RELATIVE EFFICIENCY MEASUREMENT IN THE PUBLIC
SECTOR WITH DATA ENVELOPMENT ANALYSIS

by

Joseph A. Ganley

Thesis submitted for the degree of Ph.D.
at Queen Mary College, University of London

September 1989
Abstract

Traditional efficiency measures have two significant drawbacks. Firstly, they fail to recognise that output is the result of all inputs operating in combination; thus output per head is a misleading indicator of intrinsic labour productivity. Secondly, they have often been defined in terms of average levels of performance in least squares production functions. In practice, average performance norms may institutionalise some level of inefficiency.

The first of these problems may be overcome in a total-factor view of efficiency. This implies the extension of traditional ratio measures to include all inputs and outputs simultaneously. The second requires the comparison of performance with frontier possibilities. Both of these improvements are embodied in Data Envelopment Analysis (DEA).

Two applications of DEA are undertaken on U.K. public sector data. The first of these defines frontier efficiency in local education authorities (LEAs). It develops an 8 variable model with 3 outputs (based on exam pass rates) and 5 inputs. Four of the inputs are uncontrollable background variables allowing for differences in student catchment area; the fifth, teaching expenditure, is under LEA control and can be targeted. The results suggest that 44 authorities are best-practice and at the remainder spending per pupil could have been reduced by an average of 6.8%.

These results are replicated on smaller clusters of LEAs to examine the sensitivity of DEA to the size of the performance comparison. The clustering procedure produces marked effects on targets, peer groups and the efficiency status of certain authorities.

A second case study investigates the performance of a sample of 33 prisons with a high remand population. The model separately identifies the effects of remand prisoners on costs, and includes separate variables to reflect the levels of overcrowding and offences. In 1984/85 the combined budget of these prisons was overspent by 4.6% vis a vis best-practice costs. Using an alternative constant returns technology this overspend rises to 13.1%.

Two aspects of DEA targets are explored. A model of Leibenstein's inert area suggests reasons for the persistence of inefficiency and hence that targets may be unattainable without coercion. Secondly, the literature has justified the recommendation of DEA targets in their being Pareto efficient. This interpretation is disputed and an alternative DEA-Dominance criterion is proposed as a more appropriate basis for targeting.
For my family,
past, present & future
Acknowledgements

I have many debts, intellectually and otherwise. In the first instance, I must thank my supervisor Maurice Peston for singling me out to do research – an opportunity not to be missed! At QMC I should thank John Cubbin for access to his linear programming software, and Dick Allard and Danny Beeton for helpful comments on various Chapters. At the Treasury Mick Hudson allowed me a lot of his valuable time. The Treasury and ESRC also provided some financial support for which I am grateful. None of the above necessarily agrees with what I have said; and of course all errors are exclusively my own.

At home I should thank my mother for funding and support and my sister for typing Chapter 4. Last, but certainly not least, I must bow to May May Teo who has typed nearly everything else and gave of her time and patience far more than I shall ever deserve.
CONTENTS

ABSTRACT .. 2

ACKNOWLEDGEMENTS.. 4

CHAPTER 1. INTRODUCTION ... 11

CHAPTER 2. AN INTRODUCTION TO FRONTIER EFFICIENCY CONCEPTS AND DATA
ENVELOPMENT ANALYSIS

1. Introduction .. 14

2. The need for weights in the public sector 15

3. The nature of a frontier efficiency comparison 17

4. The measurement of efficiency in Data Envelopment Analysis . 23

5. Returns to scale ... 38

CHAPTER 3. TOTAL FACTOR PRODUCTIVITY MEASUREMENT IN ENGLISH LOCAL EDUCATION
AUTHORITIES: A NON-PARAMETRIC APPROACH

1. Introduction .. 54

2. Measurement in the public sector 56

3. The efficiency of educational production in English local education
 authorities .. 61

4. A preliminary evaluation of the peer group 74

5. Conclusion .. 78

6. Appendix .. 82

CHAPTER 4. TOTAL FACTOR PRODUCTIVITY MEASUREMENT IN LOCAL PRISONS AND REMAND
CENTRES: A FURTHER APPLICATION OF DATA ENVELOPMENT ANALYSIS

1. Introduction .. 83

2. Analytical background to relative efficiency measurement 84

3. Empirical investigation of prison efficiency using Data Envelopment
 Analysis: A preliminary review of the literature 88

4. Background to the prison environment 89

5. Background to the prison environment: Inputs 91

5
6. Prison objectives and sources of data .. 92
7. Ex ante efficiency prediction .. 93
8. A potential framework for the implementation of relative efficiency analysis in the public sector .. 95
9. DEA results on prison relative efficiency with a varying returns to scale technology: Overview .. 96
10. Costs at Canterbury ... 99
11. The peer group comparison .. 100
12. Comparison of ex ante and ex post efficiency predictions 105
13. Inert production: A new interpretation of DEA efficiency 108
14. Conclusion .. 115

CHAPTER 5. PROGRAMME-EFFICIENCY IMPLICATIONS OF DATA ENVELOPMENT ANALYSIS
1. Introduction ... 120
2. The cost efficiency of a multi-branch public spending programme: The case of local prisons and remand centres 121
3. Evaluation of the impact of a new reference technology branch and programme efficiency .. 136
4. Excess costs and the nesting of empirical DEA technologies 143
5. Additional sources of variation in excess costs: The identification of scale inefficiencies .. 147
6. Conclusion .. 157

CHAPTER 6. THE INTERPRETATION OF EFFICIENCY IN DATA ENVELOPMENT ANALYSIS
1. Introduction ... 161
2. The definition of best-practice .. 163
3. The definition of Pareto efficiency and the DEA-efficiency score 170
4. A new utility basis for DEA efficiency ... 177
5. The DEA target as a Pareto Improvement 179
6. Some remaining difficulties with the DEA target:
 (1) The DEA target and noise in production 181
(2) Ambiguities in relative efficiency measures 184

7. Conclusion... 186

CHAPTER 7. ASPECTS OF THE DISCRIMINATING POWER OF DATA ENVELOPMENT ANALYSIS

1. Introduction... 190

2. The need for clustering of LEA performance 191

3. Results on LEA efficiency after clustering............................ 193

4. Aspects of the discriminating power of DEA:
 (1) Best-practice and the efficiency ordering in LEA clusters...... 195
 (2) The choice of a peer group... 203
 (3) The existence of targets... 207

5. Conclusion... 212

CHAPTER 8. A CONCLUSION AND APPRAISAL................................. 217

REFERENCES.. 223

APPENDED

(1) "Performance indicators for prisons", Public Money, 7, 1987, 57-59... 236
(2) "Competition and efficiency in refuse collection: A critical comment", Fiscal Studies, 9, 1988, 80-85................................. 245

LIST OF TABLES

Table 3.3.1 Variable set definitions for the LEA model.......................... 63
Table 3.3.2 Summary measures of LEA productivity with a varying returns to scale assumption.. 67
Table 3.3.3 Targets and savings in teaching expenditure per pupil for LEAs with DEA relative efficiency less than unity............. 71
Table 3.4.1 Citations for best-practice LEAs................................. 75
Table 3.4.2 Hypothetical peer groups and citations for LEAs in figure 3.4.1... 77
Table 4.7.1 Summary of prison costs (£M) and outputs, 1984/85......... 94
Table 4.9.1 DEA-efficiency coefficients under varying returns to scale in local prisons and remand centres in 1984/85
Table 4.10.1 Costs at Canterbury local prison
Table 4.11.1 Costs at Canterbury and of its relatively efficient peers
Table 4.12.1 Linear correlation matrix for efficiency scores and the input-output variables in the prison model
Table 5.2.1 The programme implications of prison cost inefficiency in 1984/85 under varying returns to scale
Table 5.2.2 Aggregate technical efficiency in the local prison spending programme: The sum of efficiency scores under constant and varying returns to scale
Table 5.3.1 DEA-efficiency coefficients under constant returns to scale in local prisons and remand centres in 1984/85
Table 5.3.2 The programme implications of prison cost inefficiency in 1984/85 under constant returns to scale
Table 5.5.1 Excess costs (£M) in the prison spending programme: an exhaustive breakdown
Table 5.5.2 Scale efficiency and the Banker (1984) identification of local variations in returns to scale in the local prison spending programme
Table 7.3.1 Comparison of clustered and non-clustered results: Numbers of inefficient LEAs
Table 7.4.1 DEA discriminating power and peer group comparisons in:
(a) London boroughs
(b) Metropolitan boroughs
Table 7.4.2 The target level of teaching expenditure per pupil before and after clustering in:
(a) London and the Metropolitan boroughs
(b) the English counties
LIST OF FIGURES

Figure 2.3.1 Farrell efficiency measurement .. 19
Figure 2.3.2 Inefficiency and the production frontier 21
Figure 2.3.3 Inefficiency and the cost function 23
Figure 2.4.1 The dual technology: A diagrammatic representation 33
Figure 2.4.2 Output surface in the dual program 36
Figure 2.5.1 Average productivity and returns to scale 41
Figure 2.5.2 The varying returns to scale technology 44
Figure 2.5.3 Weak and strong disposability of inputs 48
Figure 2.5.4 Weak and strong disposability of outputs 50
Figure 3.3.1 The DEA isoquant and the relative efficiency score 69
Figure 3.3.2 Slack variables and Pareto efficiency 73
Figure 3.4.1 Interpretation of best-practice LEA citations 76
Figure 4.2.1 Input and output correspondences for m = n = 2 87
Figure 4.8.1 A stylised view of FMI and the Fresh Start scheme 96
Figure 4.13.1 Utility and effort .. 112
Figure 4.13.2 The link between DEA-efficiency and inert production 113
Figure 5.2.1 Technical and allocative efficiency ratios 127
Figure 5.4.1 Nesting of empirical DEA reference technologies 146
Figure 5.5.1 The decomposition of CRS efficiency into technical and scale components .. 149
Figure 5.5.2 CRS and VRS efficiency at Durham 156
Figure 6.2.1 Fare, Grosskopf and Lovell (1985) efficiency decomposition ... 169
Figure 6.3.1 The discrepancy between the best-practice and the Pareto reference technologies ... 172
Figure 6.3.2 Technical efficiency, cost minimisation and Pareto efficiency with overlapping reference technologies 174
Figure 6.3.3 Production of education and "other goods" in a 2x2x2
Edgeworth Box economy..176

Figure 6.4.1 A DEA dominant target, X'..............................178
Chapter 1. Introduction.

To date, there is no comprehensive study of public sector efficiency in the U.K. using the frontier methodology. This thesis seeks to fill that gap in providing a systematic treatment of the measurement of relative efficiency in education authorities and local prisons and remand centres.

Historically, efficiency studies have adopted least squares procedures which embody average notions of efficiency. In practical circumstances the average efficiency standard serves to legitimise some degree of inefficient performance. The approach taken herein is more exacting and compares efficiency to the highest standards which can be found among a set of comparable organisations. In addition, the thesis embodies a total–factor view of efficiency. This is a further step forward on the traditional ratio approach. Particularly in a multiple output setting, a consistent overview of operations is essential.

The ability to measure frontier efficiency and to form a consistent summary of performance is embodied in Data Envelopment Analysis (DEA). DEA is a deterministic linear program which generates weights on inputs and outputs to form an extended ratio measure of performance. It was used originally by Farrell (1957) but remained in comparative obscurity until American management scientists Charnes and Cooper revived the technique with Eduardo Rhodes in (1979, 1978).

Charnes and Cooper (e.g. 1980a,b) have repeatedly argued that DEA is especially appropriate to public sector applications. In principle, private sector evaluation is less problematic, owing to the existence of output and capital market indicators (e.g. the market price of outputs can be used to calculate summary measures such as total revenue while changes in stock values also reflect performance).

In addition to the academic arguments for the use of DEA, there has been
increased Government interest in public performance measurement over the past ten years. A series of policies have been implemented including the Fresh Start scheme in the prison service and the broader Agency initiative in the Government's last white paper on the subject.¹

The thesis is organised as follows. Chapter 2 explores the fundamental notion of a frontier efficiency comparison in terms of the production or cost function. Subsequently it defines the basic fractional model of DEA-efficiency and shows how the computational linear program is derived from this. Important revisions to the original Farrell/Charnes and Cooper program have been published in Banker (1984). These revisions permit a more flexible modelling of scale in DEA and are illustrated in section 2.5.

Two areas of the public sector have been chosen for the application of Data Envelopment Analysis. An area which has received both popular and academic attention is education. Fortunately in (1984) the Department of Education published a comprehensive data set on all 96 English local education authorities (LEAs). This has proved invaluable to many researchers and has been used to develop a model of LEA production in Chapter 3.

Chapter 4 uses data from Prison Statistics and the Prison Department Report to develop an alternative model of productivity in incarceration. Although the prison service receives less popular attention, it has suffered serious complementing difficulties during the 1980s leading to accusations that manning in the service is unwieldy and overtime driven.

While there are many applications of DEA examining the efficiency of branch operations, none has so far attempted the straightforward aggregation of branch efficiencies to give a broader view of departmental performance. This is undertaken in Chapter 5 which investigates the implications of branch-level inefficiency for the performance of the spending programme as a whole. Chapter 5 also compares the
efficiency of prisons under an alternative, and more demanding, assumption of constant returns to scale in the reference technology. This alternative technology yields a poorer picture of performance owing to the existence of "technological nesting" – a concept which will be discussed in due course.

Chapter 6 takes a broader look at the interpretation of efficiency in DEA. Much of the recent development of the subject has been undertaken in the Operations Research literature. This has led to the misappropriation of the concept of Pareto efficiency. Chapter 6 argues that DEA–efficiency is purely technical (or physical) and lacks the additional allocative dimension in Pareto efficiency.

Before Chapter 8 concludes, Chapter 7 undertakes a sensitivity analysis using the LEA data set familiar from Chapter 3. It is argued that in some circumstances it is necessary to restrict membership of the performance comparison to ensure homogeneity in the sample. The results suggest however that this consideration has to be traded off against the need to preserve the discriminating power of DEA.

Two previously published papers are appended at the back of the thesis. One includes an earlier version of the prison model in Chapter 4. The second discusses problems in the evaluation of competitive tendering for local authority refuse collection contracts.

Footnote
Chapter 2. An introduction to frontier efficiency concepts and Data Envelopment Analysis

2.1. Introduction

The bulk of this thesis concerns the application of Data Envelopment Analysis (DEA) for relative efficiency measurement in the public sector. This Chapter attempts to define the terms and concepts which will be required in the interpretation of these results. It can be considered a "survey" in the sense that it discusses important contributions to the basic Farrell/Charnes and Cooper methodology.

To remain within space constraints, the treatment does not cover the growing number of empirical applications of DEA unless these have had a notable impact on the development of the subject. Nevertheless, frequent reference is made to relevant empirical work in subsequent Chapters. Other survey-type material has also been covered in later Chapters. Some of the general problems encountered in public sector evaluation are discussed in Chapter 3 while Chapter 4 discusses some of the theory of the production correspondence underlying the efficiency comparison. Similarly, Chapter 6 covers material on the meaning of efficiency in DEA.

The discussion in Chapter 2 focuses on the measurement of input efficiency and thereby on the input minimisation dual program. Output efficiency and the output maximisation program have not been used in the empirical work in later Chapters and therefore they are discussed only cursorily in Chapter 2. Note however that the efficiency comparison, the target and the peer group are defined in an analogous way, mutatis mutandis, in the output dual.

Chapter 2 is laid out as follows. The next section, 2.2, takes a broad look at the need for weights for efficiency measurement in the public sector. Section 2.3 explores the fundamental notion of a frontier efficiency comparison in terms of the
production function and of the cost function. Data Envelopment Analysis is introduced explicitly in section 2.4 which covers the basic constant returns program suggested by Farrell (1957) and Charnes, Cooper and Rhodes (1981, 1979, 1978). Revised programs a la Banker (1984) permitting more flexible scale assumptions are discussed in section 2.5. Section 2.5 also notes the effects of the disposability assumption on efficiency. Finally, section 2.5 provides a full taxonomy of efficiency scores based on the scale and disposability distinctions.

2.2. The need for weights in the public sector

The bulk of this thesis is concerned with the application of Data Envelopment Analysis to public sector production in the United Kingdom. This section does not discuss DEA directly. Rather, by way of introduction, it underlines the importance of weights in public productivity measurement\(^1\). It should be emphasised that weighting problems are not confined exclusively to the public sector. For example, large multi-plant or multi-national organisations operating in the private sector transfer rather than sell raw materials and semi-finished outputs between divisions. Since these transactions do not take place on an open market, their value will have to be imputed (i.e. weighted) in some manner.

For many years national accounts statisticians have avoided the use of measures of public output, preferring instead to use measures of input – usually spending or employment\(^2\). However, problems in the control of public expenditure have led to a growing emphasis on the output dimensions of public sector production (Hanusch (1982)).

A typical department like Health or Social Security has many functions and will be overseeing scores of distinct policies. In principle, each policy has an output. The measurement of these outputs is problematic for they are usually qualitative and lack the physical characteristic of "countability"; that is policy outputs do not usually accrue in discrete, physical lumps. Service outputs generally involve a
"client-change", such as the increments to knowledge and ability deriving from education (Marris (1985)). These qualitative changes are difficult to quantify in both public and private sector services (see Kendrick (1987), Schroeder, Anderson and Scudder (1986) and Achabal, Heineke and McIntyre (1985) for example).

If service outputs can be defined, it is probable that they will be denominated in non-homogeneous units. This will make it difficult to form a summary picture of departmental performance. For example, it is not clear how the success of screening for cervical cancer could be satisfactorily added to the results of a programme designed to improve dental hygiene. The combination of outputs to form summary measures of departmental performance is desirable from first principles. Ruchlin (1977) has noted that output is the result of all inputs operating in combination. A partial factor-ratio like output per head therefore gives a misleading indication of intrinsic labour productivity.

This reflects a lack of appropriate weights. In general, traded outputs have market prices which can be used to form financial summaries of performance like profitability. Public programmes such as health and education are currently non-traded. To summarise the performance of these programmes requires some form of shadow pricing. In principle, shadow prices can be attached to the various components (i.e. the outputs and inputs) of a programme to form a summary, total-factor productivity ratio. There are several potential ways to generate these weights – from client or expert opinion of services for example. An alternative, non-subjective approach to weight formation is Data Envelopment Analysis.

DEA can be used to form a summary picture of departmental operations by generating suitable weights on inputs and outputs. The main prerequisites of this approach are satisfactory input and output measures and a "line" (or branch) structure within the department. Since DEA is a relative efficiency measure, it computes weights through the comparison of performance. That is, its implementation requires a line structure where each branch is producing the same
set of outputs from the same set of inputs. This sort of structure is common in many programmes administered by government departments. Potential candidates for DEA evaluation are Job Centres (Department of Employment), hospitals (Health), prisons and remand centres (Home Office), welfare benefit offices (Social Security) and schools (Education/Environment). Some departments, however, e.g. the Foreign and Commonwealth Office, do not have an appropriate branch structure for DEA evaluation.

2.3. The nature of a frontier efficiency comparison

This section outlines objections to average efficiency concepts and develops an alternative frontier approach.

Historically, production and cost functions have been estimated using Ordinary Least Squares regression (Hammond (1986), Tyler and Lee (1979), Lee and Tyler (1978)). For the purposes of efficiency measurement the resulting average function is a misleading indicator of efficient production possibilities in both theory and practice. In practice, an average performance standard will tend to institutionalise inefficiency. This can occur because in reducing what appears to be attainable, average standards act as a disincentive to further improvements in performance. Furthermore, an average production function is inconsistent with the theoretical notion of a boundary function which reflects maximising behaviour. Hammond (1986, p. 971) for example has noted that "drawing on the theoretical underpinning of the cost curve it can be demonstrated that the classical least squares regression model is inappropriate. Under the assumption that factor prices are parametric, costs are subject to a technically determined lower bound. Therefore in addressing issues such as the efficient scale for the provision of a public service ... it is the lower bound on costs, the cost frontier, which is of interest." It follows from this that an average cost curve implies a non-maximising assumption such as "satisficing" behaviour.
Nature of a frontier

Frontier performance comparisons flow directly from the definition of the production function itself. Broadly speaking, production is a process of physical transformation in which inputs are combined to generate output. The production function should be interpreted as the purely technical relationship which defines efficient transformation possibilities, given the set of feasible techniques (the technology). Predicted rates of output corresponding to given rates of factor input may then be said to represent solutions to a technical maximisation problem. Thus Johnston (1960, p. 4) notes that "the production function can be stated simply as the relationship describing the maximum flow of output per unit of time achievable for any given rates of flow of input services per unit of time" (emphasis added). An equivalent interpretation holds for the cost function. Duality theory establishes the relationship between production and costs. For given factor prices, the cost function must be interpreted as a frontier function, because it is impossible to achieve costs lower than the minimum input requirements implied by the production frontier.

The word "frontier" is applied in either case because the function sets a bound on the range of possible observations. Thus, production may take place below the frontier, but at no points above it; analogously, costs can be observed above the cost frontier but not below it. The amounts by which an organisation lies below its production frontier or the amount by which it lies above its cost frontier, can be regarded as measures of relative efficiency.

The first empirical treatment of the production function as a frontier is in Farrell (1957) and Farrell and Fieldhouse (1962). Consequently, frontier efficiency comparisons have become synonymous with "Farrell efficiency measurement". The Farrell methodology has seen significant revisions in recent years. Nevertheless this approach remains the foundation of modern frontier analysis.
Farrell began by dichotomising Overall (or Pareto) efficiency (OE) into 2 multiplicative components:

$$OE = TE \cdot AE$$

where TE is technical and AE is allocative efficiency. Each of these can be defined in terms of a production frontier as the ratio of potential and actual performance.

Figure 2.3.1

Farrell efficiency measurement

Consider for example an organisation consuming two inputs, X_1 and X_2, producing an output y. It has a production function $y = f (X_1, X_2)$ which Farrell assumed exhibits constant returns to scale. Accordingly, the production function may be written $1 = f (X_1/y, X_2/y)$ so that the frontier technology can be characterised by the unit isoquant II' in figure 2.3.1. In this figure, an organisation is producing unit-output at point C. Its technical efficiency (TE) is the ratio of potential to actual input consumption. This is the radial measure OB/OC which in this case is less than unity.

Potential or "maximal" performance is defined along the frontier. As observed
performance worsens, the distance of an observation from the frontier increases so that the technical efficiency ratio falls toward zero. Likewise, as performance improves, the efficiency ratio rises in value to unity. In general then:

\[0 \leq TE \leq 1 \]

Farrell also included an allocative efficiency ratio within his frontier framework. Like technical efficiency, the allocative component is a radial measure which lies between zero and unity. At a point such as B in figure 2.3.1 AE = OA/OB where PP' is the isocost line defined by the ratio of factor prices. Allocative efficiency is significant in that it emphasises that boundary production per se is not sufficient to minimise costs. Full efficiency (i.e. OE = 1.0) requires simultaneous technical and allocative efficiency, viz. AE = TE = 1.0 which obtains at D in figure 2.3.1.

To fix ideas, it is useful to show how the technical efficiency ratio in figure 2.3.1 can be defined directly in terms of the production or cost function. If inefficiency is possible, the production function may be written as an inequality:

\[y_i \leq f(X_i; \beta) \]

where \(y_i \) is observed output at establishment i, and \(X_i \) is a vector of inputs and \(\beta \) a vector of parameters which describe the transformation process. \(f(.) \) is the production function and has the interpretation of a frontier, or \(y_{\text{max}} \). At inefficient operations, potential output (\(y_{\text{max}} \)) will exceed observed performance \((y_i) \). Hence, technical inefficiency implies \(y_i - y_{\text{max}} \) is negative. The difference between observed and potential performance can be treated as a residual in the production function which is equivalent to the technical efficiency ratio. If these residuals are denoted \(\epsilon_i \) then in terms of the production function in (2.3.1), the technical efficiency ratio can be written:

\[\epsilon_i = y_i / f(X_i; \beta) \]

To preserve the frontier interpretation of \(f(.) \) the \(\epsilon_i \) are always non-positive. This ensures that observed output cannot exceed potential and that the distribution of the residuals is one-sided. The addition of the efficiency residuals "balances" the production function in (2.3.1):

\[y_i = f(X_i; \beta) - \epsilon_i, \quad \epsilon_i \leq 0 \text{ for all } i. \]
The technical efficiency ratios, ϵ_i, can be estimated econometrically (see e.g. Richmond (1974)). This requires the choice of a specific one-sided distribution for technical efficiency, negative half-normal or negative exponential distributions being the most common assumptions (Aigner, Lovell and Schmidt (1977)). Unlike conventional OLS residuals, the efficiency distribution must be one-sided in order to ensure actual output cannot exceed potential, i.e. that $y_i > y_{\text{max}}$ is not possible. Hence all the efficiency residuals in the production function are non-positive and truncated at zero such that deviations are only possible below the production frontier.

Figure 2.3.2
Inefficiency and the production frontier

This should be clear from figure 2.3.2. Unit i is producing output y_i which for input OX is less than frontier output y_{max}. The difference between actual and potential output, ϵ_i, is negative and hence production at unit i is relatively inefficient. Notice that efficient production implies observed and frontier attainments coincide and that the efficiency residual equals zero.
An analogous interpretation can be given to inefficiency in the cost function (Hammond (1986)). If excess costs are possible then the cost function may be written as an inequality:

\[c_i \geq g(z_i ; \alpha) \]

where \(c_i \) represents average cost at establishment \(i \), \(z_i \) are determinants of costs and \(\alpha \) a vector of parameters. \(g(.) \) has a frontier interpretation denoting minimal costs, \(c_{\text{min}} \). The efficiency ratio is defined by the residuals, \(\theta_i \), in the cost function. That is:

\[\theta_i = \frac{g(.)}{c_i} \]

which is the equivalent to the ratio of potential to observed costs. Where there is inefficiency, costs are greater than the potential and the efficiency ratio is less than unity. This means that the efficiency residual, \(\theta_i \), is positive. This should be apparent from figure 2.3.3 where observed costs at unit \(i \), \(c_i \), are greater than the minimum costs on the appropriate part of the boundary. Since boundary costs are the minimum feasible, observed costs cannot fall below minimum costs, i.e. \(c_i > c_{\text{min}} \). This is essential to preserve the frontier interpretation of the cost function and implies that the residuals in the cost function are non-negative:

\[c_i = g(z_i ; \alpha) + \theta_i, \text{and } \theta_i > 0 \text{ for all } i. \]

The \(\theta_i \) can be estimated by choosing an explicit distributional form for cost inefficiency and estimating a statistical frontier. For reasons of statistical tractability, positive half-normal or positive exponential distributions are the most common distributional assumptions in statistical cost studies (see Schmidt (1986)).

The details of the estimation of efficiency in statistical cost studies will not be pursued here. Rather, the next section introduces the estimation of frontier efficiency ratios using Data Envelopment Analysis. DEA does not explicitly identify the efficiency residual. However, the concept of a ratio comparison of potential and actual performance remains at the heart of the analysis.
2.4. The measurement of efficiency in Data Envelopment Analysis

Introduction

Section 2.3 outlined the nature of frontier efficiency comparisons. This section examines estimation of the frontier using Data Envelopment Analysis. Initially, it is necessary to distinguish the terminology of alternative frontier methods. However a full treatment of statistical and other approaches is not included. Following this, section 2.4 explores the interpretation of DEA as a fractional program.

Before proceeding it is important to notice that the word "program" will be used to describe a mathematical program for optimisation. On the other hand, the alternative spelling "programme" denotes a government budget on health, education etc. This distinction holds throughout the thesis and is especially relevant in Chapter 5.
A second important distinction is the meaning of the term parametric. This can be used in three contexts in frontier estimation:

(1) "Non-parametric programming"

This is another term for Data Envelopment Analysis as developed by Farrell (1957) and later Charnes, Cooper and Rhodes (1979, 1978). DEA is a deterministic linear program used to construct a frontier technology. It is non-parametric in the sense of Diewert and Parkan (1983, p. 131). That is, it does not assume that the underlying technology "belongs to a certain class of functions of a specific functional form which depend on a finite number of parameters, such as the well-known Cobb–Douglas functional form". Note that DEA is also "non-statistical" because it makes no explicit assumption on the probability distribution of "errors" (i.e. the efficiency residuals) in the production function (Sengupta (1987a)).

(2) "Parametric programming"

Like (1), this approach uses a deterministic linear program to estimate a frontier technology. Its main difference vis-a-vis (1) is that the parametric technology is smooth while its non-parametric counterpart is piecewise linear. Parametric programs have had a limited number of applications, for example in Forsund and Hjalmarsson (1979), Forsund and Jansen (1977) and Aigner and Chu (1968). A useful exposition of the parametric program is contained in Chapter 9 of Fare, Grosskopf and Lovell (1985).

(3) "Parametric statistical estimation"

In contrast to both of the programming approaches, statistical techniques may be used to estimate a parametric representation of technology. There are a large number of statistical frontier applications in the literature – see Hughes (1988), Dawson and Lingard (1988), Dawson (1987), Huang and Bagi (1984), Bagi and Huang (1983) and Aigner, Amemiya and Poirier (1976) for example. The statistical methodology involves the explicit identification of the underlying functional form and of the distribution of technical efficiency. Proponents of the programming approach have argued that estimation of an explicit functional form imposes unwarranted structure on the technology (Sengupta (1987a), Banker and Maindiratta (1986)). Similarly the choice of a distribution for the efficiency residuals is usually arbitrary,
guided mainly by its computational tractability. Schmidt and Lin (1984) have shown that statistical efficiency comparisons are not invariant to the choice of distribution. Nevertheless the statistical approach has the advantage that deviations from the frontier can be separated into noise and efficiency components (Jondrow et al (1982)). The programming approaches, by contrast, attribute the whole of deviations from the frontier to differences in efficiency. Notably, however some work is now being undertaken to limit the effects of noise in DEA, e.g. Banker (1988). Similarly, Sengupta (1988, 1987a,c) is exploring ideas originally proposed by Timmer (1971) in the use of chance-constrained programs where the constraints hold probabilistically.

The fractional DEA program

Having distinguished the non-parametric approach from alternative methods, the remainder of section 2.4 is devoted to a more narrowly focused discussion of the program underlying DEA efficiency measurement. It should become clear that the literature on DEA is a collection of programs – both "fractional" and linear. The fractional program is the parent of the linear program and so it must be discussed first. Essentially, the fractional program can be thought of as the conceptual DEA model, while the linear program is that used in actual computation of the efficiency ratio.

Probably the best way to introduce the fractional program is to recall the idea of a total-factor productivity ratio. This is a means of summarising performance by weighting inputs and outputs in a single ratio. Assume that an organisation produces outputs $Y_i, i = 1,...,t$ from inputs $X_k, k = 1,...,m$. Then given a set of appropriate weights ($V_i, i = 1,...,t$; $W_k = 1,...,m$) on these variables, it is possible to form the total factor productivity ratio:
The numerator of the ratio can be thought of as a "virtual output" since the weights reduce the t output levels into a unique scalar number. Analogously, the denominator is a "virtual input" so that the whole ratio reduces to a scalar measure of total-factor productivity.

In the private sector, market prices may be used as weights on inputs and outputs. However in the non-trading sector, prices on outputs are absent and a total-factor view of efficiency requires an alternative source of weights. Under certain circumstances these can be generated in Data Envelopment Analysis. Specifically, DEA requires that outputs be delivered through a branch system where each branch uses the same set of inputs to produce the same set of outputs. A summary efficiency ratio like (2.4.1) can then be formed for each branch and weights computed for that branch relative to performance at other branches.

Consider then the performance of a set of Z departmental branches each using with the same set of inputs and outputs. The total-factor efficiency of each branch is the solution to a fractional program. Hence for any branch p, efficiency can be measured as the maximum of the ratio of weighted outputs to weighted inputs subject to constraints reflecting the performance of the other branches. DEA treats the observed inputs (X_k) and outputs (Y_i) in this ratio as constants and chooses values of the input and output weights to maximise the total-factor efficiency of p relative to the performance of its peers. That is:

$$\text{(2.4.2) } \begin{align*} &\text{MAX} & & \frac{\sum_{i=1}^{t} V_i Y_{ip}}{V_i, W_k} = \frac{\sum_{i=1}^{t} V_i Y_{ip}}{\sum_{k=1}^{m} W_k X_{kp}} \\ &\text{subject to} & & \text{constraints reflecting performance of other branches.} \end{align*}$$
subject to Z "less-than-unity" constraints

\[0 \leq \sum_{i=1}^{t} v_i y_{i c} / \sum_{k=1}^{m} w_k x_{k c} < 1, \]

\[c = 1, \ldots, p, \ldots, Z \]

and $v_i, w_k > 0$, for all i and k.

This formulation of the fractional program is due to Charnes, Cooper and Rhodes (1979, 1978). The program is computed separately for each branch, generating Z sets of optimal weights. The weights in the objective function are chosen to maximise the value of the branch's efficiency ratio subject to the "less-than-unity" constraints. These constraints ensure that the optimal weights for branch p in the objective function do not imply an efficiency score greater than unity either for itself or for any of the other branches.

The efficiency "score" generated by the program is consistent with a frontier interpretation of performance. A score of unity implies that observed and potential performance coincide. In this case a branch is said to be "best-practice". Where observed performance is lower than potential a branch receives less-than-unity efficiency. This implies that its performance is poorer than that of some of its peer organisations and so it is relatively inefficient.

The linear DEA program: primal formulation

The fractional program is not used for actual computation of the efficiency scores because it has intractable non-linear and non-convex properties (Charnes, Cooper and Rhodes (1978). Rather, Charnes and Cooper have advocated the use of a transformation to convert the fractional program into an ordinary linear program. The transformation is quite simple and derives from Charnes and Cooper (1973, 1962). The resulting linear program may be constructed to allow either "output maximisation" or "input minimisation". The former computes the output efficiency
ratio of a branch, and the latter its input efficiency ratio. In line with all linear programs, each has two components — a primal and a dual.

The linear program (L.P.) for the pth branch is obtained by setting the denominator in the objective function of the fractional program equal to unity and hence:

\[
(2.4.3) \quad \text{MAX} \quad \sum_{i=1}^{t} V_i Y_{ip} \\
V_i, W_k
\]

subject to

\[
\sum_{i=1}^{t} V_i Y_{ic} \geq \sum_{k=1}^{m} W_k X_{kc}, \quad c = 1, \ldots, p, \ldots, Z
\]

\[
\sum_{k=1}^{m} W_k X_{kp} = 1
\]

and \(V_i, W_k > 0 \), for all \(i \) and \(k \).

The program (2.4.3) is linear. It constrains the weighted sum of inputs to be unity and maximises the weighted sum of outputs at the pth branch choosing appropriate values of \(V_i \) and \(W_k \). The less-than-unity constraints of the fractional program are embodied in the L.P. since the weighted sum of inputs cannot exceed the weighted sum of outputs. The efficiency score cannot exceed unity as a consequence.

An analogous formulation of the L.P. is obtained by minimising the weighted inputs for branch \(p \), setting its weighted outputs equal to unity, \(\text{viz.} \):

\[
(2.4.4) \quad \text{MIN} \quad \sum_{k=1}^{m} W_k X_{kp} \\
W_k, V_i
\]
subject to

\[
\sum_{k=1}^{m} w_k x_{kc} > \sum_{i=1}^{t} v_i y_{ic}, \quad c = 1, \ldots, p, \ldots, z
\]

\[
\sum_{i=1}^{t} v_i y_{ip} = 1
\]

and \(v_i, w_k > 0 \), for all \(i \) and \(k \).

Notice that the input and output weights (\(W_k \) and \(V_i \) respectively) in the primal are strictly positive when in conventional L.P.s they are non-negative. The strict positivity requirement on the weights was introduced by Charnes, Cooper and Rhodes (1979) as a correction to their first presentation of the model with non-negative weights in (1978). Thus Charnes, Cooper and Rhodes (1979) restricted the input and output weights such that:

\[
W_k > \epsilon, \quad k = 1, \ldots, m
\]

and

\[
V_i > \epsilon, \quad i = 1, \ldots, t
\]

Where \(\epsilon \) is an infinitesimal or non-Archimedean constant usually of the order \(10^{-5} \) or \(10^{-6} \). Lewin and Morey (1981) termed the positivity restrictions as "lower-bound constraints" on the weights. They were introduced into the primal because under certain circumstances the (1978) model implied unity-efficiency ratings in the fractional program for branches with non-zero slack variables such that further improvements in performance remained feasible.

The DEA linear program: dual formulation

(2.4.3) and (2.4.4) are the primal linear programs. Computation of the efficiency score is done on the "DEA-side" of the program (Charnes and Cooper (1984)); that is, computation uses the dual of (2.4.3) or (2.4.4). The dual of (2.4.3) constructs a piecewise linear approximation to the true frontier by minimising the
quantities of the m inputs required to meet stated levels of the t outputs. That is:

\[(2.4.3^*) \text{ MIN } h_p - \epsilon \left(\sum_{k=1}^{m} S_k + \sum_{i=1}^{t} S_i \right) \]

subject to

\[X_{kp} \cdot h_p - S_k = \sum_{c=1}^{z} X_{kc} \lambda_c, \quad k = 1, \ldots, m \]

\[Y_{ip} + S_i = \sum_{c=1}^{z} Y_{ic} \lambda_c, \quad i = 1, \ldots, n \]

and

\[\lambda_c \geq 0, \quad c = 1, \ldots, p, \ldots, Z \text{ (weights on branches)} \]

\[S_k \geq 0, \quad k = 1, \ldots, m \text{ (input slacks)} \]

\[S_i \geq 0, \quad i = 1, \ldots, t \text{ (output slacks)} \]

with h_p unconstrained; and ϵ is an inifinestimal (or non-Archimedean) constant analogous to that used in the primal (Charnes and Cooper (1984)).

Although the dual program is not as tidy as the primal its interpretation remains simple. The pth branch is relatively efficient if and only if the efficiency ratio, h_p^*, equals unity and the slack variables are all zero. That is, if and only if:

\[(2.4.5) \quad h_p^* = 1 \text{ with } S_k^* = S_i^* = 0, \text{ for all } k \text{ and } i \]

where the asterisk denotes optimal values of the variables in the dual program.

Where the efficiency conditions in (2.4.5) are fulfilled, the branch in question must be operating at the end-point of a negatively-sloped facet of the frontier isoquant. Branches in these circumstances are said to be "dominant" or "best-practice" vis-a-vis inefficient producers. Consequently the efficiency conditions (2.4.5) can be thought of as a definition of "best-practice" performance.

Notice that the shadow price interpretation of the choice variables is confined to the primal since the dual calculates weights (λ_c) on branches rather than on inputs and outputs. Additionally, the dual weights are non-negative.
In computation, the dual program is more tractable than the primal. In the primal the constraints are indexed on all \(Z \) branches. By contrast, in the dual the constraints are indexed on inputs and outputs and sum over branches. The number of inputs and outputs is never likely to exceed the number of branches. Phillips, Ravindran and Solberg (1976) have shown that the computational efficiency of the simplex method falls with increases in the size of the constraint set. Hence the dual program with only \((m + n)\) constraints on inputs and outputs is computed in preference to its (equivalent) primal with \(Z \) constraints.

For completeness, note that the output maximisation dual of (2.4.4) is:

\[
(2.4.4^*) \quad \text{MAX} \quad \lambda_c f_p^+ + \epsilon \left(\sum_{k=1}^{m} S_k + \sum_{i=1}^{t} S_i \right) \\
\text{subject to} \\
\lambda_c \geq 0, \quad c = 1, \ldots, p, \ldots, Z \\
S_k \geq 0, \quad k = 1, \ldots, m \\
S_i \geq 0, \quad i = 1, \ldots, t \\
\text{with } f_p \text{ unconstrained.}
\]

Again the dual is the program used in the computation of the efficiency ratio, although in this case it determines the output efficiency of a branch \(p \) for a given set of inputs.
Diagrammatic interpretation of the dual program

Subject to minor adjustments for returns to scale (which will be discussed in the next section) the dual program (2.4.3*) for input minimisation is that used in the LEA and prison case studies later in the thesis. It is appropriate therefore to offer at this point a diagrammatic interpretation of the dual.

The estimated dual technology is not smooth but constructed out of a series of intersecting linear facets. Each of these facets represents a constraint in the optimal solution to the dual. Collectively they intersect to form a convex production set which is closed and bounded from above. The frontier for efficiency comparisons is the lower convex hull of the possibility set, illustrated in figure 2.4.1.

Before explaining figure 2.4.1 it is useful to note the following definition of technical efficiency in terms of which the dual technology can be interpreted:

Input technical efficiency 6

A branch is technically efficient in its use of inputs if no other branch, or linear combination of branches, is producing equal amounts of outputs for less of at least one input.

This definition is equivalent to the formal efficiency conditions (2.4.5) from the dual; to recap, a branch p is efficient if and only if the efficiency ratio is unity and all of the slack variables are zero:

$$h^*_{p} = 1$$

and

$$s_{k}^* = s_{i}^* = 0,$$ for all k and i.

where (*) denotes optimal values of the variables.
Figure 2.4.1 illustrates a hypothetical frontier technology based on 5 branches producing a single output, Y, from 2 inputs, X₁ and X₂. Branches 1, 2 and 3, lying on the frontier, are "best-practice"; this implies that no other branch or linear combination of branches can be identified which is producing the same level of output for less of either or both inputs. These branches have unity efficiency ratios and zero slacks in the solution to the dual. Consider for example, the solution of the dual for branch 2:

$$h_2^* = 1$$

and the constraints are:

input 1 \[X_{12} \cdot h_2^* - 0 = X_{12} \cdot \lambda_2^* \]

input 2 \[X_{22} \cdot h_2^* - 0 = X_{22} \cdot \lambda_2^* \]

and on output:

\[Y_{12} + 0 = Y_{12} \]

The left-hand side of the constraints defines the "target", which in this case is clearly equal to actual performance on the right-hand side of the constraints because
best-practice implies $\lambda_2^* = 1$. The peer group drops out of the RHS of the constraints and for an efficient branch is none other than that branch itself since $\lambda_2^* = 1$ and $\lambda_c^* = 0$, $c \neq 2$.

Branches 4 and 5 are inefficient relative to frontier performance. That is, for the same level of output it is possible to find a branch, or a linear combination of branches, which are using less of at least one of the inputs. Consider branch 5, for example, with an efficiency ratio OA/OB which is less than unity. This reflects the fact that a linear combination of branches 2 and 3 is producing at least as much output as 5 with less of X_1 and X_2. The efficiency ratio can be used to suggest a target on the frontier for branch 5 which will improve its current performance such that it is not dominated by best-practice, viz.:

$$(OA/OB) \cdot OB = OA$$

In principle, existing consumption of inputs defined at the vector OB can be adjusted by the efficiency scalar to give a target vector OA. The target implies that input consumption at branch 5 can be cut to X_1' and X_2' in figure 2.4.1 while maintaining its current level of output. It is widely recommended in the literature (e.g. Bowlin (1986, 1987), Lewin and Morey (1981)) that the attainment of these targets is assisted by examination of peer performance. In terms of figure 2.4.1 the peer group for branch 5 is branches 2 and 3. Since these branches are producing at least the same output for less input they are felt to represent examples of better managerial and operational procedures which may be borrowed by the inefficient branch to improve its performance. The peers are defined by those branches that have non-zero weights in the optimal solution in the dual. For unit 5 the solution is:

$$h_5^* = \frac{OA}{OB} < 1$$

and the constraints are:

input 1

$$X_{15} \cdot h_5^* - 0 = X_{12} \cdot \lambda_2^* + X_{13} \cdot \lambda_3^*$$

input 2

$$X_{25} \cdot h_5^* - 0 = X_{22} \cdot \lambda_2^* + X_{23} \cdot \lambda_3^*$$

and on output:

$$Y_{15} + 0 = Y_{12} \cdot \lambda_2^* + Y_{13} \cdot \lambda_3^*$$
Target performance for $5, X_{i5} \lambda_i^\ast, i = 1,2,$ is clearly equal to a linear combination of performance at branches 2 and 3 where $\lambda_2^\ast, \lambda_3^\ast > 0$ and the weights on the other branches are all zero: $\lambda_c^\ast = 0, c \neq 2,3.$

Notice that there are constraints on inputs and outputs in the dual. The input constraints define a radial (or equi-proportionate) contraction in inputs given by the efficiency ratio, $h_p^\ast,$ with additional reductions given by non-zero input slack variables, $S^\ast_i, i = 1,\ldots,m.$ In the input minimisation dual, the output constraints do not include a radial adjustment to outputs and are only of importance insofar as any of the optimal output slacks $S^\ast_k, k = 1,\ldots,t,$ are non-zero. The solution for branch 5 has all input and output of the slacks equal to zero. However branch 4 has a non-zero slack on input $X_1.$ The efficiency ratio for 4 is OC/OD which defines an initial radial contraction in both inputs. However at point C, branch 3 is producing the same output for less of X_1 and the same amount of $X_2.$ Hence 4 is not fully efficient until it reduces its consumption of X_1 by the horizontal distance C to $E.$ This distance is given by a non-zero slack S_1^\ast in the final solution of the dual for branch 4, viz.:

$$h_4^\ast = OC/OD$$

and the input constraints are:

- input 1 $X_{14} h_4^\ast - S_1^\ast = X_{13} \lambda_3^\ast$
- input 2 $X_{24} h_4^\ast - 0 = X_{23} \lambda_3^\ast$

and on outputs:

$$Y_{14} + 0 = Y_{13} \lambda_3^\ast$$

The target for branch 4 is a radial contraction in both inputs given by h_4^\ast plus the additional reduction in $X_1,$ given by $S_1^\ast.$ Its peer group is branch 3 alone since its target coincides exactly with performance observed at this best-practice branch. Thus $\lambda_3^\ast = 1$ and $\lambda_c^\ast = 0$ for $c \neq 3.$
In some circumstances the input minimisation program may also suggest adjustments to output where the optimal values of the output slack variables are non-zero. These adjustments occur at the equivalent of horizontal or vertical facets of the output surface. In figure 2.4.1 the output surface would be a vertical extension of the input space. However it is only with a minimum of 2 outputs that non-zero output slacks are possible. Thus consider the output surface in figure 2.4.2. Like its input counterpart, it is piecewise linear, each facet reflecting the presence of an output constraint in the dual. Assume that the solution to the dual for branch 4 is identical to that given above other than that there are now two constraints on outputs,

\[
\begin{align*}
\text{output 1} & \quad Y_{14} + S_1^* = Y_{13} \cdot \lambda_3^* \\
\text{output 2} & \quad Y_{24} + 0 = Y_{13} \cdot \lambda_3^*
\end{align*}
\]

The slack value on output \(Y_2\) is zero, i.e. \(S_2^* = 0\). But that on \(Y_1\) is positive, \(S_1^* > 0\). This can be identified in terms of the output frontier in figure 2.4.2. Branch 4 is producing the same amount of \(Y_2\) as branch 3 but less of \(Y_1\). The slack on
\(Y_1 \) therefore represents the amount by which 4 must increase \(Y_1 \) to come up to the standards set by 3; this is the horizontal distance \(AB (= S^*_4) \) between branches 3 and 4.

It is apparent that there are two aspects to the target in the (input minimisation) dual program. The constraints define a radial (\(= \text{equi-proportionate} \)) reduction in inputs plus any further reductions in inputs suggested by non-zero input slacks. In addition however the presence of non-zero output slacks may require adjustments to outputs.

Throughout this thesis performance is evaluated using the input minimisation program because it was felt that the output maximisation version is inappropriate. This is because Government efficiency policy in the Financial Management Initiative was initially couched in terms of input rather than output improvements. Furthermore several authors have argued that in the face of output measurement problems in the public sector, evaluation should focus on the measurable aspects of production (Mersha(1989), Fare, Grosskopf and Lovell (1988), Khumbakar (1988) and Mellander and Ysander (1987)). In practice this has meant efficiency studies have emphasised the input dimensions of efficiency. Sengupta (1987a, b and c) has argued that in education, for example, measurement errors on outputs are larger than on inputs. That is costs in financial terms are more tractable to measurement than increments to knowledge and ability through test scores, etc. Complementary arguments have also been proposed suggesting outputs are in general more prone to stochastic influences than inputs (Sengupta (ibid.).

In many circumstances, outputs are exogenous. Take the example of prisons. Output in terms of prisoner days is not chosen by the prison governor. Rather, it reflects court sentencing policy, statute and the propensity to crime in the population at large. Consequently it would be meaningless to suggest that output be raised to increase efficiency because, \textit{inter alia}, this would necessitate a change to a harsher sentencing policy – something quite beyond the control of prison
management. In environments where output is controllable, the same reasoning may apply. For it is fair to ask how much inefficient producers can reasonably be expected to achieve. I have taken the approach that simultaneous input and output adjustments would be over-exacting. Therefore the targets defined for prisons and for local education authorities in later chapters are for adjustments to inputs alone. Additional changes to outputs which might be suggested in the slacks are ignored. The targeting criterion adopted is therefore of adjustment to inputs for given output.

2.5. Returns to scale

Section 2.5 examines some recent extensions to the original DEA program of Charnes, Cooper and Rhodes (1979, 1978). These concern the addition of constraints to the program to permit a greater diversity of scale possibilities in the estimated production surface.

Despite the revival of the programming approach by Charnes and Cooper in the late seventies, most economists continued to use statistical procedures for frontier estimation. Grosskopf (1986) has argued that this was to be expected because the original Farrell/Charnes-Cooper program made over-restrictive scale (and disposability) assumptions. Viz. Forsund et al (1980) stated that: "While his [Farrell's] measures are valid for the restrictive technologies he considered, they do not generalise easily to technologies that are not linearly homogenous or to technologies in which strong disposability and strict quasiconvexity are inappropriate". However recent developments, particularly in Fare, Grosskopf and Lovell (1985, 1983), Banker (1984), Banker, Charnes and Cooper (1984) and Banker, Charnes, Cooper and Schinnar (1981), have extended the original Farrell program to allow for a wide range of more general reference technologies. It is these revisions that are the subject of section 2.5.
The analysis of returns to scale in DEA

It is now appropriate to examine the analysis of scale in DEA. Early users of the non-parametric approach were based on a linear program which embodied constant returns to scale and strong disposability – these included Farrell (1957), Seitz (1971, 1970) and the first papers by Charnes, Cooper and Rhodes (1981, 1979, 1978). Many economists viewed these assumptions as over-restrictive so that alternative statistical procedures were generally adopted in place of DEA. However, recent work has enabled the relaxation of the constant returns assumption giving the programming approach wider applicability. At the same time, Rolf Fare and his colleagues have developed programs which permit weak rather than strong disposability of inputs and outputs – see especially Fare, Grosskopf and Lovell (1985, Chapter 2). These revised programs with alternative scale and disposability implications, have generated new interest in DEA and have been used throughout later chapters.

The most important revisions to the original Farrell/Charnes–Cooper program can be found in Fare, Grosskopf and Lovell (1985, 1983), Banker (1984), Banker, Charnes and Cooper (1984) and Banker, Charnes, Cooper and Schinnar (1981). It is probably fair to say that the most important name among these is Banker who has made a consistently significant contribution to the development to the subject. Accordingly, the analysis of scale now to be developed broadly follows that in Banker (1984).

Construction of a constant returns to scale (CRS) frontier

As is so often the case, it is easiest to proceed via a stylised example of production. Assume that output is the result of a single input, as in figure 2.5.1. Marked points in this diagram represent observed input–output combinations. The original Farrell/Charnes–Cooper program constructs a constant returns frontier by identifying that branch which maximises the ratio of output to input. This ratio can
be interpreted as the maximum average productivity and denotes the scale efficient branch since it is consistent with a position of constant returns to scale.

In figure 2.5.1 branch 2 maximises average productivity. A ray drawn from the origin to any of the remaining branches 1, 3, 4 or 5 would have a lower slope and would not maximise average productivity, i.e. \((Y_2/X_2) > (Y_c/X_c)\), \(c \neq 2\). A constant returns frontier is therefore an unbounded ray beginning at the origin and passing through a point of maximum average productivity as at branch 2. This is the frontier constructed by Farrell (1957), Charnes, Cooper and Rhodes (1979, 1978) and in the dual programs \((2.4.3^*)\) and \((2.4.4^*)\) explored earlier in section 2.4.8.

It is instructive to examine the solution to the CRS dual corresponding to the ray OCRS in figure 2.5.1. Dropping subscripts on inputs and outputs, the stylised solution to the dual \((2.4.3^*)\) for branch 2 would be:

\[
\begin{align*}
h^*_2 &= 1 \\
X_2 h^*_2 &= X_2 \lambda^*_2 \\
\text{and} \\
Y_2 &= Y_2 \lambda^*_2
\end{align*}
\]

where \(\lambda^*_2 = 1\) and \(\lambda^*_2 = 0, c \neq 2\). Since branch 2 maximises average productivity it is scale efficient and has a unit weight in the constraints, i.e. \(\lambda^*_2 = 1\). The remaining branches 1, 3, 4 and 5 have lower average productivity ratios. Hence they are dominated by branch 2 and cannot appear in its peer group. In order to calculate the input-efficiency ratios of these branches the performance of branch 2 has to be extrapolated in the appropriate direction using an assumption of "Ray Unboundness" (Banker, Charnes and Cooper (1984)). This generates the ray OCRS in figure 2.5.1. Since branch 2 is scale efficient the ray has a constant returns interpretation. Computationally it is constructed by varying the weights on the scale efficient branch (on the RHS of the constraints) in the solution to the dual.
Consider a dual solution for branch 4 which is consistent with figure 2.5.1 (where input and output subscripts have been suppressed):

\[h_4^* = \frac{EF}{EG} \]

and

\[X_4 \cdot h_4^* = X_2 \lambda_2^* \]

\[Y_4 = Y_2 \lambda_2^* \]

where \(\lambda_2^* > 1 \) and \(\lambda_c^* = 0 \), for \(c \neq 2 \). That is, the target vector for branch 4, \((X_2 \lambda_2^*, Y_2 \lambda_2^*)\)', is a re-scaling (or vector extension) of performance at the dominant branch by the factor \(\lambda_2^* \).

Next consider the solution for a branch such as 1 with lower inputs and outputs than the scale efficient branch:

\[h_1^* = \frac{HI}{HJ} < 1 \]

and

\[X_1 h_1^* = X_2 \lambda_2^* \]

\[Y_1 = Y_2 \lambda_2^* \]

where \(\lambda_2^* < 1 \) and \(\lambda_c^* = 0 \), for \(c \neq 2 \).
The target vector for branch 1 on the RHS of the constraints is again a re-scaling of performance at the dominant branch. However, for input–output levels lower than scale efficient levels the optimal weight λ_2^* is less than unity.

It is apparent from these examples that by varying the value of the weight(s) on the scale efficient branch(es) – that is by varying λ_2^* in figure 2.5.1, it is possible to construct a frontier consistent with a constant returns to scale technology. Notice that at the origin $\lambda_2^* = 0$ and that for higher levels of inputs and outputs $\lambda_2^* \to +\infty$.

Banker (1984) pointed out that a useful "test" for returns to scale can be derived from the CRS dual. In particular, branches such as 1 with lower inputs and outputs than the reference branch will have a target which is a scaling down of best-practice performance. Analogously with higher inputs and outputs than at the reference branch, targets are a scaling up of best-practice performance. That is, the weight on best-practice (e.g. λ_2^* in figure 2.5.3) describes the returns to scale:

$$\lambda_{bp}^* < 1 \Rightarrow \text{IRS (increasing returns)}$$
$$\lambda_{bp}^* = 1 \Rightarrow \text{CRS (constant returns)}$$
$$\lambda_{bp}^* > 1 \Rightarrow \text{DRS (decreasing returns)}$$

where bp denotes the scale efficient or best-practice branch.

Notice that in the simple 1 x 1 case in figure 2.5.3 only one branch is scale efficient. However, for multiple inputs and outputs several branches may be scale efficient on at least one variable (c.f. Nunamaker (1985)) such that the Banker scale indicator would be the sum of the optimal weights on each of those branches:

$$\sum_{c=1}^{z} \lambda_c < 1 \Rightarrow \text{IRS}$$
$$\sum_{c=1}^{z} \lambda_c = 1 \Rightarrow \text{CRS}$$
and

\[\sum_{c=1}^{Z} \lambda_c > 1 \Rightarrow \text{DRS} \]

where some of the \(\lambda^*_c = 0 \) for inefficient branches.

The Banker indicator is used to explore the scale characteristics of local prisons and remand centres in Chapter 5.

Construction of a non-constant returns technology

Having explored the construction of the constant returns technology it is now possible to examine the Banker (1984) adjustment to the dual which permits the estimation of technologies which allow returns to scale to vary over the production surface.

It has been shown that the position of the frontier is embodied in the weights \((\lambda^*_c, \ c = 1, \ldots, Z) \) in the constraints from the dual program. An unbounded CRS ray can be generated by unlimited selections of values of the weights \(\lambda^*_c \). It should be clear that if the program restricts the values which the \(\lambda^*_c \) may acquire, this will have a significant effect on the shape and position of the frontier. In particular, the frontier will have a "varying returns to scale" (VRS) interpretation incorporating decreasing, constant and increasing returns if the weights are constrained to sum to unity. The addition of the constraint \(\sum_{c}^{Z} \lambda^*_c = 1 \) immediately excludes construction of the unbounded CRS ray because the unlimited vector extension of scale efficient performance is no longer possible.
The varying returns to scale technology

A stylised example of a varying returns frontier is contained in figure 2.5.2. Since increasing and decreasing returns are feasible, the frontier may include scale inefficient operations; i.e. branches such as 1 (with IRS) and 3 and 4 (with DRS) which nevertheless are technically efficient for given scale. The result is a piecewise linear frontier ABCDE. The returns to scale vary from facet to facet, each of which represents the solution to a constraint in the dual. For combinations of input and output lower than the scale efficient branch, e.g. along the facet BC, there are increasing returns; facets reflecting higher levels of production have decreasing returns to scale. Notice also that the scale efficient branch is included in both the VRS and the CRS frontiers and indeed represents the point of intersection of the two.

The full revised program of Banker (1984) is required to generate the VRS frontier. The full input minimisation program, permitting locally increasing, constant and decreasing returns to scale is then:
(2.5.1) \[
\begin{align*}
\text{MIN } h_p & - \epsilon \left(\sum_{k=1}^{m} S_k - \sum_{i=1}^{t} S_i \right) \\
\text{subject to} \\
X_{kp} + h_p & - S_k = \sum_{c=1}^{z} X_{kc} \lambda_c, \quad k = 1, \ldots, m \\
Y_{ip} & - S_i = \sum_{c=1}^{z} Y_{ic} \lambda_c, \quad i = 1, \ldots, n \\
1 & = \sum_{c=1}^{z} \lambda_c \\
\end{align*}
\]

and

\[
\begin{align*}
\lambda_c & > 0, \quad c = 1, \ldots, p, \ldots, z \quad \text{(weights on branches)} \\
S_k & > 0, \quad k = 1, \ldots, m \quad \text{(input slacks)} \\
S_i & > 0, \quad i = 1, \ldots, t \quad \text{(output slacks)}
\end{align*}
\]

The revised program is identical to that in section 2.4 other than for the addition of the constraint that the weights on branches sum to unity. This new constraint ensures that the frontier is composed of multiple convex linear combinations of best-practice where dominance is now more weakly defined to include regions of increasing and decreasing returns. Indeed any convex linear combinations of observed inputs and outputs is a feasible production plan.

Consider the solution of the dual for branch 5 in figure 2.5.2 (and suppressing subscripts on inputs and outputs for convenience):

\[
\begin{align*}
h_5 & = FH/FI < 1 \\
X_5 h_5 & = X_3 \lambda_3 + X_4 \lambda_4 \\
Y_5 & = Y_3 \lambda_3 + Y_4 \lambda_4 \\
1 & = \lambda_3 + \lambda_4 \\
\end{align*}
\]

(and \(\lambda_1 = \lambda_2 = \lambda_5 = 0 \).)

Since \((X_3, Y_3)' \) and \((X_4, Y_4)' \) are observed input-output vectors, then by assumption the target vector is also feasible for any values of the weights which sum to unity; hence the target for branch 5 is a convex combination represented by
point H on the facet DE in figure 2.5.2. Notice that branch 5 is neither technically or scale efficient compared to the extrapolation of average productivity from branch 2. If the CRS program were computed for branches 3 and 4 the optimal solution would suggest decreasing returns to scale because in each case $\sum \lambda_c^* > 1$.

Grosskopf (1986) and Fare, Grosskopf and Njinkeu (1988) have explored the effects on efficiency of altering the definition of the reference technology. In general, a CRS efficiency comparison gives a poorer picture of performance since an organisation has to be both technically and scale efficient to qualify for a unity efficiency ratio. Under a varying returns technology dominance is weaker in the sense that scale inefficient production may qualify as best-practice if it is technically efficient. The effects of technological nesting will be fully discussed in Chapter 5. For the time being, however, it is sufficient to note:

$$TE_i^{crs} < TE_i^{vrs};$$

i.e. for the same production unit i, technical efficiency under constant returns is lower than under varying returns (other than where the two technologies coincide when the efficiency scores will be equal). In general then the CRS efficiency can be thought of as a "lower bound" and the VRS as the "upper bound" measure of efficiency. In some papers, (e.g. Rangan et al (1988)), VRS efficiency is termed pure technical efficiency to distinguish it from CRS efficiency which subsumes technical and scale components in performance.

However this does not exhaust the potential array of reference technologies which may be computed using DEA. In addition to CRS and VRS there is a third non-increasing returns (NIRS) program. The NIRS boundary is a composite of the CRS and VRS alternatives. In figure 2.5.2 it would be OCDE where clearly the facet OC has constant returns, and those facets for output levels above branch 2 have decreasing returns. It should be obvious that the inclusion of the constraint $\sum \lambda_c < 1$ in the dual (in place of $\sum \lambda_c = 1$) will be sufficient to generate the NIRS technology. Hence for efficiency comparisons over the range OC, $\sum \lambda_c^* < 1$ in the NIRS program and for similar comparisons with the facets CD and DE $\sum \lambda_c^* = 1$.

46
Implementation of NIRS programs can be found in Jesson, Mayston and Smith (1987) and in Smith and Mayston (1987). Notice that the NIRS technology could be constructed from the VRS program if an observation consisting entirely of zeroes is included in the data set.

Other uses of the piecewise reference technologies - a short digression

For nearly 20 years there has been a small number of contributions to a literature which seeks to establish whether real production data has been generated by well-behaved production or cost-functions. In principle, there are circumstances under which it could be proved that the input set is consistent with cost-minimising behaviour. Afriat (1972) and Hanoch and Rothschild (1972) showed that from the construction of appropriately defined linear programs it is possible to "test" for a behavioural assumption of cost minimisation. These L.P.s compute bounds on the input set which are essentially identical to the frontier technology constructed using DEA. Recent work has been done by Banker and Maindiratta (1988), Diewert and Parkan (1983) and also by Varian (1985, 1984) who has constructed L.P.s to test for utility maximisation in consumption data.

Disposability of inputs and outputs

A further important characteristic of the DEA possibility set is "disposability" which can refer to inputs or outputs and be either "weak" or "strong". Quite simply, disposability says that inefficiency is possible so that non-boundary production is possible. This is in contrast to traditional neoclassical analysis of production wherein all the relevant first and second order conditions are fulfilled ensuring frontier attainments.

Formally speaking, disposability can be defined in the manner of Banker, Charnes and Cooper (1984) who use the alternative term "Inefficiency Postulate": Given a production possibility set \(P \) then:
(a) Disposability of inputs obtains if for \((X,Y) \in \mathbb{P}\) and \(X' > X\) then \((X',Y) \in \mathbb{P}\); and

(b) Disposability of outputs obtains if for \((X,Y) \in \mathbb{P}\) and \(Y' < Y\) then \((X,Y') \in \mathbb{P}\).

That is, if an input (output) vector \(X\) (\(Y\)) is contained in \(\mathbb{P}\) then a larger (smaller) input (output) vector is also contained in \(\mathbb{P}\). If the initial vector \((X,Y) \in \mathbb{P}\) can be thought of as a frontier vector then this definition clearly permits inefficiency in the form of excess inputs or insufficient output. If the observed input-output combinations \((X_c,Y_c), c = 1, \ldots, 5\) in figure 2.5.2 are feasible then so is:

\[
(X_1 + \rho_1 X_2 + \rho_2 \ldots X_5 + \rho_5 Y_1 - \sigma_1 Y_2 - \sigma_2 \ldots Y_5 - \sigma_5)'
\]

where \(\rho_c, \sigma_c \geq 0\) for all \(c\). It follows that the whole of the feasible production set is generated by the twin assumptions of convexity and disposability. In figure 2.5.2 for example the vertical facet \(AB\) is feasible because there is output disposability i.e. \(Y_1 - \sigma_1\) for \(\sigma_1 > 0\) is also feasible.

Figure 2.5.3

Weak and strong disposability of inputs

Disposability can be thought of in terms of marginal productivity. In particular, disposability of inputs is "strong" (or "free") if marginal productivity can be equal
to zero. Figure 2.5.3 illustrates 2 stylised piecewise isoquants computed using DEA. The frontier ABCD is said to exhibit strong disposability since marginal productivity remains non-negative throughout its length. Along the negatively-sloped facet BC both inputs have positive marginal products. However, along horizontal or vertical facets e.g. AB or CD marginal productivity of the relevant input is zero. In a traditional neoclassical environment facets such as AB or CD are excluded by the ridge lines which demarcate positive from non-positive marginal productivity. However the disposability assumption permits extension of the isoquant to form horizontal or vertical facets.

Negative marginal productivity is called weak disposability or congestion (see Fare and Grosskopf (1983a)). It describes circumstances in which input levels are being increased and output is actually falling. Thus the technology EBCD is said to exhibit weak disposability since in at least one facet (EB in this case) marginal productivity is negative.

The disposability assumption is important because it will affect the magnitude of the efficiency score. For production at H in figure 2.5.3 the technical efficiency ratio (WTE) for the weakly disposable technology is:

\[WTE = \frac{OG}{OH}; \]

its strongly disposable counterpart being:

\[STE = \frac{OF}{OH} \]

where in general (Grosskopf (1986)):

\[WTE > STE. \]

Clearly, the efficiency score depends on the disposability assumption and in general efficiency under a weakly disposable technology will be higher. The same holds for disposability of outputs and is illustrated in figure 2.5.4.
The weakly disposable technology is ABCE. For production at a point such as G the output efficiency ratio is OG/OH. The strongly disposable technology, ABCD, defines a lower efficiency ratio OG/OJ. The same efficiency relationship as under input disposability is evident. Hence, a weakly disposable output frontier defines a higher efficiency score than its strongly disposable counterpart.

Further discussion of the effects of disposability is beyond the scope of this Chapter, but see Fare, Grosskopf and Lovell (1987) and Fare and Grosskopf (1983b). It is important to make clear, however, that all of the estimated technologies reported in this thesis exhibit strong disposal of inputs and outputs.

A final taxonomy of efficiency scores based on scale and disposability distinctions

Having discussed both scale and disposability it is worth summarising their combined effect on the efficiency score. Such a taxonomy was first presented in Grosskopf (1986).
Recall figure 2.5.2 which combined CRS and VRS technologies. It should be immediately obvious that the CRS technology dominates the varying returns technology. That is, for given levels of inefficient performance the CRS technology defines a lower efficiency score. The technical efficiency of unit 5 under VRS is \((FH/FI)\) while the CRS efficiency score is \((FG/FI)\) where the distance \(d(F,G) < d(F,H)\); \(d\) being the distance function. In general then the following relationship holds between the two technologies:

\[
TE_{i, crs} \leq TE_{i, vrs}
\]

\(TE_{i}\) denoting the technical efficiency of the same branch \(i\).

The non-increasing returns (NIRS) technology may also be included in the taxonomy by noting that above scale-efficient output:

\[
TE_{i, nirs} = TE_{i, vrs}
\]

and below scale-efficient output:

\[
TE_{i, nirs} = TE_{i, crs}
\]

In figure 2.5.2 this means that for outputs above \(Y^*\) the NIRS technology overlaps the VRS along facets CD and DE; while below \(Y^*\) the NIRS technology overlaps a distance OC along the CRS ray.

In general this implies that the 3 possible DEA reference technologies, CRS, VRS and NIRS, have efficiency scores which can be ordered:

\[
TE_{i, crs} \leq TE_{i, nirs} \leq TE_{i, vrs}
\]

Other things equal, the VRS technology gives the highest efficiency score while its CRS counterpart gives the most exacting measure of performance.

The efficiency score can be further classified if the disposability assumption is made explicit. It was noted earlier that a strongly disposable technology dominates the weakly disposable alternative in at least one facet and so the efficiency scores have the relationship:

\[
STE_{i} \leq WTE_{i}
\]

\(S\) denoting the strong and \(W\) the weak disposal technical efficiency for branch \(i\).
Grosskopf (1986) noted that a full taxonomy of efficiency scores incorporating scale and disposability assumptions is, using familiar notation:

\[(2.5.2) \quad TE_{vrs,w} > TE_{nirs,w} > TE_{crs,w} \]

\[IV \quad IV \quad IV \]

\[TE_{vrs,s} > TE_{nirs,s} > TE_{crs,s} \]

For given performance the highest feasible efficiency score in DEA would result from a varying returns technology with a weak disposability of inputs and outputs, i.e. \(TE_{vrs,w} \). Analogously the lowest efficiency score in this context would be defined by \(TE_{crs,s} \); that is, a constant returns technology with strong disposability of inputs and outputs. The relationships between other possibilities for the efficiency score follow trivially from the discussion of scale and disposability. It may simply be added however that dominance among various efficiency scores has been expressed with weak inequalities. This is because the technologies may overlap in at least one facet and in this region the efficiency score will be equal. On other facets however dominance may be strict.

Before closing, it is appropriate to add which of the efficiency scores in the full taxonomy in (2.5.2) apply in later Chapters. Chapters 3 and 7 compute a varying returns technology with strong disposability on a local education authority data set. Likewise, Chapter 4 uses data on local prisons and remand centres assuming that the reference technology has VRS and strong disposability. To compare the effects of an alternative reference technology on efficiency levels, Chapter 5 computes a constant returns technology with strong disposability. The replication of the LEA results in Chapter 7 on a clustered basis uses VRS with strong disposability.
Footnotes

4. Charnes, Cooper and Rhodes (1979, 1978) introduced the term "decision-making unit" (or DMU) which is now widely used in the literature. This chapter generally uses the term branch, but "establishment" and "organisation" are also used to denote a production unit. Terminology aside, the important point for DEA evaluation is that each unit is sufficiently similar to make efficiency comparisons meaningful.

5. The importance of strictly positive weights in the primal problem is discussed at greater length in Boyd and Fare (1984) and Charnes and Cooper (1984).

6. The meaning and definition of efficiency in DEA will be discussed in greater detail in Chapter 7. There is further discussion of the feasibility and implementation of targets in Chapters 4, 5 and 7.

8. Where (2.4.3*) calculates the input efficiency ratio and (2.4.4*) the output efficiency ratio in terms of the constant returns boundary.

9. Chapter 5 makes use of the Grosskopf taxonomy in interpreting the differences between prison efficiency under alternative CRS and VRS technologies.
Chapter 3. Total factor productivity measurement in English local education authorities: A non-parametric approach

3.1. Introduction

"There are few practical problems in which the economist has a more direct interest than those relating to the principles [of] the expense of the education of children." (Marshall (1920).)

As much as in the private sector, the public sector decision-maker requires a methodology to identify the efficient set of choices in production. Typically, this choice is to be made without the assistance of market prices for outputs in a multiple input/multiple output environment.

In this connection, Chapter 3 presents summary efficiency measures for maintained secondary school education using Data Envelopment Analysis (DEA). The results are a contribution to the educational production function literature which, to date, is econometrically oriented (see e.g. DES (1983, 1984), and Hanushek (1986) for a survey).

DEA uses non-parametric linear programming techniques deriving originally from Farrell (1957). The standard alternative approach is parametric, and either deterministic or stochastic, where efficiency is measured relative to a frontier production or cost function estimated statistically. In general, the parametric approach to production behaviour has been adopted because of a belief that DEA makes over-restrictive assumptions on the production technology. For example Forsund, Lovell and Schmidt (1980) have argued that "While his [Farrell's] measures are valid for the restrictive technologies he considered, they do not generalise easily to technologies that are not linearly homogenous or to technologies in which strong disposability and strict quasiconvexity are inappropriate." This claim is true of the linear program used in the earlier empirical DEA literature (eg Lewin and Morey
(1981)) which typically imposed constant returns to scale and strong disposability of inputs. But new analytical developments, the most important of which are Banker (1984) and Fare, Grosskopf and Lovell (1985) have generalised the linear programming model underlying the non-parametric approach allowing for a wide range of very general reference technologies.

Using the revised DEA program of Banker (1984), this Chapter provides new estimates of productive efficiency in British education. The use of the non-parametric approach is limited to a small number of examples predominantly on US data (e.g. Bessent and Bessent (1980), Bessent, Bessent, Kennington and Reagan (1984), Sengupta and Sfeir (1986)). Application of DEA to UK education data and to public finance contexts in general has barely begun. Chapter 3 attempts to fill this gap, estimating the efficiency of educational production (the fourth largest programme in UK public expenditure) to provide an illustrative set of performance statistics for the public sector. It should be noted that the treatment in this Chapter is introductory, especially in reference to the Pareto interpretation of DEA and in the role of the peer group. These topics will be dealt with more critically and at greater length in later Chapters – see Chapters 4 and 7 on the peer group and Chapter 6 on Pareto efficiency in DEA.

In outline Chapter 3 develops as follows. Section 3.2 summarises the main difficulties encountered in attempting to measure productivity in the public sector. It surveys the various alternatives which are available and redefines the basic fractional model of Data Envelopment Analysis. The bulk of the Chapter is contained in section 3.3 which introduces a model of educational production in the local education authority (LEA). Efficiency measures are reported for all 96 English LEAs. Section 3.4 takes up a suggestion in Smith and Mayston (1987) that the number of citations for best-practice can be interpreted as a form of robustness statistic. Some conclusions are suggested in section 3.5 on the appropriateness of DEA to current policy for public sector efficiency measurement.
3.2. Measurement in the public sector

Production in the public sector is difficult to evaluate, both in terms of its simple level and its efficiency. A large spending department or programme will typically produce multiple outputs. It is very often the case that these will be qualitative and will not have the physical characteristic of "countability". That is, unlike production of car tyres or match boxes, it may not be possible to observe distinct units of output in many public programmes. Service outputs in general typically involve an alteration in human abilities or satisfaction – a "client-change", like increments to knowledge or changes in appearance which are difficult to measure meaningfully on ordinary cardinal number scales (Marris (1985), Jarratt (1985)).

Where sensible measures of output can be defined, these will most probably be denominated in non-homogenous units. The combination of outputs for aggregate indicators then requires the selection of weights. Private sector organisations will use prices observed in product markets to calculate measures such as total revenue. Through their access to the Stock Market, private organisations also have recourse to capital market indicators of performance like dividend, price-earnings ratio, etc. Public production therefore precludes access to two of the most common sources of performance indicators.

The lack of market-price weights leaves a number of possibilities for the choice of weights to calculate aggregate indicators:

a. expert opinion;

b. client opinion;

c. ordinary least squares regression analysis;

d. econometric frontier analysis;

e. linear programming/data envelopment analysis.

(a) through (e) represent different methodologies for choosing a valuation system for non-marketed outputs. In some circumstances, the subjective weights of experts
(such as policymakers and practitioners) or of clients themselves should be chosen (Macrae (1985)). However it is very often the case that policymakers are unwilling or unable to reveal policy–output priorities (Smith and Mayston (1987)). Systematic and robust surveys of client opinion on the level, quality and distribution of public output are not readily available in the UK context. For example, in an investigation of competitive tendering by local authorities, Ganley and Grahl (1988) found that indicators of service quality such as complaints were monitored irregularly and with questionable accuracy.

In the absence of client or expert weights, the modeller or decision-maker may attempt to specify an a priori model of the relevant production process and choose an appropriate estimator of its technological coefficients.

Ordinary Least Squares (OLS) regression analysis is simple to implement on a variety of software such as TSP or LIMDEP and frequently used in the literature (e.g. DES (1983, 1984)). Proponents of the programming approach like Banker and Maindiratta (1986) have argued that in choosing a functional form (e.g. Cobb–Douglas, CES, translog etc.) strong a priori assumptions are imposed on the production technology. Moreover, the average production function which results from OLS is not a boundary function. Therefore it is inconsistent with the economic theory of production, which is an important weakness when making efficiency comparisons. Forsund and Hjalmarsson (1979) argued that "estimates of the best–practice frontier ...[are] a natural reference or basis for efficiency measures" (emphasis added). That is, Ordinary Least Squares is an inappropriate basis for efficiency comparisons because the "average" production function sets a performance norm which tends to institutionalise inefficiency (Hammond (1986)).

In recognition of the defects of OLS, a group of U.S. econometricians, namely Dennis Aigner, C. A. K. Lovell and Peter Schmidt, began the development of true frontier comparisons. Early developments can be found in Aigner and Chu (1968) and Richmond (1974). This early work relied on the existence of one–sided residuals
in the production or cost function which could be treated as measures of technical efficiency. However these early models were, like DEA, deterministic and did not permit conventional hypothesis testing for variable selection. Later models were able to account for noise by the incorporation of a composite residual. This had two parts: A one-sided residual to measure efficiency and a conventional symmetrical residual to account for noise (see Aigner, Lovell and Schmidt (1977) and Meeusen and Broek (1977)). Unfortunately, the composite residual confounded noise and efficiency because there was no known procedure to separate its noise and efficiency components ex post. Subsequently however Jondrow et al (1982) devised a transformation to extract the efficiency component of the composite residual. The transformation decomposes the residual into a symmetrical (normal) component and a one-sided efficiency component. Jondrow et al derive explicit formulae for the decomposition in the case of half-normal and exponential distributions. This represents a significant step forward for the econometric approach since it is able to measure efficiency and at the same time to account for noise.

Nevertheless important methodological problems remain in econometric efficiency comparisons. The most pressing of these is the choice of distribution for the one-sided efficiency residual. A whole host of distributional forms are feasible – half-normal, exponential, gamma and beta being the most commonly used. A fortiori the resulting efficiency measures are not invariant to the choice of efficiency distribution. A study of the effects of some alternative assumptions can be found in Schmidt and Lin (1984); while more complete surveys of the econometric approach than space permits here are Forsund, Lovell and Schmidt (1980) and Schmidt (1986).

Historically, traditional ratio analysis has been devalued by the partial and equivocal picture of productive performance it can give (Todd (1985), Smith and Mayston (1987)). Specifically, for a single-output production process \(y = f(X_1, ..., X_m) \) there will be \((y/X_k), k = 1, ..., m \) partial factor productivity ratios. For a decision-making unit (DMU)\(^5\) jointly producing \(t \) outputs \(y_i = f_i(X_1, ..., X_m) \) \(i = \)
1,...,t there are \((Y_i/X_k)\), that is, \(t \times m\), partial factor productivity indicators. Taken as a whole, there are no \textit{a priori} arguments which could guarantee that these will form a consistent summary of performance.

Based on work by Farrell (1957), Charnes, Cooper and Rhodes (CCR) (1978, 1979) extended traditional ratio analysis to the case of multiple inputs and multiple outputs. This is the non-parametric approach to efficiency comparisons. CCR postulated a summary productivity ratio which can be written in the form of a fractional program. The total-factor efficiency of a DMU \(p\) in a larger cross section of \(Z\) units is then:

\[
\begin{align*}
\max_{V_i, W_k} & \quad \frac{\sum_{i=1}^{t} V_i Y_{ip}}{\sum_{k=1}^{m} W_k X_{kp}} \\
\text{subject to} & \quad Z \text{ constraints}
\end{align*}
\]

subject to \(Z\) constraints

\[
0 \leq \sum_{i=1}^{t} V_i Y_i c / \sum_{k=1}^{m} W_k X_{kc} \leq 1, \quad c = 1, \ldots, p, \ldots, Z \text{ DMUs}.
\]

and \(V_i, W_k > 0\), for all \(i\) and \(k\).

Data Envelopment Analysis (DEA) treats the observed inputs \((X_k)\) and outputs \((Y_i)\) in this ratio as constants and chooses optimal values of the variable weights to maximise the efficiency of DMU \(p\) relative to the performance of the others in the cross section. The optimal weights chosen for each DMU therefore represent a value-system which provides the most optimistic possible rating of its performance relative to peer organisations (Lewin and Morey (1981), Nunamaker (1985)).

For a cross section of \(Z\) DMUs, DEA generates \(Z\) sets of weights such that
the ratio in (3.2.1) collapses into a summary, scalar measure of productive efficiency for each DMU. The constraints in the program ensure that the efficiency index has an intuitive interpretation in the closed interval \([0, 1]\). If the index is unity, a DMU is relatively efficient or best–practice. A value less than unity indicates a DMU is inefficient relative to some of its peers.

The DEA ratio in (3.2.1) is tractable given suitable measures of outputs and inputs. These themselves will depend to some extent on correct specification of the underlying production process. In the case of econometric boundary estimates like Richmond (1974) and of traditional ratio analysis (as in Packer (1983)), there is no test of significance of the resulting efficiency estimates. This is also true of the variable selection in the DEA ratio in (3.2.1).

Nonetheless, given suitable output measures, the non–parametric approach is commendable. In a great many situations, outcomes will be politically and publicly sensitive. Non–subjective ("data–based") DEA weights can be substituted where policymakers' own weights are undecided, unrevealed or disputed. Unlike the econometric approach DEA does not impose an arbitrary functional form on the production technology. Rather the technique makes weaker assumptions on the production possibility set. Burley (1980) has indicated in addition that DEA "does not require additive separability of factors in the production function, or the stability of own or cross price elasticities and avoids some statistical estimation problems arising from multicollinearity in n factor data". In addition nearly all econometric efficiency comparisons have been limited to a single output or cost variable (Schmidt (1986)). This is especially inappropriate in a public sector context where programmes and organisations are usually of a very diverse character jointly producing many outputs. Assuming that appropriate measures of inputs and outputs exist, these are readily incorporated into the generalised DEA–efficiency ratio.

In contrast to DEA, traditional ratio methods like historical unit costs do not embody an optimising principle. This criticism also applies to the least squares
approach which proceeds \textit{via a single} optimisation across all DMUs, which amounts to averaging across all observations (Bowlin (1987)). An interesting study of efficiency in North Carolina hospitals by Banker, Conrad and Strauss (1986) has confronted non-parametric DEA estimates with a translog version of the production function. The translog results suggested that constant returns prevailed in the hospital sample, whereas the DEA procedure indicated that both increasing and decreasing returns to scale may be observed in different segments of the production correspondence, in turn suggesting that the translog model may be "averaging" diametrically opposed behaviour. In employing a series of optimisations, one for each DMU, DEA is consistent with orthodox neoclassical theory. Charnes and Cooper (1985) argue that, as a consequence, DEA provides a better fit to each observation and a better basis for identifying and estimating the sources of inefficiency in production.

3.3. The efficiency of educational production in English local education authorities

The DEA extension to traditional ratio analysis outlined in section 3.2 is now developed in the context of cross-section data on the 96 English local education authorities (LEAs). The results are presented as a set of indicative public sector statistics consistent with the aims of current government efficiency policy.

Standard references containing educational performance data give an extremely weak and equivocal indication of LEA efficiency. The annual public expenditure White Paper, for example, contains partial-factor indicators such as the pupil:teacher ratio (PTR) and simple measures of pupil throughput\(^\text{10}\). The PTR is especially misleading as a measure of \textit{contact} between children and staff because it is calculated on the total number of teachers employed, whether in schools, on secondment, or on training courses, etc. The resulting figures are \textit{not} a measure of pupil:teacher ratios actually in effect in schools\(^\text{11}\). Other sources contain a confusing range of indicators. Audit Commission (1986a), for example, suggests about 60 indicators for secondary education but assigns no weights to these nor suggests any
other means to forming an overall picture to schools' performance. Indeed there is no official source for summary performance statistics such as will be developed in this Chapter.

Specification of the model

The empirical model of LEA production developed in this Chapter contains three outcome variables and five input variables. Of the latter, four are socio-economic data which are uncontrollable from the LEA's point of view. It is very widely recognised that attainment at school reflects both school and non-school inputs (Duncan, Featherman and Duncan (1972), Perl (1973), DES (1983, 1984), Armitage and Sabot (1987)).

The definitions of these variables are contained in table 3.3.1. Each variable has been chosen to reflect important characteristics of educational production as indicated in recent government policy and the literature more generally. A recent public expenditure White Paper stated (in a manner very similar to its recent predecessors): "The Government's principal aim for schools continues to be to improve standards of achievement for all pupils across the range of all school activities, securing the best possible return from the substantial investment of resources" and also "to improve the management of schools" (Cm 56, p. 197).

Table 3.3.1 contains 3 outcome variables, (a) through (c), based on examination results in the old 'O'-level/CSE syllabus from samples of maintained secondary schools. The results have been averaged from performance over three academic years (1980/81 to 1982/83) in an attempt to reduce the effect of once-off variations due to exceptional cohorts of pupils. The use of examination results as an indicator of school output is pervasive in the literature – see for example Bessent and Bessent (1980) and Bessent, Bessent, Kennington and Reagan (1982) on US schools; Jesson, Mayston and Smith (1987) and Jesson and Mayston (1989) on UK data. This has the implication that educational efficiency is usually couched in terms
of intermediate rather than final outputs; Bovaird (1981) contains a very useful discussion of the distinction between intermediate and final outputs.

Table 3.3.1
Variable set definitions for the LEA model

<table>
<thead>
<tr>
<th>Outcome Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>The percentage of maintained school-leavers in each LEA achieving:</td>
</tr>
<tr>
<td>a. at least 5 higher grade passes at 'O' level/CSE;</td>
</tr>
<tr>
<td>b. 6 or more graded results at 'O' level/CSE;</td>
</tr>
<tr>
<td>c. (100 - no graded results at 'O' level/CSE).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discretionary:</td>
</tr>
<tr>
<td>d. secondary school teaching expenditure per pupil;</td>
</tr>
<tr>
<td>Non-discretionary:</td>
</tr>
<tr>
<td>e. living in households whose head is a non-manual worker, excluding junior non-manual workers and non-manual supervisors;</td>
</tr>
<tr>
<td>f. (100 - percentage of children living in households lacking the exclusive use of one or more of the standard amenities or living in a household at a density of occupation greater than 1.5 persons per room;</td>
</tr>
<tr>
<td>g. (100 - percentage of children born outside the UK, Ireland, USA and the Old Commonwealth or in households whose heads were born outside the UK, Ireland, USA and the Old Commonwealth;</td>
</tr>
<tr>
<td>h. persons per hectare</td>
</tr>
</tbody>
</table>

Notes: The outcome variables a., b. and c. are the averages for the academic years 1980/81, d. is an average of expenditure over the same period expressed in November 1982 prices.

Outcome (a) reflects an authority’s success in the education of higher ability.
pupils. It is an indicator widely used by Her Majesty's Inspectorate, the Department of Education and Science, and others, e.g. Gray and Jesson (1987) and Smith and Mayston (1987) in LEA comparisons. Performance at 'A'-level has been excluded because of problems in the interpretation of data. Jesson, Mayston and Smith (1987 pp.263–264) argue that "differences in reported 'A'-level pass rates between different authorities may at the moment simply reflect differences in their institutional arrangements, whether sixth forms, tertiary colleges or technical colleges, under which 'A'-level teaching takes place, rather than differences in ... effectiveness". Analogously, outcome (b) is an indicator of the number of pupils reaching an average level of attainment in secondary schools. Finally, outcome (c) has been transformed to be the broadest indicator of any form of graded attainment, i.e. the output of at least one graded result at the 'O'-level CSE examination.

It is conventional (in the National Accounts for example) to think of output as value added – in this case the increment to knowledge and cognitive ability of the pupil whilst at school. Examination results at 'O'-level and CSE measure the "gross" output of the LEA. Historically, the widespread standardised testing of cohorts on initial admission and then departure has not been undertaken in the UK (or overseas). Only pilot studies of this nature can be found, e.g. Mortimore and team (1985) on junior school education. However the reforms initiated by the 1980 Education Act allow for the standardised testing of pupils at different stages of their school career. As this data becomes available, assessment of value added in schooling may become a reality. This is consistent with the general thrust of the 1980 Act which sought to bring a shift from professional to public accountability in education. A necessity in so doing has been the generation of improved information on which the public (especially the tax payer and parents) can judge performance (Jesson, Mayston and Smith (1987)).

Five inputs have been incorporated into the model. The most commonly used of these in studies of LEA performance (e.g. Mayston and Smith (1987)) is teaching expenditure per pupil. (Where applicable London weighting has been netted off.) It
is a variable which is under the authority's control and reflects the quality of LEA management to some degree. Hence it is this variable for which targets may be set to improve performance in relatively inefficient authorities. Notice that to try and eliminate exceptional variations in costs, the teaching spend variable has been averaged over the academic years 1980/81 to 1982/83.

The remaining input variables incorporated into the model are "non-discretionary"; that is, they reflect background factors in the LEA's catchment area which are beyond its own control. Variables (e), (f) and (g) summarise the family background of pupils and incorporate the educational impact of family income, occupational status and ethnic origin. More specifically, (e) is designed to reflect the numbers of pupils coming from families defined as belonging to higher socio-economic groups. (f) on the other hand is an indicator of children coming from poorer families and (g) from ethnic backgrounds. Variables like (f) and (g) are usually thought to have a negative impact on attainment on schools (Bessent, Bessent, Elam and Long (1984)). Consequently, (f) and (g) have been transformed such that increments to these variables can be thought of as educational benefits. The inversion of background variables such that increases in inputs are directly related to increases in outputs is common in the literature. This procedure is followed in Charnes, Clark, Cooper and Golany (1985), Smith and Mayston (1987) and is recommended in Golany and Roll (1989). The treatment and effects of background variables in DEA models more generally are discussed in Banker and Morey (1986a,b) and Ray (1988).

One further variable, persons per hectare, is included in the model. This is an indicator of the demographic characteristics of the education authority. In principle, population density may have an influence on both attainment and costs. Up to some point there are likely to be economies of scale derived from setting larger schools in more densely populated areas: This would remove the need, for example, for larger numbers of smaller schools and the associated transport costs of carrying children to school. Attainments, in addition to costs, may be influenced by
population density. Broadly speaking, there should be a (weak) positive relationship between achievement at school and persons per hectare. Children who live further from their school and from their teachers (in remote areas) may be at a relative disadvantage. Other things equal, proximity to school and other children will raise the ability of pupils to interact with each other and with the learning resources provided by the school. Nevertheless it is acknowledged that after a point high population density may produce negative interactions and lower attainment in children, although the model does not incorporate this effect.

Results on education authority efficiency using DEA

Results on the input efficiency of authorities based on these data are contained in table 3.3.2. These have been estimated using the revised DEA program of Banker (1984). This program permits returns to scale to vary over the production surface – see Chapter 2. By contrast, earlier educational applications of DEA on US data imposed constant returns to scale – see for example Charnes, Cooper and Rhodes (1981) and Bessent, Bessent, Charnes, Cooper and Thorogood (1983). Existing applications on British LEA data, viz. Smith and Mayston (1987) and Jesson, Mayston and Smith (1987) have used a non-increasing returns (NIRS) program – on which see Chapter 2. The approach taken here is more flexible in incorporating varying returns to scale; that is, the production surface may take on increasing, constant and decreasing returns as appropriate.

The input-minimisation version of the DEA program has been adopted in place of its output maximisation counterpart. This reflects an initial emphasis in Government efficiency policy on the input dimensions of policies and arguments in the literature suggesting that the input side of efficiency is more amenable to scrutiny in the public sector where outputs are often disputed (Mellander and Ysander (1987)). In addition those analyses of LEA performance which already exist have tended to focus on output efficiency (Gray and Jesson (1987) and Jesson, Mayston and Smith (1987)).
Table 3.3.2.

Summary measures of LEA productivity with a varying returns to scale assumption.

<table>
<thead>
<tr>
<th>LEA</th>
<th>Input efficiency</th>
<th>Peer group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Barking</td>
<td>0.961</td>
<td>25,44,</td>
</tr>
<tr>
<td>3. Bexley</td>
<td>0.971</td>
<td>50,59,86,95</td>
</tr>
<tr>
<td>5. Bromley</td>
<td>0.911</td>
<td>48,78,95</td>
</tr>
<tr>
<td>6. Croydon</td>
<td>0.939</td>
<td>2,15,50,59</td>
</tr>
<tr>
<td>8. Enfield</td>
<td>0.997</td>
<td>2,7,15,50,59</td>
</tr>
<tr>
<td>9. Haringey</td>
<td>0.992</td>
<td>4,16,48</td>
</tr>
<tr>
<td>11. Havering</td>
<td>0.891</td>
<td>10,26,82,86,96</td>
</tr>
<tr>
<td>13. Hounslow</td>
<td>0.961</td>
<td>2,7,22,50</td>
</tr>
<tr>
<td>14. Kingston</td>
<td>0.965</td>
<td>2,19,48</td>
</tr>
<tr>
<td>17. Redridge</td>
<td>0.940</td>
<td>2,7,50,59</td>
</tr>
<tr>
<td>18. Richmond</td>
<td>0.853</td>
<td>2,15,19,48,95</td>
</tr>
<tr>
<td>20. Waltham F</td>
<td>0.853</td>
<td>7,16,22,48</td>
</tr>
<tr>
<td>21. ILEA</td>
<td>0.788</td>
<td>4,16,48</td>
</tr>
<tr>
<td>24. Dudley</td>
<td>0.979</td>
<td>19,23,50,64,86</td>
</tr>
<tr>
<td>27. Walsall</td>
<td>0.895</td>
<td>28,45,46,50</td>
</tr>
<tr>
<td>31. St Helens</td>
<td>0.929</td>
<td>46,60,54</td>
</tr>
<tr>
<td>32. Sefton</td>
<td>0.953</td>
<td>19,50,64,86</td>
</tr>
<tr>
<td>33. Wirral</td>
<td>0.934</td>
<td>19,50,64,86</td>
</tr>
<tr>
<td>34. Bolton</td>
<td>0.910</td>
<td>48,50,78,95</td>
</tr>
<tr>
<td>35. Bury</td>
<td>0.904</td>
<td>19,50,95</td>
</tr>
<tr>
<td>36. Manchester</td>
<td>0.872</td>
<td>25,30,44,64</td>
</tr>
<tr>
<td>37. Oldham</td>
<td>0.986</td>
<td>44,48</td>
</tr>
<tr>
<td>38. Rochdale</td>
<td>0.834</td>
<td>46,48,78</td>
</tr>
<tr>
<td>39. Salford</td>
<td>0.881</td>
<td>44,46,48</td>
</tr>
<tr>
<td>40. Stockport</td>
<td>0.951</td>
<td>48,78,95</td>
</tr>
<tr>
<td>41. Tameside</td>
<td>0.952</td>
<td>46,48,50</td>
</tr>
<tr>
<td>42. Trafford</td>
<td>0.933</td>
<td>50,78,86,95</td>
</tr>
<tr>
<td>43. Wigan</td>
<td>0.901</td>
<td>46,50,64,86</td>
</tr>
<tr>
<td>47. Sheffield</td>
<td>0.909</td>
<td>26,28,46,50,59</td>
</tr>
<tr>
<td>51. Leeds</td>
<td>0.987</td>
<td>48,50,78,95</td>
</tr>
<tr>
<td>53. Gateshead</td>
<td>0.935</td>
<td>46,48,52</td>
</tr>
<tr>
<td>54. Newcastle U-Tyne</td>
<td>0.856</td>
<td>22,78,86</td>
</tr>
<tr>
<td>58. Avon</td>
<td>0.922</td>
<td>59,78,86,95</td>
</tr>
<tr>
<td>63. Cheshire</td>
<td>0.925</td>
<td>48,78,86,95</td>
</tr>
<tr>
<td>67. Derbyshire</td>
<td>0.994</td>
<td>45,46,50,82,86</td>
</tr>
<tr>
<td>68. Devon</td>
<td>0.958</td>
<td>48,86,92,96</td>
</tr>
<tr>
<td>69. Dorset</td>
<td>0.985</td>
<td>50,59,86,95</td>
</tr>
<tr>
<td>70. Durham</td>
<td>0.982</td>
<td>28,44,48,96</td>
</tr>
<tr>
<td>71. E Sussex</td>
<td>0.958</td>
<td>48,78,86,95</td>
</tr>
<tr>
<td>72. Essex</td>
<td>0.963</td>
<td>48,78,95</td>
</tr>
<tr>
<td>73. Gloucestershire</td>
<td>0.969</td>
<td>61,81,86,95,96</td>
</tr>
<tr>
<td>74. Hampshire</td>
<td>0.963</td>
<td>50,59,86,95</td>
</tr>
<tr>
<td>75. Here and Worcs</td>
<td>0.973</td>
<td>48,78,86,90,95</td>
</tr>
<tr>
<td>76. Hertfordshire</td>
<td>0.903</td>
<td>2,19,48,95</td>
</tr>
<tr>
<td>79. Kent</td>
<td>0.969</td>
<td>50,78,86,95</td>
</tr>
<tr>
<td>80. Lancashire</td>
<td>0.992</td>
<td>65,82</td>
</tr>
<tr>
<td>83. Norfolk</td>
<td>0.947</td>
<td>48,86</td>
</tr>
<tr>
<td>85. Northamptonshire</td>
<td>0.973</td>
<td>48,86,90,96</td>
</tr>
<tr>
<td>87. Nottinghamshire</td>
<td>0.937</td>
<td>44,46,48,86,96</td>
</tr>
<tr>
<td>88. Oxfordshire</td>
<td>0.999</td>
<td>86,88,95,96</td>
</tr>
<tr>
<td>89. Shropshire</td>
<td>0.929</td>
<td>81,86,90,96</td>
</tr>
<tr>
<td>91. Staffordshire</td>
<td>0.926</td>
<td>44,48,78,86</td>
</tr>
</tbody>
</table>
Table 3.3.2, continued

Mean inefficiency score 0.936

Notes: (1) Since the efficiency score of efficient best-practice LEAs is unity and its peer group is simply itself, such LEAs are excluded from table 3.3.2. However, column 2 contains efficient LEAs when they have been chosen as peer LEAs.
(2) Appendix 1 contains a full list of LEA names to assist in the identification of the peer authorities.

Source: Author's calculations

Of 96 LEAs in the cross section, 44 have a score of unity and thus are relatively efficient in their management of teaching expenditure. The remainder, 52 in all, are relatively input inefficient to varying degrees attaining an efficiency score less than unity. In the literature it is common practice to calculate the mean efficiency score as a representative level of performance (see e.g. Cubbin, Domberger and Meadowcroft (1987) in a study of local authority refuse collection).

The approach taken in reporting results throughout this thesis is to quote the mean inefficiency score; that is, the mean of non-unit efficiencies. The inclusion of best-practice tends to overstate levels of performance since the mean including best-practice is greater than that excluding it. Thus the mean efficiency score including all 96 LEAs is 0.966; excluding best-practice it is 0.936, as in table 3.3.2. This distinction is important from the point of view of adjusting funding at inefficient authorities. For if mean efficiency is calculated to include best-practice the representative target will suggest too small an adjustment in costs at the typical inefficient authority. Only the mean inefficiency gives an accurate definition of a representative target. Nevertheless, it is acknowledged that to get the broadest possible view of efficiency, i.e. of performance at all LEAs, the mean efficiency based on the whole sample may remain appropriate – particularly in the calculation of total available savings, rather than those at inefficient authorities alone.

The efficiency scores in table 3.3.2 are defined relative to the standards set by the best-practice LEAs in this cross section. These LEAs are not necessarily efficient in absolute sense – rather no LEA belonging to this cross section performs
better. In the stylised terms of figure 3.3.1, these LEAs form the efficient isoquant (or reference technology) against which relatively inefficient production is compared. The DEA efficiency index is thus the ratio of best-practice performance to actual performance.

In figure 3.3.1, 5 hypothetical LEAs are producing, for the sake of argument, one unit of output using different quantities of two inputs, \(X_1 \) and \(X_2 \). The efficiency ratio for each LEA is a radial measure. LEA 3, for example, is inefficient relative to the best-practice LEAs 2 and 4 because the ratio of best-practice to actual input is less than unity. That is, its relative efficiency score \(OG/OH < 1 \).

Figure 3.3.1
The DEA isoquant and the relative efficiency score

Given the comparison is of like-with-like and that linear combinations of best practice are feasible, an efficient target \(OG^* \) can be defined for the relatively inefficient LEA as:

\[
(3.3.1) \quad OC^* = \frac{OG}{OH} \cdot OH
\]
where the contents of the brackets is the scalar efficiency score and OH is the vector reflecting the LEA's current usage of inputs. The efficiency score implies an equi-proportionate contraction in each input of:

\[(3.3.2) \quad (1 - \frac{OG}{OH})\]

to \(X^*_j, \quad j = 1, 2, \) in figure 3.3.1.

The adjustments to LEA funding implied by the efficiency score are summarised in table 3.3.3. LEA 43, for example, has an efficiency score of 0.901. On the basis of the formula for efficient production in (3.3.1) this implies a lower target level of teaching expenditure, viz.:

\[OG^* = (0.901) 687 = £619.\]

£619 is the target spend per pupil which would put LEA 43 on the best-practice isoquant. Essentially, DEA is predicting that LEA 43 can support existing levels of attainment with a reduction of \((1 - .901) = 9.9\) per cent in its current teaching expenditure. The distribution of savings is not spread evenly through the cross-section. LEA 21, for example, is overspending by one-fifth, given the levels of its outcome variables\(^{12}\). Others, however, (eg 8 or 9) would only have to improve performances marginally to be ranked along with the best-practice LEAs.

An average across all inefficient producers in the sample suggests a typical reduction in costs approaching seven per cent.\(^{13}\) It is worth noting in passing that the average target is consistent with the mean inefficiency score of 0.936 quoted earlier in table 3.3.2. This also implies a typical reduction in teaching costs of nearly 7 per cent. However the mean efficiency score including best-practice, 0.966, suggests that funding might be adjusted by under 3.5 per cent which is clearly an understatement of the average potential for savings at inefficient authorities, but which is an accurate indicator of total available savings.
Table 3.3.3
Targets and savings in teaching expenditure per pupil for LEAs with DEA relative efficiency less than unity

<table>
<thead>
<tr>
<th>LEA</th>
<th>Actual performance £ per pupil</th>
<th>Target performance £ per pupil</th>
<th>Savings £ per pupil</th>
<th>Savings per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Barking</td>
<td>663</td>
<td>637</td>
<td>26</td>
<td>3.92</td>
</tr>
<tr>
<td>3. Bexley</td>
<td>613</td>
<td>596</td>
<td>17</td>
<td>2.77</td>
</tr>
<tr>
<td>5. Bromley</td>
<td>650</td>
<td>592</td>
<td>58</td>
<td>8.92</td>
</tr>
<tr>
<td>6. Croydon</td>
<td>664</td>
<td>624</td>
<td>40</td>
<td>6.02</td>
</tr>
<tr>
<td>8. Enfield</td>
<td>641</td>
<td>639</td>
<td>2</td>
<td>0.31</td>
</tr>
<tr>
<td>9. Haringey</td>
<td>761</td>
<td>755</td>
<td>6</td>
<td>0.79</td>
</tr>
<tr>
<td>11. Havering</td>
<td>681</td>
<td>607</td>
<td>74</td>
<td>10.87</td>
</tr>
<tr>
<td>12. Hounslow</td>
<td>686</td>
<td>659</td>
<td>27</td>
<td>3.94</td>
</tr>
<tr>
<td>14. Kingston</td>
<td>644</td>
<td>621</td>
<td>23</td>
<td>3.57</td>
</tr>
<tr>
<td>17. Redbridge</td>
<td>668</td>
<td>628</td>
<td>40</td>
<td>5.99</td>
</tr>
<tr>
<td>18. Richmond</td>
<td>707</td>
<td>603</td>
<td>104</td>
<td>14.71</td>
</tr>
<tr>
<td>20. Waltham-F</td>
<td>768</td>
<td>662</td>
<td>106</td>
<td>13.80</td>
</tr>
<tr>
<td>21. ILEA</td>
<td>833</td>
<td>657</td>
<td>176</td>
<td>21.13</td>
</tr>
<tr>
<td>24. Dudley</td>
<td>618</td>
<td>605</td>
<td>13</td>
<td>2.10</td>
</tr>
<tr>
<td>27. Walsall</td>
<td>667</td>
<td>597</td>
<td>70</td>
<td>10.49</td>
</tr>
<tr>
<td>31. St Helens</td>
<td>654</td>
<td>607</td>
<td>47</td>
<td>7.19</td>
</tr>
<tr>
<td>32. Sefton</td>
<td>638</td>
<td>608</td>
<td>30</td>
<td>4.70</td>
</tr>
<tr>
<td>33. Wirral</td>
<td>637</td>
<td>595</td>
<td>42</td>
<td>6.59</td>
</tr>
<tr>
<td>34. Bolton</td>
<td>641</td>
<td>582</td>
<td>59</td>
<td>9.20</td>
</tr>
<tr>
<td>35. Bury</td>
<td>652</td>
<td>589</td>
<td>63</td>
<td>9.66</td>
</tr>
<tr>
<td>36. Manchester</td>
<td>749</td>
<td>653</td>
<td>96</td>
<td>12.82</td>
</tr>
<tr>
<td>37. Oldham</td>
<td>589</td>
<td>581</td>
<td>8</td>
<td>1.36</td>
</tr>
<tr>
<td>38. Rochdale</td>
<td>686</td>
<td>572</td>
<td>114</td>
<td>16.62</td>
</tr>
<tr>
<td>39. Salford</td>
<td>684</td>
<td>603</td>
<td>81</td>
<td>11.84</td>
</tr>
<tr>
<td>40. Stockport</td>
<td>617</td>
<td>587</td>
<td>30</td>
<td>4.86</td>
</tr>
<tr>
<td>41. Tameside</td>
<td>620</td>
<td>589</td>
<td>31</td>
<td>5.00</td>
</tr>
<tr>
<td>42. Trafford</td>
<td>632</td>
<td>590</td>
<td>42</td>
<td>6.65</td>
</tr>
<tr>
<td>43. Wigan</td>
<td>687</td>
<td>619</td>
<td>68</td>
<td>9.90</td>
</tr>
<tr>
<td>47. Sheffield</td>
<td>669</td>
<td>608</td>
<td>61</td>
<td>9.12</td>
</tr>
<tr>
<td>51. Leeds</td>
<td>588</td>
<td>580</td>
<td>8</td>
<td>1.36</td>
</tr>
<tr>
<td>53. Gateshead</td>
<td>638</td>
<td>593</td>
<td>45</td>
<td>7.05</td>
</tr>
<tr>
<td>54. Newcastle-U-T</td>
<td>739</td>
<td>634</td>
<td>105</td>
<td>14.21</td>
</tr>
<tr>
<td>58. Avon</td>
<td>638</td>
<td>588</td>
<td>50</td>
<td>7.84</td>
</tr>
<tr>
<td>63. Cheshire</td>
<td>632</td>
<td>584</td>
<td>48</td>
<td>7.59</td>
</tr>
<tr>
<td>67. Derbyshire</td>
<td>605</td>
<td>601</td>
<td>4</td>
<td>0.66</td>
</tr>
<tr>
<td>68. Devon</td>
<td>616</td>
<td>585</td>
<td>31</td>
<td>5.03</td>
</tr>
<tr>
<td>69. Dorset</td>
<td>604</td>
<td>595</td>
<td>9</td>
<td>1.49</td>
</tr>
<tr>
<td>70. Durham</td>
<td>625</td>
<td>608</td>
<td>17</td>
<td>2.72</td>
</tr>
<tr>
<td>71. E Sussex</td>
<td>617</td>
<td>591</td>
<td>26</td>
<td>4.21</td>
</tr>
<tr>
<td>72. Essex</td>
<td>602</td>
<td>579</td>
<td>23</td>
<td>3.82</td>
</tr>
<tr>
<td>73. Gloucestershire</td>
<td>622</td>
<td>603</td>
<td>19</td>
<td>3.05</td>
</tr>
<tr>
<td>74. Hampshire</td>
<td>618</td>
<td>595</td>
<td>23</td>
<td>3.72</td>
</tr>
<tr>
<td>75. Here and Worcs</td>
<td>602</td>
<td>586</td>
<td>16</td>
<td>2.66</td>
</tr>
<tr>
<td>76. Hertfordshire</td>
<td>664</td>
<td>599</td>
<td>65</td>
<td>9.79</td>
</tr>
<tr>
<td>79. Kent</td>
<td>605</td>
<td>586</td>
<td>19</td>
<td>3.14</td>
</tr>
<tr>
<td>80. Lancashire</td>
<td>641</td>
<td>609</td>
<td>32</td>
<td>4.99</td>
</tr>
<tr>
<td>83. Norfolk</td>
<td>623</td>
<td>601</td>
<td>22</td>
<td>3.53</td>
</tr>
<tr>
<td>85. Northamptonsh</td>
<td>609</td>
<td>592</td>
<td>17</td>
<td>2.79</td>
</tr>
<tr>
<td>87. Nottinghamsh</td>
<td>637</td>
<td>597</td>
<td>40</td>
<td>6.28</td>
</tr>
<tr>
<td>88. Oxfordshire</td>
<td>614</td>
<td>609</td>
<td>5</td>
<td>0.81</td>
</tr>
<tr>
<td>89. Shropshire</td>
<td>639</td>
<td>594</td>
<td>45</td>
<td>7.04</td>
</tr>
<tr>
<td>91. Staffordshire</td>
<td>635</td>
<td>588</td>
<td>47</td>
<td>7.40</td>
</tr>
</tbody>
</table>
Table 3.3.3, continued

| Average of inefficient LEAs | 651 | 607 | 44 | 6.76 |

Notes: Target performance is given by the efficiency score and (where applicable) adjustments in input-slack variables.
Source: Author's calculations.

The reductions in spending in table 3.3.3 are recommended on Pareto welfare grounds. That is, an LEA is efficient if it cannot be shown that some other LEA or combination of LEAs can produce the same amount of output with less of some output and no more any other (Koopmans (1951), Charnes, Cooper and Rhodes (1981), Lewin and Morey (1981)).

In figure 3.3.1 the best-practice LEAs 1, 2, 4 and 5 are clearly Pareto efficient on this definition. However, LEA 3 violates the Pareto efficiency conditions in comparison with LEA 4, since for given output, 4 is using less of X_2 and no more of X_1 than 3. The target defined in (3.3.2) is therefore advocated in the literature as defining a production plan which is Pareto efficient and which eliminates unnecessary consumption of resources at the inefficient LEA.

As has been noted in Chapter 2, the radial contraction path defined in (3.3.1) is not in all circumstances a rigorous enough definition for Pareto efficiency. Specifically, production on the isoquant but at the end of horizontal or vertical facets is not Pareto efficient. In figure 3.3.2 for given output and X_2, LEA3 is Pareto inefficient by the horizontal distance from B to A. Thus it is possible to show that some other LEA, in this case LEA 2, uses the same quantity of X_2, but less of X_1 to produce the same amount of output as LEA 3. The distance B to A is given by a non-zero slack variable (S_j) in the optimal solution of the DEA program. Accordingly, the formula for an efficient target in (3.3.1) can be rewritten (using figure 3.3.2) as:

$$OA = (OB/OC).OC - S^*_k$$

where S^*_k ($k = 1, \ldots, m$) is the optimal value of the relevant input slack variable.
Notice that the efficiency score is a scalar, being the ratio of the distances \(d(O, B) \) to \(d(O, C) \) — where \(d \) is the usual Euclidean distance function. Similarly, the \(S_k^* \), \(k = 1, \ldots, m \) are non-negative scalar quantities representing reductions in inputs. OC, however, is a vector of observed performance at LEA 3, viz. \(OC = (X_{13} X_{23})' \).

Figure 3.3.2.
Slack variables and Pareto efficiency

The feasibility of the target in (3.3.3) is given by an assumption that the production possibility set is convex. In particular any convex linear combination of observed inputs at best-practice LEAs is feasible.

Convexity ensures that the data is "enveloped" or packaged through the extreme (best-practice) LEAs in a piecewise manner. In practice, the result is a piecewise-linear approximation to the true production technology, as in figure 3.3.1. Points along each facet of the isoquant are linear combinations of observed best-practice and on this basis are deemed feasible targets. Where the optimal values of the slack variables are equal to zero, the route to these targets is a radial contraction path (cf LEA 3 in figure 3.3.1).
More specific qualitative information on precisely how targets can be obtained is derived by analogy from the peer groups identified in table 3.3.2. For each LEA a comparable set of peers is selected by DEA. For relatively efficient LEAs this will contain none other than the LEA itself. But inefficient LEAs will have a distinct reference group of best-practice LEAs.

In table 3.3.2, LEA 43, for instance, has LEAs 46, 50, 64 and 86 as "peers", which in linear combination define its target performance. In principle, LEA 43 can use these authorities as blueprints to improve performance since, other things being equal, they are likely to be implementing better managerial procedures – see Epstein and Henderson (1989) or Dyson et al (1987).

3.4. A preliminary evaluation of the peer group

This section examines the question of the use of best-practice results as peers for the improvement of inefficient production. It has been argued by several authors (e.g. Charnes, Cooper and Rhodes (1978), Lewin and Morey (1981), Bowlin (1986), Thanassoulis, Dyson and Foster (1987)) that an inefficient organisation (or its auditors) should make comparisons with best-practice in order to extract and transfer relatively better managerial procedures to improve its productive performance. From the results in section 3.3 the inefficient LEA would inspect the best-practice peer group identified for it in table 3.3.2.

Smith and Mayston (1987) suggest "an important supplementary measure in assessing the robustness of this result is the number of inefficient authorities for which the [best-practice] authority forms the efficient frontier." They continue that "if this number is high the authority is genuinely efficient with respect to a large number of authorities " (emphasis added). On this basis the most useful examples of best-practice are likely to be found in heavily cited instances of best practice. These can be extracted from table 3.4.1. LEA 43, for example, would find that LEAs 50 and 86 in its peer group have been cited over 20 times. On the other hand LEA
54 could be argued to be a poorer peer in being cited only 7 times. Thus the informational contents of the peer group can be read in the light of what amounts to a citations index for best-practice in table 3.4.1.

<table>
<thead>
<tr>
<th>LEA</th>
<th>Citations in peer groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Barnet</td>
<td>8</td>
</tr>
<tr>
<td>4. Brent</td>
<td>3</td>
</tr>
<tr>
<td>7. Ealing</td>
<td>5</td>
</tr>
<tr>
<td>10. Harrow</td>
<td>2</td>
</tr>
<tr>
<td>15. Merton</td>
<td>4</td>
</tr>
<tr>
<td>16. Newham</td>
<td>4</td>
</tr>
<tr>
<td>19. Sutton</td>
<td>8</td>
</tr>
<tr>
<td>22. Birmingham</td>
<td>4</td>
</tr>
<tr>
<td>23. Coventry</td>
<td>2</td>
</tr>
<tr>
<td>25. Sandwell</td>
<td>3</td>
</tr>
<tr>
<td>26. Solihull</td>
<td>3</td>
</tr>
<tr>
<td>28. Wolverhampton</td>
<td>4</td>
</tr>
<tr>
<td>30. Liverpool</td>
<td>2</td>
</tr>
<tr>
<td>44. Barnsley</td>
<td>8</td>
</tr>
<tr>
<td>45. Doncaster</td>
<td>2</td>
</tr>
<tr>
<td>46. Rotherham</td>
<td>11</td>
</tr>
<tr>
<td>48. Bradford</td>
<td>27</td>
</tr>
<tr>
<td>50. Kirklees</td>
<td>22</td>
</tr>
<tr>
<td>52. Wakefield</td>
<td>2</td>
</tr>
<tr>
<td>59. Bedfordshire</td>
<td>9</td>
</tr>
<tr>
<td>61. Buckinghamshire</td>
<td>2</td>
</tr>
<tr>
<td>64. Cleveland</td>
<td>7</td>
</tr>
<tr>
<td>65. Cornwall</td>
<td>2</td>
</tr>
<tr>
<td>78. Isle of Wight</td>
<td>15</td>
</tr>
<tr>
<td>81. Leicestershire</td>
<td>3</td>
</tr>
<tr>
<td>82. Lincolnshire</td>
<td>4</td>
</tr>
<tr>
<td>86. Northumberland</td>
<td>26</td>
</tr>
<tr>
<td>90. Somerset</td>
<td>4</td>
</tr>
<tr>
<td>92. Suffolk</td>
<td>2</td>
</tr>
<tr>
<td>95. W Sussex</td>
<td>20</td>
</tr>
<tr>
<td>96. Wiltshire</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes: Table 3.4.1 contains those efficient LEAs which appear in peer groups (not including their own) of inefficient LEAs. Several LEAs (numbers 12, 29, 49, 55, 56, 57, 60, 62, 66, 77, 84, 93, and 94) do not appear in either table 3.3.2 or table 3.4.1. These have input efficiencies equal to unity but appear in only one peer group, their own.

Source: Author's calculations.

The Smith-Mayston interpretation of best-practice can be discussed in the light of figure 3.4.1 and table 3.4.2. Figure 3.4.1 contains a hypothetical DEA isoquant for 2 inputs (with output given) where LEA performance has been deliberately
bunched in the south west of the feasible set of production decisions. LEAs 1, 2, and 3 are best-practice with efficiency scores equal to unity. Targets for the resources X_2 and X_1 are defined for LEAs 4, 5, 6, 7 and 8 which are inefficient relative to 1, 2 and 3. It is clear from figure 3.4.1 (which is summarised in table 3.4.2) that the reference or peer LEAs for most of the inefficient producers (other than LEA 5) are LEAs 2 and 3. For example, the target for LEA 4 is weighted average of 2 and 3.

Figure 3.4.1
Interpretation of best-practice LEA citations

But LEA 5 has unusual input proportions such that its target is an interpolation of LEA 1 and 2. Clearly best-practice authorities such as LEA 1 which have relatively unusual input proportions will lie on the extreme parts of the isoquant. They will be cited infrequently (ignoring a trivial citation in their own peer group) since, with unusual input proportions, there is a lower probability of finding comparable inefficient LEAs.

It should be evident that each best-practice authority does not have an equal
probability of citation unless inefficient LEAs are spread evenly through the feasible production space. This may not be the case. This possibility has been illustrated in figure 3.4.1 and table 3.4.2 where performance is bunched in such a way that some instances of best-practice will be cited less frequently than others. It follows that a high number of citations implies comparability with a larger number of inefficient LEAs.

In general, the larger the number of citations for a DMU, the larger the "sample" of observations in the neighbourhood of that DMU. On the basis of the traditional sampling theory, the larger is the sample in a particular neighbourhood, the closer is the sample frontier likely to approximate the true frontier. However, it is not at all clear a priori what would constitute an approximately "high" number of citations and therefore at what point a dominant observation accurately conveys the attainments and practices which are possible on the true (unknown) frontier.

Table 3.4.2
Hypothetical peer groups and citations for LEAs in figure 3.4.1

<table>
<thead>
<tr>
<th>LEA</th>
<th>Peer group</th>
<th>Citations in peer groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2*</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3*</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2, 3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1, 2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2, 3</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2, 3</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2, 3</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: (1) As in table 3.4.1 trivial citations in own-reference sets are excluded. (2) (*) denotes a best-practice authority in figure 3.4.1. Source: Author's calculations.
3.5. Conclusion

The existence of multiple non-homogenous inputs and outputs is a basic difficulty in the construction of total-factor productivity measures. In the trading sector market price weights can be used to yield measures such as total revenue. The additional problem of the non-trading sector (both public and not-for-profit) is the absence of market price weights: "the [input and output] indicators are given on different scales and we have no a priori set of weights with which to judge their relative importance, or functions with which to transform the indicators into common measures of utility" (Smith and Mayston 1987). This supports the belief in, for example, Miller (1987) that there is a requirement for enhanced performance measurement to ensure greater accountability from public sector entities where performance cannot be fully tested by standard profitability criteria. In response, several authors, for example Thanassoulis, Dyson and Foster (1987) have advocated the DEA approach in the public sector. Since, in the absence of other weighting schemes, it identifies an objective set of ("data-based") weights making minimal assumptions on the production technology vis-à-vis an econometric approach15.

Thus using data on the 96 English local education authorities Chapter 3 has demonstrated the potential contribution of Data Envelopment Analysis to the extant set of public sector performance statistics. After reviewing the relevant measurement problems in section 3.2, scalar measures of productive efficiency for each authority were presented in section 3.3 using DEA. These measures may be used to set targets for relatively inefficient LEA producers which, in principle, may utilise the peer group identified by DEA as a guide to achieving their targeted improvements in resource consumption16. Independent findings by the Audit Commission (1986 b) and Barrow (1988) appear to confirm the extent of inefficiency identified in these results.

In section 3.4 the first attempt in the published literature to develop a DEA-sensitivity "statistic" by Smith and Mayston (1987) was evaluated and
re-interpreted as an indicator of the comparability of (rather than the intrinsic quality of) the best-practice estimates.

Academic interest in DEA information has been paralleled during the 1980s by the British Government’s own initiatives on performance measurement and accountability for the public sector. Of most importance has been the Financial Management Initiative (FMI), heralded in 1982 in "Efficiency and Effectiveness in the Civil Service". The aim of the FMI has been "to promote in each department an organisation and system in which managers at all levels have a clear view of their objectives and means to assess and, wherever possible, measure outputs or performance in relation to those objectives" (para 13 Cmnd 8616). In a follow up report, the National Audit Office (1986) argues that departments should publish annual reports providing intelligible information (perhaps summary indicators) about their aims, objectives and performance.

Accordingly, recent public expenditure White Papers have placed increasing emphasis on value for money and efficiency including a total of around 1800 output and performance measures. Any selection of these reveals, however, that they are mainly traditional ratio measures such as unit costs and throughputs.

More sophisticated summary measures of (total-factor) productivity do not appear to be widely used by government departments. This would seem to be restraining the potential for public sector accountability and evaluation. In the educational context there may be extra scope for the adoption of consistent total-factor measures of efficiency like DEA. In the first place, the 1980 Education Act has signalled a shift from professional to public accountability of education. This is being underwritten by the development of a national curriculum which should make inter-authority comparisons more robust. Equally important, the regular, standardised testing of pupils may eventually generate measures of value added for specific cohorts of school children.
With the collection of improved data in prospect, DEA is well placed to take advantage of this. In principle, DEA could form part of a set of key aggregate indicators summarising educational performance. Jesson, Mayston and Smith (1987) have argued that careful analysis of educational productivity using DEA might be used to settle funding disputes between the LEAs and central government. An additional role for summary performance measures like DEA may come as the authorities and the DES attempt to rationalise the surplus capacity which is currently being generated by dramatically falling rolls – the number of secondary school pupils reached a peak in 1979 and is expected to fall by a much as 40 per cent by 1991 (Audit Commission (1986a)).

Footnotes
2. See Berndt and Khaled (1979), Smith and Lovell (1979), Kopp and Diewert (1982).
5. A DMU may be thought of in macro-economic or microeconomic terms (Charnes and Cooper (1985)). That is, the DEA efficiency ratio exists where a production function relationship is evident: in an organisation (as in this case study) or in an entire economy; viz, the many studies on large sectors like manufacturing and agriculture: Farrell (1957), Burley (1980), Fare, Grabowski and Grosskopf (1985) and Rawlins (1985).
6. Grosskopf and Valdmanis (1987) have used the non-parametric approach to examine the efficiency of hospitals operating in California.
7. DEA is clearly more flexible than an index number approach where the weights must be specified a priori.
8. Bowlin (1986) argues that the functional relationships underlying public production may be unusually complex and difficult to specify. DEA whilst not imposing functional relationships interpolates variables into a convex set whose boundary is piecewise linear.
9. I must thank, without implicating, seminar discussants from Statistics Branch at the Department of Education and Science for their insightful comments which helped finalise the empirical model on which this section is based.
11. Yet the PTR is probably the most widely quoted educational performance statistic.
12. LEA 21 and some others might choose to argue that examination results do not adequately reflect the range of outputs which they seek to provide. These outputs may not be consistent with the centralised objectives outlined in the annual public expenditure White Paper (which have been used to the guide the choice of variable set in Chapter 3). They could include progressive outputs like racial and sexual...
awareness.

13. On an administrative split between London boroughs (LEAs 1–21), Metropolitan boroughs (22–57) and English counties (58–96) the simple proportions of LEAs relatively inefficient are, respectively: 61.9 per cent, 52.8 per cent and 51.3 per cent. This could be taken as evidence of greater inefficiency in "urban" education producers or perhaps the greater difficulty of their task vis-à-vis rural education. See Chapter 7.

14. The adequacy of the Pareto interpretation of DEA targets is discussed at length in Chapter 6.

16. Further aspects of the peer group and best-practice are discussed in Chapter 4.

18. See, for example, those performance measures selected for Economic Progress Report, Number 188, January–February 1987, pp 6–7.
Appendix

To facilitate interpretation of the LEA peer groups in table 3.3.2, this appendix matches LEA numbers with LEA names.

<table>
<thead>
<tr>
<th>LEA Number</th>
<th>LEA Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Barking</td>
</tr>
<tr>
<td>2</td>
<td>Barnet</td>
</tr>
<tr>
<td>3</td>
<td>Bexley</td>
</tr>
<tr>
<td>4</td>
<td>Brent</td>
</tr>
<tr>
<td>5</td>
<td>Bromley</td>
</tr>
<tr>
<td>6</td>
<td>Croydon</td>
</tr>
<tr>
<td>7</td>
<td>Ealing</td>
</tr>
<tr>
<td>8</td>
<td>Enfield</td>
</tr>
<tr>
<td>9</td>
<td>Haringey</td>
</tr>
<tr>
<td>10</td>
<td>Harrow</td>
</tr>
<tr>
<td>11</td>
<td>Havering</td>
</tr>
<tr>
<td>12</td>
<td>Hillingdon</td>
</tr>
<tr>
<td>13</td>
<td>Hounslow</td>
</tr>
<tr>
<td>14</td>
<td>Kingston</td>
</tr>
<tr>
<td>15</td>
<td>Merton</td>
</tr>
<tr>
<td>16</td>
<td>Newham</td>
</tr>
<tr>
<td>17</td>
<td>Redbridge</td>
</tr>
<tr>
<td>18</td>
<td>Richmond</td>
</tr>
<tr>
<td>19</td>
<td>Sutton</td>
</tr>
<tr>
<td>20</td>
<td>Waltham Forest</td>
</tr>
<tr>
<td>21</td>
<td>ILEA</td>
</tr>
<tr>
<td>22</td>
<td>Birmingham</td>
</tr>
<tr>
<td>23</td>
<td>Coventry</td>
</tr>
<tr>
<td>24</td>
<td>Dudley</td>
</tr>
<tr>
<td>25</td>
<td>Sandwell</td>
</tr>
<tr>
<td>26</td>
<td>Solihull</td>
</tr>
<tr>
<td>27</td>
<td>Walsall</td>
</tr>
<tr>
<td>28</td>
<td>Wolverhampton</td>
</tr>
<tr>
<td>29</td>
<td>Knowsley</td>
</tr>
<tr>
<td>30</td>
<td>Liverpool</td>
</tr>
<tr>
<td>31</td>
<td>St Helens</td>
</tr>
<tr>
<td>32</td>
<td>Sefton</td>
</tr>
<tr>
<td>33</td>
<td>Wirral</td>
</tr>
<tr>
<td>34</td>
<td>Bolton</td>
</tr>
<tr>
<td>35</td>
<td>Bury</td>
</tr>
<tr>
<td>36</td>
<td>Manchester</td>
</tr>
<tr>
<td>37</td>
<td>Oldham</td>
</tr>
<tr>
<td>38</td>
<td>Rochdale</td>
</tr>
<tr>
<td>39</td>
<td>Salford</td>
</tr>
<tr>
<td>40</td>
<td>Stockport</td>
</tr>
<tr>
<td>41</td>
<td>Tameside</td>
</tr>
<tr>
<td>42</td>
<td>Trafford</td>
</tr>
<tr>
<td>43</td>
<td>Wigan</td>
</tr>
<tr>
<td>44</td>
<td>Barnsley</td>
</tr>
<tr>
<td>45</td>
<td>Doncaster</td>
</tr>
<tr>
<td>46</td>
<td>Rotherham</td>
</tr>
<tr>
<td>47</td>
<td>Sheffield</td>
</tr>
<tr>
<td>48</td>
<td>Bradford</td>
</tr>
<tr>
<td>49</td>
<td>Calderdale</td>
</tr>
<tr>
<td>50</td>
<td>Kirklees</td>
</tr>
<tr>
<td>51</td>
<td>Leeds</td>
</tr>
<tr>
<td>52</td>
<td>Wakefield</td>
</tr>
<tr>
<td>53</td>
<td>Gateshead</td>
</tr>
<tr>
<td>54</td>
<td>Newcastle</td>
</tr>
<tr>
<td>55</td>
<td>N Tyneside</td>
</tr>
<tr>
<td>56</td>
<td>S Tyneside</td>
</tr>
<tr>
<td>57</td>
<td>Sunderland</td>
</tr>
<tr>
<td>58</td>
<td>Avon</td>
</tr>
<tr>
<td>59</td>
<td>Bedfordshire</td>
</tr>
<tr>
<td>60</td>
<td>Berkshire</td>
</tr>
<tr>
<td>61</td>
<td>Buckinghamshire</td>
</tr>
<tr>
<td>62</td>
<td>Cambridgeshire</td>
</tr>
<tr>
<td>63</td>
<td>Cheshire</td>
</tr>
<tr>
<td>64</td>
<td>Cleveland</td>
</tr>
<tr>
<td>65</td>
<td>Cornwall</td>
</tr>
<tr>
<td>66</td>
<td>Cumbria</td>
</tr>
<tr>
<td>67</td>
<td>Derbyshire</td>
</tr>
<tr>
<td>68</td>
<td>Devon</td>
</tr>
<tr>
<td>69</td>
<td>Dorset</td>
</tr>
<tr>
<td>70</td>
<td>Durham</td>
</tr>
<tr>
<td>71</td>
<td>E Sussex</td>
</tr>
<tr>
<td>72</td>
<td>Essex</td>
</tr>
<tr>
<td>73</td>
<td>Gloucestershire</td>
</tr>
<tr>
<td>74</td>
<td>Hampshire</td>
</tr>
<tr>
<td>75</td>
<td>Hereford</td>
</tr>
<tr>
<td>76</td>
<td>Hertfordshire</td>
</tr>
<tr>
<td>77</td>
<td>Humberside</td>
</tr>
<tr>
<td>78</td>
<td>Isle of Wight</td>
</tr>
<tr>
<td>79</td>
<td>Kent</td>
</tr>
<tr>
<td>80</td>
<td>Lancashire</td>
</tr>
<tr>
<td>81</td>
<td>Leicestershire</td>
</tr>
<tr>
<td>82</td>
<td>Lincolnshire</td>
</tr>
<tr>
<td>83</td>
<td>Norfolk</td>
</tr>
<tr>
<td>84</td>
<td>N Yorkshire</td>
</tr>
<tr>
<td>85</td>
<td>Northamptonshire</td>
</tr>
<tr>
<td>86</td>
<td>Northumberland</td>
</tr>
<tr>
<td>87</td>
<td>Nottinghamshire</td>
</tr>
<tr>
<td>88</td>
<td>Oxfordshire</td>
</tr>
<tr>
<td>89</td>
<td>Shropshire</td>
</tr>
<tr>
<td>90</td>
<td>Somerset</td>
</tr>
<tr>
<td>91</td>
<td>Staffordshire</td>
</tr>
<tr>
<td>92</td>
<td>Suffolk</td>
</tr>
<tr>
<td>93</td>
<td>Surrey</td>
</tr>
<tr>
<td>94</td>
<td>Warwickshire</td>
</tr>
<tr>
<td>95</td>
<td>W Sussex</td>
</tr>
<tr>
<td>96</td>
<td>Wiltshire</td>
</tr>
</tbody>
</table>

Chapter 4. Total factor productivity measurement in local prisons and remand centres: A further application of Data Envelopment Analysis

4.1. Introduction

Chapter 4 examines the relative efficiency of 33 local prisons and remand centres in the financial year 1984/85. Although the application of Data envelopment analysis to public sector production is increasing there has been no examination of prison relative efficiency other than in Ganley and Cubbin (1987). This chapter extends the model used in that paper making an important distinction between remand and non-remand items. Because some local prisons carry large remand populations this alters the interpretation of performance at several establishments. For example Ganley and Cubbin (1987) reported that Wormwood Scrubs had an input efficiency of 0.66 in 1984/5. The revised results presented in this Chapter indicate that this prison is best-practice. This underlines the importance of informed variable selection in efficiency modelling with DEA.

Section 4.2 briefly outlines the analytical background to the performance comparisons undertaken later in the Chapter. The nature of the prison, its environment and sources of data are discussed in sections 4.3 through 4.6 with a review of the relevant literature. The prediction of efficiency from a straightforward inspection of the data prior to the formal programming analysis is investigated in section 4.7.

A growing number of DEA applications shrouds the fact that a general framework for the implementation of DEA results in the public sector has not been suggested. In the context of the Government's Financial Management Initiative a potential framework for DEA implementation is outlined in section 4.8.

Using a varying returns to scale assumption in the DEA program, relative-efficiency coefficients are presented and interpreted in sections 4.9 and
4.10. The nature of the efficiency coefficient is evidenced in the performance at Canterbury local prison. A normative development in the literature suggests that the peer group contains examples of better performance which the non-best practice establishment should emulate. The nature of the peer group is investigated in this connection in section 4.11.

Crude ex ante predictions of efficiency were made from inspection of the maximum and minimum values of the data in section 4.7. In section 4.12 these are confronted with the DEA-efficiency predictions and appear to be noteably different.

One of the most significant original contributions in this Chapter arises in section 4.13 which explores the writings of Liebenstein on X-efficiency and inert production. Traditionally much of Liebenstein's evidence for X-efficiency has been in the nature of casual empiricism and as Button (1985) commented: "the major problem of the X-inefficiency concept is that it focuses on relationships that are essentially unobservable". After formalising the concept of inert production, section 4.13 goes on to show that, *ceteris paribus*, the DEA relative efficiency coefficient can be interpreted as a quantitative guide to the scale of X-efficiency. This represents a significant step forward for the credibility of X-efficiency theory. With the application of a quantitative measuring rod the concept becomes subject to formal testable hypotheses. The received Popperian view of knowledge acquisition as a process of error elimination indicates that the assertion of testable hypotheses is essential in scientific endeavour (Popper (1976), Blaug (1980)). Finally, Section 4.14 summarises the results and conclusions reached in this Chapter.

4.2. Analytical background to relative efficiency measurement

An analytical literature on the nature of technical efficiency measures has flourished in parallel with the development of empirical estimation procedures. Initially Fare and Lovell (1979) set out to define the axiomatic properties that a production technology must fulfil and how far the empirical estimates in Farrell
(1957) and later work meet these requirements. A small and demanding literature has developed around the initial impetus of Fare and Lovell, the main contributions being Fare and Lovell (1981), Kopp (1981), Fare, Lovell and Zieschang (1982), Zieschang (1984), Fare, Grosskopf and Lovell (1983, 1985) and more recently Bol (1986). This section evidences in the briefest of detail the basic concept of a production correspondence as developed in this literature. Section 4.2 is not however an exhaustive guide to the theory of production and efficiency measurement since this can be found elsewhere - for example in the volume by Fare, Grosskopf and Lovell (1985).

The underlying objective of the work initiated by Fare and his associates has been to characterise efficiency measures as propositions on sets: sets of input and output possibilities. This approach derives originally from the work of the American economist Shephard (1953, 1970, 1974) who developed the body of axioms which a production technology must ordinarily be required to satisfy.

Input and output correspondences

Productive activity, whether undertaken in the public or private sector, is constrained by the nature of the production process itself. Conceptually, a production unit transforms a vector of nonnegative inputs into a vector of nonnegative outputs, subject to the constraint imposed by a known, fixed technology. This transformation process is modelled analytically by an input correspondence which defines the subset of input vectors capable of producing a given output vector or, inversely, by an output correspondence specifying the subset of output vectors obtainable from a given input vector. Each of these correspondences must satisfy a basic set of axioms suggested originally by Shephard in order to provide a meaningful basis for a model of productive behaviour.

Consider a production process transforming inputs \(x = (X_1, X_2, \ldots, X_n) \in \mathbb{R}_+^n \) into net outputs \(y = (Y_1, Y_2, \ldots, Y_m) \). This process can be modelled by the input
correspondence $L(\mathbf{y}) \subseteq \mathbb{R}^p$ which denotes the subset of all input vectors $\mathbf{x} \in \mathbb{R}^n$ which yield at least output levels \mathbf{y}. Analogously $P(\mathbf{x}) \subseteq \mathbb{R}^m$ is the output correspondence denoting the subset if all output vectors $\mathbf{y} \in \mathbb{R}^m$ obtainable from input levels \mathbf{x}. The inverse relationship between L and P is given by:

\begin{equation}
\begin{aligned}
&4.2.1 \quad \mathbf{x} \in L(\mathbf{y}) \iff \mathbf{y} \in P(\mathbf{x}) \\
&4.2.2 \quad P(\mathbf{x}) = \{ \mathbf{y} : \mathbf{x} \in L(\mathbf{y}) \} \\
&4.2.3 \quad L(\mathbf{y}) = \{ \mathbf{x} : \mathbf{y} \in P(\mathbf{x}) \}.
\end{aligned}
\end{equation}

and may be computed or "enumerated" as (Fare, Grosskopf and Lovell (1985)):

It is easier to see the meaning of the input set $L(\mathbf{y})$ and output set $P(\mathbf{x})$ for the simple case of $n = m = 2$ in figure 4.2.1. In panel (a) the subset of all input vectors $\mathbf{x} \in \mathbb{R}^2$ capable of producing at least output \mathbf{y} is labelled $L(\mathbf{y})$, and consists of the subset of all input vectors on or above the curve AB. In panel (b) the subset of all output vectors $\mathbf{y} \in \mathbb{R}^2$ obtainable from input vector \mathbf{x} is labelled $P(\mathbf{x})$, and consists of the subset of nonnegative output vectors on or below the curve AB.

It is evident from figure 4.2.1(a) that the boundary of the input correspondence AB is nothing more than a conventional isoquant (and analogously AB in panel (b) is the production possibility frontier for given technology and input vector \mathbf{x}). In the results below in Section 4.3 the estimated input correspondence is merely the four-dimensional counterpart of figure 4.2.1(a) where $n = 4$ so that $L(\mathbf{y}) \subseteq \mathbb{R}^4$. Again there is a corresponding output correspondence defined for four definitions of prison outputs, and so $P(\mathbf{x}) \subseteq \mathbb{R}^4$.

86
Figure 4.2.1.

Input and output correspondences for $m=n=2$

(a) Input correspondence, $L(y) \subseteq R^2_+$

(b) Output correspondence, $P(x) \subseteq R^2_+$
4.3. Empirical investigation of prison efficiency using Data Envelopment Analysis:
A preliminary review of the literature

Since the 1960's there has been a steady flow of contributions to a new literature on the economics of crime and justice. One of the best known and seminal contributions is Becker (1968), and later Carr-Hill and Stern (1979); for a survey see Lewis (1987). More recently the literature has started to diversify. One of the newest strands of investigation is of the effectiveness of penal institutions, viz., the police (Levitt and Joyce (1987)), courts (Lewin, Morey and Cook (1982)) and the prisons.

The background to the development of the modern prison is fascinating. One of the best introductions to the subject is Garland (1985) which could be very usefully supplemented with a read of Merquior (1985, Chapter 7) and Foucault (1977) who analyses the broader philosophical arguments for and against the existence of prisons. The focus of this Chapter is the efficiency of prison production. This has several analytical and policy-orientated dimensions. For example much has been written about the possibilities for privatisation in UK prisons (Morgan and King (1987), Stern (1987)) and this debate continues as yet unresolved. Privatisation, however, is only one aspect of a debate on prison costs and spending.

Several studies (e.g. Prison Department and PA Management Consultants (1986)) of the prison service have diagnosed excessive costs and overtime driven complementing in the service. Shaw (1984) has identified the prison service as a public sector growth industry vis a vis other public programmes which have been subject to resource restrictions in recent Budgets. In the context of the Government's Financial Management Initiative (FMI) and the Prison Department's "Fresh Start" proposals attention has thereby focused on the allocation of resources in the service and their effectiveness in attaining penal objectives.

This Chapter extends the model in Ganley and Cubbin (1987) with greater disaggregation of costs and some redefinition of prison outcomes. Sections 4.5 through 4.6 discuss prison resources, objectives and data and how these have determined the specification of the prison production function underlying the analysis. Section 4.7 looks at the possibility of predicting enterprise efficiency "ex ante"; that is, using simple descriptive statistics it attempts to identify best-practice production prior to the formal programming analysis which makes specific technology assumptions and has significantly greater computational requirements. Section 4.8 looks at the potential role efficiency predictions have in the context of the Financial Management Initiative and the Prison Department's "Fresh Start" proposals. This includes discussions of the appropriate line-departmental structure and the implications for branch and central decision-makers of inefficient production. Sections 4.9 through 4.13 contain results on efficiency in 33 representative prison establishments using Data Envelopment Analysis using an assumption of varying returns to scale in the reference technology. Several important dimensions of the results are investigated including the nature of the peer group comparison and their congruence with Leibenstein's concept of the inert area in production.

4.4. Background to the prison environment

Prisons constitute a labour intensive, continuous process industry providing a number of non-traded outputs. The definition of prison outputs is especially difficult. At the crudest level, a prison provides a level of incarceration to protect law-abiding citizens from potentially dangerous offenders. The level of incarceration
can be measured by the number of prisoner days (average inmates x 365). The *success* of incarceration is more subtle. Again at the crudest level this can be approximated by the frequency at which prison security is breached – most notably in escape. Escape, however, is just one form of behaviour which can be deemed unacceptable in a set of undesirable acts which will include a variety of punishable offences: for example assault of a prison officer or wilful damage to prison property. These forms of behaviour are regulated and punished by prison officers. The number of offences so recorded can be used as an indicator of the output of discipline and regulation within a prison. However the possibility of differences in local policy from one prison to another suggests that some incidents will be punished in one but not in another. Consequently the "Offences" variable used below is defined as the number of *serious* offences. This includes incidents of escape, assaults on staff and wilful damage to prison property. These are fairly clearly defined and exclude less serious incidents.

A priori it is not clear whether larger numbers of offences represent stricter regulation and hence greater work effort or poorer standards of inmate behaviour which might be caused by a poorer regime. For the purposes of this study the number of offences will be classified as an intermediate output or throughput measure of work done; in this sense, offences are a positive output or "benefit". The more subtle final output connotations of offences for the rehabilitative work of the prison are acknowledged nevertheless.

No reader of the daily press can have escaped the appalling and worsening problems of overcrowding in the prisons. The total prison population currently stands at over 50,000 with the estate designed to house about 42,000. Each prison has a designated "Certified Normal Accommodation" (CNA). The difference between CNA and the average inmate population over the year is usually negative, indicating overcrowding. This is included in the model as an undesirable outcome of production. From the prison governor's point of view both CNA and the number of inmates he holds are given to him. Hence overcrowding is usually
unavoidable and is likely to have a profound effect on the attainment of the other objectives. The education and rehabilitation of offenders can only be jeopardised in cramped conditions. Some commentators subscribe to a "university of crime" interpretation of penal institutions. On this basis, dispersal of prisoners and their containment at lower densities is thought to be the most conducive environment for rehabilitation. Naturally on this argument overcrowding only serves to worsen the proclivity to re-offend.

4.5. Background to the Prison environment: Inputs

A joint Prison Department – PA Management Consultants' Report found that manning in the service has been unwieldy and over-time driven. The Government's recent "Fresh Start" proposals are designed to "shake up" the service establishing a basic working week and satisfactory renumeration without excessive overtime. Incarceration and supervision is labour intensive – the more so according to the category of inmates concerned. Accordingly for the purpose of this investigation costs have been broken down into manpower and non-manpower costs.

Non-manpower costs are a catch-all including all costs other than those attributeable to labour services. These costs are current (running) costs and do not include capital expenditures. Manpower costs include direct labour expenses and will reflect the effects of overtime, etc. A first approximation to a case mix indicator is had in a disaggregation of both cost variables into their remand and non-remand components. Non-remand inmates are the "typical" sentenced prisoner. Remand prisoners are awaiting trial and/or sentencing. During this period their incarceration is lightened with privileges, e.g. extra visits, own clothes, etc. which add to their costs vis a vis sentenced inmates. In addition the courts control when the remand prisoner shall appear for trial and sentencing. The prison must provide escorts to and from the court at the time determined by the court. This may interfere with the rostering which would otherwise be most efficient from the prison's point of view. The court work associated with remand prisoners is a further reason for the
separation of remand items. This important distinction has also been incorporated into the prisoner days outcome variable.

4.6. Prison objectives and sources of data

This choice of input and outcomes yields a set of 8 variables. They have been chosen from first principles as the best indicators of the underlying production process. It is intended that they are broadly congruent with the objectives of Government penal policy as framed in the Prison Department Report (Cm 264) and Public Expenditure White Paper (Cm 288). These objectives were interpreted by Ganley and Cubbin (1987) as:

1. Secure containment of offenders;
2. The quality and rehabilitative effect of prison life; and
3. Efficient use of resources.

Although severely criticised in the past (see e.g. Shaw (1984)) prison statistics are improving. Data by establishment on offences like escape and assault satisfies (1) and has been taken from Prison Statistics, England and Wales, 1984, Tables 9.3 and 9.4. Cost data has been derived from the annual Report on the work of the Prison Department, 1984/85, Appendix 2, Table D and is intended to reflect achievement of (3). Currently there is no published data on (2), the state of the prison regime. Yet data of this sort is circulated internally to the Service and may ultimately be published annually in the Prison Department Report or the Public Expenditure White Paper if the recommendations of the Education, Science and Arts Committee in a recent report⁸ are accepted by the Government. The quality of life and regime in the prison could be crudely approximated by an indicator such as the number of non-statutory hours inmates are allowed out of their cells for free association, games, learning etc. As far as the model's congruence with Government policy is concerned lack of data on regime quality is perhaps the less worrying of data deficiencies since in recent years a good, reforming regime appears to have been tacitly downgraded by policy-makers vis a vis the simple incarceration objective. (See Prison Education HC 138–1, Session 1986–87.)
The data used in the study below is based on a cross-section of 33 representative penal establishments. These are predominantly local prisons with large remand populations. However seven remand centres and one Category B closed training prison have also been included to broaden the cross-section. Broadening the cross-section in this way assumes an acceptable level of homogeneity across establishments in order to make their relative efficiency assignments meaningful.

The cost and overcrowding data on these institutions are for the financial year 1984/85 and are derived from the Prison Department Report, 1984/85. The prisoner day and offences outcomes for 1984 do not overlap exactly with data from the Report: they are published annually for the calendar year only in Prison Statistics, 1984. For purposes of evaluation the incongruent overlap of relevant data is disappointing. An important and desireable future step forward in the development of prison statistics would be the accurate and timely reporting of all relevant performance data on a fully comparable basis.

4.7. Ex ante efficiency prediction

It is not uncommon in empirical work in the DEA literature to present descriptive statistics on the input–output data prior to formal modelling of the production process (see for example Fare, Grosskopf and Logan (1987), Grosskopf and Valdmanis (1987) and Rangan et al (1988)). This serves to provide some intuition on the plausibility of the derivative DEA–efficiency coefficients. These coefficients lack a simple test statistic such as would be output from conventional parametric procedures like Ordinary Least Squares. In a similar context Hammond (1981) and Besley (1989) have proposed the evaluation of efficiency "ex ante" and "ex post". Thus the efficiency predictions in this section are termed "ex ante" in the sense that they are derived from descriptive statistics on the data prior to formal evaluation of performance with DEA. Analogously the DEA efficiency scores can be interpreted as ex post "predictions" of efficiency.
Table 4.7.1 contains means, standard deviations, maxima and minima of the input–output data set based on the full cross section of 33 establishments. From the extreme values in the data it is possible to make crude *ex ante* efficiency predictions. Since Chapter 4 focuses on the input dimensions of prison production these predictions are based on the extreme values of the cost data alone. From Table 4.7.1 this would imply that Gloucester local prison and Thorpe Arch remand centre may be among the best–practice establishments with minimal observed costs. Analogously Brixton and Wandsworth locals might be anticipated to be poor efficiency candidates with respectively maximum remand and non–remand costs. However it should be noted that Brixton did the bulk of London’s remand work whilst Wandsworth had no remand prisoners in 1984/85: Their apparently excessive spending may be more a function of their inmate mix than of true cost inefficiency. Brixton moreover delivers the greatest prisoner throughputs in the sample. The DEA results themselves will of course throw more light on this.

Table 4.7.1

Summary of Prison Costs(£M) and Outputs, 1984/85

<table>
<thead>
<tr>
<th></th>
<th>Manpower</th>
<th>Non-Manp.</th>
<th>Overcrowd</th>
<th>Days</th>
<th>Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.24</td>
<td>3.47</td>
<td>0.64</td>
<td>1.05</td>
<td>-147</td>
</tr>
<tr>
<td>S.Devn</td>
<td>2.08</td>
<td>2.51</td>
<td>0.59</td>
<td>0.92</td>
<td>133</td>
</tr>
<tr>
<td>Max</td>
<td>11.85</td>
<td>10.55</td>
<td>3.24</td>
<td>3.80</td>
<td>-622</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(31)</td>
<td>(6)</td>
<td>(31)</td>
<td>(16)</td>
</tr>
<tr>
<td>Min</td>
<td>0.55</td>
<td>0.34</td>
<td>0.11</td>
<td>0.10</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>(30)</td>
<td>(14)</td>
<td>(30)</td>
<td>(9)</td>
</tr>
</tbody>
</table>

Notes:
1. Figures in brackets denote the identity of the prison with the maximum or minimum value of the variable concerned—see Table 4.9.1 below for prison names.
2. Outcome variables: (a) Overcrowding is a negative outcome of production and hence is defined as the Certified Normal Accommodation(CNA) less the actual average prisoner population; (b) "Days" is the number of prisoner days, a basic throughput variable, defined as 365 x average prisoner population, expressed in thousands. Like Manpower
and Non-manpower costs it has been split to reflect the number of Remand (a) and Non-remand (b) prisoners; (c) "Off" is the number of serious punished offences and is a further indicator of staff activity (in the regulation of inmates' lives).

4.8. A potential framework for the implementation of relative efficiency analysis in the public sector

DEA efficiency coefficients derived from formal programming procedures and based on the data summarised in Table 4.7.1 may be used to form part of a performance data-flow in managerial and productive evaluation in the public sector. The Financial Management Initiative (FMI), as manifested in the Multi-departmental review of budgeting (HM Treasury, March 1986), and the Home Office's "Fresh Start" proposals appear to place branch organisations (eg the prison) into an evaluation hierarchy linked to a central-managerial function, for example the Prison Department. Performance along the branches or lines of this hierarchy generates data. These can be extracted for the central evaluation function. In the highly stylised terms of figure 4.8.1 the line manager is devolved financial responsibility for a budget. The line manager, for example a prison governor, discharges this budget in the knowledge that at year-end he is accountable to the centre (the Prison Department) for his performance.

Accordingly, data accrues to the centre at year-end and may be used in an efficiency evaluation and screening process. This could include an annual DEA evaluation of branch performance carried out by central management who will control next year's funding on the basis of these results. Best-practice organisations will be recognised in DEA terms by the recommendation that subsequent budgets can be fully justified. Poorer performers can be set cost targets derived from the efficiency coefficient. Typically these will entail that existing levels of service be
maintained at a reduced budget from which last period's inefficient expenditure has
been deducted.

Figure 4.8.1
A stylised view of FMI and the Fresh Start scheme

Central Management Function,
eg Prison Department

performance data flow

dele gated budgets &
accountability

Branches, eg prisons

4.9. DEA results on prison relative efficiency with a varying returns to scale
technology: Overview

Table 4.9.1 contains relative efficiency coefficients using Data Envelopment
Analysis with a varying returns to scale (VRS) technology assumption embodied in
the underlying linear program. The results have been estimated for the full cross
section of 25 local prisons, 7 remand centres and 1 Category B closed training
prison.

These prisons operate in an environment constrained by court decisions, crime
rates and the statute book. Consequently many of the outcomes of prison production
like prisoner days and overcrowding are wholly or partially beyond the control of
the individual prison. In these circumstances the cost rather than the output
dimensions of efficiency are more germane because it is only costs which are truly
discretionary (after certain minima, of course) from the prison decision-maker's
point of view. *A fortiori* targets for outputs in these circumstances would be
unattainable. Accordingly the efficiency coefficients contained in Table 2 have been
estimated using the input-minimisation version of the DEA program (in place of its
output-maximising counterpart\(^\text{11}\)) assuming the prison decision-maker strives to
minimise the cost of producing given levels of output. The analysis of efficiency on
the input-side rather than the output-side is becoming common in DEA
applications for a variety of reasons. In the context of constraints on output Dawson
(1987) used an input-minisation program in the analysis of dairying where output is
set exogenously through EC quotas\(^\text{12}\). Owing to the difficulties frequently
encountered measuring public sector outputs several authors (Mellander and Ysander
have recommended that efficiency studies focus as far as possible on the
measureable aspects of production; that is, on the cost behaviour of organisations
measured in money terms.

Thus table 4.9.1 summarises the cost behaviour of prisons relative to a best
practice cost frontier defined by prisons with unity technical efficiency (TE) scores.
There are 20 best-practice prisons in table 4.9.1 which form peer groups for
inefficient prisons along a piecewise linear average cost function (– see figure
4.10.1 below). Thirteen prisons of the full cross section of 33 have been identified
as technically inefficient relative to the peer prisons on the cost frontier. At some
establishments inefficiency is quite marked: Bedford has TE = 0.71 and Leicester TE
= 0.78. By contrast there are near trivial divergences from best practice in others,
viz., at Oxford with TE = 0.99. The mean technical inefficiency is 0.88. As a
representative value for inefficiency this suggests there are substantial excess costs
through the cross section as a whole. That is, there are average cost reductions of
around 12 per cent for a representative prison with a non-unity efficiency score.
Ignoring additional slack adjustments, this implies next period's budget (for 1985/86)
might have been adjusted downwards by 12 per cent at the representative establishment. In terms of figure 4.10.1 (below) this indicates that in the sample period (1984/85) costs were noticeably above those attainable at best practice establishments along the frontier.

Table 4.9.1

DEA-efficiency coefficients under varying returns to scale in local prisons and remand centres in 1984/85.

<table>
<thead>
<tr>
<th>Prison</th>
<th>Cost efficiency</th>
<th>Peer group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashford</td>
<td>1.0000</td>
<td>1</td>
</tr>
<tr>
<td>Bedford</td>
<td>0.7095</td>
<td>15, 16</td>
</tr>
<tr>
<td>Brockhill</td>
<td>1.0000</td>
<td>3</td>
</tr>
<tr>
<td>Birmingham</td>
<td>0.8459</td>
<td>14, 16, 28, 31</td>
</tr>
<tr>
<td>Bristol</td>
<td>1.0000</td>
<td>5</td>
</tr>
<tr>
<td>Brixton</td>
<td>1.0000</td>
<td>6</td>
</tr>
<tr>
<td>Canterbury</td>
<td>0.8581</td>
<td>5, 16, 28, 29, 30</td>
</tr>
<tr>
<td>Cardiff</td>
<td>0.9782</td>
<td>5, 13, 16, 29</td>
</tr>
<tr>
<td>Coldingle</td>
<td>1.0000</td>
<td>9</td>
</tr>
<tr>
<td>Dorchester</td>
<td>1.0000</td>
<td>10</td>
</tr>
<tr>
<td>Durham</td>
<td>0.8817</td>
<td>5, 16, 30, 31</td>
</tr>
<tr>
<td>Exeter</td>
<td>0.8293</td>
<td>3, 5, 16, 21, 28, 30, 31</td>
</tr>
<tr>
<td>Glen Parva</td>
<td>1.0000</td>
<td>13</td>
</tr>
<tr>
<td>Gloucester</td>
<td>1.0000</td>
<td>14</td>
</tr>
<tr>
<td>Latchmere Hse.</td>
<td>1.0000</td>
<td>15</td>
</tr>
<tr>
<td>Leeds</td>
<td>1.0000</td>
<td>16</td>
</tr>
<tr>
<td>Leicester</td>
<td>0.7806</td>
<td>14, 16, 29, 30</td>
</tr>
<tr>
<td>Lewes</td>
<td>0.9858</td>
<td>1, 3, 6, 16</td>
</tr>
<tr>
<td>Lincoln</td>
<td>0.8873</td>
<td>3, 16, 28, 31</td>
</tr>
<tr>
<td>Liverpool</td>
<td>1.0000</td>
<td>20</td>
</tr>
<tr>
<td>Low Newton</td>
<td>1.0000</td>
<td>21</td>
</tr>
<tr>
<td>Manchester</td>
<td>1.0000</td>
<td>22</td>
</tr>
<tr>
<td>Norwich</td>
<td>0.8896</td>
<td>13, 15, 16, 31</td>
</tr>
<tr>
<td>Oxford</td>
<td>0.9913</td>
<td>10, 14, 15, 16, 20</td>
</tr>
<tr>
<td>Pentonville</td>
<td>1.0000</td>
<td>25</td>
</tr>
<tr>
<td>Pucklechurch</td>
<td>1.0000</td>
<td>26</td>
</tr>
<tr>
<td>Reading</td>
<td>0.9514</td>
<td>16, 28, 30</td>
</tr>
<tr>
<td>Shrewsbury</td>
<td>1.0000</td>
<td>28</td>
</tr>
<tr>
<td>Swansea</td>
<td>1.0000</td>
<td>29</td>
</tr>
<tr>
<td>Thorpe Arch</td>
<td>1.0000</td>
<td>30</td>
</tr>
<tr>
<td>Wandsworth</td>
<td>1.0000</td>
<td>31</td>
</tr>
<tr>
<td>Winchester</td>
<td>0.8951</td>
<td>3, 5, 13, 16, 30, 31</td>
</tr>
<tr>
<td>W. Scrubs</td>
<td>1.0000</td>
<td>33</td>
</tr>
</tbody>
</table>

Mean inefficiency \((1/\sum TE_i < 1): 0.8834\)

S. Dev'n. : 0.0825

Note: The mean and standard deviation are calculated for technical efficiency scores less than unity.
Source: Author's calculations.
4.10. Costs at Canterbury

Canterbury has a representative level of technical inefficiency $TE = 0.86$, which is close to the mean level of 0.88. It is therefore a useful example of the typical correction to resource consumption required in this cross section for boundary production. In Table 4.10.1 targets have been estimated for each cost item at Canterbury. The largest wastage at Canterbury is associated with the manpower aspects of the containment of remand prisoners. This is intuitively reasonable given the extra work generated by untried and unsentenced prisoners.

<table>
<thead>
<tr>
<th>Table 4.10.1</th>
<th>Costs at Canterbury local prison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual £M</td>
</tr>
<tr>
<td>Manpower Costs</td>
<td></td>
</tr>
<tr>
<td>(1) Remand</td>
<td>1.845</td>
</tr>
<tr>
<td>(2) Non-remand</td>
<td>2.060</td>
</tr>
<tr>
<td>Non-manpower Costs</td>
<td></td>
</tr>
<tr>
<td>(1) Remand</td>
<td>0.418</td>
</tr>
<tr>
<td>(2) Non-remand</td>
<td>0.466</td>
</tr>
<tr>
<td>Total Costs</td>
<td>4.789</td>
</tr>
</tbody>
</table>

Source: Prison Department Report, 1985/85 and author's calculations.

Summing the cost targets suggests a scaling down of total costs at Canterbury of approximately 17 per cent. This reduction in total costs includes a radial contraction (reflecting the efficiency score) and a slack component. The efficiency score at Canterbury is 0.86 which implies an equal 14 per cent scaling down in each of the cost variables. It is the presence of non-zero input slacks in particular cost items which raises the overall reduction in total costs to 17 per cent.
4.11. The peer group comparison

The nature of the efficient subset of production possibilities has been developed rigorously and on an axiomatic basis by Fare and Hunsacker (1986). To date however the definition and meaning of a peer establishment in the context of the DEA linear program has often been left unclear in the literature. This section clarifies the definition of a peer and provides a further assessment of its usefulness to inefficient establishments in the light of claims in the literature and the results in section 4.9. The definition and meaning of the peer group have also been discussed in Chapters 2 and 3.

It is argued throughout the literature (see e.g. Bowlin and White (1988), Bowlin (1987), Charnes, Cooper and Rhodes (1981, 1979, 1978))) that attainment of the boundary target performance is facilitated by appeal to the peer group attainments identified by DEA. The peer establishments have best-practice costs and are likely to be producing at broadly similar scale. The target is a weighted average of their performance. Given that it is genuinely comparable with the peers selected by DEA, the inefficient prison like Canterbury should be able to modify its performance to levels defined to them - borrowing the better productive and managerial procedures which they are presumably implementing.
L.P. definition of the peer group

These peer units can be defined in terms of the linear program (L.P.) underlying the results in this Chapter.

The prisons' cross section contained \(j = 1, \ldots, p, \ldots, 33 \) establishments. If \(X_{ip} \) is the \(i \)th input for a branch \(p \) and \(Y_{kp} \) its \(k \)th output the varying returns dual program for input efficiency for a unit \(p \) becomes:

\[
\begin{align*}
(1) & \quad \text{MIN } h_p - \epsilon \left[\sum_{i=1}^{4} s_i + \sum_{k=1}^{4} \lambda_j \right] \\
(2) & \quad h_p X_{kp} - s_k \leq \sum_{j=1}^{33} \lambda_j X_{kj} \quad k = 1, 2, 3, 4 \\
(3) & \quad Y_{ip} + s_i = \sum_{j=1}^{33} \lambda_j Y_{ij} \quad i = 1, 2, 3, 4 \\
(4) & \quad 1 = \sum_{j=1}^{33} \lambda_j
\end{align*}
\]

subject to

and

\[
\begin{align*}
\lambda_j & \geq 0, \quad j = 1, \ldots, p, \ldots, 33 \quad \text{(branches)} \\
s_i & \geq 0, \quad i = 1, \ldots, 4 \quad \text{(output slacks)} \\
s_k & \geq 0, \quad k = 1, \ldots, 4 \quad \text{(input slacks)}
\end{align*}
\]

The \(\lambda_j \) are the input-output weights\(^{13} \), the \(s_i \) are output slacks and the \(s_k \) input slacks; and where the RHS of the constraints (2) and (3) define the peer group. This is apparent on consideration of the implications of \(h_p^* = 1 \) and \(h_p^* < 1 \), where (*) denotes the optimal value of a variable in the basic solution of the DEA program. If the unit \(p \) has \(h_p^* = 1 \) and \(s_i^* = s_k^* = 0 \), for all \(i \) and \(k \) then it is relatively efficient. In this case the definition of the peer group becomes trivial since \(\lambda_p^* = 1 \) and \(\lambda_j^* = 0 \), for \(j \neq p \). Essentially the efficient unit \(p \) has no peers (other than itself). However where \(h_p^* < 1 \), \(\lambda_p^* = 0 \) and some subset of the remaining \(\lambda_j^* \) \((j \neq p) \) are non-zero. These non-zero \(\lambda_j^* \) are weights on units with \(h_p^* = 1 \) and constitute the peer group for \(p \). For example Canterbury (unit 7)
has five peer units. These are Bristol, Leeds, Shrewsbury, Swansea and Thorpe Arch. In terms of the program this means λ_5, λ_{16}, λ_{28}, λ_{29} and λ_{30} are all non-zero in the optimal solution to the program for Canterbury. The constraints in the program for Canterbury are thus:

$$\begin{align*}
(2) & \quad 0.86X_{k7} - s_k = \lambda_5X_{k5} + \lambda_{16}X_{k16} + \lambda_{28}X_{k28} + \\
& \quad + \lambda_{29}X_{k29} + \lambda_{30}X_{k30}, \quad k = 1, 2, 3, 4 \\
(3) & \quad Y_{17} + s_i = \lambda_5Y_{15} + \lambda_{16}Y_{116} + \lambda_{28}Y_{i28} + \\
& \quad + \lambda_{29}Y_{i29} + \lambda_{30}Y_{i30}, \quad i = 1, 2, 3, 4 \\
(4) & \quad 1 = \lambda_5 + \lambda_{16} + \lambda_{28} + \lambda_{29} + \lambda_{30}
\end{align*}$$

The constraints (2) and (3) define both the peer group for Canterbury and in addition the feasible production space; that is (2) and (3) are hyperplanes in the production space which together constitute an efficient, eight-dimensional surface against which interior production at the prison can be compared to estimate an efficiency score (see Banker, Charnes and Cooper (1984)). Constraint (4) is the "technological constraint"; its absence would imply that the intensity variables $(\lambda_j, j = 1, \ldots, n)$ are calculated unconstrained in the program which amounts to an assumption of constant returns to scale (see Grosskopf (1986), Fare, Grosskopf and Lovell (1985) and Chapter 2). The restriction that they should instead sum to unity originates in Banker (1984) and allows local variations in scale over the production surface.

The peer group and its interpretation in the literature

One of the major normative propositions in the literature (see Charnes, Cooper and Rhodes (1978, 1979); Lewin and Morey (1981); Lewin, Morey and Cook (1982); Bessent, Bessent, Charnes Cooper and Thorogood (1983); Bessent, Bessent, Elan and Long (1984); Bowlin (1986) for example) entails that the inefficient decision-maker such as Canterbury should be able to compare itself with the units identified in the constraints (2, 3 and 4) in order to extract examples of better managerial and productive behaviour. This could take the form of on-site
inspection of peer prison procedures or greater disaggregation of costs at the modelling stage. It is likely however that expansion of the input-output variable set would lead to a significant reduction in the ability of DEA to identify non-unit efficiency scores. Bowlin (1987, p.133), Parkan (1987) and Nunamaker (1985) have shown that for a given number of establishments the a priori expectations after this kind of modification would be for an increase in the number of best-practice establishments, for: "the more variables considered, the greater the chance some inefficient [unit] will dominate on the added dimension and thus become efficient" (Nunamaker (1985, p.54)). In addition Nunamaker demonstrates that the addition of variables will produce an upward "trend" in the efficiency scores. The discriminating power of DEA is correspondingly reduced since an establishment can raise its efficiency rating without increasing effort but rather by expanding the variable set used in the programming analysis. In this connection Nunamaker argues that, ceteris paribus, the a priori model of the production process should be kept as compact as possible in order to maximise the discriminating power of DEA.

It is not at all clear then that simply disagggregating the input-output variables or adding to them would enhance the information provided by the peer group for the inefficient establishment. An interesting study by Parkan (1987) undertook the comparison of bank branches in Alberta, Canada. The results were laid before managers who offered their own criticisms. They declared that:"the comparison of a branch which was declared relatively inefficient to a hypothetical composite branch, (that is, to a weighted average of the peer group as in constraints (2) and (3)) did not allow for convincing arguments as to where the inefficiencies lay" (Parkin (1987, p.242).
Table 4.11.1

Costs at Canterbury and of its relatively efficient peers

<table>
<thead>
<tr>
<th>COSTS (£M)</th>
<th>CANTBRY</th>
<th>BRISTOL</th>
<th>LEEDS</th>
<th>SHRSWBY</th>
<th>SWANSEA</th>
<th>T. ARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manpower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)remand</td>
<td>1.845</td>
<td>1.061</td>
<td>4.453</td>
<td>0.832</td>
<td>1.019</td>
<td>1.936</td>
</tr>
<tr>
<td>(2)non-remand</td>
<td>2.060</td>
<td>4.989</td>
<td>4.230</td>
<td>1.456</td>
<td>2.225</td>
<td>0.344</td>
</tr>
<tr>
<td>Non-manpower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)remand</td>
<td>0.418</td>
<td>0.231</td>
<td>1.196</td>
<td>0.204</td>
<td>0.192</td>
<td>0.543</td>
</tr>
<tr>
<td>(2)non-remand</td>
<td>0.466</td>
<td>1.087</td>
<td>1.136</td>
<td>0.357</td>
<td>0.419</td>
<td>0.096</td>
</tr>
<tr>
<td>Total</td>
<td>4.788</td>
<td>7.368</td>
<td>11.015</td>
<td>2.849</td>
<td>3.854</td>
<td>2.919</td>
</tr>
</tbody>
</table>

Note: Columns may not sum to totals exactly because of rounding.

In this connection table 4.11.1 summarises the target variables for Canterbury and its peer institutions. At this level of cost aggregation precise indications as to potential sources of improvement are not conspicuous, despite contrary claims in the literature. Comparing the cost profiles of all six prisons it is not the case that Canterbury spends the largest sums and hence the claim of Thanassoulis et al (1987, p.403) that "comparing an inefficient unit with the efficient units in its reference set shows up clearly how the former's performance is weak" (emphasis added) is too enthusiastic an interpretation of the peer group without a much more detailed investigation of procedures at the individual prisons themselves.

Greater detail of procedures may be obtained through finer disaggregation of costs at the modelling stage but as indicated earlier this may alter the efficiency scores and so make the scale of the associated targets ambiguous. In some cases, then, inspection of the peer group can only provide limited suggestions as to how performance can be improved. More precise lessons may only come through on-site inspection of operations at the inefficient prison itself.
4.12. Comparison of *ex ante* and *ex post* efficiency predictions.

Prior to the formal programming analysis with DEA in section 4.9, *ex ante* predictions of prison efficiency were made in Table 4.7.1. These predictions were based on the levels of costs in the prisons and were summarised in Table 4.7.1. Thorpe Arch and Gloucester were singled out on this "*ex ante*" basis as establishments that were likely to prove efficient under DEA. The results in Table 4.9.1. suggest that these prisons are indeed efficient or "*best-practice*". Brixton and Wandsworth on the other hand also attain best-practice status in DEA which contradicts the crude *ex ante* prediction in section 4.9 that these prisons were likely to be inefficient.

This apparent contradiction can probably be explained by the contribution of all input and output variables in the estimation of the DEA cost-efficiency coefficient: Heavy costs notwithstanding, Brixton and Wandsworth produce substantial prisoner throughputs (prisoner days). That all dimensions of production contribute to the efficiency score marks it out as equitable *vis a vis* traditional productivity measures. As Ruchlin (1977) and Todd (1985) have argued, production and output are the result of all inputs applied *in combination* and not the application of inputs in isolation as is suggested by the partial-productivity measure like output-per-head.

The correlation between DEA-efficiency and the data

The link between DEA-efficiency and the levels of costs at prisons can be examined further on the basis of the following hypothesis. For given outcomes, the DEA technical-efficiency score (TE) is some function of the vector of target variables. Using the input-minimisation version of the DEA program outputs are taken as given and costs are targeted. Thus if:

\[
4.12.1 \quad TE_{inp} = f(C ; Y)
\]
where C is a vector of prison costs (the target variables) and Y is a vector of (fixed) outcomes; then a reasonable efficiency hypothesis might be:

\[(4.12.2) \quad \frac{\delta \text{TE}_{\text{inp}}}{\delta C_j} < 0 , \quad j = 1, \ldots, 4.\]

That is, ceteris paribus, increases in the 4 cost items will be negatively associated with movements in the input efficiency score, TE_{inp}. Analogously, other things being equal, technical efficiency might be related to higher outputs:

\[(4.12.3) \quad \frac{\delta \text{TE}_{\text{inp}}}{\delta Y_i} < 0 , \quad i = 1, \ldots, 4.\]

(4.12.2) and (4.12.3) can be translated into the simple linear correlation hypothesis:

\[H_0 : a_{ij} = 0\]

\[H_A : a_{ij} \geq 0\]

where a_{ij} ($i,j = 1,\ldots,33$) is the linear correlation coefficient between the efficiency score and the relevant input/output variable. Naturally the negative version of the alternative hypothesis is consistent with (4.12.2) and the positive version with (4.12.3).

Table 4.12.1 summarises calculated values of the a_{ij} for two different types of efficiency score. Row 1 contains the correlation of input and output variables with the efficiency scores reported in section 4.9 which were based on a varying returns to scale (VRS) assumption in the production technology. In row 2, comparable results are presented assuming a constant returns (CRS) technology.
Table 4.12.1

Linear correlation matrix for efficiency scores and the input–output variables in the prison model.

<table>
<thead>
<tr>
<th></th>
<th>VRS</th>
<th>CRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target variables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manpower Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Remand</td>
<td>0.0497</td>
<td>-0.4583*</td>
</tr>
<tr>
<td>(2) Non-remand</td>
<td>0.0114</td>
<td>0.2107</td>
</tr>
<tr>
<td>Non-manpower costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Remand</td>
<td>0.0751</td>
<td>-0.4255*</td>
</tr>
<tr>
<td>(2) Non-remand</td>
<td>0.0640</td>
<td>0.2290</td>
</tr>
<tr>
<td>Outputs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prisoner Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Remand</td>
<td>0.0609</td>
<td>-0.2248</td>
</tr>
<tr>
<td>(2) Non-remand</td>
<td>0.0717</td>
<td>0.2902**</td>
</tr>
<tr>
<td>Offences</td>
<td>0.2169</td>
<td>0.2982**</td>
</tr>
<tr>
<td>Overcrowding</td>
<td>0.1092</td>
<td>0.1155</td>
</tr>
</tbody>
</table>

Notes:
(1) The critical value of the linear correlation coefficient with \(n-2 = 31 \) degrees of freedom is \(\pm 0.2961 \) at the 5 per cent level.
(2) * denotes a significant variable at the 5 per cent level.
(3) ** denotes a variable which is almost significant at the 5 per cent level.
Source: Author's calculations.

The critical value of the correlation coefficient at the 5 per cent level is \(\pm 0.296 \). On this basis, the null hypothesis that there is no linear association between VRS efficiency and costs cannot be rejected. However this is not the case for the constant returns to scale efficiency measure. Both the remand cost items are significantly negatively associated with CRS-efficiency at the 5 per cent level. On the output side, non-remand prisoner days and the offences variable are almost significant vis a vis CRS efficiency.14

Nevertheless the bulk of the correlation coefficients – for both CRS and VRS efficiency – are statistically insignificant (at the 5 per cent level). This suggests that the "ex post" efficiency prediction by DEA does not follow trivially from the level of the (target) variables. In particular, it would appear that high costs per se are as likely to be found at best-practice establishments (e.g. Brixton and...
Wandsworth) as they are elsewhere.

Chapter 2 outlined the importance of a frontier measure of efficiency and noted its congruence with economic theory as far as maximising behaviour is concerned. DEA provides a means for estimating frontier performance and in this sense it is an appropriate tool for efficiency measurement. It is important to clarify the overlap between DEA and economic concepts like optimising behaviour. Much of the development of DEA has been undertaken in the case-oriented Operations Research literature, outside the economics mainstream. Consequently it has developed without full justification in economic theory. In particular, no analytical rationale has been advanced as to why one organisation gets a higher efficiency score than another. However the concept of an "inert area" originally proposed by Leibenstein (1969, 1975, 1980, 1987) in his work on X-efficiency can be re-interpreted to provide, in economic terms, a firmer picture of the nature and variations in efficiency. It is the objective of this section to develop such an interpretation of inert production which could be offered as a tentative explanation of the causes of the differences in efficiency identified by DEA in Table 4.9.1.

Definition of the inert area.

Specifically, economic agents may behave so as to yield non-maximising outcomes because different groups within the enterprise have conflicting priorities and may have equilibrium effort levels below those which are optimal from the whole organisation's point of view. Leibenstein's concept of the inert area addresses these possibilities and brings a utility dimension to efficiency measurement in much the same way that Debreu (1951) first tried to define inefficiency in utility terms. Thus in Leibenstein (1969, p.607) an inert area is defined as: "a set of effort positions whose associated levels of utility are not equal but in which the action required to go from a lower to a higher [effort] level involves a utility cost that is
not compensated for by in a gain utility. Unlike non-human inputs, labour suppliers have preferences and may voluntarily alter their performance preferences. Subject to certain constraints, these preferences will determine the amount of effort attached to units of labour time purchased by the employer which maximises their utility. Given that work is not completely meaningless this level of effort will be non-zero but may be below that which would otherwise maximise the surplus from production.

It should be clear that use of the Leibenstein line of argument amounts to a repudiation of marginal productivity theory. Via the labour contract a fixed amount of labour time is purchased per period; effort on the other hand is a variable, so output is unpredictable ex ante. From the employer's point of view, a straightforward relationship between labour purchases, output and renumeration is lost - the key point being that labour effort and purchases of labour time are not the same thing.

Sources of inert production.

Button (1985) has indicated the sources of inert production. Supervisors or "principals" may have a desire to extract higher levels of effort from supervisees than the latter are willing to offer. Equally, to obtain increased levels of effort implies that supervisors themselves must work harder in policing and regulation. This engenders a utility penalty for the supervisor such that he may feel it too costly in terms of his own utility to move to a higher effort point. Consequently subordinates have an opportunity to labour at an intensity that may be lower than that which is optimal for the performance of the organisation as a whole.

Several other factors may influence the extent of the inert area. Its scale can be expected to be determined by the "shelter" available to agents to buffer demands on their labour. Absence of competitive pressures in both public and private sectors is a major determinant of shelter (c.f. Stevenson (1983)). But for a
given competitive background to the enterprise, the key influences are the internal organisation, regime and policing arrangements which prevail upon agents: "Full motivation, as implied in the maximisation concept, may work as long as we are thinking about one-man firms or very small firms with an over-dictator-manager [sic] in charge. But differential motivation becomes especially important once we consider large firms" (Leibenstein (1979), emphasis added). Once effort strategies vary in this way, the possibility of maximal frontier attachments - whether of costs or outputs - diminishes. Maximal attainments are the outcome of a well-behaved Rational Economic Man (Leibenstein (1980)).

Assuming the sources of inert production can be found in most organisations, it is not unreasonable to suggest that it is reflected in prison efficiencies reported in Table 4.9.1. This in turn would lend support to the Leibenstein(1975) reinterpretation of internal enterprise behaviour. That is: (1) The individual agent, and not the enterprise itself, is the basic decision unit from an efficiency point of view; and (2) There exist differing, unallied priorities among agents within the enterprise. (1) and (2) are the result of the fact that labour is able to choose its preferred effort-levels, subject to certain constraints. Because these effort-levels may not be consistent with the levels of the enterprise as a whole Leibenstein coined his term "inert area" as an indicator of wasted labour potential. That is, as an indicator of the difference between that level of effort preferred by the individual and that preferred by the enterprise. Insofar as variations in performance reflect wasted labour potential, the DEA-efficiency score can be thought of as a measure of the inert area in production.

An elementary model of the inert area

It is useful to formalise a model of the inert area at this point to illustrate the idea of wasted labour potential and its connection with the DEA-efficiency score. Leibenstein's basic thesis is that the organisation typically requires greater effort than will maximise individual utilities. Thus whilst increased labour effort
might lower costs onto the cost function, the marginal utility gain of doing so to the individual may be trivial or even negative.

This motivates figure 4.13.1 which depicts a stylized relationship between an individual's total utility and labour effort; it is based on Leibenstein (1980). *Ceteris paribus*, a typical agent has a utility function defined on labour effort (L), viz., \(U = U(L) \). He derives satisfaction from additional effort up to the point \((L^*, U^*)\) in Figure 4.13.1. Beyond \(L^* \) his total utility decreases monotonically because extra effort is tiresome for him and produces a negative marginal utility.

Leibenstein (1969) suggests that the enterprise can reduce its costs by extracting greater effort per unit of labour time purchased. If the organisation succeeds in obtaining greater effort levels it can reduce the total units of labour time purchased. Thus, *ceteris paribus*, it may prefer an effort level, say \(L_1 \), from individuals. The difference between this level of effort, which is optimal from the employer's point of view, and that preferred by the employee \((L^*)\), is the inert area. From figure 4.13.1. this translates into \((L_1 - L^*) > 0\). In general, any effort level beyond \(L^* \) will not be desired by individuals because it has a negative marginal utility and a non-zero inert area, reflecting wasted labour potential.

In principle, the difference between \(L^* \) and \(L_1 \) can be thought to reflect the difference between best-practice and inefficient production defined by a (non-unity) DEA-efficiency score. Attainment of the DEA target for an inefficient organisation then requires the elimination of the inert area by increasing agents' effort levels from \(L^* \) to \(L_1 \). By increasing effort levels the organisation can reduce the number of employee-hours it requires to produce a given output. This immediately lowers the wage bill and total costs. Given the traditional arguments about the flexibility of factors of production in the short run — that is, that labour is variable while other factors are not — suggests short-run adjustments onto the cost frontier can only take place through reductions in the wage bill. These could be achieved either by making some of the workforce redundant and asking large increase in effort
levels from the remainder. Or, the organisation can keep all its existing employees and ask each one for a relatively smaller increase in work intensity.

Figure 4.13.1
Utility and effort

To fix ideas, these arguments may be recast in figure 4.13.2 which illustrates a stylised frontier for average costs. Consider for example a hypothetical prison producing at point l with average costs OB. Its DEA-efficiency score is OA/OB and the associated target OA. Costs OB are relatively inefficient and presumably reflect agents preferred effort levels, as at L^* in figure 4.13.1. In principle, the only way the employer may be able to reduce costs in the short run is to employ less labour. If the employer can persuade agents to raise effort levels then the number of hours of labour purchased to deliver output OY can fall. For a given wage rate, this will reduce the wage bill because wasted labour potential is eliminated; that is, the reduction in average costs $(OB-OA)$ for best-practice could
be achieved if labour effort per hour rose to remove the inert area \(L_1 - L^* \).

Figure 4.13.2.
The link between DEA-efficiency and inert production

The main qualification falling on this argument would be that it suggests the whole of the improvement in average costs suggested by DEA, \((OB - OA)\), is attainable through increases in labour effort. As suggested earlier this relies on the likelihood of other factors being fixed in the short run. If this is indeed the case then the only facet of operations which may be able to absorb inefficiency will be the work intensity of employees. However if other adjustments are possible (e.g. in procedures, equipment, etc.), then some or all of the DEA adjustment to costs may be attainable without increases in work intensity.

The attainability of DEA targets.

It has become clear that to attain a point of best-practice may require individuals to work with an intensity greater than they would prefer. This is evident if the inert area is expressed explicitly in utility terms. For effort points such as \(L_1 \) and \(L^* \) in figure 4.13.1 the inert area would then be given by \([U(L_1) - U(L^*)] < 0\); that is, as the difference between total utilities at preferred and non-preferred effort levels. The expression is negative and indicates that there would be a net utility cost to the individual of increased effort. In these
circumstances the attainment of boundary performance implies that individuals within an organisation would have to accept a lower total utility from their work. Presumably such a situation could only be achieved after increased monitoring and regulation of work. Of course if individuals desired effort levels are coincident with that preferred by the organisation, best-practice production would not mean lower utility. Leibenstein's key (1979) point, however, is that such a situation (i.e. \(L^* = L_1 \)) is unlikely unless in small owner-managed firms because of reasons of shelter and looseness in labour contracts in larger organisations. The possibility that achieving higher work intensities could mean lowering individual utilities underlines the difficulties that may be encountered in the implementation of targets. Individuals may resist voluntary calls to increase their effort such that costly increases in monitoring arrangements might become necessary. If the budgets are not available to develop stricter monitoring than inefficiency is likely to persist because individuals are unlikely to voluntarily increase their effort to a point of lower utility.

Management may however be able to achieve some fraction of targeted savings by bribing employees into accepting lower utilities. In principle, management could "buy out" their lost utility by offering a higher wage rate which could be offset by greater effort on the part of workers.

DEA, X-efficiency and the inert area

Liebenstein's concept of an inert area has proven useful in permitting a tentative exploration of the inefficiencies identified by DEA in a traditional economic framework based on utility theory. Furthermore, this utility based interpretation of DEA suggests an economic rationale to explain why the targets by DEA might not be achieved. In particular, efficiency may persist because best practice costs may require levels of effort from individuals which would lower their utility. A "rational" agent would not ordinarily be expected to volunteer lower utility and so if efficiency is not to persist this implies some form of coercion of
agents might be necessary.

The framing of DEA in X-efficiency terms as an inert area suggests the first sense in which the extent of X-efficiency might be quantified. Button (1985, p.85) has written that "the problem of the X-efficiency concept is that it focuses on relationships that are essentially unobservable. Traditional economic methodology, involving the establishment of testable hypothesis, is particularly difficult to apply in such circumstances. Leibenstein himself tends to rely upon casual empiricism and sites a series of ad hoc case studies, examples and impressionistic findings to support his stance". These observations may no longer be appropriate. Insofar as variations in performance can be attributed to inert production, the X-efficiency concept does indeed become tractable to quantitative investigation.

Section 4.14. Conclusion

This chapter has implemented the revised DEA program of Banker (1984) on a representative cross-section of 33 local prisons and remand centres for the financial year 1984/85. The Banker approach represents a step forward on the original Farrell/Charnes and Cooper methodology which imposed constant returns to scale over the whole production surface. Banker added an additional constraint to the original DEA program (that the sum of the intensity variables is exactly unity) which permits the returns to scale to vary locally. It has thus been possible to estimate the efficient production correspondence for prisons without requiring restrictive assumptions on the underlying production technology. This is in contrast to classical econometric methods that estimate production correspondences using a prespecified parametric functional form which involves implicit assumptions about the nature of the underlying production technology.
An interesting comparative study of efficiency in North Carolina hospitals by Banker, Conrad and Strauss (1986) has confronted non-parametric DEA estimates with a translog version of the production function. The translog results suggested that constant returns prevailed in the hospital sample, whereas the DEA procedure indicated that both increasing and decreasing returns to scale may be observed in different segments of the production correspondence, in turn suggesting that the translog model may have been "averaging" diametrically opposed behaviour. This comparative study provides evidence in favour of the non-parametric approach as used in this Chapter since the DEA estimates appear to be able to identify production behaviour more accurately.16

On this basis thirteen establishments in the sample were diagnosed as operating with technical inefficiency. The mean level of the efficiency coefficient for inefficient prisons was 0.88 suggesting that these institutions could on average, reduce their operating costs by around 12 per cent. In some cases however, substantially greater orders of inefficiency were identified: for example at Bedford TE = 0.71 and at Leicester TE = 0.78.

The definition of the peer group which "drops out" of the solution to the DEA program was clarified in section 4.11. It is argued that there is no straightforward link between the peer group and improvements in performance at inefficient establishments, contrary to suggestions in the literature. Standards at peer establishments may only be dominant in one dimension (Nunamaker (1985)) and so certain cost items at an inefficient establishment may actually be lower than costs in the peer group – recall the comparison of Canterbury with its peers in Table 4.11.1.

The nature of inefficiency and its relationship with the level of costs was examined in section 4.12. A linear correlation analysis suggested that costs attributable to remand prisoners are significantly associated with the CRS efficiency coefficient.
Simple inspection of the extreme values of the costs data does not provide enough information *ex ante* to predict an establishment's efficiency status in the DEA program. Gloucester and Thorpe Arch dominated on (respectively) the remand and non-remand cost variables in table 4.7.1 and achieved best-practice status in the DEA results. This is consistent with Nunamaker (1985) who demonstrated that dominance on a single variable is enough to confer full technical efficiency in DEA.

However, *ex ante*, it is not possible to predict the consequences of *sub-dominance* on efficiency. Brixton and Wandsworth had the highest remand and non-remand expenditures (see table 4.7.1). Nonetheless they were identified as technically efficient in the DEA program. It follows that sub-dominance in a particular variable (that is, excess costs or deficient outputs) implies *of itself* neither efficiency or inefficiency. This can be attributed to the total-factor view embodied in the underlying DEA-efficiency ratio. The inefficiency coefficient is effectively a weighted average of performance on *all* variables and so sub-dominance on a single variable cannot in its own right determine an establishment's efficiency status. Herein lies the advantage of a total-factor approach over the more traditional partial view which defines productivity as a ratio of a *single* output to a *single* input. The use of methods embodying a total-factor view in performance measurement is now widely recommended in the literature – see for example the volume edited by Cowling and Stevenson (eds.) (1984), Pickering (1983), Richardson and Gordon (1980) Craig and Harris (1973)).

Harvey Leibenstein's ideas on X-efficiency have for two decades remained on the periphery of the analysis of productivity. Experience in any organisation suggests the existence of slack and that inputs – in particular labour – may not be fully employed. This apparently innocuous proposition has eluded empirical estimation leaving X-efficiency theory as little more than an addendum to the literature.
Section 4.13 formalises X-efficiency in terms of the concept of an inert area (an idea also proposed originally by Leibenstein); it argues that, ceteris paribus, the efficiency coefficient can be regarded as a quantitative measure of inert production. This is a significant step forward in that the concept is now brought within the domain of empirically quantifiable hypotheses and may lead to its incorporation into empirical research more generally. A development of this nature is all the more remarkable given that Leibenstein himself has tended to draw support from casual empiricism and *ad hoc* case studies (see for example Leibenstein (1970, 1966)).

Finally, section 4.13 suggested a utility-based interpretation of technical inefficiency. It was argued that inefficiency may be the result of agents lowering their effort levels to maximise individual utilities. If these effort levels are not consistent with minimum costs, the organisation will face a motivational problem because individuals have no incentive to work harder if this lowers their total utilities. Consequently inefficiency may be a persistent phenomenon making DEA targets unobtainable without coercion or bribes.

Footnotes
1. I should like to thank participants at the 1988 Young OR Conference at Warwick University for their helpful comments on an earlier draft of this Chapter. In addition, however, I must thank Mr. David Bratton, Wing Governor at HMP Wormwood Scrubs, for allowing me "inside" for a day. The usual disclaimer applies.
2. For a full discussion of the distinction between intermediate and final outputs see Boviard (1981) and Gadrey (1988).
4. Figures in *The Economist*, 23/1/1988, show that currently 60 per cent of all male offenders leaving overcrowded gaols are reconvicted within two years (for young prisoners the figure is 69 per cent).
7. Prisoners are categorised A,B,C,D where A is the most serious offender, B less so, etc.
9. Ashford, Brockhill, Glen Parva, Latchmere House, Low Newton, Pucklechurch and Winchester.
10. Coldingley.
11. See Chapter 2 on this distinction.
12. The general problem of exogenously fixed inputs or outputs is discussed in Banker and Morey (1986a,b) and Ray (1988).
13. Also known as "intensity variables". See Fare, Grosskopf and Logan (1985, 1987).
14. Prison efficiency on a constant returns basis is discussed fully in Chapter 5. Note that CRS versions of the DEA program usually identify fewer best-practice establishments when compared with a VRS version of the program on the same data set (see Chapter 5). Consequently there is more variation in the CRS-efficiencies since there are more non-unity efficiency scores. This may go some way to explain the greater significance of the CRS-efficiency scores in a linear correlation analysis. In addition, of course, there may be non-linear relationships between efficiency and the target variables which cannot be identified here.
15. See Rees (1985) for a comprehensive survey on the growing literature on principals and agents.
16. Note that a full treatment of returns to scale is contained in Chapters 2 and 5.
5.1. Introduction

Since its inception Data Envelopment Analysis has often been used as a measure of technical efficiency within larger organisations with a branch structure. However in many contexts it is the performance of the larger organisation of which the branch is only a part which is of most relevance. A good example occurs in the determination of public expenditure. Government departments make a bid each year to the Treasury for resources. The reaction of the Treasury to this bid will depend on many considerations, not the least of which is the perceived value for money of the programmes\(^1\) operated by the department. In evaluating the efficiency of a spending programme, central decision-makers will not usually have the resources to consider the detailed performance outcomes of the smaller operating units within the programme. Quite simply, as Nelson (1981, p. 1039) has remarked: "top management is limited in the number of things it can control or attend to in any detail". It follows that the control of production for efficient outcomes requires information to summarise branch-level operations to a point which gives a more concise, summary picture of the operation of the programme as a whole.

In 1980 a system known as MINIS (Management Information System for Ministers) was set up at the Environment Department to provide top management with key data on "low-level" operations within the Department. For similar purposes, this Chapter seeks to summarise the branch-level information provided by DEA into indicators of the performance of the whole programme. It is argued that this summary information on programme performance could play an important dual role in public sector decision-making. Firstly, in top management systems like MINIS; and secondly in the operation of the annual Public Expenditure Survey where the Treasury requires summary performance data to evaluate departmental spending bids.
Section 5.2 of this Chapter develops a methodology for the aggregation of branch-efficiency scores and examines the aggregate efficiency of the prison spending programme by way of its illustration. This is extended in section 5.3 which examines the implications for costs and efficiency of an alternative constant returns to scale assumption in the underlying linear program. The causes of differences in costs under varying and constant returns are explained in section 5.4. Finally section 5.5 shows that excess costs in a spending programme can be decomposed into a scale and technical efficiency component. To date most of the empirical DEA literature has attributed the total variation in excess costs to technical efficiency; it is shown that this is misleading and that scale inefficiencies are an important determinant of excess costs in prison operations.

5.2. The cost efficiency of a multi-branch public spending programme: The case of local prisons and remand centres

The problem of programme evaluation

Farrell’s original (1957) empirical contribution investigated the relative performance of agriculture across whole states in the United States. In a similar way, section 5.2 sets DEA into a more aggregative context to provide information on the performance of whole spending programmes. This is a departure for DEA which hitherto has been a tool for the measurement of branch efficiency alone.

Many spending programmes are made up of a complex web of branches which deliver final services to the client. The performance of individual branches within the programme can be measured using DEA in the manner outlined in chapters 3 and 4. Analysis of spending and delivery at the programme-level however, is potentially more difficult owing to the diversity of institutions and activities which may be involved. Zeleny (1974) concluded that “human ability to arrive at an overall evaluation by weighting and combining diverse attributes is not very impressive”. Other studies like Balachandran and Steuer (1982) indicate that the
optimal set of weights required to summarise productivity measures is typically
dependent upon variable measurement scales and the decision-maker's preference
function. In the presence of non-marketed outputs with a merit significance
decision-making for the prisons' spending programme is no less problematic than
these studies suggest.

Consequently at the programme-level performance evaluation requires a form
of "informational reductionism" to condense large volumes of information into
quantities tractable enough for decision-makers. One means of summarising
information in this context may be Data Envelopment Analysis and, more generally,
total-factor productivity measures. These are effectively condensed performance
statements in which productivity is defined in a summary fashion, thereby avoiding
the complexity and potential ambiguity of partial factor measures. A good example
of the difficulties posed by traditional measures is a DHSS database on local
authority performance containing 400 indicators of activity and resource use (see
DHSS (1983, 1985)). The existence of such a large volume of indicators may
conceivably hinder as much as it assists senior management decision making. Thus
Mersha (1989, p. 164) argued that "the derivation of a single overall performance
index will provide a more operational and practical basis for evaluating the relative
performance of competing agencies" (emphasis added). Like Mersha, Fare, Grosskopf
and Lovell (1988, p. 79) have argued that efficiency measures may play a broader
role "in circumstances in which a public agency oversees the operation of a number
of service providers. Examples are state departments of education overseeing many
school districts, state departments of justice supervising local courts and the like".

In principle, DEA provides an overall performance index such as Mersha
(1989) and others have sought which eschews several common public sector
measurement difficulties. For example, it does not require the decision-maker to
express his own weighting scheme for inputs and outputs. Secondly, the DEA
relative-efficiency coefficient is derived unaffected by units of measurement in the
underlying data (see Charnes and Cooper (1984) for formal proof of the latter
proposition). More significantly however, it summarises performance into a single measure and thereby avoids the ambiguity of multiple productivity ratios.

Modernisation of public sector accounting methodologies

The importance of DEA to productivity measurement has been quite widely recognised for the evaluation of branch-level efficiencies. However, it is clear that similar benefits are likely to accrue from the application of DEA at higher levels of aggregation. Charnes and Cooper (1980a,b) recommend DEA in their concept of a broader "comprehensive audit" for public programmes in the modernisation of public sector accounting and evaluation. Indeed Charnes and Cooper argue that in this context DEA fulfils a need and a tradition for servicing third-party requirements for information, together with additional professional requirements for objectivity, care and validation. This view, that DEA can be seen as a development of the public-sector auditing function, is now widely supported by economists in this literature. Thus Sherman (1984), Greenberg and Nunamaker (1987), Smith and Mayston (1986) and Smith (1988) have developed arguments which support the use of DEA in the analysis of broader public sector budgets.

The Government's new white paper on efficiency policy is significant here because it advocates change in the structure of public institutions which is consistent with the application of DEA at a more aggregate level. Specifically, the white paper proposes that the bulk of departments' non-policy making functions be re-organised as "executive agencies". Agencies are designed to have a large degree of financial autonomy, surviving on budgets devolved to them from the parent department. This initiative broadens the scope for public sector monitoring and evaluation because some degree of central control over budgeting will be lost to the agencies. As the white paper puts it: "Agencies will be expected to install robust management systems, including proper measures of efficiency, as a basis on which ministers can confidently delegate as much responsibility as possible to them. Stretching performance targets will be set and monitored regularly. The Government's aim is
that controls should be few but effective, and it agrees that, provided demanding performance targets are set and monitored, and firm overall controls are maintained, it should be possible to reduce the degree of detailed control of agencies" (CM524, p. 9).

It is in this context of the modernisation and development of public sector auditing that section 5.2 proposes a new methodology for the aggregation of branch performance in a manner which summarises the implications of agency (branch) performance for programme-level costs. It will be argued that DEA-derived measures of programme performance may be used as accounting rules in the annual public-expenditure round where programmes compete for resources out of the planning total.

The structure of multi-branch public spending programmes and a further role for DEA

DEA enables the estimation of technical efficiency for each organisation within public-spending programmes with a branch structure. This information is important to the line manager of each branch who must be aware of its potential implications for funding next period. In the spending of public monies, the line (branch) manager is accountable to his sponsoring department which may play a judicial role analogous to the functioning of the market in the private sector. Thus if a DEA evaluation of performance by the sponsoring department is unfavourable this could be the basis for budget reductions at branches next period.

Equally, the sponsoring department is itself responsible to the Treasury in the use of public funds. Performance measurement of departmental activity by the Treasury should acquire greater importance now that budgets are being increasingly devolved to "lower" levels of public sector management. The maintenance of central (Treasury) control over spending in this context requires a more aggregative view of performance than is provided by branch efficiency scores. Information on individual
branch performance is generally too voluminous to be considered in detail at the Treasury in the allocation of broad spending totals to sponsoring departments. However, the branch structure of many public spending programmes may permit a second, broader role for the use of DEA evaluation. In particular, Mersha (1989, p. 163) has observed that "most public service programmes are designed to achieve their objectives through lower level operating units and a programme's performance is eventually determined by the efficiency and effectiveness of such operating units".

Hence, where the performance of a spending programme is ultimately constituted by the performance of its sub-branches, it is possible to derive aggregate technical efficiency measures for the programme itself – simply by summing over branch performance. Such measures overcome excessive detail of branch-level performance indicators. Hence they could be used by central funding institutions, such as the Treasury, in the allocation of broad spending totals to the sponsoring departments managing multi-branch spending programmes.

The methodology of multi-branch programme performance measurement

Consider then a multi-branch public expenditure programme. Resources are disbursed through its n branches. The programme is simply defined as the sum of spending at each branch i:

$$
\sum_{i=1}^{n} C_i
$$

The Aggregate Technical Efficiency (ATE) of the whole programme can be defined by the identity:

$$
(5.2.1) \quad \text{ATE} = \frac{\sum_{i=1}^{n} C_i^*}{\sum_{i=1}^{n} C_i}
$$

where C_i^* is the DEA target (or best-practice) cost level for each branch; and C_i is
its actual spend. Disaggregated cost items within total costs may also be identified
and so programme efficiency in each of these separate (m) classes may be defined:

\[
\text{(5.2.2)} \quad ATE_j = \sum_{i=1}^{n} \frac{C^*_i, j}{C_{i}, j}, \quad j=1, \ldots, m
\]

where \(C^*_i, j\) is the target cost level for item \(j\) at establishment \(i\) and \(C_{i, j}\) is similarly
defined for actual spending on \(j\) at \(i\).

The main difference between the conventional branch efficiency and aggregate
technical efficiency (\(ATE_j\)) scores is that the former vary over establishments while
the latter are indexed on the input or output variables (having summed over
establishments). Their interpretation however is the same, \textit{mutatis mutandis}. As the
efficiency of a branch approaches unity so technical efficiency is eliminated from its
operations. Equally, as \(ATE_j\) approaches unity (for \(j = 1, \ldots, m\)) technical inefficiency
is eliminated in the \(m\) separate cost items within the programme. When \(ATE_j = 1\)
for all \(j\), the programme is operating at full cost efficiency with best-practice
performance prevailing in all its constituent branches.

Programme performance and allocative efficiency

It should be noted that programme efficiency has been defined as the sum of
branch-level technical efficiencies. There is however an additional allocative element
to overall economic efficiency (OE). Hence Farrell (1957) suggested the efficiency
identity:

\[OE = TE \cdot AE\]

that is, overall efficiency is the product of technical efficiency (TE) and allocative
efficiency (AE) measures. In figure 5.2.1 technical efficiency is the ratio 0B/0C and
measures the extent of "interior production". Allocative efficiency reflects the
discrepancy between the cost-minimising factor price-ratios at D and those observed
at A. Hence \(AE = 0A/0B\) and \(OE = 0A/0C\). Thus overall economic efficiency is
lower than technical efficiency. This is because costs at B, C₁, are greater than those at D, C₀. It follows that if technical efficiency is adjusted to take account of allocative efficiency, the implied cost adjustments for overall economic efficiency are greater than those necessary for technical efficiency alone.

Figure 5.2.1
Technical and allocative efficiency ratios

The methodology adopted in this chapter for programme evaluation focuses on technical efficiency to the exclusion of allocative efficiency because of problems in the measurement of public sector prices. These problems include: (1) There may be distortions in (non-competitive) factor markets due to monopoly or monopsony power – see Fare, Grosskopf and Lovell (1988). This may mean that the prices ruling in markets are not genuine representations of the opportunity costs of inputs and hence allocative efficiency cannot be meaningfully defined against prevailing factor prices; (2) Particularly in a public sector context, prices may not exist or be intractable to definition (Margolis (1971) and Sengupta (1982)). In this case the optimal factor price ratios \(\left(\frac{P_{ij}^*}{P_{ij}^+} \right) \) and hence of the slope the isocost hyperplane will be undefined; (3) Finally, some authors of efficiency studies have suggested that losses due to allocative inefficiency are small relative to technical efficiencies. See

In these circumstances, programme performance has been defined in this section in terms of technical efficiency (and scale efficiency in section 5.5) alone. It is acknowledged that an adjustment for allocative efficiency could increase the size of excess costs which might be identified in public spending programmes.

Estimates of Aggregate Technical Efficiency in the local prison spending programme under varying returns to scale

The prisons' model estimated in Chapter 4 identified four cost variables \((m = 4) \) at 33 local prisons and remand centres. The Aggregate Technical Efficiency of the programme in each of these four items is defined:

\[
ATE_j = \frac{\sum_{i=1}^{33} C_{i,j}^{T}}{\sum_{i=1}^{33} C_{i,j}} , \quad j = 1, \ldots, 4
\]

In this way table 5.2.1 summarises the actual and target spending for manpower and non-manpower costs in local prisons in 1984/85. The cost targets derived in Chapter 4 assumed that the costs technology exhibits varying returns to scale. Table 5.2.1 also includes the implied total cost efficiency by summing costs and targets over \(j \) (c.f. the initial version of the aggregate efficiency identity (5.2.1)).

These results suggest about 5 per cent of the aggregate prisons' budget addressed by these results is not spent efficiently. Moreover, in terms of the potential percentage gains the extent of cost inefficiency appears to be fairly evenly distributed across manpower and non-manpower costs. This implies that over the programme as a whole there are no substantial slack variable adjustments to be made in the cost variables. That is, the existence of vertical or horizontal facets in the production surface is uncommon. It should be stated that the savings identified in table 5.2.1 may be very much potential long-run gains. Lewis (ed.) (1986)
argued that improving efficiency might require increases in budgets initially to assist in re-organisation, re-equipment, etc. For example, redundancy payments will swell costs in the present before a reduction in employment brings costs down in the future.

There is also the question of the quality of service and efficiency. Higher costs may be the result of a better service which will suffer from future budget restrictions. In the evaluation of the target itself, it will be useful for decision-makers to have well-defined norms and references against which to assess quality. If conventional standards of service delivery cannot be attained from existing resources, then a budget cut-back in funding is inappropriate. Higher quality of outcomes in prisons might be identified in the amount of time devoted to the educational rehabilitation of inmates and the number of hours per day allowed for association – both of which have implications for manning, costs and quality of service. Consequently a straightforward implementation of cost targets amounts to the existence of a maintained hypothesis that considerations of quality and adequate levels of service are satisfied.

Therefore cost targets are meaningful in the short run where standards of attainment in outcomes are acceptable and constant with respect to the reductions in funding implied by the target. In these circumstances, DEA information on programme performance may be fed into a policy environment like the annual public expenditure planning cycle. This could assist in the bidding process between Treasury and line departments, with poorer performing programmes being curtailed in favour of more efficient spending. Accordingly reductions in spending at the programme level such as suggested in table 5.2.1 can be thought of as potential adjustments to the public sector planning totals for departments in the Public Expenditure Survey (PES).5
Table 5.2.1

The programme implications of prison cost inefficiency in 1984/85 under varying returns to scale

<table>
<thead>
<tr>
<th>Costs</th>
<th>Actual £M</th>
<th>Target £M</th>
<th>ATE %</th>
<th>Saving %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manpower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) remand</td>
<td>69.41</td>
<td>66.30</td>
<td>95.5</td>
<td>4.5</td>
</tr>
<tr>
<td>(2) non-remand</td>
<td>114.38</td>
<td>109.06</td>
<td>95.3</td>
<td>4.7</td>
</tr>
<tr>
<td>Non-manpower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) remand</td>
<td>19.85</td>
<td>18.78</td>
<td>94.6</td>
<td>5.4</td>
</tr>
<tr>
<td>(4) non-remand</td>
<td>34.51</td>
<td>32.96</td>
<td>95.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Total costs</td>
<td>238.15</td>
<td>227.15</td>
<td>95.4</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Notes:
Column 1 is the sum of actual spending on item j for all \(i = 1, \ldots, 33 \) prisons, \(\sum C_{i,j} \); column 2 is the sum of best-practice costs at these prisons for item j and is defined as \(\Sigma C^*_i,j \), where * denotes best-practice costs; column 3 is the Aggregate Technical Efficiency of programme items in percentage terms, viz., \(ATE_j = \left(\frac{\Sigma C^*_i,j}{\Sigma C_{i,j}} \right) \times 100 \); column 4 is the potential percentage saving which could result from best-practice production, that is \(1 - ATE_j \) 100.

Source: Author's calculations and Prison Department Report 1984/85.

A number of further caveats must be added at this point. A target for programme funding in period \(t + 1 \) based on performance in time t must be adjusted to take account of anticipated future price movements. Given that prices have a tendency to rise, a target which has not been adjusted for anticipated inflation will unfairly penalise a programme next period. Secondly, the structure of some spending departments may not permit evaluation by DEA. For example, unitary departments like the Foreign and Commonwealth Office lack a comparable branch structure and are not therefore tractable within DEA at the programme level. In such cases, programme performance evaluation will have to follow an alternative route.

Finally, the results in table 5.2.1 are based on spending at only 33 local
prisons and remand centres while the *Prison Department Report* for 1984/85 identifies 118 penal establishments of one sort or another. From these only those (33) institutions with a significant remand population have been included. The presence of remand prisoners was taken as an indicator of reasonable homogeneity among institutions. The inclusion of other types of establishment (e.g. open prisons) in a broader analysis of the total programme might give a different picture of performance.

It was felt however that that the sample should be restricted to homogeneous establishments with similar functions and objectives. Clearly the comparison of performance with a production frontier would be meaningless if the relevant facet is a weighted average of a dissimilar production process. Some form of criterion (such as a significant remand content) which carefully differentiates between different forms of production has – of necessity – been used in most empirical DEA studies. For example Tomkins and Green (1988) sought to compare production in 36 university departments but limited their final sample to 20 because the remaining 16 were part of economics or management departments. Likewise several other studies have restricted the size of the relevant cross section. Sengupta (1987a) in a study of high-school education in California selected only 25 out of a feasible sample of 50 schools in order to preserve homogeneity.

Whether in actual practice enough comparable units can be identified to make "programme" evaluation a reality will depend on the nature of the activity in question. It can be said, however, that the input efficiency defined in cost terms has a profound advantage over the output efficiency score where programmes are widely differentiated internally. Specifically, the efficiency of subgroups of organisations – however small – can be aggregated in relation to the whole programme provided efficiency is additive: that is costs (both actual and targeted) measured in monetary units can be summed over any number of subgroups in the programme; outputs, by contrast, usually may not because in the public sector they are mostly non-traded and therefore cannot be valued financially. In this context targets for outputs remain
in the original units of measurement which makes aggregation of output efficiency to
the programme level intractable. Of course in a programme which is made up of
branches with identical outputs, programme–level aggregation is unproblematic
because output can be measured in the same units throughout the programme.

Despite these qualifications, the dissent sometimes aroused during the public
expenditure round suggests some rationalisation of PES procedures for multi-branch
programmes may be in order. Careful use of DEA throughout applicable
programmes in the PES could facilitate Treasury allocations to sponsoring
departments on the principle that future spending is based on current performance.
Departmental bids for funds could be judged on a consistent total factor basis with
DEA efficiency measurement. By contrast, under existing arrangements, programme
performance is evaluated through a range of ad hoc criteria which can lead to
divergent conclusions on future funding. 6

An alternative measure of aggregate efficiency

The foregoing discussion has focussed on the measurement of aggregate
technical efficiency in multi-branch public expenditure programmes through the
summation of performance in the underlying target variables. An interesting paper
by Beasley (1988) prompts the suggestion of an alternative definition of efficiency
for programme evaluation.

Beasley examines two methods of calculating efficiency scores for all
establishments using the same set of weights. This is in contrast to the standard
approach a la Charnes, Cooper and Rhodes (1978) who advocate the solution of the
linear program n times generating a separate set of optimal weights for each
establishment. Beasley describes what he calls a Global and an Incremental approach
to the simultaneous solution of the DEA program for all units. The most interesting
of these is the Global approach. It involves the solution of the standard DEA
program choosing weights under a new criterion. That is, the optimal solution to
the program is that set of weights which maximises the sum of the efficiencies of the individual units. This is a very useful idea which can be generalised to other contexts. In particular, the sum of individual technical efficiency scores can be interpreted as an alternative (ordinal) measure of aggregate efficiency. Thus for \(n \) establishments, the Aggregate Technical Efficiency (ATE) becomes:

\[
(5.2.3) \quad \text{ATE} = \sum_{i=1}^{n} \text{TE}_i
\]

where \(\text{TE}_i \) is the branch-level technical efficiency score. For \(n \) establishments, the maximum value of ATE is \(n \). The minimum value of ATE is not so evident. But assume the simplest branch structure conceivable, \(n = 2 \). If both branches are best-practice then full efficiency exists throughout the spending programme and ATE = 2. Where there is technical inefficiency in the sample, i.e. \(\sum \text{TE}_i < 2 \) (\(i = 1, 2 \)) one establishment must dominate the other. In the limit as the dominance of one establishment increases indefinitely over the other, \(\sum \text{TE}_i \rightarrow 1 \). For \(n > 2 \), the same result follows, for there must be at least one dominant (i.e. best-practice) establishment. As the performance of the non best-practice units worsens indefinitely, their efficiency scores both individually and collectively fall towards zero. Hence ATE \(\rightarrow 1 \) as performance in the programme deteriorates. However it is always possible to find at least one dominant unit, so ATE can never fall below unity. Then:

\[
(5.2.4) \quad 1 \leq \text{ATE} \leq n.
\]

In most applications of DEA, it is very unlikely that only one unit would be dominant. Rather, several are likely to be dominant in one or more input (or output) dimensions (see Nunamaker (1985)). Additionally, ATE is never likely to be exactly equal to unity except in the irrelevant and trivial case of \(n = 1 \) (i.e., where there is no branch structure). If there are \(n \) establishments where unit 1 is dominant with best practice costs \(C_1 \) and \(n - 1 \) units are relatively inefficient then:
As inefficient costs C_2, \ldots, C_n rise indefinitely, the implied efficiency ratios TE_2, \ldots, TE_n fall towards zero. Only where there exists an extraordinary and improbable range in performance (i.e. in spending) would this be observed in actual practice.

On this new basis derived from Beasley (1988), the aggregate technical efficiency of the prison spending programme is summarised in table 5.2.2. Two variants of the ATE are presented. The first, ATE (CRS), is the sum of efficiency scores under a new constant returns to scale assumption (the underlying CRS efficiency scores will be reported in full in the next section). Secondly, ATE (VRS), has been calculated from the prison efficiencies reported in Chapter 4, based on varying returns to scale. Each of these results is an ordinal measure of the proximity of the programme as a whole to a situation of best–practice production at all prisons.

<table>
<thead>
<tr>
<th>Table 5.2.2</th>
<th>Aggregate Technical Efficiency in the local prison spending programme: The sum of efficiency scores under constant and varying returns to scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATE (CRS)</td>
</tr>
<tr>
<td>Sum of efficiency scores</td>
<td>29.4</td>
</tr>
<tr>
<td>Best-practice share in ATE</td>
<td></td>
</tr>
<tr>
<td>- actual</td>
<td>11</td>
</tr>
<tr>
<td>- per cent</td>
<td>37.4</td>
</tr>
<tr>
<td>Non-best practice share in ATE</td>
<td></td>
</tr>
<tr>
<td>- actual</td>
<td>18.4</td>
</tr>
<tr>
<td>- per cent</td>
<td>62.6</td>
</tr>
</tbody>
</table>

Note: For a sample size of 33 establishments, $1 < \text{ATE} < 33$. Source: Author’s calculations.

Under CRS, ATE is 29.4 and under VRS ATE is 31.5 out of a possible maximum score in each case of 33. As would be expected, the VRS–based measure
is higher because of the greater preponderence of unity efficiency scores (that is, of best-practice) under VRS. A noteworthy feature of the results is the asymmetric role played by the best-practice establishments. Under VRS 20 such units are identified, making a contribution of 63.5 per cent to the efficiency rating of the whole programme. Only 11 prisons were earmarked best-practice with CRS which contribute 37.4 per cent to programme efficiency. This contribution or share in aggregate efficiency is very close to that made by non-best practice units (TEi < 1) under VRS.

The alternative measure of ATE, inspired by Beasley, indicates a marked change in the significance of best-practice performance. A VRS assumption typically identifies a greater number of best-practice establishments which then make up the bulk of the contribution to aggregate efficiency. Under CRS the best-practice share in efficiency is substantially lower.

The decision-maker's objective in this context will be to improve the performance of inefficient units towards unity in order to raise the aggregate efficiency of the programme towards its maximum (where ATE = n). In this regard a study by Parkan (1987) suggests that a drawback of the VRS results is their relative lack of discriminating power among units. Clearly no distinction can be made among best-practice on the basis of DEA alone. CRS results by contrast find fewer best-practice operations and therefore give a distinct (non-unity) performance rating to a greater proportion of the sample. Thus, although the CRS results give a rather poorer overall picture of performance they offer a finer ranking and identification of efficiency levels which may be of use in decision-making. It follows also, that insofar as the peer group comparison is of any significance this will be clarified under CRS because quite simply there are fewer examples of "best-practice" to assimilate.

The importance of the ATE measure prompted by Beasley is its simplicity and ease of interpretation for decision-makers. Little (1971, p. 483) argues: "the
biggest bottleneck in the managerial use of models is not their development but getting them used. I claim that the model builder should try to design his models to be given away. In other words, as much as possible, the models should become the property of the manager, not the technical people. To be used by a manager, a model should be simple, robust, easy to control, adaptive, as complete as possible and easy to communicate with. These broader dimensions of measurement are of great importance for the ultimate success of efficiency modelling and policy of any kind. The simple summation of efficiency scores as a measure of programme performance is offered with these broader dimensions in mind. The resulting measure is reasonably intuitive and in a policy-making context it could probably be implemented without being overwhelmed by traditional performance measures to which decision-makers are more accustomed.

5.3. Evaluation of the impact of a new reference technology on branch and programme efficiency

Chapter 4 and the discussion above in section 5.2 assumed that the underlying costs' technology in prisons exhibits varying returns to scale (VRS). Many of the earlier empirical applications of DEA, by contrast, assumed constant returns to scale (CRS) until Banker (1984) developed the first varying returns program. Each of these variants of the DEA program has its own distinctive implications for branch and programme-level costs. These have been ignored in the empirical literature on DEA. Accordingly section 5.3 explores the effects of a constant returns to scale assumption on costs and attempts to reconcile differences in the CRS and VRS results based on an interpretation of DEA-efficiency first proposed in Grosskopf and Valdmanis (1987).

Background

Fare, Lovell and Zieschang (1983) and Grosskopf (1986) were the first to show that there is no unique measure of efficiency in a frontier context. That is,
the efficiency measure is not invariant to the scale and disposability assumptions which have been made with regard to the nature of the production process. Essentially this means there exists a number of different reference sets against which to measure the efficiency of a given input-output vector, and each reference set implies its own efficiency measure.

Grosskopf (1986) for example, has shown that the efficiency measure is nested in the sense that a strongly disposable technology contains its weakly disposable counterpart. That is, a weakly disposable technology defines a higher technical efficiency than strong disposability (this has been illustrated fully in Chapter 2).

An additional source of efficiency variation that will be discussed in this section are changes in the returns to scale assumption. Farrell's original (1957) contribution to the literature set a trend in much of the later work on frontier estimation in making the assumption that the underlying reference technology exhibits constant returns to scale (CRS). In particular new American work on frontier estimation via DEA initially made this assumption – see Charnes, Cooper and Rhodes (1978, 1979, 1981), Bessent and Bessent (1980), Bessent, Bessent, Kennington and Reagan (1982), Lewin, Morey and Cook (1982), etc.. Only later contributions exposed the possibility of non-constant returns technologies. Of these Banker (1984) and Fare, Grosskopf and Lovell (1985) are the most important. However, subsequent empirical applications of DEA have tended to adopt either the CRS or non-CRS programs without investigation of which is appropriate and their effects on branch and programme-level efficiency.

The DEA results presented in chapters 3 and 4 on local education authorities and prisons are predicated on an underlying assumption of varying returns to scale (VRS) and strong disposability in the production process. That is, the "intensity variables" (or weights) \(\lambda_j \) are constrained to sum to unity in the Banker (1984) DEA program. Alternative assumptions, in particular constant returns to scale (CRS), are feasible and in the DEA program the optimal weights will be unconstrained for...
New results on prison efficiency based on a constant returns to scale technology

Technical efficiency coefficients were estimated in chapter 4 assuming the reference technology exhibited varying returns to scale and strong disposability of inputs and outputs. These coefficients have been re-estimated for the whole sample based on an alternative technology assumption of constant returns to scale with strong disposability.

The new results are contained in table 5.3.1. It is immediately noticeable in comparison with the coefficients in table 4.9.1 that there are significantly fewer best-practice establishments (11 as against 20 previously) and that the non-unit efficiency scores are on the whole lower. The mean inefficiency in the new results is 0.83 which is almost 5 percentage points lower than the mean varying returns score in Table 4.9.1. This suggests that under constant returns the representative establishments could be expected to save 17 per cent of its current expenditure vis-a-vis the minimal possibilities observed along the CRS frontier. By contrast, a representative VRS prison could be asked to save only 12 per cent of its current budget.

In some cases CRS costs have advanced significantly beyond this. Brixton, for example, has TE = 0.53, losing its VRS best-practice status, and for Bedford TE = 0.59 (against 0.71 under VRS). It is noteworthy that these potential gains at Bedford and Brixton in cost efficiency are greater than the largest savings suggested by VRS; the lowest efficiency score reported in Chapter 4 is at Bedford with TE = 0.71. Apparently the CRS results give a poorer picture of prison performance with a lower mean inefficiency and fewer best-practice establishments being identified.
Table 5.3.1

DEA efficiency coefficients under constant returns to scale in local prisons and remand centres in 1984/85

<table>
<thead>
<tr>
<th>Prison</th>
<th>Cost efficiency</th>
<th>Peer group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ashford</td>
<td>0.9393</td>
<td>3,5,13,26,30</td>
</tr>
<tr>
<td>2. Bedford</td>
<td>0.5858</td>
<td>16,21,31</td>
</tr>
<tr>
<td>3. Brockhill</td>
<td>1.0000</td>
<td>3</td>
</tr>
<tr>
<td>4. Birmingham</td>
<td>0.8358</td>
<td>5,16,31</td>
</tr>
<tr>
<td>5. Bristol</td>
<td>1.0000</td>
<td>5</td>
</tr>
<tr>
<td>6. Brixton</td>
<td>0.5303</td>
<td>16,30</td>
</tr>
<tr>
<td>7. Canterbury</td>
<td>0.8493</td>
<td>16,29,30</td>
</tr>
<tr>
<td>8. Cardiff</td>
<td>0.9766</td>
<td>5,13,16,21</td>
</tr>
<tr>
<td>9. Coldingley</td>
<td>1.0000</td>
<td>9</td>
</tr>
<tr>
<td>10. Dorchester</td>
<td>0.7215</td>
<td>5,16,21,31</td>
</tr>
<tr>
<td>11. Durham</td>
<td>0.8817</td>
<td>3,5,16,31</td>
</tr>
<tr>
<td>12. Exeter</td>
<td>0.8037</td>
<td>3,5,16,21,31</td>
</tr>
<tr>
<td>13. Clen Parva</td>
<td>1.0000</td>
<td>13</td>
</tr>
<tr>
<td>14. Gloucester</td>
<td>0.9750</td>
<td>5</td>
</tr>
<tr>
<td>15. Latchmere Hse.</td>
<td>0.8317</td>
<td>5,13,16,21,30,31</td>
</tr>
<tr>
<td>16. Leeds</td>
<td>1.0000</td>
<td>16</td>
</tr>
<tr>
<td>17. Leicester</td>
<td>0.7333</td>
<td>5,16</td>
</tr>
<tr>
<td>18. Lewes</td>
<td>0.8638</td>
<td>3,5,13,16,30</td>
</tr>
<tr>
<td>19. Lincoln</td>
<td>0.8517</td>
<td>3,5,16,21,31</td>
</tr>
<tr>
<td>20. Liverpool</td>
<td>0.9929</td>
<td>31</td>
</tr>
<tr>
<td>21. Low Newton</td>
<td>1.0000</td>
<td>21</td>
</tr>
<tr>
<td>22. Manchester</td>
<td>0.9667</td>
<td>3,5,13,16,31</td>
</tr>
<tr>
<td>23. Norwich</td>
<td>0.8505</td>
<td>3,13,16,31</td>
</tr>
<tr>
<td>24. Oxford</td>
<td>0.7285</td>
<td>16,31</td>
</tr>
<tr>
<td>25. Pentonville</td>
<td>1.0000</td>
<td>25</td>
</tr>
<tr>
<td>26. Pucklechurch</td>
<td>1.0000</td>
<td>26</td>
</tr>
<tr>
<td>27. Reading</td>
<td>0.8284</td>
<td>5,16,29,30</td>
</tr>
<tr>
<td>28. Shrewsbury</td>
<td>0.8777</td>
<td>3,5,16,21,30,31</td>
</tr>
<tr>
<td>29. Swansea</td>
<td>1.0000</td>
<td>29</td>
</tr>
<tr>
<td>30. Thorpe Arch</td>
<td>1.0000</td>
<td>30</td>
</tr>
<tr>
<td>31. Wandsworth</td>
<td>1.0000</td>
<td>31</td>
</tr>
<tr>
<td>32. Winchester</td>
<td>0.8950</td>
<td>3,5,13,16,30,31</td>
</tr>
<tr>
<td>33. W.Scrubs</td>
<td>0.8335</td>
<td>3,5,13,16,30,31</td>
</tr>
</tbody>
</table>

Note: Mean Inefficiency \(\frac{1}{n} \sum E_i \), for \(E_i < 1 \): 0.8342

Standard Deviation: 0.1180

The mean and standard deviation are calculated from only those efficiency scores less than unity.

Source: Author's calculations.

Cost implications of CRS for programme efficiency

It would seem to follow that a poorer picture of performance at the micro-level will impair the behaviour of the prison spending programme as a whole.
Accordingly, using the aggregate efficiency identity (5.2.2) further results on programme efficiency have been collected together in table 5.3.2. Under the VRS assumption, the potential aggregate savings in costs were around 5 per cent and evenly distributed between manpower and non-manpower items (c.f. table 5.2.1). The picture is now quite different, for each item the potential gain from boundary production across all prisons is larger. Non-remand savings have doubled to around 10 per cent whilst savings in remand items have more than tripled to around 18 per cent. (This implies an overall reduction in total costs of around 13.1 per cent: savings which could in principle have been attained were costs best-practice throughout the sample). Clearly the distribution of inefficiency across the various cost measures is no longer even, and has swung against the remand items.

This particular picture is consistent with the more cost intensive nature of untried and unsentenced remand prisoners who are entitled to greater care and privileges vis-a-vis ordinary inmates. It also suggests that there may be substantial slack adjustments on the remand variables at the micro-level.

Table 5.3.2
The programme implications of prison cost inefficiency in 1984/85 under constant returns to scale

<table>
<thead>
<tr>
<th>Costs</th>
<th>Actual £M</th>
<th>Target £M</th>
<th>ATE %</th>
<th>Saving %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manpower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) remand</td>
<td>69.41</td>
<td>56.75</td>
<td>81.8</td>
<td>18.2</td>
</tr>
<tr>
<td>(2) non-remand</td>
<td>114.38</td>
<td>102.72</td>
<td>89.8</td>
<td>10.2</td>
</tr>
<tr>
<td>Non-manpower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) remand</td>
<td>19.85</td>
<td>16.29</td>
<td>82.1</td>
<td>17.9</td>
</tr>
<tr>
<td>(2) non-remand</td>
<td>34.51</td>
<td>31.29</td>
<td>90.7</td>
<td>9.3</td>
</tr>
<tr>
<td>Total costs</td>
<td>238.15</td>
<td>207.05</td>
<td>86.9</td>
<td>13.1</td>
</tr>
</tbody>
</table>

Notes: see table 5.2.1
Source: Author's calculations and Prison Department Report 1984/85.
Interpretation of the CRS results: Long-run and short-run measures of efficiency

Given that the differences between the CRS and VRS results are apparently marked, it is important to examine how this might affect the usefulness and interpretation of DEA in the allocation of funds within and across public programmes. In particular, some reconciliation of the large differences in efficiency status between the two sets of results is required. One of the most useful arguments in this regard is the interpretation of DEA efficiency found in Grosskopf and Valdmanis (1987). Essentially they argue that the CRS technology should be interpreted as reflecting long-run preformance possibilities. Analogously, the VRS assumptions indicates feasible attainments in the short-run. On this basis the long-run CRS adjustments to costs will be greater than those suggested by the VRS technology. The CRS targets are effectively adjustments towards long-run equilibria, i.e., the minimum point of a U-shaped average cost curve. In the short-run even best-practice costs will be greater than those attainable in the long-run and so VRS cost adjustments will be smaller than their CRS counterparts.

The problem of the decision-maker is not then in deciphering two seemingly contradictory sets of results on efficiency status, but in the initial choice of technology assumption. Once this is motivated, the nature of the "bias" imparted to the efficiency measure is explicable a priori. In particular the CRS results can be taken as indicators of the proximity of the prisons to a long-run notion of best-practice. It follows that the finding of fewer examples of best-practice (11 out of 33 prisons) is to be expected from the CRS results because long-run cost attainments are likely to be lower than those set by best-practice in the short-run. Analogously, a larger share of the cross section (20 out of 33 prisons) are efficient under VRS. This suggests prison establishments, and hence the spending programme as a whole, are closer to the less demanding attainments along a short-run VRS best-practice boundary.

This interpretation is of course a neoclassical argument based on the supposed
effects of market competition on costs in the short and long run. It is not without relevance in a public sector context: Grosskopf and Valdmanis (1987) argued for this interpretation when comparing performance in public and private hospital care in California. Inefficiency is less likely to be tolerated and, acceptable performance standards will, if anything, be raised by public sector policy-makers in the long-run. The stream of efficiency related White Papers in Britain since the Conservatives were returned to power in 1979 suggests the level of performance-consciousness has been raised both within and outside government. A fortiori the latest developments in efficiency policy in CM 52410 include the widespread creation of quasi-autonomous governmental agencies with considerable financial independence. The devolution of financial responsibility is to be counterbalanced by greater emphasis on efficient performance through increased evaluation of line-behaviour. The scope for a neoclassical interpretation of public sector cost behaviour as in Grosskopf and Valdmanis (1987) is correspondingly increased because greater managerial accountability and scrutiny can be interpreted as a proxy for a market discipline on line costs.

Market ideas and public sector efficiency – a short digression

It is worth recognising at this point that the use of market-based concepts of analysis in the public sector performance literature is becoming increasingly common. The appropriation of private sector ideas comes out of the quest for a single-value calculus in public sector performance. Without traded outputs there is no revenue-based measure like profit or surplus. Yet Sengupta (1987a), for example, has cleverly restyled the DEA ratio. If the optimal values of the input and output weights in the DEA program, \(W^*_k \) and \(V^*_i \) respectively, are positive for each \(k \) and \(i \) then these can be interpreted as prices of inputs and outputs defining a pseudo-profit function for public sector production. For a cross section of \(n \) organisations write:
The function is the absolute rather than the ratio difference between the \(t \) weighted output and the \(m \) weighted inputs in organisation \(j \). Again with a neoclassical flavour to the analysis Sengupta proposes a pricing rule based on the surplus function:

\[
(5.3.1) \quad \Pi_j = \sum_{i=1}^{t} \lambda_i Y_{i,j} - \sum_{k=1}^{m} \lambda_k X_{k,j}, \quad j=1, \ldots, n
\]

\[
(5.3.2) \quad \frac{\delta \Pi_j}{\delta X_{k,j}} = \sum_{i=1}^{t} \lambda_i \frac{\delta Y_{i,j}}{\delta X_{k,j}} - \lambda_k = 0
\]

for \(k = 1, \ldots, m \) and \(j = 1, \ldots, n \).

In principle, the decision problem now involves maximisation of (5.3.1) by setting the derivatives in (5.3.2) equal to zero and ensuring the second derivatives of the maximand are negative. This constitutes maximisation of the surplus accruing to public sector production and Sengupta (1987a) argues that the size of the (non-monetary) surplus generated in (5.3.1) may be used as an indicator of the efficacy of public production in organisations whose performance could be ordered according to the scale of these pseudo-profits.

5.4. Excess costs and the nesting of empirical DEA technologies

Section 5.3 introduced results on prison efficiency based on a constant returns to scale assumption in the underlying linear program. It was observed that this led to differences in both branch and programme-level efficiencies. This section seeks to clarify the causes of these differences by investigating how empirical DEA technologies differ under alternative scale assumptions. It develops the work of Grosskopf (1986) and Fare, Grosskopf and Njinkeu (1988) who have demonstrated that the various definitions of the production boundary (the reference technology) can be 'nested'. This implies that the efficiency score associated with each technology can also be nested. A consequence of technological nesting is that the
excess cost implications of alternative technologies can be predicted in qualitative terms prior to empirical implementation of DEA.

This information is important for decision-makers in a policy making context since it clarifies the effect on proposed cost adjustments of alternative scale assumptions in the underlying linear program.

Technological nesting and excess costs: An exposition

It is easiest to grasp Grosskopf's (1986) argument from figure 5.4.1 which contains stylised examples of the three possible empirical variants of boundary which can be constructed from DEA. Consider then a branch of a spending programme, i, producing one output from one input on the interior of the production set l_2. Output is given at $0Y$ from consumption of input $0X_2$. The efficiency of operations at this point can be evaluated relative to any of the three possible reference technologies. In terms of figure 5.4.1 these are:

1. OD with constant returns to scale (CRS);
2. OBC with non-increasing returns to scale (NIRS); and
3. $XABC$ with increasing, constant and decreasing (i.e., "varying") returns to scale (VRS).

Each of these technologies can be constructed empirically from DEA which implies that there are three definitions of relative technical efficiency (TE) for performance at i. That is:

1. $TE_{crs} = \frac{0X_o}{0X_2}$;
2. $TE_{vrs} = \frac{0X_1}{0X_2}$;
3. $TE_{nirs} = TE_{crs}$ for $Y < Y^*$ but $TE_{nirs} = TE_{vrs}$ for $Y > Y^*$.

It follows immediately that the technical efficiency of branch i can be ordered in terms of three alternative technologies. *Viz.*:
Clearly technical efficiency is greatest when evaluated relative to the closest technology. At i in fig 5.4.1 this is the varying returns boundary XABC where both the NIRS and CRS efficiency scores are equal but lower than TE_vrs. This arises because the VRS boundary is literally contained or "nested" within the CRS and NIRS alternatives. At output levels above Y* the relationship between the efficiency scores changes inasmuch as NIRS is coincident with VRS (rather than with CRS) along the nested facet BC. Clearly, NIRS and VRS efficiency must be equal to each other but greater than CRS efficiency for output levels greater than Y*. A general relationship governing the efficiency score and the scale characteristics of the estimated boundary is apparent here. Viz., a (non) nested technology implies the (lowest) highest relative technical efficiency score. The qualitative ranking of technical efficiency which this implies is summarised in equations (5.4.1) and (5.4.2) and is of important practical relevance, because the excess cost implications of alternative technologies can be ranked in an analogous way.

This can be established by defining excess costs in the sense suggested by Dawson (1987). That is, as the difference between actual costs and interpolated best-practice costs. Total (variable) costs are simply the unit price of an input (p) multiplied by the number of units purchased (X). Assuming that the price does not vary with quantity purchased, then, from figure 5.4.1, excess costs for branch i under the CRS and VRS technologies have the relationship:

\[(pX_2 - pX_0)_{CRS} > (pX_2 - pX_1)_{VRS}\]

That is, excess costs are smaller under the nested VRS boundary. At all points along the VRS boundary (other than where it coincides with CRS at B), VRS best practice costs (BP_{VRS}) are higher than those predicted along its CRS counterpart. In general, the relationship BP_{VRS} > BP_{CRS} will be true in all DEA applications because a CRS boundary will always dominate (i.e., contain) its VRS counterpart, as in figure 5.4.1.
The programme-efficiency ordering

The ordering of efficiency of branch operations is equally applicable to the measurement of programme-level efficiency. Section 5.2 showed that programme efficiency can be defined in terms of branch level technical efficiency scores. Hence the Aggregate Technical Efficiency (ATE) of a multi-branch public expenditure programme was given by:

$$ATE = \frac{\Sigma C_i^*}{\Sigma C_i}$$

where C_i^* is the target (i.e. best-practice) cost at branch i, and C_i is the actual costs incurred at that branch. Because of the nesting of branch-level technologies, best-practice costs have the relationship $C_{i,\text{VRS}}^* > C_{i,\text{CRS}}^*$. Accordingly the programme efficiency score (ATE) can be ordered under alternative technology assumptions. For example:

$$(5.4.3) \quad ATE_{\text{VRS}} > ATE_{\text{CRS}}$$

The implied excess cost adjustments for the programme have the same relationship. Programme-level excess costs (EC) are defined as the difference between the outturn for the programme, ΣC_i, and the best-practice expenditures
implied by the ATE score (compare tables 5.2.1 and 5.3.2):

$$\text{EC} = \sum C_i - \text{ATE}(\sum C_i) = \sum C_i - \sum C_i^*$$

Noting the scale properties of ATE in (5.4.3) implies that excess costs in the programme are greater when measured relative to a non-nested CRS technology:

$$\text{(5.4.4)} \quad \sum C_i - \text{ATE}_{\text{crs}}(\sum C_i) > \sum C_i - \text{ATE}_{\text{vrs}}(\sum C_i)$$

The relationship between CRS and VRS excess costs in (5.4.4) is consistent with the results on programme-level efficiency which were reported in sections 5.2 and 5.3. Under constant returns to scale, excess costs in prison spending amounted to £31.1m. The comparable VRS figure is, at £11.1m, barely over one-third of the recommended CRS adjustment in programme costs. The size of the difference between excess costs under the two definitions is enough to reinforce the Grosskopf and Valdmanis (1987) argument that CRS adjustments to performance are of a longer-run nature.

Moreover, the ability to nest both branch and programme-level efficiency estimates from alternative technologies is significant because it demonstrates to the decision-maker the "bias" of direction change imparted to the results by the choice of one reference technology over another. Indeed nested efficiency concepts constitute a form of efficiency spectrum: at the one end the least savings that can be expected are established under VRS; at the other end, CRS results indicate to the decision-maker the upper limit on financial and efficiency gains. In this way the differences in the VRS and CRS prison efficiency results presented in Chapters 4 and 5 can be reconciled given that each set of results is based on a distinct technology assumption with its own separate implications for cost.

5.5. Additional sources of variation in excess costs: The identification of scale inefficiencies

The analysis of efficiency and costs in Chapters 3 and 4 and through Chapter 5 has assumed that the total variation in costs over best-practice levels is
attributable to technical inefficiency alone. This is common in applied work in the literature, as for example in Sherman and Gold (1985). Recent work has shown, however, that the sources of excess costs can be more accurately identified. In particular, Rangan, Grabowski, Aly and Pasurka (1988) have developed a methodology which distinguishes between excess costs due to technical inefficiency and those due to scale inefficiency. Surprisingly, very little attention has been devoted to this distinction in the literature. Section 5.5 seeks to apply the methodology developed by Rangan et al (1988) to the determination of excess costs in the prisons. This enables a further analysis of costs at both the branch and programme levels and further clarifies the relative significance and interpretation of the VRS and CRS assumptions.

Scale efficiency measurement

The Rangan et al (1988) scale efficiency indicator is derived very simply from the VRS and CRS efficiency scores. In figure 5.5.1 efficiency for the branch i is $0X/0X_1$ and its VRS efficiency is $0X_O/0X_1$. As was shown in section 5.4 the VRS boundary is nested within its CRS counterpart and so – other than where the two frontiers coincide– CRS efficiency is always the lower. The "discrepancy" between the two measures is defined according to the extent of the gap between the two frontiers. This can be expressed as the ratio:

$$\frac{0X/0X_1 - 0X}{0X_O/0X_1} \frac{0X_O}{0X}$$

This is simply the ratio of the CRS and VRS efficiency scores and is proposed by Rangan et al as an indicator (S) of scale efficiency; whence for a branch i:

$$S_i = \frac{\text{CRS}_i}{\text{VRS}_i}.$$

In figure 5.5.1 S_i is less than one, indicating that production at this point is not scale efficient. Moreover, were production displaced onto the VRS boundary at C, S_i would remain less than unity. At this point Rangan et al have made the distinction
between "Pure Technical Efficiency" (PTE) and Scale Efficiency. PTE is actually no more than the VRS efficiency score and hence is defined in terms of the nearer VRS boundary. For a point such as D, $0X_0/0X_1 < 1$. However $PTE_i = 1$, as at C in figure 5.5.1, is not sufficient to generate scale efficient production. Because at this point the VRS boundary is nested, and the VRS (= PTE) efficiency will always be greater than the CRS efficiency and hence the scale ratio in (5.5.1) must be less than unity.

Figure 5.5.1
The decomposition of CRS efficiency into technical and scale components

The "weakness" of production at C (where $PTE_i = 1$) can be examined in terms of its average productivity or scale properties (see Banker (1984)). Specifically, this point is scale inefficient because average productivity, the ratio of output to input, has not been maximised. That is, for output OA, $0A/0X_0$ is less than its theoretical maximum $0E/0X_0$ which is defined along the CRS frontier. Thus in order to attain maximum average productivity for output OA an additional contraction in input, $0X_0-0X$, would be necessary to bring production to point B on the CRS boundary. This contraction in inputs (further to that, $0X_1-0X_0$, to eliminate Pure Technical Efficiency) eliminates that wastage attributable to scale inefficiency.
The distinction of technical and scale efficiency suggests further insight into the policy-maker's choice between CRS and VRS targets. In the first place it explains that CRS targets suggest larger reductions in resource consumption because they include an additional scale element in efficiency. By the same token VRS targets suggest smaller reductions because VRS best-practice production is defined without the elimination of scale inefficiencies.

The decomposition of excess costs into technical and scale components

The identification of a distinct measure of scale is useful in the analysis of efficiency because it permits the division of excess costs into their separate technical and scale components. This is a significant step forward in the analysis of costs. Hitherto many papers in the literature have used a CRS assumption and attributed variations in performance entirely to differences in technical efficiency (see Sherman and Gold (1985), Thomas, Greffe and Grant (1988) for example). It is clear now that this is misleading inasmuch as some of the variation in performance may be the result of scale inefficiencies.

In order to decompose total excess costs into their various components it is convenient to recall briefly the definition of excess costs (EC). These are the difference between actual spending and best practice expenditure. For branch i in figure 5.5.1 this definition gives total excess costs as:

$$EC_i = p \cdot X_1 - p \cdot X$$

where p is the unit price of X. This is the total excess costs of production for branch i at point D. These can be decomposed into those attributable to scale inefficiency and to pure technical inefficiency. Excess costs due to pure technical efficiency alone are:

$$EC_i = p \cdot X_1 - p \cdot X_0$$
and these can be eliminated with a reduction in spending given by the VRS (or PTE) efficiency score. Thus production on the VRS boundary at

$$0X_O = 0X_1 \cdot (0X_O/0X_1)$$

would remove this element in excess costs. However a further element \((p.X_O - p.X)\) in excess costs remains. This is due to scale inefficient production and implies a further reduction in excess costs which is defined by the Rangan et al(1988) scale efficiency score. Thus the complete elimination of excess costs would require a further proportional reduction in total excess costs of \((1 - 0X/0X_O)\); or in absolute monetary terms of \((p.X_O - p.X)\).

In summary then total excess costs at a branch \(i\) \((EC_i)\) can be broken down into two elements:

$$EC_i = EC_{i,vrs} + EC_{i, scale};$$

That is, those attributable to pure technical efficiency, \(EC_{i,vrs}\), and those due to scale inefficiencies, \(EC_{i, scale}\). In terms of figure 5.5.1 this gives:

Table 5.5.1 provides an exhaustive decomposition of excess costs on this basis for the whole prison spending programme. The excess costs due to technical and scale inefficiencies have been summed over all institutions to yield a summary picture of performance. As a share of total excess costs those attributable to scale inefficiency are almost two-thirds of the total. However in both of the remand items scale inefficiency is noticeably greater; in manpower costs attributable to the incarceration of remand prisoners the share of scale inefficiency is three-quarters of the total excess costs in this item. By contrast the excess costs in the non-remand items are more evenly split between scale and technical inefficiencies.
Table 5.5.1

Excess costs (£M) in the prison spending programme: An exhaustive breakdown

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>PTE</th>
<th>Scale</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(CRS)</td>
<td>(VRS)</td>
<td>(Rangan)</td>
<td>(%)</td>
</tr>
<tr>
<td>Manpower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)Remand</td>
<td>12.66</td>
<td>3.11</td>
<td>9.55</td>
<td>75</td>
</tr>
<tr>
<td>(2)Non-remand</td>
<td>11.66</td>
<td>5.32</td>
<td>6.34</td>
<td>54</td>
</tr>
<tr>
<td>Non-manpower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)Remand</td>
<td>3.56</td>
<td>1.07</td>
<td>2.49</td>
<td>70</td>
</tr>
<tr>
<td>(2)Non-remand</td>
<td>3.22</td>
<td>1.55</td>
<td>1.67</td>
<td>52</td>
</tr>
<tr>
<td>Total excess costs</td>
<td>31.10</td>
<td>11.05</td>
<td>20.05</td>
<td>64</td>
</tr>
</tbody>
</table>

Notes: Column 1 is total excess costs defined from the CRS boundary and is derived from table 5.3.2. Column 2 is excess costs due to pure technical efficiency defined from the VRS boundary and is derived from table 5.2.1. Column 3 is the scale component in excess costs and is simply the remainder after PTE excess costs have been accounted for. Hence column 3 = col. 1 less col. 2. Column 4 gives the scale component in excess costs as a share in total excess costs.

Source: Author's calculations.

It is clear from the results in table 5.5.1 that scale inefficiency is a significant cause of wastage in the prison spending programme. In this context it could be nothing other than an outright misdiagnosis to attribute total excess costs in the context of a constant returns to scale assumption to "technical efficiency" alone – as has been so common in the applied DEA literature.

Banker (1984) scale analysis of the prison spending programme

One of the most important papers in the DEA literature, Banker (1984), is useful at this point. Banker showed that the sum of the input–output weights in the optimal basis of the CRS version of the DEA program can be used as an indicator of the local returns to scale at the current level of operations. This result, together with the Rangan et al (1988) scale efficiency indicator form the basis of table 5.5.2.14
The Rangan et al indicator shows by what proportion total costs could be reduced after the attainment of Pure Technical Efficiency on the VRS boundary and indicates that 21 out of 33 prisons are scale inefficient. The mean reduction in total costs from a point of Pure Technical Efficiency at scale inefficient prisons would be $(1 - 0.89)$ or 11 per cent. However in some cases, most notably Brixton, Dorchester and Oxford, the relevant figure is much higher. Brixton deserves special comment since the scale indicator suggests that elimination of pure technical inefficiency would still allow a further cut of almost a half in the resources that remained.

The Rangan et al scale indicator is useful in suggesting the percentage reduction to which total costs would have to be cut from a position of pure technical efficiency to achieve scale efficient production. It is also useful for policy-making purposes to know whether the local returns to scale at the prevailing level of operations are increasing or decreasing. This information is furnished by Banker's (1984) scale indicator. Quite simply, if the sum of the input–output weights in the CRS program is greater (less) than unity, then the returns to scale at this point are diminishing (increasing).

It is interesting to compare the Banker indicator for Brixton with that of Dorchester and Oxford. Brixton's very low scale efficiency is reflected in the Banker measure which indicates a very marked diminishing returns to scale. By way of contrast both Dorchester and Oxford with low scale efficiencies are experiencing marked increasing returns to scale. Overall the Banker indicator suggests 17 prisons are experiencing IRS and a further 11 appear to have CRS. The mean scale, calculated as an average of all 33 prisons, suggests the typical institution in this sample does indeed have a slight tendency to increasing returns.
Table 5.5.2

Scale efficiency and the Banker (1984) identification of local variations in returns to scale in the local prison spending programme

<table>
<thead>
<tr>
<th>Prison</th>
<th>Scale efficiency</th>
<th>Returns to scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ashford</td>
<td>0.9393</td>
<td>1.7235 (DRS)</td>
</tr>
<tr>
<td>2. Bedford</td>
<td>0.8257</td>
<td>0.3440 (IRS)</td>
</tr>
<tr>
<td>3. Brockhill</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>4. Birmingham</td>
<td>0.9881</td>
<td>0.8046 (IRS)</td>
</tr>
<tr>
<td>5. Bristol</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>6. Brixton</td>
<td>0.5303</td>
<td>3.0135 (DRS)</td>
</tr>
<tr>
<td>7. Canterbury</td>
<td>0.9897</td>
<td>0.9327 (IRS)</td>
</tr>
<tr>
<td>8. Cardiff</td>
<td>0.9984</td>
<td>0.6655 (IRS)</td>
</tr>
<tr>
<td>9. Coldingley</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>10. Dorchester</td>
<td>0.7215</td>
<td>0.2257 (IRS)</td>
</tr>
<tr>
<td>11. Durham</td>
<td>1.0000</td>
<td>0.9952 (IRS)</td>
</tr>
<tr>
<td>12. Exeter</td>
<td>0.9691</td>
<td>0.6613 (IRS)</td>
</tr>
<tr>
<td>13. Glen Parva</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>14. Gloucester</td>
<td>0.9750</td>
<td>0.4322 (IRS)</td>
</tr>
<tr>
<td>15. Latchmere Hse.</td>
<td>0.8317</td>
<td>0.4413 (IRS)</td>
</tr>
<tr>
<td>16. Leeds</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>17. Leicester</td>
<td>0.9394</td>
<td>0.4074 (IRS)</td>
</tr>
<tr>
<td>18. Lewes</td>
<td>0.8762</td>
<td>1.3476 (DRS)</td>
</tr>
<tr>
<td>19. Lincoln</td>
<td>0.9599</td>
<td>0.5621 (IRS)</td>
</tr>
<tr>
<td>20. Liverpool</td>
<td>0.9929</td>
<td>0.8959 (IRS)</td>
</tr>
<tr>
<td>21. Low Newton</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>22. Manchester</td>
<td>0.9667</td>
<td>1.9954 (DRS)</td>
</tr>
<tr>
<td>23. Norwich</td>
<td>0.9560</td>
<td>0.8505 (IRS)</td>
</tr>
<tr>
<td>24. Oxford</td>
<td>0.7349</td>
<td>0.1808 (IRS)</td>
</tr>
<tr>
<td>25. Pentonville</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>26. Pucklechurch</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>27. Reading</td>
<td>0.8707</td>
<td>0.4921 (IRS)</td>
</tr>
<tr>
<td>28. Shrewsbury</td>
<td>0.8777</td>
<td>0.3633 (IRS)</td>
</tr>
<tr>
<td>29. Swansea</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>30. Thorpe Arch</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>31. Wandsworth</td>
<td>1.0000</td>
<td>1.0000 (CRS)</td>
</tr>
<tr>
<td>32. Winchester</td>
<td>0.9999</td>
<td>0.9983 (IRS)</td>
</tr>
<tr>
<td>33. W. Scrubs</td>
<td>0.8335</td>
<td>2.5951 (DRS)</td>
</tr>
</tbody>
</table>

Mean 0.8941 0.9675 (IRS)
S. Dev'n (0.1184) (0.6135)

Summary: The Banker indicator suggests that:
17 prisons have IRS
11 prisons have CRS
5 prisons have DRS

Notes: 1. The scale indicator a la Rangan et al (1988) is the ratio of the CRS and VRS efficiency scores and hence is derived from Tables 4.9.1 and 5.3.1.
2. Banker's (1984) scale indicator is the sum of the weights on inputs and outputs in the unconstrained CRS program.
3. The mean of the Rangan et al scale indicator is calculated for only those (21) prisons for which $S_I<1$.
4. The mean of the Banker measure is calculated on the sum of the weights at all 33 prisons.
Source: Author's calculations.
This is useful information from the policy-maker's point of view. One third of the sample appears to have CRS which suggests that their current level of operations can be maintained. Equally, however, the fact that around a half of the sample has IRS suggests that the scale of operations at these prisons could be increased. In actual practice, adjustments of this kind would probably entail some reallocation of responsibilities within the prison programme. Thus operations might be curtailed at overcrowded institutions such as Brixton and Wormwood Scrubs, but expanded elsewhere – at Dorchester, Oxford and Reading for example where there are marked increasing returns to scale.

VRS and CRS efficiency at Durham

The searching reader may have noted an apparent discrepancy in the Rangan et al scale results when these are set in the context of the CRS efficiency scores reported in section 5.3.

Specifically, the Rangan scale indicator is equal to unity in 12 cases. This implies scale efficient production at 12 prisons. However table 5.3.1 indicates that only eleven prisons have CRS efficiency scores equal to unity. Hence only 11 prisons, rather than 12, can be operating at scale efficient levels.

The apparent discrepancy between the two sets of results can be explained as follows and concerns the efficiency status of Durham. The CRS efficiency of Durham is 0.882 (see table 5.3.1); its VRS efficiency score is also 0.882 (see table 4.9.1 in Chapter 4). Thus the scale efficient ratio at Durham is unity. However from first principles, scale efficiency can only be associated with CRS = 1; thus Rangan scale efficiency apparently contradicts CRS = 0.882.
CRS and VRS efficiency at Durham

First of all, note from table 5.5.2 that the Banker scale indicator (the sum of the input–output weights) at Durham is 0.995. Strictly speaking, this implies IRS, but also that Durham is a mere 0.005% (i.e. 5 thousandths of one per cent) from a point of constant returns where the sum of the weights would be exactly unity. This implies that Durham's scale of operations is very close to the intersection of the CRS and VRS boundaries. Imagine that Durham is producing at point D in figure 5.5.2. Its VRS efficiency score, AC/AD, is very close in value to its CRS efficiency score, AB/AD, because the gap between the two boundaries at this point is very small; that is, technically efficient production along the VRS boundary is almost scale efficient. This suggests that although the DEA program has reported CRS=DRS=0.882 for Durham the two scores are in fact distinct. This would probably be revealed were the scores reported to more than 4 decimal places; if this were possible I would expect that the CRS efficiency score would turn out to be slightly lower than the VRS score. The Rangan scale efficiency for Durham would then be less than unity, leaving 11 prisons with scale efficiencies of unity consistent with the CRS picture reported in table 5.3.1.
5.6. Conclusion

Chapter 5 has sought to examine the efficiency of whole spending programmes on a consistent total factor basis. Section 5.2 has shown that aggregate efficiency identities may be derived as summary indicators of programme performance. These indicators are significant in being consistent with the "micro-efficiency" scores implied by operations at the level of individual establishments. Several authors, for example Charnes and Cooper (1980a, b), have argued for the modernisation of public sector evaluation in the face of more complex production environments and constrained processing and decision-making abilities. The formulation of summary aggregate-efficiency concepts can help to reduce decision-making complexity. Moreover they may fulfil a role in a policy setting like the Public Expenditure Survey where less effective programmes may be curtailed in favour of greater efficiency elsewhere. This broadens the scope for measures such as DEA.

Using the cost identities formulated in section 5.2 it was estimated that about 5 per cent of total costs in local prisons could be deducted while maintaining levels of service (assuming varying returns to scale). Section 5.3 looked at costs on an alternative CRS assumption. Potential non-remand savings doubled to around 10 per cent and in remand items more than tripled to approximately 18 per cent. Savings in all items rose to a potential figure of 13.1 per cent of total costs under CRS. In absolute terms this implied excess costs of £31.1m under CRS against only £11.1m under VRS. It was noted that the distribution of these savings across the various cost measures is no longer fairly even as under VRS: In particular, savings in remand items appeared greater than before. This is consistent with the more cost intensive nature of untried or unsentenced remand inmates who, in principle, are entitled to better supervision and extra privileges vis a vis other prisoners.

The existence of alternative scale assumptions suggested a potential ambiguity as to whether VRS or CRS results are a more accurate reflection of levels of inefficiency. In the DEA literature to date there is little advice on the
implementation of scale assumptions. Section 5.4 defined the nature of the "bias" imparted to DEA results by the choice of one scale assumption over another. It was demonstrated that best-practice notions of cost can be nested according to the scale assumption and that best-practice CRS costs must be less than their VRS counterparts because the VRS production set is nested within the CRS set. This implied that the scale of savings (excess costs) under VRS must be less than under an alternative like CRS. This was borne out in the performance comparison in section 5.3 where potential savings in the programme as a whole under VRS reached a little over a third of those predicted from the CRS boundary.

The implications of the CRS and VRS boundaries were explored further in section 5.5. In particular the attainment of best-practice on a VRS boundary denotes only pure technical efficiency. Best-practice targets on a CRS boundary include in addition a contraction in resources to account for scale inefficiencies.

The distinction between purely technical and scale inefficiencies enabled the breakdown of total excess costs in prison spending. This revealed that nearly two-thirds (64%) of total excess costs are accounted for by scale inefficiencies. The Banker indicator was used to reveal that of those prisons which are scale inefficient, the bulk of these have increasing as against decreasing returns to scale. That is, 17 prisons were identified operating in regions of increasing returns to scale, 5 with decreasing returns and the remaining 11 had constant returns. The prevalence of non-constant returns suggests that a general policy of adjusting the scale of operations might yield substantial cost benefits to the prison service as a whole.

Before closing this Chapter it is worth reflecting on the future potential of DEA in the public sector. Sections 5.2 and 5.3 noted the developments in the Government's recent efficiency white paper (CM 524) which will allow greater financial autonomy to spending "agencies". In principle any branch of a spending programme such as a prison, a school or a hospital can be thought of as an agency. Regular application of DEA could be used to monitor the success of
agencies in the control of their own budgets. The results of regular performance analyses of this nature could in turn be used as a "test" of the famous Averch-Johnson (1962) result that efficiency rises as the degree of government regulation of production falls (Hollas and Stansell (1988)). Although Averch and Johnson were concerned particularly with the regulation of public utilities it would nevertheless be of interest to discover whether less central involvement in the spending of funds by agencies does indeed lead to increased efficiency in the longer term.

Footnotes
1. Readers should note the following distinction which is used throughout this thesis. The word "program" refers to the underlying linear program written in FORTRAN code which has been used to generate the DEA efficiency scores. "Programme", on the other hand, denotes a government budget on, for example, prisons or health care.
2. Note however, that recent research by Golany (1988), Beasley (1989) and Beasley and Wong (1989) has shown that the constraints in the DEA program may be re-formulated in order to permit a priori restrictions on input and output weights: where inputs or outputs have a meritocratic significance their unconstrained weighting as in the conventional DEA program may be inappropriate. Moreover, it may be useful in some contexts to simulate the effects on performance ratings of different value systems, ie., of different weights.
4. Many public sector organisations have a "sponsoring department". Prisons are looked after by the Prison Department at the Home Office; hospitals by the Department of Health; job centres by the Department of Employment; local authorities by the Department of the Environment and so on.
6. See recent Public Expenditure White Papers on the diverse range of indicators which have been chosen to measure programme performance.
7. Note that n = 1 imples a unitary spending programme without a line structure.
8. Recent applications of the CRS program can be found in Sherman (1984a,b), Todd (1985), Bowlin (1986, 1987) and Thomas, Greffe and Grant (1988).
9. Non-CRS programs have been implemented by Fare, Grosskopf and Logan (1987) and Grosskopf and Valdmanis (1987).
11. By the end of 1988 three agencies had been created: HM Stationary Office, Companies House and the Vehicles Inspectorate. Department of Employment Job Centres are planned to convert to agency status in 1989 or 1990.
12. The simple one input/one output case represented in figure 5.4.1. can be
thought of as a two-dimensional section through an n-dimensional production possibility set (Banker (1984)).

13. See Sengupta and Sfeir (1986) for a provisional attempt to incorporate the analysis of scale efficiency for a sample of Californian high schools.

Chapter 6. The interpretation of efficiency in Data Envelopment Analysis.

6.1. Introduction

"The standard economic doctrine is that, provided certain conditions are satisfied, efficiency (in the sense of Pareto efficiency) will be attained under a system in which individual economic agents egoistically maximise their own utility. This is the central insight of microeconomic theory. A large part of the literature of economics is concerned with the question exactly how stringent the conditions are in order for it to hold" - Matthews (1981).

The objective of Chapter 6 is to examine the meaning of efficiency in Data Envelopment Analysis (DEA). Typically the DEA literature identifies best-practice production with Pareto Efficiency. Chapter 6 discusses objections to this interpretation of best-practice. These are derived from two main sources: one is empirical and includes studies which suggest that best-practice operations are themselves capable of improving performance (McGuire (1987), Danilin et al (1985), Ganley and Cubbin (1987)). The other is based on a priori and analytical problems which have been raised by Leibenstein (1966, 1975, 1978), Margolis (1971), Peston (1980), Tinbergen (1985), Thrall (1985), Fare, Grosskopf and Lovell (1985) and Talley (1988) concerning the nature of efficiency and public sector measurement difficulties.

Chapter 6 sets these problems in the context of the formal conditions for technical, allocative and Pareto efficiency. It is demonstrated that in general the best-practice reference technology defined in the DEA estimates cannot be reliably identified with Pareto efficiency. In response, a new Utility-Dominance concept is proposed as a more appropriate justification of normative DEA prescriptions to replace the standard usage of the Pareto Criterion in the literature. This result has not been suggested previously in the literature and represents a major re-interpretation of the validity and justification of DEA targets and efficiency scores.
Later, Chapter 7 provides empirical evidence to support a more cautious interpretation of DEA efficiency in the replication of the education results in Chapter 3 on a "clustered" basis. The number of best-practice LEAs, targets and peer groups is seen to vary unpredictably which strengthens the impression of ambiguity in DEA Efficiency and provides an additional rationale for abandoning the Pareto interpretation of the estimates.

Chapter 6 develops the conditions for the Pareto Criterion to hold in the context of a stylised 2-good economy. It is apparent that these conditions, particularly the broader requirements of allocative efficiency, are exacting to the extent that it is extremely misleading to label real world decision-making as Pareto efficient. Best-practice decision-makers in the education authority, for example, are clearly not implementing neoclassical decisions. To suggest otherwise may insulate relatively poor best-practice performers from remedial intervention and other scrutiny. This would be a serious restraint on the new ethos of evaluation and accountability for public sector decision-making enshrined in the Financial Management Initiative.

In his inaugural lecture at Cambridge, Frank Hahn (1973) adopted a comparable approach to a different problem. He argued that the sophisticated and abstruse techniques (such as the famous fixed point theorems of Brouwer\(^1\)) required to demonstrate the existence of a competitive equilibrium were the focus of research precisely to demonstrate just how intractable (and therefore unlikely) are the assumptions underpinning the existence of a competitive equilibrium.

In outline, Chapter 6 proceeds as follows. Section 6.2 is taken up with a discussion of the definition of best-practice and why this is no guarantee in itself of productive excellence. The possibility of poor performance being identified with best-practice is justified with a discussion of the many sources from which inefficiency may spring. This covers arguments due to Leibenstein (1966), Tinbergen (1985), and Fare, Grosskopf and Lovell (1985).
Section 6.3 examines the definition of Pareto efficiency and shows that there is nothing in principle which can guarantee best-practice and Pareto efficiency will coincide – despite arguments in the literature to the contrary. The discussion focuses on the importance of allocative efficiency. It notes that technical efficiency is defined independent of factor prices and hence excludes the allocative requirements of Pareto efficiency.

The distinction between Pareto and DEA efficiency is formalised in terms of dominance concepts in section 6.4. These are used to draw out the utility implications of production decisions. From this it is argued in section 6.5 that although a DEA target may not be Pareto efficient it can nevertheless be justified as a Pareto Improvement. This is an important re-interpretation of the normative basis for DEA targeting.

Some additional difficulties in DEA are discussed in section 6.6 regarding the coherence of targets, the problem of noise and the difficulties encountered in trying to compare like-with-like.

6.2. The definition of best-practice

Many authors in the DEA literature (e.g. Charnes, Cooper and Rhodes (1981), Lewin and Morey (1981), Johnson and Lewin (1984), Charnes and Cooper (1985), Charnes, Cooper, Golany, Seiford and Stutz (1985), Nunamaker (1985)) have argued that best-practice decision-making units (e.g. LEAs with efficiency score = 1.0) can be regarded as Pareto efficient. Lewin and Morey (1981), for example, identify Pareto efficiency with best-practice production in a manner characteristic of the literature on DEA: "DEA is based upon the economic notion of Pareto Optimality. A given Decision Making Unit (DMU) is not efficient if some other DMU, or some combination of other DMUs [i.e. the peer group] can produce the same amounts of outputs with less of some resource and not more of any other resource; conversely, a DMU is said to be Pareto efficient if the above is not possible." Furthermore,
Lewin and Morey argue that "the relative technical efficiency of any particular DMU is calculated by forming the ratio of a weighted sum of outputs to a weighted sum of inputs, where the weights for both outputs and inputs are to be selected in a manner that calculates the Pareto efficiency of the unit."

Limits to the interpretation of best-practice

Best-practice in a given cross section of decision-making units (whether LEAs, local prisons, job centres or whatever) is the best performance found within that data set. Since the resulting DEA frontier is an observed or "revealed" frontier it is clearly possible to make an analogy with consumer theory; that is, observed consumption bundles reveal preferences and thereby in principle the utility function. However, in a production context the level of performance revealed as best-practice may itself be quite unexceptional. Thrall (1985) has coined the term "DEA-efficient" in order to distinguish the best-practice production from true Pareto efficiency. Accordingly, he maintains that "in using DEA, one must take account of the fact that a DMU can be DEA-efficient without being meritorious." Analogously Greenberg and Nunamaker (1987, p. 340) recognise that best current practice is not necessarily fully optimal and argue that "one must be careful not to conclude that because an institution is operating on the efficient frontier, its achievement level on all measures is necessarily desirable".

There is evidence in the public sector that there may be a pervasive lack of incentives and managerial excellence. In a translog comparison of Scottish hospital performance in 1983/84 McGuire (1987, p. 793) argues that transactions costs and other characteristics of hospital production make full cost-minimising behaviour improbable: "The fact that the hospital sector is non-profit making immediately attenuates the system of incentives held to underlie the neoclassical system. As such it is probable that cost-minimising production processes in this sector will involve the acquisition of information and the monitoring of contracts. That is to say that the sector will exhibit positive transactions costs"; thus "a priori consideration of the
constraints [on optimising behaviour] in this sector would suggest that the estimated function is not the production frontier" (emphasis added).

Peston (1980) argues that in British education many of the conditions necessary for Pareto-efficient choices are unsatisfied because "it is a producer dominated system with great monopoly power ... it is a satisficing, not an optimising system." In these circumstances best-practice production should not in general be expected to satisfy the "very extreme assumptions needed in order for a utility maximising outcome to be reached" (Matthews (1981)) – even granted that that outcome remains technologically feasible. The Pareto Criterion compares (production) states of the world such that a Pareto-efficient state occurs where it is impossible to make one economic agent better off (as judged by himself) without simultaneously worsening the utility of another (as judged by himself). But clearly with non-optimising educational producers such as identified in Peston (1980), best-practice production will contain Pareto-inferior states when simultaneously other technically feasible optimal states exist at which unambiguous welfare gains could be derived: for example at given levels of educational attainment one agent (e.g. the taxpayer) could be made better off whilst no one else (e.g. pupils, teachers or parents) is made worse off from an improvement in the cost performance of a best-practice (that is, supposedly Pareto efficient) LEA. Research in other areas leads to similar conclusions. In Ganley and Cubbin (1987) and in an independent field report3 on complementing in the Prison Service, it is argued that even the best prison establishments might be targeted substantial reductions in manpower costs. Analogously so-called "best-practice" LEAs may themselves be expected to be capable of improvements relative to a maximal production boundary. Moreover it is this maximal standard which is the true Pareto standard, because for given vintages of the technology it cannot be dominated (see figure 6.3.1. below).
The possibility of inefficient production decisions

Complementary arguments to these are to be found in the X-efficiency literature, beginning with Leibenstein's seminal (1966) contribution. Leibenstein observed that conventional production theory has it that inputs have a fixed specification and yield a fixed performance when in actual practice inputs, especially labour services, may yield a variable performance. Traditional analysis excludes this possibility because it presumes that production units will only take optimal input decisions. *A priori* it cannot be denied that optimal decisions are possible but equally it is conceivable that circumstances arise in which managers perform poorly. This may be because managers determine their own productivity in addition to that of the other inputs of labour and capital services. As a consequence, "firms [or more generally DMUs] and economies do not operate on an outer-bound production possibility surface consistent with their resources. Rather they actually work on a production surface that is well within that outer bound. This means that for a variety of reasons people and organisations normally work neither as hard nor as effectively as they could ...[and] many people will trade the disutility of greater effort, of search, and the control of other people's activities for the utility of feeling less pressure and of better interpersonal relations" (Leibenstein (1966, p. 413)). The evidence which Leibenstein presented was the first stride towards acknowledging that technical inefficiency is both possible and widespread. It follows that deviations from optimal Pareto production plans may be common enough to make the blanket Pareto interpretation of best-practice production in the DEA literature especially difficult to sustain.

Leibenstein's recognition of an inner production boundary for observed producer behaviour is consistent with this Chapter's thesis as to the sub-optimal nature of best-practice. A modern and important study, Danilin, Materov, Rosefielde and Lovell (1985), has drawn the same distinction between notional Pareto and best-practice frontiers: "Enterprise efficiency is a concept that expresses the degree to which the observed enterprise performance approaches its potential. This potential
may be defined operationally in terms of prevailing technology and prices, or hypothetically with reference to arrangements under a generally competitive regime. Both interpretations are of interest ... (pp. 225–226).” Danilin et al were keen to stress this distinction because their study of Soviet cotton refining found a remarkably small dispersion of efficiency scores below best-practice. This, in itself, they argued, could not be taken as evidence of managerial and productive excellence as "enterprises may still be inefficient to some unknown degree because the best-practice standard used to measure the production frontier may understate true engineering production." That is to say, had the efficiency comparisons been made including data from several countries, then domestic best-practice would in all probability have appeared poorer because a larger cross section may have revealed examples of better performance in enterprises operating in competitive Western environments.

Counterproduction

Leibenstein (1966, p. 392)) remarked that "a major element of X-efficiency is motivation". In a recent volume of his collected papers, Tinbergen (1985, Chapter 4) has stressed similar considerations in his theory of "counterproduction". This arose in his work on the problems of estimating production functions which suggested to him the possibility of negative marginal production of inputs; that is, in effect, a production decision on a positively sloped segment of the isoquant. Tinbergen’s own empirical work suggests that blue collar workers in the United States have had negative marginal products and thus that deviations from first best efficient production are, as Leibenstein has also maintained, common in real world production environments. Tinbergen suggests that these deviations arise because of deficiencies in organisational structures and design. These deficiencies have a negative impact on job satisfaction and productivity in a manner which makes the first best Pareto outcome unattainable (Hammond (1987)).

Tinbergen (1985) has argued for an enrichment of economic science through a
form of "territorial expansion" which will increase the realism of economic analysis by accounting for modes of behaviour and circumstances which traditional theory has ignored. It is in this context that he has proposed the theory of counterproduction for sub-optimal production decisions: a phenomenon "which economic theory has hardly analysed so far" (ibid. p. 38). A new theory of inefficiency such as Tinbergen suggested has been advocated most persuasively by Fare, Grosskopf and Lovell (1985). Fare et al have dichotomised Farrell's original notion of efficiency in a manner which enlarges the potential sources of inefficiency to account for a broader set of sub-optimal production decisions.

Fare, Grosskopf and Lovell (1985) efficiency decomposition

Fare, Grosskopf and Lovell (1985) have shown that this is not exhaustive and that efficiency can be usefully disaggregated into purely technical, structural, allocative and scale components.

This decomposition is illustrated in figure 6.2.1. Given input prices RR and the long-run Pareto reference technology PP, the point of overall efficient production is the input choice at F. But suppose that production is possible in the interior of the input set, for example at E. Overall (i.e. Pareto) efficiency (OE) is then:

\[OE = \frac{OA}{OF} < 1 \]

The purely technical component (PTE) in overall efficiency due to production on the interior of the input set is:

\[PTE = \frac{OD}{OF} \]

The structural component, otherwise known as congestion (C), is due to production on a positively sloped stretch of the isoquant. That is to say, in the non-economic region, identified by Tinbergen (1985) as counterproduction, where the marginal products of factor services are negative:

\[C = \frac{OC}{OD}. \]
Deviations from scale efficiency (S) occur because a DMU is not operating at the scale of operations consistent with long-run equilibrium, i.e. at a point consistent with constant returns to scale. Scale efficiency is thus the discrepancy between the true constant returns technology PP and the estimate of the intermediate or short-run technology QQ:

$$ S = \frac{OB}{OC} $$

Allocative efficiency (A) is price-dependent and defined relative to the input price line RR:

$$ A = \frac{OA}{OB} $$

All four of these potential sources of inefficiency can be combined into a multiplicative identity to define overall efficiency (OE):

$$ OE = PTE \cdot C \cdot S \cdot A $$

that is:

$$ OE = \frac{OA}{OF} = \frac{OD}{OF} \cdot \frac{OC}{OD} \cdot \frac{OB}{OC} \cdot \frac{OA}{OB} $$

FGL observe that in the absence of price information, as in the case of non-traded outputs in the public sector, a more concise price independent measure of overall technical efficiency (OTE) can be defined as:
\[\text{OTE} = \frac{\text{OB}}{\text{OF}} - \frac{\text{OD}}{\text{OF}} \cdot \frac{\text{OC}}{\text{OD}} \cdot \frac{\text{OB}}{\text{OC}} \]

The FGL efficiency identity OE differs from the simpler Farrell version in the addition of the scale measure and the decomposition of his technical efficiency into the PTE and C components. The product of PTE and C gives the original Farrell definition of technical efficiency.

The FGL (1985) decomposition of efficiency is significant in that it represents an exhaustive taxonomy of the sources of inefficiency in production. They argue that it broadens the scope of testable hypotheses in production theory and injects a realism regarding the existence of new forms of sub-optimal managerial decision which have been ruled out in traditional neoclassical analysis.

The broadening arguments proposed by Leibenstein (1966, etc.), Fare et al (1985), Tinbergen (1985), and others, are further indication of the mounting evidence for the possibility of inefficient production and an estimate of a sub-optimal reference technology – an estimate which cannot therefore be considered to fulfil the first best, full information conditions of Pareto efficiency.

6.3. The definition of Pareto efficiency and the DEA efficiency score

The definitions and origins of Pareto efficiency go to the heart of neoclassical economics (Debreu (1959), Matthews (1981)). Conventional neoclassical analysis has used the differential calculus to develop stylised optimisation problems as the basis for decision-making in production (see for example Varian (1978) Chapter 1). If the LEA successfully processed the neoclassical optimisation problem it would have chosen an optimal input and output mix which is technically and allocatively efficient.

On the basis of the arguments in Thrall (1985), Peston (1980), Danilin et al (1985), Prison Department (1986), Ganley and Cubbin (1987), the minimal costs \(C_{\text{min}} \) of the neoclassical solution are likely to be less than best-practice costs
that is, the LEA could not ordinarily be expected to solve the neoclassical decision-problem. Only costs C_{min} are Pareto efficient, with no unrealised welfare benefits attainable through the transfer of resources either to different LEAs or to different (non-education) sectors elsewhere in the economy.

Section 6.3 shows that best-practice costs may be greater than Pareto-efficient costs for two reasons. In the first place the best-practice boundary may be made up of poorly performing DMUs. This is explored through figure 6.3.1. If this is the case, best-practice does not define a true frontier (which by definition must be undominated). As a consequence best-practice targets will not suggest the full feasible reduction in costs defined from the Pareto-efficient boundary.

Secondly, where the best-practice frontier is an accurate estimate of the Pareto technology (as in figure 6.3.2) costs may still exceed their minimum because of allocative inefficiencies. DEA efficiency is defined in terms of the technology (i.e. the isoquant) but ignores allocative inefficiencies defined by the factor prices. Hence the existence of deficiencies in best practice and/or allocative inefficiencies will ordinarily divorce Pareto and DEA efficiency. This does not, however, deny that best practice can be Pareto efficient. Rather it is to suggest that in most applications it is unlikely.

A best-practice "boundary"

Figure 6.3.1 demonstrates the possibility that in general best-practice efficiency scores of unity with costs C_1 do not necessarily imply full cost minimisation and Pareto efficiency. This is because best practice is defined relative to the best performance in the cross section at that time. There is nothing which can guarantee ex ante that this is "meritorious" - to use Thrall's (1985) term.

The best-practice technology BB' is nested in (and thereby dominated by) the Pareto technology PP'. The best-practice efficiency score of LEA_1 is $OC/OC = 1$
when clearly costs along \(C_1 \) are greater than the minimal costs associated with the true (and feasible) Pareto technology. In principle, the true efficiency score is \(OA/OC < 1 \). This implies that a DEA target overstates efficiency and obscures some fraction of the savings which could accrue from Pareto efficient production at A. Note that production at \(OA' \) is infeasible by definition. Consequently, the savings defined by DEA can never be over-estimates and may under-estimate the potential gains from production for as long as there is a discrepancy between the true and estimated boundaries.

Figure 6.3.1.

The discrepancy between the best-practice and Pareto reference technologies.

Allocative efficiency

Only where the true production technology overlaps the piecewise DEA estimate can the technical efficiency ratio predict an analytically accurate reduction in costs. Even in this unlikely case, technical efficiency *per se* could not be taken to imply full cost minimisation. This can be discussed in terms of figure 6.3.2 (below) where the cost-minimising input choice is defined from C. At this point, Pareto efficiency
(PE) can be dichotomised into technical (TE) and allocative (AE) components according to Farrell's original (1957) multiplicative efficiency identity:

\[(6.3.1.) \quad PE = TE \cdot AE\]

Technical efficiency is the radical distance of the LEA from the estimated isoquant. For LEA\(_1\) this distance is zero and it is said to be best-practice with:

\[(6.3.2.) \quad TE = OB/OB = 1.\]

Allocative efficiency, on the other hand, is the radial distance between the isocost line and the LEA. This defines:

\[(6.3.3.) \quad AE = OA/OB < 1\]

for LEA\(_1\) which is judged not to be allocatively efficient. Thus for LEA\(_1\) Pareto efficiency (PE) is less than unity. It follows that where the best-practice estimate overlaps the true technology, a technical-efficiency score of unity cannot be taken to guarantee a cost minimum. This is because the technical-efficiency score is defined independently of the factor prices. It follows that whilst production at B is best-practice with TE = 1.0, costs remain greater than minimum costs. A further reduction in costs accounting for allocative inefficiencies would be required to establish full cost efficiency (as at C).

In figure 6.3.2 there is a non-zero opportunity cost in production at B measured by \((C_1 - C_{\text{min}})\). This implies that welfare gains are still possible through the reallocation of some fraction of the resources used by LEA\(_1\) because it is allocatively inefficient. It is inaccurate and misleading therefore to label a position of technical efficiency as Pareto efficient, as is the tendency in DEA literature, because of the strong probability that AE < 1. Pareto efficiency requires in addition, the much stronger condition that costs (both financial and real) are minimised and hence that AE = TE = 1.0; i.e., that production is both technically and allocatively efficient.
Figure 6.3.2.

Technical efficiency, cost minimisation and Pareto efficiency with overlapping reference technologies.

Public sector measurement problems

Note in passing that the isocost line in figure 6.3.2 is defined by the LEA cost function with input prices conventionally given in competitive factor markets. It is of the form \(\Sigma W_k X_k \) and indicates for a given level of cost the various feasible input combinations. As a matter of fact, however, the position of the isocost line may not be known or is at least ambiguous in many contexts because of pricing problems in the public sector. Very often true resource costs (relative prices) are unknown and notional prices must be imputed on the basis of an accounting convention. Alternatively, linear programs may be used to generate shadow prices on inputs and outputs. Stewart (1978) and Perrakis (1980) have demonstrated a further source of ambiguity in markets where there is input price uncertainty. In these (plausible) circumstances, management can be expected to use relatively more of lower risk and less of higher risk inputs as compared to the cost-minimising outcome under certainty. This effect persists even for a risk-neutral manager and is reinforced.
under risk-averse behaviour. Under these difficulties, true relative prices may remain unknown – even *ex post*. It follows that whilst a Pareto efficient choice of resources is technically feasible, it may never be identified. As hinted by Sen (1975a,b) the concept of Pareto efficiency is unobservable. Its use as a decision criterion for DMU evaluation is therefore fallacious for practical purposes.

The importance of allocative efficiency

The importance of the allocative dimension to the Pareto Criterion has been explicitly overlooked in the DEA literature. Charnes, Cooper and Rhodes (1981) for example have maintained that: "DEA approaches and efficiency concepts are at their best when applied to situations in which there is an agreed upon set of objectives and in which resource diversions to other programs are not at issue ... How any of the conserved amounts [from realised DEA targets] might best be redistributed to other activities, e.g., to activities of a non-education variety, involves issues of pricing and weighting that are not addressed in our formulations." In a neoclassical full-employment economy poorly combined, unemployed or under-used inputs imply a non-zero opportunity cost in terms of output foregone. To ignore these allocative considerations amounts to a presumption that unemployed resources have no output potential elsewhere in the economy or that the allocative dimension is unnecessary to support the use of the Pareto Criterion. Neither of these presumptions can be maintained as may now be demonstrated.

Consider a hypothetical 2x2x2 economy which produces education and "other goods" using two inputs, X1 and X2. Production of the education good by the LEA sector is defined from the origin Oy and analogously for the production of "other goods" from Oq in the Edgeworth Box in figure 6.3.3. The lengths of the X1 and X2 axes represent the amount of these two factor services available to the economy and all points within the box represent feasible allocations of X1 and X2 between the two sectors. Isoquants representing the output of education (Y) are drawn relative to the origin Oy and those representing the output of other goods (Q)
relative to Oq. $OqOy$ is a production contract curve and the economy will be in equilibrium somewhere along it on the assumption that output is produced under competitive conditions. Allocations on the contract curve between and including A and B are Pareto Superior to points elsewhere like X'.

Although at X' the LEA sector is technically efficient it is allocatively inefficient and restraining the output of other goods by $(Q_1 - Q_0)$. By altering its input mix to X^* with output given at Y_0 educational costs are minimised and resources are released and may be diverted into the production of other goods to make up the output deficit $(Q_1 - Q_0)$. X^* minimises opportunity costs in the economy and dominates vectors such as X' on utility grounds. Net utilities at X^* have risen (indeed are maximised) vis-à-vis X' because education costs are lower and the output of "other goods" is higher.

Figure 6.3.3.
Production of education and "other goods" in a 2x2x2 Edgeworth Box economy.
6.4. A new utility basis for DEA efficiency

Section 6.3 has distinguished between Pareto efficiency and DEA efficiency. It has been shown that the requirements for Pareto efficiency are much stronger than the literature has acknowledged. This undermines the conventional justification for setting best-practice targets. Section 6.4 develops a more appropriate basis for targeting by formalising the utility implications of best-practice. This makes it possible to re-justify the DEA target in a manner which does not invoke Pareto efficiency.

Dominance concepts for efficiency measurement

Debreu (1951) characterised efficiency through its implications for utility in the economy. Thus preferred states of the world are those production plans which yield greater utility. These plans (or choices) are said to be "dominant". That is, on some appropriate criterion like costs or utilities, one state of the world can be ranked against another (see e.g. Sen (1975a)).

All concepts of efficiency can be expressed in terms of a relation of dominance and this is a useful way to rank best-practice production against Pareto efficiency. An appropriate criterion on which to do so is utility. In figure 6.3.3 the Pareto input mix X^* was chosen by excluding feasible but allocatively inefficient choices. Formally, this optimal vector may be said to dominate these sub-optimal choices if, by choosing X^* instead of some other, X, none of the utility functions in the economy decrease and at least one of them effectively increases. Following Frisch (1966) this suggests the following definition of Pareto-efficient choices:

DEFINITION: Pareto efficiency

A vector $X^* = (X_1^*, ..., X_m^*)$ is said to be Pareto efficient when – within the limits of the feasible production set P – there exists no vector $X = (X_1, ..., X_m)$ which would have the property that on passing from X^* to X the utility functions in the economy, $U_1, ..., U_k$, do not decrease and at least one of them effectively
Section 6.2 discussed the limitations of best-practice as an indicator of efficiency. These limitations suggest that best-practice production would be dominated in utility terms by a production plan satisfying the definition of Pareto efficiency. This is illustrated in figure 6.4.1.

Assume that production is taking place using inputs X'' with costs C_2. This is clearly inefficient vis a vis best-practice at X' where costs are only C_1. However X' is itself dominated by the Pareto input bundle X^* where costs are minimised. In utility terms X' yields greater utility than X'' since best-practice production releases resources $(C_1 - C_0)$ which can be diverted into greater production elsewhere in the economy.

Figure 6.4.1

A DEA-dominant target, X'.

However the greatest utility would accrue where the opportunity costs are minimised, as at X^*. It follows that the technically inefficient (X'') and the
DEA-efficient \((X')\) choices are dominated by the Pareto production plan in utility terms, \textit{viz.}:

\begin{equation}
U(X^*) > U(X') > U(X'')
\end{equation}

where \(U(.)\) is the net total utility in the economy resulting from a given selection of the choice variables. Specifically, the Pareto plan dominates the DEA-efficient plan which is itself preferred to a technically inefficient choice. In terms of the formal definition of Pareto efficiency in section 6.3 this means that on moving from a technically inefficient vector \(X''\) to its best-practice counterpart \(X'\), at least one of the utility functions in the economy effectively increases and so \(X'\) is preferred to \(X''\).

Assuming then the backcloth of a full employment neoclassical economy, the release of resources from inefficient production raises output and utility in other sectors of the economy. On this basis a production plan \(X'\) in figure 6.4.1 can be termed \textit{DEA-Dominant} over another plan \(X''\) which consumes more resources. It is clear however that a further input bundle \(X^*\) dominates the best-practice alternative. \(X^*\) is therefore Pareto-Dominant.

\textbf{6.5. The DEA target as a Pareto Improvement}

The main normative aspect of DEA is the recommendation of a best-practice target. If the target is not Pareto efficient but "DEA-dominant", this suggests the target requires an alternative justification. This can be provided using the utility interpretation of efficiency developed in section 6.4.

Underlying targeted reductions (increases) in costs (outputs) derived from DEA-efficiency scores is a value judgement on utility formation; that is, \textit{ceteris paribus}, reductions (increases) in costs (outputs) are desirable in the presence of inefficiency. If this is the case, targets remain justifiable but on the basis of the new DEA-Dominance Criterion. Targets set on this basis, e.g. at \(X'\) in figure 6.4.1, are not Pareto efficient but will bring DEA-inefficient performance up to the utility
standards attainable by best-practice DMUs. The best-practice target OX' defined on the reference technology BB' dominates the technically inefficient vector X'' in utility terms with costs $C_1 < C_2$. X' is itself dominated by X^*, defined on the true Pareto technology PP'. The Pareto allocation X^* minimises opportunity costs yielding maximal utility for the economy. Nonetheless any reduction in costs below C_2 frees resources which can be diverted into the production of output elsewhere. Thereby an attainable, "second-best" DEA target lowering costs by $(C_2 - C_1)$ and/or raising output remains worthwhile in utility terms vis-a-vis the status quo at X'': For as Sen (1975a) argued "a production plan which is inefficient will yield less social value of output than some other [less inefficient] alternative ". The DEA target therefore has the status of a Pareto Improvement and does not (in general) confer full Pareto efficiency.

A fortiori the DEA target is observable and may be elucidated in quantitative terms. The Pareto technology while feasible exists only qualitatively from the operational point of view because of price uncertainty and definitional problems in the public sector. Definitional and measurement problems imply a non-full information set on prices and quantities which creates a sub-optimal decision environment for the DMU manager. In these conditions Tinbergen (1985) has argued that a first best, full information outcome is unattainable. It follows that only second best policies, such as the DEA target are feasible. Indeed that the best-practice technology is observed is evidence that DEA-Dominant targets are attainable and tractable to operational definition.

Utility and efficiency measurement

Before moving onto fresh arguments in section 6.6 it is worth emphasising the significance of utility to efficiency measurement. In his first published paper, Debreu (1951) defined a "coefficient of resource utilisation" which is comparable in intention to the DEA-efficiency score. Debreu's coefficient was derived in the context of the two fundamental theorems of Paretian welfare theory. Very briefly, his measure of
inefficiency in an economy is a measure of deadweight loss which is the quantity of resources which could be saved in inefficient production holding existing utility levels constant. Debreu's coefficient, \(\rho \), indicates the monetary value of this deadweight loss where \(0 \leq \rho \leq 1 \). \(\rho = 1 \) implies there is no deadweight loss in the economy and the associated monetary value of excess use of commodities is zero. In this situation allocations are Pareto optimal. Analogously, \textit{mutatis mutandis}, for \(\rho < 1 \).

That Debreu (1951) explicitly defined the economic-welfare implications of his resource coefficient contrasts sharply with the development of the DEA-efficiency measure. Much of the work on DEA is to be found in the case-oriented operational research literature wherein scant attention has been given to its implications for economic theory. This is a serious oversight. DEA is essentially an empirical calculus for which there is clearly a necessity to provide analytical foundations. In this regard, Fare, Grosskopf and Lovell (1985) initiated research into the implications of inefficiency for production theory. Specific utility implications, however, have been entirely overlooked in the modern literature. As a consequence, this Chapter has suggested a utility dimension to the DEA target – that a DEA target remains justified if it leads to a net improvement in welfare.

6.6. Some remaining difficulties with the DEA target

(1) The DEA target and noise in production

Debreu's suggestive (1951) term deadweight \textit{loss} contains ruminations of a logical difficulty in the definition of a DEA target. The target is derived from an efficiency score based on an \textit{historical} cross section at time \(t \). But the associated target is set for period \(t + 1 \). Clearly it has to be asked in what sense can the efficiency information relevant to period \(t \) be carried forward to \(t + 1 \)? The excess-spend in a budget in \(t \) is historical and it follows trivially that it is impossible to set a target in \(t + 1 \) for a budget which is already spent. The only feasible target is for a future budget, as yet unspent. To set a target for this future
budget on the basis of current efficiency information implicitly assumes that the efficiency is stable over time; that is, that the efficiency score can be given an interpretation similar to a structural, time invariant-parameter estimated in an econometric model.

A priori it is not clear that this is acceptable because the DEA frontier is estimated deterministically. In this context apparent variations in performance may in fact be once-off, random events. The problem of stochastic behaviour affects all areas of applied economic analysis. A well-known example occurs in the estimation of the technological coefficients underlying input-output models. Ever since the pioneering work of Leontieff in the first half of the century, applied input-output analysis has ignored the effects of stochastic behaviour. It is notable however that this has not affected the rise of input-output analysis in applied economics.

Like input-output, DEA is essentially a deterministic methodology which makes no explicit assumptions about the distribution of noise. Practitioners have, however, made some attempts to limit the impact of noise on estimated levels of inefficiency. These have focused around the pooling of cross section data over several years to create panel data sets. A more stable picture of performance can be extracted from these by performing separate envelopments on successive cross sections and deriving the mean efficiency score of a DMU over time. This was the approach taken by Fare, Grosskopf and Logan (1987). Thomas, Greffe and Grant (1988) have also worked with a panel of data on electricity utilities in Texas between 1979 and 1984. It was argued that noise in outcomes might be identified in unexpected change in the efficiency ranking of utilities year-on-year. Spearman’s rank correlation coefficient was used in order to establish whether the rankings changed significantly. A high value of the coefficient was taken to represent stable efficiency scores which reflect underlying levels of performance. Stable estimates of efficiency are then the basis of acceptable targets.

Charnes, Clark, Cooper and Golany (1985) have also used a panel data set on
US Air Force tactical–fighter wings to improve efficiency measurement. Their procedure, which they call "window analysis", involves pooling successive cross sections of data and enveloping the whole of the resulting data simultaneously. If there are n cross sections in a panel, each unit is represented n times in the estimated possibility space. A unit may appear both on the frontier and within according to changes in its performance year by year. The resulting composite frontier gives less weight to unusual observations and is therefore more robust to stochastic events.

As a rule of thumb, then, the collection of panel data sets is probably to be recommended to replace efficiency estimates from single cross sections.

An older suggestion is in Timmer (1971). Timmer argued that a Farrell boundary can be constructed iteratively. That is, by successively eliminating outlying data points and re-estimating the frontier until the resulting efficiency estimates stabilise. This is possible in larger data sets, although it means that excluded units will have no efficiency score. The Timmer adjustment is arbitrary to the extent that it is not clear a priori precisely when the efficiency scores have stabilised to a sufficient degree to accept that random outcomes have been eliminated. Indeed there is nothing to say that underlying and sustainable levels of performance have been excluded. Recent developments of the Timmer approach can be found in Sengupta (1988, 1987b,c, 1982), Sengupta and Sfeir (1988) and Banker (1988).

On a tentative basis it has been suggested in the literature that costs (or inputs) are generally more predictable than outputs, giving cost targets a greater credibility than those for outputs. Sengupta (1987, p. 2290) has argued that: "...data variations may arise in practical situations ... when the output measures have large and uncertain measurement errors which are much more significant than in the input measures. For example in school efficiency studies, the input costs, such as teachers' salaries, administrative expenses, etc., may have low measurement errors whereas the performance test scores of students may contain large errors of
measurement of true student quality." This argument is most compelling where measurement errors are large relative to true random fluctuations in the production process.

In summary then, to carry the target forward depends on the stability of the efficiency score. This itself turns on the correct specification of the model and the limitation of the effects of noise. If adequate adjustment for noise is not possible the resulting efficiency scores may be unstable over time. This must cast serious doubt on the credibility of DEA targets which are carried forward when there is little guarantee of similarity in next period's performance. In general the practitioner is forced to make the implicit assumption that variations around the frontier are largely due to differences in technical efficiency, there being only trivial amounts of noise.

In those circumstances where the target is considered an accurate predictor of efficiency in t + 1, public sector production has a normative and merit-derived significance which may still prohibit the straightforward application of a target. For example there are large areas of public sector production which have lower limits on levels of service which are imposed by humanitarian and legal constraints. These important practical difficulties cannot be overlooked in the implementation of targets.

(2) Ambiguities in relative efficiency measures

The conceptual difficulties in measuring service sector productivity were being debated a generation ago by Hall and Winsten (1957) and are not resolved in modern writing on the subject, e.g. Kendrick (1987), Aanestad (1987). The existence of degrees of dominance, viz. Pareto Dominance and DEA Dominance, is indicative of ambiguities which call into question the meaningfulness of relative efficiency measures.

Koutsoyiannis (1979) for example has noted that in the private sector firms
often consider operations at 80 per cent of capacity as an acceptable utilisation of inputs. Clearly public sector producers which operate in controllable environments are likely to have comparable notions of normal utilisation of capacity and differences in these across DMUs may be confused with differences in efficiency by DEA. That is, DMUs with lower utilisation rates may be identified as inefficient *vis a vis* others with higher rates when the latter themselves are using capacity at less than 100 per cent. Given that surplus capacity is inconsistent with the extreme optimising behaviour necessary for Pareto production, this reinforces the need for a decomposition of efficiency which identifies a separate (notional) frontier consistent with Pareto optimal production and a best-practice "frontier" composed of best-practice DMUs operating less efficiently with surplus capacity.

The best-practice "frontier" is constructed on the basis that the cross section is of a homogeneous set of DMUs using the same (presumably the latest) vintage of technology. *A priori* it is not clear if all DMUs will utilise the same technology - but clearly it is possible they will not. DEA efficiency becomes ambiguous in this case: a relatively inefficient DMU could be utilising a technology with maximal results but be constrained by the possibilities inherent in this technology such that it cannot perform as efficiently as some other DMU or linear combination of DMUs which are using a later, improved technology. This sort of efficiency ambiguity requires careful scrutiny to restrict a data set to a comparable set of DMUs so subsequent DEA comparisons are equitable and meaningful.

It should be noted that the problems of capacity utilisation and of technology vintage are essentially problems of comparing like-with-like. All relative efficiency measures (not merely DEA) should be used in a way which ensures legitimate comparisons of organisations.
6.7. Conclusion

This chapter has examined some difficulties in the interpretation of DEA efficiency. This has become necessary owing to the uncritical manner in which DEA has often been used – especially in the American literature. Silkman (ed.) (1986) made a comparison between the high hopes for DEA in the 1980s and the optimism surrounding use of regression analysis in the early 1960s.

The main normative aspect of DEA is the recommendation of a target where technical inefficiency is identified. This target has been justified by the use of the Pareto Criterion. The main theme of this chapter has been that there is a wealth of empirical and analytical evidence which suggests that in general best-practice is not Pareto efficient. Indeed, even if it were, this could not be observed as such.

Section 6.2 discussed the definition of best-practice in the literature. It argued that the many sources of inefficiency which may exist in real production environments are likely to compromise best-practice. There is nothing in DEA to suggest that best-practice performance is satisfactory in any absolute sense. Studies of efficiency have often shown that even the "best" in certain circumstances can improve (see Prison Department and PA Management Consultants (1986) on the state of operations in the prison service prior to the introduction of the Fresh Start scheme). Measures of technical efficiency derived in DEA should therefore be thought of as approximate guides to performance.

Additional "fuzziness" in empirical efficiency measures is caused by the definitional problems associated with public sector production. It is only for narrowly defined engineering systems (like a robot-based production line) for which the maximal performance of the technology can be unambiguously defined. In other processes like incarceration and education it is more difficult to define the relevant inputs and outputs. Public sector processes are often highly dependent upon labour inputs. As Leibenstein pointed out, labour effort is variable and delivered
voluntarily. Consequently it is difficult to define best-practice since it is hard to specify at what point greater work intensity leads to a fall-off in quality. Hence Mayston and Smith (1987, p. 183) argued that: "In general, there is no way of knowing whether the empirical measure of efficiency ... gives rise to ... the true technical efficiency of an organisation; that is the measure of efficiency we would obtain if the true production frontier (rather than the linear approximation) were known."

Lubulwa and Oczkowski (1987) suggested that "as the sample size increases, the best-practice converges to the absolute frontier". It is true that the addition of DMUs cannot worsen the estimate, but presumably the estimate can only improve on the addition of better performance. If incentives and motivation to inputs are low throughout an "industry" or programme then full convergence to the notional frontier could be by no means assured.

Section 6.3 examined the definition of Pareto efficiency. It was shown that best-practice is a form of technical efficiency defined independently of factor prices. Pareto efficiency has a broader "welfare" dimension which also accounts for the allocative efficiency of production. Consequently best-practice performance is too narrowly defined to be consistent with full Pareto efficiency. It must be stressed that this conclusion is not an intrinsic rejection of the Pareto Criterion as such or of best-practice DEA targets. There is already a well-known spectrum of objections to Pareto welfare arguments ranging from the radical Marxist (Drago (1987)) to the "Welfarist" critique of Sen (1987, 1979) and more traditional objections regarding efficiency and distribution (Little (1957)). These are not the concern of Chapter 6 which examines the relevance of the Pareto Criterion and its congruence with DEA efficiency.

It is paradoxical that the DEA literature has set out to identify the sources and magnitude of inefficiency but should incorporate a neoclassical performance standard — that of Pareto efficiency — which actually rules this out (see Fare, Grosskopf and
Lovell (1985)). Traditional neoclassical production theory assumes away the problems of information and uncertainty so the producer successfully allocates resources in an efficient manner: efficient relative to the constraints imposed by the structure of production technology and by the structure of input and output markets, and relative to whatever behavioural goal, e.g. cost minimisation, is attributable to the producer. The technology constraint in the producer's behavioural optimisation problem is binding, eliminating technical efficiency. Satisfaction of the first-order conditions necessary for optimisation eliminates allocative inefficiency. Thus Fare, Grosskopf and Lovell (1985) have argued that "Testable hypotheses about producer behaviour then refer to the behaviour of efficient producers only" and advocate the development of a modern theory of producer behaviour which explicitly acknowledges inefficient production.

In this respect, sections 6.4 and 6.5 developed a more appropriate interpretation of DEA efficiency. This involved the definition of efficiency in utility terms. Specifically, a DEA target (which in general is not Pareto efficient) can still be regarded as a Pareto Improvement vis a vis technically inefficient production within an estimated boundary. The DEA target does not confer the full utility gain that could accrue from Pareto production. It nevertheless remains worthwhile in yielding a net utility gain over existing inefficient production plans.

Finally, section 6.6 discussed some additional difficulties common to the interpretation of all forms of relative efficiency measure. The problems of noise were linked to the ability of DEA to identify a meaningful target for period t + 1 on the basis of data on period t. Various procedures have been suggested in the literature to control for noise. They are essentially ad hoc and involve averaging of efficiency scores or the pooling of data. Since no formal treatment of noise exists in DEA, future research on efficiency will probably benefit most from the use of panel data rather than the use of isolated cross sections. This applies particularly to the use of DEA in real policy environments. Adjustments in funding based on DEA targets should be made only where there is evidence that the efficiency measure
reflects underlying levels of performance. If measured efficiency is the result of once-off difficulties then the application of the targeting formula to cut resources may worsen future performance.

Footnotes
1. On which see Debreu (1959).
2. For consistency with the results on LEA and prison efficiency in Chapters 3, 4 and 7 the input-based definition of Pareto efficiency is cited above. There is an analogous output-based definition used in the DEA literature by, among others, Charnes, Cooper and Rhodes (1981): "A decision-making unit is not [Pareto] efficient if it is possible to augment any output without increasing any input and without decreasing any other output." A DMU can be characterised as Pareto efficient if this is not possible, they argue. Notice that the input-based version is essentially identical to the definition of input technical efficiency used in section 2.5 of Chapter 2.
4. Margolis (1971) discusses the nature and role of shadow prices for incorrect or non-existent market values. Sen (1975b) Chapter 11 is also a useful discussion.
5. The locus of points where the ratio of input prices is equal to the marginal products of the inputs.
6. Performance comparisons using dominance concepts have a substantial history. The concept of a dominant reference group was first introduced by Hyman (1942) and Merton (1957) and applied to goal formation and attainment in productive organisations by March and Simon (1963). See also Sen (1975a) and Johnson and Lewin (1984).
Chapter 7. Aspects of the discriminating power of Data Envelopment Analysis

7.1. Introduction

Chapter 6 examined some important difficulties of interpretation in DEA methodology. This chapter undertakes empirical work in an attempt to illustrate some of these problems using data from a real production environment. In so doing it is able to examine the sensitivity of DEA to the number of units used to evaluate performance.

Unlike most conventional econometric procedures Data Envelopment Analysis is not endowed with any formal system of hypothesis testing. This is because DEA is a non-statistical technique which makes no explicit assumptions on the distribution of variables and residuals. This has left DEA open to criticism. The selection of input–output variables is essentially ad hoc. In recognition of these difficulties Charnes, Cooper, Lewin, Morey and Rousseau (1985) initiated work on a DEA–sensitivity analysis. This involved an examination of the effects on the efficiency score of deleting variables.

Chapter 7 investigates the sensitivity of DEA–efficiency, but with respect to changes in the size of the cross section rather than in the number of variables. It uses the local education authority data set familiar from Chapter 3 and examines the effects on targets and peer groups of changes in the size of the LEA comparisons.

This involves grouping LEAs into administrative clusters and re–estimating frontier performance for each cluster. Technically speaking, this amounts to varying the number of constraints in the fractional DEA program. There is some precedent for this in the literature. In a study of performance in Californian hospitals, Grosskopf and Valdmanis (1987) cluster their sample into two parts (one publicly–owned and the other privately–owned) to assess the effect of ownership on
efficiency status.

As should become clear, the clustered results are consistent with the arguments in Chapter 6 that best-practice is ambiguous in some cases and cannot be interpreted as a firm indicator of Pareto efficiency. In addition, the greater preponderance of best-practice found in the results provokes a discussion of the ability of DEA to identify a complete efficiency ordering together with a meaningful target and peer group.

7.2. The need for clustering of LEA performance

From table 3.3.2 in Chapter 3 recall that DEA chooses a peer group of best-practice LEAs which, in principle, the inefficient LEA uses as a managerial blueprint to improve performance (see Smith and Mayston (1987)). It is important to decision-makers, however, that the peer group is drawn from a comparable set of LEAs because demographic, occupational and social conditions affecting performance vary markedly over the whole cross section of LEAs. In the peer groups for inefficient London boroughs in table 3.3.2 one or more peer LEAs are drawn from outside of the London area. This Chapter examines the effects of excluding these "non-indigenous" LEAs from the performance comparison. That is, the 96 LEAs in England have been grouped into 3 administrative clusters of:

(1) 21 Inner and Outer London boroughs;
(2) 36 Metropolitan boroughs;
(3) 39 English counties.

A DEA boundary has been estimated for each of these smaller cross sections using the same varying returns to scale assumption adopted in Chapter 3. The advantage of such an analysis is, in principle, that it enforces the choice of peer LEAs to come from the same "home" cluster as that of the inefficient LEA.
There is some precedent for the clustering of performance in the literature. In a study of Californian education, Sengupta and Sfeir (1986) split high-school districts into rural and urban classes; similar adjustments were made by Grosskopf and Valdmanis (1987) in an evaluation of hospital performance. These clustered analyses of performance are based on a "rule of thumb" suggested in Golany and Roll (1989, p.239) that in general "the larger the number of units in the analysed set, the lower the homogeneity within the set". Thus Golany and Roll have argued that:

"another direction in the analysis of efficiency outcomes is partitioning the group of DMUs into categories, according to some characteristic which was not entered into the model as a factor determining input-output relationships. The purpose of such categorisation is twofold: one is to gain a better relative assessment of efficiency, by comparing performance within sub-groups of units operating under similar conditions (e.g. the same geographical region). The other is a comparison between categories, such as in the case where a category signifies a programme which a sub-group of DMUs operates" (ibid).

Two possible objections could be raised to these criteria for the clustering of performance. In the first place there may be difficulties in the definition of the cluster. Generally speaking, empirical clustering criteria have been rather crude and cannot exclude the possibility that a peer drawn from the same cluster may nevertheless be quite unlike the inefficient DMU for which it has been chosen. This will always be true in a trivial sense because every DMU is likely to have some unique characteristic, viz. location. In the context of LEA performance there appears to be some genuinely different spending patterns in rural as against urban (i.e. London and the Metropolitan) authorities – see table 7.4.2 (below). This is borne out in other studies of educational costs. Kenny (1982), for example, found sizeable differences between schooling costs in rural and urban areas in California.

A second potential objection to clustering focuses on the inclusion in the model of background variables (to reflect for example parental occupation) which are already designed to capture the impact of differences in LEA catchment area.
Although the inclusion of background variables is widely recognised (see for example Mayston and Smith (1987)) there remains some dispute in the literature as to the effects of noncontrollable variables on efficiency and precisely how these should be incorporated into empirical DEA models (see e.g. Banker and Morey (1986a,b)). If the inclusion of background variables is not sufficient to allow for the differences in LEAs across the country, then the clustering of LEAs may still be required to make the performance comparison equitable. Notwithstanding these problems, the effects of clustering on efficiency remain valuable in clarifying the discriminating power of DEA in terms of its ability to identify meaningful targets and peer groups.

7.3. Results on LEA efficiency after clustering

In Chapter 3 around 55 percent of LEAs were input inefficient to varying degrees and hence less than half the education authorities in England were identified as best–practice. This result was based on a frontier comparison of 96 LEAs. Table 7.3.1 contains a summary of the numbers of LEAs identified as inefficient in the 3 separate administrative analyses of performance undertaken for this Chapter. It is immediately clear that far fewer LEAs are identified as inefficient in the smaller administrative clusters. The most notable change is for the London boroughs where only 6 out of 21 LEAs have non–unit efficiencies. By contrast the results in Chapter 3 suggested 13 of the London authorities were inefficient.

This changes the interpretation of the results regarding efficiency in the London boroughs. In particular it suggests that there is a greater preponderance of best–practice education in London than has hitherto been identified. A similar, but less marked, change can also be recognised in authorities outside London. In the Metropolitan boroughs the number of best–practice LEAs has risen from 17 to 24; and in the counties from 19 to 23. Across all three clusters, this adds an additional 18 best–practice authorities making a total of 62.

This apparent improvement in LEA performance is reflected in a small gain in
the mean inefficiency score of the London boroughs and the counties. However the mean performance of the Metropolitan authorities has fallen slightly to an average of 0.916 (see table 7.3.2).

The *prima facie* substance of these results belies the strength of the comparisons being made in the LEA clusters. In particular, it is probably the case that London performance improves dramatically because the comparison of London boroughs with themselves alone is less exacting. The same is true for the Metropolitan LEAs and the counties whose performance also improves in the smaller clustered analyses (cf Table 7.3.1). Hence it would probably be inaccurate to conclude that the preponderance of best-practice performance is more widespread among LEAs than was suggested in Chapter 3.

Table 7.3.1
Comparison of clustered and non-clustered results: Numbers of inefficient LEAs.

<table>
<thead>
<tr>
<th></th>
<th>London boroughs</th>
<th>Metropolitan boroughs</th>
<th>English counties</th>
<th>All areas combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Separate clusters</td>
<td>28.6</td>
<td>33.3</td>
<td>41.0</td>
<td>35.4</td>
</tr>
<tr>
<td>Non-clustered</td>
<td>61.9</td>
<td>52.8</td>
<td>51.3</td>
<td>54.2</td>
</tr>
</tbody>
</table>

Notes:
(1) The table shows the ratio of inefficient to best-practice LEAs.
(2) The efficiency scores underlying this table can be found below in table 7.4.1.
(3) The number of best-practice LEAs is simply 100 minus the percentage of inefficient LEAs. In the London cluster for example, \((100 - 28.6) = 71.4\%\); that is, over two-thirds of the London cluster is best-practice in the new results.
Source: Author's calculations
Table 7.3.2
Comparison of clustered and non-clustered results:
Mean inefficiency scores.

<table>
<thead>
<tr>
<th></th>
<th>London boroughs %</th>
<th>Metropolitan boroughs %</th>
<th>English counties %</th>
<th>All areas combined %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separate clusters</td>
<td>0.935</td>
<td>0.916</td>
<td>0.961</td>
<td>0.941</td>
</tr>
<tr>
<td>Non-clustered (Chapter 3)</td>
<td>0.925</td>
<td>0.921</td>
<td>0.958</td>
<td>0.936</td>
</tr>
</tbody>
</table>

Notes:
The table shows the mean efficiency of LEAs with non-unity efficiency scores.
Source: Author's calculations

7.4. Aspects of the discriminating power of DEA

Section 7.4 is divided into 3 parts, each of which explores an aspect of the discriminating power of Data Envelopment Analysis. Part 1 examines the ability of DEA to identify untied efficiency scores to reveal finer variations in performance. The efficiency ordering resulting from the clustering of LEA performance is compared with that derived from the whole-sample comparison in Chapter 3. The second part of section 7.4 looks at the effects of clustering on the peer group. Part 3 then examines the stability of targets for the adjustment of performance at inefficient operations.

(1) Best-practice and the efficiency ordering in LEA clusters.

Before proceeding, it is important to define precisely what is meant by "the discriminating power of DEA". When DEA compares the performance of organisations, it divides them into two groups: the first is best-practice with unit-efficiency scores; the second, dominated by the first, is relatively inefficient. It is not possible on the basis of DEA alone to distinguish between best-practice performers because best-practice efficiencies are tied. This means that best-practice...
performance cannot be ranked and by implication is equally satisfactory at all branches. Generally speaking, however, the performance of inefficient producers can be ordered completely (although there may sometimes be a small number of ties).

The discriminating power of DEA therefore refers to the ability of the technique to identify untied efficiency scores. Clearly this largely depends on the numbers of best-practice. Tied-efficiency scores indicate that a full ranking of performance in the sample as a whole is not possible. In other words, the efficiency ordering is incomplete.¹

Note that an untied efficiency ordering rests on the notion of efficiency dominance; that is, untied efficiency scores imply that the performance of one LEA is better than that of another in that it uses less inputs or produces more output. However discrimination between LEAs might also be achieved on the basis of the shadow prices. Zero shadow prices, for example, might be taken as indicators of inadequate performance in certain variables. This might be used as a further criterion for ordering LEAs. Nevertheless Chapter 7 concentrates on the efficiency score as a basis for ranking performance and leaves discrimination on the basis of shadow prices to future research.

The results which have been obtained from the clustering of LEAs into smaller cross sections call into question the ability of DEA to identify untied efficiency scores. The London cluster contains 21 LEAs and found the highest proportion of best practice (c.f. Table 7.3.1). Compared with the London cluster, relatively fewer best-practice LEAs were found in the larger clusters. In the 36 Metropolitan boroughs, 67 per cent of LEAs were best practice as against 71 per cent in London. The largest cluster, the 39 English counties, had the lowest proportion of best-practice at 59 per cent. Larger cross sections, therefore, appear to be associated with relatively smaller numbers of best practice. As would be expected a priori, more discriminating comparisons (yielding fewer best-practice efficiencies) necessitate enlarging the feasible number of candidates in the cross section. From a
computational point of view, enlarging the number of LEA comparisons in the
determination of the efficiency score amounts to increasing the number of constraints
in the (fractional) DEA program.

The number of best-practice authorities identified by the program is an
important indicator of the discriminating power of DEA. For the higher are the
numbers of best-practice the lower are the numbers of authorities with a unique,
untied efficiency status. Given the widely differing conditions in which LEAs
operate, it may be unrealistic to label large numbers of them as uniformly
best-practice. For this implies that all authorities are operating equally satisfactorily
on all target variables. It is unlikely that this is the case so that, in principle, a
ranking of performance exists among best-practice LEAs.

In Chapter 3, 44 out of 96 LEAs were given identical unit-efficiency scores.
The clustered analysis in this Chapter has added a further 18 LEAs with
unit-efficiency scores giving 62 best-practice authorities in total. As far as active
decision-making is concerned, DEA is only capable of suggesting adjustments to
performance in relatively inefficient LEAs. Consequently, nothing can be said about
performance at around two thirds of the LEAs after clustering – other than the
implicit presumption that, in attaining best-practice, their performance is satisfactory
and "equivalent". Since best-practice is not necessarily adequate in any absolute
sense, it would be useful for the decision-maker to have more guidance on the
quality of best-practice performance. This is an important point, for as the
discriminating power of the technique falls, the coarser is the summary picture of
the performance yielded by DEA. In situations where programme performance is
under scrutiny (as in Chapter 5), the more ambiguous the picture for a single
organisation, the greater is the error which is likely to be built into the aggregate
performance picture.
Improving discriminating power

The clustering of LEA performance suggests that the discriminating power of DEA falls in smaller cross sections. It is important in practical applications to know how discriminating power might be improved to give a finer breakdown of variations in performance.

That the discriminating power of DEA is limited by the identification of best-practice broaches a more general problem of the relative merits of the CRS and the VRS linear programs. In particular, the number of best-practice will vary with the technology assumption. Chapter 5 compared the CRS and VRS efficiency of local prisons and remand centres. The results suggested that a CRS assumption identifies fewer best-practice. It was demonstrated that this is an intuitive result given the nesting of empirical technologies. Clearly the technology assumption has implications for the ordering of efficiencies which can now be developed.

The CRS and VRS efficiency ordering

Both the VRS and CRS efficiency results on prison and LEA efficiency in Chapters 3, 4 and 5 suggest best-practice units may account for a large share of the sample under investigation. This means that the efficiency ordering is incomplete in the sense that all establishments do not have an untied efficiency rating.

It is clearly desirable to maximise discriminating power so finer variations in performance can be identified. The maximum theoretical discriminating power in a cross section of n units would define a distinct technical-efficiency score (TE) for each unit LEA in the sample. That is:

\[(7.4.1) \quad 1 = TE_1 > TE_2 > \ldots > TE_n > 0 \]

where the subscript indicates rank. (7.4.1) is a complete ranking of efficiencies (without ties) of order n.
Practical applications of DEA are unlikely to yield a complete efficiency ordering unless the comparison is based on a single variable.² In a sample size of \(n \) units, the ordering resulting from a VRS technology assumption could be of the form:

\[
(7.4.2) \quad 1 = TE_1 = TE_1 = \ldots = TE_1 > TE_2 > \ldots > TE_{j+1} > 0,
\]

and \(j + 1 < n \).

Assuming that non-unit efficiencies are untied, the ranking is of order \(j + 1 \), where \(j \) is the number of inefficient units. The ordering is incomplete in that \(j + 1 \) is less than the feasible number of untied efficiencies, i.e., \(j + 1 < n \). Notice that if efficiency is defined in relative terms, \(j \) must be less than \(n \) to permit the definition of at least one best-practice unit, i.e. \(j < (n-1) \). Hence, \((n - j)\) is the number of best-practice.

In (7.4.2) \((n - j)\) best-practice organisations have a homogeneous efficiency status. However it is possible to increase the rank of the efficiency ordering under an alternative technology. In general a CRS technology yields fewer best-practice than VRS (see Chapter 5 or Grosskopf (1986) and Grosskopf and Njinkeu (1988)).

The corresponding constant returns ordering is:

\[
(7.4.3) \quad 1 = TE_1 = TE_1 = \ldots = TE_1 > TE_2 > \ldots > TE_{k+1} > 0,
\]

and \(k + 1 < n \) and \(k > j \) in (7.4.2)). Assuming that non-unit efficiencies are untied, the CRS ranking is of order \(k + 1 \), where \(k \) is the number of inefficient units. The order of (7.4.3), \(k + 1 \), is greater than that in (7.4.2), \(j + 1 \), because the CRS program identifies relatively more inefficient units: i.e., \(k > j \) and so \(k + 1 > j + 1 \). Equally, the number of best-practice under CRS, \((n - k)\), is less than under VRS, \((n - j)\). As a consequence, there are arguments for preferring the CRS assumption because it yields a finer (though still not complete) ordering of performance. That is, a CRS assumption generates fewer best-practice ties and hence has a greater discriminating power than a VRS technology.
The ranking of efficiencies according to the underlying technology in (7.4.2) and (7.4.3) made the assumption that there are only ties in best-practice efficiencies. However, inspection of table 7.4.1 (below) suggests that this may not be the case. In the clustered results there is one tie within the counties, between Avon and Hertford where $TE = 0.922$ in both cases (see table 7.4.1 (c), below). There is also a small number of ties across (rather than within) clusters between Oldham and Northants ($TE = 0.986$), Leeds and Kent ($TE = 0.994$) and between Redbridge and Hampshire ($TE = 0.963$). However all of these ties are due to rounding in table 7.4.1. If the efficiency score is reported to 4 decimal places all of these ties can be broken so that the rank of the efficiency ordering is not compromised. On this basis, for example, Avon has $TE = 0.9221$ and Hertfordshire $TE = 0.9215$.

In the non-clustered results in table 3.3.2 of Chapter 3 there are 9 apparent ties in non-unit efficiency scores. All but one of these is due to rounding – at 4 decimal places only Northants remains indistinguishable from Hereford with $TE = 0.9726$. This tie compromises the definition of the rank of the efficiency ordering.

Recall that for a cross section of size n and a VRS technology assumption the efficiency ordering is:

$$1 = TE_1 = TE_1 = \ldots = TE_1 > TE_2 > \ldots > TE_{j+1} > 0,$$

and $j + 1 < n$. If j is the number of inefficient branches then the rank of the efficiency ordering is $j + 1$. However this definition assumes that there are no tied non-unit efficiencies. Since these are possible, the ordering has rank:

$$1 = TE_1 = TE_1 = \ldots = TE_1 > TE_2 > \ldots > TE_{j+1-x} > 0$$

where j is the number of inefficient branches, and x is the number of tied non-unit efficiency scores. That is, adjusting for ties at inefficient organisations lowers the rank of the efficiency ordering to $j + 1 - x$.

In principle, the adjustment (x) for ties in non-unit efficiencies could alter the relationship between a comparable CRS and VRS ranking. In (7.4.2) the rank of the
VRS technology was given as $j + 1$; and in (7.4.3) the CRS rank is $k + 1$ where in general $(j + 1) < (k + 1)$ because CRS will identify fewer best-practice efficiencies. However if the number of tied non-best-practice efficiencies were sufficiently large under CRS then $(j + 1 - x_{VRS}) > (k + 1 - x_{CRS})$ is feasible. I.e., the rank of the VRS technology could be greater than under CRS if the number of additional non-unit ties under CRS (x_{CRS}) is sufficiently large. It has to be said however that this is unlikely. In the many applications (both published and unpublished) that I have seen, the number of ties in non-unit efficiencies under both CRS or VRS is relatively small.

In the VRS results in Chapter 3 $j = 52$ with 1 tie (between Northants and Hereford, $TE = 0.9726$). Hence the efficiency ordering has rank $j + 1 - x = 52$. Taking the clustered results as a whole there are 62 best-practice LEAs under VRS leaving $j = 34$ non-unit efficiencies. A small number of the latter are tied; however, at 4 decimal places all inefficient scores were distinct and $x = 0$. Hence the rank of the efficiency ordering, $j + 1 - x$, is 35.

It is clear that the clustered results taken as a whole yield a far less distinct picture of performance. Numbers of best-practice were significantly lower in Chapter 3 (44 as against 62 in this Chapter) such that finer variations in performance in efficiency were identified. This suggests that the discriminating power of Data Envelopment Analysis improves with the size of the cross section. That is, the rank of the efficiency ordering, $j + 1 - x$, rises with n, the size of the cross section.4

Parkan (1987) has suggested that a further improvement in discriminating power may lie in the iterative use of the DEA program under either CRS or VRS technologies. The program may be computed initially over all n establishments. The latter may then be separated into relatively efficient and inefficient subsets. The program may then be re-computed on the efficient subset only. This will break down the units originally identified as best-practice into two smaller groups. One of these will still have unit-efficiency scores, but the second group (best-practice in the
initial run of the program) will now be relatively inefficient. Subsequent re-computations of the program may then be undertaken on the remaining best-practice units. At each run the number of best-practice units remaining will fall, gradually extending the efficiency ordering. It is unlikely however that this iterative procedure would complete the efficiency ordering. A comparison of the London, Metropolitan and county clusters of LEAs suggested that smaller cross sections are less discriminating than larger ones. Hence the addition to the ordering at each subsequent iteration of the program would probably fall until a "core" of best-practice units is reached.

The discriminating power of DEA will also be affected by the size of variable set, in addition to the effects of alternative scale assumptions. Following Nunamaker (1985), Tompkins and Green (1988) suggested that because dominance on merely a single variable is sufficient to yield an efficiency score of unity, the probability of best-practice rises with the size of the variable set. Accordingly, it is possible to enhance the efficiency status of organisations by the inclusion of additional variables in the model. In some circumstances this could take the form of a policy of extreme specialisation, wherein a particular organisation becomes dominant simply because no other units have a presence in the chosen area of specialisation. This aspect of the problem of discrimination may be limited by the use of variable sets based on core activities alone. Ceteris paribus, to obtain the maximum distinction among efficiencies requires the use of a smaller number of input and output variables to describe the production process.

Discriminating power could be increased still further by the introduction of a more exacting dominance criterion. Conventionally, dominance in only a single variable is sufficient for best-practice. A stronger criterion would be dominance on all variables. This would generally produce a much smaller number of best-practice. However this criterion may be so exacting in some circumstances as to reduce the number of best-practice to zero, i.e., no units in the sample might be dominant in all dimensions. In the absence of best-practice the relative efficiency measure is
undefined and the performance comparison breaks down. In many practical applications, therefore, this criterion may be too demanding.

At this point it is possible to summarise the main influences on discriminating power and the efficiency ordering: (1) the size of the cross section; (2) the size of the variable set; and (3) the scale assumption. To maximise the discriminating power of DEA on all 3 criteria suggests the use of the largest feasible cross section (to make the comparison on each variable more exacting); the use of the smallest realistic variable set (to exclude dominance on obscure aspects of production) and a CRS technology (which dominates all empirical alternatives, viz., varying returns and non-increasing returns to scale). Each of these strategies will tend to limit the identification of best-practice and thereby increase the discriminating power of DEA.

(2) The choice of a peer group

An important additional aspect of the discriminating power of DEA is its ability to choose a meaningful group of peer LEAs which have similar characteristics to those of an inefficient LEA. In Chapter 3 the peer LEAs chosen were often counter-intuitive. For example, West Sussex and Wiltshire are contained in the peer groups for the London LEAs Bromley, Havering and Richmond. Insofar as these LEAs bear little resemblance to the inefficient LEA, this would seem to undermine the regular recommendation in the literature that the attainment of targets is assisted by appeal to the peer group (see Bowlin (1987, 1986), Thanassoulis et al (1987) and the discussion in Chapter 4). The potential dissimilarity of peer LEAs is an important justification of the clustering of LEAs into administrative groupings prior to computation since the peer groups then chosen by DEA can only be drawn from the appropriate "home" cluster.

The difference in peer groups in the clustered and non-clustered results can be seen in tables 7.4.1 (a), (b) and (c). It is apparent that the peer LEAs have changed substantially using the smaller clustered cross sections. In the London
boroughs none of the peer groups are identical with the results reported in Chapter 3. In the Metropolitan authorities only four peer groups have not changed (those for Oldham, Salford, Tameside and Gateshead) and in the counties only three are identical (for Avon, Gloucestershire and Shropshire). Often, however, the difference in peer groups is small (perhaps one LEA has been removed or added, as in the case of Haringey).

Table 7.4.1. (a).
DEA discriminating power and peer group comparisons in the London boroughs.

<table>
<thead>
<tr>
<th>LEA</th>
<th>Efficiency clustered</th>
<th>Efficiency all LEAs</th>
<th>Peer Group clustered</th>
<th>Peer Group all LEAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Barking</td>
<td>1.000</td>
<td>0.961</td>
<td>1</td>
<td>25, 44</td>
</tr>
<tr>
<td>3. Bexley</td>
<td>1.000</td>
<td>0.971</td>
<td>3</td>
<td>50, 59, 86, 95</td>
</tr>
<tr>
<td>5. Bromley</td>
<td>1.000</td>
<td>0.911</td>
<td>5</td>
<td>48, 78, 95</td>
</tr>
<tr>
<td>6. Croydon</td>
<td>0.962</td>
<td>0.939</td>
<td>7, 8, 12, 15, 19</td>
<td>2, 15, 50, 59</td>
</tr>
<tr>
<td>8. Enfield</td>
<td>1.000</td>
<td>0.997</td>
<td>8</td>
<td>2, 7, 15, 50, 59</td>
</tr>
<tr>
<td>9. Haringey</td>
<td>0.992</td>
<td>0.992</td>
<td>4, 7, 16</td>
<td>4, 16, 48</td>
</tr>
<tr>
<td>11. Havering</td>
<td>1.000</td>
<td>0.891</td>
<td>11</td>
<td>10, 26, 82, 86, 96</td>
</tr>
<tr>
<td>13. Hounslow</td>
<td>1.000</td>
<td>0.961</td>
<td>13</td>
<td>2, 7, 22, 50</td>
</tr>
<tr>
<td>14. Kingston</td>
<td>0.980</td>
<td>0.965</td>
<td>2, 12, 15, 19</td>
<td>2, 19, 48</td>
</tr>
<tr>
<td>17. Redbridge</td>
<td>0.963</td>
<td>0.940</td>
<td>7, 8, 12, 15, 19</td>
<td>2, 7, 50, 59</td>
</tr>
<tr>
<td>18. Richmond</td>
<td>0.907</td>
<td>0.853</td>
<td>2, 3, 7, 12, 15, 19</td>
<td>2, 15, 19, 48, 95</td>
</tr>
<tr>
<td>20. Waltham F</td>
<td>1.000</td>
<td>0.853</td>
<td>20</td>
<td>7, 16, 22, 48</td>
</tr>
<tr>
<td>21. ILEA</td>
<td>0.805</td>
<td>0.788</td>
<td>7, 15, 16</td>
<td>4, 16, 48</td>
</tr>
</tbody>
</table>

Number best-practice
London: 15 8

Notes: See table 7.4.1.(c).
Source: Author's calculations.
Table 7.4.1. (b).
DEA discriminating power and peer group comparisons in the Metropolitan boroughs.

<table>
<thead>
<tr>
<th>LEA</th>
<th>Efficiency clustered</th>
<th>Efficiency all LEAs</th>
<th>Peer Group clustered</th>
<th>Peer Group all LEAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. Dudley</td>
<td>1.000</td>
<td>0.979</td>
<td>24</td>
<td>19, 23, 50, 64, 86</td>
</tr>
<tr>
<td>27. Walsall</td>
<td>0.902</td>
<td>0.895</td>
<td>28, 30, 46, 48, 50</td>
<td>28, 46, 48, 50</td>
</tr>
<tr>
<td>31. St Helens</td>
<td>1.000</td>
<td>0.929</td>
<td>31</td>
<td>46, 50, 64</td>
</tr>
<tr>
<td>32. Sefton</td>
<td>1.000</td>
<td>0.953</td>
<td>32</td>
<td>19, 50, 64, 86</td>
</tr>
<tr>
<td>33. Wirral</td>
<td>1.000</td>
<td>0.934</td>
<td>33</td>
<td>19, 50, 64, 86</td>
</tr>
<tr>
<td>34. Bolton</td>
<td>0.926</td>
<td>0.910</td>
<td>28, 50</td>
<td>48, 50, 78, 95</td>
</tr>
<tr>
<td>35. Bury</td>
<td>0.945</td>
<td>0.904</td>
<td>26, 32, 40, 50</td>
<td>19, 50, 95</td>
</tr>
<tr>
<td>36. Manchester</td>
<td>0.874</td>
<td>0.872</td>
<td>23, 25, 30, 46</td>
<td>25, 30, 44, 64</td>
</tr>
<tr>
<td>37. Oldham</td>
<td>0.986</td>
<td>0.986</td>
<td>44, 48</td>
<td>44, 48</td>
</tr>
<tr>
<td>38. Rochdale</td>
<td>0.856</td>
<td>0.834</td>
<td>37, 50</td>
<td>44, 48, 78</td>
</tr>
<tr>
<td>39. Salford</td>
<td>0.881</td>
<td>0.881</td>
<td>44, 46, 48</td>
<td>44, 46, 48</td>
</tr>
<tr>
<td>40. Stockport</td>
<td>1.000</td>
<td>0.951</td>
<td>40</td>
<td>48, 78, 95</td>
</tr>
<tr>
<td>41. Tameside</td>
<td>0.952</td>
<td>0.952</td>
<td>46, 48, 50</td>
<td>46, 48, 50</td>
</tr>
<tr>
<td>42. Trafford</td>
<td>1.000</td>
<td>0.933</td>
<td>42</td>
<td>50, 78, 86, 95</td>
</tr>
<tr>
<td>43. Wigan</td>
<td>1.000</td>
<td>0.901</td>
<td>43</td>
<td>46, 50, 64, 86</td>
</tr>
<tr>
<td>47. Sheffield</td>
<td>0.933</td>
<td>0.909</td>
<td>26, 28, 46, 50, 55</td>
<td>26, 28, 46, 50, 55</td>
</tr>
<tr>
<td>51. Leeds</td>
<td>0.944</td>
<td>0.987</td>
<td>48, 50</td>
<td>48, 50, 78, 95</td>
</tr>
<tr>
<td>53. Gateshead</td>
<td>0.935</td>
<td>0.935</td>
<td>46, 48, 52</td>
<td>46, 48, 52</td>
</tr>
<tr>
<td>54. Newcastle</td>
<td>0.804</td>
<td>0.856</td>
<td>26, 46, 50</td>
<td>22, 78, 86</td>
</tr>
</tbody>
</table>

Number best-practice
Metropolitan: 24 17

Notes: See table 7.4.1 (c).
Source: Author's calculations.

Although most of the peer groups are different in the clustered analysis, this is to be expected in some measure after the cross section has been re-defined. Indeed one of the main arguments for clustering was that the selection of peers should be adjusted such that they are drawn only from a comparable group of LEAs. Consequently, Newcastle-upon-Tyne for example, is now compared with its Metropolitan counterparts Solihull, Rotherham and Kirklees. In the non-clustered analysis the peer group included the seemingly dissimilar authorities in the Isle of Wight and Northumberland in addition to a more intuitive comparison with Birmingham (see table 7.4.1 (b)). This example apparently lends some support to
Table 7.4.1(c)
DEA discriminating power and peer group comparisons in the English counties

<table>
<thead>
<tr>
<th>LEAs</th>
<th>Efficiency clustered</th>
<th>Efficiency all LEAs</th>
<th>Peer Group clustered</th>
<th>Peer Group all LEAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>58. Avon</td>
<td>0.922</td>
<td>0.922</td>
<td>59,78,86, 95</td>
<td>59,78,86, 95</td>
</tr>
<tr>
<td>63. Cheshire</td>
<td>0.942</td>
<td>0.925</td>
<td>78,80,86, 95</td>
<td>48,78,86, 95</td>
</tr>
<tr>
<td>67. Derbyshire</td>
<td>1.000</td>
<td>0.994</td>
<td>67</td>
<td>45,46,50, 82,86</td>
</tr>
<tr>
<td>68. Devon</td>
<td>0.961</td>
<td>0.958</td>
<td>67,70,78, 86,92,96</td>
<td>48,86,92, 96</td>
</tr>
<tr>
<td>69. Dorset</td>
<td>0.984</td>
<td>0.985</td>
<td>78,50,95, 96</td>
<td>50,59,86, 95</td>
</tr>
<tr>
<td>70. Durham</td>
<td>1.000</td>
<td>0.982</td>
<td>70</td>
<td>28,44,48, 82</td>
</tr>
<tr>
<td>71. E Sussex</td>
<td>0.983</td>
<td>0.958</td>
<td>78,80,95</td>
<td>48,78,86, 95</td>
</tr>
<tr>
<td>72. Essex</td>
<td>0.966</td>
<td>0.963</td>
<td>59,78,95, 86</td>
<td>48,78,95, 95</td>
</tr>
<tr>
<td>73. Gloucestersh</td>
<td>0.969</td>
<td>0.969</td>
<td>61,81,86, 95, 96</td>
<td>61,81,86, 95, 96</td>
</tr>
<tr>
<td>74. Hampshire</td>
<td>0.963</td>
<td>0.963</td>
<td>78,95,96</td>
<td>50,59,86, 95</td>
</tr>
<tr>
<td>75. Here & Worcs</td>
<td>0.977</td>
<td>0.973</td>
<td>59,78,81, 86,90</td>
<td>48,78,86, 90, 95</td>
</tr>
<tr>
<td>76. Hertfordh</td>
<td>0.922</td>
<td>0.903</td>
<td>59,61,95</td>
<td>2,19,48, 95</td>
</tr>
<tr>
<td>79. Kent</td>
<td>0.994</td>
<td>0.969</td>
<td>67,78,80, 81,86,95</td>
<td>50,78,86, 95</td>
</tr>
<tr>
<td>80. Lancashire</td>
<td>1.000</td>
<td>0.992</td>
<td>80</td>
<td>65,82</td>
</tr>
<tr>
<td>83. Norfolk</td>
<td>0.954</td>
<td>0.947</td>
<td>77,81,86, 90</td>
<td>48,86</td>
</tr>
<tr>
<td>85. Northamptonsh</td>
<td>0.986</td>
<td>0.973</td>
<td>64,78,81, 86,96</td>
<td>48,86,90, 96</td>
</tr>
<tr>
<td>87. Nottinghamsh</td>
<td>0.973</td>
<td>0.937</td>
<td>64,67,70, 77,81</td>
<td>44,46,48, 86</td>
</tr>
<tr>
<td>88. Oxfordsh</td>
<td>1.000</td>
<td>0.999</td>
<td>88</td>
<td>86,88,95, 96</td>
</tr>
<tr>
<td>89. Shropshire</td>
<td>0.929</td>
<td>0.929</td>
<td>81,86,90, 96</td>
<td>81,86,90, 96</td>
</tr>
<tr>
<td>91. Staffordshire</td>
<td>0.957</td>
<td>0.926</td>
<td>67,78,80</td>
<td>44,48,78, 86</td>
</tr>
</tbody>
</table>

Number best-practice Counties: 23 19

Numbers best-practice
All clusters: 62 44 (table 7.4.1(a), (b) & (c))

1. Column 1 contains efficiency scores based on the 3 separate administrative clusters of LEAs.
2. Column 2 contains the efficiency scores from Chapter 3 based on a single frontier for all 96 LEAs.
3. The peer groups in column 3 originated in the clustered analyses of performance and those in column 4 in the whole-sample evaluation undertaken in Chapter 3.

Source: Author's calculations.
the argument in Chapter 4 that there is no clear, formal link between the peer group and less inefficient production. In particular the larger, "indiscriminant" comparison of all 96 LEAs in Chapter 3 appears to have led to the selection of counter-intuitive peers in many cases. However restricting the comparison to a smaller group of more comparable authorities seems to have defined more acceptable peers for inefficient authorities. In this case the widespread recommendation in the literature of the peer group as a blueprint for improving inefficient performance is more plausible. Equally, for as long as there is evidence that the performance comparison is too broad, the peer group loses much of its significance.

(3) The existence of targets

A third element in discriminating power is the ability of DEA to identify an accurate target. A clear definition of the target is crucial for the adjustment of performance at the inefficient LEA. The possibility that target performance may have changed with the choice of the cross section is explored in table 7.4.2 (a) and (b) which compares the input targets for teaching expenditure per pupil in the clustered and non-clustered DEA results. Note that table 7.4.2 includes only those LEAs with non-unit efficiency scores in both sets of results to reduce its size to more tractable proportions.

In both the counties and the urban authorities, the non-clustered results from Chapter 3 suggest the greater adjustments in teaching expenditure. The average adjustment to spending in the counties is 5 per cent in the non-clustered context and 3.7 per cent in the clustered results (table 7.4.2(b)). Similarly, the average non-clustered target for the urban authorities suggests a larger adjustment of 9.2 per cent in teaching expenditure, as against an average of 8.2 percent in the separate clusters (table 7.4.2(a)). It is notable that in either set of results the urban authorities have the larger potential savings. Indeed, the average target for the urban authorities on a clustered basis (= £622) is very close to the actual average spend in the counties.
The efficiency status of some individual LEAs has changed dramatically after clustering. Havering, for example, had one of the ten lowest efficiencies (TE = 0.89) in the non-clustered DEA run, on which basis it could be recommended to make an eleven per cent cut in teaching spend per pupil. Yet the DEA results estimated on the London LEAs alone suggested that Havering is best-practice such that no resource reductions could be recommended.6

Large changes in the target spend are also apparent at other authorities – for example Richmond, Bury, Nottinghamshire and Staffordshire. In most cases efficiency status has improved such that their potential savings in the clustered DEA runs are smaller. However, two of the rural LEAs, Dorset and Norfolk, together with the Metropolitan borough of Newcastle are less efficient on the clustered basis. A few other authorities (Oldham, Salford, Gateshead, Avon, Gloucestershire and Shropshire) have a consistent efficiency evaluation irrespective of the cross section in which their efficiencies have been evaluated. It will also be noted that these LEAs have identical peer groups in the clustered and the whole-sample evaluation. In this small kernal of inefficient authorities, the DEA efficiency ratings would appear to be unequivocal. With stable peer groups there is, in principle, clearer information to improve productive performance.

Yet for the 18 authorities like Havering newly rated best-practice in the clustered runs, there remains considerable ambiguity over their performance. The efficiency of Waltham Forest and Havering, for example, has risen dramatically: from, respectively, 0.85 and 0.89 to unity using the clustered cross sections.
Table 7.4.2(a)
The target level of teaching expenditure per pupil before and after clustering in London and the Metropolitan boroughs

<table>
<thead>
<tr>
<th>LEA</th>
<th>Actual £</th>
<th>Target Clustered £</th>
<th>Target £</th>
<th>Saving Clustered %</th>
<th>Saving %</th>
</tr>
</thead>
<tbody>
<tr>
<td>London Boroughs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Croydon</td>
<td>664</td>
<td>638</td>
<td>623</td>
<td>3.9</td>
<td>6.2</td>
</tr>
<tr>
<td>9. Haringey</td>
<td>761</td>
<td>755</td>
<td>755</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>14. Kingston</td>
<td>644</td>
<td>631</td>
<td>621</td>
<td>2.0</td>
<td>3.6</td>
</tr>
<tr>
<td>17. Redbridge</td>
<td>668</td>
<td>643</td>
<td>628</td>
<td>3.7</td>
<td>6.0</td>
</tr>
<tr>
<td>18. Richmond</td>
<td>707</td>
<td>641</td>
<td>603</td>
<td>9.3</td>
<td>14.7</td>
</tr>
<tr>
<td>21. ILEA</td>
<td>883</td>
<td>671</td>
<td>657</td>
<td>24.0</td>
<td>25.6</td>
</tr>
<tr>
<td>Metropolitan Boroughs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Walsall</td>
<td>667</td>
<td>602</td>
<td>597</td>
<td>9.7</td>
<td>10.5</td>
</tr>
<tr>
<td>34. Bolton</td>
<td>641</td>
<td>590</td>
<td>582</td>
<td>8.0</td>
<td>9.2</td>
</tr>
<tr>
<td>35. Bury</td>
<td>652</td>
<td>616</td>
<td>589</td>
<td>5.5</td>
<td>9.7</td>
</tr>
<tr>
<td>36. Manchester</td>
<td>749</td>
<td>654</td>
<td>653</td>
<td>12.7</td>
<td>12.8</td>
</tr>
<tr>
<td>37. Oldham</td>
<td>589</td>
<td>581</td>
<td>581</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>38. Rochdale</td>
<td>686</td>
<td>587</td>
<td>572</td>
<td>14.4</td>
<td>16.6</td>
</tr>
<tr>
<td>39. Salford</td>
<td>684</td>
<td>603</td>
<td>603</td>
<td>11.8</td>
<td>11.8</td>
</tr>
<tr>
<td>41. Tameside</td>
<td>620</td>
<td>590</td>
<td>589</td>
<td>4.8</td>
<td>5.0</td>
</tr>
<tr>
<td>47. Sheffield</td>
<td>669</td>
<td>624</td>
<td>608</td>
<td>6.7</td>
<td>9.1</td>
</tr>
<tr>
<td>51. Leeds</td>
<td>588</td>
<td>585</td>
<td>580</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>53. Gateshead</td>
<td>638</td>
<td>593</td>
<td>593</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>54. Newcastle</td>
<td>739</td>
<td>594</td>
<td>634</td>
<td>19.6</td>
<td>14.2</td>
</tr>
<tr>
<td>Average (London and Metropolitan)</td>
<td>681</td>
<td>622</td>
<td>615</td>
<td>8.1</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Notes: See table 7.4.2 (b).

Source: Author's calculations.

Some variation in targets is to be expected in a smaller cross section because best-practice will have changed. However it is not encouraging that efficiency status has changed dramatically in some individual cases. This has two important implications. In the first instance it suggests the target may be subject to significant and unpredictable change. The scale of adjustments required to improve inefficient organisational performance have become unclear with substantially different implications for future funding. Secondly, it undermines the Pareto interpretation of the target which is widely found in the literature. For example in the clustered results Waltham Forest is best-practice and by convention Pareto efficient. However the broader comparison in Chapter 3 found it had a non-unit efficiency of 0.85 and so, by the same convention, it cannot be Pareto efficient.
Table 7.4.2 (b).
The target level of teaching expenditure per pupil before and after clustering in the English counties.

<table>
<thead>
<tr>
<th>LEA</th>
<th>Actual</th>
<th>Target Clustered</th>
<th>Target</th>
<th>Savings Clustered</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£</td>
<td>£</td>
<td>£</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Avon</td>
<td>638</td>
<td>588</td>
<td>588</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Cheshire</td>
<td>632</td>
<td>595</td>
<td>584</td>
<td>5.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Devon</td>
<td>616</td>
<td>592</td>
<td>585</td>
<td>3.9</td>
<td>5.0</td>
</tr>
<tr>
<td>Dorset</td>
<td>604</td>
<td>589</td>
<td>595</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>E Sussex</td>
<td>617</td>
<td>607</td>
<td>591</td>
<td>1.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Essex</td>
<td>602</td>
<td>582</td>
<td>579</td>
<td>3.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Gloucestersh</td>
<td>622</td>
<td>603</td>
<td>603</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Hampshire</td>
<td>618</td>
<td>616</td>
<td>595</td>
<td>0.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Here & Worcs</td>
<td>602</td>
<td>588</td>
<td>586</td>
<td>2.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Herts</td>
<td>664</td>
<td>612</td>
<td>599</td>
<td>7.8</td>
<td>9.8</td>
</tr>
<tr>
<td>Kent</td>
<td>605</td>
<td>601</td>
<td>586</td>
<td>0.7</td>
<td>3.1</td>
</tr>
<tr>
<td>Norfolk</td>
<td>623</td>
<td>594</td>
<td>601</td>
<td>4.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Northants</td>
<td>609</td>
<td>601</td>
<td>592</td>
<td>1.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Nottingham</td>
<td>637</td>
<td>620</td>
<td>597</td>
<td>2.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Shropshire</td>
<td>639</td>
<td>594</td>
<td>594</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Staffordsh</td>
<td>635</td>
<td>608</td>
<td>588</td>
<td>4.3</td>
<td>7.4</td>
</tr>
<tr>
<td>Average</td>
<td>623</td>
<td>599</td>
<td>591</td>
<td>3.7</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Notes: The target in column 3 and the savings in column 5 originate in the non-clustered analysis in Chapter 3. Source: Author's calculations.

This difficulty with targets goes back to a general problem in relative efficiency measurement of comparing like with like. There may be grounds in some cases for a smaller number of comparisons to exclude non-comparable organisations. The LEA data set was grouped into 3 smaller clusters in an attempt to improve the peer group comparison. It was argued that the peer might be more appropriately defined in terms of LEAs operating in similar conditions.

It is perhaps not unreasonable to suggest that local authority management would argue that membership of the cross section should be restricted. London boroughs for example may feel that the inclusion of rural authorities in the comparison unfairly depresses their efficiency score.

Nunamaker (1985) argued that organisations have incentives to manipulate their
efficiency score through expansion of the input–output variable set. This increases the probability that an organisation will dominate in at least one dimension. With equal effect organisations can protect future funding by arguing for smaller numbers of comparisons and hence, in effect, higher efficiency scores.

Clearly there are several reasons for varying the size of the cross section used in evaluation. Some of these – for example the manipulation of efficiency scores – are less compelling. In other circumstances, however, restricting membership may be more appropriate. The clustering approach in this Chapter was an attempt to add meaning to the peer group comparison, so that inner city boroughs would not be compared with prosperous rural authorities facing quite different problems.

However there should be limits to the extent to which the performance comparison is curtailed. All authorities can presumably point to some unique feature in their catchment area. To attempt to take account of all such factors would have high costs and ultimately make relative efficiency measurement meaningless.

To bring section 7.4 to a close the following conclusions can be noted. It is apparent that several aspects of DEA are not invariant to the size of the cross section used to explore performance. The replication of the LEA results on a clustered basis has shown that the efficiency score and its associated target, together with the peer group are susceptible to substantial (and largely unpredictable) change as the size of the cross section is altered. Accordingly, as smaller numbers of LEAs were compared, the DEA-efficiency scores tended to rise (table 7.4.1) and the implied resource reductions (in general) fell (table 7.4.2), and the peer groups for inefficient LEAs were reselected (table 7.4.1). Combining the results from the three clusters yielded 18 additional best-practice LEAs; these significantly reduced the rank of the efficiency ordering vis a vis the broader comparison in Chapter 3.

The ambiguity of best-practice performance in the results calls into question the pervasive Pareto interpretation of DEA-efficiency in the literature (e.g. in Lewin
and Morey (1981)). The results in this section are therefore consistent with the \textit{a priori} arguments in Chapter 6 on the distinct definitions of Pareto and DEA-efficiency.

\section*{7.5. Conclusion}

This Chapter has investigated aspects of the discriminating power of Data Envelopment Analysis. This was achieved via an examination of frontier efficiency in administrative clusters of LEAs. The clustering procedure was prompted by a desire to ensure that the performance comparison was of "like-with-like". On this basis three separate (and smaller) frontier comparisons were undertaken — of London boroughs, of Metropolitan boroughs and of the English counties. In principle, each of these clusters has greater internal homogeneity than the whole-sample comparison of rural and urban LEAs; and the peer may not be drawn from among authorities to which the inefficient LEA bears less resemblance.

The clustering procedure constitutes a form of sensitivity analysis. Earlier work (e.g. Charnes \textit{et al} (1985) and Nunamaker (1985)) concentrated on the effects of adding or deleting variables from the model. Clustering, by contrast, examines the effects of altering the size of the comparison for a \textit{given} number of variables.

The clustered results provide evidence that three aspects of DEA are not invariant to the size of the cross section used to evaluate performance. These are (1) the number of untied efficiency scores; (2) the choice of peer group; and (3) the existence of targets. Each of these is important in the identification and (where necessary) adjustment of operations for improved performance. For example, the ranking of outcomes (however derived) has been widely undertaken in the literature.
on educational evaluation — see the league tables constructed by Gray and Jesson (1987) on the basis of exam pass rates. The definition of a peer group, meanwhile, broaches the general problem of comparability in relative efficiency measures.

In the clustered performance, relatively larger numbers of best-practice were identified in each cluster. The most marked change occurred in London where 13 authorities achieved best-practice as against only 6 in Chapter 3. Similar changes were noted in the other clusters.

The increase in best-practice decreased the rank of the efficiency ordering. In Chapter 3, 51 authorities had untied non-unit efficiencies giving the input-efficiency ordering rank 52; the clustered results identified an additional 18 best-practice authorities and so the rank of the efficiency ordering of the whole cross section (summing across clusters) is reduced to 35. The ability of DEA to identify finer variations in performance appears to be limited by the size of the cross section. Hence a smaller number of comparisons will in general lead to more tied efficiency scores as the number of best-practice rises.

The definition of a meaningful peer group touches on the problem of comparing like-with-like in relative efficiency measures. "Non-comparable" units should be excluded in the selection of the peer group. This implies restricting membership of the cross section such that peers can only be drawn from the same family of organisations. The clustering which this suggests may lead to the selection of a more intuitive peer group. For example, in the non-clustered analysis the peer group for Newcastle-upon-Tyne included the seemingly dissimilar authorities in the Isle of Wight and Northumberland. After clustering, the peer group included only Solihull, Rotherham and Kirklees. Likewise all other peer groups were selected only from the appropriate "home" cluster of authorities. This meant that in nearly all cases the peer group changed vis a vis that selected in Chapter 3. In principle the new peer groups are more intuitive than their predecessors and may come closer to fulfilling the role of operational blueprints for improved performance. Unless the
peer group fulfils this role, its identification in DEA is of little practical purpose and in this sense the discriminating power of DEA is curtailed. Clearly the definition of a meaningful peer group is an area for future research.

The new targets identified from the clustered results were less satisfactory than the new peer group comparisons. In some individual cases (eg Waltham Forest, Havering and Wigan) efficiency has changed dramatically leading to the complete elimination of the target. Efficiency scores on the whole were higher, reducing the potential savings from targets. The average target in the urban authorities suggested potential savings of around 8.1 per cent, falling from 9.2 per cent in the non-clustered analysis (table 7.4.2(a)); in the counties the average savings fell from 5 per cent to just 3.7 per cent (table 7.4.2(b)) suggesting that rural performance is relatively better than in the urban authorities irrespective of the breadth of the comparison underlying the efficiency scores.

The marked changes in efficiency after clustering, especially the increasing preponderance of best-practice calls into question the pervasive Pareto interpretation of DEA-efficiency in the literature. For example, can an LEA like Waltham Forest with an efficiency score of 0.85 be credibly considered best-practice after clustering? The large change in the efficiency status of LEAs like Waltham Forest is due to the less exacting nature of the performance comparison in the smaller clusters, which significantly raises an authority's probability of dominance on at least one variable (see table 7.3.1). Since in some circumstances the appropriate size of the performance comparison may be disputed (because of problems in confronting like-with-like) it may not be possible to pin down an unambiguous set of best-practice. Other things equal, the probability of dominance in LEAs will vary according to the choice of cross section. This undermines the credibility of DEA-dominance as an evaluation criterion since it does not define clearly those levels of performance which might, in principle, be attainable. In this sense, the clustered results are consistent with the arguments in Chapter 6 on the distinct definitions of Pareto and DEA-efficiency – in particular that DEA best-practice may be an inferior definition.
of dominance.

Finally, it was noted that the proportion of best-practice was relatively higher in the smaller, clustered cross sections. The smaller of the LEA groups, the 21 London boroughs, had the largest proportion of best-practice; similarly, the largest of the clusters, the 39 counties, had the lowest proportion of best-practice. This suggested that the discriminating power of DEA can be increased by broadening the evaluation cross section to include more DMUs.

Various other strategies were also identified in order to reduce the sensitivity of DEA to the size of the cross section. For a fixed number of DMUs, a CRS technology will dominate VRS or NIRS (non-increasing returns) alternatives so that in general the numbers of best-practice will be lower under constant returns. Secondly, a smaller number of variables is likely to reduce the set of dominant units (Nunamaker (1985)). Tied unit-efficiencies can therefore be limited by restricting the variable set to "core" activities alone. Parkan (1987) also suggested the iterative use of DEA to break best-practice ties.

Footnotes.
1. The concept of a complete ordering over states of the world is discussed at greater length in Sen (1973), Chapter 1.
2. Even this unlikely circumstance could not guarantee the identification of a single best-practice establishment since two or more could dominate (i.e., tie) on the variable in question.
3. 4 is the maximum number of decimal places reported in the program to which I have had access. Clearly ties can be broken by reporting the efficiency score to a greater number of decimal places. However at some point the extra digits cease to have any meaning.
4. Note that in very large cross sections the ranking would be unlikely to be completed. A complete efficiency ordering with no ties would require the existence of a single best-practice DMU and no ties in non-unit efficiencies.
5. Formal aspects of the definition of the peer group are discussed in Fare and Hunsaker (1986) and Fare, Lovell and Zieschang (1983).
6. As already indicated, table 7.4.2 includes only those LEAs with non-unit efficiency scores in both clustered and non-clustered results. Hence Havering is
excluded from table 7.4.2(a) but can alternatively be found in table 7.4.1(a).

7. The discussion in section 6.6 of Chapter 6 gives further examples of problems in defining efficiency in relative terms.

8. At some inefficient authorities the peer group was identical in both the clustered and non-clustered results (i.e. at Oldham, Salford, Tameside, Gateshead, Avon, Gloucestershire and Shropshire). The stability of these peer groups suggests that they are robust to changes in the breadth of the comparison and that they are drawn from the appropriate LEA family. In these circumstances the peer group comparison is a much more plausible indicator of what (and how) the inefficient authority may be able to achieve.
Chapter 8. A conclusion and appraisal

This Chapter discusses some of the conclusions which have arisen during the course of the thesis and adds some suggestions for future research.

This thesis has approached the problem of relative efficiency measurement in the public sector using Data Envelopment Analysis (DEA). It is the first comprehensive study of its kind outside the United States. The use of DEA is particularly appropriate because of the defects in traditional methodologies and the broader problems of public sector evaluation.

Traditional studies of efficiency have typically scaled performance in terms of the average standard embodied in least squares cost or production functions. By definition, an average efficiency comparison cannot hope to eliminate the full extent of wasted potential in production. Consequently in real applications, an OLS cost function would tend to legitimise some degree of inefficient performance.

An organisation producing t outputs from m inputs is able to define $t \times m$ ratio measures of performance. A priori, however, there is nothing which guarantees these will give a consistent overview of production. In this context a less ambiguous evaluation of production suggests a total-factor view of efficiency.

The problems associated with average efficiency comparisons and simple ratio indicators can be overcome in the use of Data Envelopment Analysis. DEA embodies the total-factor view of efficiency and so it gives a consistent summary of performance in a multiple-output setting. Equally it compares outcomes with the best observed practice and so it accords with the more exacting principle of a frontier efficiency comparison.

Early work with DEA, viz. Farrell (1957) and Charnes, Cooper and Rhodes (1981, 1979, 1978), made unnecessarily restrictive scale assumptions regarding the
shape of the underlying technology. Consequently the non-parametric approach was
generally over-shadowed by the use of statistical frontier techniques – although these
themselves were not without serious problems. By the mid-1980s however the Indian
economist Rajiv Banker had developed a program which permitted a more realistic
computation of the frontier with "varying returns to scale".

The thesis has taken advantage of the revised Banker program to estimate the
efficiency of production in two areas of the British public sector. The first case
study, in Chapter 3, examined data on the performance of local authority production
of education; and the second, in Chapter 4, the incarceration of inmates in a group
of 33 prisons with a high remand population.

Existing sources of performance indicators such as the supplementary volumes
of the public expenditure white paper contain a confusing range of measures in
these areas. The use of DEA offers an alternative source of performance "statistic"
yielding a more consistent overview of operations than is possible with traditional
measures. Hence in the analysis of local authority (LEA) spending, the performance
of all 96 English LEAs was reduced to a simple scalar reflecting their total-factor
productivity. The performance of the prisons data set was similarly simplified in a
manner which is broadly consistent with the aims of the Government's Financial
Management Initiative.

Of the 96 LEAs in the cross section in Chapter 3, 44 obtained a score of
unity and thus are relatively efficient in their management of teaching expenditure
per pupil. The remainder, 52 in all, are relatively input inefficient to varying
degrees, attaining an efficiency score less than unity. The results suggest the total
potential reduction in spending per pupil across all LEAs averages 3.4 per cent. The
distribution of these savings is not equal, however. The lowest efficiency scores were
recorded among the London and Metropolitan authorities while the rural authorities
appeared to perform rather better. It is possible that exam pass rates are not
covering the full range of activities (outputs) provided by the higher spending urban
authorities. In this sense the comparison may have been discriminating unfairly, especially against the ILEA which in terms of student numbers and spending is almost in a league of its own. Future research would benefit from access to a broader range of output measures which, where possible, are defined as net rather than gross outputs. It would be in the interests of the authorities themselves to attempt to provide such information given the new emphasis in the Education Reform Act (1980) which emphasises public over professional accountability.

A model of production at a group of 33 prisons was developed in Chapters 4 and 5. It was found that relative to a varying returns technology around 4.6 per cent of their total cost could have been saved if all of these institutions had reached best-practice standards. However, under a more searching constant returns to scale assumption, total savings rose markedly to 13.1 per cent. The increase in excess costs under the constant returns technology reflects the inclusion of divergences from scale efficiency. Taking account of the scale of operations dramatically affected the performance of certain institutions. Brixton is a case in point. Under VRS it obtained a unity efficiency ratio whilst under CRS its efficiency score fell to almost a half (0.53). Other establishments at Bedford, Oxford and Wormwood Scrubs for example, also experienced a marked fall in efficiency under constant returns. Using the Banker (1984) scale indicator it was possible to identify whether the scale problem was one of increasing or decreasing returns. Thus Brixton appeared to have very strong decreasing returns whilst others like Latchmere House had increasing returns. In the sample as a whole 17 prisons had IRS and 5 DRS, suggesting that there is scope for a policy of reallocation of prisoners.

It is noticeable that under varying returns to scale the average reduction in costs at prisons and LEAs is reasonably small (in each case under 5 per cent). The value of the technique in these areas has been to identify those particular units whose performance is clearly well out of line with the bulk of the sample. Prisons at Leicester and Bedford for example had technical efficiencies of, respectively, 0.78 and 0.71 in the more sympathetic varying returns comparison.
Although DEA has several advantages over other methodologies for performance evaluation, it nevertheless suffers from a variety of weaknesses which should be the subject of future research. One such topic is the acceptability and implementation of the DEA target which is designed to raise performance to best-practice standards. In an input-efficiency context a non-unity target implies a reduction in next period's funding. That is, the efficiency score for performance in period \(t \) is carried forward to affect funding in \(t + 1 \). For this to be at all acceptable requires that the efficiency score genuinely reflects underlying performance. It is not clear that this will always be the case since DEA is deterministic whereby the whole of deviations from the frontier may be noise. It is essential that future research develops a stochastic Data Envelopment Analysis which takes full account of the noise element in measured behaviour. The beginnings of a new stochastic DEA are indeed currently being laid by Banker (1988). Other work in this area has been discussed in Chapter 6.

Further difficulties in the use of targets and peer groups were evidenced in Chapter 7. In certain circumstances it may be appropriate to limit membership of the performance comparison. For example there are around 100 prisons of one type or another in the U.K. However only those with a significant remand content were included in the comparisons in Chapters 4 and 5. Since remand inmates are generally more costly to keep, it would have been unfair to broaden the cross section to include lower cost institutions. In the same way, Chapter 7 restricted the comparison of LEAs to administrative clusters which in principle have greater internal homogeneity. This ensured more intuitive peer group comparisons. However it also implies that the efficiency comparison is less discriminating and creates ambiguity over the size of the target (if any).

Where noise or other problems are not thought to distort the results, there is the additional question of quality of service and efficiency. Higher costs may be the result of a better quality service which may suffer from future budget restrictions. In the evaluation of the target itself, it will be useful for decision-makers to have well
defined norms and references against which to assess quality. If conventional standards of service delivery cannot be attained from existing resources, then a cutback in funding is inappropriate. As Schuller (1989, p. 193) has observed — "One thing is certain: crude and punitive use of performance indicators will set back the cause of appropriate and effective measurement many years".

This touches on a more general need for the investigation of the implementation of public performance measures. Chapter 4 developed arguments which suggest that the increased work effort involved in reaching a target may be rejected by employees who have lower, preferred effort levels which maximise their utilities. In these circumstances, improved performance would require installation of a system of bribes and penalties to coerce labour into offering greater effort. Hence although DEA may be able to measure inefficiency, it is unable in itself to say precisely how targets are to be achieved. Similarly, the public expenditure white paper has grown dramatically in size in the past ten years. Nevertheless, it is not clear what impact the inclusion of these additional performance measures is having in actual practice in the public sector.

There are two other important areas which require investigation. One is the development of formal variable-selection criteria. Currently there is no systematic procedure within DEA for selecting the input-output variables. In this sense, the efficiency score is ad hoc and open to manipulation. Organisations can seek to raise their efficiency status by increasing the number of variables in the model and arguing for the inclusion of unusual items on which the efficiency comparison is likely to be less demanding. As it stands, the literature has little to offer on this point, other than suggesting that the variable set should be "broadly representative" of the production process.

Secondly, it has often been argued that an advantage of DEA is its ability to generate a complete set of weights on inputs and outputs. However the existence of legislation, convention and policy-preferences suggest that in some instances
decision-makers will prefer to choose some of their own weights. These may be computed in alternative programs which constrain the weights to reflect preferences and which will avoid key variables being weighted zero. Work of this nature has been begun recently by Beasley and Wong (1989) and Dyson and Thanassoulis (1988).

More generally, and beyond the scope of Data Envelopment Analysis entirely, there is a need for research on the definition of public outputs. Attitudes have changed in recent years and less use is being made of input measures as crude proxies for outcomes. Nevertheless a great deal remains to be done in the definition and classification of public sector production.
References

Bessent, A and Bessent, W (1980) "Determining the comparative efficiency of schools through Data Envelopment Analysis", *Educational Administration Quarterly*, 16(2), 57–75.

Bowlin, W and White, J (1988) "Program auditing in Federal operations", 224

Craig, C and Harris, R (1973) "Total productivity measurement at the firm level", Sloan Management Review, Spring, 13–29.

Duncan, O, Featherman, D and Duncan, B (1972) Socioeconomic background and achievement, New York: Seminar Press.

Dunlop (1985) "The elusive concept, efficiency: A survey of the conceptual and measurement issues", occasional paper 109, Department of economics, University of Newcastle, N.S.W., Australia.

Fare, R and Grosskopf, S (1983a) "Measuring congestion in production", 226

Fisk, D (1984) "Public sector productivity and relative efficiency: The state of the art in the United States", in Haveman (ed.).

Econometrics (supplement), 13, 5–25.

Hyman, H (1942) "The psychology of status", *Archives of Psychology*, no. 269.

Miller, S (1987) "The value for money audit", Management Accounting, April, 37.

Perl, L (1973) "Family background, secondary school expenditure and student ability", Journal of Human Resources, 8, 156-180.

Performance indicators for prisons

Between 1978/79 and 1985/86 the number of prison officers increased by nearly 19 per cent, while the average inmate population rose by less than 12 per cent. Over the same period expenditure on the prison service rose by 36 per cent in real terms and further increases over the next three years were announced in the latest Public Expenditure White Paper.

A recent report by management consultants identifying widespread inefficiency in the prison service substantiates Government concern. Complementing in the service has been inflexible and overtime-driven; this has been combined with a divisive managerial structure. The objective of the Government's "Fresh Start" proposals – still the object of negotiation, though they were due to start being implemented in April 1987 – has been to introduce new working arrangements which would achieve greater efficiency in the use of manpower. A new system of delegated budgeting is part of the response. In April 1986 prison establishments were delegated full financial responsibility for the management of manpower resources. A new costing system is being used by prison governors in the development of performance indicators to help allocate those resources in the most cost-effective manner.

The sources of poor productivity in prisons can now be identified using a new input-output technique known as data envelope analysis (DEA). This technique has surpassed traditional efficiency measures such as the rate of return on capital and output per head which, insofar as they indicate the returns to only a single input, are no more than partial indicators of efficiency. Moreover, a spending Department may be in control of many establishments, each implementing such a range of policies that they require a comprehensive, summary performance indicator.

Data envelope analysis provides an efficiency index which can be used to summarise the performance of establishments. The index is a single unambiguous
number which gives a less equivocal summary of performance than will a collection of productivity ratios, such as output per head. Central management can use the index to set poor performers targets for improving their output or reducing their costs.

Naturally the outputs and inputs chosen to calculate the index should relate to the main objectives of the service. Published sources such as the annual prison department report give reasonably clear statements of Home Office objectives for the prison service. These seem directed at:

1. Secure containment of offenders;
2. The quality and rehabilitative effect of prison life; and
3. Efficient use of resources.

Published sources contain no systematic information on the quality of prison life; they do, however, provide us with enough data to say something about the first and second objectives.

Secure containment

Though the term "data envelope analysis" may be unfamiliar, the technique is really no more than an – albeit sophisticated – extension of traditional ratio analysis. Suppose that the output of a prison is custody: this can be measured by the number of prisoner/days. One of the several inputs into prisoner/days is man/hours. Thus, a traditional productivity ratio describing the efficiency of a prison would be:

\[
\frac{\text{prisoner/days}}{\text{man/hours}}
\]

Production, however, is seldom the result of applying labour alone; it is generally the result of applying labour in combination with power, equipment and
That ratio, therefore, is really measuring the efficiency not of labour as such but of a combination of production factors that together make up a whole establishment.

To see the difference between traditional analysis and data envelope analysis, take a prison with two outputs, 4,000 prisoner/days and 80 units of security, defined as the number of punished offences such as assaults and escapes committed by inmates. (Like many such intermediate outputs, that definition is ambiguous: insofar as it represents work done by staff done in dealing with offences, a high figure could indicate efficiency; but insofar as it also reflects general standards of behaviour and education within the prison, a low figure could denote greater effectiveness.) Together with those outputs, there are three prison inputs, man/hours, energy consumption, and materials.

<table>
<thead>
<tr>
<th>One unit of input:</th>
<th>Leads to (outputs):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prisoner/day</td>
</tr>
<tr>
<td>Man/hours</td>
<td>10</td>
</tr>
<tr>
<td>Materials</td>
<td>20</td>
</tr>
<tr>
<td>Energy</td>
<td>50</td>
</tr>
</tbody>
</table>

As the table shows, the traditional approach yields six performance ratios measured in three different units – units of labour, materials and energy. For each man/hour ten prisoner days result, but only one fifth of a unit of security. Similarly, for each unit of energy, 50 prisoner days and one unit of security obtain. On the assumption that the incarceration of larger numbers (more prisoner/days) can only be considered of benefit if security is not jeopardised, the simple arithmetic underlying these figures does not tell the decision-maker how to trade off one against the other.

Since public sector decision-makers are unwilling or unable to reveal their priorities for outcomes, that can only be done weighting the value of producing one output against that of another. Data envelope analysis is a specialised linear program
which can objectively weight outputs and inputs so that the traditional productivity ratios illustrated above can be summarised into a single measure of efficiency. The program would, on the basis of data fed into it, choose the weights \((w)\) appropriate to each input and output in such a way as to form an overall productivity ratio:

\[
\frac{w_1 \text{(prisoner/days)} + w_2 \text{(security)}}{w_3 \text{(man/hours)} + w_4 \text{(materials)} + w_5 \text{(energy)}}
\]

In this way, the details of traditional productivity ratios can be combined into a comprehensive summary ratio, which is simply a weighted average of the prison's outputs relative to a weighted average of its inputs. These weights are carefully chosen by the program so that the resulting efficiency index lies somewhere between nought and one.

Efficient use of resources

According to the DEA index if a local prison is not wasting resources in comparison with the others then it will score 1.0 and is said to be relatively efficient or "best-practice". A result of less than 1.0 means a prison has a peer group of similar prisons which are performing better than itself. In this case, the prison is said to be relatively inefficient vis-à-vis this peer group.

In order to illustrate this, we have looked at 25 local English prisons, 15 of which score achieve a score of 1.0 on the index. These are the best-practice prisons. The remainder, ten in all, are relatively inefficient to varying degrees, with scores below 1.0; for these, the program has chosen a peer group of comparable best-practice prisons. Thus the line managers in Birmingham, for example, can be asked to get their performance up to the relatively better managerial and work practices at Leeds and Oxford prisons.
Greater efficiency should lead to lower costs. Taking account of the levels of
security and standards of living these prisons are providing, the results suggest that
the inefficient prisons could indeed have run on lower budgets in 1984/85. The
point is most apparent in poor performers such as Wormwood Scrubs, for which the
DEA index is 0.66. This means that its peer group prisons are Leeds and Oxford,
are providing similar levels of service at two-thirds the cost. If the comparison is a
reasonable one, targeted reductions in costs of about one-third could have been
advised in this case, reducing expenditure for manpower and non-manpower costs
combined from £16.2 to £10.5, leading to savings of around £5.8. The
remainder of the savings – ranging from £800,000 in Cardiff and Durham to £2.3
in Birmingham – are justified by making similar comparisons with prisons found in
the peer groups (see table 2).

<table>
<thead>
<tr>
<th>Prison</th>
<th>Efficiency</th>
<th>Best-practice peer group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedford</td>
<td>0.72</td>
<td>Leeds, Oxford</td>
</tr>
<tr>
<td>Birmingham</td>
<td>0.82</td>
<td>Leeds, Oxford</td>
</tr>
<tr>
<td>Bristol</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Brixton</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Canterbury</td>
<td>0.79</td>
<td>Gloucester, Leeds, Shrewsbury</td>
</tr>
<tr>
<td>Cardiff</td>
<td>0.90</td>
<td>Gloucester, Leeds</td>
</tr>
<tr>
<td>Dorchester</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Durham</td>
<td>0.97</td>
<td>Gloucester, Leeds, Liverpool, Manchester</td>
</tr>
<tr>
<td>Exeter</td>
<td>0.81</td>
<td>Gloucester, Leeds, Oxford, Shrewsbury</td>
</tr>
<tr>
<td>Gloucester</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Leeds</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Leicester</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Lewes</td>
<td>0.81</td>
<td>Leeds, Oxford</td>
</tr>
<tr>
<td>Lincoln</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Liverpool</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Manchester</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Norwich</td>
<td>0.84</td>
<td>Leeds, Oxford</td>
</tr>
<tr>
<td>Oxford</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Pentonville</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Reading</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Shrewsbury</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Swansea</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Wandsworth</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Winchester</td>
<td>0.81</td>
<td>Bristol, Leeds, Manchester, Oxford</td>
</tr>
<tr>
<td>Wormwood Scrubs</td>
<td>0.66</td>
<td>Leeds, Oxford</td>
</tr>
</tbody>
</table>

Most of the savings came, as might be expected, on the manpower side, but it is striking that the least inefficient prisons were actually doing quite as well as far as non-manpower costs are concerned. If it had not been for their inefficient manning, they would scarcely have merited an appearance in the table. All told, if all the prisons were to achieve their targets, they could have yielded a saving of over 8 per cent in manpower costs, and nearly 10 per cent in non-manpower costs. Total savings would amount to £m17.

In principle, these savings can be thought of as minimal, because additional targets might also be set for the so-called best-practice establishments. After all, these are not themselves necessarily efficient in an absolute sense, but only in comparison with others. They are, in other words, the best of a poor bunch, and consequently the prison department may wish to set them additional targets.

This could be done on the basis of extra information obtained from further detailed scrutiny, such as was undertaken for the joint Prison Department/PA Management Consultants report on complementing in the service. The study team visited 33 representative penal establishments, and concluded that better manpower utilisation was possible if the restrictions inherent in the present shift and pay systems were removed. Across the service as a whole – which includes other types of establishment in addition to local prisons – this could translate into savings of 15 to 20 per cent of total costs.

How, in practice, could those targets be set and the savings achieved?
Table 2: Targets and savings

<table>
<thead>
<tr>
<th>Prison costs</th>
<th>Actual spending</th>
<th>Target spending</th>
<th>Potential savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£m</td>
<td>185</td>
<td>17</td>
</tr>
<tr>
<td>All</td>
<td>203</td>
<td>185</td>
<td>17</td>
</tr>
<tr>
<td>manpower</td>
<td>157</td>
<td>144</td>
<td>13</td>
</tr>
<tr>
<td>non-manpower</td>
<td>46</td>
<td>42</td>
<td>5</td>
</tr>
<tr>
<td>Bedford</td>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
</tr>
<tr>
<td>manpower</td>
<td>3.8</td>
<td>2.8</td>
<td>1.1</td>
</tr>
<tr>
<td>non-manpower</td>
<td>1.1</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Birmingham</td>
<td>11.3</td>
<td>9.0</td>
<td>2.3</td>
</tr>
<tr>
<td>manpower</td>
<td>8.6</td>
<td>7.1</td>
<td>1.6</td>
</tr>
<tr>
<td>non-manpower</td>
<td>2.6</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Canterbury</td>
<td>4.8</td>
<td>3.8</td>
<td>1.0</td>
</tr>
<tr>
<td>manpower</td>
<td>3.9</td>
<td>3.1</td>
<td>0.8</td>
</tr>
<tr>
<td>non-manpower</td>
<td>0.9</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Cardiff</td>
<td>5.7</td>
<td>4.8</td>
<td>0.8</td>
</tr>
<tr>
<td>manpower</td>
<td>4.7</td>
<td>4.0</td>
<td>0.8</td>
</tr>
<tr>
<td>non-manpower</td>
<td>1.0</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Durham</td>
<td>10.7</td>
<td>9.9</td>
<td>0.8</td>
</tr>
<tr>
<td>manpower</td>
<td>8.3</td>
<td>7.6</td>
<td>0.7</td>
</tr>
<tr>
<td>non-manpower</td>
<td>2.4</td>
<td>2.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Exeter</td>
<td>5.6</td>
<td>4.5</td>
<td>1.1</td>
</tr>
<tr>
<td>manpower</td>
<td>4.5</td>
<td>3.7</td>
<td>0.8</td>
</tr>
<tr>
<td>non-manpower</td>
<td>1.2</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Lewes</td>
<td>6.3</td>
<td>5.0</td>
<td>1.3</td>
</tr>
<tr>
<td>manpower</td>
<td>4.8</td>
<td>3.9</td>
<td>0.9</td>
</tr>
<tr>
<td>non-manpower</td>
<td>1.5</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Norwich</td>
<td>7.3</td>
<td>5.8</td>
<td>1.5</td>
</tr>
<tr>
<td>manpower</td>
<td>5.4</td>
<td>4.6</td>
<td>0.9</td>
</tr>
<tr>
<td>non-manpower</td>
<td>1.9</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Winchester</td>
<td>7.7</td>
<td>6.2</td>
<td>1.5</td>
</tr>
<tr>
<td>manpower</td>
<td>6.0</td>
<td>4.9</td>
<td>1.1</td>
</tr>
<tr>
<td>non-manpower</td>
<td>1.7</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Wormwood Scrubs</td>
<td>16.2</td>
<td>10.5</td>
<td>5.8</td>
</tr>
<tr>
<td>manpower</td>
<td>12.5</td>
<td>8.2</td>
<td>4.2</td>
</tr>
<tr>
<td>non-manpower</td>
<td>3.7</td>
<td>2.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Source: as for table 1.
Information and objectives

At the heart of both the Government's "Fresh Start" proposals and their broader financial management initiative lie the new delegated budgeting procedures. Line managers have new powers and incentives to control budgets defined around cost centres. The spread of financial responsibility has brought with it the necessity for managerial accountability, which must be secured, in part, by the collection of apposite performance measures. Regular screening of prison establishments using DEA could assist in the development of an effective costing system for the service. As a complementary management-tool in these resource allocation decisions, data envelope analysis can provide decision-makers with:

(1) An index which summarises the performance of establishments in a single unambiguous number;

(2) The ability to set precise, quantifiable, spending targets for more efficient service;

(3) Leverage on underperforming line managers through the identification of a comparable peer group of prisons with better managerial and working practices;

(4) The basis for a "top-down" system of resource allocation – for example, the prison department may delegate funds to establishments on the basis of pre-set formulae, convention and performance information, like the DEA efficiency index;

(5) Using information over time, the ability to monitor establishments so as to gauge trends in performance.

Lastly, the aggregate targets set by data envelope analysis could be used to strengthen the picture of the prison department in the Public Expenditure White Paper. In its latest form (Cm 56–ii), the White Paper leaves objectives rather hazy, viz. "...sustain the rule of law" (see also the article by Rodney Lord in the last
issue of *Public Money*). It would be preferable, and in accordance with the stated aims of the financial management initiative, to provide a crisper statement of objectives and their attainment, based perhaps on the target and savings illustrated in table 2.

Footnote

Competition and efficiency in refuse collection: A critical comment

I. Introduction

In a recent article in *Fiscal Studies*, Domberger, Meadowcroft and Thompson (1986, hereafter DMT) examined the privatisation of refuse collection by local authorities. Their results indicated that competitive tendering of these services could give substantial cost reductions. A follow-up piece by Cubbin, Domberger and Meadowcroft (1987, hereafter CDM) examined the same sample using Farrell frontier techniques rather than the regression analysis used by DMT. Increases in physical productivity were estimated which were held to account in large measure for the cost reductions reported by DMT.

Here we make a critical appraisal of the DMT article. We suggest that DMT have overestimated the cost reductions because their cost equation is misspecified, that they have measured the gains from privatisation while ignoring important losses, and that there is evidence of reductions in service quality. We further suggest that the results of the CDM follow-up study are just as compatible with a rise in labour intensity as with improved technical efficiency.

II. How big is the contract/tender effect?

The DMT study measures the cost reductions from privatisation by estimated coefficients on two dummy variables which indicate whether an authority has contracted out or tendered while subsequently retaining any substantial part of its refuse disposal service in-house. This procedure means that the contract and tender effects (which do not differ significantly) are measured by the average reduction in costs for the authorities concerned relative to those otherwise implied by the overall cost function.

Among the privatisers there are three authorities with costs around 50 per cent
lower than otherwise expected, 2 cases with costs about 45 percent lower, and 1 case about 40 per cent lower. The cost reductions in 19 other cases are each considerably smaller – 10 around 10 per cent, 5 around 18 per cent and 2 each around 26 per cent and 33 per cent. There are 4 cases of privatisers with costs above what would otherwise be expected. Thus, while there is little doubt about the sign of the contract/tender effect, its average estimated magnitude depends on 6 to 8 highly atypical points.

Among about 300 authorities that have not been privatised, DMT do not find one with costs more than about 33 per cent below predicted levels. Thus this treatment of the data does not simply show the privatisers as being among the most effective authorities; it shows 6 to 8 of them (the "superstars") as being in a league of their own with costs substantially below even the most efficient of the 300 public sector operations.

The relative cost performance reported by DMT is contradicted by two other studies of the same problem. The Audit Commission (1984) found a very different distribution. According to the Commission's report, there is a tail of high-cost public sector operations, but no difference between low-cost services in the public and private sectors. The Audit Commission's production function is prescriptive rather than statistical, but it does give a fuller representation of input and output variables – for example, it distinguishes between 17 basic variants of collection method, against DMT's 5. Quite independently of the Audit Commission, the CDM follow-up study finds exactly the same pattern. Once again, although there are many cases of high-cost public sector operations, those that have been privatised are among the lowest-cost, not in a league of their own. This study does not have more explanatory variables, but it does combine them in a more flexible way. What may explain this repeated contradiction of DMT's results is that both the other studies have a more complex specification of the cost function than that used by DMT. There must therefore be serious doubt as to whether DMT have specified the cost function with sufficient precision to obtain accurate estimates of the
contract/tender effect. Further, the completely different distributions of efficiency
ratings in the DMT and CDM studies call into question the compatibility between
the two sets of results, which is simply assumed by CDM. To accept both sets of
results at face value would imply very great variability in the source of cost
reductions – most privatisers would save by using fewer inputs, while the superstars
could only have done so well by buying inputs more cheaply.

An obvious question is whether DMT's superstars – those producers with
exceptionally low ratios of actual to predicted costs – have anything in common
with each other. The descriptions of local government areas in the Municipal Year
Book indicate that all the superstars are in the rural areas.

For the financial years 1979/80 and 1984/85 we have ranked authorities by unit
costs. In both cases, and almost without exception, rural and urban authorities are
ranked in distinct groups. DMT used a density variable to capture rural/urban
differences. This is equivalent to allowing the intercept of the cost function to vary
with the degree of rurality while the coefficients of other explanatory variables are
constrained to be the same in both environments. It would be more appropriate to
treat urban and rural authorities as separate data sets because rural "rounds" are
profoundly different qualitatively, although an accurate demarcation might be very
difficult. The pattern of DMT's results certainly suggests that there has been
insufficient control for these geographical differences. (The Audit Commission also
found smaller rural authorities difficult to assimilate to others.) However, there is as
yet an insufficient number of privatised authorities for this more sophisticated
treatment to be feasible.

As a final check on DMT's results, we attempted to find time series
confirmation of the contract/tender effect which they estimate on cross-section data.
If they have measured the effect correctly, it should be detectable over time as
authorities put their services out to tender. We were unable to fit full production
functions for before and after the tendering process. Instead we adopted the cruder
procedure for measuring unit costs for each authority for 1979/80 and 1984/85. However, since DMT's function exhibits constant returns to scale with output as by far the most important determinant of total costs, this simple before and after comparison may still be useful.

Between 1978/79 (before privatisation) and 1984/85 (the second year of DMT's sample) nominal unit costs for 319 authorities rose by 22.2 per cent. For the contracting or tendering authorities where data were available for both years, the average nominal increase was 10.0 per cent. This implies savings through privatisation of slightly less than 10 per cent. This again indicates a contract/tender effect well below that measured by DMT.

DMT's procedure requires that the propensity of authorities to privatise should be independent of their level of costs. If the privatisers had worst cost performance, then DMT's results are strengthened. Our time series results suggest that this "endogeneity" bias actually works the other way – that the privatisers already had lower than average costs.²

II. Is the contract/tender effect due to competition

We now turn from DMT's results to their interpretation. DMT suggest that the cost reductions they measure are attributable to increased efficiency brought about by competition. But the imminence of privatisation could already induce competitive effects in authorities that had not yet concluded a tendering exercise and, since competition is a very diffuse process, the general climate might be expected to alter behaviour even where there are no plans for privatisation. Furthermore, the existence of a contract or a tendering process in two authorities does not imply that there is the same pressure of competition in each. DMT treat authorities that have privatised as little as 10 per cent of their refuse disposal service in the same way as those that have privatised all of it, when there has been considerable variation in the terms of the contracts offered out to tender: in Gloucester, clauses were
included that tended to shield the direct labour organisation (DLO) from certain types of cost-cutting by their competitors (NUPE/IWC (1984)).

According to DMT's interpretation, a contract is formalised when competitive bidding reveals the least-cost supplier. There is considerable evidence that this rationale for tendering does not pertain in the case of refuse collection. It appears that improvements in local costs have been realised through pressures in labour markets rather than through competition in the market for refuse services themselves.

The 20 contracts awarded up to November 1983 were distributed among only 5 companies. These are close to being regional monopolists offering the only tender in several local authorities (see Municipal Journal, 2 December 1983, p. 1844).

Some contracts may have been won through loss-leading behaviour. Exclusive Cleansing won the contract for refuse collection in South Kesteven, but before work began the firm applied for a 2.5 per cent increase in the value of the contract (The Guardian, 30 April 1984). In Taunton Deane, Waste Management applied for a 13.2 per cent revaluation of its contract within its first year (Somerset County Gazette, 29 June 1984 and Express and Echo (Exeter and Devon), 28 August 1984). Opportunistic loss-leading may be acting as a barrier to new competition, by prohibiting the entry of firms offering sustainable prices.

The contractor may incur no major sunk costs in setting up the operation because he may inherit DLO facilities at a cost that permits a price below long-run equilibrium. Thus contractors' bids will be distorted downwards in the short run such that the competition they represent discriminates unfairly against publicly provided services. The authorities concerned have an interest in expediting privatisation which may well conflict with obtaining full value for the assets they sell.

DMT argue that the similarity in performance of authorities that contracted out services and those that tendered but then kept in-house provision indicates that the
key factor is competition in product supply. It should be stressed, therefore, that
the CDM study does not confirm this similarity but finds completely different cost
performance by the two groups. Galbraith (1987) has assessed the general record of
tendering in a way which further undermines DMT's simple interpretation in terms
of competition. Complex supervision during and after the tendering process is
necessary, Galbraith suggests, in order to derive sustained benefits from the changes.
This interpretation runs far more in terms of managerial expertise and administrative
reform than in terms of the immediate competition invoked by DMT.

Doubts about competition in the output market suggest that cost improvements
originate in pressures in input markets. A limited survey of the local press and the
municipal literature largely confined to the superstars supports this hypothesis. For
example, approaching half the direct labour organisation was made redundant in
South Kesteven and Taunton Deane. In South Kesteven, Exclusive Cleansing
employed 57 to undertake work formerly done by 90 (The Grantham Journal, 15
June 1984). Waste Management Company in Taunton Deane re-employed 22 from a
DLO of 43 (Public Services Action, no. 6, p. 65).

Working conditions have deteriorated after contracting out. The premises used
by staff in Taunton Deane have no toilets or canteen, vehicles have become
unroadworthy, and the working day is two hours longer (Public Services Action, no.
6, p. 5). In the Wirral, the largest contract moved to the private sector, 84 per
cent of the company's vehicles were unroadworthy (Liverpool Daily Post, 13
February 1985).

These experiences highlight the existence of gainers and losers after contracting
out. DMT measure only the gains, not the associated losses. Yet the distinction
between competition in labour and product markets bears upon their results. If the
tendering process exposes workers to labour market competition, it will certainly be
possible to intensify work norms, degrade working conditions, etc. Thus, pecuniary
savings arising from improvements in microeconomic efficiency have to be weighed
against the possibility of losses arising from a poorer quality service and worsened employment conditions.

In response to our criticisms of DMT, the follow-up study at least recognises the possibility of losses from privatisation. The discussion, however, is hardly adequate. CDM argue that there is little evidence of straightforward wage-cutting. But this would be unrepresentative of present trends in the British economy – what one would expect, and what is quite consistent with CDM's results, is large-scale labour-shedding combined with a tightening of production norms. CDM say that "Flexible working practices do not necessarily imply a deterioration in working conditions". This is surely true, but new working practices that benefit employees can presumably be negotiated with them and do not require the threat of dismissal central, in our view, to the privatisation exercise. CDM also now qualify the initial interpretation of monetary savings as pure welfare gain with the phrase "To the extent that the resources thereby released are allocated to the supply of goods and services...". This amounts to the major concession that large-scale unemployment and labour market disequilibrium compromise the potential benefits of cost-cutting operations.

Because sophisticated monitoring systems yielding regular data do not appear to exist, it is difficult to evaluate the general state of services contracted out. Nonetheless, the evidence so far suggests that in some instances levels of service have fallen such that cost improvements are devalued somewhat.

Penalties totalling £45,000 were levied on Pritchard Services in Wandsworth in 1983 for poor performance (Sunday Telegraph, 7 August 1983). Financial penalties have also been levied on contractors in the Wirral and Vale of White Horse. Complaints have been recorded at a level of 200 per week in Bath (Sunday Times, 31 July 1983), whilst in the first 15 months of private contracting in the Wirral 30,000 complaints were received (Liverpool Daily Post, 16 October 1983 and Public Services Action, no. 12, p. 3). These standards of performance are encouraging a
more careful appraisal of privatisation, with some authorities, such as Eastbourne (incidentally, one of DMT's superstars), returning their refuse services to the public sector (The Times, 6 March 1987). Without a survey of quality and labour conditions in the public sector, such evidence may not be conclusive – but it points to the need for more systematic investigation of these issues.

IV. Conclusion

DMT (1986) seemed to offer strong, decisive evidence in favour of a policy when the first experiments with that policy were just beginning. Our aim in this critique has been to show that the evidence has not been as strong as was suggested. To the extent that DMT have identified genuine cost reductions, these may be traced to "losers" among the workforce and are devalued by worries about loss-leading and the level of service. Thus the econometric results presented by DMT must be thought of as provisional until there is much more experience of contracting out services such as refuse disposal. Further analysis will then be necessary.

Footnotes
2. The authors of the article being criticised have been most open and generous in their assistance to us. We have also been greatly helped by the research staff of the National Union of Public Employees. Joe Ganley would like to thank the Economic and Social Research Council for financial support. None of the above necessarily agrees with the views expressed in this article.
3. This point was suggested to us by an anonymous referee.