bottom trace) and after the addition of 0.1 
equivalent Cu2+ (top trace). Assignment of selected perturbed peaks is shown in top trace.  
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