Show simple item record

dc.contributor.authorXing, Z
dc.contributor.authorJiang, X
dc.date.accessioned2024-04-26T10:01:48Z
dc.date.available2024-04-26T10:01:48Z
dc.date.issued2024-04
dc.identifier.issn1385-8947
dc.identifier.other151492
dc.identifier.other151492
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/96470
dc.description.abstractThis study developed neural network potentials (NNPs) specifically designed for ammonia and ammonia-hydrogen combustion systems for the first time. The NNPs were employed to perform reactive molecular dynamics (RMD) simulations, combining the precision of density functional theory (DFT) calculations with the efficiency of empirical force fields. NNP-based RMD simulations provide a more detailed and comprehensive understanding of chemical reaction mechanisms. The impacts of different equivalence ratios and hydrogen addition on ammonia combustion as well as NOX and N2O formation were analysed. The results indicate that both the addition of hydrogen and the reduction of equivalence ratios contribute to enhancing ammonia combustion. The primary reason is the enhancement of the oxidative environment within the system, leading to a significant increase in the frequency of reactions associated with oxidising radicals such as OH, O, and HO2. This is also the cause for the increased production of NO and NO2, because the formation of NO depends on the oxidation of NH and NH2, while NO2 is formed through the oxidation of NO. An interesting finding is that the addition of hydrogen decelerates the generation of N2O, while reducing the equivalence ratio promotes N2O production. This phenomenon is attributed to the additional H radicals generated during hydrogen decomposition, which hinders the binding between NH and NO, resulting in a reduction in the formation of the precursor HN2O required for N2O formation.en_US
dc.format.extent151492 - 151492
dc.languageen
dc.publisherElsevier BVen_US
dc.relation.ispartofChemical Engineering Journal
dc.rightsThis item is distributed under the terms of the Creative Commons Attribution 4.0 Unported License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
dc.titleNeural network potential-based molecular investigation of pollutant formation of ammonia and ammonia-hydrogen combustionen_US
dc.typeArticleen_US
dc.rights.holder© 2024 The Author(s). Published by Elsevier B.V.
dc.identifier.doi10.1016/j.cej.2024.151492
pubs.notesNot knownen_US
pubs.publication-statusPublisheden_US
pubs.publisher-urlhttp://dx.doi.org/10.1016/j.cej.2024.151492en_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
qmul.funderUtilisation of Synthetic Fuels for "Difficult-to-Decarbonise" Propulsion::Engineering and Physical Sciences Research Councilen_US
rioxxterms.funder.project2acae7f5-fd8c-4d20-af2e-447fb9664166en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record