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ABSTRACT 

This research explores the relationships between the predictability of musical structure, 

expressive timing in performance, and listeners’ perceived musical tension. Studies analyzing the 

influence of expressive timing on listeners’ affective responses are constrained by the fact that, 

in most pieces, the notated durations limit performers’ interpretive freedom. To circumvent this 

issue, we focused on the unmeasured prelude, a semi-improvisatory genre without notated 

durations. In Experiment 1, twelve professional harpsichordists recorded an unmeasured prelude 

on a harpsichord equipped with a MIDI console. Melodic expectation was assessed using a 

probabilistic model (IDyOM) whose expectations have been previously shown to match closely 

those of human listeners. Performance timing information was extracted from the MIDI data 

using a score-performance matching algorithm. Time-series analyses show that, in a piece with 

unspecified note durations, the predictability of melodic structure measurably influences tempo 

fluctuations in performance. In Experiment 2, another 10 harpsichordists, 20 nonharpsichordist 

musicians, and 20 nonmusicians listened to the recordings from Experiment 1 and rated the 

perceived tension continuously. Granger causality analyses were conducted to investigate 

predictive relationships among melodic expectation, expressive timing, and perceived tension. 

Although melodic expectation, as modeled by IDyOM, modestly predicted perceived tension for 

all participant groups, neither of its components, information content or entropy, was Granger 

causal. In contrast, expressive timing was a strong predictor and was Granger causal. However, 

because melodic expectation was also predictive of expressive timing, our results outline a 

complete chain of influence from predictability of melodic structure via expressive performance 

timing to perceived musical tension. 

Keywords: performance; tension; expectations; entropy; information content; timing 
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INTRODUCTION 
 

Music is a uniquely human and cross-culturally universal means of conveying information using 

sequential streams of auditory events (Clarke, 1985, 1988; Palmer, 1989, 1996). Although there 

are major differences between language and music as modes of communication, both can be 

viewed as a means of transferring information (Koelsch et al., 2004). As in linguistic 

communication, musical communication involves the elaboration of a musical message 

(composition), its utterance (performance), and finally its perception and cognitive appraisal by 

one or more recipients (listeners). Music is an important part of many people’s everyday lives 

(Sloboda, 2010), and the information it conveys can profoundly affect the mood, emotions, and 

well-being of listeners (Panksepp & Bernatzky, 2002). As such, research on music cognition 

broadens our perspective on human cognition in general by considering aspects that share 

functionalities with other types of cognition, but more importantly by considering its 

specificities. 

Kendall and Carterette’s (1990) theoretical model of musical communication, based on 

traditional Western art music, expresses this three-way relationship between the composer, the 

performer(s), and an audience. Following this model, we posit that a performer’s interpretation 

of a musical composition (the message) is influenced by the structure of the composition, and 

that the listener’s response to a particular performance of a piece reflects both the musical 

structure as notated in the score and the specific features of the performer’s interpretation.  

The purpose of this paper is to study the processes involved in the musical flow of 

information from the composer through the performer to the listener. The vast majority of 

empirical research in the field focuses exclusively on one or two of these aspects of musical 
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communication (e.g., Gabrielsson & Juslin, 1996; Juslin & Timmers, 2010). Here we explicitly 

attempt an empirical study of all three components in the communicative chain. In doing so, we 

first have to ask what is communicated and second, how it is communicated. It is the primary 

aim of the present study to address the latter question. First, however, we must establish our 

assumptions about the content of musical communication. In doing so, we begin with the 

listener, and then consider the structure of the composition, and finally the role of the performer.  

 

The listener: Emotion, tension, expectation 

Previous research suggests that listeners value music primarily for its impact on mood and 

emotion (Juslin & Laukka, 2004) and the content of musical communication is thought to be 

primarily affective rather than referential (Hanslick & Cohen, 1854; Meyer, 1956). There exist 

several mechanisms by which music can have an effect on the emotional state of listeners (Juslin 

& Vastfjall, 2008). Of these, we focus on expectation as a vehicle for studying the 

communication of emotion by music because it is more directly based on the structure of the 

music than other mechanisms (such as episodic memory or evaluative conditioning, see Juslin & 

Vastfjall, 2008), thereby facilitating the establishment of a link between compositional structure, 

performance and perception. Musical structures generate expectations for how the music will 

continue, and these expectations change dynamically as the musical structure unfolds in time. At 

any given moment, the music may confirm or violate the expectations of a given listener to 

different degrees. Real-time responses to music can be used to measure this continuous process 

(Krumhansl, 1996, 2002; Toiviainen & Krumhansl, 2003; McAdams, Vines, Vieillard, Smith, & 

Reynolds, 2004). In particular, the perception of musical tension, including its connection to 

aesthetic responses by listeners, has been studied extensively (Farbood, 2012; Fredrickson, 1995, 
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2000; Madsen, 1997; Madsen, Brittin, & Capperella-Sheldon, 1993; Madsen & Fredrickson, 

1993). 

Expectation is thought to be an important cognitive mechanism in language processing 

(Cristia, McGuire, Seidl & Francis, 2011; DeLong, Urbach & Kutas, 2005; Hale, 2006; Levy, 

2008; Saffran, 2003), visual perception (Bar, 2007; Bubic, von Cramon & Schubotz, 2010; 

Egner, Monti & Summerfield, 2010) and motor sequencing (Wolpert & Flanagan, 2001). It is 

also an important psychological process determining the aesthetic experience of music listeners 

(Hanslick & Cohen, 1854; Huron, 2006; Meyer, 1956). In particular, violations of expectation 

are thought to lead to increases in tension (Meyer, 1956), as reflected in increased physiological 

arousal (Egermann, Pearce, Wiggins, & McAdams, 2013; Steinbeis, Koelsch, & Sloboda, 2006). 

Analysis of behavioral ratings of tension experienced while listening to Mozart’s Piano Sonata in 

E-flat major, K. 282 (Krumhansl, 1996, 2002) showed that tension ratings covaried both with 

surface features, such as pitch height (register), and features associated with the stability of a 

pitch within a given tonal framework (tonal stability) or the tendency for certain pitches in a 

melody to move toward other pitches to a greater or lesser extent (tonal attraction) (Lerdahl, 

2001). The latter features are likely to contribute to an experience of expectation violation in 

listeners enculturated with Western tonal music (Lerdahl & Krumhansl, 2007). However, a full 

model of musical expectation depends not only on the degree of tonal stability but also on the 

schematic effects of long-term musical exposure and on the presence of repeated or elaborated 

structures (e.g., motifs, theme and variation) within a musical work (Pearce, 2005). The goal of 

the present research is to examine the hypothesized relationship between the expectations 

generated by such a model and behavioral ratings of tension in musical listening. 
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The composition: Musical structure, predictability and expectation 

Expectation can be viewed as a process of probabilistic prediction based on knowledge of 

musical structure acquired through statistical learning (Huron, 2006; Meyer, 1956; Pearce, 2005; 

Pearce & Wiggins, 2012). Note that similar processes are thought to operate in language 

perception (Saffran, 2003; Cristià et al., 2011; Hale, 2006; Levy, 2008) and other areas of 

perceptual processing (Friston, 2010; Perruchet & Pacton, 2006). There is empirical evidence 

that listeners acquire expectations for musical events through implicit statistical learning of 

regularities through long-term exposure to music (Krumhansl, 1990), and listeners’ expectations 

also reflect the learning of statistical properties of the local context (Oram & Cuddy, 1995; 

Saffran, Johnson, Aslin, & Newport, 1999; Tillmann, Bharucha, & Bigand, 2000; Tillmann, 

Bigand, & Pineau, 1998). This process of statistical learning allows listeners to generate 

probabilistic predictions about forthcoming musical events, dependent on the prior musical 

context and previously acquired schematic expectations for the musical style in question 

(Krumhansl, Louhivuori, Toiviainen, Järvinen, & Eerola, 1999; Pearce, Ruiz, Kapasi, Wiggins, 

& Bhattacharya, 2010; Pearce & Wiggins, 2006). Consistent with an approach based on 

statistical learning, melodic pitch expectations vary between musical styles (Krumhansl et al., 

2000) and cultures (Carlsen, 1981; Castellano, Bharucha, & Krumhansl, 1984; Eerola, 2004; 

Kessler, Hansen, & Shepard, 1984; Krumhansl et al., 1999), throughout development 

(Schellenberg, Adachi, Purdy, & McKinnon, 2002), and across degrees of musical training and 

familiarity (Krumhansl et al., 2000; Pearce et al., 2010). 

In this study, we use a computational model of auditory expectation, IDyOM (Information 

Dynamics of Music), to specify precise, quantitative measures of structural predictability for 

each note in a melody. The model itself has been presented (Conklin & Witten, 1995; Pearce, 
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2005) and tested (Egermann et al., 2013; Hansen & Pearce, 2014; Omigie, Pearce & Stewart, 

2012; Omigie, Pearce, Williamson, & Stewart, 2013; Pearce, Conklin, & Wiggins, 2005; Pearce 

et al., 2010; Pearce & Wiggins, 2004, 2006), so we restrict ourselves to a summary of features 

that are most relevant for the present study.  

The central feature of the model is that it learns about sequential dependencies between notes 

in an unsupervised manner through exposure to melodies. In the context of this research, the 

model focuses specifically on the pitch of each note in a melody. Given such a representation of 

music, the model returns a conditional probability distribution of pitches for each note, given the 

preceding sequence of pitches. Two information-theoretic measures are derived from the 

predictive distribution generated for each note: entropy is a measure of the uncertainty of the 

predictive distribution associated with the melodic context (maximum entropy occurs for a 

distribution in which every pitch is equally likely to follow the context) whereas information 

content (IC, the negative log probability) is a measure of the unexpectedness of the note that 

actually follows. 

Entropy reflects the uncertainty of the prediction before the next note is heard, whereas 

information content reflects how unexpected the next note is once it actually happens. If entropy 

is high, then every possible continuation of the sequence is equally likely to the model (i.e., it is 

very uncertain about the continuation). Alternatively, a very low entropy signifies that one note 

is highly expected, and other possibilities are very unexpected (i.e., the model is very certain). In 

this latter situation, if the certain prediction is correct then the next note is highly expected and 

the information content is low; if, however, the certain prediction is incorrect then the next note 

is unexpected and the information content is high. Therefore, accurate predictive models are 

associated with both low entropy predictions and low information content outcomes. For 
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example, a listener who is sure that the pitch of the next note in a melody will be a middle C 

(261.63 Hz) and not any other note has low predictive uncertainty at that point in time (before 

the next note is heard); another listener to the same melody who expects to hear any pitch 

between middle C and the A above it (440 Hz) with equal likelihood has higher predictive 

uncertainty. Note that predictive uncertainty is distinct from the expectedness of the event that 

actually happens. Our first listener is highly certain about the next event in the melody but may 

be incorrect (and surprised) if the note that actually follows is not a middle C. 

The model is based on a Markov or n-gram model (Manning & Schütze, 1999, chap. 9), 

which computes the conditional probability of a note given the n – 1 preceding notes in the 

melody. The quantity n – 1 is called the order of the model, and basic Markov models have a 

fixed order (as a result, they suffer from the problem that previously unseen notes are estimated 

with a probability of zero). Basic Markov modeling is extended in two ways. First, the model is 

of variable order, computing a weighted average of probabilities from models of different order. 

This allows the system to benefit both from the structural specificity of longer (but relatively 

rare) contexts and the statistical power of more frequent (but less specific) low-order contexts. It 

also allows the model to generate probabilities for notes that have yet to appear in a given 

context. 

Second, because perceptual representations of music are multidimensional (e.g., Levitin & 

Tirovolas, 2009; Shepard, 1982), the system has the ability to use a combination of different 

features, or viewpoints, to predict the properties of notes (Conklin & Witten, 1995; Pearce et al., 

2005). For example, in predicting the pitch of the next note, the system may combine models 

trained on representations of chromatic pitch, scale degree (the position of the pitch in the tonal 

scale), pitch interval (the distance in pitch between two consecutive notes) or contour (whether 
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the pitch rises, falls, or remains the same). Two viewpoints may be linked (A × B, where A and 

B are the source viewpoints), so that notes are represented by pairs of values. For example, a link 

between pitch interval and scale degree would represent each note as a pair of values 

representing, respectively, the pitch interval and the scale degree of that note. 

A separate model is used for each viewpoint specified, each of which generates a probability 

distribution. These distributions are subsequently combined using a weighted geometric mean 

into a single probability distribution governing the pitch of the next note. The viewpoints used 

may be specified by hand or optimized using a hill-climbing search through the space of possible 

sets of viewpoints for sets that minimize the information-content (or maximize the predictability) 

of the music being studied. The hill-climbing procedure starts with an empty set of viewpoints 

and at each step makes the single addition or deletion of a viewpoint, if any exist, which reduces 

the average information content of the musical piece by the greatest amount (Pearce, 2005).1  

In this research we use two sets of viewpoints: first, a single default linked viewpoint 

combining pitch interval and scale degree (i.e., each note is represented as a pair of values – the 

first reflects the pitch interval in semitones from the previous note, the second reflects the 

chromatic scale degree from 0, the tonic, to 11, the leading tone). Second, we examine an 

optimized model in which viewpoints were selected through hill-climbing. The entire set of 

viewpoints considered and the optimized viewpoints selected are listed in the Appendix. 

                                                                            
1 It is possible that, during the hill-climbing procedure, the addition of subsequent viewpoints 

renders an existing one redundant or incompatible, so deleting it increases prediction 

performance (reducing information content). This was not the case for the optimized model used 

in the present paper (but see Pearce, 2005, p. 163, for an example). 
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Regardless of the model’s configuration, its output is always a conditional probability 

distribution governing the pitch of the next note in a melody. As noted above, the entropy of this 

distribution reflects the predictive uncertainty of the model, whereas the information content (the 

negative log probability) of the note that actually follows reflects the unexpectedness of that 

note. 

 

The performer: Improvisation and expressive performance timing 

We turn now to the performer, the expressive intermediary between the musical structures 

created by the composer and the acoustic signal perceived by the audience. A substantial body of 

research on music performance has shown that performers’ interpretive choices are informed by 

the formal structure of the musical pieces. For instance, it is well-established that performers, 

similarly to speakers (Cooper & Danly, 1981), tend to slow down at sectional boundaries, a 

process called “phrase-final lengthening” (Clarke, 1989; Palmer, 1989; Repp, 1990; Todd, 1985), 

and that the magnitude of this deceleration tends to correspond to the hierarchical importance of 

the boundaries (Shaffer & Todd, 1987). Similarly, the music communication hypothesis (Clarke, 

1985, 1988; Palmer, 1989, 1996; Repp, 1992, 1995) suggests that tempo fluctuations are a means 

of conveying information about the grouping structure of a piece. Thus, the performer plays a 

crucial role in clarifying the musical structure for the audience. 

Although tempo fluctuations on both local and large-scale levels have been identified as a 

major expressive device in music performance, most pieces in the Western repertoire specify a 

regular rhythmic structure, which greatly restricts the performers’ latitude regarding note 

durations. Consequently, the link between information-theoretic measures derived from the 

music score and performance timing cannot be analyzed optimally. A few studies have addressed 
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this limitation by focusing on improvised performance (e.g., Large, Palmer, & Pollack, 1995), 

but this has the drawback, from the viewpoint of Kendall and Carterette’s (1990) model of 

musical communication, of amalgamating the composer and performer functions, making it 

impossible to isolate the individual characteristics associated with each component. In order to 

circumvent this issue and investigate performance-induced effects on listeners’ aesthetic 

responses, we focused on one particular genre of lute and harpsichord compositions, cultivated 

especially in France between 1650 and 1720, known as the unmeasured prelude. The 

unmeasured prelude is a semi-improvisatory genre that does not specify a rigid metrical 

framework—a pattern of strong and weak beats—and even leaves the durations of individual 

notes unspecified in many instances. It thus allows for a much wider variability in terms of 

expressive timing (i.e., variations in tempo made by a performer, which may differ between 

performances) than most Western musical genres (Gingras, Asselin, & McAdams, 2013), 

providing an ideal repertoire for investigating the links between information-theoretic measures 

derived from the musical score, expressive timing in performance, and listeners’ aesthetic 

responses. 

Following the musical communication hypothesis described above, we hypothesize that 

performers (just like listeners) are influenced by the predictability of the music they are 

performing. In perception, it has been shown that unexpected events take longer to process than 

expected ones (Bharucha & Stoeckig, 1986, 1987; Omigie et al., 2012; Pearce et al., 2010). We 

predict that this effect will extend to performance such that structural expectations influence 

expressive timing. In particular, we hypothesize that unexpected structures will be associated 

with a slowing of tempo and with a greater variability in expressive timing. Our decision to study 

harpsichord performance was also motivated by a concern to minimize the role of acoustic 
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intensity changes, since these are thought to be major influences on perception of affect and 

tension (Ilie & Thompson, 2006; Krumhansl, 1996). Given that the harpsichord has a relatively 

small dynamic range (Fletcher, 1977; Penttinen, 2006), particularly with respect to the 

performance of a particular note or chord, we expected that the nature and roles of performance 

timing would be readily detectable. 

 

The present study 

The purpose of the present research is to elucidate the cognitive mechanisms engaged in the 

model of musical communication proposed by Kendall and Carterette, involving the flow of 

information from the composer via the performer to the listener. More precisely, the cognitive 

mechanism we seek to elucidate is expectation, which we conceive as a dynamic process of 

predicting future elements in a sensory stimulus using both the preceding context within the 

stimulus and the prior experience of the observer (Bubic et al., 2010). We simulate expectation 

formally in terms of the information-theoretic quantities information content (reflecting the 

unexpectedness of an event) and entropy (the predictive uncertainty about which event will 

follow, before it appears). We derive these quantities using a computational model of auditory 

expectation (IDyOM) which has been shown to account accurately for listeners’ pitch 

expectations in music (Egermann et al., 2013; Hansen & Pearce, 2014; Pearce et al., 2010; 

Pearce & Wiggins, 2006; Omigie et al., 2012, 2013). In this work we examine the role of 

expectation, as a cognitive process, in musical communication. Specifically, we hypothesize, on 

the basis of previous research (Meyer, 1956; Narmour, 1990; Huron, 2006), that composers 

introduce patterns that confirm or disconfirm expectations to different degrees, that performers 

perceive this ebb and flow of predictability and reflect it in their expressive performance, and 
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that listeners, in turn, experience heightened tension and relaxation in expressive performances at 

points where the process of expectation is, respectively, disrupted (by high unexpectedness or 

uncertainty) or stabilized (by low unexpectedness or uncertainty). 

We conducted our investigation in two studies (Experiments 1 and 2) in which we report 

time-series analyses of continuous processing of an unmeasured prelude for harpsichord by 

Louis Couperin (1626-1661), the Prélude non mesuré No. 7 (a score excerpt is provided in 

Figure 1). This prelude comprises a single unaccompanied melodic line in which pitches unfold 

successively, although harmonies are sometimes implied through the use of arpeggiation (a 

melodic succession creating the semblance of chords) and sustained notes.2  

 

[Insert Figure 1] 

 

Experiment 1 examines relationships between the changing structure of the music 

(specifically, structural predictability as assessed by the computational model of auditory 

expectation described above) and expressive timing in performances of the piece. Experiment 2 

examines the impact of both structural predictability and expressive timing on the emotional 

experience of listeners, as measured by continuous tension ratings. As mentioned above, the 

                                                                            
2 In terms of musicologically conceived tension, the structure of the piece progresses from 

maximum stability to maximum instability and back based on its gestural structure (stable 

arpeggios enclosing less stable melodic passages) (see Goodchild, Gingras, & McAdams, 2015). 
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unmeasured prelude is an ideal genre to address these issues, due to the absence of a rigid 

metrical framework.  

Melodic expectations, tempo variations in performance, and perceived musical tension 

exemplify the three vertices of a relationship involving musical structure, expressive strategies, 

and aesthetic responses. The present study focuses on these three parameters, aiming to quantify 

the individual components and assess the nature and directionality of their relationships with 

each other. We hypothesize that unexpected events (those with high IC) and points of predictive 

uncertainty (high entropy) will be associated with a slowing down of performance timing and 

greater variability between performers. In turn, we hypothesize that high IC and high entropy, in 

concert with their influence on performance timing, will be associated with a greater perceived 

tension in listeners. 

 

EXPERIMENT 1: PERFORMANCE TIMING 

Methods 

Participants and procedure 

Twelve professional harpsichordists, five female and seven male, participated in the study. 

They were professional harpsichordists from the Montreal (Canada) area or harpsichord students 

at McGill University in Montreal. Their average age was 39 years (range 21-61). They had 

played the harpsichord for a mean duration of 22 years (range 6-40). Seven had previously won 

prizes in regional, national, or international harpsichord competitions.  

The harpsichordists were provided with the score of the Prélude non mesuré No. 7 by Louis 

Couperin 4-6 weeks prior to the recording session. They performed the piece twice (with no 
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special directives) using the score. Performances took place in an acoustically treated studio on 

an Italian-style Bigaud harpsichord (Paris, Heugel) with two 8-foot stops. Only the back stop was 

used for the experiment. This harpsichord was equipped with a MIDI console, allowing precise 

measurement of performance parameters (note onset/offset and key press velocity).  

The audio signal was recorded through two omnidirectional microphones (MKH 8020, 

Sennheiser Electronic GmbH, Wedemark, Germany). The microphones were located 1 m above 

the resonance board and were placed 25 cm apart. The audio and MIDI signals were sent to a PC 

computer through an RME Fireface audio interface (Audio AG, Haimhausen, Germany). Audio 

and MIDI data were then recorded using Cakewalk’s SONAR software (Cakewalk, Inc., Boston, 

MA) and stored on a hard disk. 

 

Analysis of the performance data 

Note onsets and offsets were extracted from the MIDI data of the 24 performances and 

matched to the score using an algorithm developed by Gingras and McAdams (2011), which has 

been shown to be suitable for ornamented harpsichord pieces. The mean error rate per 

performance, defined as the proportion of wrong notes or missing notes relative to the total 

number of score notes, was 0.54% (range: 0-2.14%). This low error rate is comparable to the 

rates reported by Repp (1996) and Goebl (2001) in studies on professional piano performance, 

suggesting that the performance data collected for the current study were of suitable quality for 

assessing performance timing in professional harpsichord performance. 

Tempo patterns were determined through inter-onset intervals (IOI). IOIs were measured as 

the time interval between the onsets of successive notes, as obtained from the MIDI data for each 

performance of the piece. Each of the 140 note events in the Prélude was used to generate a 
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series of IOIs. The IOI for the last note of the piece was taken to be the onset-offset time interval. 

Although this interval was on average more than four times as long as the IOI of any other event 

in the piece, it was found by several additional analyses that excluding the last note from the data 

did not change optimized models. There were very few note events for which no timing data 

were available (0.60% of the total number of events): 18 wrong or missing notes, plus 2 complex 

ornamentations for which a precise onset could not be computed. IOIs for these notes were 

interpolated by using the average of the data for all the other performers, each note onset in the 

MIDI data having been previously unambiguously matched to a score event in the piece. 

The IOI time series thus obtained for both performances by each harpsichordist yielded 12 

within-performer average IOI series that were used in all subsequent analyses in Experiment 1. 

These within-performer IOI series were then themselves averaged across performers for some 

analyses. Inter-performer variability was assessed event by event to create a time series of the 

coefficient of variation (CV) of the IOIs (the ratio of the standard deviation to the mean for each 

event considering all 12 within-performer IOI series). 

 

Information-dynamic analysis  

The computational model described above (Pearce, 2005) was used to generate an 

information-dynamic analysis of the Prélude, including measures of the information content 

(unexpectedness) and entropy (uncertainty) for each note in context, given the model. We use 

two separate models with distinct representations. The first uses a default feature consisting of a 

single linked viewpoint combining pitch interval and scale degree (i.e., each note is represented 

as a pair of values – the first reflects the pitch interval in semitones from the previous note, the 

second reflects the chromatic scale degree from 0, the tonic, to 11, the leading tone). Because the 
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piece is nonmodulatory, the mapping between chromatic pitch and scale degrees was treated as 

consistent throughout the piece. This viewpoint allows the model to learn about dependent 

melodic and tonal relations in the sequential structure of the music. Previous research has found 

support for the influence of these two factors on pitch expectations in tonal melody (Hansen & 

Pearce, 2014; Pearce et al., 2010; Pearce & Wiggins, 2006; Schellenberg, 1997). The second 

approach uses an optimized set of viewpoints selected using the hill-climbing procedure 

described above (see also Appendix). 

 

Time-series analysis 

A detailed presentation of time-series analysis (TSA) techniques in the study of continuous 

musical events is available elsewhere (Bailes & Dean, 2012; Dean & Bailes, 2010). This large 

and long-standing suite of techniques is appropriate for use with data that are serially correlated 

(thus not independent measures), unlike most common statistical approaches that require 

independence of the multiple data measures to be studied. TSA is thus a specialized form of 

regression analysis that can take proper account of autocorrelations, which standard techniques 

fail to do. Autoregressive (AR) TSA can model the influence of external predictor variables (X), 

such as the information-dynamic parameters just mentioned, or acoustic properties such as 

intensity. Data to be modeled need to be statistically stationary, lacking trends. In essence 

stationarity means that as the data series fluctuates, its mean and variance remain constant, and 

the autocorrelation between measures made at any fixed time separation remains constant (as 

revealed in the so-called autocorrelation function). This is most commonly achieved by 

differencing the time series, that is, constructing a new series comprised of the differences 

between successive members of the original (which is thereby one value shorter). For a series 
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called seriesname, we refer to this differenced series as dseriesname, and of course it can be used 

to reconstruct the original series, so that models of dseriesname also provide predictions for 

seriesname and thus are informative about its predictors. Model selection is based on parsimony 

and information criteria. Here, we used the Bayesian Information Criterion (BIC; Schwarz, 

1978). A lower BIC value indicates a better model for a given data series (BIC values cannot be 

meaningfully compared between models of different data series). The absolute value of the BIC 

is not informative. The quality of a model is assessed by a range of criteria, including the nature 

of the residual series and the degree of fit of the model to the data. Residuals, corresponding to 

the variance associated with each data point that is not explained by the model, should 

themselves lack autocorrelation and be normally distributed around 0 (this is also known as a 

Gaussian white noise distribution). Otherwise they still contain significant information that 

should be modeled. The degree of fit is assessed using the log-likelihood of the model. 

We refer to our standard TSA analyses as ARMAX: AutoRegressive Moving Average models 

with eXternal predictors. We use moving average (MA) components in some cases, but they can 

be replaced by autoregressive (AR) terms if necessary by a re-parameterization, and so we do not 

discuss them in detail. TSA can also assess factors that may have mutual influence, such as 

perception of loudness and pitch, and consider their possible influences on each other at the same 

time as their influences on another measured variable. This is done by Vector Autoregression 

(VAR), in which multiple variables may be constrained either as exogenous (similar to a 

psychological independent variable) or endogenous (similar to a dependent variable). Note that 

all variables were initially included in the VAR analyses; the order of addition and removal of 

variables has no influence on the final models. This permits a direct comparative assessment of 

the predictive utility of the selected variables. Additional specific details are provided below as 
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appropriate, and the reader is referred to standard textbooks on time-series analysis, as well as 

the summary guidance in Dean & Bailes (2010), Bailes & Dean (2012), and Dean, Bailes, & 

Dunsmuir (2014a,b). All time-series analyses presented here were conducted with the 

commercial software STATA (StataCorp LP, College Station, TX). All statistical analyses 

involved principled manual processes and decisions; there was no automation of model selection.  

 

Results 

Our goal in Experiment 1 is to examine a hypothesized relationship between variations in 

expressive timing in performance and changes in melodic predictability based on the information 

content (IC) and entropy estimated by the IDyOM model. First, we examine the patterns of IC 

and entropy; second, we describe how we measure variations in expressive timing; and finally, 

we use time-series analysis to examine the extent to which changes in IC and entropy account for 

changes in performance timing. 

 

Information-theoretic structure of the piece 

As described above, we consider the output of two IDyOM models, using default and 

optimized viewpoints. The IC and entropy values estimated by the models are shown in Figure 2. 

It can be seen that the IC is on average lower for the default compared to the optimized 

viewpoint (although the two are highly correlated). This is true both in absolute terms and in 

relation to the entropy, indicating that the optimized set of viewpoints allows the model to 

predict the pitch of the individual notes in the Prélude more accurately than the default 

viewpoint.  
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[Insert Figure 2] 

 

Overview of the performance timing data 

The average duration of a performance (from first to last onset) was 59.9 seconds for the 

Prélude (range: 39.1-84.2 s). These durations corresponded to a mean tempo of 149.2 

events/minute (range: 99.8-214.7). Figure 3 shows the mean IOI for each note event, with the 

shaded area corresponding to the standard deviation. In contrast to previous studies on measured 

organ music, which reported high correlations for timing patterns within and between performers 

(Gingras, 2008), we found a moderate mean correlation of 0.54 (SD = 0.18, df = 138) between 

pairs of performances of the Prélude played by different performers. Note that even though these 

correlations may be influenced by autocorrelation (the tempo is likely to be more similar for 

nearby note events than for temporally distant ones), the moderate values observed for the 

Prélude imply a fair amount of dissimilarity among the performances. Interestingly, the mean 

correlation between performances by the same performer reached 0.87 (SD = 0.10, df = 138). 

Overall, these analyses suggest that although both recordings from the same performer generally 

displayed similar timing patterns, there was a fair amount of variation among performers (see 

Gingras et al., 2013, for a detailed investigation of the individual variation between performers). 

 

[Insert Figure 3] 

 

Prediction of performance timing and inter-performer timing variability 
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The IOI time series was not statistically stationary (which, as mentioned, is required for 

reliable time series analysis). However, its first difference (dIOI) was stationary, provided that 

the IOI of the final note of the piece was excluded; in spite of the exceptional nature of the 

timing of the final note, its inclusion or exclusion in the time series models did not change the 

specifications of the optimal form. Thus initial modeling of the IOI used the first differenced 

versions of the relevant data streams, the dIOI and those from the Information 

Content(IC)/Entropy analysis in IDyOM. IOI itself showed notable partial autocorrelations at 

lags 1, 6, and 7 (corresponding to an autocorrelation between the current note duration and those 

of notes located 1, 6, and 7 events earlier, respectively). Further analyses showed that the 

periodicities at 6 and 7 events were related to the arpeggio figurations found at the beginning and 

end of the piece. The opening arpeggio pattern contains a 6+6 subdivision (see Figure 1), 

whereas the final arpeggio pattern is characterized by a 6+7 subdivision, and these subdivisions 

were generally clearly delineated by the performers. Moreover, the significant partial 

autocorrelations at lags 6 and 7 disappeared when these arpeggio patterns were excluded from 

the analysis. Graphs of the IOI and IC series showed that long IOIs often anticipate peaks in IC 

by about one event, whereas they seem to coincide with troughs in entropy, consistent with our 

prediction that (statistically) unexpected events, even though they are already known to 

performers, are associated with slowing.  

Modeling of dIOI indicated that leads (F in Table 1), corresponding to subsequent events of 

the IDyOM data streams, were more influential than lags (earlier events). For both default and 

optimized models, dEntropy (the first difference of the Entropy time series) was not influential, 

but lead 1 of dIC (the first difference of the Information Content time series) was. Entropy 

components were considered as predictors in all cases, but were dismissed during the model 
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optimization process on the basis of BIC. In other words, whereas adding a predictor to a model 

nearly always enhances its fit, this improvement may not be sufficient to justify the inclusion of 

an additional predictor to the model (as judged here by the BIC), and hence it is excluded. 

 

[Insert Table 1] 

 
Once a good model of a time series is obtained, it shares the autocorrelation features of the 

data series. Thus measurement of correlation between model and data now becomes informative, 

although the value should not be viewed as identical in nature to a correlation between sets of 

independent variables. The correlations were similar for the default and optimized models 

suggesting little advantage of the optimized set of features. Figure 4 compares the dIOI to its 

prediction from the information content of the optimized model, showing the good fit achieved.  

 

[Insert Figure 4] 

 

While the dEntropy was not a significant predictor of dIOI, we hypothesized that it might be a 

stronger predictor of inter-performer variability, and this idea was supported in the best model 

we obtained. Thus we determined a time series for the coefficient of variation of the IOIs across 

performers (abbreviated CV-IOI) and developed a model of it. CV-IOI was stationary and 

autoregressive, and hence could be modeled without differencing. By a similar analytical process 

to that just outlined, we found that in our best model CV-IOI was predicted jointly by lead 1 of 

IC for the optimized model and leads 1 and 2 of its entropy, with autoregressive terms. This 
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model (also shown in Table 1) provided satisfactory residuals, and the modeled-observed 

correlation was 0.53 (see Figure 5 for the comparison of modeled and observed time series). 

Once again, the model was substantially better than the best purely autoregressive model, 

suggesting that our predictors do indeed capture variation in the data. 

 

[Insert Figure 5] 

 

Discussion 

As expected, changes in information content predict performance timing. Specifically, 

performers appeared to slow down in anticipation of unexpected notes (notes characterized by a 

high IC). No differences appeared between the default and optimized versions of the IDyOM 

model. Entropy was not a significant predictor.  

Turning to inter-performer variability, both IC and entropy were predictors. Therefore, 

performance timing appears to be more variable among performers around points of high 

uncertainty and unexpectedness in the musical structure. Modeling of two individual 

performances that represented extremes of duration (not shown) revealed that they could be quite 

well fit by the standard models shown in Table 1, supporting our interpretations. 

An alternative explanation for the link we observed between variations in expressive timing in 

performance and entropy would be that performers are constrained to slow down at more 

challenging points in the piece (due to technical difficulties) and that these challenging points 

likely correspond to points of greater uncertainty in the piece. However, this explanation seems 

implausible considering that all performers were professional harpsichordists who received the 
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score of the piece several weeks prior to the recording session, and that the error rates were very 

low. Furthermore, previous research has shown that, among expert populations such as 

professional performers, trade-offs between timing and accuracy only become apparent when 

individuals perform at the limit of their abilities and under strict temporal constraints 

(Pfordresher, Palmer, & Jungers, 2007). Our subjective impression from listening to the excerpts 

is that the performers were mostly or fully in control of the timing strategies they employed, so it 

is very unlikely that the performers would be constrained to slow down at certain points due to 

technical difficulties (besides, the piece itself would not be considered to be particularly 

challenging for professional harpsichordists, as author R.T. Dean, himself a professional pianist, 

can confirm). 

In Experiment 2, we examine the impact of both structural predictability and performance 

timing on the experience of musical tension in harpsichordists, other musicians, as well as 

nonmusicians listening to the performances analyzed in Experiment 1. To do so, we propose to 

use IC and entropy as model-based predictors of IOI and musical tension (using our information-

dynamic model of melodic structure), and IOI as an expressive, performance-derived predictor of 

musical tension. 

 

EXPERIMENT 2: PERCEIVED TENSION 

Methods 

Participants and stimuli 

Ten harpsichordists, 20 nonharpsichordist musicians, and 20 nonmusicians were invited to 

listen to recordings of the performances collected in Experiment 1. The harpsichordist listeners, 
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eight male and two female, had an average age of 31.6 years (range: 23-38). None of these 

harpsichordists had participated in Experiment 1. The musician participants, 12 male and eight 

female, had a minimum of two years in undergraduate music studies and had an average age of 

26.7 years (range: 20-47). The nonmusician participants, 12 male and eight female, had less than 

two years of musical training in early childhood and had an average age of 26.6 years (range: 20-

48). Listeners received monetary compensation for their participation in the study. 

Only one recording from each performer who participated in Experiment 1 was used, yielding 

a set of 12 stimuli, each from a different performer. Performances were chosen subjectively as 

the best one (out of two for each performer) in terms of recording quality and number of 

performance errors. 

 

Procedure 

All nonharpsichordist musicians and nonmusicians, as well as five harpsichordists were tested 

at McGill University, Montreal, Canada. Because of the difficulty of recruiting a sufficient 

number of Montreal-based harpsichordists who had not participated in Experiment 1, an 

additional five harpsichordists were tested at Goldsmiths, London, United Kingdom. Although 

some minor technical details differed between the two experimental setups, the experimental 

procedure was identical. 

In both cities, the experiment took place in a double-walled IAC sound-isolation chamber; the 

sound booth models used were model 120-act3 in Montreal and model 1200-A in London (IAC 

Acoustics, Bronx, NY). In Montreal, participants performed the experiment on a Macintosh G5 

computer running OS 10.6.8 (Apple Computer, Cupertino, CA). Sounds were amplified through 
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a Grace Design m904 monitor (Grace Digital Audio, San Diego, CA) and presented over 

Sennheiser HD280 Pro headphones (Sennheiser Electronic GmbH, Wedemark, Germany). In 

London, participants performed the experiment on a MacBook Pro 15” running OS 10.6.3 

(Apple Computer, Cupertino, CA). Sounds were played through an Edirol UA-4FX USB 

external sound card (Roland Corporation, Shizuoka, Japan) and presented over Sennheiser 

HD202 headphones (Sennheiser Electronic GmbH, Wedemark, Germany). 

All participants passed an audiogram to ensure that they had normal hearing. The musical 

excerpts were presented at a comfortable listening level that was kept constant for all 

participants. Participants used a slider to continuously rate the perceived musical tension of each 

performance. The slider was equipped with an elastic rubber band to provide feedback through 

physical resistance as it was moved toward higher tension ratings. The slider was connected to an 

AtoMIC Pro analog-to-MIDI converter (Ircam-Centre Pompidou, Paris). The computer interface, 

programmed in the PsiExp environment (Smith, 1995), provided instructions on the screen and 

allowed the participant to advance through the trials by clicking on an on-screen button with the 

mouse. Participants were instructed to hold the slider box on the desk or on their lap and to move 

the slider forward (away from themselves) to indicate higher perceived tension and backward 

(toward themselves) to indicate lower perceived tension. They were asked to use the full range of 

the slider for at least one performance during the whole experiment. 

The experiment was divided into two parts. During the first part (two practice trials), the 

experimenter was present to answer questions. The practice performances were taken from the 

set of 12 performances that were not used in Experiment 2 (see section “Participants and 

stimuli”). The participants were instructed that the two practice trials were representative of the 

range of performances in the main part of the experiment. The data from the practice trials were 
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not analyzed. The definition of musical tension was left open due to the wide range of 

participants involved with the experiment. The main experimental block consisted of one 

performance by each performer, interspersed with 15 s of nature sounds as a short break. The 

order of performances was randomized for each participant. Once the experiment was completed, 

participants filled out a questionnaire. The entire experiment lasted approximately 30 minutes. 

 

Data analysis 

For each participant, a log file recorded the tension slider ratings continuously over time for 

each performance. Due to the force exerted by the elastic band when stretched at maximum, a 

block was inserted into the slider, resulting in MIDI ratings ranging between 54 and 127, which 

were then range normalized by participant. We used the matched score of the MIDI data of the 

performances to establish a correspondence between MIDI note onset events and score. The 

tension values were averaged over each score event. 

Statistical models predicting perceived tension on the basis of the performance timing (IOI) 

and IDyOM parameters (IC and entropy) only made use of the IOI data from the 12 

performances heard by participants in Experiment 2 (i.e., within-performer average IOI time 

series were not used here, in contrast to Experiment 1). Here, we also used VAR to provide the 

Granger Causality test (Granger, 1969, 2004), which yields a principled analysis of the 

directionality of the relationships between factors that might be mutually influential in a pair or 

group of time series (taking account of the autocorrelations). In other words, Granger causality 

analysis shows which time series (for instance IOI and IC), provide information that can predict 

future values of other time series, which is the main purpose of our analyses. Granger causality 

analyses were conducted to determine whether IOI and/or IDyOM parameter time series were 
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significant predictors of future values of the perceived tension profiles. Other aspects of the time 

series analysis follow the procedure described in Experiment 1. 

 

Results 

As shown in Figure 6, the profiles of perceived tension for the musician and nonmusician 

groups were somewhat different, whereas the harpsichordists were closely similar to the 

nonharpsichordist musicians. Thus we first modeled the possible impact of the IOI and IDyOM 

parameters on the perceived tension profiles of each participant group independently.  

 

[Insert Figure 6] 

 

The tension profiles showed strong autocorrelation. The first differenced profile was 

stationary in the case of musicians and harpsichordists and could be modeled satisfactorily. VAR 

analyses showed that IDyOM parameters had predictive influence, and that they provided a fair 

model of the tension profile. However, when they were taken together with the IOI, the results 

showed that only the IOI was required for the optimal model of the tension profile, which was 

significantly improved. In other words, IC or entropy were not required predictors. Moreover, 

unlike IC or entropy, IOI was a Granger causal predictor of the tension profile.  

Because the VAR analysis, and in particular Granger causality, provides a direct comparison 

of the IOI and information-theoretic series as predictors of perceived tension, it is worth 

illustrating this further, taking as example the case of the musicians as auditors. We optimized a 

VAR model (of the first differenced variables) in which all four time series (Tension, IC, entropy 
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and IOI) are considered as endogenous. That is, in the model they may each influence each other 

from a statistical perspective, and a joint model of all four variables is constructed. This is the 

most conservative way of evaluating the model, because information content and entropy are 

computed directly from the score of the Prélude and are thus fixed (exogenous), and cannot be 

influenced by the other components. We obtain a reasonable model of dTension, with R2 = .40 

for the fit. The Granger analysis shows that the only Granger causal predictor of Tension is dIOI 

(p < .01); the p-values for dIC and dEntropy are not significant (both p-values > .31). 

Furthermore, the coefficients for the dIC and dEntropy series are also not significant at any lag 

included in the model (all p-values >.29). Thus, dIOI is clearly the only useful predictor. Very 

similar results obtain for the harpsichordists as auditors, given the slightly different overall 

model parameters (see below). On the basis of these and other VAR analyses, we then undertook 

ARMAX models comparable to those presented in Experiment 1.  

Table 2 summarizes the best ARMAX time-series modeling results for perceived tension, 

giving white noise residuals. Figure 7 shows the average differenced profile for tension as 

perceived by nonharpsichordist musicians and its prediction on the basis of the best ARMAX 

model. Although harpsichordists showed similar perceived tension profiles to nonharpsichordist 

musicians, the best model for their perception involved the lead 1 ("F") of dIOI rather than its lag 

1 (Table 2). This lead dIOI parameter could not be substituted in models by the IC features that 

predict dIOI (as shown in Table 1).  

 

[Insert Table 2] 
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[Insert Figure 7] 

 

In the case of the nonmusicians’ tension profile, two differencing steps were required to reach 

stationarity. As with harpsichordists and nonharpsichordist musicians, only IOI time series 

showed Granger causality for the tension profiles of nonmusicians. Correspondingly, only IOI 

series had a significant influence, besides autoregression, in ARMAX analysis of stationarized 

tension profiles of nonmusicians (Figure 8). 

 

[Insert Figure 8] 

 

Discussion 

Our analysis of the perceived tension data indicates that it is expressive performance timing 

(analyzed here in terms of IOI time series), rather than information-dynamic parameters such as 

IC and entropy, that directly influences perceived tension for all groups of listeners. Indeed, 

neither IC nor entropy were Granger-causal nor required predictors in statistical models 

predicting perceived tension, whereas IOI (more specifically, its differenced values) entered all 

models. Notably, there is no significant additional influence of IC on the tension values once the 

effect of expressive timing is taken into account, and only expressive timing was a Granger-

causal predictor of perceived tension. However, we have shown in Experiment 1 that IC and 

entropy predict performance timing itself. Similarly, it was confirmed in the analyses of 

Experiment 2 that IC and entropy can predict perceived tension; although they were not required 

predictors, and did not account for any variance above and beyond what is already accounted for 
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by the IOI values (which they predict as shown in Experiment 1). Thus we may most readily 

interpret Experiment 2 as showing that the information parameters (extracted from the score as 

conceived by the composer) influence expressive performance timing (the realization by 

performers), which in turn influences perceived tension (the reception by listeners), embodying 

the tripartite communication model of Kendall and Carterette presented in the Introduction.  

Table 2 also reveals an interesting difference between the harpsichordists’ tension ratings and 

those of the nonmusicians and musicians. Indeed, unlike nonmusicians and nonharpsichordist 

musicians, harpsichordists’ ratings are predicted only by imminent events (reflected in the F or 

‘lead’ term in the TSA) rather than by immediately preceding events (represented by the L or 

‘lag’ term in Table 2). This suggests that harpsichordists’ tension ratings do in fact anticipate 

upcoming events, perhaps due to their greater familiarity with the musical style.  

 

GENERAL DISCUSSION 

To our knowledge, this is the first large-scale study that combines an analysis of expressive 

strategies in performance, melodic expectations (as predicted by a computational model), and 

listeners’ ratings of musical tension in an attempt to characterize the relationships among these 

elements of musical communication. Results show that, in a semi-improvisatory musical genre 

such as the unmeasured prelude, the composed melodic structure, as measured by information-

dynamic parameters, has the capacity to predict local tempo variations in performance. These in 

turn predict the perception of tension by listeners, including harpsichordists, nonharpsichordist 

musicians, and nonmusicians, in broadly similar ways across groups. More generally, our 

findings indicate that, when the constraints on expressive timing in performance introduced by 

notated meter and note duration are removed, the link between melodic structure and expressive 
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timing becomes statistically salient, thus bringing to the fore the close interconnection between 

the dimensions of pitch and time in music.  

Our results thus substantiate the proposed interactions in the tripartite relationship suggested 

by Kendall and Carterette (1990): the cognitive processes involved in the communication 

between composer (via the notated score) and performer, and also the interactive communicative 

effect of the melodic expectations implied by the score, combined with the expressive timing in 

performance, on the listener. Furthermore our findings illustrate that these relationships act in a 

cumulative manner, in which one chain of influence (composer → performer) indirectly affects 

another (performer → listener).  

Our choice of a piece containing a single unaccompanied melodic line, played on an 

instrument with a narrow dynamic range such as the harpsichord, allows us to avoid the 

complexities related to polyphony and harmony and variations in sound intensity, without 

compromising ecological validity. To be sure, our results do not necessarily indicate that melodic 

structure is the main predictor of musical tension. However, because sound intensity and 

roughness were presumably very similar for all performances (besides the limited dynamic range 

of harpsichord music, all recordings were made on the same instrument and under the same 

acoustical conditions), the experiments presented here allow us to understand more precisely the 

influence of pitch predictability and performance timing on perceived tension. In future work, it 

will also be interesting to assess whether sound intensity profiles, even in harpsichord 

performances, have a bearing on the perception of affect, and whether they themselves are 

sufficiently varied across the piece to reflect any influence of the flux of information content. 

Regardless of whether variations in intensity in harpsichord performances are perceived by 

listeners, the fact that harpsichordists appear to display individual velocity profiles (Gingras et 
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al., 2013) and that they tend to play an emphasized voice with higher velocity (Gingras et al., 

2009) suggests that velocity profiles do play a role, however marginal, in expressive harpsichord 

performances.  

The piece selected for this study exhibits a relatively simple high-level structure, and we 

predict that influences of this structural layout can also be detected in the performance timings3. 

Furthermore, we surmise that such structural influences generalize in more complex pieces to 

other aspects of performance and perception, as we have observed in pieces from a range of 

musical styles (Bailes & Dean, 2012). Once we are able to deal with structures of sufficient 

complexity, it may be possible to enhance information-theoretic properties of the event structures 

by larger-scale musicological ones (such as the ‘development’ or ‘recapitulation’ structures of 

classical music sonatas). 

Previous research using the IDyOM model has demonstrated that information content 

accurately accounts for pitch expectations generating while listening to melodies (Pearce, 2005; 

Pearce et al., 2010; Omigie et al., 2012), whereas entropy predicts listeners’ uncertainty about 

the note that will follow in a given context (Hansen & Pearce, 2014). These previous results 

suggest that perceptual processing of pitch sequences can be accurately modeled as a cognitive 

process of probabilistic prediction based on implicit statistical learning through exposure to 

music. The present results extend this picture for the first time to expressive performance and to 

emotional experience during listening. Specifically, the results confirm that information content 

(or unexpectedness) is a good predictor of performance timing and indicate that the entropy (or 
                                                                            
3 A companion article compares performers' structural analyses of the Prélude with their 

performance timings and the resulting perceived tension profiles, both on a local level and 

considering the large-scale structure of the piece (Goodchild, Gingras, & McAdams, 2015). 
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uncertainty) may also be influential. The results also exhibit a relationship between information 

content and tension experienced by listeners, although there was no additional variance in the 

tension ratings accounted for by information-theoretic variables after accounting for performance 

timing (which was itself predicted by information content and entropy). Current work is 

extending IDyOM to the analysis of other aspects of music, such as harmony (multiple pitches 

notated with simultaneous timing in the score, absent in this piece) and meter (entirely lacking 

from the current piece), and their interactions. This approach will then be used to understand the 

influence of information-theoretic properties of more complex stimuli including metrical and 

harmonic structure (in addition to melodic structure, examined here) on performance and 

perception.  

It is interesting to place this piece, which is an example of a genre which codifies prior 

improvisations, within the current activities that develop from it: free improvisation. This 

immediately points to the fact that our study could be extended by applying a similar 

methodology to free musical improvisations, in which not only the meter and duration are not 

given (as with the piece used in this study), but the melodic structure is elaborated by the 

performer. A series of related studies on improvisation suggest that this approach could indeed 

be fruitful (Dean & Bailes, 2014; Dean, Bailes, & Drummond, 2014). Thus we surmise that the 

melodic structure of an improvisation should also predict timing in performance and perceived 

tension, especially in the case of music without regular meter such as free jazz and free 

improvisation, although this is commonly done in circumstances permitting wide ranges of 

acoustic intensity, which are expected also to be influential.  

In conditions of experimentally controlled event timings, it may be theoretically possible to 

disentangle the relative contribution of the pitch structure and expressive timing to perceived 
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tension by exposing listeners to artificial isochronous performances (with all the notes having the 

same duration) and comparing the results to those obtained with actual performances of the same 

pieces. However, a stimulus with equal-duration pitches (isochronous rhythm) would cause 

listeners to perceive a regular accent pattern (Povel, 1984), which is not compatible with the 

specific constraints of this essentially unmeasured musical genre. In order to isolate the 

contribution of the pitch structure, one might also envision using artificial performances in which 

all notes have the same pitch height. However, Lerdahl and Krumhansl (2007) have argued that 

musical expectations (closely related to musical tension) are essentially undefined for repeated 

pitches, suggesting that IC and entropy may not be appropriate measures in the case of a stimulus 

with repeated identical pitches. In spite of the above-mentioned drawbacks associated with 

isochronous performances or performances with monotonic pitches, studies using such stimuli 

may yield useful insights that would help us determine whether our findings can be generalized 

to other musical genres. Moreover, a thorough experimental investigation of the impact of 

systematically controlled temporal deviations on perceived tension would be necessary to 

proceed beyond our demonstration of Granger causality (a strong directional statistical 

statement) to a claim of reductive strong causality. Such experimental manipulations are beyond 

the scope of the present study but should be followed up in future research.  

This work has clear implications for music composition, performance and listening, the three 

poles of the model proposed by Kendall and Carterette. For composition, it confirms that 

systematic organization of pitch (and presumably other structures) measurably influences the 

performers’ interpretive choices as well as the listeners’ emotional responses, and can be used to 

shape these responses with a degree of predictability. For performance, it suggests that implicit 

or explicit awareness of the musical structure—of both the broader stylistic conventions to which 
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a piece relates and of the piece itself—is likely to have a significant impact on the choice of 

expressive strategies and on the resulting expressive impact on the audience. Regarding the 

aesthetic appreciation of music by listeners, it again suggests that implicit knowledge of such 

statistical/structural features influences the tension experienced during musical listening and that 

familiarity with a musical idiom can transform that influence.  

We have focused on music (in fact, a specific piece of music with particular properties) as a 

domain in which the relationships between performance and perception can be investigated and 

related to the structure of the stimulus in a controlled way, without compromising ecological 

validity. However, the results have implications for human perception and performance beyond 

music. The role of prediction has been established in several areas of psychology such as 

language processing (Cristia et al., 2011; DeLong et al., 2005; Hale, 2006; Levy, 2008; Saffran, 

2003), visual perception (Bar, 2007; Bubic et al., 2010; Egner et al., 2010) and motor sequencing 

(Wolpert & Flanagan, 2001). Furthermore, probabilistic approaches have been proposed to 

model the cognitive processes involved in acquiring and generating predictions in these domains 

(e.g., Friston, 2010; Levy, 2008; Perruchet & Pacton, 2006). Taking language as an example, the 

present findings are consistent with existing results showing that the information-theoretic 

structure of a sentence predicts aspects of performance such as word reading times (see e.g., 

Levy 2008), and suggest that these, in turn, may predict emotional responses, at least for certain 

kinds of linguistic production such as poetry. The same may be true of visual domains involving 

structured sequences of human movement, such as dance or silent film. These hypotheses should 

be tested in future research. In doing so, the framework we have used here provides a rigorous 

methodology for identifying quantitative dynamic relationships between perception, performance 

and the structure of the stimulus. 
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Table 1. Time-series analysis of performance timing (dIOI and CV of IOI) using information 

content and entropy (from two IDyOM models, using default and optimized viewpoints) as 

predictors.  

 
Modeled 

parameter 

Predictors considered 

(IDyOM model in 

parentheses) 

Components of the optimal model 

(coefficients for the external  

predictors in parentheses) 

BIC Correl. 

(modeled 

vs. observed 

values) 

dIOI IC and entropy (default) 
F1.dIC (+0.01),  

AR(1-5) 

70.1 0.65 

dIOI IC and entropy 

(optimized) 

F1.dIC (+0.02),  

AR(1-5) 

71.8 0.64 

CV of IOI IC and entropy 

(optimized) 

F1.IC (+0.02),  

F1-2.Entropy (+0.06, +0.05),  

AR(1-2), MA(25) 

-150.6 0.52 

The chosen data series were stationary, and all models listed showed satisfactory white noise 

residuals. AR(n): autoregressive error terms; Ln: lag n; Fn, lead n; MA(n): moving average error 

term lag n, where n represents the number of events. For example, ‘F1.dIC (+0.02)’ (fourth row) 

means: lead one of the (first) differenced Information Content data series (derived from the 

optimized IDyOM model in this case), had a coefficient of +0.02. See the Methods section in 

Experiment 1 for further details of the time-series analysis.  
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Table 2. Time-series analysis of tension ratings (dTension) using information content and 

entropy (from two IDyOM models, using default and optimized viewpoints) and performance 

timing (dIOI) as predictors.  

Modeled 

parameter 

Predictors considered 

(IDyOM model in 

parentheses) 

Components of the optimal model 

(coefficients for the external  

predictors in parentheses) 

BIC Correl. 

(modeled 

vs. observed 

values) 

dTension 

Musicians 

IC and entropy (default), 

dIOI 

L1.dIOI (+0.75), AR(1,5,6)  521.0 0.65 

dTension 

Musicians 

IC and entropy 

(optimized), dIOI 

L1.dIOI (+0.75),  

AR(1,5,6)  

521.0 0.65 

d2Tension 

Nonmusicians 

IC and entropy 

(optimized), dIOI 

L1.d2IOI (+0.04), F1.d2IOI(-0.13), 

AR(1-5,8) 

513.4 0.61 

dTension 

Harpsichordists 

IC and entropy 

(optimized), dIOI 

F(1,2).dIOI(-0.65, +0.31),  

AR(1,2) 

540.4 0.54 

The chosen data series were stationary, and all models listed showed satisfactory white noise 

residuals. AR(n): autoregressive error terms; Ln: lag n; Fn: lead n, where n represents the 

number of events. For example, ‘L1.dIOI (0.75) AR(1,5,6)’ (first row) means: lead one of the 

(first) differenced inter-onset interval series, derived from the optimized model, had a coefficient 

of +0.75. See the Methods section in Experiment 1 for further details of the time-series analysis. 

Note that although a range of parameters are considered as possible predictors (column 2), a 

smaller selection remains in the optimal model (as shown in column 3). Thus, for example, the 

models of rows 1-2 are identical.  
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FIGURE CAPTIONS 

Figure 1. Excerpt from the score of the Prélude non mesuré No. 7, by Louis Couperin (1626-

1661). The excerpt corresponds to the first of five musical systems. The opening arpeggio pattern 

(with its 6+6 subdivision) is indicated by brackets. Used with permission from Tilney, C. (1991), 

The art of the French unmeasured prelude (Vol. 1–2), London: Schott. 

 

Figure 2. Information content and entropy predicted by the default and optimized versions of the 

IDyOM model.  

 

Figure 3. Mean duration (in seconds) of the inter-onset interval for each event of the Prélude 

non mesuré No. 7. The shaded area corresponds to one standard deviation below and above the 

mean for each event. Note the discontinuity in the vertical axis. 

 

Figure 4. Observed and modeled differenced inter-onset intervals for each event of the Prélude 

non mesuré No. 7. Note the discontinuity in the vertical axis. 

 

Figure 5. Observed and modeled coefficients of variation of inter-onset interval for each event 

of the Prélude non mesuré No. 7. 

 

Figure 6. Standardized (z-scored) perceived tension for the harpsichordists, nonharpsichordist 

musicians, and nonmusicians, for each event of the Prélude non mesuré No. 7. 
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Figure 7. Observed and modeled differenced perceived tension for each event of the Prélude 

non mesuré No. 7 for the nonharpsichordist musicians. 

 

Figure 8. Observed and modeled second difference of perceived tension for each event of the 

Prélude non mesuré No. 7 for the nonmusicians. 
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APPENDIX 

In this research, we used two versions of IDyOM (Pearce, 2005), one using the default 

viewpoints and the other using the optimized viewpoints. The default model uses a single 

viewpoint linking pitch interval (the pitch difference in semitones between a note and its 

immediate predecessor; denoted below by cpint) with scale degree (the difference in semitones 

of a note from the tonic of the key; denoted below by cpintfref). The optimized version uses a set 

of viewpoints that has been optimized through hill-climbing to maximize the predictability of the 

musical piece. See the main text for a detailed description of IDyOM. 

Table A1 gives the full set of viewpoints submitted to the optimization procedure, which also 

considered all possible pairwise links between these individual viewpoints. The viewpoints 

selected for the optimized model are shown in Table A2.  
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Table A1: The viewpoints submitted to the selection procedure for the optimized model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Viewpoint Description 

cpitch chromatic pitch (MIDI pitch number) 

cpitch-class octave equivalent pitch class (chroma) 

tessitura three values: whether a note is between 66 (G#4) and 74 (D5), 

above, or below this range 

cpint pitch interval in semitones 

cpint-size absolute size of pitch interval 

cpcpint pitch interval class (cpint mod 12)   

cpcint-size absolute size of cpcint 

contour pitch contour (-1, 0, 1)   

newcontour Boolean: whether or not contour is the same as the previous 

contour 

cpintfip pitch interval from the first note in the piece 

cpintfref chromatic scale degree 

inscale Boolean: whether or not the note is in the scale 
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Table A2: The viewpoints selected for the optimized model. 
 

Viewpoint added Mean Information Content 

cpint-size                                           4.849 

tessitura × inscale  4.430 

cpcint-size × cpintfref  4.296 

cpitch × cpint-size  4.149 

cpitch-class × cpintfref  4.080 

cpitch × cpintfip  4.055 

cpintfref × inscale  4.054 

tessitura × cpcint  4.044 

cpcint  4.037 

 

 


