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Abstract

Computational fluid dynamics is reaching a level of maturity that it can be

used as a predictive tool. Consequently, simulation-driven product design and

optimisation is starting to be deployed for industrial applications. When per-

forming gradient-based aerodynamic shape optimisation for industrial appli-

cations, adjoint method is preferable as it can compute the design gradient of

a small number of objective functions with respect to a large number of design

variables efficiently. However, for certain industrial cases, the iterative calcu-

lation of steady state nonlinear flow solver based on the Reynolds-averaged

Navier–Stokes equations tends to fail to converge asymptotically. For such

cases, the adjoint solver usually diverges exponentially, due to the inherited

linear instability from the non-converged nonlinear flow. A method for stabil-

ising both the nonlinear flow and the adjoint solutions via an improved time-

stepping method is developed and applied successfully to industrial relevant

test cases. Another challenge in shape optimisation is the shape parametrisa-

tion method. A good parametrisation should represent a rich design space to

be explored and at the same time be flexible to take into account the various

geometric constraints. In addition, it is preferable to be able to transform

from the parametrisation to a format readable by most CAD software, such

as the STEP file. A novel NURBS-based parametrisation method is devel-

oped that uses the control points of the NURBS patches as design variables.

In addition, a test-point approach is used to impose various geometric con-

straints. The parametrisation is fully compatible with most CAD software.

The NURBS-based parametrisation is applied to several industrial cases.
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Nomenclature

Flow equation

U conservative flow variable vector
Q source term for Navier–Stokes equations
t time
Ω control volume for integration
∂Ω boundary of control volume for integration
xi coordinates of the center of control volumes
~n normal vector of control volume boundary surfaces
ρ density
~v velocity vector
p pressure
T temperature
H total enthalpy
E total energy
~Θ heat flux
¯̄τ stress tensor
Fc convective flux
Fv viscous flux
κ thermal diffusivity
µ dynamic viscosity
δij Kronecker delta
ν̃ Spalart–Allmaras turbulence variable
Ri flow residual of the i-th control volume
Vi volume of the i-th control volume
A time stepping operator
UL reconstructed left state
UR reconstructed right state

∆~S flux face area with orientation
A flow Jacobian matrix
ARoe flow Jacobian matrix with Roe-averaged variables
ρ̃ Roe-averaged density
ũ, ṽ, w̃ Roe-averaged x, y and z velocity

H̃ Roe-averaged total enthalpy
λ1, λ2, λ3,4,5 eigenvalues of the flow Jacobian matrix
c speed of sound
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δ entropy fix threshold
~ri,c, ~rj,c vector from i/j-th node to the flux face center
∇U gradient of flow variables
B correction matrix for boundary nodes with strong boundary condition
~vghost velocity of ghost cell for boundary nodes with weak boundary condition

Time stepping

β implicit under-relaxation factor
σ Courant number
∆tmaxi maximal local time step of the i-th control volume according to the spectrum

of the local flow Jacobian matrices
∆Un

i flow variable update for the i-th control volume at the n-th pseudo time step
Pi,i preconditioning matrix for the i-th control volume
α1, αm Runge-Kutta stage coefficients

Multigrid

h fine grid
H coarse grid
Rh, RH residual on fine/coarse grid
fh, fH source term on fine/coarse grid
Uh, UH flow solution on fine/coarse grid
Eh, EH solution error on fine/coarse grid
IHh flow solution transfer operator from fine to coarse grid (restriction)

ÎHh residual transfer operator from fine to coarse grid (prolongation)
IhH flow solution transfer operator from coarse to fine grid (prolongation

Adjoint solver

R(I) nonlinear flow residual based on first order spatial discretisation
R(II) nonlinear flow residual based on second order spatial discretisation
J(U, α) cost function
αi i-th design variable
I operator for taking the imaginary part of a complex number
X,Xs volume and surface node coordinates
L linearised flow equation operator (the flow Jacobian matrix)
LT adjoint flow equation operator (the transposed flow Jacobian matrix)
u linear perturbation variable
v adjoint variable

Ũ exact solution to the discretised nonlinear flow solution
εnflow, ε

n
adj error of the nonlinear flow and adjoint solutions at the n-th pseudo time step

L,D,U lower, upper triangular and diagonal matrices from the LU decomposition
L,U lower and upper triangular matrices from the incomplete LU-factorisation
Km Krylov subspace of dimension m

2



Mesh deformation

[Kij]3×3 stiffness matrix connecting nodes i and j
l distance between nodes i and j
δXj the displacement of node j to be solved

δX̃j the known displacement of node j
σ, ε stress/strain tensor for linear elasticity
µ, λ Lamé constants
E, ν Young’s modulus and Poisson’s ratio
d(x) wall distance

CAD-based parametrisation

P coordinates of NURBS control points
u, v parametric variables of the surface mesh points
B(u, v) NURBS rational basis functions
G0, G1 G0 and G1 constraint functions
δP perturbation of NURBS control points
C derivative of continuity constraint function with respect to control points
Ptot total pressure
Cm
T , C

m
R trailing edge thickness/radius constraint function at m-th design iteration

η turbine stage efficiency
φ turbine capacity
χ turbine stage reaction ratio
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Chapter 1

Introduction

Computational fluid dynamics (CFD) has reached a level of maturity that simulation-

driven‘ product design and optimisation is becoming a reality. With the realisation of

predictive CFD simulations, CFD shape optimisation, is starting to be widely deployed

for industrial applications such as in turbomachinery [46, 53] and in automotive indus-

tries [70]. One way of performing CFD shape optimisation is to use non-gradient based

algorithms where only the value of the objective function is needed at each optimisation

step. Therefore, many simulations are performed until the global minimum is gradually

reached [96]. This approach is easy to set up and a large number of different candidate

designs could be evaluated simultaneously, therefore it is quite popular for industrial ap-

plications. Alternatively, gradient-based optimisation, using both the function value and

its gradient to improve the design, can be used to find local optima more rapidly. One

major drawback of the gradient-based approach is it is likely to be trapped in local optima

and thus fail to find the global. Therefore, it is best when combined with a non-gradient

based approach in order to efficiently search for the global optimum [54, 25].

This work focuses on the gradient based optimisation method only, since for many

industrial applications, such as shape optimisation of turbomachinery components, aero-

plane wings and fuselages where the baseline shapes are believed to be near optimal, a

large shape change is neither expected nor desirable. For these applications, it would

be more efficient to use gradient-based optimisation methods. Nevertheless, it does not

imply that gradient-based approach is restricted to produce a very small design devia-

tion. In fact, the constantly seen small design change in literature using gradient-based

method could be attributed to either the limitation of the mesh deformation capability

or the tight constraints that the improved design has to meet.
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1.1 Gradient calculation using adjoint methods

The key to successfully performing a gradient-based optimisation is the efficient and ro-

bust calculation of the gradient. This is particularly difficult for CFD optimisation based

on Reynolds averaged Navier-Stokes (RANS) equations since a nonlinear equation with

tens of millions of unknowns need to be iteratively solved. To reduce the computational

cost, one could either reduce the order of RANS equation on both continuous and dis-

crete level [7], or lower the fidelity of the flow model, e.g., use potential flow instead of

RANS [74]. However, to better harness the advantage of high-fidelity simulation tools

and the even increasing computational resource, it is probably wise to base the optimisa-

tion on the full order RANS model and aim to develop efficient methods for computing

the corresponding gradient. One simple way to calculate the gradient is to use finite

differences. There are two issues with this approach. The first difficulty is in choosing a

suitable step size when strongly nonlinear terms are present such as shock and turbulence

source terms. Tangent linear solver or complex variable method could both alleviate the

accuracy issue associated with the difficulty in finding a suitable step size. The second

issue, preventing all three methods (finite difference, tangent linear and complex variable

method) to be widely used for industrial applications is that the computational cost all

scales linearly with the number of design variables which is routinely in the order of a

few thousands. For typical industrial applications, the number of objective functions are

usually only a few, while the number of design variables is usually much larger. For these

cases, the most efficient way of calculating the gradient is to use the adjoint method. The

computational cost of computing the gradient scales linearly with number of the objective

functions and is almost independent of the number of the design variables. This is thus

an enabling feature for gradient-based high-fidelity CFD shape optimisation.

1.2 Robustness issues of adjoint solvers

A major obstacle in using the adjoint solver for industrial applications is the lack of

robustness of the adjoint solver for flows of practical interest, due to the complexity of

either the geometry or the flow physics itself. The steady flow solver may not always

be able to converge asymptotically, which is usually not a problem for flow analysis,

as long as the objective function has converged to engineering accuracy. However, the

adjoint solver is very sensitive to the nonlinear flow solver convergence. The adjoint

equation, derived by linearising the nonlinear flow equation about an equilibrium point,

inherits the linear stability/instability of the nonlinear flow. The adjoint solver using

the same time discretisation as the nonlinear flow solver, would either asymptotically

converge or diverge. The linear stability of the resulting system depends on both the
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spatial and temporal discretisations, which, together, is reflected mathematically in the

spectrum of the system matrix of the linearised adjoint equation. To this end, it is not

distinguished whether the instability is of physical or numerical origin, as it is a result of

the interplay of both. The linear instability is usually qualitatively associated with certain

flow phenomena such as an oscillating shock wave and an unstable flow separation point

while it also depends on many numerical aspects such as the mesh and the discretisation.

For example, flow around an aerofoil with a blunt trailing edge may well be expected

to have vortices shed periodically from the trailing edge. However, this could be easily

suppressed by deliberately coarsening the mesh around the trailing edge or by using a

large CFL number to average out the physical oscillation.

A few solutions have been proposed to stabilise the linearised equation, when the

nonlinear flow solver fails to asymptotically convergence. In [13], generalized minimal

residual (GMRES) method is proposed to solve the linearised equation, instead of using

the same time-marching scheme as the nonlinear flow. GMRES does not diverge even in

the presence of outliers. However, its convergence does significantly slow down for stiff

system. Convergence difficulty of GMRES is constantly encountered in industrial appli-

cations, although rarely reported in literature. Another method that has been proposed

for stabilisation is recursive projection method (RPM) [15]. RPM uses power method to

identify the most unstable modes (ones that after a large number of iterations start to

exponentially diverge in distinct rate) and applies Newton step to those unstable modes

while the existing time-marching is applied to the remaining stable system. The difficulty

in applying RPM to large industrial cases is that it takes many iterations to identify the

unstable modes, the number of which is unknown a priori, leading to large memory re-

quirement and long CPU time. Similar to RPM, proper-orthogonal-decomposition (POD)

technique [26] has been proposed as an alternative method. The stabilisation method us-

ing POD was originally proposed to stabilise the flow solver, but it is straightforward to

use the method for the stabilisation of the corresponding linear and adjoint solvers. In

[26], POD stabilisation method is demonstrated on a small two-dimensional aerofoil case

where the oscillation is believed by the author to be too small to be representative of any

oscillation seen in realistic three dimensional industrial cases.

In this thesis, a new stabilisation method for stabilising the adjoint solution for large

industrial cases are developed. The stabilisation method is based on an improved time-

stepping scheme that not only improves the convergence of the steady state nonlinear

flow solution, but also consequently improves the adjoint convergence. Compared to

the existing methods, because it eliminates the linear instability by improving numerical

scheme of the nonlinear flow solver, rather then use a better linear solver that tolerate

the linear instability.
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1.3 Shape parametrisation methods

In addition to a robust adjoint solver, another key aspect of industrial shape optimisa-

tion is the parametrisation. A versatile parametrisation should be able to parametrise

complex shapes and be able to accommodate various constraints, i.e., geometric, manu-

facturing, etc. Parametrisation determines the design space and thus the optimal shapes.

The shape parametrisation methods can be broadly categorised into mesh-based and

geometry-based. The mesh-based parametrisation uses the coordinates of CFD mesh

points as the design variable, while the geometry-based one uses the underlying geomet-

ric parameters as design variables. It is usually not up to the flow analyst to decide which

parametrisation to use as in practice, parametrisation is chosen at the design stage. Since

one parametrisation in general cannot be switched to another without loss of accuracy,

all the engineers working on the same geometry would need to use the same parametrisa-

tion whenever possible. Therefore, an important criterion in choosing a parametrisation

method is its compatibility with the industrial work flow. Computer-Aided-Design (CAD)

software is now routinely used for industrial shape design in aeronautical and automotive

industries, thus ideally, the parametrisation method should be compatible with the CAD

software to streamline the shape optimisation process. Here ’compatible’ means that the

parametrisation chosen for design optimisation should be able to be interchangeable with

CAD-based parameters.

The optimisation result strongly depends on the constraints imposed. A good parametri-

sation method should either have the constraint implicitly built into the parametrisation

itself or allow the various constraints to be imposed relatively easily.

1.4 Flow and adjoint solvers used in this work

In this thesis, three different nonlinear flow solvers and their accompanying discrete ad-

joint solvers are used for various parts of the work.

HYDRA

HYDRA [51] is a suite of finite volume method based CFD codes that solve the non-

linear compressible RANS equations [63] and its discrete adjoint [31] using block-Jacobi

preconditioned multi-stage Runge–Kutta time stepping on unstructured meshes. It is

an industrial CFD solver that has been extensively validated, particularly for turboma-

chinery applications. HYDRA uses automatic differentiation tool Tapenade, developed

at INRIA, to generate the linear and adjoint versions of the key nonlinear functions
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within the code. The code is used for the results in chapter 4 for robust adjoint solver

development and in chapter 6 for the CAD-based optimisation of a one-stage turbine.

MGOPT

MGOPT is an in-house compressible RANS flow and discrete adjoint solver developed at

Queen Mary University of London [17]. It is similar to HYDRA, but is implemented in

Fortran 90 which then allows modules and derived data types to simply the code. The

discrete adjoint also uses Tapenade and thus the adjoint code is automatically generated

at compiling time to inherit all the updates to the nonlinear flow solver. MGOPT has the

same core algorithm as HYDRA regarding the spatial and temporal discretisations, but

is much simpler, as a research code. Therefore, it is used as a test bed for developing new

algorithms. The JT-KIRK implicit time stepping algorithm, to be explained in chapter

4, is first developed in MGOPT, validated, and then reimplemented in HYDRA. The flow

and adjoint solver theories, implementation notes and the validation results in chapters

2 and 3 are based on MGOPT.

GPDE

GPDE is an in-house CFD solver for solving incompressible RANS flows and its discrete

adjoint [44]. Different from HYDRA and MGOPT, GPDE uses SIMPLE algorithm to

iterate the solution. Tapenade is also used for automatically generating the differentiated

subroutines for the discrete adjoint solver. This code is used for computing the nonlinear

flow, the adjoint as the surface sensitivity for the duct optimisation in chapter 7 since

the flow condition is low speed for which an incompressible solver is more suitable.

1.5 Summary

In this thesis, the two major challenges in applying gradient-based shape optimisation

to industrial applications are addressed: (i) the efficient and robust computation of the

gradient and (ii) the efficient and versatile shape optimisation method. The remainder

of the thesis is structured as follows. In chapter 2, the flow solver is explained in terms

of the mathematical formulation, algorithmic development and some implementation de-

tails. In chapter 3, the adjoint method is explained along with the development of an

adjoint solver for compressible RANS equations. The lack of robustness of an adjoint

solver that is currently widely used for turbomachinery applications is then explained

in chapter 4 with the proposed method to stabilise the adjoint solver. The proposed

method is applied to four industrial test cases relevant to turbomachinery industry to

demonstrate the enhanced robustness and the efficiency of both the nonlinear flow and
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adjoint solvers. Mesh deformation technique is explained in chapter 5 and CAD-based

shape parametrisation method is discussed in chapter 6. The adjoint-based shape optimi-

sation using the CAD-based parametrisation is then performed for two industrial cases,

an air duct from automotive industry in chapter 7 and a high pressure turbine stage from

turbomachinery industry in chapter 8. Finally, chapter 9 summarises the main findings

of this work and some directions for future work are proposed.
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Chapter 2

The RANS flow solver

This chapter covers the mathematical formulation of the Reynolds-Averaged Navier-

Stokes (RANS) equations and the numerical method to iteratively solve them, including

both the spatial discretisation and temporal integration methods.

2.1 The RANS flow equations

The governing equations for the compressible flow are based on the conservation law of

mass, momentum and energy. For a stationary control volume Ω with boundary ∂Ω, its

integral formulation is

∂

∂t

∫
Ω

Udv +

∮
∂Ω

(Fc − Fv) · nds =

∫
Ω

Qdv (2.1)

where Q is the source term. The conservative variables U , convective flux Fc and viscous

flux Fv are defined as

U = ρ

 1
~v
E

 , Fc = ρ~v · ~n

 1
~v
H

+

 0
p~n
0

 , Fv =

 0
¯̄τ · ~n
~Θ · ~n


and

~Θ = ¯̄τ · ~v + κ∇T

where ρ is density, ~v is the velocity, p is the static pressure, T is the temperature, κ

is thermal conductivity and and ~n is the unit normal vector on one face of the control

volume. The stress tensor ¯̄τ for Newtonian fluid under Stokes’ hypothesis is

τij = µ(
∂Ui
∂xj

+
∂Uj
∂xi

)− 2µ

3

∂Uk
∂xk

δij

with δij being the Kronecker delta, µ the dynamic viscosity.
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2.2 Spalart-Allmaras turbulence model

Turbulence is modelled with the Spalart–Allmaras (SA) one-equation turbulence model

[89] in this thesis. The SA model employs a transport equation for the eddy-viscosity

variable ν̃:

∂ν̃

∂t
+

∂

∂xj
(ν̃vj) = Cb1(1− ft2)S̃ν̃

+
1

σ

{
∂

∂xj

[
(νL + ν̃)

∂ν̃

∂xj

]
+ Cb2

∂ν̃

∂xj

∂ν̃

∂xj

}
−
[
Cw1fw −

Cb1
k2
ft2

](
ν̃

d

)2

+ft1||∆~v||22

The four terms on the right hand sie are eddy-viscosity production, diffusion, near-wall

turbulence destruction and transition source of turbulence. νL = µL/ρ is laminar kine-

matic viscosity and d denotes the distance to wall. As a simplified implementation, the

transition term ft1||∆~v||22 can be ignored, assuming the flow is fully turbulent.

The integral form of the eddy-viscosity transport equation is

∂

∂t

∫
Ω

ν̃dΩ +

∮
∂Ω

(Fc,T − Fv,T )dS =

∫
Ω

QTdΩ

where the convective flux Fc,T , the viscous flux Fv,T and the source term QTare

Fc,T = ν̃~v

Fv,T =
1

σ
(νT + ν̃)

∂ν̃

∂xj
nj

QT = Cb1(1− ft2)S̃ν̃ +
Cb2
σ

∂ν̃

∂xj

∂ν̃

∂xj
−
[
Cw1fw −

Cb1
k2
ft2

](
ν̃

d

)2

Initial and Boundary condition for eddy-viscosity ν̃: initial value of ν̃ is set as ν̃ =

0.1νL. The same value is also specified at inflow boundaries. At the outflow boundary,

ν̃ is extrapolated from the interior domain. At non-slip solid walls, ν̃ = 0. At slip walls

(such as symmetric plane),
∂ν̃

∂n
= 0

2.3 Discretisation of the flow equations

When the finite volume method (FVM) is used on unstructured meshes to solve the fluid

equation, each control volume is assigned a vector of flow variable to represent the average
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of the continuous distribution of the flow variable over the whole control volume

Ui :=

∫
Ωi
Udσ∫

Ωi
dσ

=

∫
Ωi
Udσ

Vi

with Vi being the volume of control volume i. Using the method of lines, the integral

form Eq. (2.1) can be written as

Vi
dUi
dt

+Ri(U) = 0 (2.2)

whereRi(U) is the residual term that represents the spatial discretisation of the convective

and viscous fluxes. The steady state solution is one state of U that satisfies the nonlinear

flow equation

Ri(U) = 0 (2.3)

for every control volume and it can be reached via

Un+1 = Un −A(R(U))

where the operator A represents the time stepping method used.

The formulation of residual R(U) depends on the spatial discretisation and thus de-

termines the accuracy of the converged solution, while the time stepping operator A
represents the temporal discretisation which determines how the intermediate solution

evolves to the final converged solution. When the method of lines is used, the spatial and

temporal discretisations can be devised separately.

2.3.1 Spatial discretisation

For a node-centred finite volume discretisation, the residual for each vertex (the center of

one control volume) is computed by looping over all the edges from the vertex. Hence the

essential step is to determine how to calculate the flux for each face of a control volume.

2.3.1.1 Convective flux

For a flux face with left and right states UL and UR and the oriented face ∆~S(= ~n∆S),

the flux is formally

F = F (UL, UR,∆~S) (2.4)

Numerous flux schemes exist, each of which has pros and cons. One of the most robust

shock-capturing scheme, Roe’s flux scheme [80], is used in this work. Roe’s flux follows

the thinking of a characteristic solver and use the absolute-valued Jacobian matrix to

provide unwinding effect:

F =
1

2
(F (UL) + F (UR))− 1

2
|ARoe|(UR − UL) (2.5)
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where

|ARoe| = RΛ|Λ|R−1
Λ (2.6)

with Λ and RΛ being the eigenvalues and right eigenvectors of the Jacobian matrix ARoe

using Roe-averaged interface state. The robustness and the shock-capturing capability

of the Roe flux is attributed to the specially designed Roe-average interface state defined

as

ρ̃ =
√
ρLρR

ũ =
uL
√
ρL + uR

√
ρR√

ρL +
√
ρR

ṽ =
vL
√
ρL + vR

√
ρR√

ρL +
√
ρR

w̃ =
wL
√
ρL + wR

√
ρR√

ρL +
√
ρR

H̃ =
HL
√
ρL +HR

√
ρR√

ρL +
√
ρR

which are rigorously devised such that it recognises when a jump (not necessarily an

infinitesimal one) of the state UR − UL is a pure jump in one characteristic family only

and thus produces the exact propagation velocity [52].

The Jacobian matrix using Roe-averaged values has five eigenvalues

λ1 = Vn − c, λ2 = Vn + c, λ3,4,5 = Vn (2.7)

where

Vn = ~v · ~n (2.8)

and c is the local sound speed. For stagnation point and sonic point, the vanishing

eigenvalue needs to be modified to be bounded away from zero. One of such fixes is

Harten’s entropy fix

λ̃ =

λ2 + δ2

2δ
if λ < δ

λ if λ ≥ δ

(2.9)

and the threshold δ can be set to some fraction of the local sound speed, e.g.,

δ =
c

10
(2.10)

For a first order accurate scheme, the left and right states UL and UR are the flow

variables of the left and right nodes respectively. Second order accuracy can be achieved

by assuming a linear distribution of the flow variable within each control volume, and
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in that case, the left and right states can be calculated by extrapolating from the node

value to the face center using the gradient, i.e.,

UL = Ui + (∇U)i · ~ri,c UR = Uj + (∇U)j · ~rj,c

where i and j are the indices of the left and right nodes, and ~ri,c and ~rj,c are the vectors

pointing from node i and j to the flux face center.

2.3.1.2 Viscous flux

Both the flow variables and their gradient are needed on the flux face in order to calculate

the viscous flux. The face value is simply the average of the flow variables at the left and

right nodes

Uf =
1

2
(Ui + Uj)

The gradient is first calculated for each node using either Green-Gauss or least-square

and then averaged at the flux face

∇U ij =
1

2
(∇Ui +∇Uj)

To avoid the checker-board pattern oscillation which cannot be suppressed by the above

gradient calculation, the gradient component along the face normal direction is replaced

by the directional derivative (
∂U

∂l

)
ij

=
Uj − Ui
|xi − xj|

(2.11)

and the unit vector ~tij along the line connection node i and j is

~tij =
xj − xi
|xj − xi|

(2.12)

The modified gradient average on the face can then be written as

(∇U)f = ∇U ij −

[
∇U ij · ~tij −

(
∂U

∂l

)
ij

]
~tij (2.13)

2.3.2 Wall boundary conditions

The correct formulation and implementation of the wall boundary condition is critical

for a robust flow solver. Two types of wall boundary treatments are considered: weak

boundary condition and strong boundary condition.
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2.3.2.1 Weak boundary condition

When a weak boundary condition is applied on wall boundaries, no explicit treatment

for the wall node residual is needed because the wall effect is taken into account by

constructing the flow variable at the ghost cell such that zero mass flux across the wall

boundary is satisfied. For a boundary node with boundary face normal ~n and velocity ~v,

the ghost cell velocity is then set to

~vghost = ~v − 2~v · ~n~n

for a slip wall, and set to

~vghost = −~v

for a no-slip wall. The density and pressure of the ghost cell will be the same as the wall

node. For a more accurate result, wall curvature should be taken into account to obtain

a more accurate pressure in the ghost cell, but it is beyond the scope of this work.

2.3.2.2 Strong boundary condition

The strong boundary condition explicitly enforces zero mass flux on the wall by setting

the velocity component normal to the wall (for slip wall) or the whole velocity (for no-slip

wall) to zero, and also set the corresponding residual component to zero, in order to avoid

an update for those zeroed components. In both cases, the correction for residual is

Rhardbc = (I −B)R

where B is the correction matrix defined as

B5×5 =

 0 0 0
0 ~n⊗ ~n 0
0 0 0


for slip walls and

B5×5 =

 0 0 0
0 I3×3 0
0 0 0


for no-slip walls The resulting nonlinear flow equations to solve become

(I −B)R(U) = 0

BU = 0

When a hard boundary condition is used, the force asserted by the fluid on the wall

boundary is formulated as
~F = (p~n−BR(U)) · ~n∆S
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where p is the static pressure and ∆S is the area of the boundary surface associated with

a particular boundary node.

HYDRA code used strong boundary condition for mesh points on both inviscid walls

and viscous wall. However, if a sharp corner is present on inviscid walls, the surface

normal of those points is set to zero, which essentially means weak boundary condition

is applied.

2.3.3 Temporal discretisation

Once the residual is calculated for each control volume, it needs to be integrated in time

in order to drive the solution to steady state. A generic time-marching scheme can be

written for node i as

Un+1
i − Un

i

∆ti
Vi = −(1− β)Ri(U

n)− βRi(U
n+1)

where the coefficient β > 0 provides a blending between explicit and implicit time step-

ping. If an implicit scheme is used, the residual at time level (n + 1) is linearised using

the Jacobian matrix at time level n to be

Ri(U
n+1) ≈ Ri(U

n) +
∂Ri

∂Uj

∣∣∣∣
U=Un

(Un+1
j − Un

j )

and by replacing ∆ti with σ∆tmaxi , Eq. (2.14) becomes

(
Vi

σ∆tmaxi

+ β
∂Ri

∂Uj

∣∣∣∣
U=Un

)∆Un
j = −Ri(U

n) (2.14)

where ∆tmax is the maximum allowable time step that can be estimated by the wave

speeds of the characteristics for all flux faces of each control volume, and σ is the CFL

number.

When σ = +∞, Eq. (2.14) becomes a Newton step, which gives quadratic convergence.

However, this approach is rarely taken for large cases for the following reasons:

• Newton step is stable only in the vicinity of the stationary point

• The exact Jacobian is difficult, if not impossible, to compute

• The storage overhead for the exact Jacobian is prohibitive

• The resulting linear system is stiff and difficult to solve

Therefore, for practical cases, various modifications can be done to make the system less

stiff, more robust and more memory efficient, such as
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• Introduce a finite CFL number

• Use an approximate Jacobian matrix

• Solve the linear system approximately

One widely used algorithm is block-Jacobi preconditioned point-implicit solver, which

is also used in the baseline solver in this work. For a block-Jacobi solver, the full exact

Jacobian matrix is approximated by only keeping the diagonal blocks and basing the

derivative on the 1st order nonlinear residual, and the time stepping becomes(
Vi

σ∆tmaxi

+ β
∂Ri

∂Ui

∣∣∣∣
U=Un

)
∆Un

i = −Ri(U
n) (2.15)

which is usually stable even with CFL set to infinity, but the finite time step is kept for

some cases with strong transient behaviour due to poor initialisation. For more details of

the block-Jacobi algorithm implemented in the solver, refer to [64, 21, 63]. To facilitate

the discussion of time integration, the LHS of both Eq. (2.14) and Eq. (2.15) is denoted

by a preconditioning matrix P, which is a function of CFL number, flow solution and

blending coefficient, and it is a sparse matrix consisting of 5× 5 blocks, each of which is

defined as

Pi,i =
Vi

σ∆tmaxi

+ β
∂Ri

∂Ui

∣∣∣∣
U=Un

and consequently the time stepping for node i becomes

Pi,i∆U
n
i = −R(Un)

The time marching of the flow equations is often combined with Runge–Kutta meth-

ods, with two major motivations. Traditionally, RK is used to provide additional stability

and thus to allow a CFL number larger than unity to be used for explicit solvers [40].

The other is to efficiently damp the high frequency error [95], in order to increase the

efficiency when combined with multigrid.

When an m-stage Runge–Kutta scheme is used, the solution Un is updated as follows

U (0) = Un

U (1) = U (0) − α1P
−1R(U (0))

...

U (m) = U (0) − αmP−1R(U (m−1))

Un+1 = U (m)

For block-Jacobi time stepping, the preconditioning matrix is inverted by directly invert-

ing each of the diagonal block matrices before the 1st stage and the inverted matrix P−1
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is stored to multiply with the residual vector at each stage to update the flow solution.

The associated memory for storing the block-Jacobian matrices for all control volumes is

only 5 times that of the flow solution and thus is deemed affordable.

2.4 Multigrid

Multigrid (MG) methods are a group of algorithms for solving partial differential equa-

tions using a hierarchy of grid levels. There are mainly two types of multigrid methods:

geometric multigrid and algebraic multigrid:

• Geometric multigrid (GMG) formulates the hierarchy of discretisation on a

series of successively coarsened meshes

• Algebraic multigrid(AMG) constructs the hierarchy of discretisation directly

from the system matrix itself

AMG has the advantage of being used as a black-box preconditioner without much

input from the user and thus has been widely used. GMG on the other hand, needs not

only mesh coarsening algorithms to generate a hierarchy of meshes, but also properly

constructed transfer operators between meshes. This causes some inconvenience in ap-

plying geometric multigrid, but also offers great flexibility: a good coarsening algorithm

can coarsen the mesh by taking into account the features of the flow, such as boundary

layers, and this will in turn make the multigrid much more efficient than the black-box

approach of AMG. In this work, we use the geometric multigrid method and use software

call ‘hip’ for mesh coarsening [64]. As an example, the unstructured mesh for NACA0012

airfoil is coarsened and shown in fig. 2.1

Figure 2.1: Three consecutive levels of multigrid meshes.

To explain the mathematical aspects of the multigrid, consider a nonlinear problem

R(U) = f
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where R stands for a general differential operator. A fixed-point iterative solver updates

the intermediate solution Un iteratively until the residual, f −R(U), is driven to zero:

Un+1 ← Un +A(f −R(Un)) (2.16)

where A denotes a time-stepping operator. For numerical computation, R and f need

to be discretised for a particular computational mesh denoted by h, and we denote this

discrete operator, i.e., the system matrix, and the source term by Rh and fh. The exact

solution Ûh of the discrete system satisfies

Rh(Ûh) = fh. (2.17)

The multigrid methods solve the discrete system in the following procedure:

• Pre-smooth the solution on fine grid h:

The intermediate solution Uh is updated as

Uh ← Uh +A(fh −Rh(Uh)) (2.18)

An important feature of the explicit smoothing operator A◦Rh is that it damps the

high frequency error modes efficiently but is much less effective for low frequency

ones. Therefore, the convergence using (2.18) quickly degenerates before reaching

full convergence. Multigrid is designed exactly to remedy this. Denote the error on

the fine grid as Eh

Eh = Ûh − Uh (2.19)

which by definition satisfies

Rh(Uh + Eh) = fh (2.20)

Subtracting Rh(Uh) from both sides yields

Rh(Uh + Eh)−Rh(Uh) = fh −Rh(Uh) = rh (2.21)

• Transfer of both the residual (rh) and the solution Uh to a coarser grid H:

Transferring both the residual rh and the solution Uh to the coarse mesh H using

transfer operators IHh and ÎHh (not necessarily the same) yields

RH(IHh U
h + EH)−RH(IHh U

h) = ÎHh r
h = ÎHh (fh −Rh(Uh)) (2.22)

Note that the source term on the coarse grid, instead of simply ÎHh f
h, becomes

fH = ÎHh f
h − ÎHh Rh(Uh) +RH(IHh U

h) (2.23)

19



Therefore, on the coarse mesh H, the discrete system to solve is

RH(UH) = RH(IHh U
h + EH) = ÎHh f

h − ÎHh Rh(Uh) +RH(IHh U
h) (2.24)

where UH is initialized using the solution from the fine mesh IHh U
h. The same

transfer is recursively carried out to an even coarser mesh until the coarsest mesh

is reached with smoothing applied on each level:

UH ← UH +A(fH −RH(UH)) (2.25)

• Prolong the correction on coarse mesh H to fine mesh h

Uh ← Uh + IhH(UH − IHh Uh) (2.26)

where IhH is the prolongation operator, which is usually the transpose of the solution

restriction operator IHh .

The description above explains the procedure for a V-cycle multigrid process on multi-

grid meshes. For GMG, the time-stepping operator A on the coarse grids is constructed

by applying the same spatial discretisation on different meshes. Usually, even when the

2nd order accurate spatial discretisation is used on the finest grid, only 1st order accurate

discretisation is applied to all coarser levels, due to the compromised grid quality during

the grid coarsening.

2.5 Flow solver validation

The in-house RANS flow solver MGOPT, for unstructured hybrid meshes accelerated by

geometric multigrid, is applied to the following test cases for validation.

2.5.1 Turbulent flow over a 2D flat plate

The flow parameters and meshes are identical to [2]. Some key parameters are Reynolds

number 5 million and Mach number 0.2. The domain is [-1/3m, 2m]×[0, 1m], with

structured meshes refined near the wall and the leading edge located at (0m, 0m). The

results for velocity profile at the end of the plate (x=2m) is compared with the NASA

CFL3D code [1] shown in fig 2.2 with excellent agreement. 7 levels of multigrid meshes

are used to accelerate the convergence. The SA variable contour plot for the converged

flow solution is shown in fig.2.3.
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Figure 2.2: The non-dimensionalised stream-wise velocity profiles at location x=2m, from
the in-house code MGOPT compared with NASA CFL3D code and analytic inner law
and log law (kappa=0.41, B=5.0) [97].

Figure 2.3: SA variable contour (stretched 50× in y direction).
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2.5.2 Transonic turbulent flow around RAE2822 airfoil

Euler flow around a RAE2822 airfoil is computed with angle of attack 2.72 degrees at

Mach number 0.75. The Reynolds number is 6.2 million. The fine grid mesh is shown

in fig. 2.4. Five levels of multigrid meshes are used to accelerate the convergence. The

results from MGOPT are compared with the results from ANSYS Fluent density based

solver using similar setting and experimental result taken from [4] in fig. 2.5 with good

agreement.

Figure 2.4: Fine grid mesh for RAE2822.
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Figure 2.5: Pressure coefficient comparison for MGOPT, ANSYS Fluent and experimental
data.
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2.5.3 Transonic turbulent flow around an M6 wing

The transonic turbulent flow around a three dimensional Onera M6 wing at an angle of

attack 3.06 degrees with Mach number 0.84 and Reynolds number 20 million is computed

using MGOPT with Spalart–Allmaras turbulence model. The overall geometry is shown

in fig. 2.6 along with the Mach contour illustrating the shock. For quantitative compar-

Figure 2.6: Onera M6 wing with pressure contour on surface and isolines for Mach number
contour. The wing is mirror about the symmetric plane for illustrative purpose.

ison, the pressure coefficient distribution at different spanwise locations are compared

with both the experimental results [4] and the ANSYS Fluent solver with similar settings

in fig. 2.7.
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Figure 2.7: The pressure coefficient computed using ANSYS Fluent and MGOPT, com-
pared with experimental data.
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Chapter 3

The adjoint solver

3.1 Introduction

The adjoint solver is an essential part of the gradient-based CFD shape optimisation

as it allows the efficient computation of the gradient of a cost function with respect

to many design variables. There are two different approaches to compute the adjoint,

namely, the discrete and the continous adjoint [32, 5, 71, 69]. The continuous adjoint

approach first derives the adjoint partial differential equation (PDE) from the perspective

of Lagrangian multiplier and then discretises it. The discrete adjoint approach directly

transforms the discretised flow equations to form the discrete adjoint equation. The

continuous approach offers the possibility to optimise and stabilise the adjoint solver by

tailoring the discretisation according to the adjoint PDE, while the discrete approach

ensures the exactness of the final design sensitivity with respect to the output of the flow

solver. In this thesis, the discrete adjoint is used. Its derivation is discussed in sec. 3.2

To develop a discrete adjoint solver, one starts with an existing nonlinear solver. A

straightforward way is to compute and store the exact flow Jacobian and solve the result-

ing transposed linear system. This is possible and suitable for simple two dimensional

case [16]. However, for practical three dimensional cases, both the memory and runtime

for this approach could be prohibitively expensive [24]. Alternatively, one can solve the

adjoint equation using the same time-marching scheme of the nonlinear solver [28, 17],

which is explained in sec.3.3. This approach does not require storing the exact flow Jaco-

bian and solving the resulting stiff linear system. The advantage for the adjoint solver to

mimic the time stepping of the nonlinear flow solver is that the convergence of the adjoint

solver can be guaranteed when reusing the symmetric elements of the time-stepping of the

nonlinear solver such as multigrid prolongation and restriction and correctly transposing

any non-symmetric elements in the iterative operator such as preconditioners [17], as is

shown in sec. 3.4.
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3.2 The discrete adjoint

Let the cost function J be a function of both the flow solution U and the design variable

α, and the goal is to minimise or maximise the cost function with constraint that the flow

solution having to satisfy the flow equation with a particular boundary shape defined by

any perturbed design α + δα. That is

minimize
α

J(U(α), α)

subject to R(U, α) = 0

and other constraints

To evaluate the gradient of the cost functions with respect to a large number of design

variables, one straightforward way is to use finite difference (FD) to perturb one design

variable αi using a small step size ∆αi, and compute the gradient with respect to that

particular design variable

dJ

dαi
=
J(U(α + δα), α + δα)− J(U(α− δα), α− δα)

2∆αi
(3.1)

where δα = (0, ..., δαi, ..., 0) and repeat the same for all other design variables. The

drawback of FD are the gradient is extremely dependent on the step size. Moreover, the

computational cost is prohibitive for large problems with many design variables.

The complex variable method [28] can circumvent the step size dependency issue.

By replacing the real type variable with complex variable, and perturbing the imaginary

part, the gradient can be computed as

dJ

dαi
=
I(J(αi + jε))

ε
(3.2)

where I means taking the imaginary part, j denotes the imaginary unit and ε is the step

size. Unlike finite difference, the complex variable method does not suffer from the huge

numerical error of subtracting two real numbers of small difference when the perturbation

size is too small. The complex variable method provides a good tool for validating the

sensitivity obtained with other approaches. However, the computational cost still scales

with the number of variables and thus is not practical for computing the sensitivity of

large scale problems.

In order to evaluate the final design sensitivity, one can linearise the cost function as

∂J

∂α
=
∂J

∂X

∂X

∂Xs

∂Xs

∂α
=
∂J

∂α
+ gTu (3.3)

where

gT =
∂J

∂U
and u =

∂U

∂α
=
∂U

∂X

∂X

∂Xs

∂Xs

∂α
(3.4)
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The two derivatives
dX

dXs

and
dXs

dα
are the derivatives for volume mesh smoothing and

surface mesh parametrisation respectively, which will be explained in more details in

following chapters. The terms
∂J

∂α
and gT denote the derivative of the cost function w.r.t.

the design variable and the flow, which can be easily computed. The most difficult part

is to compute u, which is the perturbation field from design variable perturbation. This

term is implicitly determined by the flow equation constraint

R(U, α) = 0 (3.5)

which when linearised, yields

Lu = f (3.6)

where

L =
∂R

∂U
and f = −∂R

∂α
(3.7)

Denote the ith column of the perturbation field as ui

ui =
∂U

∂αi
(3.8)

which can be calculated by setting the RHS of the linearised equation to residual pertur-

bation caused by a unit perturbation of αi, i.e,

Lui = fi =
∂R

∂α
δα (3.9)

where the ith component of δα is set to unity and all the rest is set to zero. This

procedure, involving solving a linear system with different RHS, needs to be carried out

for each component of α to obtain the perturbation matrix u, which is prohibitively

expensive for large scale problem with a large number of design variables.

The adjoint approach rewrites the perturbation of the cost function w.r.t. the design

variable as
dJ

dα
=
∂J

∂α
+ vTf (3.10)

with the adjoint variable v being the solution of the adjoint equation

LTv = g (3.11)

. The equivalence used in Eq. (3.10) is

gTu = gTL−1f = (L−Tg)Tf = vTf (3.12)

Note that the RHS of Eq. (3.11) is the perturbation of the cost function w.r.t. the

flow variable, and the design variable does not explicitly appear in the adjoint equation.

This equation needs to be solved as many times as the number of the cost functions.

Therefore, when the number of the design variables is much greater than that of the cost

functions, the adjoint solver is much more superior than any other competing methods

for computing the gradient.
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3.3 Time-marching the adjoint equation

To solve the adjoint equation, the full Jacobian matrix can be explicitly computed and

stored in memory and the resulting linear system can be solved using either Newton

method or other iterative linear solver. The major issues are the prohibitive memory and

runtime cost. First, the full Jacobian is usually of 2nd order, and thus the sparsity of the

matrix is based on the 2nd order stencil, equivalent to around 20 neighbouring nodes for

each node, if an all-hex mesh is used. Second, the full Jacobian usually has a very high

condition number and would result in an extremely stiff linear system which requires a

very expensive (in terms of mainly memory, but also runtime) preconditioner to solve

efficiently. The memory overhead can be avoided if a linear solver is used that only needs

matrix vector multiplication, such as GMRES and thus the full Jacobian does not have

to be stored in memory, thus the so-called Jacobian Free methods. However, in order to

effectively precondition the system, one would still need either the 2nd-order or 1st-order

approximate Jacobian matrix to be stored in memory.

In this work, the same time stepping for the flow solver is used for solving the adjoint

method. The main advantages include the low memory requirement and the fact that

many techniques for convergence acceleration of the nonlinear flow solver, such as RK,

MG, block-Jacobi preconditioner, can be directly applied to the adjoint solution. In

addition, the same asymptotic convergence rate guaranteed by using the identical times

stepping is a powerful debugging tool for the development of an adjoint solver.

The adjoint solution can be solved for by driving the adjoint residual

Ra(v) = LTv − g

to zero. The time stepping is the same as the flow solver, only replace the flow residual

R(U) by the adjoint residual Ra(v):

PT∆vn = −Ra(v
n)

or

vn+1 = vn −P−TRa(v
n)

3.4 Eigenvalues and asymptotic convergence

Note that the preconditioner for the adjoint equation is the transpose of that of the flow

equation P. The resulting time stepping thus has the same asymptotic convergence as

the flow solver. Assume Ũ is the exact solution of the flow equation, and the error of the

intermediate flow solution Un is defined as

εnflow = Un − Ũ
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which satisfies

εn+1
flow = (I −P−1L)εnflow

and thus the convergence rate for flow is

||εn+1
flow||
||εnflow||

= ρ(I −P−1L)

where the operator ρ(·) means the spectral radius of a matrix, which determines the

asymptotic convergence rate of a fixed-point iteration (FPI). Similarly, assuming ṽ is the

exact solution of the adjoint equation, then for error εnadj = vn − ṽ we have

εn+1
adj = (I −P−TLT )εnadj

and the convergence rate for adjoint is

||εn+1
adj ||
||εnadj||

= ρ(I −P−TLT )

The asymptotic convergence rate of the primal and the adjoint are guaranteed to be the

same because

ρ(I −P−1L) = ρ(I −P−TLT ) (3.13)

To prove Eq. (3.13), suppose there are non-singular matrices A and B and matrix AB

has eigenvalue λ and eigenvector v, i.e.,

ABv = λv

multiplying each side by matrix B yields

BABv = λBv

that is, the matrix BA has eigenvalue λ and eigenvector Bv. Therefore, matrices AB and

BA have the same eigenvalues. Since BA and ATBT , being the transpose of each other,

also have the same eigenvalues, matrices AB and ATBT have the same eigenvalues.

Furthermore, if λ is the eigenvalue of matrix AB, then

det(AB− λI) = 0

and thus

det(I −AB− (λ+ 1)I) = 0

Similarly, we have

det(I −ATBT − (λ+ 1)I) = 0

29



Therefore, both I − AB and I − ATBT have eigenvalue λ + 1. Thus identity 3.13 is

proved.

The conclusion on the identity of the asymptotic convergence rates of flow and adjoint

can be straightforwardly extended to include Runge-Kutta and multigrid [28] (or the

transpose of them if they are not self-adjoint) which have the equivalent effect as a

preconditioner.

3.5 Adjoint code implementation using AD tool

The main technical challenge of implementing the adjoint code is how to compute matrix

vector product on the LHS of

LTv = g

without explicitly computing and storing the transposed Jacobian matrix LT . This is pos-

sible using reverse mode Automatic Differentiation with an AD tool.Suppose the residual

subroutine has the interface as follows

subroutuine res(U, R)

then the forward differentiated residual subroutine is

subroutuine res_d(U, U̇, R, Ṙ)

and the reverse differentiated residual subroutine is

subroutuine res_b(U, U, R, R)

The primal code subroutine ‘res’ takes the flow variable U as the input and computes

nonlinear residual R as the output. The forward differentiated subroutine ‘res d’ takes

both the flow variable U and the perturbation U̇ as an input and compute both the

nonlinear residual R and the linear residual Ṙ as outputs. The linear residual computed

is

Ṙ =
∂R

∂U
U̇ = LU̇ (3.14)

i.e., the linear residual is essentially the matrix vector product of the Jacobian matrix

and the flow perturbation.

The reverse differentiated subroutine ‘res b’ takes the flow variable U and R as inputs,

and computes the nonlinear residual R and U as outputs. According to the definition of

reverse differentiation

U =

(
∂R

∂U

)T
R = LTR (3.15)
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i.e., if the flow variable U and the adjoint variable v are passed into the subroutine ‘res b’

as input arguments U and R, the output argument U is essentially the matrix vector

product of the transposed Jacobian matrix and the adjoint variable, that is, the adjoint

residual that we would like to compute

Ra ← U − g = LTv − g (3.16)

To reverse differentiate an algorithm by hand is not impossible. In fact, it is quite

simple as long as one strictly follows the call graph and differentiate the code statements

one by one backward. In practice, reverse differentiation by hand is too tedious and

error-prone to be applied to large codes. This is the main reason AD tools are used.

Mentioned above is the basic methodology of developing a discrete adjoint solver using

AD tool. The automation of this process can be done by using the advanced features of

the AD tools through additional pre- and post-processing scripting through the Makefile,

as is explained in [17, 44, 29]. The obvious advantage of automatically generating the

adjoint code at compilation time is to ensure the consistency between the discrete adjoint

code and the baseline nonlinear flow solver which could be constantly modified over time.

3.6 Summary

In this section, the mathematical formulation of the discrete adjoint approach is explained

in detail. The preferred iterative method for solving the adjoint equation is to mimic the

time-stepping of the original nonlinear flow solver, which avoids the excessive memory

overhead that would incur if a direct solve approach were used. Reverse differentiation

is used to compute the matrix vector product for the adjoint equation without comput-

ing and storing the transposed Jacobian matrix. The use of the AD tool Tapenade in

developing a discrete adjoint without the tedious hand differentiation, is also explained.
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Chapter 4

Stabilisation of discrete adjoint

4.1 Introduction

The adjoint method is an essential ingredient of gradient-based steady-state CFD shape

optimisation as it allows the computation of the gradient of an objective function with

respect to a large number of design variables at near constant computational cost com-

parable to that of the flow solution.

As discussion in the previous chapter, discrete adjoint approach is chosen in this work

because it exactly preserves the spectrum of the Jacobian matrix of the asymptotically

converged steady state flow solution, which provides a powerful debugging tool and com-

pletely removes the uncertainty due to the different discretisation as seen in continuous

adjoint. This also ensures that the computed gradients are the exact gradients of the

discrete model, which is a very desirable property: the discrete gradient is then exactly

zero where the flow solution has an unconstrained minimum. This also means that the

properties of the flow discretisation, including any preconditioners, are inherited and gov-

ern the spectral behaviour of the adjoint, which ensures that if the primal solution (flow)

converges (i.e. the system Jacobian is contractive with the magnitude of all eigenvalues

|λ| ≤ 1), so will the discrete adjoint as the exact transposition of the system Jacobian

preserves the eigenvalues [28].

However, in many industrial cases the flow does not converge in this sense, but enters

limit cycle oscillations (LCO) instead [13]. This can be caused e.g. by the mesh being fine

enough in some area to resolve certain localised flow unsteadiness due to vortex shedding,

or e.g. by separation bubbles in the flow which have only very loose physical coupling with

the bulk flow. This is typically not perceived as a problem for the analysis of the flow

field as the value of the objective function is often steady enough and considered accurate

enough to be used. On the other hand, applying the ‘steady-state’ discrete approach in

this situation often fails, as a Jacobian taken from a snapshot during the LCO is likely to

be not contractive but exhibit a number of eigenvalues with magnitude larger than one,
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and hence the iterative scheme for the adjoint will fail once the error modes associated

with those eigenvalues have grown sufficiently.

To stabilise the linear solver, the Recursive Projection Method (RPM) and the Gener-

alized Minimal Residual Method (GMRES) have been proposed [15, 25, 26]. GMRES[82]

is an iterative method that is guaranteed not to diverge even in the presence of outliers.

Therefore the existing linear fixed-point iteration (FPI) can be used as a preconditioner

for the GMRES solver, and the adjoint GMRES solver, provided a large enough number

of Krylov vectors are used, is bound to converge fully. This approach can be implemented

with minimal amount of change to the existing code and should be capable of stabilising

the adjoint. The main drawback is that for large industrial cases, a large number of

Krylov vectors are typically needed in order to converge, e.g., 100 Krylov vectors with no

restarts were used in [55]. Although to the author’s better knowledge, this limitation is

not reported in literature, the large memory overhead of GMRES for stabilisation is the

major limiting factor when trying to converge the adjoint for those unstable nonlinear

flows. RPM stabilises the adjoint with a different mechanism. The unstable FPI is iter-

ated for many iterations to allow the dominant error modes to grow and to be identified.

Then a direct solver is applied to those particular modes while the existing FPI is applied

to the remaining, presumably stable, modes. If the remaining modes still contain unstable

modes, then the unstable FPI will identify again the unstable modes and the procedure

above is repeated until all the unstable modes are identified. The RPM method needs to

run the FPI adjoint solver for a large number iterations in order to identify the dominant

unstable modes, and a typical value can be k = 100− 10000, or even larger for practical

problems. At the same time, m vectors need to be stored for potential unstable modes.

The long runtime and large memory overhead is also preventing RPM from being used

widely for stabilising the adjoint for three dimensional flows for practical industrial ap-

plications. An additional problem with both RPM and GMRES is that the linearisation

is then based on an unstable saddle-point of the flow solution which is arbitrarily picked

from the LCO, hence the adjoint sensitivity may be inconsistent with the average of the

primal over the LCO [48]. The objective function the designer is interested in is actually

the sensitivity of the averaged unsteady flow solution, rather than the one of an arbitrary

snapshot. To approximate this average, one could take the average of the flow field in

the pseudo-time interval and base the Jacobian on this averaged state. Irrespective of

the question whether the objective function is linear enough with respect to the state

to justify this approximation, in general the Jacobian will fail to be contractive as this

averaged solution does not satisfy the steady state flow equations. Still, this approach

has been shown to be practicable for some limited cases of industrial relevance when used

with continuous adjoint methods, where the re-discretisation of the adjoint equation can

33



provide additional stabilisation terms [70]. For a rigorous application of this approach,

regularisation in time would be required that gives rise to stabilising contributions to the

Jacobian, but the knowledge in the field on this is in its early stages [73].

An approach guaranteed to work would be to treat the limit cycles as an unsteady

flow and trace backward in time the adjoint characteristics [61]. Storing checkpoints

and recomputing intermediate solutions would result in a significant increase in runtime

and memory requirements, which would only be warranted if the objective function is

non-linearly affected by the instability.

So far we have not distinguished whether the instability of the iterative method is due

to the flow physics, such as vortex shedding and separation bubbles decoupled from the

mean flow, or whether it is due to the discretisation. There cannot be a clear distinction

between the two as e.g. vortex shedding behind rounded trailing edges of turbine blades

can be suppressed with coarse meshing and large time steps. Putting numerical stability

into focus suggests another approach to achieve convergence of the adjoint solver, namely

to improve the stability of the flow discretisation such that flow can be converged to a

level that the Jacobian is contractive. Clearly, such an approach may fail for flows with

strong physical unsteadiness or will be inaccurate where the unsteady phenomena have

a significant effect on the average of the objective function. But for cases with minor un-

steadiness, such an approach will be stable and accurate, as well as being significantly less

expensive than the computation of the unsteady flow and adjoint. In the author’s view,

apart from [48], where the physically unstable flow solution is converged to steady state

using a strong implicit solver, the approach of obtaining stable discrete adjoints through

focusing on the primal stability has not been explored adequately in the literature.

Before presenting the proposed iterative scheme, a brief overview of the various tech-

niques for accelerating convergence of nonlinear flow solvers, with particular focus on

RANS, is given in the next section.

4.1.1 Convergence acceleration techniques for nonlinear flow
solvers

A fixed-point iteration can generally be presented as

P∆Un = −R(Un) (4.1)

where the right hand side represents the residual of the discretisation which determines

the accuracy of the converged solution, while the left hand side matrix P is a non-singular

preconditioning matrix that controls the transient behaviour of the intermediate solution

Un over the iterations. At each iteration, the flow update is computed by inverting P

directly or approximately.
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uniform dt spatially varying dt block-Jacobi 1st-O Jacobian 2nd-O Jacobian

Figure 4.1: A spectrum of various time-stepping methods based on different approxima-
tions of the Jacobian.

A hierarchy of time-marching methods can be derived by using for the preconditioning

matrix P different approximations of the flow Jacobian matrix ∂R/∂U [50], as illustrated

in fig. 4.1. Scalar time stepping, with either a uniform or a spatially varying time step,

is too inefficient for practical steady RANS cases due to the highly stretched mesh in

the boundary layer regions and the numerical decoupling between the equations. The

physical coupling can be included by retaining the diagonal blocks of the Jacobian in the

preconditioning matrix, thus termed a point-implicit or Block-Jacobi (B-J) solver. A B-J

solver accelerated with multigrid [64] is in general efficient enough to compute viscous

flows when combined with semi-coarsened geometric multigrid [66]. In addition, the B-J

solver is easy to implement, to parallelise and has very low memory requirements. The

drawback is that the convergence tends to degenerate for practical cases, especially for

cases where the viscous effect dominates. Furthermore, as stated in the introduction, for

large industrial cases with complex geometries, the B-J flow solver may converge only

to LCO after an initial residual drop, corresponding to pseudo unsteadiness of either

numerical or physical origins.

A better approximation of the Jacobian can be constructed by including the off-

diagonal blocks in the Jacobian matrix, coupling the neighbouring nodes. This leads to an

implicit solver with faster convergence by damping the transient modes more effectively.

The highest level of approximation is obviously the exact 2nd-order Jacobian, i.e., the

exact linearisation of the residual w.r.t. the flow variables, which could e.g. be used

with Newton’s method. Such a Newton solver is applied to a 2D viscous RAE2822 case

in [24]. In addition to a start-up difficulty, which requires such stringent control of the

step-width that it renders the Newton solver practically useless for this application, it is

reported that the resulting linear system at each nonlinear iteration is very stiff and the

GMRES(50) solver needs to be preconditioned by ILU(4) in order to prevent stalling. The

combined memory requirements of the exact Jacobian and ILU(4) combined is roughly

18 times that of B-J (6x for the Jacobian and 12x for ILU(4) and 50 Krylov vectors).

This memory increase will be even more substantial for 3D cases due to the increased

number of neighbouring nodes.

Jacobian-Free Newton-Krylov (JFNK) methods [47] can avoid the storing Jacobians

but instead work out the Jacobian-vector product needed in the Krylov solvers on the
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fly, typically using finite differences,

∂R

∂U
· δU =

R(U + εδU)−R(U − εδU)

2ε
. (4.2)

However, for the Krylov solver to converge, effective preconditioners are needed, with ILU

factorisation being recognised as on of the most effective ones. In order to limit memory

overhead, the Jacobian that is ILU-factorised could be approximated [47], but practical

preconditioners require storage equivalent to the Jacobian.

Major storage savings arise from dropping second-order neighbours and computing

the Jacobian on nearest-neighbour contributions only. For a standard MUSCL scheme

[94] this would correspond to frozen spatial gradients. In our implementation we use zero

spatial gradient for MUSCL scheme when computing the inviscid flux and non-zero but

frozen gradient for computing the viscous flux. The resulting memory savings of course

are paid for with an impaired convergence rate. While an exact 2nd-order Jacobian

typically does not lead to a robust scheme [24], at the least requiring a sophisticated

solver steering strategy [88], a heuristic blend of first and second-order Jacobians can

provide very good results [62], but again at the cost of very large memory use.

Multigrid (MG) is a very effective preconditioner, especially in its full approximation

storage form (FAS) [12] that includes non-linear effects on the coarser grids. On each grid

level FAS needs to solve the non-linear equations using an h-elliptic discretisation [12]

that has good high-frequency smoothing. Unfortunately Krylov solvers such as GMRES

do not provide adequate high-frequency damping to be used as a smoother within MG,

but it is possible to use MG as a preconditioner for Jacobian-Free Newton-Krylov method

(JFNK) [47], which however then reduces to the linear Correction Scheme (CS) MG which

is much less effective [60].

Algebraic Multigrid (AMG) does not require to build a coarse grid, but the coarsening

is applied to the system matrix of the linear problem, rather than the grid [67]. It is hence

a linear CS MG scheme, which avoids re-discretisation on the coarse grid, but hence loses

the convergence advantage of the non-linear coarse-grid re-discretisation. This may be

compensated by efficient directional coarsening in all areas of the flowfield, not just the

viscous layer.

Swanson et al. [93] show that an implicit discretisation with symmetric Gauss-Seidel

(SGS), preconditioned with the 1st-order Jacobian is a good smoother for multigrid [77]

if the linear system is wrapped inside a standard Runge-Kutta (RK) multistage scheme,

with RK providing the desired damping for the high-frequency error modes. Furthermore,

the RK coefficients could be fine-tuned for better robustness and performance [81]. This

approach of solving the 1st-order linear system using SGS at each RK stage, accelerated

by MG at the outer iteration, has proven to be robust and is now generally accepted as
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the benchmark solver performance. SGS is susceptible to a lack of diagonal dominance,

and thus when SGS is used to solve the linear system, the CFL number is lowered not for

the nonlinear instability of the outer iteration, but for the linear instability of the inner

SGS iteration, reducing the convergence rate of the scheme.

The performance of the MG method does strongly depend on the method that is used

to generate the coarse grids and how the problem is discretised on them. Agglomeration

MG fuses fine grid cells into coarse grid cells which then are no longer convex [49]. The

scheme can be implemented as an efficient non-linear FAS scheme if the equations are

re-discretised on the coarser meshes, however an accurate discretisation of the viscous

operator is not straightforward on the non-convex cells. Directional agglomeration with

additional line-relaxation is needed for high-Reynolds number flows [60].

Geometric coarsening through edge-collapsing is very effective for simplex grids, but

much more difficult to achieve for hybrid grids. The element-collapsing method [66, 64]

collapses sets of edges to remove elements and produces coarse grids with the standard

element types, possibly with degenerate edges. Semi-coarsened grids for high-Reynolds

flows can be produced. However the mesh quality and coarsening ratio degenerate with

repeated application on the coarser levels.

The authors acknowledge that the performance of a particular smoother is very closely

linked to the way the coarse grids are generated, the results presented here use the

geometric element-collapsing scheme of Müller [66]. Assessing the performance of the

proposed iterative method in the context of e.g. agglomeration multigrid or AMG will be

reported in future work.

4.1.2 Proposed new algorithm

The survey of the existing approaches in Sec. 4.1.1 shows that an effective RANS method

should make use of a) non-linear FAS multigrid which offers improved convergence, and

b) robust GMRES linear solvers which allow large CFL numbers. To the author’s best

knowledge there is no published algorithm using multigrid as a RANS solver (‘outside’)

and GMRES as a smoother (‘inside’), due to the poor smoothing properties of the Krylov

solvers. Presenting a solution to this problem and successful application of such an

algorithm is the main novelty proposed in this thesis.

To achieve adequate high-frequency damping of the GMRES linear solver, in the

proposed scheme it is embedded in a Runge-Kutta multistage time-stepping scheme,

preconditioned with an ILU(0)-factorisation of the first-order Jacobian. The proposed

method is hence referred to as the Jacobian-Trained Krylov-Implicit-Runge-Kutta or

JT-KIRK algorithm.

37



This chapter first explains in Sec. 4.2 the mathematical background of the nonlinear

flow solver and the development of the JT-KIRK algorithm with emphasis on the temporal

rather than spatial discretisation. Sec. 4.3 describes the discrete adjoint equation and

how its time-marching relates to the one of the flow solver. Sec. 4.4 compares the ILU

preconditioned GMRES and SGS solution strategies for the linear system arising from the

implicit scheme and presents parameter studies on how to optimise the solver efficiency.

Sec. 4.6 shows the results for four test cases, two stable cases which the B-J solver

can fully converge, and two unstable cases that cannot be converged by the B-J solver,

resulting in divergence of the discrete B-J adjoint. Eigenvalue analysis is shown for the

second unstable Case 4 to highlight the eigenvalue clustering using the implicit algorithm.

Conclusions are presented in Sec. 4.7.

4.2 Flow solver

4.2.1 Typical temporal discretisation for RANS flow solvers

The flow solver used here is an industrial compressible RANS flow solver using a vertex-

centred finite volume method on unstructured grids. A multistage Runge-Kutta time

integration scheme is used to time-march the solution to steady state, and geometric

multigrid with semi-coarsening as well as B-J preconditioning are used to accelerate the

convergence [21, 63, 64]. The steady state solution is reached when the residual of each

control volume reaches zero, i.e.,

R(U) = 0,

where the flow variables U and residual R are both column vectors of dimension 5×N for

3-D Euler and laminar Navier-Stokes and 6×N when a one-equation turbulence model

is used, on a mesh with N nodes.

A generic semi-discrete time-marching scheme for a conservation equation can be

written as
Un+1 − Un

σ∆t
V + (1− β)R(Un) + βR(Un+1) = 0 (4.3)

where ∆t is the time-step, σ denotes the CFL number for the linear solver of the implicit

scheme and V is the size of the control volume. The coefficient β provides a blending

between explicit and implicit residuals. The residual at time level n+1 can be linearised

using the Jacobian at time level n to be

R(Un+1) ≈ R(Un) +
∂R

∂U

∣∣∣∣
U=Un

(Un+1 − Un)
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and Eq. (4.3) becomes (
V

σβ∆t
+
∂R

∂U

∣∣∣∣
U=Un

)
∆Un =

−1

β
R(Un). (4.4)

For an implicit scheme with β > 0, the CFL number usually can be very large which

is important for fast convergence to the steady state solution. Note that although β is

usually chosen between 0 and 1, it is possible to allow β to be greater than 1, equivalent

to under-relaxation.

4.2.2 Block-Jacobi solver

To simplify solving the linear system at each time step and to reduce the memory over-

head, the Jacobian matrix
∂R

∂U
on the LHS of Eq. 4.4 can be approximated by the Block-

Jacobian for node i, while the higher-order accurate residual operator R(Un) is used on

the RHS which determines the accuracy of the converged steady state solution. The

B-J matrix can be computed using hand differentiation [63] or using AD tools such as

Tapenade [35].

The resulting B-J or point-implicit scheme is(
β
∂R

(I)
i

∂Ui

∣∣∣∣∣
U=Un

)
∆Un

i = −R(II)
i (Un) (4.5)

where the Roman superscript for the residual denotes that the spatial operator is of either

1st-order or 2nd-order, and the subscript denotes the i-th node.

To simplify the notation, the LHS matrix of Eq. 4.5 can be combined into one pre-

conditioning matrix P, with the i-th block on the diagonal defined as

Pi =
Vi
σ∆ti

+ β
∂R

(I)
i

∂Ui

and the discrete governing equation equation can be simplified as

P∆Un = −R(II)(Un). (4.6)

The B-J time-stepping is combined with RK to provide additional damping for high-

frequency error modes which makes the smoother suitable for MG [40].

The Block-Jacobian
∂R

(I)
i

∂Ui
is approximated per block with the one-equation turbulence

model treated as a passive scalar. Including the derivatives of the turbulence model

variable in the Block-Jacobian in the author’s experience increased the computational

cost, did not improve convergence rate but in cases affected the robustness adversely.

The resulting structure in 3-D is hence a full 5×5 block for the conservative variables
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and a unit diagonal entry in the 6,6 position for the Spalart-Allmaras variable. To keep

the implementation simple we retain the zeros in the 6th row and column in the Block-

Jacobian. The associated memory cost for storing the B-J matrices for all control volumes

in the case of the single equation Spalart-Allmaras (SA) turbulence [89] model is 6 times

for the storage of the flow solution, which is typically deemed affordable. Alternatively,

the the non-zero blocks of the B-J matrices can be formed on the fly during the update

step, further reducing the memory at the cost of a limited increase of CPU time.

When an m-stage RK scheme is used, the solution is updated as

U (0) = Un,

U (1) = U (0) − α1P
−1R(II)(U (0)),

...

U (m) = U (0) − αmP−1R(II)(U (m−1)),

Un+1 = U (m).

At each RK stage the preconditioned matrix P is inverted by directly inverting each of the

diagonal block matrice to update the flow solution. The B-J solver combined with MG

can produce grid-independent convergence for inviscid flows and works reasonably well

for viscous cases if semi-coarsening is used [64]. However, grid-independent convergence

is usually not observed for general three dimensional RANS simulations.

4.2.3 1st-order Jacobian implicit solver

To obtain a stronger coupling between neighbouring nodes and to further accelerate

convergence, the 1st-order Jacobian can be used to improve over the B-J matrix. The

preconditioner P based on the 1st-order Jacobian can be written as

Pi,j =
Vi
σ∆ti

δij + β
∂R

(I)
i

∂Uj
,

where nodes i and j either are identical or are immediate neighbours of each other. Each

node i and each edge ij then give rise to a 6×6 block (in the case of the Spalart one

equ. model) with the same structure as discussed for B-J in Sec. 4.2.2. To save on storage,

the full 5×5 blocks for the Navier-Stokes variables are stored in a block-wise compressed

sparse row format (BCSR) separately from the SA-variable which is stored in point-wise

compressed sparse row (CSR) format. Both matrices have the same sparsity pattern so

the row and column index vectors are shared. This approximation to the Jacobian implies

full coupling of the Navier-Stokes variables, but an implicit treatment of a passive scalar

similar to B-J for the turbulence variable.
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In this case each Pi,j is a 5×5 or 6×6 block matrix at location (i, j) of the whole

matrix P which can be computed by differentiating the residual subroutine either by

hand or using Automatic Differentiation. For the presented results it was computed in

vector-forward mode with the AD-tool Tapenade [35].

The restriction to first-order neighbour contributions in the Jacobian precludes a

differentiation of the gradients. As typical in literature, the inviscid flux contributions are

evaluated with zero gradients (1st-order accuracy), which will adversely affect convergence

rate, but increase robustness. The viscous terms are evaluated here using a correction

for the normal component of the Green-Gauss face gradient ∇U ij [63] to improve high

frequency damping formulated as

∇Uij = ∇U ij −
(
∇U ijδsij −

Ui − Uj
|xi − xj|

)
δsij

where

δsij =
xi − xj
|xi − xj|

with the nodal coordinates xi for node i. The Jacobian of the viscous flux then differen-

tiates w.r.t. the term Ui − Uj but considers ∇U ij fixed.

The cost of computing the approximate Jacobian with AD is equivalent to evaluating

the nonlinear residual 5 times (or 6 times for SA turbulence), but is not substantially

increased compared to evaluating the B-J matrix. The cost of computing the approximate

Jacobian can be further reduced by optimising the implementation of the nonlinear flux

subroutine [65] and by selectively eliminating parts of the flux calculation from the AD

tool using scripts or pragmas. Strategies for efficiently solving the linear system for both

the nonlinear flow and the corresponding adjoint solver are explained in detail in Sec. 4.4.

4.3 Adjoint solver

To develop a discrete adjoint solver using an existing flow solver, one could explicitly

compute and store the exact Jacobian corresponding to the second-order accurate dis-

cretisation and solve the resulting linear system. However, for practical cases, both the

memory and runtime for this approach could be prohibitively expensive [24], moreover

efficient preconditioners would need to be implemented. Alternatively, one can solve

the adjoint equations using the same time-marching scheme as the nonlinear flow solver

[18, 20, 28, 17]. The discrete adjoint equation uses the transposed exact Jacobian matrix

of the nonlinear flow equation

LTv = g
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with

L =
∂R

∂U
and g =

∂J

∂U

T

,

where v is the adjoint variable and J is the objective function, which is a function of both

the mesh and the flow field. The residual of the adjoint equations

Rv(v) = LTv − g

can computed by application of AD tools [35, 17] and then be used to update the adjoint

solution,

PT δvn = −Rv(v
n), (4.7)

where the preconditioner PT is the transpose of the preconditioner for the flow solver.

Assume ṽ is the exact solution of the adjoint equation, then for an error en+1 = vn+1− ṽ
at n+ 1-th iteration, we have

en+1 = (I −P−TLT )en.

The asymptotic convergence rate of the flow and the adjoint are guaranteed to be the

same [30] since

ρ(I −P−1L) = ρ(I −P−TLT ),

where the operator ρ(·) means the spectral radius of a matrix, which determines the

asymptotic convergence rate of a FPI. The conclusion on the identity of the asymptotic

convergence rates of flow and adjoint can be straightforwardly extended to include Runge-

Kutta multistage integration as well as multigrid. If all operators contributing to P are

exactly transposed for PT in (4.7), not only is full convergence of the adjoint solver

guaranteed as long as the nonlinear flow solver asymptotically converges, but also the

transient of the sensitivity is exactly the same when comparing tangent-linear and adjoint

approaches [30], which is a very powerful validation tool [14]. This is the approach taken

for the results presented in this chapter. However to achieve stability typically this

condition can be relaxed, with only transposing non-symmetric parts of P such as low-

Mach preconditioners and not reversing the sequence of the operators [17].

4.4 Solving the linear system

For both the flow and adjoint equations, a linear system needs to be solved at each

RK stage on each level of MG grids. Two approaches to solve this linear equation are

considered here, SGS and ILU(0)-preconditioned GMRES.
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4.4.1 SGS as linear solver

A symmetric Gauss-Seidel (SGS) iteration is a forward followed by a backward sweep of

Gauss-Seidel (GS). The system matrix A is decomposed as A = D + L + U, where D,

L and U are the block-wise diagonal, lower and upper triangular matrices and iterate as

follows

(D + L)x∗ = −Uxn −R

(D + U)xn+1 = −Lx∗ −R.

Since D + L and D + U are both block-wise triangular matrices, both equations can be

solved with block-wise backward/forward substitutions. In order for the SGS to converge,

diagonal dominance is required which can be achieved by decreasing the CFL number σ

from infinity to a smaller finite value.

It is not necessary to fully converge the linear system at each RK stage as the system

matrix is only a first-order accurate approximation. In practice, 3 sweeps of SGS are used

for each linear system solve, hence the label SGS(3). Using more than 3 iterations of SGS

will increase the overall runtime which is proportional to the number of SGS sweeps, but

does not further improve convergence rate or stability as reported by Swanson et al. [92]

and also independently verified through numerical experiments.

4.4.2 ILU-preconditioned GMRES as linear solver

The proposed JT-KIRK scheme uses GMRES [82] to solve the linear system for its

proven robustness for non-symmetric systems. GMRES stores m Krylov vectors and

hence requires additional memory equivalent to that of m nonlinear flow solutions. The

memory requirement becomes prohibitive for large m, hence in practice, a limited m

is used. To then avoid stalling convergence one uses restarted GMRES: whenever the

number of basis vectors reaches m, they are discarded and GMRES is restarted using the

partly converged solution. For all the cases used in this chapter, the stopping criterion

for the GMRES solver is either using three GMRES vectors with zero restart or a one

order of magnitude drop of the relative residual of the linear system, whichever criteria

is met first, denoted by GMRES(1,3,0.1).

GMRES still needs an appropriate preconditioner for good convergence, most widely

used are Jacobi, Lower-Upper-Symmetric Gauss-Seidel (LU-SGS) and Incomplete LU

factorisation (ILU) of the approximate Jacobian [82]. The first two are easy to calculate

but our results show that ILU(0), i.e. ILU with 0 level of fill-in, is a more robust and

efficient preconditioner. The ILU(0) preconditioner, for simplicity denoted as ILU, is
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used in all the results shown here for GMRES. The preconditioned linear system (4.1)

then becomes

U−1L−1P∆Un = −U−1L−1R, (4.8)

where the matrices U and L are from the ILU decomposition

P ≈ L ·U. (4.9)

GMRES uses the linear combination of orthogonal basis vectors of the Krylov subspace

to approximate the exact solution. The Krylov subspace is constructed for the system

matrix A of a linear system of Eq. Ax=b as follows

Km(A, b) = span{b,Ab,A2b,A3b, ...,Am−1b} (4.10)

where A = U−1L−1P and b = −U−1L−1R. In (4.8), both the RHS and LHS are computed

via several sweeps of matrix-vector multiplication and no matrix-matrix multiplication is

done even though all the matrices are stored.

In the JT-KIRK scheme, the 1st-order approximate Jacobian and its ILU factori-

sation are computed only at the first RK stage at each nonlinear iteration of the flow

solver. In the adjoint JT-KIRK solver, the approximate Jacobian and its ILU are con-

stant, and hence only computed once at the first iteration for all grid levels. In the

parallel implementation, ILU is performed for each sub-domain, and due to this decou-

pled implementation, the convergence deteriorates with increased number of partitions,

as explained in Sec. 4.6.1.4.

4.5 Implementation

The JT-KIRK algorithm is implemented both in MGOPT and HYDRA codes. The time

stepper is first implemented in MGOPT and tested on various two dimensional cases. The

knowledge and experience gained is then used to re-implement it into the HYDRA nonlin-

ear flow solver, which mainly involves replacing the existing Block-Jacobi preconditioner

with the 1st-order Jacobian and the associated GMRES linear solver preconditioned by

ILU(0). Additional implementation into HYDRA involves the correction to the 1st-order

Jacobian due to the rotational periodic boundary condition. All the results shown in this

chapter are produced using the HYDRA code.

4.6 Results

In this section, the proposed JT-KIRK flow solver and its discrete adjoint are applied to

four different test cases with different flow features to assess both the solver efficiency and
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robustness improvement. The four test cases from turbomachinery applications are first

briefly explained in terms their geometries, meshes and the flow characteristics, followed

by detailed analysis of the solver performance on each case.

The Block-Jacobi discretisation manages to converge cases 1 and 2 fully, hence labelled

as ‘stable cases’. These cases demonstrate the solver efficiency improvement of the JT-

KIRK algorithm. Cases 3 and 4 can only be converged by B-J to LCO with the adjoint

diverging, hence these are labelled as ‘unstable cases’. Case 3 exhibits a mild instability

with insignificant effect on the objective function, an example of a case where a steady-

state stabilisation is entirely justified. Case 4 is an artificially created case with severe

instability where objective functions obtained by steady-state simulation will markedly

deviate from the full unsteady ones. This case is presented to demonstrate stabilisation

of the adjoint solver when JT-KIRK is used to converge fully both the flow and adjoint

solutions.

4.6.1 Case 1, nozzle guide vane (NGV)

Case 1 is a nozzle guide vane (NGV) with subsonic inlet and outlet. The domain is

meshed with 0.5 million hexahedral elements. The B-J solver converges fully with the

residual dropping by 12 orders of magnitude. The NGV geometry and various contour

plots (Mach number, static pressure and SA variable) are shown in fig. 4.2 for the surface

at midspan. The flow is fully attached to the blade surface.

As typical for this type of RANS computation, the mesh around the trailing edge

shown in fig. 4.3 is chosen coarse enough not to resolve the vortex shedding, but fine

enough to limit the truncation error. The maximum cell aspect ratio for the boundary

layer cells is 170 and y+ for the first node is around unity.

Geometric multigrid is used to accelerate the convergence. The hierarchy of multigrid

meshes has been generated using an element-collapsing algorithm with semi-coarsening

[64], with a maximum allowable isotropic coarsening factor of 2 per dimension and an

element aspect-ratio threshold of 3 for applying semi-coarsening, a set of parameters

optimised for the smoothing characteristics of the B-J scheme. The sizes of the mesh

levels and their effective coarsening ratios are listed in Tab. 4.1. It can be seen that the

overall coarsening ratio remains below 2 and gradually deteriorates with coarser meshes.

4.6.1.1 Effect of parameter choices

Both the original B-J solver and the implicit SGS and JT-KIRK solvers are applied

to Case 1 to explore the effect of the parameter choices on the stability and efficiency.

The three solvers will be labelled B-J, SGS and JT-KIRK in the following, their adjoint
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Figure 4.2: Case 1, Nozzle Guide Vane (NGV). Upper left: NGV geometry; upper right:
Mach number contours at midspan; lower left: static pressure contours at midspan; lower
right: Spalart-Allmaras turbulence variable contours at midspan. All legends are non-
dimensionalised using their corresponding minimum and maximum values.
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Figure 4.3: Case 1, NGV. Left: mesh for the whole domain, right: close-up view at the
trailing edge. The quasi-2D mesh is taken at midspan.

Table 4.1: multigrid mesh statistics for Case 1

level # of nodes node ratio # of edges edge ratio

1 499150 1471161
2 276565 1.80 894771 1.64
3 162065 1.71 565082 1.58
4 126743 1.28 451674 1.25
5 115514 1.10 414550 1.09
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variants are developed following exactly the same time-stepping algorithm as the flow

solver. The nomenclature used for all the solvers is explained in Table 4.2.

Table 4.2: Summary of different solvers
solver preconditioner linear equation solve

B-J Block-Jacobian block-wise direct inversion
SGS 1st order Jacobian SGS(3)

JT-KIRK 1st order Jacobian ILU(0)+GMRES(1,3,0.1)

4.6.1.2 Number of RK stages

Numerical experiments were performed for the B-J and JT-KIRK schemes to find the

optimal number of RK stages. The coefficients for each stage are used as optimised for

viscous flow [57] and proposed for B-J [63], both authors advocating the use of RK5. The

linear solver settings for both B-J and JT-KIRK are based on the optimal parameters

found in Sec. 4.6.1.3. Convergence results for a drop in residual of 12 orders of magnitude

are shown in fig. 4.4.

Figure 4.4: Effect of RK stage number on iteration number (left) and runtime (right) for
full convergence of case1.
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In all our numerical experiments RK5 outperforms RK with fewer stages in terms of

iterations. B-J shows an optimum in runtime for RK4, with a slight but insignificant

increase for RK5. The optimum between RK4 and RK5 for B-J is as expected, since the

coefficients used have been optimised to achieve optimal high-frequency damping. For

JT-KIRK, smoothing also improves as shown by the decrease in number of iterations

needed. In this case runtime further decreases with the number of RK stages since the

most expensive part of the non-linear step is the computation of the Jacobian and its

ILU decomposition, which is only performed once for all RK stages.

A further improvement might be achieved for the JT-KIRK scheme by adding more

RK stages, but as fig. 4.4 suggests, this gain will be slight. A more significant effect may

be the optimisation of the stage coefficients, which however is difficult to analyse due

to the nonlinear nature of the GMRES solver. As a base for comparison all results in

the chapter are produced using a 5-stage Runge-Kutta multi-stage scheme with standard

coefficients.

4.6.1.3 Number of multigrid levels, β, and σ

The two parameters in Eq. 4.4, β and σ, are important for stability and efficiency. To

determine best values we perform a parameter study for all three solvers on Case 1.

Tab. 4.3 varies β from 0 to 1 for each scheme. All the data corresponds to converging

Case 1 fully with a residual drop of 12 orders of magnitude; cases are run on a HPC

cluster with 24 cores. For each tested value of β, initially using 5 levels of MG, σ is

varied as 10 ≤ σ ≤ ∞. Tab. 4.3 lists the σ for each β that achieves the lowest runtime.

For the best-performing 5-level MG version of each of the three schemes, we then decrease

the levels of MG (data highlighted in grey) to determine the optimal number of levels.

Best overall performance is reported in bold font. The values β and σ have then been

varied for these optimal combinations (results not reported here) to confirm that the

combination of all three parameters is indeed optimal.

In summary, we find that

• For B-J, the best run-time performance is achieved with β = 0.6, and 4 or 5 levels

of MG. Reducing the MG levels below 4 prevents convergence.

• For SGS, β=0.8 with σ=1000 and 2 levels of MG is most efficient.

• For JT-KIRK, β=0.6 with σ=∞ and 2 levels of MG is most efficient.

• For both SGS and JT-KIRK, the smallest acceptable β is around 0.4− 0.7, below

which the scheme quickly becomes either too slow or unstable. A similar conclusion

has been reported in [93] and [91].
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Table 4.3: Case 1: parameter study for β, σ and multigrid level
B-J SGS JT-KIRK

1/β σ MG # of time 1/β σ MG # of time 1/β σ MG # of time
level iter. (min) level iter. (min) level iter. (min)

1.00 ∞ 5 1927 158 1.00 1k 5 212 94 1.00 ∞ 5 183 98
1.11 ∞ 5 1789 142 1.11 ∞ 5 197 88 1.11 ∞ 5 170 91
1.25 ∞ 5 1648 135 1.25 1k 5 182 79 1.25 1k 5 167 89
1.43 ∞ 5 1503 122 1.25 1k 4 182 65 1.43 ∞ 5 143 76
1.67 ∞ 5 1369 109 1.25 1k 3 184 50 1.67 ∞ 5 129 69
1.67 ∞ 4 1362 109 1.25 1k 2 228 38 1.67 ∞ 4 192 57
1.67 ∞ 1-3 >10k >1k 1.25 1k 1 735 46 1.67 ∞ 3 129 44
2.00 ∞ 5 1580 128 1.43 10 5 2262 977 1.67 ∞ 2 147 30

1.67 ∞ 1 443 34
2.00 1k 5 144 79
2.50 30 5 1132 584

• Overall, the best runtime is achieved with the JT-KIRK solver, which is 20% more

efficient than SGS and 70% more efficient than B-J.

Both implicit smoothers are shown to work best in a 2-level multigrid when using the

B-J-optimised coarsening parameters (cf. Tab 4.1). The implicit solvers offer much better

smoothing than the point-implicit B-J, which should allow more aggressive coarsening.

In particular the ILU preconditioner, although very effective, is expensive to compute.

This cost does not reduce adequately on the coarser levels which are quite dense due to

the need for semi-coarsening and the requirement of adequate mesh quality.

The B-J scheme requires semi-coarsened grids. An alternative method to alleviate

the stiffness that arises from the boundary layer mesh is to construct linelets and apply

a line-implicit smoother to couple the nodes in the direction normal to the wall [59].

The implicit scheme using 1st-order Jacobian, either SGS or JT-KIRK, may provide

sufficient coupling in the boundary layer to either allow the threshold for semi-coarsening

to be raised significantly, or to even allow isotropic coarsening, which will increase the

coarsening ration significantly. To allow a comparison we have kept the B-J coarsening

parameters for all cases.

In the steady-state discrete adjoint approach the computation of the approximate

Jacobian matrix needs to be performed only once for each MG level throughout the

entire adjoint run. Thus the ratio of runtime of both SGS and JT-KIRK compared to

B-J will be even lower for the adjoint solver than for the flow solver. We use the optimal

flow solver parameters of Table 4.3 also for each adjoint solver. The runtime of the flow

and adjoint are shown in Table 4.4, runtimes are presented for a residual convergence

of 12 orders of magnitude using 24 cores, same as for the flow calculation. For B-J, the

adjoint solver requires around 3 times the runtime of the flow solver, which is typical for
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a discrete adjoint solver using source-transformation AD. As expected, the SGS and JT-

KIRK adjoint solvers require less runtime than their respective flow solver. For JT-KIRK,

the adjoint needs only 10% of the runtime compared to B-J.

Table 4.4: Case 1: runtime of different adjoint solvers, 24 cores

solver
parameter setting runtime (min)

MG lvl β σ flow norm. adjoint norm.
B-J 5 0.6 1.67 109 1.00 355 1.00
SGS 2 0.8 1000 38 0.35 31 0.09

JT-KIRK 2 0.6 ∞ 30 0.28 22 0.06

4.6.1.4 Parallelism

The baseline Block-Jacobi solver is straightforward to parallelise as communication is

only needed for the residual calculation of the nodes shared by multiple partitions. For

implicit solvers, the communication due to solving the resulting linear system using SGS

or GMRES is also not substantial as both SGS and GMRES only need the matrix-vector

products which can be computed for each sub-domain and assembled in a reduction step.

To avoid this reduction step, we choose to compute the Jacobian and perform the SGS

or GMRES for each partition. For JT-KIRK, the ILU preconditioner is also computed

for each partition separately. The GMRES solver also computed per partition only.

Fig. 4.5 shows how this simplification affects the convergence rate on Case 1 with

500k nodes. The results are produced with the optimal settings for each solver, i.e. 5 MG

levels for B-J, 2-level MG for JT-KIRK. The number of iterations is barely affected by the

partition size for JT-KIRK using up to 12 CPUs, or around 40k nodes per partition, but

convergence does degenerate beyond 12 CPUs, While a global ILU factorisation would be

prohibitively expensive to compute, using a global GMRES solve is possible and is likely

to reduce the minimal partition size needed for effective convergence. However, strong

scaling in iteration numbers down to a partition size of 40k nodes will be acceptable for

typical industrial applications.

4.6.2 Case 2: cavity

Case 2 is a cavity between the Nozzle Guide Vane (NGV) and the rotor disks. Its geometry

with labelling for the various boundaries is shown in the leftmost panel of fig. 4.6. The

‘stator’ boundary is attached to the NGV and thus stationary while the ‘rotor’ boundary

is attached to the shaft and is spinning with the same speed as the rotor. A subsonic

outflow boundary condition is applied to both ‘seal’ and ‘bore’ boundaries while a subsonic
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Figure 4.5: Scalability of Block-Jacobi (B-J) and JT-KIRK solvers on test Case 1 (left)
and the iteration number w.r.t. the number of processors for JT-KIRK solver showing
the degeneration of ILU+GMRES per subdomain (right).
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inflow boundary condition is applied to the ‘inlet’. The mesh has approximately 1 million

hexahedral cells and is refined near the viscous wall with the maximum cell aspect ratio

around 90 and a y+ of the first interior node around unity. Different from Case 1 where the

main flow is driven by the axial flow, the flow in this case is dominated by wall-rotation-

induced swirling flow. In addition, the majority of the flow field is low speed, a further

challenge to convergence. The baseline B-J solver, although converging very slowly, does

fully converge to steady state, shown in fig. 4.6. The streamline plot superimposed on

the Mach number contour plot illustrates the complex flow pattern due to the strong

shearing.

rotor

bore

inlet

stator

seal

Mach p SA

Figure 4.6: Case 2, cavity. From left to right: (1) cavity geometry, (2) Mach contours
with 2D streamline, (3) static pressure contours and (4) SA variable contours. Contour
plots are taken at the medium azimuthal angle. All legends are non-dimensionalised using
their corresponding minimum and maximum values.

4.6.2.1 Convergence speedup

The purpose of presenting Case 2 is to assess the performance improvement of the pro-

posed JT-KIRK algorithm for cases where viscous dissipation dominates and a stronger

coupling is expected to have a significant impact on the convergence. Using the same

parameters optimised for Case 1, the JT-KIRK flow and adjoint solvers are run for Case
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Table 4.5: Case 2: runtime of different adjoint solvers, 12 cores

solver
parameter setting runtime (h)

MG levels β σ flow normalised adjoint normalised
B-J 5 0.6 1.67 13.75 1.00 45.4 1.00

JT-KIRK 2 0.6 2000 6.2 0.45 5.5 0.12

2, except that the CFL number has to be lowered to 2000 for this case for startup. To

permit a fair comparison, possible improvements with more advanced initialisation or

ramping techniques are not investigated here and the results for a constant CFL number

for the entire run are reported in Tab. 4.5. The runtime for Case 2 is significantly longer

than Case 1, due to the shearing-dominating nature of this type of flows. The JT-KIRK

solvers speed the flow computation by over half and the adjoint by 88%.

4.6.3 Case 3: turbine stage with rotor tip gap

Having demonstrated the efficiency gains of the JT-KIRK scheme for stable flows, Case

3 presents a mild instability that has small influence on the objective function.

Case 3 is a one-stage turbine, the rotor has a tip gap of constant clearance along the

axial direction. The geometry of the stage is shown in the upper left of fig. 4.7; periodic

boundaries and the casing surfaces for both the NGV and the rotor are not shown for

better illustration. Total pressure and temperature are prescribed at the NGV inlet and

subsonic outflow is applied at the rotor exit with prescribed static pressure. A mixing

plane is used to model the NGV and rotor interaction for steady state flow. The case is

meshed with 2.4 million hexahedral cells with the maximum cell aspect ratio 230. The

tip gap is discretised by 25 layers of cells with a growth ratio around 1.3.

The B-J flow solver is run first with a typical setting of β = 1 and σ = +∞ and then

with alternative settings with reduced σ and increased β, but the B-J solver was never

able to fully converge, at best converged to LCO, at worst diverged. Shown in fig. 4.8 is

the convergence history for both the flow and adjoint with the typical setting β = 1 and

σ = +∞.

Using any snapshot of the LCO-converged flow solution will lead to divergence of the

discrete B-J adjoint solver shown on the right of fig. 4.8.

To investigate the flow physics, fig. 4.7 shows various contour plots at midspan for an

arbitrary snapshot within the LCO. The streamline plot in fig. 4.9 shows the flow to be

mainly attached, except near the tip where the flow around the rotor reveals the complex

vortex structure due to the tip gap. Although not shown here, it is confirmed that the

LCO convergence corresponds to a small-scale oscillation of the stagnation zone near the
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Figure 4.7: Case 3, NGV + rotor with tip gap. Upper left: NGV and rotor geometry;
upper right: SA variable contour; lower left: Mach contour with 2D streamline; lower
right: static pressure contour. The contour plots are taken at midspan. All legends are
non-dimensionalised using their corresponding minima and maxima.
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Figure 4.8: Case 3: convergence history of both Block-Jacobi flow and adjoint solvers.

Figure 4.9: Case 3, flow visualisation around the rotor. Left: entropy contour plot at
various axial locations; right: streamline illustrating the tip vortex and the two passage
vortices.
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rotor tip on the suction side towards the trailing edge (highlighted with the ellipse in

fig. 4.9).

4.6.3.1 Stabilisation with the JT-KIRK scheme

The flow fully converges to steady state with a residual reduction of 10 orders of magni-

tude. using the JT-KIRK flow solver with β = 1 and σ = 1000. The fully converged flow

solution is then linearised for the adjoint which also fully converges using the JT-KIRK

scheme with the same parameters. The convergence history of both the flow and adjoint

are shown in fig. 4.10

Figure 4.10: Case 3: convergence history of flow and adjoint solvers using JT-KIRK
algorithm.

In the presence of possible unsteadiness both the B-J and JT-KIRK results may be

questioned. While B-J does reproduce some unsteady behaviour, it is not a time-accurate

scheme and the LCO may be entirely numerical. On the other hand, JT-KIRK adds a

large first-order artificial viscosity in time to stabilise the discretisation. If the flow does

contain unstable modes that have a nonlinear effect, this may result in a seemingly steady

solution that is inaccurate.

To assess the accuracy of both the B-J and JT-KIRK results, an unsteady analysis is

performed for this case using dual time-stepping with a 2-step backward differentiation

formula (BDF2). The Block-Jacobi solver is used for converging fully the inner system at

each physical time step. Convergence studies on both the convergence level of the inner

system and time step size of the outer system have been performed to ensure that the

unsteady flow simulation has converged for this particular mesh. For this comparison the

focus is on resolving the unsteadiness of the blade flow and comparing that to a fully

steady treatment. The mixing-plane treatment between rotor and stator has hence been

maintained as in the steady case.
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Table 4.6: Case 3: relative flow output deviation between fully and LCO-converged flow
solution.

Quantity JT-KIRK error % B-J error %

Efficiency +0.00246 -0.01208
Capacity +0.00352 +0.00092
Reaction -0.00385 -0.03651

Tab. 4.6 shows the errors of the objective functions for the flow solutions using the B-J

and JT-KIRK solvers relative to the time-averaged objective functions of the unsteady

flow simulation. The relative deviations for all the three objective functions are very small

(all below 0.05%), justifying in this case the use of the JT-KIRK solver to suppress the

instability and converge the flow to steady state. However, the deviations in sensitivities

may be more significant than for the objective functions.

4.6.3.2 Effect of flow convergence level on adjoint stability

In the stabilisation results shown in the previous subsection the JT-KIRK adjoint solver

was applied to the fully converged solution while the B-J adjoint solver was applied to

the LCO-converged flow The stabilisation could be due to the more contractive Jacobian

of JT-KIRK or the better convergence level of the flow that the Jacobian is based on.

To decouple the effect of flow convergence level and adjoint time-stepping algorithm, two

additional runs are performed: (i) application of the JT-KIRK adjoint solver to LCO-

converged flow and (ii) application of the B-J adjoint solver to fully-converged flow. The

results are summarised in Tab. 4.7.

The B-J adjoint based on the fully converged flow diverges, while on the other hand,

for this flow JT-KIRK is able to converge the adjoint solution based on the LCO-

converged flow solution. The latter is not guaranteed as the preconditioned Jacobian

A := I − P−T (U)LT (U) depends on the nonlinear flow solution U about which the

adjoint is linearised. The fact that the JT-KIRK adjoint is also stable for the LCO-

converged flow in this case can probably be attributed to the fact the flow deviation is

small, implied by the small deviation of the objective functions shown in Table 4.6. It

will be shown in Sec. 4.6.4 that this is not the case for cases with stronger unsteadiness.

4.6.4 Case 4: turbine stage with skewed rotor

Case 4 is a one-stage turbine with a NGV and a rotor. Different from Case 3, the rotor

does not have a tip gap (geometry shown in fig. 4.11 upper left). Instead, in order to

investigate the effect of large unsteadiness on the convergence of both the flow and adjoint
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Table 4.7: Case 3: effect of flow convergence level and adjoint scheme on the adjoint
convergence. The solver setting for all the JT-KIRK flow and adjoint runs are the same.

Set Flow solver Flow convergence Adj. solver Adj. convergence

A JT-KIRK Full convergence JT-KIRK Full convergence
B JT-KIRK Full convergence B-J Divergence
C B-J LCO JT-KIRK Full convergence
D B-J LCO B-J Divergence

solver, the angle of attack of the rotor blade has been deliberately changed significantly

away from the design condition to create a massive flow separation on the rotor suction

side. The case consists of 0.6 million hexahedral cells with maximal cell aspect ratio of

75.

Similar to Case 3, the baseline B-J solver only converges to LCO, stalling after an

initial drop of the residual by 2 orders of magnitude. The convergence curve in fig. 4.12 is

presented for β=0.6 and σ =+∞. The discrete adjoint based on the flow solution at the

400-th iteration diverges after around 100 adjoint iterations. Using a different snapshot

of the flow solution, a smaller σ and/or different β does not achieve convergence; the lack

of convergence is due to outlying eigenvalues as demonstrated by the eigen-analysis in

Sec. 4.6.4.2.

An arbitrary snapshot of the flow solution taken during the LCO is shown in fig. 4.11.

The streamlines around the rotor at midspan clearly show the separation zone with a

separation point close to the leading edge (marked with arrow in lower left of fig. 4.11).

4.6.4.1 Stabilisation using JT-KIRK solvers

Case 4 has a much stronger instability, hence for this case we assess the robustness of

the stabilisation effect of the JT-KIRK. Differently from Case 3, the strong instability

may result in significant differences of objective functions predicted by an unsteady or

the steady-state B-J and JT-KIRK approaches.

When applying JT-KIRK to Case 1, fastest convergence was obtained with β=0.6.

This choice is actually not stable for Case 4. A more accurate solve of the linear system

using more Krylov vectors or a lower convergence threshold does not help to achieve full

convergence, however increasing the under-relaxation to β = 2.0 does, while the CFL

number can remain at σ=+∞. Optimal runtime for this combination is achieved with 2

levels of MG, solver settings and convergence results are shown in Tab. 4.8

Similar to Case 3, a time-accurate unsteady simulation is performed to assess the

accuracy of the values of the objective functions of the LCO-converged flow solution from
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Figure 4.11: Case 4, NGV and skewed rotor. Upper left: NGV and rotor geometry; upper
right: static pressure contour; lower left: Mach contour with 2D streamline for the rotor
only; lower right: SA variable contour. The contour plots are taken at midspan. All
legends are non-dimensionalised using their corresponding minima and maxima.
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Figure 4.12: Case 4, LCO convergence of the flow solver and the divergence of the adjoint
solver.

Table 4.8: Case 4: solver setting B-J and JT-KIRK, (results from settings highlighted in
bold are shown in fig. 4.11 and table 4.9 (DNC=Did Not Converge).

solver β σ MG level iteration runtime(min)

flow (B-J) 0.6 1.67 4 DNC DNC
adjoint (B-J) 0.6 1.67 4 DNC DNC

flow (JT-KIRK) 0.6 +∞ 4 DNC DNC
flow (JT-KIRK) 1.0 +∞ 4 DNC DNC
flow (JT-KIRK) 1.5 +∞ 4 DNC DNC
flow (JT-KIRK) 2.0 +∞ 4 1042 1750

flow (JT-KIRK) 2.0 +∞ 2 1058 801
adjoint (JT-KIRK) 2.0 +∞ 2 1096 507
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Table 4.9: Case 4: relative flow output deviation between fully and LCO-converged flow
solution.

Quantity JT-KIRK error % B-J error %

Efficiency -0.03124 +0.10064
Capacity +0.00052 -0.00035
Reaction -17.24848 +23.12120

B-J and the fully converged flow solution from JT-KIRK. Convergence studies have been

performed for the unsteady solver to ensure that the prescribed level of convergence for

solving the inner system is low enough and that the time step is chosen small enough.

The errors of the objective functions from LCO-converged B-J and fully-converged JT-

KIRK relative to the unsteady simulation are summarised in Tab. 4.9. The deviations of

both the efficiency and capacity of the steady-state approaches are small (below 0.1%),

but the reaction ratio of both B-J and JT-KIRK solutions differs significantly from the

unsteady average, with the deviation having comparable magnitude for both schemes at

around 20%, but with opposite signs.

On one hand, the stabilisation effect of the JT-KIRK solver is very strong thus man-

aging to fully converge a case with such strong unsteadiness. Such strong flow separations

or other severe instabilities may occur for initial or intermediate designs, and it is impor-

tant that the sequence of design iterations is not broken by a diverging adjoint. Reduced

accuracy of objective functions and sensitivities may be perfectly acceptable in this phase.

On the other hand, it implies that extra care needs to be taken when such a strong

stabilisation is used. The user needs to carefully assess when objective functions obtained

from steady approaches are acceptable, and when unsteady simulations are required.

Providing guidance on this goes beyond the scope of this thesis, however two observations

can be made. The comparison of cases 3 and 4 suggests that if the JT-KIRK adjoint is

able to converge based on the flow solution converged to LCO by the B-J flow solver,

this may indicate small unsteady deviations resulting in negligible changes in objective

function. However, this is a rather arbitrary threshold and the second observation is that

the deviation of the objective function is strongly linked to its non-linearity: two of the

objectives in Case 4 only show small errors, while reaction ratio strongly deviates.

4.6.4.2 Eigen-analysis of the stabilisation mechanism

To better understand the effect of the JT-KIRK scheme on the convergence of both the

flow and the adjoint solvers, eigen-analysis is performed on the Jacobian of both the

B-J and JT-KIRK adjoint solvers. For the B-J solver, we take as before the limit-cycle
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Figure 4.13: Case 4: convergence history of both JT-KIRK flow and adjoint solvers.

flow solution at the 400-th iterations of the B-J solver. For JT-KIRK, we take the fully

converged flow solution.

To calculate the dominant eigenvalues we use Arnoldi iterations as described by Cam-

pobasso et al. [13]. Strictly speaking, the Arnoldi iteration can only be applied to a linear

operator, such as a linear multigrid smoother. The smoother used in the JT-KIRK algo-

rithm has a GMRES solver wrapped inside a RK multi-stage scheme. Due to the nonlinear

nature of the GMRES solver, the overall smoother is not a linear operator, and thus the

Arnoldi iterations may fail to correctly compute the eigen-spectrum. However, the specific

novelty of the JT-KIRK scheme is to wrap the GMRES into a RK multi-stage scheme to

achieve high-frequency damping, it is this attribute that makes the solver suitable to be

used as a smoother within multigrid. Similarly, this diminishes the non-linear character

of GMRES sufficiently that the effects of the linear RK multi-stage scheme and the linear

multigrid scheme dominate. As a confirmation, the magnitude of the largest eigenvalue

is found to be in excellent agreement with the asymptotic convergence/divergence rate

of the adjoint solver, demonstrating the validity of the eigen-analysis.

150 dominant eigenvalues are computed for both the B-J and JT-KIRK solvers, as

shown in fig. 4.14. The eigenvalues for B-J include two outliers which are responsible for

the lack of full convergence, while the JT-KIRK solver shows all eigenvalues well within

the linear stability boundary and thus the JT-KIRK adjoint can converge fully.

Similar to the experiment with Case 3, it is also attempted to converge the adjoint
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Figure 4.14: The dominant eigenvalues values for both the B-J and JT-KIRK solvers
produced using Arnoldi iterations. The zoomed region on the top right show the unstable
mode.

using another two time-stepping combinations for the adjoint: (i) JT-KIRK for the adjoint

based on the LCO-converged flow solution using B-J and (ii) B-J adjoint solver on the

fully converged JT-KIRK flow solution, results are summarised in Table 4.10.

Table 4.10: Case 4: effect of flow convergence level and adjoint scheme on the adjoint
convergence. The solver setting for all the JT-KIRK flow and adjoint runs are the same.

Set Flow solver Flow Convergence Adjoint solver Adjoint Convergence

A JT-KIRK Full convergence JT-KIRK Full convergence
B JT-KIRK Full convergence B-J Divergence
C B-J LCO JT-KIRK Divergence
D B-J LCO B-J Divergence

Differently from Case 3, the JT-KIRK adjoint solver using the same setting does not

manage to stabilise the adjoint for LCO-converged flow for Case 4. Eigen-analysis is

performed for all the four combinations in Table 4.10 and spectra are shown in fig. 4.15.

The magnitude of the largest eigenvalue in every plot is confirmed to be in agreement

with the convergence/divergence rate of the respective adjoint solves. The spectra of the

two JT-KIRK adjoint solutions (A and C in fig. 4.15) are very similar, both showing

significant clustering of the eigenvalues compared with their counterparts using the B-

J adjoint solver on the right. However, the spectrum of the adjoint solver for LCO-

64



converged flow (C in fig. 4.15) has two outliers that cause the adjoint to diverge. This

is different from the results for Case 3, where the JT-KIRK adjoint solver is stable for

both the fully converged and the LCO-converged flows. As stated in the discussion of

Case 3, there is no guarantee for discrete adjoint convergence based on a non-contractive

Jacobian even when using a stronger solver for the adjoint. In Case 4 the instability of the

flow is large enough to prevent convergence of discrete adjoints based on the LCO state,

even with JT-KIRK. Some fine tuning of the JT-KIRK adjoint solver parameters might

make the adjoint solver stable also for the B-J LCO linearisation, but using JT-KIRK for

both flow and adjoint is guaranteed to converge since JT-KIRK does converge the flow.
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Figure 4.15: The eigenvalues for the solver combinations of Tab. 4.10. Outlying eigen-
values with |λ| > 1 are highlighted in boxes.

65



4.7 Summary

A robust implicit time-stepping scheme for the steady flow and adjoint RANS equations

has been presented to address the lack of robustness of the typical Block-Jacobi (point-

implicit) multigrid solvers when calculating steady state discrete adjoint solutions for

cases with mild physical or numerical instabilities. The JT-KIRK algorithm has two main

features. First, as opposed to Newton-Krylov methods that use exact Jacobian-vector

products, a 1st-order-approximate Jacobian is formed, stored and approximately inverted

using ILU-preconditioned GMRES. The Jacobian is computed using the Automatic Dif-

ferentiation tool Tapenade [35] in vector-forward mode. Secondly, the algorithm uses

the Krylov solver as a smoother within a FAS-cycle multigrid method. This is achieved

by embedding the linear solver inside a Runge-Kutta multi-stage time-stepping scheme,

which provides high-frequency damping similarly to explicit smoothers.

For a typical explicit or point-implicit compressible RANS solver using Runge-Kutta

time-stepping and multigrid, only moderate change to the iterative scheme is needed to

upgrade existing flow and adjoint solvers to JT-KIRK. The memory required by the im-

plicit solver is approximately 7 times larger than the total memory required by the the

reference Block-Jacobi solver to store the approximate Jacobian and its ILU decomposi-

tion. The use of GMRES inside multigrid produces optimal performance using only three

Krylov vectors which does not affect the overall memory requirement significantly.

The implicit solver is applied to four representative test cases from turbo-machinery

applications. For cases 1 and 2 where the baseline Block-Jacobi solver can fully converge,

the JT-KIRK solver is much more efficient than the Block-Jacobi solver with 28% of

the runtime for the flow solver, and slightly more efficient than the implicit solver using

Symmetric Gauss-Seidel (SGS) with 79%. The performance advantage is much more

significant for the adjoint, since the expensive preconditioners have to be built only once.

The adjoint JT-KIRK uses only 6% of the runtime of the adjoint Block-Jacobi, and

70% of that of SGS. Further improvements in runtime can be expected by adapting the

multigrid coarsening strategy inherited from the Block-Jacobi scheme to the improved

smoothing of the implicit solver, and by selectively applying Automatic Differentiation

to the fluxes omitting costly but less relevant elements of the Jacobian.

For the unstable test cases the Block-Jacobi flow solver converges only to limit cycle

oscillations and consequently the discrete adjoint solver diverges due to a non-contractive

system Jacobian. The JT-KIRK algorithm fully converges flow and adjoint, even if the

unsteadiness is severe. The improvement in robustness is analysed by examining the

eigenvalues of the JT-KIRK scheme. The spectral analysis conducted for a strongly
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unstable case confirms that the stabilisation is brought about by JT-KIRK moving the

outliers of the Block-Jacobi time-stepping inside the stability boundary.

Numerical experiments were conducted with different solver combinations for flow

and adjoint to determine whether the instability is transient, and a strong and expensive

solver is only needed for the primal, or whether it is still present in the fully converged

solution. It is found that, as the theory suggests, the instability is persistent, i.e. if

the flow requires a strong solver to converge, convergence of its discrete adjoint is only

guaranteed if the same solver is used for the adjoint. However, the results also show that

in the case of mild unsteadiness a stronger adjoint solver may be able to converge the

adjoint based on a flow converged only to limit cycle oscillations.

For the unstable cases the choice of iterative solver does affect the values of typical

objective functions for turbo-machinery applications. In the case of mild unsteadiness,

even though the Block-Jacobi solver does not converge and its discrete adjoint diverges,

the steady-state approaches can provide objective functions with good accuracy compared

to an averaged objective functions evaluated by fully unsteady calculations. For cases with

pronounced instability, the objective functions of both the Block-Jacobi and the JT-KIRK

steady-state approaches deviate strongly from the unsteady average. While stable with

JT-KIRK, the use of the steady-state approach is not justifiable in this case, moreover the

gradient sensitivity will vary much more dramatically. The JT-KIRK algorithm therefore

extends the applicability of the steady-state discrete adjoint approach to marginally stable

flows without compromising the efficiency for stable cases.

Despite the success of stabilising the discrete adjoint using the JT-KIRK algorithm,

the robustness improvement may converge to a physically incorrect steady state solution

when the flow has significant or strongly non-linear unsteadiness. In those cases, unsteady

flow and adjoint solvers should be used to accurately reflect the flow physics.
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Chapter 5

Mesh deformation techniques

5.1 Introduction

For shape optimisation, the computational mesh has to be updated at every design step.

This includes both the surface and volume meshes. Once the surface mesh is perturbed

following the updated boundary geometry, the volume mesh needs to be updated as well.

This can be done either by re-meshing or by volume mesh perturbation. To perform

re-meshing, one needs a mesher that can automatically mesh the computational domain

using the perturbed surface geometry or mesh. The advantage is its robustness in gen-

erating a valid mesh for the perturbed shape in the presence of a large perturbation of

the surface. The main disadvantage is that re-meshing is very time-consuming for large

industrial cases. Most importantly for gradient based optimisation, the re-meshing varies

the truncation error, introducing noise into the sequence of gradients, hence severely im-

pairing application of Quasi-Newton optimisation algorithms. If the surface displacement

is small enough not to result in a topology change in the multi-block unstructured mesh,

then using an iterative mesh deformation algorithm is more appropriate and cost-effective.

A mesh deformation algorithm updates the existing volume mesh by computing a finite

perturbation field according to the known boundary mesh displacement, and superim-

posing the volume mesh perturbation field to the existing volume mesh onto obtain the

perturbed volume mesh. The mesh deformation algorithm is usually PDE-based solver

which can be easily included in the existing solver framework.

Broadly speaking, for unstructured meshes, the widely used methods for mesh de-

formation are (1) analytic, (2) spring-analogy, (3) linear elasticity and (4) radial basis

function. The analytic approach is a general approach that first maps the volume mesh

onto a background object that has an analytic description and can be deformed smoothly.

The smooth deformation of the analytic object is then mapped back onto the matched

volume mesh nodes. Two typical examples of this approach include the free-form defor-

mation [85] and volumetric B-Splines [56]. The spring-analogy approach sees the volume
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mesh as a mass-spring system. The simplest approach is to model the edge as a spring

with stiffness inversely proportional to its length. This basis version spring-analogy ap-

proach is called tension-spring. An improved version that includes the torsion into the

spring model, i.e., the torsional-spring approach, is more robust in preventing the cells

from deforming to negative volume [3]. The linear elasticity approach views the domain

as an elastic body and solves for the ‘physical’ displacement of the elasticity body under

prescribed displacement certain boundary mesh nodes. Although the structural analy-

sis is traditionally discretised using finite element approach, it can also be discretised

in finite volume method, to better fit into an FVM nonlinear flow solver. One efficient

implementation is described in [41]. Radial basis functions (RBFs) based mesh deforma-

tion is becoming a well-established method due to its robustness [22]. RBFs uses a linear

combination of various radial basis functions to interpolate the volume mesh deformation,

and the coefficients for each basis function are determined using the known displacement

of the design surface nodes. One of the disadvantages is that it’s also quite expensive to

solve with the number of degrees of freedom equal to the number of surface nodes.

In terms of robustness, linear elasticity and radial basis function approaches are more

favourable, although more expensive. It is the author’s view that the linear elasticity

approaches offers more flexibility with the freedom of tuning the material properties in

order to localise the deformation and has better physical mechanism of preventing cells of

negative volume from appearing. In addition, the linear elasticity equation can be solved

easily with the same FVM discretisation requiring minimal coding effort. Therefore,

spring-based and linear-elasticity based deformation algorithms are implemented in this

work for comparison. In this chapter, both algorithms are explained in terms of theory

and implementation, and are both applied to a few test problems to demonstrate their

respective capabilities.

5.2 Spring analogy

The spring-based mesh deformation algorithm assumes the volume mesh nodes are con-

nected through springs (illustrated in fig. 5.1), represented by the edges, whose stiffness

matrix is defined as

[Kij]3×3 =
1

l
n̂ij ⊗ n̂ij

where the distance l and the unit normal vector n̂ij are defined as

l = ‖Xi −Xj‖2 and n̂ij =
Xi −Xj

l

with Xi and Xj being the coordinates of the two end nodes of the edge i-j. The system
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nij

Xi

Xj

Figure 5.1: Illustration of the node-edge spring system.

of equations for the perturbation δXj is then

KijδXj = δX̃i

or

KδX = δX̃

In order to form a square system matrix K, the right hand side term of the spring system

uses a forcing term formulated on the whole volume mesh δX̃, which is defined as

[δX̃]N×1 = [Ks2v]N×Nb
[δXs]Nb×1

where N and Nb denotes the total number of volume nodes and mesh nodes and matrix

Ks2v is a permutation matrix mapping the known perturbation of each surface node to its

corresponding volume node. Ks2v is defined as: Ks2v(i, j) = 1 if i-th volume node is j-th

surface node and Ks2v(i, j) = 0 if i-th volume node does not correspond to any surface

node. Furthermore, the system matrix Kij is modified such that if i-th or j-th volume

node is also a surface node, then the diagonal 3-by-3 matrix is an identify matrix, since

the grid displacement is known. This can be done by setting Kij to a 3-by-3 identity

matrix if the i-th volume node is the j-th surface node.

The forward mapping from δXs to δX, i.e., compute the volume node displacement

due to the known displacement of the surface nodes, is then represented by the rectangular

matrix

K̂ = K−1Ks2v

The volume node displacement can be computed using prescribed surface mesh displace-

ment as

δX = K̂δXs.

To clarify the notation, K is the square block-diagonal matrix for the entire domain and

the hatted matrix K̂ is a rectangular matrix mapping the surface node displacement to

the volume node displacement.

The mesh deformation algorithm above is for the ‘forward’ computation, i.e., given

a known surface displacement, compute the volume displacement. For adjoint-based
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optimisation, one would like to compute the surface-based sensitivity from the known

volume-based sensitivity, the so-called ‘reverse’ computation of the mesh deformation,

i.e.,
dJ

dX
=⇒ dJ

dXs

Formally, since
dJ

dXs

=
dJ

dX

dX

dXs

=
dJ

dX
K−1Ks2v

we have (
dJ

dXs

)T
= KT

s2vK
−T
(
dJ

dX

)T
Left multiplying with the matrix K−T is equivalent to solving the spring system with the

transposed stiffness matrix, using the volume based sensitivity (dJ/dX)T as the driving

term. In addition, recognizing that the effect of left multiplying with the matrix KT
s2v

is to map a volume node to its corresponding surface node if any, the projection of the

volume sensitivity to the surface sensitivity consists of three steps: (i) compute and store

the transposed stiffness matrix KT , (ii) compute K−T (dJ/dX)T through solving the

transposed spring system and (iii) zero the sensitivity of those volume nodes that are not

surface nodes.

For both the ‘forward’ and ‘reverse’ computations of the mesh deformation, the lin-

ear system to be solved involves a block-wise sparse matrix with 3-by-3 block matrices.

This well-conditioned system is solved relatively easily with Jacobi preconditioned BiCG

solver. The residual is reduced by ten orders of magnitude, and the computational cost

is negligible compared to solving the flow and adjoint.

Despite its simplicity in implementation, spring-analogy based mesh deformation is

usually effective only for deforming isotropic meshes with small displacement. The main

drawback is that this approach does not have any mechanism to prevent cells of negative

volumes before the deformation is solely dependent on the distance between nodes. An

improved version, the so-called torsional spring model [23], has been proposed to demon-

strate better robustness. However, according to the author’s experience, even a torsional

spring model still is not very useful in dealing with anisotropic mesh with very high as-

pect ratio cells in the boundary layer. Therefore, a much more robust mesh deformation

algorithm based on linear elasticity, explained in the following section, is implemented

for the shape optimisation results in this thesis.

5.3 Linear elasticity

The linear-elasticity-based mesh deformation treats the whole CFD computational do-

main as a volume of elastic material. The design surface is prescribed with a known
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displacement and the displacement of the volume nodes are solved for using the static

linear elasticity governing equation without external forcing term:

∇ · σ = 0 (5.1)

where σ is the stress tensor, which for isotropic material can be defined as

σ = 2µε+ λTr(ε)I

where µ and λ are the Lamé constants related to Young’s modulus E and Poisson’s ratio

ν through

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

The strain tensor ε is defined as

ε =
1

2
(∇u+∇uT )

where u is the displacement vector field. Dirichlet boundary conditions, i.e., u=g on ∂Ω,

are used on design surfaces where the displacement is known.

5.3.1 Basic implementation

In order to solve the problem in an FVM framework Eq. (5.1) is reformulated to integral

form ∮
∂Ω

(
E

2(1 + ν)
(∇u+∇uT ) · n̂+

νE

(1 + ν)(1− 2ν)
∇ · un̂

)
dS = 0

which is simplified to∮
∂Ω

E

2(1 + ν)

(
µ(∇u+∇uT ) · n̂+ λ∇ · un̂

)
dS = 0

where ν is between 0.0 and 0.5, and consequently λ =
2ν

1− 2ν
is between 0.0 (for λ=0.0)

and +∞ (for λ=0.5).

The solution method is based on [41] and [11]. The successful implementation relies on

the setting of Young’s modulus and Poisson’s ratio. Recall that a large Young’s modulus

value makes the element stiff and require large stress to deform, while a large Pois-

son’s ratio, e.g., 0.5 for 3D, makes the element incompressible. They are two distinctive

properties and can cause confusion if not distinguished. A simple and robust approach,

according to [11], is to set the Young’s modulus inversely proportional to wall distance

and set Poisson’s ratio everywhere to zero. The first criterion is to ensure the boundary

layer meshes are deformed much less than the isotropic mesh away from the boundary

layer meshes.The second one is extremely important to make sure that the material can

tolerate arbitrary volume change without building up excessive internal stress.
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The linear elasticity module is applied to a few test cases to demonstrate its capability.

In fig. 5.2 and fig. 5.3, a circular cylinder undergoes a change in diameter, rotational and

translational movements. In fig. 5.4, a cantilever (rectangular wing with rectangular

cross section) meshed with high AR meshes near the wing surface undergoes bending

and torsion.

Figure 5.2: Left to right: original mesh, cylinder scaled ×0.3, scaled ×2. Top: overview,
bottom: zoomed-view.

5.3.2 Improved implementation

The quality of the deformed mesh can be further improved by raising the order of the

Young’s modulus. Instead of setting Young’s modulus to be inversely proportional to

wall distance

E(x) =
1

d(x)

a higher order can be used, such as

E(x) =
1

d(x)n
, n > 1

The larger n is, the stiffer the elements in the viscous boundary layer. A comparison

of using n=1, 2, 3 and 4 for the twisted cantilever is shown in fig. 5.5. A near rigid

body movement of the element near wall and a better smoother transition of the mesh
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Figure 5.3: Left to right: original mesh, cylinder counter clock-wise rotate 60◦, cylinder
translated 60D in both x and y directions. Top: overview, bottom: zoomed-view.

deformation field is observed for n=2, 3 and 4. Therefore, for all the mesh deformation

results from here on, n=2 is the default setting.

Due to the spatially varying distribution of Young’s modulus, the resulting linear

system is no longer symmetric, thus the ILU(0) preconditioned GMRES, rather than a

CG solver, is used for solving the linear elasticity equation.

5.3.3 Approximate wall distance calculation

In the linear elasticity based mesh deformation algorithm, Young’s modulus is scaled

according to the distance to viscous wall. Therefore a fast algorithm for calculating the

distance to wall is needed. The ray tracing algorithm [19] is accurate but does not scale

(complexity O (n2)). On the other hand, PDE based methods, such as Spalding’s Poisson

equation based method [90] is approximate but scales well(complexity O(n)). Spalding’s

method first solves the Poisson equation of variable φ with a volume source term −1

∇2φ = −1

with φ = 0 on wall, or in the integral form,∮
∂Ω

∇φ · d ~A+

∫
Ω

1dv = 0
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Figure 5.4: Original mesh (left) bending with span-wise parabolic deformation with
wingtip displacement 30% of wingspan (middle) and twist of 30◦ (right).

Figure 5.5: From left to right: n=1-4. Cross section at wing tip.
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Once φ is computed, the distance to wall is approximated as

d =
√
∇φ · ∇φ+ 2φ−

√
∇φ · ∇φ (5.2)

Eq. (5.2) produces exact wall distance for an infinite planar wall and is inaccurate in

the presence of curved walls. To check the error of Spalding’s method, the exact ray-

tracing algorithm and Spalding’s method are compared in fig. 5.6 for the domain around

a rectangular body. As shown in fig. 5.6, Spalding’s method over predicts the overall wall

Figure 5.6: Wall distance calculation comparison: ray tracing (left) and Spalding’s
method (right). Top: wall distance smaller than 10 shown; bottom: wall distance smaller
than 1 shown.

distance and the worst accuracy is near the sharp edge of the rectangle. Additionally, the

accuracy improves when approaching the wall. The qualitative agreement between the

two methods is good enough for the wall distance to be used for scaling Young’s modulus

for linear elasticity mesh deformation.

5.3.4 Mesh deformation allowing mesh sliding

For certain applications, it is beneficial to allow the mesh to slide along the underlying

geometry to better preserve the mesh quality, especially when a large deformation is

applied. One such example is a turbine blade with a small tip gap. When the blade
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tip deforms and results in a relative movement of the blade tip in the circumferential

direction relative to the casing surface, it would be helpful to let the mesh on the casing

surface slide along the underlying circular arc that defines the casing.

To implement this functionality, only a small change to the boundary condition in

solving the linear elasticity is needed. Recall that for design surfaces, a finite known

displacement is prescribed as

R(u) = 0 and u = g on ∂Ωdesign (5.3)

and on non-design surfaces,

R(u) = 0 and u = 0 on ∂Ωnon-design (5.4)

For surfaces allowing sliding, the following BC is applied

R(u) = (I −B)R(u) and u = (I −B)u on ∂Ωsliding (5.5)

where matrix B is the projection matrix used for imposing slip wall boundary condition

in the nonlinear flow solver. If the underlying geometry is not planar, then sliding along

the tangent direction would cause the nodes to leave the geometry. Therefore, each de-

formation has to be a small increment to avoid the nodes on the sliding surface deviating

too far away from the geometry. And after each incremental mesh deformation, a cor-

rection step using Newton iteration needs to be applied to bring the nodes back onto the

geometry. This also implies that the analytic definition of the underlying geometry needs

to be known.

As a simple example, the sliding capability is tested on the NACA0012 airfoil with a

circular outer boundary. The airfoil is rotated by 180◦ about the leading edge. Without

the sliding capability, the deformed mesh would be invalid with cells of negative volume

appearing. With the sliding capability applied on the outer circular boundary, the de-

formed mesh is of good quality, undergoing almost a rigid body motion. The original

and the deformed meshes are shown in fig. 5.7 for comparison. For the sliding mesh

case, the total rotation is applied as 6 rotations, 30◦ each. After each small rotation, the

surface nodes are brought back to the known outer circle with the volume mesh deformed

accordingly using the mesh deformation algorithm without the sliding capability.

The second example to demonstrate the linear elasticity mesh deformation with sliding

mesh capability is shown in fig. 5.8 for a three dimensional rotor blade with tip gap.

The mesh is taken at a constant axial position near the rear of the rotor blade. The

casing surface is a circular arc with known radius. The rotor tip surface undergoes an

arbitrary displacement and the volume mesh is perturbed using the linear elasticity mesh

deformation algorithm. The result without the sliding capability is shown in the top
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Rotate 180o 

Figure 5.7: NACA0012 airfoil rotates 180◦ with sliding free stream boundary. Left:
original, right: after rotating 180◦.
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panel of fig. 5.8. Since the mesh is fixed along the casing, the mesh quality severely

deteriorated after deformation. The deformed mesh with the sliding capability is shown

at the bottom of fig. 5.8. It is obvious that the mesh quality is much better than the one

without sliding capability.

5.4 Summary

Two mesh deformation techniques, spring-based and linear-elasticity based, are explained

in detail, in terms of both the mathematical formulation and the implementation. The

spring-based deformation is easier to solve but only useful for isotropic meshes undergoing

small deformation. It’s therefore only useful for projecting the volume sensitivity to

the design surface using its ‘backward’ mode. Linear-elasticity based algorithm on the

other hand, is much more reliable when applied to deform an anisotropic mesh used

for viscous flow calculations undergoing large displacement. To facilitate the efficient

wall distance calculation, important for specifying the material property used by the

linear elasticity solver, Spalding’s Poisson’s equation based approximate wall distance

calculation algorithm is implemented and compared with the exact but much less scalable

ray-tracing algorithm. Further, the sliding mesh capability is introduced and applied to

test cases to demonstrate the enhanced robustness of the resulting linear-elasticity mesh

deformation algorithm.
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Figure 5.8: The original mesh (middle), the deformed mesh due to tip displacement with
fixed casing mesh fixed (top) and the deformed mesh due to tip displacement with casing
mesh allowed to slide along the casing (bottom).
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Chapter 6

CAD/NURBS-based
parametrisation with geometric
constraints

6.1 Introduction

In this chapter, the author aims to tackle another major challenge in industrial CFD shape

optimisation: parametrisation [83, 27]. For routine industrial applications, an approach

is desirable that (1) supports a relative rich design space, (2) permits the imposition

of geometric constraints and (3) compatible with the ‘master’ CAD file that is created

for designer and where various geometries are derived for aerodynamic, structural and

thermal analysis. The third requirement is important for a smooth integration of various

analysis tools into a unified environment. It requires that the design optimisation operate

on the same parametrised CAD model that is simplified from the ‘master’ CAD design.

A number of approaches have been proposed in the past: node-based [39, 43], Radial

Basis Function (RBF) [38], shape functions on lattices [75], free-form deformation (FFD)

[84] and CAD-based parametrisation [78]. Note-based parametrisation operates on the

CFD mesh rather than the underlying geometry. The coordinates of the surface mesh

are used as design variables. The major issue is the surface design sensitivity for flows

with high Reynolds number is usually very noisy and substantial amount of smoothing is

needed to regularise the resulting perturbation mesh [39, 37]. Node-based parametrisation

can be compatible with some kind of CAD format, such as the standard STereoLithogra-

phy (STL) format. Lattice-based shape functions [75, 76] and free-form deformations [84],

both using the morphing technique, require auxiliary shape grids, whose perturbation is

then interpolated to the CFD mesh nodes smoothly. The advantage is that it can be used

to morph either the underlying geometry or the mesh, or both. One way of morphing is

by using Radial Basis Function (RBF) [8]. In fact, commercial tools are already available
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to perform RBF based morphing with relative ease and two application examples can be

found in [9] and [10]. Such RBF based morphing can used to morph either the surface

mesh and the underlying geometry. For shortcoming of lattice-based method, including

RBF morphing is that it takes a top-down approach, i.e., using the coarse bounding box

to smoothly perturb the surface and volume meshes, and the consequence is a reduced

design space, which sometimes could reversely restrict the design improvement.

Modern CAD systems are usually very sophisticated and many features and imple-

mentations are vendor-dependant and proprietary. Recognising that the CAD-based

parametrisation and the volume mesh deformation due to surface mesh perturbation

could be dealt with separately, the main task is then first the binding of the surface mesh

with the underlying parametrised CAD model, and then a mesh deformation algorithm

that propagates the surface displacement into the volume. This procedure is less straight-

forward for non body-fitted mesh than for body-fitted mesh. For example, a Cartesian

mesh with cut-cell is used in combination with a CAD-based parametrisation is used in

[68]. The advantage is that Cartesian meshing with embedded boundary representation

can be much more easily automated than body fitted meshes. Using body-fitted meshing

tools, either structured or unstructured, would allows the design sensitivity chain to be

assembled more easily.

Another CAD-based approach is to directly employ the parametrisation defined in a

CAD system [68, 79]. These parametrisations are typically built to generate families of

parts and in general will need to be substantially modified to produce a suitable design

space to capture the optimum, hence still requiring significant user input. The manual

set-up restricts the design space and an important mode may be not represented. On the

other hand the provided parametrisations often have the relevant geometric constraints

built in. The limitation with this approach. is that firstly there is no universal standard

for these CAD parametrisations, they are defined using standards specific to a CAD

system that are in general not transferable. Secondly, current CAD systems do not offer

derivatives of surface displacements with respect to the design parameters which are

needed in the chain rule to compute the sensitivities of the cost function with respect

to design variables. The only available option is to apply finite differences to the CAD

system, resulting in significant robustness issues as finite-size displacements could lead to

topological changes in the surface description and changes in patch numbering. Robinson

et al. [79] also report significant runtimes for a three dimensional air duct case with 174

design variables. If one uses an efficient simultaneous time-stepping method, the so-called

one shot method [36, 42], this penalty would increase dramatically as these methods use

a large number of small design steps.
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CAD-free and CAD-based approaches have been thoroughly discussed and compared

in [27]. In that work, the CAD-free method refers to one that uses the control points of the

reconstructed B-spline surfaces as design variables while the CAD-based method refers

to one that directly uses the parameters from the CAD software as design variables.

The CAD-free approach is similar to the NURBS-based parametrisation proposed in

this work, except that the water-tightness of the neighbouring patches is maintained by

letting the control points on one edge of a B-spline surface follow the control points on

the edge of the neighbouring B-spline surface. This guarantees G 0 continuity, provides

the B-spline surfaces of the patches are conformable along the shared edge. The CAD-

based approach is achieved through the use of the Computational Analysis Programming

Interface (CAPRI) [33]. CAPRI is a tool that bridges the CAD systems and CAE such

as computational fluid dynamics analysis tool by hiding the vendor dependant CAD

parameters from the users using the API that reads the topology and geometry (solid

BRep) from vendor dependant geometry file and internally reconstruct the solid models

and at the same time, provides Solid Boolean operation for the reconstructed solid models.

The parametrisation available from CAPRI is then limited by its capability to read, load

and operate the various features from each individual CAD software. In [27], the CAD-

based parametrisation is limited to lofted bodies. Another features, such as wireframes

can be read but cannot be modified or used as design variables. This limitation is not a

problem for most applications. Both methods are applied to an aircraft with fuselage and

wing for geometry control successfully. The fuselage and wing intersection is not dealt

implicitly via the CAD-based parametrisation, but rather, is enforced at the surface mesh

point level using a ‘negative sensor’.

We propose an alternative approach which avoids the robustness and runtime issues of

directly using the CAD parametrisation. The approach, first presented in two dimensional

cases [99], utilises the fact that the relevant output of the CAD system to the analysis and

manufacturing tools is the boundary representation (BRep) given in the STEP standard

as a set of NURBS surface patches [72]. The approach uses the displacements of the

control points of the NURBS patches as design variables, the updated set of control

point positions fully define the CAD shape of the optimal design at convergence. This

approach produces a modified CAD-description of the surface at output. It is fully

automatic as it does not require any additional user input and it works with a generic,

vendor-independent parametrisation. Compared with RBF morphing, which could also

be CAD-based, NURBS-based approach takes a bottom-up approach and the smoothing

property is guaranteed by definition when modelling the original NURBS surfaces while a

large design space could still be retained. For example, typical RBF-morphing uses tens

of design variables while NURBS-based approach allows thousands of design variables.
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Another advantage of using NURBS parametrisation is that after each design step, the

control points of the NURBS patches can be readily exported in the vendor-independent

STEP file format, which then can be read in by most widely used CAD software.

A number of authors have used the NURBS control points as design variables [100, 58],

but considered only geometries with a single patch or only deformation inside a patch.

The main challenge to generalise this approach is to maintain the required level of continu-

ity of tangency and curvature between adjacent NURBS patches when a control point on

or near a patch interface is displaced. The proposed method introduces constraints for ge-

ometric continuity across NURBS patch interfaces and is hence termed “NURBS-based

parametrisation with complex constraints”, or NsPCC. This extension of functionality

greatly enhances the applicability of the CAD/NURBS-based parametrisation method

for shape optimisation of complex geometries.

The remainder of the chapter is structured as follows: sec. 6.2 discusses the formulation

of the CAD/NURBS-based parametrisation. Its implementation and how to satisfy and

maintain constraints of geometric continuity is discussed in secs. 6.3 and 6.5.

6.2 CAD/NURBS-based parametrisation

The CAD/NURBS-based parametrisations evaluate the deformation of the surface re-

sulting from a perturbation in design variables. The surface deformation then needs to

be interpolated onto the surface nodes of the CFD mesh and propagated smoothly into

the volume to maintain volume mesh validity and quality using a mesh deformation algo-

rithm. The mesh deformation method used is based on linear elasticity, which has been

discussed in chapter. 5.

The design sensitivity can be written as

dJ

dα
=

dJ

dXs

dXs

dα

where Xs is the surface node coordinate and α is a CAD parameter.

Robinson et al. [79] use finite differences to compute the shape derivative
dXs

dα
, where

α are user- and system-defined CAD parameters. The main issues with this approach

have been discussed in the introduction. In contrast to this, we propose to base the

CAD parametrisation on the boundary representation (BRep) which uses a collection of

NURBS patches as given in the standardised STEP format. To modify the shape, each

control point of a NURBS patch is allowed to move in all directions, hence each repre-

senting 3 degrees of freedom. A simple example of a NURBS patch with its associated

control points is shown in fig. 6.1 which also illustrates how the perturbation of a control

point changes the shape of the NURBS patch. Allowing every control point to move in all
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Original NURBS 

Perturbed NURBS 

Figure 6.1: A NURBS patch with the net of original (upper left) and perturbed (lower
right) control points

directions represents the richest design space the CAD model is able to express. Adaptive

control point enrichment or order elevation of NURBS patches can be implemented to

refine the design in areas of high sensitivity.

Imposing geometric build-space constraints can either be done at the level of the

control points exploiting the convex-hull property of splines [72], or alternatively at the

level of the surface mesh points which achieves tighter bounds at higher computational

cost. In addition to requiring smooth shapes, industrial applications often seek to limit

the local curvature, e.g. at trailing edges of aero-engine turbine blades. Unfortunately

there is no known method to derive analytic bounds for the maximal curvature in a

NURBS patch, but control of maximal curvature can be performed at the surface mesh

level, which is the appropriate level of detail resolved by the CFD simulation. These

build constraints can be implemented in the same framework as the patch continuity

constraints discussed in Sec. 6.3.

For an independently moveable control point with coordinates P , the gradient of the

cost function can then be written as

dJ

dP
=

dJ

dXs

∂Xs

∂P
(6.1)

The shape derivatives
∂Xs

∂P
can be calculated analytically, their definition is independent

of the CAD system. Specifically, a NURBS is defined [72] as

Xs(u, v) =
n∑
i=0

m∑
j=0

Bi,j(u, v)Pi,j, (6.2)

where Pi,j are the control points, u and v are the parametric variables of the surface mesh

point. The rational basis functions Bi,j(u, v) are defined as

Bi,j(u, v) =
Ni,p(u)Nj,q(v)wi,j∑n

k=0

∑m
l=0 Nk,p(u)Nl,q(v)wk,l

(6.3)
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where Ni,p(u) and Nj,q(v) are the p-th and q-th degree basis functions defined on the

parametric space u, v. Note that the shape derivative matrix ∂Xs/∂P is equal to the

basis functions Bi,j, and thus the gradient of the cost function w.r.t. the control points

is simply
dJ

dP
=

dJ

dXs

B (6.4)

where B is a matrix with elements Bi,j.

In addition to the shape derivative we also need to compute actual displacements

following a shape update by the optimiser. We have hence chosen to implement a basic

CAD-kernel in FORTRAN that evaluates NURBS surfaces, this code has then been

differentiated using the AD-Tool Tapenade [34] in forward mode to provide the necessary

derivatives.

6.3 Imposing the continuity constraint

The finite displacement of a control point P on or near a patch interface typically results

in violation of the continuity constraints, e.g. control points on an interface to a fixed/non-

moveable patch must not move at all to maintain G0 continuity (no gaps). Requiring in

this case G1 (tangent) and G2 (curvature) continuity will additionally lock the second

and third rows of control points. Similarly, control point displacements on moveable

patch interfaces imply constraints on the neighbouring rows of control points along the

interfaces.

In general, G0 continuity requires that the adjacent patches share a common edge. G1

continuity requires firstly that G0 is satisfied, and secondly, that the adjacent NURBS

patches share the same tangent plane for any point along the common edge. However,

this does not necessarily require that the adjacent patches have the same number and

distribution of control points or degrees of basis function. In our approach the constraints

are evaluated at a number of test points that are distributed along a coincident parametric

edge or the intersection line of both patches. Fig. 6.2 shows two NURBS patches sharing

one common edge. Note that the number of control points along the common edge could

be different for the left and right patches, but the test points are always deployed in

pairs, with one on each NURBS patch. The required number of test points is discussed

in Sec. 6.4. Continuity constraints for each pair of test points then express that location,

tangent plane (for G1) and curvature (for G2) are identical on all patches containing

this pair of test points. E.g., for G1 the position vectors and the normal vectors of the

tangent planes need to be identical at the test point when evaluated in either patch. A

kink between patches, e.g. as a manufacturing constraint for mould deforming, can be

specified by requiring normals to differ by the imposed deforming angle. For G0 and
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control point test point 

Figure 6.2: Test points along the NURBS boundaries and the relevant control points on
each patch

G1 continuity along an edge shared by two NURBS patches, the following constraint

functions need to remain zero for the test points evaluated in each of the patches:

G0 = Xs,L −Xs,R (6.5)

G1 = ~nL × ~nR (6.6)

where the positional and tangent continuity constraint functions are denoted as G0 and

G1 respectively and ~n is the unit normal of the tangent plane at the test point defined as

~n =

(
∂Xs

∂u
× ∂Xs

∂v

)
∣∣∣∣∣∣∣∣∂Xs

∂u
× ∂Xs

∂v

∣∣∣∣∣∣∣∣ , (6.7)

where u and v are the surface parametric variables as introduced in Eq. (6.2) and the

subscripts ‘L′ or ‘R′ mean that the term is evaluated for the test point either on the left

or the right patch, with the notation suitably extended for corner vertices. Eqs. (6.5) and

(6.6) are for positional and tangential continuity, respectively. To maintain the geometric

continuity of the initial geometry, each constraint function is required to remain zero

after each design update. To evaluate the change in constraints, each constraint function

is linearised as

Gn+1 ≈ Gn +
N∑
i=1

∂G

∂Pi
δPi (6.8)

where Pi denotes the displacement of the x, y and z components of the i-th control point,

with a total of N control point. Eq. (6.8) uses the superscripts n, n+1 to express the

numerical evaluation of the constraint at the constraint iterations n, n+1.

Assembling (6.8) for each test point displacement, and requiring Gn −Gn+1 = 0, the

following linear equation system is obtained:

CδP = 0 (6.9)
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where

C =

[
∂Gi

j

∂Pk

]
=



∂G1
0

∂P1

∂G1
0

∂P2

· · · ∂G1
0

∂PN

∂G1
1

∂P1

∂G1
1

∂P2

· · · ∂G1
1

∂PN

∂G2
0

∂P1

∂G2
0

∂P2

· · · ∂G2
0

∂PN

∂G2
1

∂P1

∂G2
1

∂P2

· · · ∂G2
1

∂PN

· · · · · · . . . · · ·

∂GM
1

∂P1

∂GM
1

∂P2

· · · ∂GM
1

∂PN



and δP =



δP1

δP2

...

δPN


.

if G1 is imposed. In this notation for G the super-script ‘i’ refers to the ‘i’-th of M

pairs of test points and the sub-script ‘j’ denotes the Gj constraint function (j = 0 for

positional constraint, and j = 1 for tangent constraint). The subscript k to Pk refers to

the displacement of the k-th of N NURBS control points.

The linearised constraint matrix C has 2 × 3 × M rows corresponding to a total

of M pairs of test points with G1 constraint, and 3 × N columns corresponding to a

total of N control points. To satisfy the continuity constraints in a linearised sense, the

perturbations of the control points δP have to lie within the null space of the constraint

matrix C. We compute the null-space of C with a singular value decomposition (SVD):

C = UΣVT , (6.10)

where U is an m×m unitary matrix, Σ is an m× n diagonal matrix with non-negative

real numbers on the diagonal, and the n×n unitary matrix VT denotes the transpose of

V. The rank of the matrix, r, is the number of the non-zero diagonal entries in Σ. The

last (m − r) columns of the matrix V span the null space of C, denoted by Ker(C) As

rounding error may lead to small but non-zero singular values, it is necessary to find a

demarcation point below which the singular values are regarded as zero. The SVD orders

the diagonal elements of Σ by the magnitude of the singular value σi, ranking highest

those modes that are most important to approximate C. This property enables us to

truncate the null space at an appropriate level as discussed in Sec. 6.4. The allowable

control point perturbations hence become

δP =
m−r∑
k=1

vk+rδαk = Ker(C)δα (6.11)
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where δαk, k = 1, ...,m − r are the perturbations in design parameters. The gradient

formulated in equation (6.1) can then be further modified to be

dJ

dα
=

dJ

dXs

∂Xs

∂P

∂P

∂α
=

dJ

dXs

∂Xs

∂P
Ker(C) (6.12)

6.4 Required number of test points

As NURBS are based on polynomials over specific knot-vector intervals, testing the values

of two NURBS at a sufficient number of distinct points will allow to test exactly whether

they match. It is however not straightforward to pre-determine the number of test points

that are needed [72]. We propose to use the number of non-zero singular values of the

linearised constraint matrix C to determine the number of test points needed along each

edge. The SVD will filter out redundant constraints arising from excessive test points:

once there are sufficient test points to determine the null space, the number of singular

values will no longer increase when a further control point is added.

Singular values are considered zero if they fall below a certain threshold. G0constraints

lead to a very cleanly conditioned SVD with singular values either clearly non-zero or of

the order of machine precision. In the case of G1 or higher, the distribution of singular

values is more gradual with a long tail of small singular values gradually tailing off in

size. We select a cut-off for the singular value at 10−7, which may reduce the accuracy

of SVD, but increases the design space. As G1 and higher constraints are non-linear, the

design step in the null space will not satisfy the constraints exactly and a recovery step

is needed, as shown in Sec. 6.5. A very exact representation of the null space is hence

not required.

This methodology is illustrated using the S-Bend optimisation case (for details of this

case, refer to chapter 7). When only G0 is imposed, the number of non-zero eigenvalues

remains unchanged if there are more than 12 test points (figure not shown here). Fig 6.3

shows the behaviour for G1, the number non-zero singular values (λ > 10−7) ceases to

increase for more than 30 pairs of test points along each edge.

6.5 G1 continuity recovery

The geometric continuity constraint developed in Sec 6.3 restricts the perturbation to be

tangent to the linearised constraint functions. The G1 constraint function is non-linear,

hence each linearised tangent step will slightly violate the constraint.

To recover the constraint after each tangent step, additional normal steps in the range

space of C are required to recover the non-linear continuity constraints G1 and G2. The

89



! "!! #!! $!! %!! &!! '!! (!! )!! *!! "!!!

"!
!"&

"!
!"!

"!
!(

"!
!&

"!
!

E
i
g
e
n
 
v
a
l
u
e
s

+

+

"!

"#

"%

"'

")

#!

##

#%

#'

#)

$!

$#

10 15 20 25 30 35
570

580

590

600

610

620

630

640

650

660

Number of test points along edge

N
u
m
b
e
r
 
o
f
 
m
o
d
e
s
 
o
f
 
a
l
l
o
w
a
b
l
e
 
d
i
s
p
l
a
c
e
m
e
n
t

Figure 6.3: Left: singular values for the linearised G1 constraint matrix using different
number of test points along the edges; right: the number of allowable displacement modes
according to eigenvalues-value analysis with cut-off value of λ = 10−7

following development shows recovery of G1, and the extension to G2 is straightforward.

Defining the deviation of the G1 constraint function from the target by δG1,

δG1 =
M∑
i=1

||Gi
1||, (6.13)

where M is the number of pairs of test points, Gi
1 is the constraint function evaluated at

the i-th pair of test points, and denoting the linearised G1 constraint function by C1 as

in Eq. (6.9), we can compute the recovery step of the control points δP⊥ as

C1δP⊥ + δG1 = 0 (6.14)

In addition to minimising G1, we also require G0 to be still strictly satisfied, and thus δP

should satisfy during each recovery step

δP⊥ = Ker(C0)δα⊥ (6.15)

where C0 =
∂G0

∂P
is calculated and stored at the beginning of the whole optimisation, as

C0 is independent of control point displacements. Algorithmically, we first solve for δα⊥

which satisfies

C1Ker(C0)δα⊥ + δG1 = 0 (6.16)

using SVD for pseudo inversion of the system matrix C1Ker(C0). As a second step we

compute the control point corrections δP⊥ using Eq. (6.15), which guarantees that they
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Figure 6.4: Deviation from exact G1 continuity with v.s. without G1 recovery steps

lie strictly in the null space of C0 and thus G0 continuity is exactly satisfied in the G1

recovery step.

In the test case presented in this work, only a few Newton steps are needed to bring

the G1 continuity below the chosen threshold, 10−5.

The effect of applying G1 continuity recovery steps is shown in fig. 6.4. Without

G1 recovery steps, the optimised shape gradually deviates from the initially exact G1

continuity, and introduces an average error of around 1.1◦ between the tangent plane

normals after only 10 design steps. With the G1 recovery steps applied after each cost-

function-based perturbation, the deviation remains below 10−5.
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Chapter 7

CAD-based optimisation of a duct

7.1 Introduction

The NsPCC method is applied to the 3D segment of an S-Bend air duct shown in fig. 7.1.

This testcase has been provided by Volkswagen AG to the FlowHead research project.

The goal is to deform the central S-section such as to minimise the mass-averaged total

pressure loss defined as

J =

∫
inlet

Ptot~u · ~ndS +
∫
outlet

Ptot~u · ~ndS∫
inlet

~u · ~ndS
.

An inlet velocity of 0.1 m/s, a zero back pressure and no-slip walls are used as boundary

conditions. The Reynolds number using the inlet height as the reference length is Re=300.

Figure 7.1: Initial geometry consisting of 30 NURBS patches viewed in CATIA V5

The emphasis of this chapter is on the parametrisation method, and the flow and

adjoint solver can be seen as a black box. In this work, the in-house incompressible flow

and adjoint solver GPDE is used for computing the flow and the adjoint field. For details

of the development of the incompressible adjoint code, refer to [45].
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7.2 Parametrisation and geometric constraints

The initial geometry is shown in fig. 7.1, the duct bends upwards and sideways, so the

optimisation result is also expected to be asymmetric w.r.t. the vertical plane. Only the

patches in the cranked S-section of the duct are allowed to move in order to represent

build constraints for the inlet and outlet sections. The fixed patches at inlet and outlet

are G0 continuous, G1 continuity is initially satisfied and imposed across interfaces of the

moveable patches.

The deformable S-section consists of 8 NURBS patches in total. Four of those patches

each have 96 (16×6) control points, the other four, each have 64 (16×4) control points,

resulting in a total of 640 control points for the S-section, equivalent to 1920 degrees of

freedom (DoF) as each control point is allowed to move in the x, y and z directions.10−5

At common edges between the 8 moveable and the fixed NURBS patches upstream and

downstream of the S-section, the first 3 layers of control points of the moveable NURBS

patches are fixed so that the entry and exit throats both have G2 continuity and meet

with zero curvature. In summary, a total of 400 control points are allowed to move in

three directions, equivalent to 1200 DoF.

To impose continuity constraints a total of 240 pairs of test points are distributed along

the 8 deformable joint edges, 30 on each edge, resulting in 1440 constraint equations. The

number 30 is determined as described in Sec 6.3, and this choice leads to a null space

with around 570 allowable modes, which may vary slightly over optimisation iterations

due to the non-linearity of G1 constraint function. The corresponding computational

surface mesh of the S-section has a total of 3840 boundary nodes. The steepest descent

method is used as an optimiser, and the step size is determined using a simple line

search bounded by a maximum allowable step size, which requires that the maximum

surface node perturbation does not exceed the minimum spacing of the surface mesh.

This ensures that the surface mesh perturbation after each design iteration is bounded

and the volume mesh deformation algorithm based on linear elasticity remains stable.

7.3 Optimisation results

The convergence history of the cost function is shown in fig. 7.2. As is shown in fig. 6.4,

and also confirmed by manually checking the optimised geometry in the CAD program

CATIA V5, the final shape remains G1 continuous across patch interfaces where specified.

The cost function drops about 25.5% after 60 design optimisation iterations; during each

iteration 5 normal steps are used to recover G1 continuity.

The initial shape and the optimised shape after 60 iterations are shown in fig. 7.3.

The optimised shape shows a distinct bulge at the top and bottom of the S-section, as
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Figure 7.2: Cost function convergence history

well as along the four edges, while hollowing inwards from both sides. Also shown in

fig. 7.3 is the surface sensitivity of the initial and the optimised shapes. The sensitivity

of the cost function w.r.t. the normal displacement of the surface is reduced to almost

zero everywhere expect at the inlet and outlet throats where the surface is not allowed

to move.

The resulting shape changes are not intuitive, hence to better understand the op-

timisation result, we compare the flow fields. Fig. 7.4 and fig. 7.5 show the contour

plots of velocity magnitude and the streamlines for the initial and optimised shapes. It

can be seen that the flow field of the initial shape has very strong secondary flows, the

cross-sectional cuts exhibit strong non-uniformity in the flow speed. This phenomenon

of secondary flow in bent ducts is well known as Dean vortices [6]. There is a large area

of separated flow at the bottom of the outlet section in the nearside corner, which will

add to the total pressure loss.

The flow field of the optimised shape on the right of fig. 7.4 and fig. 7.5 exhibits much

weaker secondary flows. The streamlines and velocity magnitude contours show that the

separation is significantly reduced. The main difference compared to the original flow lies

in the suppressed Dean vortices.

It is apparent that this suppression is achieved by the hollowing in of both sides of the

S-section, which resembles strakes to suppress the formation of vortices, such as widely

used on aeroplanes, ship hulls and pipelines. The strake-like shape is more apparent in

fig. 7.6, which shows a cross cut in the S-section viewed from the outlet into the S-Bend.
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Figure 7.3: Comparison between the initial (upper) and optimised (lower) shapes and
the surface sensitivity map for both shapes.

Figure 7.4: Contour plots of velocity magnitude for the initial (left) and optimised (right)
ducts

Figure 7.5: Streamlines plots for the initial (left) and optimised (right) ducts. Colour
along the streamlines is for illustrative purpose, not related to any flow variable.
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Figure 7.6: Cross section view of the S-section for the initial and optimised S-Bend

Figure 7.7: Schematics illustrating the formation of strake-like shape. Left: original cross
section with a pair of vortices whirling in counter directions; middle: two strakes can
be added to suppress the Dean vortices to minimise energy loss; right: alternatively, the
sides can hollow inward to mimic the effect of stakes

Ideally, a pair of stakes along the side of the S-section (fig. 7.7, middle) are to be formed

to suppress the Dean vortices, as is shown on the left of fig. 7.7. However, a shape

optimisation methodology as NsPCC does not allow a change of topology, the optimised

shape (fig. 7.7, right) clearly shows the tendency to form two strakes on both sides to

suppress the secondary flow due to Dean vortices.

The whole optimisation process takes a total of 60 optimisation steps on a mesh with

250,000 hexahedra with the dominant cost arising from the primal and the adjoint solves.

The main steps of the optimisation loop are (a) the primal and adjoint computation, (b)

the SVD at each optimisation step to compute the null space of the continuity constraint

and thus to find the shape displacement modes, as well as (c) the G1 recovery steps and

(d) the shape perturbation step. The costs of each of these steps are shown in table 7.1.

It can be seen that the steps related to the CAD-based parametrisation (b)-(d), i.e., SVD

null space, G1 recovery steps and the shape perturbation, have a negligible computational

cost compared to the primal and adjoint computations.
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Table 7.1: Computational cost breakdown for different chains of the optimisation loop

percentage over total time
primal (Res=1E-5) 17.28 %
adjoint (Res=1E-5) 78.67 %

SVD null space 2.95 %
G1 recovery steps 1.01 %

shape perturbation 0.08 %

7.4 Summary

The novel NsPCC shape optimisation methodology has been presented that allows to in-

clude the modification of a CAD-description inside the design loop. The method uses the

NURBS control points of the generic boundary representation (BRep) as design variables

and writes the updated set of NURBS control points to a STEP file. The parametri-

sation is hence fully automatic, not requiring the user to set up a parametrisation in a

proprietary CAD system. Seamless connection from and to CAD software packages is

done through the standardised STEP file format.

Geometric continuity at interfaces between NURBS patches is imposed as constraints

throughout the optimisation process. The constraints are numerically evaluated at a

set of test points, and the number of required test points is determined by evaluating

the change in rank of the constraint matrix using SVD. A well-conditioned orthogonal

basis for the design space arises from this SVD, allowing to neglect minor modes with

little effect on the constraints by appropriately selecting the threshold for singular values

considered to be zero. Constraints are maintained linearly by requiring the control point

displacements to remain in the null space of the constraint matrix and by perpendicular

recovery steps in the range of the constraint matrix to correct for the non-linear behaviour

of G1 and higher constraints.

The effectiveness of the method is demonstrated by applying it to the 3D segment of

a Volkswagen air duct, achieving a performance improvement of 25.5%. The strake-like

shape on the sides of the optimised duct very effectively suppresses the formation of Dean

vortices and flow separation, thus effectively reduces the energy loss. The resulting shape

shows very strong and detailed deformations with guaranteed smoothness.

The proposed method hence satisfies the key requirements on design parametrisations

for industrial application: a) the parametrisation is fully automatic in an open, vendor-

neutral form, able to be coupled interchangeably to a range of CAD systems such as NX

and CATIA; b) the design space is as rich as can possibly be expressed in the given BRep

and is by construction smooth: the regularity inside patches is given by the order of
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the patch basis functions, regularity across patch interfaces is controlled by user-imposed

geometric continuity constraints; c) permits imposition of geometric constraints such as

geometric continuity, but also build-space, manufacturing or maximum curvature; d)

returns the optimised geometry in a CAD format for further analysis and processing;

and e) the run-time of the derivative evaluation of the surface node displacements with

respect to CAD shape parameters is very low, allowing tight coupling into a simultaneous

(“one-shot”) design loop.
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Chapter 8

CAD-based optimisation of a turbine

8.1 Introduction

As demonstrated in the previous chapter, the unique feature of the current work is that

it allows to impose continuity constraints across patch interfaces, such as tangency (G1)

or curvature (G2). This makes the approach applicable not just to isolated NURBS sur-

faces with fixed perimeter, but to smooth geometries described by an arbitrary number

of NURBS patches. In airfoil or blade design, critical design parameters are thickness

and trailing edge radius. Unconstrained optimisation considering only the fluid dynamics

would result in a blade with sharp trailing edge as this improves efficiency. Multidisci-

plinary optimisation could take into account the thermal loads which would lead to a

rounded trailing edge, but this is too expensive to conduct. As an alternative, a geomet-

ric constraint for a minimal trailing edge radius is typically imposed. Similarly, purely

aerodynamic shape optimisation does not provide any mechanism to prevent the blade

becoming thinner. However, a thinner blade will not be able to accommodate the inter-

nal cooling channels and a minimal thickness as a function of chord length is typically

imposed.

In this chapter, the CAD-based parametrisation method in [98] is extended to include

both thickness and radius constraints, hence termed ‘NURBS-based parametrisation with

complex constraints, or NsPCC. The method uses a test-point approach to impose both

the continuity constraint and the thickness/TE radius constraints. NsPCC is applied

to the optimisation of a one-stage high pressure turbine with fillets and rotor tip gap,

subject to both flow and geometric constraints. The remainder of the chapter is structured

as follows: sec. 8.2 describes the CAD-based parametrisation using NURBS and the

methodology for imposing both thickness and radius constraints is explained. The results

of the constrained optimisation are presented in sec. 8.3, followed by conclusions in sec.8.4.
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8.2 Thickness and TE radius (T/R) constraints

The thickness constraint is to ensure that the turbine blade is thick enough to to accom-

modate the trailing edge cooling channels and to prevent overheating, which is especially

important toward the trailing edge. The radius constraint on the TE is to prevent an

undesirable sharp TE from appearing. This can be done by implicitly incorporating

the constraint in the parametrisation, e.g., parametrise a two dimensional airfoil with

thickness and camber, but only use the camber line control points as design variables.

Alternatively, one can also drastically reduce the number of design variables and allow

as design variables only the translation and rotation of the airfoil, leading to a rather

limited design space. The two methods can be combined if a three dimensional blade is

optimised [87].

When the CAD-based parametrisation is used, the test point approach used for impos-

ing the continuity constraint is adopted for imposing the thickness and radius constraints.

Fig. 8.1 shows the test points for imposing the thickness (box with dashed line in fig. 8.1)

and trailing edge radius (box with solid line in fig. 8.1) constraints for one section of

the rotor blade. The thickness test points are deployed on the last 1/3 chord length of

the rotor blade and the trailing edge radius test points are deployed on the trailing edge

radius. A total of 21 sets of test points are deployed on the whole rotor blade evenly from

root to the tip. Each set of test points at a certain blade height consists of 6 pairs of test

points (Pi, Si i = 1 to 6) for the thickness constraint and 5 test points (Ai i = 0 to 4)

for the TE radius constraint, as illustrated in fig. 8.2. The number of the test points

and their distribution are determined to approximately match the distribution of the the

control points of the NURBS patches, in both the chord-wise and spanwise directions.

The thickness and radius constraint functions at n-th design step are formulated as

Cn
T (i) = 1−min

(
dni
d0
i

, 1

)
for i = 1 to 6

Cn
R(i) = 1−min

(
dni+6

d0
i+6

, 1

)
for i = 1 to 7

where the distance functions dni at n-th step are defined as

dni = ‖Xn(Si)−Xn(Pi)‖ for i = 1 to 6

dn6+i = ‖Xn(A0)−Xn(Ai)‖ for i = 1 to 4

dn10+i = ‖Xn(Ai)−Xn(Ai+1)‖ for i = 1 to 3
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Figure 8.1: Test points for imposing thickness (box with dashed line) and TE radius (box
with solid line) constraints at one blade height.

Figure 8.2: Deployment of the test points on the rotor blade.
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A total of 6 × 21 = 126 thickness cost functions Cn
T and 7 × 21 = 147 TE radius cost

functions Cn
R are imposed as equality constraints:

Cn
T (i) = 0 for i = 1 to 126

Cn
R(i) = 0 for i = 1 to 147

which implies that the thickness and radius can not be reduced below the original values

throughout the optimisation. For ease of notation, the two constraint functions are

combined to form the thickness the thickness and TE radius (T/R) constraint function

CT/R =

[
CT
CR

]
In order to impose the T/R constraint without violating the continuity constraint, the

derivative of the T/R constraint w.r.t. the control points, dCT/R/dP , is projected into

the null-space of the continuity constraint, i.e., KerC, to arrive at the derivative w.r.t.

the design variables α:
dCT/R
dα

=
dCT/R
dXs

· dXs

dP
·KerC

Once the derivative w.r.t. the design variable is computed, a Newton step is taken to

perturb the design variable

∆αn = −
(
dCn

T/R

dα

)+

· Cn
T/R

where the superscript + denotes pseudo inverse of the matrix which is rectangular but

not rank deficient. The pseudo inversion is done with a standard QR decomposition

algorithm. To demonstrate the effectiveness of the thickness and radius constraints,

the optimisation is performed with and without the constraint, results are described in

sec. 8.3.

8.3 Result

This section will first describe the optimisation case in terms of geometry, meshing,

parametrisation and the flow characteristics.Then the optimisation strategy is explained,

followed by the optimisation results illustrated by both the change in the flow field and

the shape. For computing both the steady and unsteady nonlinear flow solution and the

steady discrete adjoint solutions, the HYDRA code is used. The linear elasticity based

volume mesh deformation algorithm is implemented as a standalone code, and at each

design step, the mesh information and the perturbation surface mesh are exported from

HYDRA to be deformed and then read back into HYDRA for computation.
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original
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original
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Figure 8.3: Comparison of the cross section profile without (left) and with (right) the
thickness and TE radius constraint at 40% blade height.

8.3.1 Case description

The case used in this work is a one-stage high pressure (HP) turbine consisting of a nozzle

guide vane (NGV) and a rotor. This case is produced to have a representative geometry

of an actual engine component. Optimisation for a similar case can be found in [87, 86]

where the geometry is more realistic. Shown in fig. 8.4 is the stage with multiple NGVs

and rotors, and the casing surfaces, inlet, outlet and periodic boundary are not shown

for illustrative purposes. For the steady state simulation, only one NGV and one rotor

are used. The NGV has fillets at both ends and the rotor has a fillet at the hub, to avoid

sharp corners. The rotor tip is a surface of revolution intersected by the pressure and

suction sides, and the tip clearance is constant along the axial position.

Figure 8.4: Geometry of the HP turbine stage.
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The 3D geometry of both blades are modelled with NURBS patches, four patches form

the rotor surface except the tip, their distribution with the control points for the rotor is

shown in fig. 8.5. The four patches consist of 33×20, 6×20, 33×5 and 6×5 control points

respectively, resulting in a total of 2925 DoF. After constraints are taken into account,

the design degree of freedom reduces to around 2000. The density of the control points

is chosen such that the mesh points are one order of magnitude denser than the control

points. Otherwise, undesirable wavy shape will be produced during optimisation unless

the waviness could be penalised using an additional, but most likely, ad-hoc criteria. Note

that the tip surface is not a design surface, as the tip clearance is not allowed to change.

The tip surface is updated by following the rim of the blade surfaces.

Figure 8.5: Rotor blade along with the control points.

8.3.2 Meshing

The stage is meshed using ANSYS ICEM CFD with a total of 3.5 million hexahedral

elements. The rotor tip gap is meshed with 20 layers of cells with growth rate around

1.3. To improve the accuracy in computing the flow in the boundary layer, the first

layer of cells on viscous walls maintains a Y+ value in the order of 1, and a growth ratio

of no greater than 1.3 in the normal direction for at least 30 layers. A post-processing

step is taken after the flow is computed to verify that indeed the Y+ value over all the

viscous walls never exceeds 5. A preliminary grid convergence study has been performed

regarding both (a) the global volume mesh density and (b) the tip gap mesh density, and
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it is found that that the current mesh is fine enough to capture the main feature of the

flow.

8.3.3 Flow solution

As boundary conditions, the total pressure (p0,1), total temperature (T0,1) and the flow

angles are prescribed at the NGV inlet boundary as a radial profile while the static

pressure (p3) profile is prescribed at the rotor exit. The NGV and the rotor are coupled

using a mixing plane. The turbulence is modelled with a one equation Spalart–Allmaras

turbulence model with wall function based on Spalding’s law of the wall. The flow is

assumed to be fully turbulent, and no transition considered in this work.

The nonlinear flow solver fully converges the steady state flow calculation and the

discrete adjoint solver using the same time-marching scheme fully converges the adjoint

solution. The typical convergence history of both flow and adjoint is shown in fig. 8.6. In

practice, for computational efficiency, both the flow and adjoint solvers are run for only

300 iterations with residual reduction of approximately 5 orders of magnitude. Running

more iterations has negligible influence on the flow solution and design sensitivity. The

optimisation terminates due to mesh failure before reaching the local minimum, it is also

assumed that the chosen convergence level for flow and adjoint are adequate and do not

have a significant impact on the optimisation result. Let us also recall that the aim of

this chapter is not to find the optimal rotor shape, but to demonstrate the NURBS-based

parametrisation with geometric constraints.

Figure 8.6: Convergence history of flow and adjoint solvers.

The converged flow for the initial geometry is shown in fig. 8.7 and fig. 8.8, illustrating

the tip vortex and two passage vortices. The stage is operating at design point and thus

the overall flow does not exhibit any major separation except the rotor tip vortex and

passage vortices, which are believed to be the main sources of loss. Only the visualisation
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Figure 8.7: Streamline plot at different axial locations for rotor.

Figure 8.8: Normalised entropy contour plot at different axial locations of the rotor.

of the flow for the rotor is shown in the figures since only the rotor shape will be optimised

in this work. Nevertheless, the same approach can be used to optimise the NGV + rotor

simultaneously to explore a larger design space, however this is beyond the scope of this

thesis.

8.3.4 Optimisation

The optimisation goal is to improve the stage isentropic efficiency. Meanwhile, it is

important that the stage inlet capacity and the rotor reaction ratio do not deviate by

more than 0.1% and 0.05% respectively. The three output functions are formulated as
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follows:

Efficiency: η =
(ṁh)0,1 − (ṁh)0,3

(ṁh)0,1 − (ṁh)0s,3

Inlet capacity: φ =
ṁ
√
T0,1

p0,1

Reaction: χ =
h2 − h3

h0,1 − h0,3

The flow constraints are enforced using the inlet capacity and reaction as penalty

functions and the extended objective function is formulated as

J =
η − η0

η0
− a1

(
φ− φ0

φ0

)2

− a2

(
χ− χ0

χ0

)2

(8.1)

and the design derivative is

dJ

dα
=
dη

dα
− 2a1(φ− φ0)

dφ

dα
− 2a2(χ− χ0)

dχ

dα
(8.2)

where the weighting coefficients a1 and a2 are chosen manually at each design step based

on experience.

A steepest descent optimiser is used to drive the design perturbation

αn+1 ← αn − c dJ/dα

‖dJ/dα‖2

(8.3)

and the step size c is chosen such that the resulting mesh perturbation at each design

iteration is bounded, to help stabilise the mesh deformation. The use of a more sophisti-

cated optimiser such as those based on Sequential Quadratic Programming (SQP), would

greatly improve the efficiency of the optimisation. However, it is found in this work that

the robustness of the mesh deformation algorithm has the most critical influence on the

overall optimisation, and consequently, we chose the steepest descent optimiser in order

to have a direct control on the perturbation step size, because other advanced optimisers

using quasi-Newton algorithms tend to predict a large perturbation step that the current

mesh deformation would not be able to cope with. Alternatively, one could limit the

predicted step size. However, this is not explored in this thesis and a simple steepest

descent method is used with limited step size.

The flow chart of the optimisation is shown in fig. 8.3.4. First, the baseline mesh is

prepared using the geometry from the STEP file. Once the flow and adjoint computa-

tions have finished, the design sensitivity is assembled, and a design perturbation δα is

returned by the steepest descent optimiser to perturb the geometry and the surface mesh

simultaneously. The linear elasticity mesh deformation module is used to perturb the

volume mesh in order to run the next optimiser iteration. The optimisation procedure is

automated to iterate until the design criterion is met and both the mesh and the STEP

file for the optimised shape are available for output.
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Figure 8.9: Optimisation flow chart.
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8.3.5 Optimisation result

A total of 20 iterations of optimisation with the continuity and geometric constraints

are performed before the mesh becomes invalid with elements of negative volume and the

optimisation terminates. Although not shown here, with the CAD-based parametrisation,

one is able to re-mesh using the updated STEP file and continue with the optimisation

using the new mesh. To show the impact of incorporating constraints on both the capacity

and reaction ratio, the optimisation is performed first without flow constraints, just to

evaluate the range of deviation for both capacity and reaction if not constrained. The

evolution of all three flow outputs are shown in fig. 8.10. After 20 design iterations,

efficiency is improved by 0.6%, while the capacity and reaction have deviated by 0.2%

and 1.2% respectively, well over the thresholds, especially the reaction ratio. Next, the

same optimisation is performed with constraints, where the weighting coefficients are

tuned each design step manually based on the trend of the cost function evolution. At

the final stage, i.e., from 15-th design step, the step size and weighting functions are

carefully chosen to ensure the reaction ratio evolve to a value within the tolerance by the

20-th design step. The results is shown in fig. 8.10 compared with the unconstrained one.

The efficiency is improved by 0.4%, while both the capacity and reaction are within the

threshold of 0.1% and 0.05%.

To examine further the loss reduction mechanism, the normalised entropy contours

at the exit plane are shown in fig. 8.11. It is clear that the passage vortex is weakened

while the tip vortex on the contrary is strengthened.

To examine the shape change after 20 design iterations with constraints, the original

and optimised rotor blade surfaces compared in fig. 8.12 by importing both STEP file

into NX 8.0. On the pressure side, the major shape change is the outward displacement

of the leading edge and inward displacement of the blade elsewhere. For the suction side,

the shape mode is slightly more complex. The suction side for the upper half of the blade

is moving outward except at 30% chord, which is where the main tip vortex starts to

shed.

Finally, it is worth noting that the efficiency improvement without incorporating the

thickness and TE radius constraints is 0.58%, a further 0.18% improvement compared

to that with the constraints, indicating that a significant but infeasible improvement is

suggested by merely making the blade thinner and TE sharper, further underlining the

importance of imposing the thickness and TE radius constraints in order to achieve a

useful design improvement.
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Figure 8.10: Convergence history of various flow output (efficiency improvement and the
deviation of both inlet capacity and reaction) at different optimisation steps.
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Figure 8.11: Entropy generation contour at the rotor exit. Left: original, right: optimised.

Figure 8.12: Comparison of the original (dark green) and optimised (silver) shapes, visu-
alised in NX 8.0.
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8.4 Summary

An extension of the CAD-based parametrisation termed ‘NURBS-based parametrisation

with complex constraints’, or NsPCC, is developed and applied to the optimisation of

a one-stage high pressure turbine with tip gap and fillets. The parametrisation method

automatically takes into account the G1 continuity constraint among the NURBS patches

forming the rotor blade and returns an optimised shape in a CAD format. In addition,

the blade thickness and trailing edge radius are also constrained to avoid the thinning

and sharpening using a test-point approach.

Using an advanced mesh deformation algorithm based on linear elasticity, a relatively

large deformation can be achieved without having to re-mesh. After 20 design cycles, an

increase of 0.4% in stage efficiency is achieved while deviation of both the inlet capacity

and reaction ratio are kept under prescribed thresholds.

Future work will be focused on incorporating more advanced geometric features such

as a rotor tip squealer, cooling slot, moving intersection lines, etc. The effect of a more

robust mesh deformation algorithm or automatic re-meshing will also be examined in

future work to achieve the full convergence of the optimisation.
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Chapter 9

Conclusions and future work

9.1 Conclusions

The results presented in this thesis are focused on aerodynamic shape optimisation based

on Reynolds-Averaged Navier-Stokes (RANS) equations using the discrete adjoint method

with emphasis on the robustness of the adjoint solver when applied to industrial appli-

cations. When applying the adjoint method for industrial shape optimisation, the con-

stantly encountered frustration for application engineers is the LCO-convergence of the

nonlinear flow and the subsequent non-convergence of the adjoint solver which is a show

stopper for gradient-based shape optimisation. The two existing algorithms for stabilising

the adjoint in these cases are GMRES and RPM, both of which are able to solve linear

equation despite a non-contractive system Jacobian. Both stabilisation methods tend

to have high memory requirement for cases with complex geometry and unstable flow

features. The author believes that a more important drawback is the non-convergence

of the nonlinear flow solution. There are two consequences of not being able to fully

converge the flow: (i) the stabilised and fully converged adjoint solution depends on the

particular flow solution snapshot the adjoint solution is based on. Neither using an aver-

aged flow solutions nor averaging the adjoint solutions based on different flow solutions

sampled from the LCO convergence seems to give a suitably averaged adjoint solution

in the sense that none of these options can be validated to machine accuracy, due to

the uncertainty of the finite residual/error of the nonlinear flow solution that is not fully

converged. In addition to the lack of robustness of the adjoint solver, another difficulty

of using the adjoint method for industrial aerodynamic shape optimisation concerns the

parametrisation methods. Parametrisation is the first decision to be made when aero-

dynamic shape optimisation is performed and it directly determines the optimal design

that could be reached. Although there is no universally preferred parametrisation as it

strongly depends on the applications, the author advocates the use of the NURBS-based
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parametrisation method due to its better compatibility with the CAD software which

allows the design-analyse-optimise process to be integrated more organically.

This thesis contributes to the two aspects of the aerodynamic shape optimisation men-

tioned above: i) a more robust adjoint solver that can be applied to a wider flow regime

and ii) a NURBS-based parametrisation method with various geometric constraints. The

contribution to the two aspects are summarised in the two subsections below.

9.1.1 Robust adjoint solver using JT-KIRK

To facilitate the wide use of discrete adjoint solvers for industrial shape optimisation ap-

plications, a novel stabilisation method has been developed for stabilising some typically

unstable cases of industrial relevance.the The algorithm development of the proposed

method is done in the HYDRA code. The time-stepping method of HYDRA nonlinear

RANS flow solver and its corresponding adjoint solver is based on the block-Jacobi pre-

conditioner, which has been well accepted to be the most efficient and reliable algorithm

when combined with multigrid acceleration for solving viscous flows. The block-Jacobi

solvers usually perform well on cases at a design point, i.e., well attached flows, not cir-

culation zone, etc. However, for cases with more complex configuration, i.e., tip gap,

off-design point, etc., the block-Jacobi flow solver tends to converge to LCO, and conse-

quently the adjoint diverges.

The proposed adjoint stabilisation method is named Jacobian-Trained Krylov-Implicit-

Runge-Kutta, or ‘JTKIRK’. JTKIRK algorithm formulates the implicit time-stepping

scheme by replacing the block-Jacobi preconditioner by the 1st-order approximate Jaco-

bian. When inverting the preconditioner matrix, instead of inverting each diagonal block

directly using Gauss elimination, ILU(0) preconditioned GMRES solver is used. The

Runge-Kutta integration that wraps around the block-Jacobi preconditioning is kept in-

tact, to provides sufficient high-frequency damping in order for the implicit scheme to

be a good smoother for multigrid. For the simplicity of the parallelism, the approximate

Jacobian and its ILU preconditioner are formed for the nodes local to each partition and

the parallel communication is only needed when computing the residual. The perfor-

mance thus degenerates with increased number of processors. The JT-KIRK algorithm

is compared with a competing implicit algorithm using Symmetric Gauss Seidel (SGS),

and results show that JT-KIRK nonlinear flow solver outperforms the block-Jacobi solver

by 70% and SGS by 20% for cases that can be converged by block-Jacobi, thus called

‘stable’ cases. In addition, two ‘unstable’ cases, i.e., cases that the block-Jacobi flow

solver converged to LCO and the adjoint solver diverged, are used to demonstrate the

stabilisation effect of the JT-KIRK algorithm. The JT-KIRK flow solver can fully con-

verge both unstable cases and subsequently the corresponding adjoint solver converges
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as well for both cases. Eigen analysis shows that the JT-KIRK algorithm significantly

clusters the eigenvalues of the system Jacobian towards the origin and thus eliminates

the outliers that are previously responsible for the divergence of the block-Jacobi adjoint

solver.

9.1.2 NURBS-based parametrisation with geometric constraints

A NURBS-based parametrisation method using a CAD kernel written in FORTRAN

has been previously developed in the group, and applied to the inverse design of a two

dimensional airfoil using prescribed pressure distribution [99]. The method uses the

coordinates of the control points of the Non-uniform Rational B-spline (NURBS) patches

as the design variables for performing shape optimisation. The author’s main contribution

is to develop the algorithm for imposing various geometric constraints: i) continuity

constraints, ii) thickness constraint and iii) radius constraint, to enable the application

to more complex geometries with multiple NURBS patches.

The geometric continuity across the connecting patches are guaranteed via a test point

approach. A set of test points are deployed along the edges shared by two patches, and

the penalty functions measuring the deviation of the geometric continuity are linearised

with respect to the control points. After calculating the null space of the linearised

penalty functions, the allowable movement of the control points can then be formulated

as the linear combination of the basis vectors of the kernel space. Since the penalty

function for G1 continuity is nonlinear, a few additional steps are taken to perturb the

design in the range space of the linearised penalty function to fully recover the geometric

constraints. To formulate the thickness and radius constraints, the same testpoint ap-

proach is followed. A group of test points are deployed on the part of the patches where

thickness and radius are formulated and constraints are required. The penalty function

measuring the deviation of the meta-thickness and radius from the threshold is then for-

mulated and linearised to compute their derivatives. The derivatives of the thickness

and radius penalty functions are then used to take a Newton step to perturb the design

variable to drive the deviation to zero. Note that the derivatives of the thickness and

radius penalty functions are projected into the null space of the continuity constraint first

before the Newton step is taken, so that the design perturbation does not in turn affect

the continuity constraint.

The resulting novel parametrisation method, named NURBS-based Parametrisation

with Complex Constraints, or ‘NsPCC’, is then successfully applied to two industrial test

cases: i) an S-Bend from the automotive industry and ii) a one-stage HP turbine from

the turbomachinery industry.
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9.2 Future work

The findings and development documented in this thesis has contributed to the maturity

of the adjoint-based shape optimisation for industrial applications. However, in order to

further increase its technology readiness level and to make a disruptive impact on the

current aerodynamic shape design and optimisation routines practised in industry, which

is mainly non-gradient based optimisation, the following aspects, as an extension of this

work, need to be strengthened.

9.2.1 Towards a direct flow solver

From the first-hand experience of many application engineers using adjoint solvers for

shape optimisation or simply using the surface sensitivity map to guide the manual opti-

misation, the lack of robustness of the nonlinear flow and adjoint solvers is still the major

concern. Nowadays RANS simulation aims at capturing the separation as accurately as

possible and thus the focal point is on turbulence models. Unless for a simple subsonic

Euler flow simulation or a turbulence flow calculation with the one-equation SA model,

full convergence of the RANS solver with other more sophisticated turbulence models

ranging from 2 to 4 equations is neither practically sought nor necessary, let alone when

there is shock/boundary layer interaction or unstable separation/circulation.

The JT-KIRK algorithm provides a good starting point for moving towards a direct

solver. The infrastructure already laid for computing the 1st-order Jacobian can be easily

be rearranged for computing the 2nd-order exact Jacobian and the 1st-order approximate

Jacobian preconditioner matrix could be replaced by first the blending of 1st and 2nd-

order Jacobian matrices and eventually the 2nd-order exact Jacobian at the vicinity of

the stationary point. This would then need a substantial amount of expertise in solution

steering technique in order to finally reach the stationary point.

At the final stage of the solver steering towards the direct solver, the main obstacle

will again be the large memory required to store the Krylov vectors. Similar to the

JT-KIRK algorithm proposed in this work, a multigrid technique should be explored in

combination with an ILU preconditioner to reduce the Krylov vectors needed.

9.2.2 Robust meshing capability

Once an adjoint solution and the design sensitivity can be computed with a robust direct

solver, the main factor that could hinder the shape optimisation is a reliable meshing tool.

Here the meshing tools not only refer to a particular mesher, but also includes automatic

re-meshing, mesh repair and adaptation capability. When surveying most industrial

shape optimisation results using adjoints, including the ones in this thesis, none of them
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has converged in terms of the optimisation steps, i.e., the local minimum is not reached.

This is quite often due to mesh failure after a few design steps. If one does not have a

parametric meshing tool that allows automatic mesh update or re-meshing after a design

update, mesh deformation could be used. However, most mesh deformation algorithm

nowadays cannot cope well with very large deformation for a high quality body-fitted

mesh refined in the boundary layer and wake. In addition, the resulting mesh quality

usually decreases monotonically over optimisation iterations. Therefore, the ideal way of

updating the mesh at optimisation steps is to use mesh deformation until the accumulated

deformation is too large and mesh quality has decreased below a threshold, and then a

re-meshing step or mesh repair step is performed to restore a high quality mesh for the

following optimisation steps. In addition, a natural question to ask is how much of the

design improvement is due to the difference in mesh quality at each optimisation iteration.

This then leads to another related topic on meshing, error estimation. Only when the

error could be quantified and bounded during each optimisation step, the adjoint-based

shape optimisation could gain much more attention from industrial users.
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1984. Von Karman Institute for Fluid Dynamics.

[13] M Sergio Campobasso and Michael B Giles. Effects of flow instabilities on the

linear analysis of turbomachinery aeroelasticity. Journal of Propulsion and Power,

19(2):250–259, 2003.

[14] Michele Sergio Campobasso. Effects of flow instabilities on the linear harmonic

analysis of unsteady flow in turbomachinery. PhD thesis, University of Oxford,

2004.

[15] Michele Sergio Campobasso and Michael B Giles. Stabilization of a linear flow

solver for turbomachinery aeroelasticity using recursive projection method. AIAA

Journal, 42(9):1765–1774, 2004.

[16] David A Caughey and Mohamed M Hafez. Frontiers of Computational Fluid Dy-

namics. World Scientific, 1998.

[17] Faidon Christakopoulos, Dominic Jones, and Jens-Dominik Müller. Pseudo-

timestepping and verification for automatic differentiation derived CFD codes.

Computers & Fluids, 46(1):174–179, 2011.

[18] B. Christianson. Reverse accumulation and implict functions. Optimization Methods

and Software, 9(4):307–322, 1998.

[19] John G Cleary and Geoff Wyvill. Analysis of an algorithm for fast ray tracing using

uniform space subdivision. The Visual Computer, 4(2):65–83, 1988.

[20] F. Courty, A. Dervieux, B. Koobus, and L. Hascoët. Reverse automatic differen-
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