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ABSTRACT 

Galectins-1, -3 and -9, are endowed with many immune-regulatory properties, 

with galectins-1 and -9 largely regarded as anti-inflammatory and galectin-3 as 

pro-inflammatory. Expression levels increase in activated adaptive immune 

cells, with peak expression often correlating with peak inflammation. Galectin 

actions are not only determined by their expression levels but also target tissue 

permissibility to galectin binding, which is in turn determined by the profile of 

specific carbohydrate residues, namely N-acetyllactosamine, recognised by 

these lectins. How expression levels and actions are modulated in innate 

immune cells during inflammation has not been systematically characterised. 

This study therefore set out to delineate the effects of inflammation on 

neutrophil glycophenotype, as well as elucidate the temporal and spatial 

modulation of galectins during resolving inflammation. 

The neutrophil glycophenotype was modulated during trafficking with decreased 

levels of all terminal glycan residues assessed. However, this did not correlate 

with galectin binding permissibility suggesting this is not a useful indicator in this 

model. The overall change in glycosylation may theoretically be a consequence 

of rapid modulation of cell surface glycoproteins by activated neutrophils (i.e. 

CD62L shedding) rather than the actions of specific glycosylation enzymes as 

demonstrated in T- and endothelial cells.  

Assessment of galectin levels in leukocytes over a 96h zymosan-induced 

resolving peritonitis demonstrated alterations both spatially and temporally with 

increased galectin-3 expression in neutrophils at the inflammatory site 

compared to the periphery and a peak expression at 24h adding supporting 

evidence that modulation of galectin expression allows delineation of galectin 

responses by neutrophils. This study also demonstrated a novel pro-resolution 

effect of galectin-3 with defective resolution observed in galectin-3 null mice.  

In conclusion this work demonstrated that neutrophil permissibility for galectins-

1, -3 and -9 binding is more likely a consequence of the exposure to galectins at 

specific time points in the resolving inflammatory response rather than due to a 

modulation of the glycophenotype upon activation. This study also 
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demonstrated that as well as an important role in the induction of an 

inflammatory response galectin-3 is involved in resolution, a novel finding which 

may lead to a better understanding of the resolution process.  
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DTT Dithiothreitol 

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme linked immunosorbent assay 

ESAM Endothelial cell-selectin adhesion molecule 

ESL E-selectin ligand 

FACS Fluorescence activated cell sorting 

FBS Foetal bovine serum 

FcγR1 FCγ receptor 1 

FITC Fluorescein isothiocyanate 

fMLP Formyl-Methionyl-Leucyl-Phenylalanine 

FSC Forward Scatter 

Fuc Fucose 

FucT Fucosyltransferase 

GAG Glycosaminoglycan 
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Gal Galactose 

GalNAc N-acetylgalactosamine 

G-CSF Granulocyte colony-stimulating factor 

GDP Guanosine diphosphate 

Glc Glucose 

GlcNac N-acetylglucosamine 

Glu Glutamine 

Gly Glycine 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GPCR G protein coupled receptor 

HAEC Human aortic endothelial cell 

HBSS Hanks buffered saline solution 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HMVEC Human microvascular endothelial cells 

HRP Horseradish peroxidase 

hrTNF human recombinant tumour necrosis factor-α 

HUVEC Human umbilical vein endothelial cell 

ICAM Intercellular adhesion molecule 

Id Intradermal 

IFN Interferon 

Ig Immunoglobulin 

IL Interleukin 

Ip Intraperitoneal 

Iv Intravascular 

JAM Junctional adhesion molecule 

kDa Kilodalton 

LacNAc N-acetyllactosamine 

LAD Leukocyte adhesion deficiency 

LBG Ligand binding groove 

LEL Lycopersicon esculentum lectin 

LFA Lymphocyte function-associated antigen 

Lgals Lectins, galactoside-binding 

LPS Lipopolysaccharide 

Mac Macrophage-1 antigen 

MAL II Maackia amurensis lectin II 

Man Mannose 
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MAPK Mitogen-activated protein kinase 

MCP Monocyte-chemotactic protein 

MerTK Mer receptor tyrosine kinase 

MFI Median fluorescence intensity 

MGAT N-acetylglucosaminyltransferase 

MHC Major histocompatibility complex II 

MMP Matrix metalloproteinase 

MPO Myeloperoxidase 

mRNA Messenger ribonucleic acid 

NADPH Nicotinamide adenine dinucleotide phosphate 

NeuNAc N-acetylneuraminic acid 

NOD Non-obese diabetic 

OSGE O-sialogycoprotein endopeptidase 

PAF Platelet-activating factor 

PBMC Peripheral blood mononuclear cell 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PE Phycoerythrin 

PECAM Platelet-endothelial cell adhesion molecule 

PerCP Peridinin chlorophyll 

PFA Paraformaldehyde 

PHA-L Phaseolus vulgaris leucoagglutinin 

PMN Polymorphonuclear cell 

PNA Peanut agglutinin 

Poly(I:C) Polyinosinic-polycytidylic acid 

ppGalNAcT Polypeptide N-acetylgalactosaminyltransferase 

Pro Proline 

PS Phosphatidylserine 

PSGL P-selectin glycoprotein ligand 

RCA120 Ricinus communis Agglutinin 120 

ROS Reactive oxygen species 

RPMI Roswell Park Memorial Institute 

Sc subcutaneous 

SEM Standard error mean 

Ser serine 

SNA Sambucus nigra agglutinin 
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SNAP Soluble NSF attachment protein 

SNARE Soluble NSF attachment protein receptor 

SSC Side scatter 

ST3GalT α2,3-sialyltransferase-IV 

ST6Gal α2,6-sialyltransferase-1 

TAE Tris-acetate EDTA 

TGF Transforming growth factor 

Thr Threonine 

Tim T cell immunoglobulin domain and mucin domain 

TLR Toll-like receptor 

TMB 3,3,5,5-tetramethylbenzidine 

TNF Tumour necrosis factor-α 

TRPV1 
Transient receptor potential cation channel subfamily 5 member 

1 

Tyr Tyrosine 

UDP Uridine diphosphate 

UEA Ulex europaeus agglutinin I 

VAMP Vesicle-associated membrane protein 

VCAM Vascular cell adhesion molecule 

WGA Wheat Germ Agglutinin 
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1 Introduction 

1.1 Glycobiology  

Glycosylation is one of the most important post-translational modifications of proteins 

with more than 50% of all mammalian proteins being glycosylated (van Kooyk et al., 

2013). Approximately 10% of the expressed mammalian genome encodes enzymes 

that play a role in the glycosylation process; these include glycosyltransferases and 

glycosidases that add and remove monosaccharides from glycoconjugates respectively 

(Haslam et al., 2008). It was initially believed that glycosylation was restricted to 

eukaryotes however in 1976 Mescher and Strominger discovered a glycoprotein on the 

cell surface of Halobacterium salinarum and this provided the first evidence for 

glycoproteins in other kingdoms of life (Mescher and Strominger, 1976). Glycosylation 

has since been identified in ancient organisms including archaea indicating that it is an 

evolutionarily conserved process and thus is of importance for many facets of life 

(Jarrell et al., 2010).  

The expression of glycosylation enzymes is regulated by the genome however the 

glycophenotype (the total expression of glycoconjugates on the surface of a cell) is 

considered a secondary gene product as glycan chains are modified post-

translationally and can be affected by availability of monosaccharides (Grigorian et al., 

2007, Lis and Sharon, 1993).  

Glycan chains are frequently attached to cell surface proteins or lipids where they form 

glycoproteins and glycolipids respectively; their production is post-translational allowing 

cells of the same type to express different glycophenotypes dependent on the cellular 

environment. Thus unlike protein production, the glycoprotein status of a cell cannot be 

predicted by mRNA expression. This project focuses on the expression and regulation 

of glycoproteins on cells of the immune system with particular focus on those targeted 

by specific galectins, a family of proteins with known immunomodulatory functions.  

Glycoproteins can be subdivided into two groups based on the amino acid in the 

protein chain to which they are bound; N-glycans are attached via an asparagine (Asn) 

residue while O-glycans are attached via a serine or threonine (Ser/Thr) residue. It is 

important to distinguish between the two as each has different binding permissibility for 

lectins.  
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1.1.1 N-Glycan Biosynthesis 

N-glycan formation begins in the rough endoplasmic reticulum where, on the 

cytoplasmic side, two N-acetylglucosamine (GlcNAc) residues are added to a dolichol 

molecule via a uridine diphosphate (UDP)-GlcNAc donor by N-acetylglucosaminyl 

phosphate transferase (GlcNAc-1-phosphotransferase). Five mannose (Man) residues 

are added to the GlcNAc residues by mannosyltransferase enzymes via a guanosine 

diphosphate (GDP)-Man donor. The molecule is then translocated to the lumen of the 

endoplasmic reticulum where a further 4 mannose residues are added by 

mannosyltransferase enzymes via a lipid intermediate, dolichol-P-Man. Finally 

glucosyltransferases add three glucose (Glc) residues to the end of the structure 

(Burda and Aebi, 1999, Kornfeld and Kornfeld, 1985) Figure 1.1. 

 

Figure 1.1: Schematic for the formation of a dolichol-linked precursor molecule in N-glycan 

biosynthesis. On the cytoplasmic side of the endoplasmic reticulum two N-acetylglucosamine 

residues are added followed by five mannose residues. The molecule is then translocated to the 

lumen where four more mannose residues and three glucose residues are added. Adapted from 

(Taylor and Drickamer, 2003). 
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The dolichol precursor molecule is transferred to an Asn residue on a polypeptide by 

an oligosaccharyltransferase enzyme. The Asn molecule is selected based on certain 

criteria: the amino acid sequence must follow the sequence Asn-X-Ser/Thr where X 

can be any amino acid except proline and the asparagine residue must lie in the 

correct position of the three-dimensional protein structure (Kornfeld and Kornfeld, 

1985).  

The first stage of processing is the removal of the three glucose residues and this is 

performed by glucosidases I and II, followed by up to four of the Man residues as 

shown in Figure 1.2. 

 

Figure 1.2: Processing of N-glycans following transfer to an asparagine residue on a polypeptide. 

Glucose residues are removed followed by up to 4 mannose residues depending on the type of N-

glycan being generated. Adapted from (Taylor and Drickamer, 2003). 

The glycoprotein is then translocated to the Golgi apparatus for the final processing to 

take place at which stage the N-glycan produced can be high mannose, hybrid or 

complex type depending on the extent of processing. High mannose N-glycans are 

those that have between five and nine Man residues and no further extensions. 

Complex N-glycans have all but three Man residues removed and each branch is 

extended with GlcNAc via N-acetylglucosaminyltransferase I (MGAT1). These can be 

subdivided into bi-, tri-, or tetra-antennary depending on the number of branches on the 

core structure and these branches can all be extended by N-acetyllactosamine chains 

(galactose bound to GlcNAc – LacNAc); extension usually continues until the chain is 

capped with a sialic acid residue that prevents further elongation. Fucosyltransferases 

also modify complex N-glycans and are important for the generation of sialyl Lewis x 

motifs. Hybrid N-glycans are formed when a GlcNAc is added onto the core structure 

containing three mannose residues, which can be extended but no further processing 

takes place as shown in Figure 1.3 (Kornfeld and Kornfeld, 1985).  
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Figure 1.3: Schematic of the three types of N-glycans: high mannose, hybrid and complex. High 

mannose structures can be modified by N-acetylglucosaminyltransferase 1 to form hybrid structures 

and these can be further modified by mannosidase II and N-acetylglucosaminyltransferase 2 

enzymes to form bi, -tri-, and tetra-antennary complex type N-glycans. Hybrid and complex N-glycans 

can be extended with LacNAc chains. Adapted from (Taylor and Drickamer, 2003). 

1.1.2 O-Glycan Biosynthesis 

O-glycans are generated in a different manner to the N-glycans with each 

monosaccharide added to a glycan chain individually without the production of a 

precursor molecule. Initially an N-acetylgalactosamine (GalNAc) residue is added to 

the protein at a serine or threonine residue by polypeptide N-

acetylglucosaminyltransferase (ppGalNAcT) using UDP-GalNAc as a donor. The 

glycoprotein is then elongated using a variety of enzymes to form one of four core 

structures which each have different binding preferences.  

Core 1 O-glycans are generated by addition of a single galactose (Gal) residue to the 

basal structure by core 1 1,3-galactosyltransferase (T-synthase) and this can be 

further modified by core 2 1,6-N-acetylglucosaminyltransferases (C2GlcNAcT) which 

adds a GlcNAc molecule to the basal structure of the core 1 O-glycan to form a core 2 

structure. Core 3 O-glycans are generated from the initial basal structure but via the 

addition of a GlcNAc by C3GlcNAcT and this can be further modified by C4GlcNAcT, 

which adds a second GlcNAc residue to the core 3 O-glycan as shown in Figure 1.4. 

Each of the core structures can be elongated with LacNAc chains and these are 
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commonly terminated by the addition of sialyl Lewis x motifs by the actions of 

sialyltransferases and fucosyltransferases (Van den Steen et al., 1998). 

 

Figure 1.4: Core 1-4 O-glycan structures and the enzymes used to produce them. Core 1 O-glycans 

are generated by addition of galactose to the core structure, core 2 O-glycans are built onto the core 

1 O-glycans, core 3 O-glycans are generated by the addition of N-acetylglucosamine to the core 

structure and core 4 O-glycans are built onto core 3 O-glycans. Adapted from (Taylor and Drickamer, 

2003). 

1.2 Inflammation 

Inflammation is a physiological process designed to protect against infection or trauma 

by recruiting leukocytes from the circulation with the aim of destroying invading 

pathogens, repairing damaged tissue and restoring homeostasis to the area. This is 

accomplished via the sequential recruitment of leukocytes known as the leukocyte 

adhesion cascade, a term coined to explain the main stages of trafficking: capture and 

rolling, firm adhesion and transmigration (Butcher, 1991).  

Initially neutrophils are captured from the bloodstream and begin to roll on the 

endothelium via interactions of selectins with their glycoconjugate counter-receptors. 

Selectins are a family of calcium-dependent lectins that interact with terminal sialyl 

Lewis x motifs (NeuNAc-2,3-Gal-1,4-(Fuc-1,3)-GlcNAc) expressed on leukocyte 

glycoconjugates (Walz et al., 1990, Lowe et al., 1990). P-selectin and E-selectin are 

up-regulated on the endothelium following activation with pro-inflammatory cytokines 

released from resident macrophages and dendritic cells at the inflammatory site in 

response to injury or infection while L-selectin is constitutively expressed on leukocytes 

(Jung and Ley, 1999, Yang et al., 1999, Patel and McEver, 1997). The selectin-sialyl 

Lewis x interaction, along with secondary stimulation by chemokines released from the 
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inflammatory site and presented at the endothelium, leads to activation of integrins on 

the neutrophil surface, which interact with their respective ligands on the endothelium 

to promote firm adhesion (von Andrian et al., 1991, Laudanna and Bolomini-Vittori, 

2009, Chesnutt et al., 2006). Once adherent neutrophils utilise a range of cell adhesion 

molecules, including platelet-endothelial cell adhesion molecule (PECAM)-1, 

endothelial cell-selectin adhesion molecule (ESAM)-1 and junctional adhesion 

molecule (JAM)-A to traverse the endothelial barrier and travel to the site of 

inflammation (Williams et al., 2011, Woodfin et al., 2009).  

Once at the site of inflammation neutrophils play an important role in pathogen killing 

via phagocytosis, bacteria are detected by pattern recognition receptors such as toll-

like receptors (TLRs) expressed on the neutrophil cell surface and endocytosed into 

phagosomes inside the neutrophil (van Kessel et al., 2014). Following this endocytotic 

process neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 

becomes activated resulting in increased superoxide generation within the phagosome, 

due to the limited space within the phagosome the concentration of superoxide 

reaches approximately 20μM. Primary granule release into the phagosome also occurs 

leading to concentrations of myeloperoxidase (MPO) in the millimolar range; this MPO 

catalyses the conversion of hydrogen peroxide to hypochlorous acid and the highly 

acidic environment inside the granule is responsible for pathogen killing (Winterbourn 

and Kettle, 2013).  

Aside from the well-organised mechanism of killing pathogens in phagosomes 

neutrophils also release their primary granule contents, including defensins, neutrophil 

elastase and MPO, into the extracellular environment to destroy invading pathogens; 

these mediators are not specific to microbial cells and thus cause damage to the host 

tissue if left unimpeded (Borregaard et al., 1993). To prevent damage to the host a 

second set of phagocytic leukocytes are recruited, the monocytes, which can be 

subdivided into two groups. Classical monocytes release cytokines to destroy any 

pathogens not removed by the neutrophils and are involved in cellular immunity; these 

are considered pro-inflammatory. Non-classical monocytes differentiate into 

macrophages at the inflammatory site and these phagocytose damaged tissue and 

apoptotic neutrophils to allow the tissue to return to homeostasis and are thus 

considered to facilitate/drive resolution (Gordon, 2003, Gordon and Taylor, 2005). 

Recent studies have shown that after a mild inflammatory stimulus the resolution 

phase is followed by population of the inflammatory site with a second wave of 

monocytes composed of monocyte-derived macrophages and tissue resident 
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macrophages; these cells act as a bridge between the innate and adaptive immune 

system before homeostasis can be restored (Newson et al., 2014).  

1.2.1 Mechanisms of Neutrophil Degranulation 

As described in the previous chapter neutrophil degranulation is essential to the 

inflammatory response and consequently is a tightly controlled process. Secretory 

vesicles, tertiary and secondary granules are required for trafficking to an inflammatory 

site and thus require release from the cell via exocytosis while primary granules are 

predominantly released into phagosomes for pathogen killing therefore a mechanism 

needs to be in place to control the release of granules.  

One of the mechanisms in place for controlling sequential release of granules is their 

sensitivity to intracellular calcium flux; secretory vesicles are the most sensitive while 

primary granules are least sensitive however the downstream pathways following this 

activation have yet to be elucidated (Borregaard and Cowland, 1997, Kanaho et al., 

2013).  

Another mechanism by which granule release is controlled is via the binding of vesicle-

associated membrane proteins (VAMPs) expressed on the granule surface to SNARE 

(soluble NSF attachment protein receptor) complexes expressed on the cell 

membrane. Granules contain different VAMPs to allow sequential release; secretory 

vesicles express VAMP-2, tertiary granules express both VAMP-2 and VAMP-7, while 

secondary and primary granules express VAMP-7 only. These proteins bind to SNARE 

complexes composed of soluble NSF associated proteins (SNAPs) and syntaxin-4 

resulting in pore formation and release of the granule either from the cell or into a 

phagosome (Lacy, 2006).  

1.3 Glycosylation in Inflammation 

Glycosylation is of particular importance to the inflammatory process as the 

glycophenotype of an immune cell is crucial to its recruitment, activation and removal 

from inflammatory sites. The effect of glycosylation on leukocyte trafficking has been 

extensively studied using genetically manipulated mice and this has provided a 

framework for the identification of the roles of glycans on immune cells during 

inflammation.  
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1.3.1 Capture and Rolling 

Glycosylation is important at all stages of leukocyte trafficking, especially during 

capture and rolling as these stages are dependent on interactions between selectins 

and sialyl Lewis x motifs expressed on cell surface glycoproteins (Figure 1.5). 

 

Figure 1.5: The role of glycosylation enzymes in neutrophil capture and slow rolling. Neutrophil 

tethering and rolling is mediated by interactions between P-selectin expressed on the endothelium in 

response to inflammatory stimulation and tyrosine sulphated Core 2 O-glycans on PSGL-1 

constitutively expressed on the neutrophil. The expression of the core 2 O-glycans is dependent on 

the actions of ppGalNAcT-1, T-synthase, C2GnT-1, ST3Gal-IV and FucT-VII. Neutrophil slow rolling is 

mediated by interactions between E-selectin expressed on the endothelium in response to 

inflammatory stimulation and N-glycans expressed on CD44/ESL-1, Core 1 O-glycans expressed on 

unknown glycoproteins and Core 2 O-glycans expressed on glycolipids and PSGL-1. Slow rolling is 

dependent on the actions of T-synthase, ST3Gal-IV, FucT-VII and FucT-IV. Loss of the enzymes 

involved at either stage lead to a partial or complete loss of neutrophil trafficking. (Wright and 

Cooper, 2014). 

The initial capture and rolling of leukocytes from the circulation relies on the interaction 

between P-selectin on activated endothelial cells and sialyl Lewis x motifs on 

constitutively expressed P-selectin glycoprotein ligand (PSGL)-1 on leukocytes. Mice 

lacking ppGalNAcT, the enzyme responsible for initiating O-glycan synthesis, 

demonstrate a significantly lower level of capture and rolling compared to wild type 

controls indicating that sialyl Lewis x expressed by PSGL-1 is displayed on core 2 O-
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glycans (Block et al., 2012, Tenno et al., 2007). Similarly mice deficient in C2GlcNAcT-

1 (responsible for core 2 extension) have severely reduced P-selectin-dependent 

leukocyte rolling (Sperandio et al., 2001).  

The importance of β4GalT-1 (which is essential for extending core 2 O-glycans) is 

highlighted by null mice, which have reduced neutrophil recruitment in models of 

zymosan-induced dermatitis and skin wound healing due to defective selectin ligand 

biosynthesis (Asano et al., 2003, Mori et al., 2004).  

Finally sialyl Lewis x motifs are capped with sialic acid and fucose, generated by the 

actions of 2,3-sialyltransferase-IV (ST3GalT-IV) and 1,3-fucosyltransferase-VII 

(FucT-VII) and deletion of either of these enzymes results in mice which have 

significantly reduced leukocyte capture and rolling compared to wild types controls in 

inflamed cremaster models using intravital microscopy (Ellies et al., 2002, Malý et al., 

1996). As glycosylation is imperative for leukocytes to elicit their roles in inflammation a 

large amount of biological redundancy is innate in the system with many enzymes 

capable of compensating in case of loss of one, thus complete inhibition of the 

recruitment pathway usually requires the knock down of multiple enzymes. For 

example although FucT-IV mice have no deficiency in capture and rolling compared to 

wild type mice the remaining response seen in FucT-VII null mice is completely 

abolished in double null mutants (FucT-VII/FucT-IV) suggesting that the FucT-IV 

enzyme can compensate for FucT-VII loss but does not act constitutively (Homeister et 

al., 2001). Fucosylation is of particular importance to leukocyte trafficking as 

demonstrated in patients suffering from leukocyte adhesion deficiency (LAD)-II; these 

patients have a genetic defect in the gene encoding the GDP-fucose transporter and 

thus do not generate selectin ligands. The disease manifests with recurrent bacterial 

infections, persistent leukocytosis and mental and growth retardation (Etzioni et al., 

1992, Frydman et al., 1992, Price et al., 1994).  

Once leukocytes have begun to roll on the endothelium in a P-selectin-dependent 

manner they need to decrease their velocity in order for adhesion and transmigration to 

begin and this is mediated by the interactions of E-selectin with its counter-receptors. 

E-selectin binds PSGL-1 in much the same manner as P-selectin but knock-down of 

PSGL-1 is unable to completely abolish E-selectin-dependent rolling suggesting the 

lectin is able to bind other receptors (Yang et al., 1999). E-selectin also binds to 

fucosylated N-glycans on CD44 and E-selectin ligand (ESL)-1 as removal of O-glycans 
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from myeloid cells using O-sialoglycoprotein endopeptidase (OSGE) does not abolish 

E-selectin-dependent rolling (Katayama et al., 2005, Levinovitz et al., 1993).  

Recent evidence has also demonstrated a role for core 1 O-glycans as E-selectin 

ligands as mice lacking T-synthase, the key enzyme responsible for the formation of 

core 1 O-glycans, in haematopoietic cells show significant reductions in E-selectin-

dependent neutrophil recruitment to the peritoneum in response to thioglycollate 

injection. These mice had a significantly diminished response when compared to the 

C2GlcNAcT-1 null mice suggesting core 1 O-glycans are also E-selectin ligands (Yago 

et al., 2010). 

1.3.2 Firm Adhesion 

E-selectin-dependent slow rolling induces the intermediate activation of integrins on the 

leukocyte surface including Mac-1 (CD11b/CD18) and LFA-1 (CD11a/CD18), full 

activation of the integrins is stimulated by the interactions between chemokine 

receptors on the leukocyte surface and chemokines that are released from activated 

endothelial cells or presented on the surface of endothelial cells following their release 

from other cellular sources (von Andrian et al., 1991, Rot, 1992, Alon and Ley, 2008). 

Chemokines are presented to leukocytes by the endothelium on glycosaminoglycans 

(GAGs) such as heparan sulphate; GAGs are also found in the extracellular matrix and 

this allows formation of an immobilised chemokine gradient that can be followed by the 

leukocytes to the site of inflammation (Patel et al., 2001).  

Chemokine receptors themselves are glycosylated and this increases the binding 

affinity of the chemokine for the receptor, for example 2,6-linked sialic acid is required 

for chemokine binding to CCR5 and CXCR4 (Bannert et al., 2001, Zhou and Tai, 

1999). The role of sialylation has been further investigated using ST3GalT-IV null mice, 

which have decreased CXCR2-mediated firm adhesion as assessed by intravital 

microscopy of the cremasteric microcirculation in mice (Frommhold et al., 2008). The 

ST3GalT-IV null mice also have decreased recruitment of both neutrophils and 

monocytes to the peritoneal cavity in response to CCL2 when compared to wild type 

mice (Döring et al., 2014). As well as altering chemokine affinity, glycosylation of 

chemokine receptors also protects them from proteolytic removal from the cell thus 

prolonging the effect of the chemokine (Ludwig et al., 2000). 

Activated integrins on the PMN surface bind to members of the Ig superfamily on the 

endothelial cell surface including ICAM-1 and VCAM-1. These receptors are 
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themselves glycosylated and N-glycans play important roles in the process of firm 

adhesion. Human ICAM-1 has eight sites that are permissible for N-glycosylation and 

importantly the extent of processing affects the binding of integrins. For example, 

treatment of human umbilical vein endothelial cells (HUVECs) with 

deoxymannojirimycin (DMJ), an inhibitor of mannosidase I that blocks N-glycans from 

being processed past high mannose type, results in increased neutrophil adhesion 

(Bloom et al., 1996). This effect is due to Mac-1 binding preferentially to ICAM-1 with 

simple high mannose N-glycans; it has also been demonstrated that LFA-1 binds to 

ICAM-1 with large complex N-glycans (Diamond et al., 1991). VCAM-1 contains seven 

potential N-glycosylation sites and is decorated with 2,6-linked sialic acid however the 

sialylation of VCAM-1 does not affect VCAM-1-dependent leukocyte adhesion under 

flow conditions and the role of this glycosylation has yet to be determined (Hanasaki et 

al., 1994, Abe et al., 1999) Figure 1.6.  

 

Figure 1.6: The role of glycosylation enzymes in neutrophil firm adhesion. Neutrophil firm adhesion is 

mediated by interactions between integrins expressed by leukocytes and their ligands on the 

activated endothelium. Slow rolling on E-selectin promotes the intermediate activation of the integrin 

molecules and these are fully activated by interactions between chemokines, which are immobilised 

on endothelial glycosaminoglycans, and their GPCR receptors. GPCR receptors require modification 

by ST6GalT-IV to bind chemokines. Once fully active the integrins bind to ICAM-1 and VCAM-1 that 

are N-glycosylated. Loss of enzymes at either stage leads to a partial loss of neutrophil trafficking. 

(Wright and Cooper, 2014). 
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1.3.3 Transmigration 

Transmigration is mediated by a number of adhesion molecules including ESAM-1, 

JAM-A, PECAM-1 and vascular endothelial (VE)-cadherin and although studies have 

shown that many of these are glycosylated it is not yet clear whether this directly 

affects leukocyte trafficking (Figure 1.7).  

 

Figure 1.7: The role of glycosylation enzymes in neutrophil transmigration. Neutrophil transmigration 

is mediated by interactions between cell adhesion molecules expressed on the leukocyte and the 

endothelium including PECAM-1, ESAM-1 and JAM-A. Of these PECAM-1 requires modification by 

ST6Gal-1 to be retained at the cell surface. VE-cadherin is required to disassemble in order for 

trafficking to take place and is known to be glycosylated however it is unclear how this affects 

trafficking. (Wright and Cooper, 2014). 

PECAM-1 is expressed by both the endothelium and leukocytes and forms homophilic 

interactions to initiate the transmigration stage of trafficking (Piali et al., 1995). The 

expression of PECAM-1 on endothelial cells in ST6Gal-1 null mice is reduced when 

compared to wild type cells suggesting sialylation is important for surface retention of 

the adhesion molecule and thus may play an indirect role in trafficking (Kitazume et al., 

2010).  

VE-cadherin is expressed on endothelial cells and forms zipper-like cell-cell 

interactions that maintain vascular integrity during homeostasis and thus prevent 

trafficking; VE-cadherin is required to disassemble in order for leukocytes to pass 
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through the endothelial cells during inflammation (Shapiro et al., 1995). There are 

seven potential N-glycosylation sites on VE-cadherin, all of which are in the 

extracellular domain; these are predominantly sialylated and fucosylated biantennary 

complex N-glycans with some expression of sialylated hybrid-type N-glycans (Suzuki et 

al., 1991, Breviario et al., 1995, Geyer et al., 1999). Studies using bacterially-produced 

VE-cadherin suggested the protein forms trimers at the cell surface however this was 

recently demonstrated to be an artefact caused by a lack of glycosylation and it is now 

believed that the high level of sialylation provides the protein with a negative charge 

thus preventing association with molecules on the same cell and promoting association 

with molecules on opposing cells to maintain the “zipper-like” structure (Legrand et al., 

2001, Bibert et al., 2002, Brasch et al., 2011).  

1.3.4 Modulation of the Glycophenotype during 
Inflammation 

It is known that the glycophenotype of the endothelium is fluid during inflammation and 

is modulated upon pro-inflammatory stimulation, such as tumour necrosis factor (TNF)-

α and disturbed flow, and this leads to an increase in the expression of 

hypoglycosylated N-glycans that are predominantly high-mannose structures (Chacko 

et al., 2011). This modulation has been shown to promote an increase in the local 

adhesion of monocytes under flow and thus the glycophenotype of the endothelium 

has been proposed to act as a “zip code” for directing specific recruitment of 

leukocytes in different vascular beds in response to inflammatory stimuli (Renkonen et 

al., 2002).  

The modulation of the endothelial glycophenotype also impacts the binding of lectins 

such as galectins that have a role in leukocyte trafficking. Treatment of the endothelium 

with immunosuppressive cytokines (such as interleukin (IL)-10 and transforming growth 

factor (TGF)-β) leads to increased expression of complex tri- and tetra-antennary N-

glycans with poly-LacNAc chains and decreased expression of α2,6-linked sialic acid 

residues; this glycophenotype is permissive for the binding of galectin-1, a lectin that is 

known to decrease leukocyte trafficking through the endothelium (Croci et al., 2014, 

Norling et al., 2008). 

There is some evidence to suggest that the glycophenotype of leukocytes is also 

modulated during inflammation. Analysis of neutrophils from healthy volunteers by 

mass spectrometry found the majority of N-glycans were complex bi-, tri-, or tetra-

antennary structures with LacNAc extensions and sialylated and fucosylated branches. 
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The O-glycans were predominantly highly sialylated and fucosylated core 2 structures 

(Babu et al., 2009). The glycophenotype was is also modulated by pro-inflammatory 

stimuli as activation with Formyl-Methionyl-Leucyl-Phenylalanine (fMLP) promoted 

rapid and transient neuraminidase release from secondary and tertiary granules, 

leading to removal of sialic acids from glycoproteins, exposing the underlying glycans 

and allowing binding of lectins (Cross and Wright, 1991, Cross et al., 2003). It is not yet 

clear how the glycophenotype is modulated during the process of neutrophil trafficking 

through the endothelium.  

1.4 Galectins 

Galectins are a family of lectins that are defined as having “affinity for β-galactosides 

and significant sequence similarity in their carbohydrate binding sites, the relevant 

amino acids of which have been determined by X-ray crystallography” (Barondes et al., 

1994). Studies have identified 15 mammalian galectins, which are numbered 

sequentially based on date of discovery, however one of these (galectin-11) has since 

been designated ‘galectin-like’ as it does not bind β-galactoside (Cooper et al., 2012, 

Leffler et al., 2004). Galectin-10 is also potentially galectin-like as it preferentially binds 

mannose and not β-galactoside (Swaminathan et al., 1999). Galectins have been 

found in all animal kingdoms as well as plants and fungi and are therefore 

evolutionarily conserved suggesting many important roles for this family of proteins 

(Leffler et al., 2004). 

Of all the galectins, three have been identified to play important roles in innate 

immunity; these are galectin-1, galectin-3 and galectin-9 and thus will be the focus of 

this project (Dias-Baruffi et al., 2010, Cherayil et al., 1989, Kim et al., 2007, Wada and 

Kanwar, 1997, Wada et al., 1997).    

1.4.1 Structure 

Galectin-1 was initially discovered in the electric eel where it was termed electrolectin, 

since then many galectins have been identified in various species, tissues, and cell 

types, all of which were differently named depending on the source and the investigator 

(Teichberg et al., 1975). This led to confusion and an inability to link different reports of 

structure and function; therefore in 1993 the galectins were characterised into three 

subtypes depending on their structural characteristics in an attempt to provide some 

clarity to the various members of the family as shown in Figure 1.8 (Hirabayashi and 

Kasai, 1993).  
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Figure 1.8: Schematic of the structure of the three subtypes of galectins. Prototype galectins have a 

single CRD; chimeric galectins have a single CRD with an extended N-terminus and tandem repeat 

galectins have two distinct CRDs joined by a short linker peptide.  

Prototype galectins have a single carbohydrate recognition domain (CRD) and can 

homodimerise physiologically to exert their effects; these include galectins-1, -2, -5, -7, 

-10, -13 and -14 (it has since been shown that galectin-5, -7 and -10 can exist as 

monomers under physiological conditions) (Hirabayashi and Kasai, 1993). Galectin-3 is 

the only known chimeric galectin, it has a single CRD linked to an extended non-lectin 

region (Hirabayashi and Kasai, 1993). Tandem-repeat galectins have two distinct 

CRDs with different binding properties that are joined by a short-linker peptide; it was 

initially postulated that proteolytic cleavage of the linker peptide enabled each CRD to 

elicit its effects however it is now known that both CRDs as well as the linker peptide 

are essential for the effects of the protein through increasing signalling potency (Earl et 

al., 2011). Tandem-repeat galectins include galectins-4, -8, -9, -12 and -15 

(Hirabayashi and Kasai, 1993).  

The X-ray crystallography structure of the CRD was determined in 1993 by Lobsanov 

and colleagues who determined that each monomer is composed of eleven strands 

arranged in a β-sandwich with five strands in one sheet and six strands in the other 

(Lobsanov et al., 1993). The CRD consists of 135-140 amino acids however only four 

are conserved between the entire galectin family, these are a glycine at position 25, a 

tryptophan at position 80, a glutamic acid at position 83 and an arginine at position 

125. These conserved amino acids reside in a structure known as the ligand binding 

groove (LBG), the part of the CRD where the β-galactoside residue binds (Di Lella et 

al., 2011). Although only these four amino acids residues are conserved there is high 

homology between the other residues in the CRD especially between galectins of the 

same subtype (Guardia et al., 2011).  
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1.4.2 Expression 

Galectins are soluble proteins found throughout all cellular compartments however it is 

also well documented that they are found in the extracellular environment where they 

act on cell surface receptors to elicit their effects however extensive analysis of the 

genes confirms the proteins do not express a secretion signal sequence (Hughes, 

1999), thus they join proteins such as Annexin A1 (AnxA1) in being exported from the 

cell by an as yet unknown mechanism (March et al., 1985, Perretti and D'Acquisto, 

2009). Until 2001 IL-1β was included in this category however it was determined that it 

is secreted via microvesicles that are released from monocytes in response to an 

increase in cytosolic calcium, this mechanism has yet to be assessed for galectin 

secretion (MacKenzie et al., 2001). 

Of the fifteen galectins described in the literature eleven are expressed in humans. 

Galectins-1, -3 and -9, known to elicit immunomodulatory functions, are as would be 

expected, expressed in cells pertinent to the inflammatory response with expression 

levels modulated in response to inflammatory mediators.  

1.4.2.1 Endothelial Cells 

Vascular endothelial cells are known to express low levels of galectins-1, -3 and -9 

under basal conditions but this is modulated in response to activation of the cells 

(Thijssen et al., 2008). Galectin-1 expression is increased upon activation of HUVECs 

with human serum or lipopolysaccharide and in human aortic endothelial cells (HAECs) 

following stimulation with minimally oxidised low-density lipoprotein (Baum et al., 

1995). The increased expression of galectin-1 seen following activation correlates with 

a localisation of the protein to the cell surface (Thijssen et al., 2008). Galectin-3 in 

HUVECs is up-regulated upon activation with IL-1 (50ng/mL) for 4 hours (Rao et al., 

2007). However in vivo studies have shown a decrease in the expression of galectin-3 

in rat endothelial cells following 4-hour carrageenan-induced peritonitis (Gil et al., 

2006b)(Gil et al., 2006b). Galectin-9 is also increased in HUVECs following stimulation 

with interferon- (10ng/mL) or polyinosinic-polycytidylic acid (poly-IC), a double-

stranded RNA (Alam et al., 2011, Ishikawa et al., 2004, Imaizumi et al., 2002). 

1.4.2.2 Monocytes and Macrophages 

Galectin-1 is detected on the surface of isolated human monocytes under basal 

conditions, levels are unaltered upon classical activation of the cells to an M1 

phenotype but surface levels increase upon alternative activation to M2 monocytes 
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(Novak et al., 2012). Galectin-1 is also detected in macrophages from sputum samples 

and expression is significantly decreased in asthmatic patients (Sanchez-Cuellar et al., 

2012). Galectin-3 is highly expressed by human and murine monocytes and 

macrophages and levels increase in correlation with the differentiation of the cell; 

murine alternative macrophages express significantly more galectin-3 than classical 

macrophages (Ho and Springer, 1982, Sato and Hughes, 1994, MacKinnon et al., 

2008, Novak et al., 2012). Upon activation with calcium ionophore (A23187) the 

expression of galectin-3 significantly decreases and this coincides with an increase in 

the extracellular environment confirming the lectin is being released from the cell (Liu 

et al., 1995). Resident peritoneal macrophages express low levels of galectin-3, these 

cells are a distinct population of macrophages that are derived from the yolk sac during 

embryogenesis and these differentiate to repopulate the peritoneal cavity following 

depletion (Yona et al., 2013). Galectin-9 is expressed in human macrophages collected 

from sputum samples in healthy volunteers and, similar to galectin-1, levels are 

significantly decreased in asthmatic patients (Sanchez-Cuellar et al., 2012).  

1.4.2.3 Neutrophils 

Galectin expression in both human and murine neutrophils is negligible, although there 

are reports of modification during inflammation. Galectin-1 expression is significantly 

decreased upon human neutrophil adhesion to an endothelial monolayer in vitro (Gil et 

al., 2006b)(Gil et al., 2006b). The expression of galectin-3 in neutrophils is somewhat 

controversial and appears to be species-dependent as a report by Gil et al showed an 

increase in the expression of the protein following carrageenan-induced peritonitis in 

recruited neutrophils in a rat model while Sato and colleagues showed no expression 

of the protein in murine neutrophils that were recruited to the air pouch in response to 

lipopolysaccharide (LPS) (Gil et al., 2006b, Truong et al., 1993, Farnworth et al., 2008, 

Sato et al., 2002b). This discrepancy may be a result of the differences in detection 

methods; Gil and colleagues used immunofluorescence to assess the expression of 

galectin-3 in situ while Sato et al plated exudate from the air pouch onto plastic and 

collected the non-adherent neutrophils before analysis by western blot, a method which 

may have lacked the sensitivity to detect low levels (Gil et al., 2006b, Sato et al., 

2002b). Human neutrophils express low levels of galectin-3 and this is not modulated 

upon transendothelial migration (Gil et al., 2006b)(Gil et al., 2006b), the lectin could 

also be detected in neutrophils from sputum samples collected from healthy and 

asthmatic patients and no difference was seen between the two groups (Sanchez-

Cuellar et al., 2012). 
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1.4.3 Function 

Although galectins bind specifically to LacNAc residues they do so with relatively low 

affinity, this is increased by up to 100-fold by arrangement of the LacNAc residues into 

repeating chains (Rabinovich and Toscano, 2009, Ahmad et al., 2002). They bind 

residues expressed on cell surface glycoproteins and form galectin-glycoprotein 

lattices as shown in Figure 1.9.  

 

Figure 1.9: Galectin functions on a single cell and between cells. A. Galectins can cross-link 

receptors on a cell surface to induce signal transduction, they can bind receptors to inhibit the 

binding of alternative ligands and they can cluster receptors to allow other ligands access to their 

receptors. B. Galectins can cross-link cells to promote cell-cell adhesion or cells to extracellular 

matrix to promote cell-matrix adhesion. 

Galectins can cross-link receptors on the same cell leading to activation of signalling 

pathways, inhibition of other ligands binding to the receptors or even increase binding 

by clustering inappropriate receptors out of the way allowing ligands to reach their 
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receptors (Rabinovich et al., 2007). The galectins can also cross-link receptors 

between cells or between cells and extracellular matrix proteins to promote adhesion 

(Rabinovich et al., 2007). The functions of galectins-1, -3 and -9 upon binding to their 

ligands will be discussed individually.  

1.4.4 Galectin-1 

Galectin-1 is a 14 kilodalton (kDa) prototype galectin that homodimerises under 

reducing conditions via specific amino acids in its N-terminus; the monomer is also 

bioactive but has a lower affinity for ligands than the dimeric form; this is important as 

both forms can be detected in solution (Cho and Cummings, 1995, Hirabayashi and 

Kasai, 1984, Leppänen et al., 2005, Giudicelli et al., 1997). Galectin-1 can be oxidised 

or reduced reversibly, which is important as reduced galectin-1 has immunoregulatory 

and pro-apoptotic properties while oxidised galectin-1 has no effect on immune cells 

(Guardia et al., 2014). The highly oxidative environment at inflammatory sites facilitates 

the oxidation of galectin-1 allowing leukocytes to be recruited and elicit their effects 

without being impeded by the anti-inflammatory properties of the lectin. As the 

leukocytes migrate away from the inflammatory site into healthy tissue the environment 

normalises and the reduced galectin-1 homodimerises to elicit its effects and protect 

healthy tissue (Stowell et al., 2009a).   

Galectin-1 binds preferentially to LacNAc monomers expressed on core 2 and core 4 

O-glycans or bi-antennary complex N-glycans and the binding is inhibited by the 

presence of an α2,6-linked, but not by α2,3-linked, sialic acid residues as the lectin 

binds to the terminal motif (Stowell et al., 2004, Stowell et al., 2008a, Leppänen et al., 

2005). 

Many of the studies assessing galectin-1 functions have been performed on T cells as 

the lectin plays an important role in chronic inflammatory diseases where it has been 

designated anti-inflammatory. Galectin-1 promotes the apoptosis of human and murine 

Th1 and Th17 cells while having no effect on Th2 cells due to differential glycosylation 

of the cells; Th1 and Th17 cells express high levels of LacNAc on their surfaces which 

are permissive for galectin-1 binding while on Th2 cells these residues are capped with 

2,6-linked sialic acid that blocks galectin-1 binding (Toscano et al., 2007). The 

LacNAc residues on Th1 and Th17 cells are expressed on core 2 O-glycans of CD7, 

CD43 and CD45, upon galectin-1 binding CD43 and CD45 are sequestered on the cell 

surface leaving CD7 isolated and this initiates the apoptotic caspase pathway (Pace et 

al., 1999, Brandt et al., 2008, Galvan et al., 2000).  
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1.4.4.1 Galectin-1 in Animal Models of Inflammation 

Galectin-1 null mice were generated and exhibit no phenotypic abnormalities under 

standard conditions except for a deformity in olfactory nerve development; these mice 

do have deficiencies when challenged as discussed below (Poirier and Robertson, 

1993, Puche et al., 1996). Galectin-1 null mice have been subjected to various 

inflammatory pathologies in order to assess the phenotype when challenged as shown 

in Table 1-1. 

Pathology Outcome 

Experimental Autoimmune 
Encephalomyelitis 

Increased susceptibility to disease (Toscano et 
al., 2007) 

Collagen-induced Arthritis 
Increased severity of disease (Iqbal et al., 

2013) 

Graft vs Host Disease 
Earlier rejection of skin grafts (Moreau et al., 

2012) 

Interleukin-1 Intravital Microscopy 
Decreased leukocyte adhesion and emigration 

(Cooper et al., 2008) 
Experimental Acute Myocardial 

Infarction 
Increased inflammation and damage (Seropian 

et al., 2013) 

Carrageenan-induced Paw 
Oedema 

Reduced leukocyte recruitment in the second 
half of an inflammatory response (Iqbal et al., 

2011) 

Table 1-1: Overview of the phenotype of galectin-1 null mice subjected to various inflammatory 

pathologies. 

Galectin-1 null mice have increased susceptibility to experimental autoimmune 

encephalomyelitis and significantly more pathological signs of collagen-induced 

arthritis compared to wild type mice and this correlates with an increase in interleukin-

17 and interferon- levels suggesting an increased number of Th1 and Th17 cells 

compared to control (Toscano et al., 2007, Iqbal et al., 2013). Galectin-1 null mice have 

also been used to study the innate immune response using intravital microscopy to 

visualise the microvasculature following activation with IL-1 where increased 

leukocyte recruitment was observed compared to wild type mice (Cooper et al., 2008). 

Paw oedema was induced in galectin-1 null mice using carrageenan and this led to 

reduced leukocyte recruitment in the second half of the inflammatory response, as 

galectin-1 is an anti-inflammatory protein this was an unexpected finding however it 

was also demonstrated that galectin-9, a second anti-inflammatory member of the 

galectin family, was increased in these mice.   
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Through the induction of T cell apoptosis galectin-1 is able to attenuate many T cell-

driven pathologies as demonstrated by several groups using recombinant galectin-1 in 

various models of inflammation as shown in Table 1-2.  

Pathology Species Dose Outcome 

Experimental 
Autoimmune 
Myasthenia 

Gravis 

Rabbit 

100g/intradermal (id) 
single dose with 

antigen or at onset of 
clinical symptoms 

Preventative and therapeutic 
effects (Levi et al., 1983) 

Collagen-induced 
Arthritis 

Mice 

100g/intraperitoneal 
(ip) daily for 11 days 
beginning at onset of 

clinical symptoms 

Skewing from Th1 to Th2 
profile and attenuation of the 
disease (Rabinovich et al., 

1999) 

Concanavalin-A-
induced Hepatitis 

Mice 
20g/intravenous (iv) 
30 minutes prior to 

Con-A administration 

Decreased pro-inflammatory 
cytokine production and 

increased T cell apoptosis 
(Santucci et al., 2003) 

Graft vs Host 
Disease 

Mice 

250g/ip three times 
weekly from bone 
marrow transplant 

until death 

Amelioration of weight loss, 
inflammatory destruction of 
target organs and mortality 

(Baum et al., 2003) 

Trinitrobenzene 
Sulphonic Acid-
induced Colitis 

Mice 

400g/iv daily for 7 
days following TNBS 
injection or starting 2 
weeks after onset of 

clinical symptoms 

Protective and therapeutic 
effects (Santucci et al., 

2003) 

Autoimmune 
Retinal Disease 

Mice 

50g/ip every other 
day for 1 week either 

week 1 or week 3 
after disease 

induction 

Suppression of pathology 
(Toscano et al., 2006) 

Experimental 
Acute Myocardial 

Infarction 
Mice 

100g/ip single dose 
3 minutes prior to 

reperfusion 

Attenuation of pathology 
(Seropian et al., 2013) 

Phospholipase 
A2-induced Paw 

Oedema 
Rats 

5ng/subplantar (sp) 
single dose 30 
minutes prior to 

phospholipase A2 

Decreased leukocyte 
recruitment (Rabinovich et 

al., 2000) 

IL-1-induced 
Peritonitis 

Mice 
0.3g/ip single dose 1 

hour prior to IL-1β 

administration 

Decreased neutrophil 
recruitment to peritoneal 
cavity (La et al., 2003) 

Table 1-2: Overview of the phenotype of mice following use of recombinant galectin-1 in animal 

models of inflammation. 

The effects of exogenous galectin-1 have been studied by administration of 

recombinant protein to animals at different stages of the inflammatory process in 

different disease models and these studies provide evidence that galectin-1 is able to 

both prevent and treat many inflammatory conditions. The first evidence of an anti-
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inflammatory role for galectin-1 came from its effect in a model of experimental 

autoimmune myasthenia gravis. Rabbits were administered 100µg of galectin-1 both 

prophylactically and therapeutically with both schedules leading to prevention and 

attenuation of clinical symptoms respectively (Levi et al., 1983). The majority of the 

literature has since focused on the effects of galectin-1 in T cell driven models such as 

collagen-induced arthritis, Concanavalin-A-induced hepatitis and Trinitrobenzene 

Sulphonic acid-induced colitis; these have been performed using doses of rGal-1 from 

20g - 400g per mouse and these all promoted amelioration of disease due to 

induction of apoptosis in Th1 and Th17 cells (Rabinovich et al., 1999, Santucci et al., 

2003, Baum et al., 2003, Toscano et al., 2006, Seropian et al., 2013).  

The first study to investigate the role of galectin-1 in a model of innate immunity was 

performed by Rabinovich et al (1992) in a model of phospholipase A2-induced paw 

oedema. Rats were administered 5ng of galectin-1 into the paw 30 minutes before 

phospholipase A2 and decreased leukocyte recruitment was seen (Rabinovich et al., 

2000). In another study mice were given 0.3µg rGal-1 in a model of neutrophil-driven 

inflammation, interleukin-1-induced peritonitis; these mice showed decreased 

neutrophil recruitment to the peritoneal cavity (La et al., 2003). The mechanisms by 

which galectin-1 exerts its anti-inflammatory effects have yet to be fully elucidated, 

however it is known to bind innate immune cells and elicit various responses as 

discussed below.  

1.4.4.2 Monocytes and Macrophages 

Galectin-1 binds to an as yet unknown receptor on human monocytes and promotes 

increased expression of Fc receptor 1 (FCR1) leading to increased phagocytosis and 

a decreased expression of major histocompatibility class II (MHC II) thus decreasing 

the ability of monocytes to act as antigen presenting cells (Barrionuevo et al., 2007). 

The lectin is chemotactic for human monocytes, but not human macrophages, via a 

p44/42 mitogen activated kinase (MAPK) pathway (Malik et al., 2009) and galectin-1 is 

able to convert murine macrophages to a pro-resolving phenotype, characterised by 

expression of 12/15-lipoxygenase and loss of phagocytic capacity, which is important 

for the resolution of the inflammatory response (Rostoker et al., 2013).  

1.4.4.3 Neutrophils 

Almkvist and colleagues demonstrated increased binding of galectin-1 to human 

neutrophils that had exudated compared to those in the peripheral circulation (Almkvist 
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et al., 2002). Once bound to its counter-receptors on neutrophils galectin-1 is able to 

induce a reversible exposure of phosphatidylserine (PS), which is not linked to an 

increase in apoptosis of the cells but acts as an ‘eat-me’ signal inducing preaparesis of 

the neutrophils by monocytes, an act that may serve to limit damage to healthy tissue 

(Stowell et al., 2009b, Dias-Baruffi et al., 2003). Galectin-1 also inhibits platelet-

activating factor (PAF)-induced CD11b upregulation and decreased neutrophil-

endothelial interactions and neutrophil chemotaxis (Cooper et al., 2008, La et al., 

2003).  

 

Figure 1.10: Summary of the effects of galectin-1 on immune cells. The effects of galectin-1 on 

lymphocytes, monocytes, neutrophils and endothelial cells as determined by studies on isolated 

human cells and in vivo using wild type and galectin-1 null mice.  

1.4.5 Galectin-3 

Galectin-3 is a 29kDa chimera type galectin that oligomerises in solution via its 

extended N-terminus to form multimers that can cross-link heterogeneous receptors 

(Ahmad et al., 2004). The non-lectin N-terminus is composed of repeats of the amino 

acid sequence (Tyr-Pro-Gly-Pro-Glu-Ala-Thr-Pro-Ala-Pro-Gly-Ala), which is repeated 

ten times in murine galectin-3 and five times in human galectin-3 (Albrandt et al., 1987, 

Cherayil et al., 1990). The N-terminus is a target for matrix metalloproteinases (MMP)-2 

and -9 and this cleavage inhibits oligomerisation of galectin-3 and its ability to cross-
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link receptors and thus many of the effects of galectin-3 on cells (Hsu et al., 1992, 

Yang et al., 1998, Ochieng et al., 1994, Yamaoka et al., 1995).  

Galectin-3 binds preferentially to poly-LacNAc residues with at least 3 repeats of the 

sequence expressed on N-glycans elongated by N-acetylglucosaminyltransferase V 

(MGAT5). The lectin is able to bind in the presence or absence of sialic acid residues 

as it binds internal residues on a glycan chain and it’s binding is improved in the 

presence of α-fucose (Rabinovich and Toscano, 2009, Henrick et al., 1998, Stowell et 

al., 2008a). 

1.4.5.1 Galectin-3 in Animal Models of Inflammation 

Like their galectin-1 null counterparts, galectin-3 null mice exhibit few phenotypic 

alterations when not challenged with the exception of reduced cellularity in their bone 

marrow when compared to littermate controls under standard conditions (Brand et al., 

2011, Colnot et al., 1998a). It was initially postulated that galectin-1 and galectin-3 

might compensate for each other however galectin-1/galectin-3 double null mutant 

mice have no overt phenotypic abnormalities confirming that these lectins have distinct 

actions (Colnot et al., 1998a). 

Further studies have been performed using the galectin-3 null mice in models of 

inflammatory disease as summarised in Table 1-3.  
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Pathology Outcome 

Hepatic Fibrosis Reduced fibrosis (Henderson et al., 2006) 

Ovalbumin-induced Asthma 
Decreased airway hypersensitivity with decreased 

Th2 responses but increased Th1 responses 
(Zuberi et al., 2004) 

Experimental Autoimmune 
Encephalomyelitis 

Milder disease and reduced leukocyte infiltrate 
(Jiang et al., 2009) 

Antigen-induced Arthritis 
Suppression of joint damage and decreased 
cytokine production (Forsman et al., 2011) 

LPS-induced Septic Shock Increased susceptibility (Li et al., 2009) 

Thioglycollate-induced Peritonitis 

Reduced neutrophil and monocyte recruitment not 
associated with increased apoptosis or 

phagocytosis (Colnot et al., 1998b, Hsu et al., 
2000) 

Wound Healing 
Slower wound healing, could be rescued by 
galectin-7 administration (Cao et al., 2002) 

Pneumococcal Pneumonia with 
Streptococcal pneumoniae 

Increased bacteraemia and lung damage, 
decreased phagocytic capability of macrophages – 
can be rescued by administration of recombinant 

galectin-3 (Farnworth et al., 2008) 

Respiratory Tularaemia 
Decreased leukocyte infiltration and augmentation 

of sepsis development (Mishra et al., 2013) 

Parasitic protozoan cutaneous 
infection with Leishmania major 

Decreased neutrophil recruitment in initial 48 hours 
followed by normalisation to wild type levels, 

significantly increased parasitic burden – can be 
rescued by administration of recombinant galectin-

3 (Bhaumik et al., 2013) 

Table 1-3: Overview of the phenotype of animal models of inflammation in galectin-3 null mice. 

Galectin-3 was initially designated a pro-inflammatory lectin due to its roles in T cell-

driven inflammatory disease including hepatic fibrosis, ovalbumin-induced asthma, 

experimental autoimmune encephalomyelitis, all of which were attenuated in the 

galectin-3 null mice; this is most likely due to the ability of galectin-3 to skew the T cell 

profile from Th2 towards Th1 and Th17-driven pathology (Henderson et al., 2006, 

Zuberi et al., 2004, Jiang et al., 2009). Recent studies have demonstrated a role for 

galectin-3 in innate immunity protecting against specific infectious stimuli potentially by 

acting as a danger-associated molecular pattern (DAMP) (Bhaumik et al., 2013). 

Infection with Streptococcus pneumoniae or Leishmania major is considerably more 

severe in galectin-3 null mice compared with wild type animals but no differences were 

seen in the response to Escherichia coli infection; these protective effects were 

rescued by administration of recombinant galectin-3 (Farnworth et al., 2008, Bhaumik 

et al., 2013, Sato et al., 2002b). This may be linked to the ability of galectin-3 to 

promote the recruitment of leukocytes to inflammatory sites as demonstrated by a 

reduction of neutrophil and monocyte recruitment in galectin-3 null mice in models of 
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thioglycollate-induced peritonitis and wound healing (Colnot et al., 1998b, Hsu et al., 

2000, Cao et al., 2002).  

The ability of galectin-3 to act as a leukocyte chemoattractant was confirmed in the 

murine dorsal air pouch. Injection of galectin-3 into the air pouch resulted in recruitment 

of monocytes (Sano et al., 2000). 

Pathology Species Dose Outcome 

Dorsal Air Pouch Mouse 

1µM/subcutaneous 
(sc) single dose 4 

hours prior to 
exudate collection 

Increased recruitment of 
monocytes than induced by 
monocyte chemoattractant 

protein (MCP)-1 (Sano et al., 
2000) 

Table 1-4: Overview of the phenotype of mice following use of recombinant galectin-3 in animal 

models of inflammation. 

Mechanistic insights into the effect of galectin-3 on innate immunity have been 

provided by in vitro studies.  

1.4.5.2 Endothelial Cells 

High concentrations (1g/mL, equivalent to 32nM) of galectin-3 promote the release of 

granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-

stimulating factor (GM-CSF) and interleukin-6 from HUVECs and human microvascular 

endothelial cells (HMVECs) in vitro, these cytokines act in an autocrine or paracrine 

manner to up-regulate E-selectin, ICAM-1 and VCAM-1 on endothelial cells (Chen et 

al., 2013) which may explain some of the effects of galectin-3 on leukocyte trafficking. 

As well as actions on the endothelium, galectin-3 also directly affects leukocytes. 

1.4.5.3 Monocytes and Macrophages 

It acts cooperatively with LPS to promote increased expression of IL-1β from human 

monocytes (Jeng et al., 1994); it also cross-links CD13 expressed on human monocyte 

cell surfaces to promote homotypic aggregation (Mina-Osorio et al., 2007).  Studies 

using a Boyden chamber have demonstrated an ability of galectin-3 to act as a 

chemoattractant for both human monocytes and macrophages (Sano et al., 2000). 

Whilst murine galectin-3 null macrophages exhibit defective phagocytic capabilities 

compared to wild type cells confirming the role of the lectin as an opsonin (Sano et al., 

2003, Farnworth et al., 2008, Karlsson et al., 2009). Presence of galectin-3 is able to 

increase both the proportion of macrophages that can phagocytose and the number of 
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cells phagocytosed per macrophage leading to a large increase in net phagocytosis 

(Karlsson et al., 2009); this may be due to the lectin “bridging” phagocytic prey to the 

phagocytes via the Mer receptor tyrosine kinase (MerTK) (Caberoy et al., 2012). 

Galectin-3-deficient macrophages have defective alternative activation; perhaps 

suggesting the resolution of inflammation would be impaired in the galectin-3 null mice 

(MacKinnon et al., 2008). This hypothesis is strengthened by a recent study which 

showed galectin-3 (60g/mL) increases the production of IL-10 from human monocytes 

when co-cultured with a TLR1/TLR2 ligand (19-kD lipopeptide) and this inhibits the 

GM-CSF-induced differentiation into dendritic cells thus reducing inflammation (Chung 

et al., 2013).  

1.4.5.4 Neutrophils 

Resting human neutrophils express low levels of the receptors for galectin-3 (CD66a 

and CD66b) when compared to activated cells as they are released from secondary 

granules; thus providing an explanation for the lack of response to the lectin by 

peripheral blood neutrophils (Almkvist et al., 2001, Feuk-Lagerstedt et al., 1999). Upon 

binding to the activated neutrophil galectin-3 increases the phagocytic capability, 

degranulation and the production of reactive oxygen species (ROS); the lectin can also 

cross-link neutrophil receptors to laminin and promote adhesion of the cells (Fernández 

et al., 2005, Kuwabara and Liu, 1996, Farnworth et al., 2008, Yamaoka et al., 1995). 

Addition of exogenous galectin-3 to neutrophils promotes survival of the cells and this 

may be due to the ability of the lectin to activate the neutrophil (Farnworth et al., 2008, 

Hsu et al., 2000).  

Like galectin-1, galectin-3 is able to induce the exposure of PS on the human 

neutrophil cell surface without a concurrent induction of apoptosis and this promotes 

the preaparesis of neutrophils by monocytes and macrophages (Stowell et al., 2008b). 

This suggests galectin-3 may play a role not just in the initiation of the neutrophil-driven 

inflammatory response as described above but may also be involved in the clearance 

of neutrophils once their function is completed, yet further work is required to assess 

this pathway.  

Limited experimentation has been performed on the role of galectin-3 in murine 

neutrophils due to published reports suggesting murine neutrophils do not express the 

lectin (Sato et al., 2002b, Farnworth et al., 2008). However contrary to this hypothesis it 

is known that galectin-3 plays a role in neutrophil recruitment as galectin-3 null mice 

have decreased numbers of neutrophils recruited in models of thioglycollate-induced 
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peritonitis and pneumococcal pneumonia compared to wild type mice, a phenotype that 

can be rescued by the use of recombinant galectin-3 (Colnot et al., 1998b, Hsu et al., 

2000, Henderson et al., 2006). This may be due to the ability of the lectin to cross-link 

cells to the extracellular matrix thus acting directly as an adhesion molecule, as 

demonstrated in 2-integrin-independent transmigration (Sato et al., 2002b).  

 

Figure 1.11: Summary of the effects of galectin-3 on immune cells. The effects of galectin-3 on 

lymphocytes, monocytes, neutrophils and endothelial cells as determined by studies on isolated 

human cells and in vivo using wild type and galectin-3 null mice.  

1.4.6 Galectin-9 

Galectin-9 is a 36kDa tandem-repeat lectin that has two functionally distinct CRDs; the 

murine C-terminal CRD is 70% homologous to rat galectin-5 while the N-terminal CRD 

is 40% homologous to murine galectin-3, the two CRDs are only 35% identical (Nagae 

et al., 2006). There are five known isoforms of galectin-9 that are produced by splice 

variation and three of these differ in length of the linker region, they are 35, 36 and 

40kDa in size with the most common isoform being the medium (36kDa) isoform, the 
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fourth has a truncated C-terminal CRD while the final isoform has a posttranslational 

modification that results in restricted expression (Chabot et al., 2002, Heusschen et al., 

2014). Studies have suggested the N-terminus of galectin-9 can homodimerise 

however this has not been shown in vivo (Nagae et al., 2006).  

Galectin-9 binds to poly-LacNAc residues with at least 3 repeats of the sequence on 

complex tri- and tetra-antennary N-glycans following removal of the sialic acid capping 

structure (Rabinovich and Toscano, 2009, Sato et al., 2002b, Sato et al., 2002a).  

Originally identified as a T cell-derived eosinophil chemoattractant galectin-9 has since 

been demonstrated to be produced by and to elicit effects on other inflammatory cells 

including T cells, monocytes and neutrophils (Hirashima, 2000).   

Like galectins-1 and -3, galectin-9 also shows activity in T cell-driven pathologies, 

again through its ability to induce apoptosis of Th1 and Th17 cells (Wada et al., 1997); 

this occurs via binding to glycan chains on T-cell immunoglobulin domain and mucin 

domain (Tim)-3, which is highly expressed by both Th1 and Th17 cells and increases 

upon their activation (Zhu et al., 2005, Hastings et al., 2009). T cell apoptosis is 

achieved through a different pathway than galectin-1, thus lending evidence to the 

hypothesis that galectin-1 and galectin-9 can compensate for each other in the 

absence of the lectin or its ligands, a fact further supported by studies using galectin-1 

null mice in which increased levels of galectin-9 were seen (Bi et al., 2008, Iqbal et al., 

2011).  

1.4.6.1 Galectin-9 in Animal Models of Inflammation 

Numerous in vivo models have been used to demonstrate the immunomodulatory 

actions of galectin-9. It appears to have anti-inflammatory properties when 

administered during inflammation as in all of the models reported to date it attenuates 

many of the clinical symptoms of the disease, generally these effects can be assigned 

to the ability of galectin-9 to induce T cell apoptosis including the effects during 

experimental autoimmune encephalomyelitis, collagen-induced arthritis and graft vs 

host disease (Zhu et al., 2005, Seki et al., 2007, Seki et al., 2008, Sakai et al., 2011, 

He et al., 2009) Table 1-5.  
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Pathology Species Dose Outcome 

Experimental 
Autoimmune 

Encephalomyelitis 
Mouse 

100g/ip daily 
from day 3 of 

disease induction 
to day 9 

Reduced disease severity and 
mortality (Zhu et al., 2005) 

Collagen-induced 
Arthritis 

Mice 
10g/iv daily from 

date of booster 
vaccine (day 21) 

Decreases Th1 and Th17 
cytokines and induces 

differentiation of Tregs (Seki et 
al., 2007, Seki et al., 2008) 

Concanavalin-A-
induced Hepatitis 

Mice 
100g/iv 30 

minutes prior to 
Con-A injection 

Amelioration of disease (Lv et 
al., 2012) 

Graft vs Host 
Disease 

Mice 

100g/ip daily for 
14 days from 

onset of clinical 
symptoms 

Decreased leukocyte 
infiltration and pro-

inflammatory cytokine 
production (Sakai et al., 2011, 

He et al., 2009) 

Ovalbumin-
induced Asthma 

Mice 
1mg/ip 30 

minutes prior to 
inhalation of Ova 

Suppression of IgE-antigen 
complex formation and 

reduced allergic activity (Niki 
et al., 2009) 

Shwartzman 
reaction 

Mouse 
7g/ip with LPS 

injection 

Recruitment of prostaglandin 
E2-secreting neutrophils and 
suppression of the response 

(Tsuboi et al., 2007) 

Table 1-5: Overview of the phenotype of mice following use of recombinant galectin-9 in animal 

models of inflammation. 

Non-obese diabetic (NOD) mice were generated that over-expressed galectin-9  and 

were shown to have protection against development of autoimmune diabetes 

compared to littermate controls; suggesting a role for galectin-9 in protection against 

inflammatory disease (Chou et al., 2009).  

Galectin-9 null mice are more susceptible to LPS-induced vasculitis, using the 

Shwartzman reaction, this appears to be due to the ability of galectin-9 to recruit a 

population of neutrophils that are pro-resolution and release prostaglandin E2 (Tsuboi 

et al., 2007) 

Several in vitro studies have been performed that assess the role of galectin-9 in 

myeloid leukocytes and these have demonstrated roles of the lectin in acute 

inflammation.  
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1.4.6.2 Monocytes and Macrophages 

Galectin-9 induces apoptosis of monocytes in a CRD-dependent manner by promoting 

an influx of calcium into the cell leading to caspase activation, providing further 

evidence that galectin-9 is anti-inflammatory (Kashio et al., 2003).  

1.4.6.3 Neutrophils 

A recent study has shown that Tim-3 is expressed on human neutrophils and increases 

upon activation of these cells; binding of galectin-9 to this receptor induces granule 

release from the neutrophil. Galectin-9 also acts as an opsonin for gram-negative 

bacteria as shown by increased phagocytosis of Pseudomonas aeruginosa by 

neutrophils; this occurs via cross-linking receptors on the bacterial cell surface to Tim-3 

expressed on human neutrophils (Vega-Carrascal et al., 2014). This data suggests that 

galectin-9 plays an important role in the clearance of bacteria; potentially enforcing the 

hypothesis that galectin-9 is a pro-resolution protein.  

 

Figure 1.12: Summary of the effects of galectin-9 on immune cells. The effects of galectin-9 on 

lymphocytes, monocytes, neutrophils and endothelial cells as determined by studies on isolated 

human cells and in vivo using wild type mice.  
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1.5 Scope of the Thesis 

1.5.1 Hypothesis 

Previous reports have demonstrated a clear role for glycosylation in the modulation of 

an inflammatory response; this is mediated by the effects of lectins binding to 

glycoconjugates that are differentially expressed dependent on the leukocytes 

maturation and activation status. This glycosylation determines the recruitment, 

activation and removal of leukocytes from the site of inflammation by regulating the 

lectin binding permissibility of the cell.  

This thesis challenges the hypothesis that the glycophenotype of a myeloid cell is 

modulated over the course of an inflammatory response allowing permissibility for the 

binding, and therefore actions of galectins-1, -3 and -9 in order to promote resolution 

and restore homeostasis.  

1.5.2 Aims 

The hypothesis will be addressed using the following aims:  

1. To characterise the modulation of the glycophenotype of human and murine 

neutrophils following an inflammatory stimulus and/or cell trafficking using a 

lectin binding assay with a validated panel of lectins.  

2. To assess whether galectin binding to human neutrophils is altered by 

transmigration and if this correlates with the changes in the glycophenotype. 

3. To investigate how the expression of galectins alters in human leukocytes 

following an inflammatory stimulus and/or cell trafficking. 

4. To investigate how the expression of galectins-1, -3 and -9 changes over the 

course of a resolving inflammatory response using a murine model of zymosan-

induced peritonitis.  

5. To determine the role of galectin-3 on murine leukocytes during a resolving 

inflammatory response.  

 

 



CHAPTER 2: MATERIALS AND METHODS 

54 

CHAPTER 2: 
 

MATERIALS AND METHODS   



CHAPTER 2: MATERIALS AND METHODS 

55 

2 Materials and Methods 

2.1 Materials 

2.1.1 Cell Culture 

Dulbecco’s phosphate buffered saline (DPBS) with calcium and magnesium and DPBS 

without calcium and magnesium, fetal bovine serum (FBS), fungizone, Hanks buffered 

saline solution (HBSS), human serum, Medium 199 with Earle’s Salts with L-glutamine 

(M199), penicillin/streptomycin and Roswell Park Memorial Institute medium 1640 

(RPMI) with L-glutamine were purchased from GE Healthcare, Buckinghamshire, UK. 

CellTrace™ carboxyfluorescein succinimidyl ester, Dynabeads and trypsin/EDTA 

(0.025%/0.01%) were purchased from Invitrogen, Paisley, UK. Type II collagenase was 

purchased from Lorne Laboratories, Reading, UK. Accutase and fibronectin from 

human plasma were purchased from Millipore, Watford, UK. Acetic acid, capsaicin, cell 

dissociation solution, crystal violet, dextran (molecular weight 450,000-650,000), fMLP, 

gelatin type B from bovine skin, Hanks Balanced salt solution 10X, Histopaque 1077, 

phosphate buffered saline (PBS), sodium citrate, human recombinant tumour necrosis 

factor-α (hrTNF-α) and zymosan were purchased from Sigma-Aldrich, Poole, UK. 3µm 

transwell inserts for 6-well plates were purchased from Scientific Laboratory Supplies, 

Yorkshire, UK. An EasySep murine neutrophil negative selection kit was purchased 

from StemCell, Grenoble, France. Nunc LabTek II Chamber Slide Systems were 

purchased from Thermo Scientific, St-Leon Rot, Germany.   

2.1.2 Flow Cytometry 

Annexin V-FITC apoptosis detection kit and BD FACS lysing solution were purchased 

from BD Pharmingen, Oxford, UK. Intracellular fixation and permeabilisation buffers 

were purchased from eBioscience, Hatfield, UK. A secondary streptavidin antibody 

conjugated to phycoerythrin (PE) was purchased from Invitrogen, Paisley, UK. Bovine 

serum albumin (BSA), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 

sodium salt, paraformaldehyde (PFA) and sodium chloride were purchased from 

Sigma-Aldrich, Poole, UK. Recombinant forms of human Galectins-1, -3 and -9 (stable) 

were kindly provided by GalPharma, Takamatsu, Kagawa, Japan.  
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2.1.3 Molecular Biology Reagents 

Gel red DNA dye was purchased from Biotium, Cambridge, UK. Trizol reagent was 

purchased from Invitrogen, Paisley, UK. A 1-kilobase molecular weight DNA ladder 

was purchased from New England Biolabs, Hitchin, UK. Tris-Acetate EDTA (TAE) 

buffer was purchased from Promega, Southampton, UK. Deoxyribonucleotide 

triphosphate (dNTP), dithiothreitol (DTT), first strand Buffer, oligo(DT)15, primers, 

Qiagen mini-kit, QiaShredder columns, RNAse out and SuperScript were purchased 

from Qiagen, Manchester, UK. 2-Propanolol, -mercaptoethanol, chloroform, Galectin-

3 genotyping primers, molecular biology grade 100% ethanol, and REDExtract-N-Amp 

2 PCR kit were purchased from Sigma-Aldrich, Poole, UK. ReddyMix PCR master-mix 

was purchased from Thermo-Scientific, St-Leon Rot, Germany.  

2.1.4 Other Reagents 

Isoflurane was purchased from Abbott Laboratories, Maidenhead, UK. ProLong gold 

antifade mountant with 4',6-diamidino-2-phenylindole (DAPI) was purchased from Life 

Technologies, Paisley, UK. Mouse Galectin-1 and Galectin-3 duo set ELISA kits were 

purchased from R&D Systems, Abingdon, UK. Haematoxylin was purchased from 

Sigma-Aldrich, Poole, UK. Eosin was purchased from VWR, Leicestershire, UK.  
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2.1.5 Antibodies 

Species/ 
Antigen 

Host Isotype Fluorochrome Clone Supplier 
Working 

Conc 

Human 
Galectin-1 

Goat IgG Purified Poly 
R&D 

Systems 
8μg/mL 

Human 
Galectin-3 

Goat IgG Purified Poly 
R&D 

Systems 
8μg/mL 

Human 
Galectin-9 

Goat IgG Purified Poly 
R&D 

systems 
8μg/mL 

Human 
CD11b 

Mouse IgG1 κ APC 
ICRF4

4 
eBioscience 100ng/mL 

Human 
CD62L 

Mouse IgG1 κ PE-Cy5.5 
DREG

-56 
eBioscience 100ng/mL 

Human 
CD14 

Mouse IgG1 κ APC 61D3 eBioscience 250ng/mL 

Human 
CD3 

Mouse IgG1 κ PE 
UCHT

1 
eBioscience 300ng/mL 

Human 
CD66b 

Mouse IgG1 FITC/PE 80H3 AbD Serotec 1g/mL 

Human 
CD35 

Mouse IgG1 PE E11 AbD Serotec 20g/mL 

Human 
CD62E/P 

Mouse IgG1 FITC 1.2B6 AbD Serotec 100ng/mL 

Human 
CD146 

Mouse IgG2a Alexa-Fluor 647 
SHM-

57 
BioLegend 250ng/mL 

Mouse 
Galectin-1 

Goat IgG Purified Poly 
R&D 

Systems 
8μg/mL 

Human 
and Mouse 
Galectin-3 

Rat IgG2a PE M3/38 eBioscience 1μg/mL 

Mouse 
Galectin-9 

Goat IgG Purified Poly 
R&D 

systems 
8μg/mL 

Mouse 
F4/80 

Rat IgG2a 
Alexa-Fluor 
488/PE/APC 

BM8 eBioscience 

250ng/mL 
Alexa-Fluor 

488 and 
PE 

100ng/mL 
APC 

Mouse 
Ly6G 

Rat IgG2a 
FITC/PE/ 
Purified 

1A8 
BD 

Pharmingen 

500ng/mL 
FITC 

200ng/mL 
PE 

10g/mL 
purified 

Mouse 
Gr-1 

Rat IgG2b APC 
RB6-
8C5 

eBioscience 200ng/mL 

Mouse 
CXCR4 

Rat IgG2b Alexa-Fluor 647 2B11 eBioscience 200ng/mL 

Mouse 
Ly6C 

Rat IgG2c PerCP-Cy5.5 HK1.4 eBioscience 200ng/mL 

Mouse 
Neutrophil 

Rat IgG2a FITC 7/4 Abcam 250ng/mL 

Mouse 
CCR2 

Rat IgG2b Fluorescein 
47530

1 
R&D 

Systems 
250ng/mL 

Goat IgG Chicken Whole Alexa-Fluor 488 Poly Invitrogen 400ng/mL 

Table 2.1: List of antibodies used for Flow Cytometry. 
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Host/Isotype Fluorochrome Clone Supplier 

Mouse IgG1  APC P3.6.2.1 eBioscience 

Mouse IgG1  Pe-Cy5.5 P3.6.2.8.1 eBioscience 

Mouse IgG1 PE P3.6.2.8.1 eBioscience 

Mouse IgG1  PE P3.6.2.8.1 eBioscience 

Mouse IgG1 FITC P3.6.2.8.1 eBioscience 
Rat IgG2a PE eBR2a eBioscience 
Rat IgG2a Alexa Fluor-488 eBR2a eBioscience 
Rat IgG2a APC eBR2a eBioscience 
Rat IgG2a FITC eBR2a eBioscience 
Rat IgG2b APC eB149/10H5 eBioscience 
Rat IgG2b Alexa Fluor-647 eB149/10H5 eBioscience 
Rat IgG2c Pe-Cy5.5 R2C-23A3 eBioscience 

Table 2.2: List of isotype controls used for Flow Cytometry. 

2.1.6 Lectins 

Biotinylated Lycopersicon esculentum Lectin (LEL), Biotinylated Peanut Agglutinin 

(PNA), Biotinylated Phaseolus vulgaris Leucoagglutinin (PHA-L), Biotinylated Ricinus 

communis Agglutinin120 (RCA120), Biotinylated Sambucus nigra Agglutinin (SNA) and 

Biotinylated Ulex europaeus Agglutinin I (UEA I) were purchased from Vector 

Laboratories, Peterborough, UK.  

2.2 In Vitro Methods 

2.2.1 Isolation and Culture of Primary Human Umbilical Vein 
Endothelial Cells (HUVEC) 

Umbilical cords were kindly supplied by the midwifery staff at the Royal London 

Hospital (Ethics approval REC reference number: 06/Q0605/40). Cords were collected 

in HBSS containing penicillin (100U), streptomycin (10μg/mL) and fungizone 

(2.5μg/mL) and stored at 4°C until processing. HUVECs were isolated by collagenase 

digestion of the interior umbilical vein as described by Jaffe et al with some minor 

modifications as described below (Jaffe et al., 1973).  

A butterfly needle was inserted into one end of the umbilical vein and clamped in place. 

Approximately 30mL PBS containing antibiotics (penicillin (100U), streptomycin 

(10g/mL) and fungizone (2.5g/mL)) was perfused through the vein using a 50mL 

sterile syringe to wash away residual blood and identify any perforations in the cord. 

The other end of the cord was clamped and approximately 20-25mL 0.1% type II 

collagenase in serum-free M199 (containing antibiotics) was added; the vein was then 

incubated for 14 minutes in a humidified chamber in 5% carbon dioxide at 37°C.  
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The collagenase solution was transferred to a 50mL falcon tube and the cord flushed 

with 30mL PBS (containing antibiotics), which was also added to the tube; the cord 

was then flushed through with air to remove any remaining cells. Cells were 

centrifuged at 300g for 10 minutes, the supernatant removed and the pellet re-

suspended in 10mL complete medium (M199 containing antibiotics and 20% human 

serum) and transferred to a T75 flask (75cm2), which had been pre-coated with 0.5% 

gelatin for 20 minutes.  

The cells were incubated in a humidified chamber in 5% carbon dioxide at 37°C; the 

medium was changed after 24 hours to remove the erythrocytes and then every 48 

hours until approximately 95% confluent. The yield from this procedure was typically 

0.5-1.5 x 106 per cord.  

Once at 95% confluence the cells were sub-cultured approximately one T75 flask into 

three. Cells were rinsed with PBS prior to addition of 0.025% Trypsin/0.01% EDTA 

solution to remove any serum; once the cells began to detach and round up the flask 

was tapped firmly to loosen all cells and complete medium was added to inactivate the 

trypsin. The cells were then split between the required gelatinised T75 flasks. Cells 

were used up to passage 3 where they still retained a good response to hrTNF- as 

assessed by adhesion molecule up-regulation.  

2.2.2 Isolation of Human PMN from Whole Blood 

The local research committee approved experiments with healthy volunteers and 

informed consent was provided according to the declaration of Helsinki. Human blood 

was obtained from healthy volunteers using a 21-gauge needle and transferred to a 

50mL falcon tube containing a 1/10 volume of 3.2% (w/v) sodium citrate to prevent 

clotting. Blood was initially centrifuged at 137g for 20 minutes to separate the platelet-

rich plasma, which was then removed, before 10mL DPBS (without calcium or 

magnesium) and 8mL dextran (6% w/v) was gently layered on top of the blood. The 

tube was sealed and inverted gently until homogenously distributed and then left for 

erythrocytes to bind dextran and sediment for 30 minutes. The top layer containing 

leukocytes was then gently collected and layered onto 10mL Histopaque 1077 in a 

50mL falcon tube and this was centrifuged at 483g for 30 minutes resulting in layer 

formation as shown in Figure 2.1. 
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Figure 2.1: PMN isolation from human whole blood using dextran sedimentation. Following removal 

of platelet-rich plasma and sedimentation of erythrocytes the blood was layered gently onto 

Histopaque 1077 and centrifuged at 483g for 30 minutes resulting in layers of plasma/PBS, 

peripheral blood mononuclear cells, Histopaque 1077 and PMN/erythrocytes.  

Peripheral blood mononuclear cells (PBMCs) were removed first to prevent 

contamination of the polymorphonuclear cells (PMN), following this most of the 

Histopaque and plasma layers were removed leaving only the PMN and erythrocytes. 

The erythrocytes were lysed using 9mL of ice-cold ultrapure water for approximately 10 

seconds and once lysed the cells were rapidly mixed with 1mL 10X Hanks Balanced 

Salt Solution to return the solution to the correct isotonic balance. This was made up to 

50mL with PBS and centrifuged at 215g for 10 minute to pellet the PMN. 

The PMN pellet was re-suspended in 5-10mL PBS (depending on the size of the pellet) 

and a 10μL aliquot was mixed with 990μL Turks Stain (dH2O containing 3% acetic acid 

and 0.01% crystal violet) and counted using a haemocytometer as seen in Figure 2.2. 
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Figure 2.2: Counting grid on a Neubauer Haemocytometer. Cells are counted in each of the 4 

corners as indicated by the red square. 

The calculation below in Figure 2.3 was used to determine the total number of PMN in 

the solution and then following a further wash step in PBS the cells were re-suspended 

in RPMI (+ 10% FBS) at a concentration of 3 x 106 per mL ready for use.  

 

Figure 2.3: Calculation used to determine total number of cells after counting with a 

haemocytometer. 

2.2.3 Collection of Exudated Human PMN 

Capsaicin is a stimulus that promotes neurogenic inflammation (through activation of 

dorsal root ganglion) by activation of Transient Receptor Potential Cation Channel 

subfamily V member 1 (TRPV1) receptors. Activation results in the release of 

calcitonin-related gene product (CGRP) and substance P, these neuropeptides act on 

the local vasculature to promote inflammation (Helme and McKernan, 1985). Tobasco 

sauce (purchased from the McIlhenny Co, Avery Island, Los Angeles, USA) contains 

high levels of capsaicin (0.33mg capsaicinoids/mL) as determined by high pressure 

liquid chromatography (Gonzalez et al., 1998) and thus induces this effect when 

administered orally.   

The local research committee approved experiments with healthy volunteers and 

informed consent was provided according to the declaration of Helsinki (Ethics 

approval REC reference number: QMREC2010/17). Volunteers were asked to rinse the 

buccal cavity three times with 20mL of a 0.9% saline mouthwash (made with Maldon 
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sea salt as it contains low levels of impurities compared to other table salts and Evian 

water) for 30 seconds and then a 10% Tobasco solution in saline (20mL for 30 

seconds). These were discarded and the volunteer asked not to eat or drink anything 

for the following hour. The volunteers were then asked to rinse again three times with 

saline and these samples were collected and centrifuged at 300g for 10 minutes to 

pellet the cells. The cells were pooled and re-suspended in 5mL PBS (+0.1% BSA) and 

an aliquot (10µL) was taken and diluted 1/5 in Turks solution for counting using a light 

microscope. Approximately 5-10 x 106 cells were collected per donor using this 

protocol and 80-90% of these were PMN with the remainder of cells collected being 

buccal epithelial cells. 

2.2.4 PMN Adhesion to a HUVEC Monolayer in a 6-well Plate 

HUVECs were seeded onto 0.5% gelatin coated wells of a 6-well plate and left to 

become fully confluent in a humidified incubator at 5% carbon dioxide at 37C, all 

subsequent incubation steps were performed in a humidified incubator. Once confluent 

endothelial monolayers were treated with 10ng/mL hrTNF- for 4 hours to promote 

activation and up-regulation of adhesion molecules, particularly E-selectin and ICAM-1.  

Following this incubation HUVECs were washed with PBS and PMN were added (1mL 

complete RPMI containing 3 x 106 PMN per well) for 30 minutes.  

After the incubation period the RPMI was collected and HUVECs were washed gently 

with PBS to remove any non-adherent PMN, these were collected into a falcon tube. 

Cell Dissociation Solution was used to remove PMN that were adherent to the 

underlying HUVEC monolayer and the cells were then washed gently with PBS to 

collect all adherent PMN. The HUVECs were then incubated with Accutase for 10 

minutes and the well was washed with PBS to ensure all remaining cells were 

recovered. The three populations of cells, non-adherent, adherent and transmigrated 

were centrifuged at 300g for 10 minutes to pellet the cells. An aliquot was taken and 

assayed for the expression of neutrophil activation markers as described later and the 

remaining pellet was then re-suspended in PBS (+0.1% BSA) with 1% PFA to fix the 

cells. These were stored overnight at 4C overnight before lectin binding assays were 

performed.  
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2.2.5 PMN Transmigration through a HUVEC Monolayer on a 
Transwell Insert 

A previous study demonstrated that although the 6-well transmigration assay allows 

easy assessment of adherent leukocytes it cannot distinguish between those bound to 

the apical surface and those that have transmigrated (Muller and Luscinskas, 2008); 

therefore a second model of transmigration was utilised using a transwell insert as 

performed by Krankel et al in 2011 and modified for neutrophil, rather than monocyte, 

transmigration (Kränkel et al., 2011). 

A 3m transwell insert was placed inside a well of a 6-well plate and coated with 

10ng/mL fibronectin in 0.5% gelatin; this was left to incubate for a minimum of 2 hours. 

The inserts were then washed with PBS before HUVECs were seeded onto the 

membrane and grown to confluence; this was confirmed using staining with Wheat 

Germ Agglutinin (WGA). Briefly HUVECs on the insert were fixed with 1% PFA 

overnight and then stained with WGA conjugated to Alexa-Fluor 488 in PBS at a 

concentration of 5g/mL for 20 minutes. Cells were visualised using an EVOS Digital 

Inverted Microscope as shown in Figure 2.4.  

 

Figure 2.4: Wheat germ agglutinin staining of a confluent monolayer of HUVECs on a transwell insert. 

HUVECs were plated on a 3m transwell insert that had been pre-coated with 10ng/mL fibronectin 

in 0.5% gelatin; cells were grown to confluence and fixed in 1% PFA overnight. HUVECs were 

incubated with WGA (5g/mL) for 20 minutes and visualised at 40X magnification.  
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For transmigration assays the HUVECs were treated with 10ng/mL hrTNF- for 4 

hours, at which point the medium was removed and the transwell insert gently washed 

with PBS. 1mL complete HUVEC medium was placed at the bottom of the well and 

1mL RPMI (containing 3 x 106 PMN) was placed on top of the transwell insert and 

incubated for 90 minutes.  

Non-adherent cells were collected from the top of the transwell insert by gently 

washing with PBS, the transwell insert was transferred to a new 6-well plate and 

incubated for 10 minutes with Accutase to remove all adherent PMN and the 

transmigrated PMN were collected from the lower well and the underside of the 

transwell insert.  

The three populations of cells, non-adherent, adherent and transmigrated were 

centrifuged at 300g for 10 minutes to pellet the cells. The pellet was then either re-

suspended in PBS (+0.1% BSA) and 1% PFA to fix the cells for lectin binding, or used 

immediately in galectin expression, galectin binding assays or to assess the expression 

of neutrophil activation markers as described below. Fixed cells were stored at 4C 

overnight before lectin binding was performed.  

2.2.6 Secreted Factor Diffusion Assay 

HUVECs were grown to confluence on a 3m transwell insert as in the transwell 

transmigration assay however isolated PMN (3 x 106 per mL in RPMI + 10% FCS) were 

placed in the bottom of the well with 1mL RPMI (+10% FCS) on top of the transwell. 

The plate was incubated at 37C in 5% carbon dioxide for 90 minutes and the PMN 

collected from under the transwell.  

2.2.7 Flow Cytometric Analysis 

Flow Cytometry is a technique used to determine the properties of individual cells in a 

solution using their size and density characteristics and can also be used to quantify 

the expression levels of specific antigens on the cell surface using fluorescently 

labelled antibodies. The sample is passed through a central channel on the Flow 

Cytometer, which is surrounded by an outer sheath through which sheath fluid (PBS) 

passes at a speed greater than that of the sample. This creates a phenomenon known 

as hydrodynamic focusing in which a drag force is exerted on the central chamber and 

the sample is narrowed to form a single stream of cells as shown in Figure 2.5. 
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Figure 2.5: Schematic of the flow cell of a Flow Cytometer. The faster stream of sheath fluid creates 

a single stream of cells that can be analysed individually. 

Cells are individually analysed for size, shape and fluorescence using specific lasers. 

As they pass through the laser each cell scatters the light in different directions, light 

scattered in a straight line is detected by the forward scatter lens (FSC) and this is a 

measure of the cell size. Light scattered approximately 90 to the side is detected by 

the side scatter lens (SSC) and is a measure of the density of the cell and therefore its 

granularity. This allows cells with different properties to be distinguished from each 

other, for example human whole blood can be differentiated into lymphocytes, 

monocytes and neutrophils as seen in Figure 2.6. 



CHAPTER 2: MATERIALS AND METHODS 

66 

 

Figure 2.6: Forward/Side scatter plot for human whole blood following red blood cell lysis. Different 

properties allow cells to be differentiated in a heterogeneous population. Human blood was collected 

from healthy volunteers and the red cells lysed using BD FACS Lysing solution, leukocytes were then 

labelled with antibodies for CD16 (neutrophils), CD14 (monocytes), and CD3 (lymphocytes) and 

analysed by Flow Cytometry.  

Cells can be labelled with antibodies directed to specific antigens on the cell surface or 

intracellularly, these antibodies can be directly conjugated to a fluorochrome, or a 

secondary antibody conjugated to a fluorochrome can be used. Fluorochromes absorb 

light of specific wavelengths released by lasers in the system and emit light of a longer 

wavelength; the light emitted is passed through a series of filters set to specific 

wavelengths, light of the specific wavelength is refracted to the lens for detection while 

light of a different wavelength passes straight through to the next laser as shown 

diagrammatically in Figure 2.7. 
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Figure 2.7: Schematic of the fluorescence system inside a Flow Cytometer. Fluorochromes are 

excited by light emitted from the lasers and release light of a different wavelength; this is passed 

through a series of filters and refracted to the correct lens for detection. 

The amount of fluorescent signal detected is proportional to the number of 

fluorochromes and therefore the number of antigens on the cell and can hence be used 

to quantify the expression of antigens. A range of different fluorochromes that emit at 

different wavelengths can be used on the same sample to identify multiple antigens on 

the cells as long as care is taken to ensure they do not require the same lens for 

detection. Lenses that detect similar wavelengths (for example FL1 and FL2) can 

experience fluorescence spill over and thus compensation is required to prevent 

artefacts appearing in samples containing more than one fluorochrome. This can be 

performed before or after running the samples as long as single stain controls are 

used. 

2.2.8 AMNIS ImageStreamX Mark II 

The ImageStream is a highly sensitive imaging cytometer that is able to capture 

multifluorescent images of cells as they pass through the flow cell allowing visual 

assessment of the internalisation of particles within cells. Samples are prepared using 
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the same method as previously described for the Flow Cytometer and once again 

compensation it important to prevent fluorescence spill over.  

2.2.9 Lectin Binding Assay  

To determine the glycophenotype on the neutrophil cell surface at different stages of 

transmigration a validated panel of lectins was used that are known to have 

specificities for a range of terminal residues on N- and O-glycans as described in Table 

2.3 and shown diagrammatically in Figure 2.8. All lectins were initially titrated to obtain 

the optimal working concentrations; these are given in Table 2.3. 

Lectin Glycan Binding 
Working 

concentration 

Ricinus communis 
Agglutinin120 (RCA120) 

Terminal -galactose residues 
(Baenziger and Fiete, 1979) 

0.156g/mL 

Peanut Agglutinin (PNA) 

Terminal galactose residues bound to N-

acetylglucosamine in an -linkage 
(LacNAc) (Lotan et al., 1975) 

50g/mL 

Lycopersicon 
esculentum Lectin (LEL) 

Poly-LacNAc residues with a minimum of 
3 repeats, can be at the end of a glycan 

chain or capped with a sialic acid 
molecule (Merkle and Cummings, 1987) 

0.625g/mL 

Sambucus nigra 
Agglutinin (SNA) 

Terminal sialic acid in an -2,6 linkage to 
an underlying galactose (Rogerieux et 

al., 1993) 
0.156g/mL 

Ulex europaeus 
Agglutinin I (UEA I) 

Terminal -linked fucose residues bound 
to an underlying galactose (Hormia et al., 

1983) 
20g/mL 

Phaseolus vulgaris 
Leucoagglutinin (PHA-L) 

Complex tri- and tetra-antennary N-
glycans (Cummings and Kornfeld, 1982) 

20g/mL 

Table 2.3: Plant lectins used to determine the glycophenotype. Glycan binding preferences and 

working concentrations are reported. 

Lectin binding enables the investigator to study changes in the glycophenotype; this 

involves the addition of plant-derived lectins to the cell of interest and quantification of 

their binding. Plant-derived lectins are used because they are easy to isolate and purify 

and have well-defined binding specificities therefore various laboratories assessing 

galectin binding have employed this technique as a surrogate to assess galectin 

binding preferences (Muglia et al., 2011, Toscano et al., 2007).  

Plant lectins that are commonly used for the assessment of the glycophenotype in 

respect to galectin binding include Ricinus communis agglutinin120 (RCA120), Peanut 

agglutinin (PNA), Lycopersicon esculentum lectin (LEL), Sambucus nigra agglutinin 
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(SNA), Ulex europaeus agglutinin I (UEA I) and Phaseolus vulgaris leucoagglutinin 

(PHA-L) and their binding preferences are shown in Figure 2.8. 

 

Figure 2.8: Schematic for lectin binding specificities. A. Galactose-specific lectin RCA120 binds -

linked galactose, B. LacNAc-specific lectins PNA and LEL bind mono- and poly-LacNAc respectively, C. 

Sialic acid-specific lectin SNA binds 2,6-linked sialic acid and D. Other common glycan-binding 

lectins UEA I and PHA-L bind -linked fucose and complex tri- and tetra-antennary N-glycans 

respectively. Red text describes galectin binding permissibility indicated by expression of the glycan 

residues.   
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RCA120 is a lectin that binds to -linked galactose residues; galectins are defined by 

their binding to -galactoside therefore this can be employed to assess the overall 

galectin binding potential of the cell of interest (Goldstein et al., 1981, Baenziger and 

Fiete, 1979).  

PNA binds specifically to mono-LacNAc residues following the removal of their 2,6-

linked sialic acid cap, this is indicative of permissibility to galectin-1 binding (Stowell et 

al., 2004, Leppänen et al., 2005, Ahmad et al., 2002). LEL binds specifically to poly-

LacNAc residues with greater than three repeats of the disaccharide structure in the 

absence or presence of sialic acid, which is identical to the binding preferences of 

galectin-3 and similar to that of galectin-9 (Rabinovich and Toscano, 2009, Lotan et al., 

1975, Merkle and Cummings, 1987). 

Expression of a sialic acid capping structure is important as it can inhibit the binding of 

galectins-1 and -9 but has no effect on the binding of galectin-3, as this binds internal 

residues (Leppänen et al., 2005). SNA binds 2,6-linked sialic acid (Rogerieux et al., 

1993).  

Other common glycan modifications of the cell that affect galectin binding include the 

expression of 1,3-linked fucose residues; fucose is a component of the sialyl Lewis x 

motif and therefore has a role in selectin-dependent rolling however they are also large 

monosaccharides that protrude from the cell surface and are therefore able to block the 

binding of galectins-1 and -9 via steric hindrance (Stowell et al., 2004, Erbe et al., 

1993). Galectin-3 binding is increased in the presence of α-linked fucose (Stowell, 

2008). UEA I binding indicates the presence of 1,3-linked fucose residues (Hormia et 

al., 1983).  

The final common modification involved in galectin binding is the expression of 

complex tri- and tetra-antennary N-glycans as galectin-9 preferentially binds N-

acetyllactosamine residues expressed on these structures; a lectin specific for these is 

PHA-L (Rabinovich and Toscano, 2009, Cummings and Kornfeld, 1982).  

Fixed PMN from the 6-well or transwell transmigration assays were re-suspended at a 

density of 2 x 105 cells per well in PBS (+0.1% BSA) and then plated on a 96-well U-

bottomed plate. The lectins were added in lectin buffer (10.9mM HEPES sodium salt 

and 158.4mM sodium chloride in deionised water) at 50L per well leaving an 

unlabelled and a secondary only well without lectin. This was left to incubate on ice in 

the dark for 45 minutes. Following this incubation the cells were washed twice in PBS 
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(+0.1% BSA) and the secondary antibody (Streptavidin-PE) was added for all 

necessary wells at a concentration of 120ng/mL in 30L PBS (+0.1% BSA) and 

incubated for 30 minutes on ice in the dark. The cells were then washed twice in PBS 

(+0.1% BSA) and stored at 4C until ready for analysis by Flow Cytometry. This assay 

was also performed on buccal neutrophils that had been fixed overnight and on murine 

peripheral blood and peritoneal exudate leukocytes in conjunction with anti-Ly6G 

(clone – 1A8) to identify neutrophils following 4 hour peritonitis with 1mg zymosan per 

mouse as described (section 2.3.4.1). 

Adherent PMN from the transwell transmigration assay that had been treated with 

Accutase showed a markedly modulated binding of PNA, UEA I and PHA-L when 

compared to the non-adherent and transmigrated populations. Freshly isolated 

neutrophils were therefore treated with Accutase and assessed for their binding of 

these lectins before and after. As shown in Figure 2.9 there was a large difference in 

the binding of lectins to neutrophils following treatment with Accutase suggesting it is 

modulating glycan expression on the surface of the PMN. This led to the transmigrated 

PMN in the 6-well assay and the adherent PMN from the transwell assay being 

excluded from the data as these had been treated with Accutase.  

 

Figure 2.9: Accutase treatment of freshly isolated neutrophils. Freshly isolated neutrophils were 

treated for 10 minutes with Accutase or PBS at 37˚C and then analysed for the binding of PNA, UEA I 

and PHA-L. 

To eliminate the human serum in the complete HUVEC medium as a modulator of the 

glycophenotype PMN were isolated and either fixed immediately or treated with 
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complete HUVEC medium for 90 minutes and then fixed. The following day the 

glycophenotype of the PMN was assessed as described. No differences could be seen 

for any of the lectins bound to the cell following treatment with complete HUVEC 

medium (Figure 2.10).  

 

Figure 2.10: Lectin binding to freshly isolated PMN and those that had been treated with complete 

HUVEC medium for 90 minutes. PMN were isolated from healthy volunteers and either fixed 

immediately or incubated with complete HUVEC medium for 90 minutes and then fixed. The PMN 

were then assessed for their binding of a validated panel of lectins. Grey – secondary antibody only, 

blue – untreated PMN and red – complete HUVEC medium. Data are expressed as histograms of 

median fluorescence intensity.  
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In some experiments PMN were isolated from healthy donors and treated with vehicle 

(PBS), 10ng/mL hrTNF- or 1M fMLP for 90 minutes at 37C to mimic the period for 

which the PMN were transmigrated in the transwell transmigration assay. PMN were 

also isolated from the Tobasco mouthwash protocol outlined in section 2.2.3. PMN 

from the secreted factor diffusion assay were also assayed for lectin binding. All PMN 

were fixed overnight in 1% PFA before lectin binding was analysed.  

2.2.10 Neutrophil Activation Marker Expression Assay 

Unfixed PMN collected from the transwell and 6-well assays were re-suspended in 

PBS (+0.1% BSA) and plated onto a 96-well U-bottomed plate at a density of 2 x 105 

cells per well. CD11b (clone ICRF44) and CD62L (clone DREG-56) antibodies were 

added in PBS (+0.1% BSA), as were isotype controls and left to incubate for 30 

minutes on ice in the dark before washing the cells twice. The cells were then stored in 

1% PFA at 4C until ready to analyse by Flow Cytometry.  

2.2.11 Granule Release Assay 

Unfixed PMN collected from the transwell assay were re-suspended in PBS (+0.1% 

BSA) and then plated at a density of 2 x 105 cells per well to allow detection of antigens 

released from granules – CD35 (clone E11) for secretory vesicles and CD66b (clone 

80H3) for secondary granules. The antibodies including isotype controls were added at 

50L per well in PBS (+0.1% BSA) and left to incubate on ice in the dark for 30 

minutes. Following incubation the cells were washed twice in PBS (+0.1% BSA) and 

stored in 1% PFA at 4C until ready for analysis by Flow Cytometry.  

2.2.12 Galectin Expression Assay 

2.2.12.1 Isolated PMN – Cell Surface 

Unfixed PMN from the transwell assay were re-suspended in PBS (+0.1% BSA) and 

plated in 96-well U-bottomed plates at a density of 2 x 105 per well. The purified 

galectin-1, -3 and -9 antibodies (polyclonal) were added at 50L per well in PBS 

(+0.1% BSA) and left to incubate on ice in the dark for 30 minutes. Following this 

incubation the cells were washed twice in PBS (+0.1% BSA) and the secondary 

antibody (chicken anti-goat IgG – alexa-Fluor 488) was added at a concentration of 

120ng/mL in 30L per well (including a secondary antibody only well) and left to 

incubate on ice in the dark for 30 minutes. Following this incubation the cells were 
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washed twice in PBS (+0.1% BSA) and stored in 1% PFA at 4C until ready for 

analysis by Flow Cytometry.  

2.2.12.2 Isolated PMN - Intracellular 

PMN from the buccal cavity and those isolated from the peripheral circulation were 

taken from healthy volunteers and paired for each donor, these were washed twice in 

PBS (+0.1% BSA) and then plated in 96-well U-bottomed plates at a density of 2 x 105 

per well. Anti-CD66b (clone 80H3) antibodies were added to all wells except the 

unlabelled and secondary antibody only to differentiate PMN from buccal epithelial 

cells and these were incubated on ice in the dark for 30 minutes. Cells were washed 

twice and then incubated in fixation buffer for 20 minutes at room temperature in the 

dark. Once fixed permeabilisation buffer was added to the cells and they were washed 

three times. Galectin-1, -3, and -9 antibodies (polyclonal) were diluted in 

permeabilisation buffer then added to the cells at 50L per well and then incubated on 

ice in the dark for 45 minutes. The cells were then washed twice and incubated with 

the appropriate secondary antibody (chicken anti-goat IgG alexa-Fluor 488) for 30 

minutes on ice. Following this the cells were washed and re-suspended in PBS (+0.1% 

BSA) and stored at 4C until ready for analysis by Flow Cytometry.  

2.2.13 Galectin Binding Assay 

PMN from the transwell assay and freshly isolated PMN were washed twice in PBS 

(+0.1% BSA) and re-suspended in DPBS (with calcium and magnesium) and 0.1% 

BSA; the PMN were treated with either recombinant human galectin-1, -3 or -9 at 10nM 

and left to incubate in a water bath at 37C for 10 minutes. Following this the cells were 

plated onto a 96-well U-bottomed plate at a density of 2 x 105 per well and stained as in 

the galectin expression assay above.  

Galectin binding median fluorescence intensities (MFI) were obtained by subtracting 

the MFI of the galectin binding assay from the MFI of the galectin expression assay for 

the same protocol using the same donor. This gave a value for the bound galectin 

whilst subtracting that endogenously expressed by the cell as shown in Figure 2.11. 
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Figure 2.11: Calculation used to assess the binding of recombinant galectins. Isolated PMN were 

allowed to transmigrate across a confluent monolayer of HUVECs on a 3m transwell insert and the 

pre- and post-transmigration populations were collected. The population was divided and half were 

treated with recombinant galectins-1, -3 or -9 for 15 minutes at 37C. All PMN were then labelled 

with galectin antibodies and their levels assessed by Flow Cytometry. Once MFI values had been 

obtained the bound galectin could be ascertained by subtracting the expression of galectin of the 

PMN from the total expression seen following treatment with the recombinant protein. 

2.2.14 Galectin-3 Internalisation Assay 

Freshly isolated PMN were obtained from healthy volunteers and re-suspended in 

DPBS with calcium and magnesium (+0.1% BSA) at 1 x 106 per mL, the cells were 

treated with either recombinant galectin-3 (10nM or 1µM) or vehicle (PBS). One treated 

and one untreated group was incubated at 37C and another at 4C for 2 hours. The 

cells were then incubated with 30mM lactose for 15 minutes at 37C to remove cell 

surface bound galectins. The cells were then plated onto a 96-well U-bottomed plate at 

a density of 2 x 105 cells per well and the intracellular expression of galectin-3 

assessed following section 2.2.12.1.  

2.3 In Vivo Methods 

2.3.1 Mice 

Male C57BL/6 mice were obtained from Charles River, Margate, UK. Breeding pairs of 

galectin-3 null mice (B6.Cg-Lgals3tm1Po1/J) were provided by the Consortium for 

Functional Glycomics (http://functionalglycomics.org) and a colony was established at 
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Charles River, Margate, UK. These mice were on a C57BL/6 background and age- and 

sex-matched controls were used for all experimental work. All animals were fed 

standard laboratory chow and water ad libitum and were maintained on a 12 hour light-

dark cycle under specific pathogen-free conditions. All experiments were performed 

with mice 6-7 weeks old, strictly following U.K. Home Office regulations (Guidance on 

the Operation of Animals, Scientific Procedures Act 1986).  

2.3.2 Genotyping 

Tail clips from the galectin-3 null colony were sent from Charles River and the DNA 

was extracted using the REDExtract-N-Amp tissue PCR kit (Sigma). Tail clippings 

smaller than 1cm long were incubated with 50L extraction solution and 12.5L tissue 

preparation solution at room temperature for 10 minutes. The solutions were then 

heated to 95C for 5 minutes and then 50L of neutralisation solution was added; the 

tail clippings were removed and the DNA was amplified using PCR.  

The DNA (approximately 0.1g per reaction) was added to a 0.2mL PCR tube along 

with 10L REDExtract-N-Amp PCR Reaction Mix and galectin-3 primers at 1M as 

seen in Table 2.4 and the solution was made up to 20L with RNAse free water. 

Genotype Primer Sequence 

Wild Type GAGGAGGGTCAAAGGGAAAG 
Heterozygous GACTGGAATTGCCCATGAAC 
Homozygous TCGCCTTCTTGACGAGTTCT 

Table 2.4: Primers used for genotyping galectin-3 null mice. 

Samples were put in the PCR machine and the following cycle was used; 94C for 2 

minutes and then followed a cycle of (94C for 30 seconds, 65C for 30 seconds and 

72C for 30 seconds) x 35; this was followed by incubation at 72C for 3 minutes. Once 

complete the amplified DNA was run on a gel immediately.  

2.3.3 Gel Electrophoresis 

A 1.5% agarose gel was made in TAE buffer with 2L of gel red added to allow 

visualisation of the DNA. Once set the gel was placed in an Electrophoresis machine 

filled with TAE buffer and 10L of the amplified DNA was loaded into the wells, along 

with a 1 kilobase DNA ladder. The gel was run at 80 constant volts until the dye front 
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reached the end of the gel. This was then read on the Protein Simple FluorChem E 

machine using ultraviolet illumination for 100ms.  

2.3.4 Inflammatory Mouse Models 

2.3.4.1 Resolving Zymosan-Induced Peritonitis Mouse Model 

Zymosan is a cell wall sugar derived from yeast (Saccharomyces cereviseae) 

composed of a 1,3-glucan core linked to chitin and 1,6-glucans that has been used 

for many years to study inflammation and phagocytosis. It exerts its effects on the cells 

by activating the TLR2 pathway, which is expressed on monocytes, macrophages, 

neutrophils, and endothelial cells (Underhill, 2003). Zymosan binding results in an 

increased production of pro-inflammatory cytokines and this induces an inflammatory 

response. It has been previously shown in our lab and by others that 1mg zymosan per 

mouse induces an inflammatory response characterised by high recruitment of 

neutrophils and monocytes that resolves within 72-96 hours and therefore this protocol 

was utilised for the purposes of this study (Ajuebor et al., 1999, Navarro-Xavier et al., 

2010).  

Male C57BL/6 mice were injected intraperitoneally on the left hand side with 1mg 

zymosan in 1mL sterile, filtered PBS as previously described by Doherty et al in 1985, 

0-hour mice received no treatment (Doherty et al., 1985). At 4, 24, 48, 72 and 96 hours 

post injection the mice were anaesthetised, along with the 0-hour controls, with 

isoflurane and a cardiac puncture was performed with a 25-gauge needle and a 1mL 

syringe containing 0.1mL sodium citrate and the blood was stored in a falcon tube on 

ice. The mice were then sacrificed by cervical dislocation.  

Peritoneal lavages were performed with a 23-gauge needle and syringe containing 

4mL PBS (+3mM EDTA); a small incision was made in the skin taking care not to 

penetrate the lining of the peritoneal cavity, the solution was injected and washed 

around the cavity to collect exudated cells, the exudate was then collected and stored 

in a falcon tube on ice. Following the lavage the right leg was removed and the femurs 

isolated and cleaned with sterile gauze; the ends of the femur were then removed and 

the bone flushed with 1mL PBS (+3mM EDTA) using a 23-gauge needle and a 2mL 

syringe. The bone marrow cells were collected into a falcon tube and stored on ice.  

A lobe of lung was collected from 0 hour control mice for RNA extraction by cutting into 

the ribs to open the chest cavity, the heart and lungs were then lifted gently using 
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forceps to prevent damage occurring and a lobe of one of the lungs was removed, this 

was then placed into 1mL Qiagen RNAlater and frozen at -80C until ready for use.  

In some experiments zymosan-induced peritonitis was performed on male and female 

galectin-3 null mice at age 6 weeks with age and sex matched wild type controls. 

Peritoneal lavage fluid was collected from these mice at 48, 72 and 96 hours post 

zymosan administration in order to assess differences at the resolution phase of the 

inflammatory response. Differential leukocyte counts and apoptosis assays were 

performed on these samples as described later.  

2.3.4.2 Murine Dorsal Air Pouch Model 

Male C57BL/6 mice were injected subcutaneously with 2.5mL of sterile filtered air into 

the dorsal skin using a 23-gauge needle and a 45m filter; 3 days later mice were 

given a second injection of 2.5mL air into the pre-existing pouch. At day 6 mice were 

injected with 1mg zymosan in 500L sterile filtered PBS into the pouch or with PBS 

alone and left for 4 or 24 hours. Mice were sacrificed using increasing concentrations 

of carbon dioxide. The air pouch was lavaged using 2mL PBS (+3mM EDTA) using a 

23-gauge needle and a 2mL syringe without opening the skin and the cells were 

collected and stored on ice. Death was then confirmed using cervical dislocation.  

2.3.4.3 Adoptive Transfer 

Male C57BL/6 mice (10 weeks old) were anaesthetised with isoflurane and a cardiac 

puncture was performed with a 25-gauge needle and a 1mL syringe containing 0.1mL 

sodium citrate and the blood was stored in a falcon tube on ice. Neutrophils were 

isolated from the blood using negative selection as described in section 2.3.8; isolated 

neutrophils were re-suspended at 100 x 106 per mL in sterile PBS and labelled with 

CellTrace™ Carboxyfluorescein succinimidyl ester (CFSE).  

Male galectin-3 null mice were placed in a warming box set to 30°C for approximately 

10 minutes and then immediately transferred into a restrainer and 100µL of neutrophil 

suspension was injected intravenously per mouse. 15 minutes after this the mice were 

injected intraperitoneally with zymosan as previously described; 4 hours later the mice 

were sacrificed and the peritoneal cavities lavaged to collect recruited leukocytes. 

CFSE-positive leukocytes were assessed for their intracellular galectin-3 expression.  
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2.3.5 Flow Cytometry 

2.3.5.1 Peripheral Blood  

An aliquot (10L) of the peripheral blood was removed for counting; this was diluted in 

Turks solution and counted using a haemocytometer to obtain total cell counts per 

mouse. BD FACS lysing solution was used to lyse erythrocytes in the remaining blood 

and the leukocytes were pelleted by centrifugation at 300g for 10 minutes. Following 

re-suspension in PBS (+0.1% BSA) cells were plated onto a 96-well U-bottomed plate 

at a density of 2 x 105 cells per well for staining.  

2.3.5.2 Exudate  

Aliquots (10L) of the peritoneal and air pouch exudates were removed for counting (in 

Turks). The remainder of the exudate was centrifuged at 300g for 10 minutes to pellet 

the cells, the supernatant was collected and frozen for ELISA analysis and the cells 

were then re-suspended in PBS (+0.1% BSA) and plated onto a 96-well U-bottomed 

plate at a density of 2 x 105 cells per well for staining.  

2.3.5.3 Bone Marrow  

Flushed bone marrow was put through a 70m cell strainer to remove any bone 

fragments or non-cellular debris and the collected solution was centrifuged at 300g for 

10 minutes to pellet the cells. The cells were re-suspended in PBS (+0.1% BSA) and 

an aliquot (10L) was removed for counting (in Turks). The remaining cells were plated 

onto a 96-well U-bottomed plate at a density of 2 x 105 cells per well for staining.  

2.3.5.4 Intracellular Cell Staining  

The cells were washed twice in PBS (+0.1% BSA) and incubated with an antibody to 

CD16/CD32 (clone 83) at 0.25g/mL to prevent non-specific binding for 10 minutes on 

ice in the dark. The peripheral blood and peritoneal exudate were then incubated with 

Ly6G (clone 1A8) to label neutrophils, F4/80 (clone BM8) to label 

monocytes/macrophages and Gr-1 (clone RB6-8C5) to differentiate between classical 

and non-classical monocytes/macrophages. The bone marrow cells were incubated 

with Ly6G and CXCR4 (clone 2B11) to label bone marrow neutrophils and Ly6C (clone 

HK1.4) to label bone marrow monocytes. The cells were incubated on ice in the dark 

for 30 minutes.  
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The cells were then washed twice in PBS  (+0.1% BSA) and fixed in 100L BD fixation 

buffer per well for 10 minutes at room temperature. Once fixed the cells were re-

suspended and washed three times in BD permeabilisation buffer to allow intracellular 

staining. The cells were then incubated with antibodies for galectin-1 (polyclonal), 

galectin-3-PE (clone M3/38) and galectin-9 (polyclonal) on ice in the dark for 45 

minutes, the cells were washed twice and a secondary antibody for galectins-1 and -9 

(chicken anti-goat IgG alexa-Fluor 488) was added for 30 minutes on ice in the dark. 

Following this cells were washed twice and re-suspended in PBS at 4C until ready for 

analysis by Flow Cytometry.  

Leukocytes could be differentiated into neutrophils and classical/non-classical 

monocytes/macrophages using specific antibodies by Flow Cytometric assessment. 

Once the cells had been defined as neutrophils or monocytes/macrophages using the 

specific antibodies the expression of the galectins could be assessed using double 

staining as in Figure 2.12. 

 

Figure 2.12: Galectin-3 expression in Ly6G positive murine neutrophils. Mice were injected with 1mg 

zymosan i.p. and leukocytes were collected from the peritoneal cavity 4-hours post injection. 

Leukocytes were double stained for Ly6G (clone 1A8) and galectin-3 (clone M3/38) and assessed by 

Flow Cytometry. Initially the cells were gated for Ly6Ghigh expression and this population was then 

analysed for galectin-3 expression.  
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Following the analysis of galectin expression on monocytes it was seen that there were 

large variations in expression levels between cells. It was therefore important to 

differentiate between classical and non-classical monocytes/macrophages as these 

different subsets may express different levels of the galectins. An antibody targeted to 

Gr-1 (clone RB6-8C5), which binds both Ly6G and Ly6C residues, was used as a 

double stain along with F4/80 (clone BM8) as Ly6C is highly expressed on classical 

monocytes/macrophages and is expressed in lower levels on non-classical 

monocytes/macrophages as shown in Figure 2.13. 

 

Figure 2.13: Identification of classical and non-classical populations of monocytes and 

macrophages. Murine leukocytes collected from peritoneal lavage 72-hours post 1mg zymosan-

induced peritonitis were assessed for their expression of F4/80 and Gr-1. Classical 

monocytes/macrophages are F4/80high and Gr-1high while non-classical monocytes/macrophages are 

F4/80high and Gr-1low. Neutrophils can also be identified using these antibodies as they are 

F4/80negative and Gr-1high. 

2.3.5.5 Cell Surface Staining  

Peritoneal exudate cells were washed twice in PBS (+0.1% BSA) and then re-

suspended in a CD16/CD32 antibody (clone 83) at 0.25g/mL to prevent non-specific 

binding; this was incubated for 10 minutes on ice in the dark. Following this the cells 

were incubated with a combination of Ly6G (clone 1A8) to label neutrophils and 

Galectin-3-PE (clone M3/38) for 30 minutes on ice in the dark. The cells were then 



CHAPTER 2: MATERIALS AND METHODS 

82 

washed twice in PBS (+0.1% BSA) and stored in 1% PFA until ready for analysis by 

Flow Cytometry.  

2.3.6 Apoptosis Assay  

Peritoneal exudate leukocytes from galectin-3 null mice and wild type controls were 

plated onto a 96-well U-bottomed plate at a density of 1 x 106 cells per well and 

washed twice in PBS (+0.1% BSA) and then re-suspended in a CD16/CD32 antibody 

(clone 83) at 0.25g/mL for 10 minutes on ice in the dark. Following this the neutrophils 

were labelled with Ly6G (clone 1A8) for 30 minutes on ice in the dark. The cells were 

washed twice in ice cold PBS (+0.1% BSA) and re-suspended in 100L 1x Annexin V 

binding buffer and transferred to FACS tubes; leukocytes were incubated with 5L 

Annexin V and 5L PI (along with single stain controls) at room temperature in the dark 

for 15 minutes. Following this 400L of 1x Annexin V binding buffer was added to each 

tube and analysed immediately by Flow Cytometry.  

2.3.7 Enzyme-Linked Immunosorbent Assay (ELISA) 

A high-binding 96-well plate was coated with 100L per well capture antibody (Rat, 

anti-mouse galectin-3, 2g/mL in PBS), covered with parafilm and left at 4C overnight. 

The following morning the coating buffer was aspirated off and the plate washed three 

times by filling each well with PBS (+0.05% Tween-20) for 30 seconds and discarding; 

the final wash was aspirated off to ensure wells were empty. The wells were then 

blocked with 200L PBS (+1% BSA) and incubated at room temperature for 1 hour. 

The PBS was aspirated and the plate washed three times as previously described. The 

recombinant mouse galectin-3 standard was diluted to 1000pg/mL in PBS (+1% BSA) 

and six serial dilutions were performed to create a standard curve to 15.625pg/mL. 

100L of each standard dilution was added in duplicate leaving a pair of wells without 

galectin-3 to act as a blank for the analysis.  

The supernatants from the peritoneal exudates were then added in duplicate to the rest 

of the wells after a 1:5 dilution in PBS (+1% BSA) and the plate was incubated at room 

temperature for 2 hours. The samples were aspirated and the plate washed three times 

as previously described. The detection antibody (Goat, anti-mouse galectin-3, 

200ng/mL in PBS +1% BSA) was added to each well (100L) and incubated at room 

temperature for 2 hours. The detection antibody was aspirated and the plate washed 

three times as previously described. 100L Streptavidin-HRP was then added to the 
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wells and this was incubated at room temperature for 20 minutes. The Streptavidin-

HRP was aspirated and the plate washed three times as previously described.  

100L Tetramethylbenzidine (TMB) solution was added to each well and incubated for 

approximately 20 minutes, 50L 1M phosphoric acid was then added to each well to 

stop the reaction and the plate was immediately read using a Labsystems MultiScan 

Bichromatic Plate Reader using the wavelength subtraction mode which allows the 

plate to be read at 450nm but with readings at 570nm subtracted to reduce background 

absorbance values. 

The galectin-3 concentrations of the cell-free supernatants from the peritoneal exudate 

were interpolated from the standard curve shown in Figure 2.14. 

 

 

Figure 2.14: Standard curve produced for galectin-3 ELISA. 

2.3.8 Neutrophil Isolation by Negative Selection 

Peritoneal exudate cells and bone marrow cells were collected from mice following a 4 

hour zymosan-induced peritonitis protocol as described in section 2.3.5.2 an aliquot 

(10L) of each population was taken for counting in Turks solution to obtain the total 

cell number and another aliquot (200L) was taken to stain for Ly6G to assess starting 

neutrophil purity.  

The cells were centrifuged at 300g for 10 minutes to obtain a pellet and this was re-

suspended in PBS (+2% BSA) at a concentration of 1 x 108 cells per mL, normal rat 

serum was then added to each sample at 50L/mL of cell suspension. The volumes of 
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each sample were made up to 500L in PBS (+2% BSA). 25L of the mouse neutrophil 

enrichment cocktail was added to each sample and this was incubated on ice for 15 

minutes, the tube was then filled with PBS (+2% BSA) and this was centrifuged at 300g 

for 10 minutes. The pellet was re-suspended in 500L PBS (+2% BSA) and 25L biotin 

selection cocktail was added to the sample, this was incubated on ice for 15 minutes.  

The magnetic particles were vortexed for 30 seconds to ensure there were no 

aggregates and 75L of this was added to each sample, and incubated on ice for 10 

minutes. The entire sample was then transferred to a 5mL polystyrene round bottomed 

tube and made up to 5mL with PBS (+2% BSA), this was all placed in an Invitrogen 

DynaMag-15 magnet for 5 minutes to allow all cells that are not neutrophils to be 

bound to the magnet leaving the neutrophils in suspension. The neutrophils were 

collected into a falcon and the negative fraction was re-suspended in PBS (+2% BSA). 

This process was repeated twice more to collect as many neutrophils from the 

supernatant as possible.  

Following this the neutrophil fraction was also placed in the magnet in an attempt to 

remove any contaminating cells that would affect the purity. From this fraction an 

aliquot (10L) of each population was taken for counting in Turks solution to obtain the 

yield and another aliquot (200L) was taken to stain for Ly6G to assess final neutrophil 

purity. 

Both the neutrophil fraction and the negative fraction were re-suspended in 350L 

Qiagen RLT Buffer containing 10L -mercaptoethanol/mL to lyse the cells ready for 

RNA extraction. This was then frozen at -80C until ready to extract the RNA. 

2.3.9 Neutrophil Isolation by Positive Selection 

Negative selection resulted in a low yield and purity for both the bone marrow and the 

peritoneal exudate cells and therefore a positive selection method was attempted in 

order to increase both these parameters.  

Bone marrow and peritoneal exudate were collected as previously described, an 

aliquot (10L) was taken for counting in Turks solution on a haemocytometer and the 

cells were centrifuged at 300g for 10 minutes to pellet the cells. The pellet was re-

suspended in PBS (+0.1% BSA) to a final concentration of 1 x 107 cells per mL and to 

this 10g/mL purified rat anti-mouse Ly6G antibody was added and incubated on ice in 

the dark for 20 minutes.  
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During this incubation period 100L sheep anti-rat Dynabeads per mL of sample 

were washed in 1mL PBS (+0.1% BSA) by placing in the magnet, leaving for 2 minutes 

and pouring off the supernatant, once washed the beads were re-suspended in PBS 

(+0.1% BSA) at their original volume.  

Once the incubation was completed 2mL PBS (+0.1% BSA) was added to each sample 

and they were centrifuged at 300g for 10 minutes. The pellet was then re-suspended to 

1 x 107 cells per mL in PBS (+0.1% BSA) and 100L Dynabeads added per mL of 

sample. The sample was rotated gently for 20 minutes and then the total volume was 

increased by 1mL to limit the trapping of unbound cells, this was placed in the magnet 

for 2 minutes and the supernatant kept to analyse as the negative fraction. The 

remaining neutrophils were washed three times by re-suspending in 1mL PBS (+0.1% 

BSA) and placing in the magnet for 1 minute then pouring off the supernatant.  

An aliquot of the sample (100L) was then put on a slide and allowed to air dry and this 

was stained with Haematoxylin and Eosin to confirm no eosinophil contamination, the 

rest of the sample was transferred to an eppendorf, centrifuged at 8000g for 1 minute 

and the pellet was re-suspended in 750L Trizol reagent and frozen at -80C until 

ready to isolate RNA.  

2.3.10 RNA Extraction using the RNeasy Mini-Kit 

The lung tissue positive control, isolated neutrophils and negative fractions were 

defrosted on ice and the lung was weighed to ensure the tissue was less than 30mg. 

This was then placed in a homogenisation tube with 600L Qiagen RLT buffer 

containing 10L -mercaptoethanol/mL and homogenised using a Precellys 24 

homogeniser at 6800rpm for 1 minute.  

The neutrophil and negative fractions were syringed with a 1mL 27-gauge tuberculin 

syringe at least 5 times per sample to ensure all cells were lysed and then 350L 70% 

molecular biology grade ethanol was added to each sample (including the lung tissue) 

and this was mixed until clear. The entire volume was then transferred to a Qiagen 

column and centrifuged at 8000g for 15 seconds and the flow through discarded, 

700L of RW1 buffer was added to the column and this was centrifuged at 8000g for 

15 seconds and again the flow through was discarded.  

500L RPE buffer containing 1 volume of ethanol was added to the column and again 

centrifuged at 8000g for 15 seconds and the flow through was discarded. This stage 
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was repeated with another 500L RPE buffer and centrifuged at 8000g for 2 minutes 

and this time the collection tube was discarded and replaced with a new one. This was 

spun at 8000g for 1 minute and the column was then placed into a 1.5mL RNAse-free 

eppendorf, 30L RNAse-free water was added directly to the membrane and allowed 

to sit for 1 minute before centrifuging at 8000g for 1 minute. The column was then 

discarded and 1L of RNA was assessed on an ND-1000 Nanodrop Spectrometer; a 

beam of near-monochromatic light is passed through the droplet of RNA and the light 

transmitted through the sample is measured. The ratio of sample absorbance at 260 

and 280nm is given and this is used to assess the purity of the RNA with 2 being 

considered pure, deviations from this number can suggest contamination with protein 

or phenol. A second ratio of sample absorbance at 260 and 230nm is given and this is 

a secondary measure of purity. The Nanodrop also provides a concentration for the 

RNA present in the sample in ng/L. The RNA was then frozen at -80C until ready for 

cDNA synthesis.  

2.3.10.1 QiaShredder Column 

Assessment of the 260/280 and 260/230 values obtained from the Nanodrop readings 

described in section 2.3.10 showed high levels of contamination and low levels of RNA 

from the neutrophils, this may be due to the difficulty in fully lysing neutrophils that has 

been reported in the literature. The protocol was therefore repeated using a 

QiaShredder column, which is designed to help lyse cells more efficiently than 

syringing.  

700L of the neutrophil fraction in Qiagen RLT Buffer containing 10L -

mercaptoethanol/mL was added to the top of the QiaShredder column and this was 

centrifuged at 8000g for 2 minutes, the column was discarded and the eluted material 

loaded onto the top of a Qiagen column and the RNeasy Mini-Kit protocol followed as 

above.  

2.3.11 RNA Extraction using Trizol 

Nanodrop readings following use of the QiaShredder column were still low for RNA 

levels and still exhibited high levels of salt contamination therefore a Trizol procedure 

was attempted in order to obtain higher levels of RNA from the neutrophils.  

Once the neutrophils had been isolated the cell pellet was re-suspended in 750L 

Trizol reagent and this was frozen at -80C until ready to extract the RNA.  
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The samples were defrosted on ice and then 200L of chloroform was added and the 

sample shaken vigorously by hand for 15 seconds. This was incubated at room 

temperature for 10 minutes and then centrifuged at 8000g for 15 minutes at 4C. The 

aqueous phase was transferred to a clean eppendorf and 500L 2-propanolol was 

added and mixed, this was incubated at room temperature for 10 minutes and then 

centrifuged at 8000g for 10 minutes at 4C. The supernatant was discarded and the 

cells washed in 1mL 75% ethanol, this was centrifuged at 8000g for 5 minutes at 4C, 

the majority of the ethanol was aspirated and the rest left to air-dry. The pellet was re-

suspended in 40L RNAse-free water and the RNA concentration determined on the 

Nanodrop. The RNA was then frozen at -80C. 

This provided the best yield of RNA from the neutrophils (although the salt 

contamination levels were still high) and therefore was chosen as the method from 

which cDNA synthesis was performed.  

2.3.12 Complementary DNA (cDNA) synthesis  

The RNA was defrosted on ice and then 11L was mixed with 1L oligo(DT)15 and 1L 

dNTP mix, and incubated in a MWG Biotech Primus-96 plus PCR machine at 65C for 

5 minutes. Following a 5 minute incubation on ice each sample then received 4L first 

strand buffer, 1L DTT, 1L RNAse out and 1L Superscript (controls were included 

which received everything but Superscript). This was all incubated in the PCR machine 

at 50C for 1 hour and then 70C for 15 minutes. Once the cDNA had been produced 

this was frozen at -20C until ready for PCR.  

2.3.13 Polymerase Chain Reaction (PCR) 

The cDNA was defrosted on ice and then 1L of each sample was mixed with 10L 

ReddyMix PCR MasterMix and 1L of each gene specific primer required (Qiagen 

Quantitec Primer Assay), the primers used were for Lgals3, Lgals9, Ly6g, Cd68 and 

Rpl32. This was incubated in the PCR machine at 94C for 5 minutes and then 

followed a cycle of (94C for 30 seconds, 55C for 30 seconds and 72C for 30 

seconds) x 35; this was followed by incubation at 72C for 10 minutes. Once complete 

the amplified DNA was stored at -20C or run on a 2% agarose gel immediately as 

described in section 2.3.3.  
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2.4 Statistical Analysis 

Statistical significance was assessed using SPSS computer software. Data is 

expressed as mean  standard error of the mean (SEM) of n experiments. All data 

were tested for normal distribution and power calculations were performed using 

G*Power software (Faul et al., 2009). A Grubbs test was used to identify statistical 

outliers and these were removed before tests were performed. Statistical differences 

were analysed by two-tailed T-test for 2 groups, one-way analysis of variance 

(ANOVA) followed by a Bonferroni or Dunnetts post hoc test (depending on if 

comparing all values or each value to a control respectively) or two-way ANOVA 

followed by Bonferroni post hoc test. In assays where repeated measures were 

performed a repeated measures test was utilised. In all cases a P value ≤ 0.05 was 

considered significant to reject the null hypothesis and differences were considered 

significant.   
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3 Modulation of the Neutrophil 
Glycophenotype and Galectin 
Binding Profile 

3.1 Introduction 

The glycosylation of adaptive immune cells is known to be of particular importance to their 

recruitment, activation and clearance from an inflammatory site (Wright and Cooper, 2014); 

the glycophenotype is modulated dependent on the extracellular environment, which allows 

binding of lectins to take place and affect cell functions. 

Galectins-1, -3 and -9 are known to be immunomodulatory as they bind to, and elicit actions 

from immune cells. Galectins-1 and -9 are predominantly anti-inflammatory as they decrease 

leukocyte recruitment and skew towards a Th2 phenotype during disease (Rabinovich et al., 

2000, La et al., 2003, He et al., 2009), while galectin-3 is considered pro-inflammatory as it 

increases leukocyte recruitment and skews towards a Th1/Th17 phenotype (Colnot et al., 

1998b, Hsu et al., 2000).  

The actions of galectins are determined not only by the cellular expression of the proteins 

but also by the target cell permissibility to galectin binding, the glycophenotype of the cell. 

Work has been performed on the glycophenotype of adaptive immune cells and how this 

pertains to galectin binding but the innate immune system has not been characterised in this 

way.  

This study therefore set out to delineate the effects of inflammation on the neutrophil 

glycophenotype, as well as elucidate the temporal and spatial modulation of galectins during 

resolving inflammation.  

The aims of this section were therefore to characterise the modulation of the glycophenotype 

of human and murine neutrophils following an inflammatory stimulus and/or cell trafficking 

using a lectin binding assay with a validated panel of lectins.  

Following this the binding of galectins-1, -3 and -9 will be assessed following the same 

inflammatory stimuli and/or cell trafficking to determine whether this correlates with the 

glycophenotypic changes seen.  
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Initially freshly isolated human PMN were assessed at varying stages of trafficking across an 

endothelial monolayer that had been pre-treated for 4 hours with 10ng/mL hrTNF-α to induce 

activation and up-regulate E-selectin on the HUVEC surface. To distinguish changes caused 

by PMN activation and those due to transendothelial migration the glycophenotype of human 

PMN was characterised following activation with soluble mediators such as hrTNF- 

(10ng/mL) and fMLP (1M); stimulants that release secretory vesicles and secondary 

granules respectively. Human PMN were also treated with conditioned medium from 

activated endothelial cells to determine the role of endothelial cell-derived soluble factors on 

PMN glycophenotype. A novel human model of PMN extravasation was also utilised in which 

neurogenic inflammation was used to recruit PMN to the buccal cavity within 1 hour. 

Assessment of the glycophenotype is able to provide an approximation of the permissibility 

for galectin binding to neutrophils. In order to determine the accuracy of lectin binding, the 

binding of recombinant galectins to PMN under the same conditions was assayed.  

To characterise the modulation in a pathophysiological setting an in vivo murine zymosan-

induced peritonitis model was used, which results in robust neutrophil recruitment to the 

peritoneal cavity within 4 hours of administration. The glycophenotype of murine neutrophils 

collected from the peripheral circulation was compared to those collected from the peritoneal 

cavity following 4 hour zymosan-induced peritonitis.  

3.1.1 Glycophenotype of Freshly Isolated Human Neutrophils 

Human PMN were isolated from whole blood of healthy volunteers as described in section 

2.2.2, fixed in 1% PFA overnight and a validated panel of lectins was used to label specific 

terminal glycosylation motifs as shown in Table 2.3, lectin binding was assessed by Flow 

Cytometry as shown in Figure 3.1. 

Basally, human PMN express a glycophenotype characterised by low binding levels of PNA 

(55.87 ± 14.53) and UEA I (13.14 ± 3.123) indicative of low expression of terminal mono-

LacNAc and 1,3-linked fucose residues. Whereas high binding levels of RCA120 (711.4 ± 

145.4), LEL (726.5 ± 216.2), PHA-L (930.4 ± 150.3) and SNA (310.6 ± 116.6) were 

observed, which are indicative of high expression of -linked galactose, poly-LacNAc chains 

with 2,6-linked sialic acid residues expressed on complex tri- and tetra-antennary N-

glycans.  
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Figure 3.1: Representative histograms showing basal lectin binding on freshly isolated human PMN. Blood 

was taken from healthy volunteers and PMN were isolated by dextran sedimentation and fixed overnight. 

PMN were then incubated with plant lectins for specific glycans and binding was analysed by Flow 

Cytometry. Shaded peak = secondary antibody only. N = 5 per group, MFI = mean  SEM. 

3.1.2 Modulation of the Neutrophil Glycophenotype during 
Adhesion to Endothelial Cells 

An assay was performed to assess the glycophenotype of PMN during the process of 

adhesion to an endothelial monolayer in a 6-well plate. Isolated PMN from healthy 
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volunteers were added to a well in which a confluent monolayer of HUVECs had been pre-

treated for 4 hours with 10ng/mL hrTNF-. The cells were incubated together for 30 minutes 

before non-adherent and adherent PMN were collected from the plate and analysed for their 

expression of neutrophil activation markers (CD11b and CD62L), freshly isolated PMN were 

also used as a control as shown in Figure 3.2.  

The expression of CD62L was high on freshly isolated PMN (536.5 ± 77.94) and this 

decreased by more than 97% in non-adherent and adherent cells (13.06 ± 2.541, P = 0.0026 

and 8.457 ± 1.729, P = 0.0025 respectively); while the expression of CD11b was high in 

freshly isolated PMN (984.2 ± 45.37) and remained unchanged during co-culture with, and 

adhesion to HUVECs (1034 ± 52.12 and 901.3 ± 36.07). Taken together this suggests that 

the non-adherent and adherent PMN were primed yet not fully activated.  

 

Figure 3.2: Neutrophil activation marker expression in human PMN collected from activated endothelial 

cells. Blood was taken from healthy volunteers, PMN were isolated and added to a 6-well plate in which a 

confluent monolayer of HUVECs had been pre-treated for 4 hours with 10ng/mL hrTNF-. The cells were 

incubated together for 30 minutes, adherent and non-adherent PMN were collected and the expression of 

CD62L and CD11b assessed by Flow Cytometry in comparison with freshly isolated PMN. A. Representative 

histogram and graph of CD62L expression and B. Representative histogram and graph of CD11b 

expression. Shaded peak = isotype control. Data are expressed as mean  SEM, N = 3 per group, *** P < 

0.001 vs freshly isolated PMN as analysed by one-way ANOVA with Bonferroni post hoc test.  
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The glycophenotype of these PMN was then assessed by lectin binding. A 69% reduction in 

RCA120 binding could be seen between non-adherent and adherent PMN indicating a 

significant loss of -linked galactose residues as PMN adhere to an endothelial monolayer 

(1832  477.98 vs 573.7  530.1, P = 0.003) Figure 3.3. 

 

Figure 3.3: Binding of a -linked galactose-specific lectin to non-adherent and adherent human PMN 

following incubation with HUVECs. Freshly isolated PMN were incubated for 30 minutes with HUVECs that 

had been pre-treated with 10ng/mL hrTNF-. Non-adherent (NA) and adherent (A) PMN were collected 

from the well and fixed overnight in 1% PFA before lectin binding took place. Flow Cytometry was used to 

assess the expression of bound lectin. Figure shows representative histogram and graph of RCA120 binding. 

Grey = secondary antibody binding, blue = non-adherent PMN and red = adherent PMN. Data are 

expressed as median fluorescence intensity per donor for paired samples, n = 4 per group. ** P < 0.01 as 

analysed by two-tailed paired T test. 

An overall trend was seen with lectin binding that was indicative of galectin binding 

permissibility with a reduction in lectin binding following PMN adhesion to the endothelial cell 

monolayer. A 50% reduction in PNA binding (14.18  7.59 vs 7.79  5.60, P = 0.026); a 30% 

decrease in LEL binding (463.9  263.2 vs 327.8  185.2, P = 0.03) and a 28% reduction in 

PHA-L binding (462.0  169.3 vs 334.7  108.5, P = 0.025; Figure 3.4) was observed. This 

indicated of a loss of mono- and poly-LacNAc residues as well as complex tri- and tetra-

antennary N-glycans as neutrophils adhere to the endothelial monolayer.   
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Figure 3.4: Binding of lectins indicative of galectin binding permissibility to non-adherent and adherent 

human PMN following incubation with HUVECs. Freshly isolated PMN were incubated for 30 minutes with 

HUVECs that had been pre-treated with 10ng/mL hrTNF-. Non-adherent (NA) and adherent (A) PMN were 

collected from the well and fixed overnight in 1% PFA before lectin binding took place. Flow Cytometry was 

used to assess the expression of bound lectin. A. Representative histogram and graph of PNA binding, B. 

Representative histogram and graph of LEL binding and C. Representative histogram and graph of PHA-L 

binding. Grey = secondary antibody binding, blue = non-adherent PMN and red = adherent PMN. Data are 

expressed as median fluorescence intensity per donor for paired samples, n = 5-7 donors per group. * P < 

0.05 as analysed by two-tailed paired T test.  
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There was an overall decrease in 2,6-linked sialic acid expression following PMN adhesion 

as indicated by a 42% reduction in SNA binding when compared to non-adherent PMN 

(149.3  82.72 vs 87.03  43.28, P = 0.014) Figure 3.5.  

 

Figure 3.5: Binding of an 2,6-linked sialic acid-specific lectin to non-adherent and adherent human PMN 

following incubation with HUVECs. Freshly isolated PMN were incubated for 30 minutes with HUVECs that 

had been pre-treated with 10ng/mL hrTNF-. Non-adherent (NA) and adherent (A) PMN were collected 

from the well and fixed overnight in 1% PFA before lectin binding took place. Flow Cytometry was used to 

assess the expression of bound lectin. Figure shows representative histogram and graph of SNA binding. 

Grey = secondary antibody binding, blue = non-adherent PMN and red = adherent PMN. Data are 

expressed as median fluorescence intensity per donor for paired samples, n = 5 per group. * P < 0.05 as 

analysed by two-tailed paired T test.  
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The expression of -linked fucose residues was significantly reduced following PMN binding 

to endothelial cells as indicated by a 53% decrease in UEA I binding (3.44  1.69 vs 1.63  

1.16, P = 0.035) Figure 3.6. 

 

Figure 3.6: Binding of -linked fucose-specific lectin to non-adherent and adherent human PMN following 

incubation with HUVECs. Freshly isolated PMN were incubated for 30 minutes with HUVECs that had been 

pre-treated with 10ng/mL hrTNF-. Non-adherent (NA) and adherent (A) PMN were collected from the well 

and fixed overnight in 1% PFA before lectin binding took place. Flow Cytometry was used to assess the 

expression of bound lectin. Figure shows representative histogram and graph of UEA I binding. Grey = 

secondary antibody binding, blue = non-adherent PMN and red = adherent PMN. Data are expressed as 

median fluorescence intensity per donor for paired samples, n = 6 per group. * P < 0.05 as analysed by 

two-tailed paired T test.  

3.1.3 Galectin Binding to Isolated Neutrophils during Adhesion 
to Endothelial Cells 

The binding of recombinant galectins-1, -3 and -9 (10nM) to PMN that were non-adherent 

and adherent collected from the 6-well adhesion assay was assessed. PMN were collected 

as previously described and incubated with recombinant galectins at 37°C for 15 minutes to 

allow binding; following this the PMN were washed and assessed for the expression of 

galectin on the cell surface compared to those that were not treated with recombinant 

protein. The total binding was calculated by subtracting the endogenous galectin expression 

from that seen in treated cells from the same donor.  
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Galectin-1 binding to freshly isolated PMN was low (5.194 ± 1.497) however this increased 

by approximately 4-fold in PMN that were in contact with, but not adherent to, the 

endothelium (18.43 ± 2.791) and this decreased back to basal levels upon adhesion to the 

endothelial monolayer (7.537 ± 2.515) as shown in Figure 3.7.  

 

Figure 3.7: Recombinant galectin-1 binding to PMN during adhesion to an endothelial monolayer. Freshly 

isolated PMN were left to adhere for 30 minutes to a HUVEC monolayer that had been pre-treated with 

10ng/mL hrTNF-. Non-adherent and adherent PMN were treated with recombinant galectin-1 (10nM) or 

vehicle for 15 minutes at 37C and assessed for their level of galectin-1 on the cell surface using Flow 

Cytometry compared to freshly isolated PMN. Endogenous expression of galectin-1 was subtracted from 

the total level to obtain the bound galectin-1 per group. Figure shows graph of recombinant galectin-1 

binding. Data are expressed as mean  SEM, n = 3 per group, ** P < 0.01 vs freshly isolated as analysed 

by one-way ANOVA with Bonferroni post hoc test. 
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The binding of galectin-3 to freshly isolated PMN was higher than that of galectin-1 (110 ± 

16.75) and although significance was not reached this appears to decrease as cells come 

into contact with, and adhere to the endothelium (49.63 ± 14.37 and 49.00 ± 20.09 

respectively) as shown in Figure 3.8.  

 

Figure 3.8: Recombinant galectin-3 binding to PMN during adhesion to an endothelial monolayer. Freshly 

isolated PMN were left to adhere for 30 minutes to a HUVEC monolayer that had been pre-treated with 

10ng/mL hrTNF-. Non-adherent and adherent PMN were treated with recombinant galectin-3 (10nM) or 

vehicle for 15 minutes at 37C and assessed for their level of galectin-3 on the cell surface using Flow 

Cytometry compared to freshly isolated PMN. Endogenous expression of galectin-3 was subtracted from 

the total level to obtain the bound galectin-3 per group. Figure shows graph of recombinant galectin-3 

binding. Data are expressed as mean  SEM, n = 3 per group and are analysed by one-way ANOVA with 

Bonferroni post hoc test. 
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Galectin-9 binding was high in freshly isolated PMN (294.5 ± 64.5) and this was not 

significantly modulated upon contact with, or adhesion to a HUVEC monolayer (357. 8 ± 

57.68 and 271.1 ± 59.97 respectively) as shown in Figure 3.9. 

 

Figure 3.9: Stable, recombinant galectin-9 binding to PMN during adhesion to an endothelial monolayer. 

Freshly isolated PMN were left to adhere for 30 minutes to a HUVEC monolayer that had been pre-treated 

with 10ng/mL hrTNF-. Non-adherent and adherent PMN were treated with stable, recombinant galectin-9 

(10nM) or vehicle for 15 minutes at 37C and assessed for their level of galectin-9 on the cell surface 

using Flow Cytometry compared to freshly isolated PMN. Endogenous expression of galectin-3 was 

subtracted from the total level to obtain the bound galectin-9 per group. Figure shows graph of stable, 

recombinant galectin-9 binding. Data are expressed as mean  SEM, n = 3 per group and are analysed by 

one-way ANOVA with Bonferroni post hoc test. 

3.1.4 Modulation of the Neutrophil Glycophenotype during 
Transendothelial Migration 

Freshly isolated PMN were assessed for the modulation of their glycophenotype during 

transendothelial migration using a transwell system. HUVECs were seeded onto a transwell 

insert with 3m pores and left to become fully confluent (typically overnight), the cells were 

then stimulated for 4 hours with 10ng/mL hrTNF- to up-regulate cell adhesion molecules 

required for PMN adhesion and transmigration. Isolated PMN were added to the top of the 

transwell and allowed to transmigrate for 90 minutes. PMN were then collected from the top 

of the transwell (non-transmigrated) and from under the transwell (transmigrated). The 

collected populations of PMN were then assessed for their expression of activation markers 

(Figure 3.10).  
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Similar to that seen in the 6-well assay freshly isolated PMN expressed high levels of CD62L 

(601.8 ± 84.91) and this was decreased by approximately 98% in non-transmigrated and 

transmigrated PMN (12.0 ± 1.167, P = 0.0025 and 6.967 ± 0.718, P = 0.0025 respectively). 

CD11b was also highly expressed by freshly isolated PMN (250.2 ± 25.29) but this was not 

modulated upon transmigration through an endothelial monolayer (343.8 ± 19.96 and 282.3 

± 3.65).  

 

Figure 3.10: Neutrophil activation marker expression in human PMN collected from the transwell assay. 

Blood was taken from healthy volunteers, PMN were isolated and added to a transwell on which a 

confluent monolayer of HUVECs had been pre-treated for 4 hours with 10ng/mL hrTNF-. The cells were 

allowed to transmigrate for 90 minutes and the expression of CD62L and CD11b was assessed by Flow 

Cytometry and compared to PMN that had not transmigrated (top well of transwell) as well as control PMN 

(that had not come into contact with HUVECs). A. Representative histogram and graph of CD62L expression 

and B. Representative histogram and graph of CD11b expression. Data are expressed as mean  SEM, N = 

3 per group, ** P < 0.01 vs freshly isolated PMN as analysed by one-way ANOVA with Bonferroni post hoc 

test.    
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Non-transmigrated and transmigrated PMN were then assessed by lectin binding. The 

expression of -linked galactose residues was significantly reduced as PMN transmigrated 

through an endothelial monolayer as shown by a 52% decrease in RCA120 binding (2109.67 

 937.16 vs 1020.22  450.53, P = 0.009) Figure 3.11.  

 

Figure 3.11: Binding of a -linked galactose-specific lectin to non-transmigrated and transmigrated human 

PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer that had 

been pre-treated with 10ng/mL hrTNF-. Non-transmigrated (NT) and transmigrated (T) PMN were 

collected and fixed overnight in 1% PFA before lectin binding took place. Flow Cytometry was used to 

assess the expression of bound lectin. Figure shows representative histogram and graph of RCA120 binding. 

Grey = secondary antibody binding, blue = non-transmigrated PMN and red = transmigrated PMN. Data are 

expressed as median fluorescence intensity per donor for paired samples, n = 10 per group. ** P < 0.01 

as analysed by two-tailed paired T test.  

As with the adherent cells a trend towards decreased lectin binding was seen between non-

transmigrated and transmigrated PMN. A 46% reduction in PNA binding was seen which 

was indicative of a decrease in the expression of mono-LacNAc residues as PMN traverse 

the endothelial monolayer (25.91  13.64 vs 14.06  7.78, P = 0.015) Figure 3.12a. No 

significant modulation could be seen when comparing LEL binding between non-

transmigrated and transmigrated PMN suggesting no statistically significant difference in the 

expression of poly-LacNAc residues, however a trend towards decreased expression on 

transmigrated PMN was observed with 2 out of 6 donors (269.2  123.0 vs 137.6  53.68, P 

= 0.127) Figure 3.12b. A decrease in the expression of complex tri- and tetra-antennary N-

glycans was seen as indicated by a 49% decrease in the binding of PHA-L when comparing 

non-transmigrated and transmigrated PMN (838  163.8 vs 420.7  44.84, P = 0.039) 

Figure 3.12c. 
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Figure 3.12: Binding of lectins indicative of galectin binding permissibility to non-transmigrated and 

transmigrated human PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a 

HUVEC monolayer that had been pre-treated with 10ng/mL hrTNF-. Non-transmigrated (NT) and 

transmigrated (T) PMN were collected and fixed overnight in 1% PFA before lectin binding took place. Flow 

Cytometry was used to assess the expression of bound lectin.  A. Representative histogram and graph of 

PNA binding, B. Representative histogram and graph of LEL binding and C. Representative histogram and 

graph of PHA-L binding. Grey = secondary antibody binding, blue = non-transmigrated PMN and red = 

transmigrated PMN. Data are expressed as median fluorescence intensity per donor for paired samples, n 

= 10 per group for PNA, 9 per group for LEL and 10 per group for PHA-L. * P < 0.05 as analysed by two-

tailed paired T test.  
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SNA binding decreased by 59% when comparing non-transmigrated and transmigrated PMN 

indicative of a decrease in the expression of 2,6-linked sialic acid residues upon 

transendothelial migration (469.30  348.58 vs 194.80  55.57, P = 0.048) Figure 3.13. 

 

Figure 3.13: Binding of an 2,6-linked sialic acid-specific lectin to non-transmigrated and transmigrated 

human PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer 

that had been pre-treated with 10ng/mL hrTNF-. Non-transmigrated (NT) and transmigrated (T) PMN were 

collected and fixed overnight in 1% PFA before lectin binding took place. Flow Cytometry was used to 

assess the expression of bound lectin.  Figure shows representative histogram and graph of SNA binding. 

Grey = secondary antibody binding, blue = non-transmigrated PMN and red = transmigrated PMN. Data are 

expressed as median fluorescence intensity per donor for paired samples, n = 9 per group. * P < 0.05 as 

analysed by two-tailed paired T test.  
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The expression of fucose was significantly reduced in PMN that have transmigrated through 

an endothelial monolayer compared to those that didn’t as indicated by a 71% decrease in 

UEA I binding (21.99  14.08 vs 6.27  4.26, P = 0.006) Figure 3.14.  

 

Figure 3.14: Binding of an -linked fucose-specific lectin to non-transmigrated and transmigrated human 

PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer that had 

been pre-treated with 10ng/mL hrTNF-. Non-transmigrated (NT) and transmigrated (T) PMN were 

collected and fixed overnight in 1% PFA before lectin binding took place. Flow Cytometry was used to 

assess the expression of bound lectin.  Figure shows representative histogram and graph of UEA I binding. 

Grey = secondary antibody binding, blue = non-transmigrated PMN and red = transmigrated PMN. Data are 

expressed as median fluorescence intensity per donor for paired samples, n = 10 per group. ** P < 0.01 

as analysed by two-tailed paired T test.  

3.1.5 Galectin Binding to Isolated Neutrophils Pre- and Post-
Transendothelial Migration  

To assess the binding of galectins-1, -3 and -9 to human neutrophils following 

transendothelial migration the model of transwell transmigration was utilised once more as 

described above (section 2.2.5).  
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Galectin-1 binding was low in freshly isolated PMN (5.658  2.399); this increased by 

approximately 4-fold in non-transmigrated PMN and this increased again by 1.5-fold as PMN 

transmigrated (21.52  6.70 and 32.30  8.17 respectively) suggesting an increase in 

binding sites for galectin-1 becoming available as PMN transmigrate though an endothelial 

monolayer as shown in Figure 3.15. 

 

 

Figure 3.15: Binding of recombinant galectin-1 to non-transmigrated and transmigrated human PMN. 

Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer that had been 

pre-treated with 10ng/mL hrTNF-. Non-transmigrated and transmigrated PMN were treated with 

recombinant galectin-1 (10nM) or vehicle for 15 minutes at 37C and assessed for their level of galectin-1 

on the cell surface using Flow Cytometry compared to freshly isolated PMN. Endogenous expression of 

galectin-1 was subtracted from the total level to obtain the total bound galectin-1 per group. Figure shows 

graph of recombinant galectin-1 binding. Data are expressed as mean  SEM, n = 6 per group, * P < 0.05 

and ** P < 0.01 vs freshly isolated as analysed by one-way ANOVA with Bonferroni post hoc test. 
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Galectin-3 bound to freshly isolated PMN at high levels compared to galectin-1 (108.7  

29.8) and this was not modulated significantly by contact with, or transmigration through 

endothelial cells (143.02  105.94 and 112.05  42.99 respectively) suggesting the number 

of counter-receptors for galectin-3 were unchanged upon PMN transendothelial migration as 

shown in Figure 3.16. 

 

Figure 3.16: Binding of recombinant galectin-3 to non-transmigrated and transmigrated human PMN. 

Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer that had been 

pre-treated with 10ng/mL hrTNF-. Non-transmigrated and transmigrated PMN were collected, treated 

with recombinant galectin-3 (10nM) or vehicle for 15 minutes at 37C and assessed for their level of 

galectin-3 on the cell surface using Flow Cytometry compared to freshly isolated PMN. Endogenous 

expression of galectin-3 was subtracted from the total level to obtain the total bound galectin-3 per group. 

Figure shows graph of recombinant galectin-3 binding. Data are expressed as mean  SEM, n = 6 per 

group and are analysed by one-way ANOVA with Bonferroni post hoc test. 
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Very high galectin-9 binding could be seen in freshly isolated PMN (851.4  342.9) however 

this was not modulated as PMN come into contact with, and traffic through an endothelial 

monolayer (816.58  438.01 and 521.8  151.09, P = 0.075) suggesting that, similar to 

galectin-3, the number of counter-receptors for galectin-9 were unchanged as shown in 

Figure 3.17.  

 

Figure 3.17: Binding of stable, recombinant galectin-9 to non-transmigrated and transmigrated human 

PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer that had 

been pre-treated with 10ng/mL hrTNF-. Non-transmigrated and transmigrated PMN were collected, 

treated with stable, recombinant galectin-9 (10nM) or vehicle for 15 minutes at 37C and assessed for 

their level of galectin-9 on the cell surface using Flow Cytometry compared to freshly isolated PMN. 

Endogenous expression of galectin-9 was subtracted from the total level to obtain the total bound galectin-

9 per group. Figure shows graph for stable, recombinant galectin-9 binding. Data are expressed as mean  

SEM, n = 6 per group and analysed by one-way ANOVA with Bonferroni post hoc test.  

3.1.6 Identification of Granule Release during Neutrophil 
Transendothelial Migration 

As the glycophenotype was modulated by transendothelial migration (section 3.1.4) it was 

important to ascertain whether the changes were arising via PMN granule release or via 

interaction with the endothelial cells. Thus PMN were treated with stimulants that induce 

granule release similar to that seen in the transwell transmigration assay and the 

glycophenotype compared.  

Non-transmigrated and transmigrated PMN were collected following the transwell 

transmigration assay and without fixation were analysed for their expression of granule 

release markers, CD35 (a marker for secretory vesicles) and CD66b (a marker for 

secondary granules). hrTNF- (10ng/mL) and fMLP (1M) were used as positive controls to 

stimulate freshly isolated PMN as these induce the release of secretory vesicles and 

secondary granules respectively (Norling et al., 2012).  
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Freshly isolated PMN express low levels of CD35 (68.93 ± 12.86) and there was a significant 

increase in expression in non-transmigrated (198.7 ± 35.06, P = 0.0156) and transmigrated 

PMN (164.0 ± 24.89, P = 0.0189) as shown in Figure 3.18. 

 

Figure 3.18: Secretory vesicles are released following activation of human PMN. PMN were isolated from 

healthy volunteers and either allowed to transmigrate for 90 minutes through a confluent monolayer of 

HUVEC cells that had been pre-treated with hrTNF- (10ng/mL) for 4 hours or directly stimulated with 

10ng/mL hrTNF- or 1M fMLP for 90 minutes at 37C. PMN were collected from each treatment and 

assessed for their expression of CD35 using Flow Cytometry compared to freshly isolated PMN. Shaded 

peak = isotype control. Data are expressed as mean  SEM, n = 3-5 per group. * P < 0.05 vs control as 

analysed using One-Way ANOVA with Dunnetts post-hoc test.  
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CD66b was expressed by freshly isolated PMN at low levels (32.09 ± 4.599), this was not 

significantly modulated in PMN that have not transmigrated through the monolayer (56.57 ± 

12.55), however a significant increase in the expression of CD66b was seen in PMN that 

had transmigrated through the endothelial monolayer by approximately 3 fold (92.77 ± 9.742, 

P = 0.026). The positive control fMLP also induced CD66b up-regulation as expected 

(Figure 3.19). These results indicate that transendothelial migration promotes the release of 

secondary granules from PMN.  

 

Figure 3.19: Neutrophil secondary granules are released following transmigration. PMN were isolated from 

healthy volunteers and either allowed to transmigrate for 90 minutes through a confluent monolayer of 

HUVEC cells that had been pre-treated with hrTNF- (10ng/mL) for 4 hours or directly stimulated with 

10ng/mL hrTNF- or 1M fMLP for 90 minutes at 37C. PMN were collected from each treatment and 

assessed for their expression of CD66b using Flow Cytometry compared to freshly isolated PMN. Shaded 

peak = isotype control. Data are expressed as mean  SEM, n = 3-5 per group.  * P < 0.05 and *** P < 

0.001 vs control as analysed by One-Way ANOVA with Dunnetts post-hoc test. 

Non-transmigrated PMN release their secretory vesicles while those that have transmigrated 

through begin to release their secondary granules. Thus freshly isolated PMN were treated 

with 10ng/mL hrTNF- (which induces the release of secretory vesicles only) or 1µM fMLP 

(which induces the release of secretory vesicles, tertiary granules and secondary granules) 

for 90 minutes at 37C. The PMN were fixed overnight in 1% PFA and then incubated with 

the lectins shown in Table 2.3 to assess whether granule release induced the changes seen 

in the PMN glycophenotype upon transendothelial migration. 

 

 

 

 

 



CHAPTER 3: RESULTS (1) 

111 

RCA120 binding was high in freshly isolated PMN (711.4  145.4) and this did not change in 

control PMN, which were incubated at 37C for 90 minutes (695.8  140.6). Mobilisation of 

PMN granules using 10ng/mL hrTNF- and 1M fMLP was unable to induce changes in the 

expression of -linked galactose residues on the PMN following 90-minute incubation as 

demonstrated by no modulation of binding of RCA120 (731.7  165.4 and 713.5  139.8 

respectively) (Figure 3.20). 

 

Figure 3.20: Binding of RCA120 to human PMN following 90-minute stimulation with hrTNF- or fMLP. PMN 

were isolated from healthy volunteers and either fixed immediately (freshly isolated) or incubated with 

vehicle (PBS), 10ng/mL hrTNF- or 1M fMLP for 90 minutes at 37C. Following this the cells were 

washed twice in PBS and fixed overnight in 1% PFA. The fixed PMN were incubated with lectins and the 

binding assessed using Flow Cytometry. Figure shows representative histogram and graph for RCA120 

binding. Shaded peak = isotype control. Data are expressed as mean  SEM, N = 7 per group and are 

analysed by repeated measures one-way ANOVA with Bonferroni post hoc test.  
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PNA binding was low on freshly isolated PMN (55.87  14.53) and this was unaltered in 

control, hrTNF-α or fMLP treated cells (52.72  17.49, 70.64  20.44 and 61.94  18.92 

respectively). LEL binding was high on freshly isolated PMN (726.5  216.2) and, similar to 

PNA was not modulated in control, hrTNF-α or fMLP treated cells (686.3  205.4, 609.1  

169 and 594.1  172.2 respectively). PHA-L binding was also high on freshly isolated PMN 

(930.4  150.3) and this was also unaltered in control, hrTNF-α or fMLP treatment (868.2  

152.5, 1100  195 and 1030  173.6 respectively). Taken together this suggests granule 

release does not cause the changes in mono- or poly-LacNAc residues or complex tri- and 

tetra-antennary N-glycans seen during transmigration (Figure 3.21).   
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Figure 3.21: Binding of lectins indicative of galectin binding permissibility to human PMN following 90-

minute stimulation with hrTNF- or fMLP. PMN were isolated from healthy volunteers and either fixed 

immediately (freshly isolated) or incubated with vehicle (PBS), 10ng/mL hrTNF- or 1M fMLP for 90 

minutes at 37C. Following this the cells were washed twice in PBS and fixed overnight in 1% PFA. The 

fixed PMN were incubated with lectins and the binding assessed using Flow Cytometry. A. Representative 

histogram and graph for PNA binding, B. Representative histogram and graph for LEL binding and C. 

Representative histogram and graph for PHA-L binding. Shaded peak = isotype control. Data are expressed 

as mean  SEM, n = 7 per group and are analysed by repeated measures one-way ANOVA with Bonferroni 

post hoc test.  
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Sialic acid was expressed at high levels by freshly isolated PMN (310.6  176.6) and 

although large deviations were detected within data sets it appears that the expression of 

2,6-linked sialic acid was not modulated by incubation at 37˚C or stimulation of human 

PMN with 10ng/mL hrTNF- or 1M fMLP as shown by no change in the binding of SNA 

(511.3  325.6, 605.6  393.2 and 497  288.2 respectively) (Figure 3.22). 

 

Figure 3.22: Binding of SNA to human PMN following 90-minute stimulation with hrTNF- or fMLP. PMN 

were isolated from healthy volunteers and either fixed immediately (freshly isolated) or incubated with 

vehicle (PBS), 10ng/mL hrTNF- or 1M fMLP for 90 minutes at 37C. Following this the cells were 

washed twice in PBS and fixed overnight in 1% PFA. The fixed PMN were incubated with lectins and the 

binding assessed using Flow Cytometry. Figure shows representative histogram and graph for SNA binding. 

Shaded peak = isotype control. Data are expressed as mean  SEM, n = 7 per group and are analysed by 

repeated measures one-way ANOVA with Bonferroni post hoc test.  
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UEA I binding was low on freshly isolated PMN (13.14  3.123) and there was no modulation 

of the binding of UEA I and thus expression of fucose residues on human PMN following 

stimulation with vehicle, 10ng/mL hrTNF- or 1M fMLP (11.08  2.701, 15.82  3.365 and 

13.1  3 respectively) (Figure 3.23). 

 

Figure 3.23: Binding of UEA I to human PMN following 90-minute stimulation with hrTNF- or fMLP. PMN 

were isolated from healthy volunteers and either fixed immediately (freshly isolated) or incubated with 

vehicle (PBS), 10ng/mL hrTNF- or 1M fMLP for 90 minutes at 37C. Following this the cells were 

washed twice in PBS and fixed overnight in 1% PFA. The fixed PMN were incubated with UEA I and the 

binding assessed using Flow Cytometry. Figure shows representative histogram and graph for UEA I 

binding. Shaded peak = isotype control. Data are expressed as mean  SEM, n = 7 per group and are 

analysed by repeated measures one-way ANOVA with Bonferroni post hoc test.  

3.1.7 Galectin Binding to Isolated Neutrophils following Granule 
Release 

The binding of recombinant galectins-1, -3 and -9 was then assessed following 90-minute 

stimulation with 10ng/mL hrTNF- or 1M fMLP to determine the effect of secretory vesicle 

and secondary granule release respectively on the binding of the galectins and compared to 

freshly isolated PMN.  
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The binding of galectin-1 to freshly isolated PMN was low (1.828  0.705) and this was 

unchanged in PMN that were treated with 10ng/mL hrTNF- (2.738  1.085) or 1M fMLP 

(1.2  0.7517, P = 0.031) for 90 minutes suggesting no change in galectin-1 counter-

receptors occurred following release of secretory vesicles or secondary granules (Figure 

3.24).  

 

Figure 3.24: Binding of recombinant galectin-1 to isolated PMN following 90-minute stimulation with 

hrTNF- or fMLP. Freshly isolated PMN were incubated with 10ng/mL hrTNF- or 1M fMLP for 90 minutes 

at 37C; PMN were collected, treated with recombinant galectin-1 (10nM) or vehicle for 15 minutes at 

37C and assessed for their level of galectin-1 on the cell surface using Flow Cytometry compared to 

freshly isolated PMN. Endogenous expression of galectin-1 was subtracted from the total level to obtain 

the total bound galectin-1. Figure shows graph of recombinant galectin-1 binding. Data are expressed as 

mean  SEM, n = 4 per group, * P < 0.05 as analysed by one-way ANOVA with Bonferroni post hoc test. 
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Binding of galectin-3 to freshly isolated PMN was higher than that seen for galectin-1 (47.38 

 10.2); this was not modulated following 90-minute treatment with either 10ng/mL hrTNF- 

or 1M fMLP (37.06  21.43 and 53.16  21.49 respectively) suggesting no change in the 

binding sites for galectin-3 following granule release (Figure 3.25).  

 

Figure 3.25: Binding of recombinant galectin-3 to isolated PMN following 90-minute stimulation with 

hrTNF- or fMLP. Freshly isolated PMN were incubated with 10ng/mL hrTNF- or 1M fMLP for 90 minutes 

at 37C; PMN were collected, treated with recombinant galectin-3 (10nM) or vehicle for 15 minutes at 

37C and assessed for their level of galectin-3 on the cell surface using Flow Cytometry compared to 

freshly isolated PMN. Endogenous expression of galectin-3 was subtracted from the total level to obtain 

the total bound galectin-3. Figure shows graph of recombinant galectin-3 binding. Data are expressed as 

mean  SEM, n = 4 per group and are analysed by one-way ANOVA with Bonferroni post hoc test. 
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Galectin-9 binds highly to freshly isolated PMN (388.1  62.67) and this level does not 

change following 90-minute stimulation with 10ng/mL hrTNF- (397.7  12.22) however the 

binding significantly increases upon treatment with 1M fMLP (576.4  112.1, P = 0.015). 

This suggests under basal conditions receptor(s) for galectin-9 are present on the PMN and 

these either increase or additional receptors are translocated to the cell surface upon 

release of secondary granules (Figure 3.26). 

 

Figure 3.26: Binding of stable, recombinant galectin-9 to isolated PMN following 90-minute stimulation 

with hrTNF- or fMLP. Freshly isolated PMN were incubated with 10ng/mL hrTNF- or 1M fMLP for 90 

minutes at 37C; PMN were collected, treated with stable, recombinant galectin-9 (10nM) or vehicle for 15 

minutes at 37C and assessed for their level of galectin-9 on the cell surface using Flow Cytometry 

compared to freshly isolated PMN. Endogenous expression of galectin-9 was subtracted from the total level 

to obtain the total bound galectin-9. Figure shows stable, recombinant galectin-9 binding. Data are 

expressed as mean  SEM, n = 4 per group, * P < 0.05 vs freshly isolated unless otherwise indicated as 

analysed by one-way ANOVA with Bonferroni post hoc test. 

3.1.8 Effect of Endothelial Cell-Derived Factors on the 
Glycophenotype of Neutrophils 

As the changes in human PMN glycophenotype was not a consequence of granule release 

(section 3.1.6) the role of the endothelium and endothelial-derived factors were therefore 

assessed. 

Freshly isolated PMN were placed in the bottom well of 6-well plate and a confluent 

monolayer of HUVECs on a transwell insert that had been pre-treated with 10ng/mL hrTNF-

 for 4 hours was added above the PMN. The cells were incubated together at 37C for 90 

minutes to mimic the conditions seen in the transwell transmigration assay, following this the 

PMN were collected, fixed overnight and assessed for their glycophenotype as previously 

performed. 
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As described before, the binding of RCA120 was high in freshly isolated PMN and this did not 

change following 90 minute incubation at 37C. However, a significant increase occurred as 

a consequence of endothelial-derived factors (922.1  178.1 vs 2068  511.5, P = 0.019), 

which matches the increase seen in cells that come into contact with the HUVEC but neither 

adhere nor transmigrate confirming that these changes were due to a secreted factor from 

the activated endothelium (Figure 3.27).  

 

Figure 3.27: RCA120 binding to PMN that were separated from direct cell-cell contract with HUVECs by a 

transwell. PMN were isolated from healthy volunteers and placed in the lower well of a 6-well plate with a 

pre-activated confluent monolayer of HUVEC cells on a transwell on top. This was incubated at 37C for 90 

minutes and the binding of RCA120 was assessed in comparison to freshly isolated PMN and those that had 

been incubated in the absence of HUVECs. Figure shows representative histogram and graph of RCA120 

binding. Shaded peak = isotype control. Data are expressed as mean ± SEM, n = 5 per group, * P < 0.05 

as analysed by one-way ANOVA with Bonferroni post hoc test.  

The expression of mono-LacNAc residues was low in freshly isolated cells compared to the 

expression of poly-LacNAc residues and complex tri- and tetra-antennary N-glycans as 

determined by binding of PNA, LEL and PHA-L respectively (52.22  9.871, 874.4  197.9 

and 958.4  12.7). No significant modulation of expression of these residues was observed 

following stimulation with endothelial cell-derived secreted factors; this was particularly 

evident for PNA binding (54.28  10.43). However, a trend towards increased expression 

was seen with LEL (1288  263.5) and PHA-L (1388  21.2) but this did not reach statistical 

significance as shown in Figure 3.28. This opposes the findings from non-adherent and non-

transmigrated PMN as these demonstrate decreased binding of PNA, LEL and PHA-L 

compared to freshly isolated cells and thus this cannot be attributed to a secreted endothelial 

factor.  
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Figure 3.28: Galectin-permissive lectin binding to PMN that were separated from direct cell-cell contact 

with HUVECs by a transwell. PMN were isolated from healthy volunteers and placed in the lower well of a 6-

well plate with a pre-activated confluent monolayer of HUVEC cells on a transwell on top. This was 

incubated at 37C for 90 minutes and the binding of lectins was assessed in comparison to freshly 

isolated PMN and those that had been incubated in the absence of HUVECs. A. Representative histogram 

and graph showing binding of PNA, B. Representative histogram and graph showing binding of LEL and C. 

Representative histogram and graph showing binding of PHA-L. Shaded peak = isotype control. Data are 

expressed as mean ± SEM, n = 5 per group and are analysed by one-way ANOVA with Bonferroni post hoc 

test.  
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The expression of 2,6-linked sialic acid was high on freshly isolated PMN as demonstrated 

by SNA binding (393.2  136.1) and, similar to that seen with LEL and PHA-L, the binding of 

SNA appeared to follow a trend towards an increase upon incubation with factors secreted 

from activated HUVECs (859.7  181) as shown in Figure 3.29. This correlated with the 

finding from PMN in the transwell assay that have not transmigrated as these also 

demonstrated an increase in the expression of 2,6-linked sialic acid; PMN that were non-

adherent to the endothelium exhibit decreased SNA binding however these were in contact 

with the HUVECs for a shorter period of time. 

 

Figure 3.29: SNA binding to PMN that were separated from direct cell-cell contact with HUVECs by a 

transwell. PMN were isolated from healthy volunteers and placed in the lower well of a 6-well plate with a 

pre-activated confluent monolayer of HUVEC cells on a transwell on top. This was incubated at 37C for 90 

minutes and the binding of SNA was assessed in comparison to freshly isolated PMN and those that had 

been incubated in the absence of HUVECs. Figure shows representative histogram and graph of SNA 

binding. Shaded peak = isotype control. Data are expressed as mean ± SEM, n = 5 per group and are 

analysed by one-way ANOVA with Bonferroni post hoc test.  
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The binding of UEA I was low in freshly isolated PMN suggesting low expression of -linked 

fucose residues however upon contact with mediators that were released from activated 

HUVECs this increased approximately 3-fold (27.61  9.02 vs 101.6  19.97, P = 0.017) as 

seen in Figure 3.30. As with SNA binding this closely mimicked the response seen in PMN 

that did not transmigrate through the HUVECs in the transwell assay but not those that were 

non-adherent in the 6-well assay suggesting endothelial cell-derived factors were causing 

these effects but may take a longer time frame than 30 minutes to do so.  

 

Figure 3.30: UEA I binding to PMN that were separated from direct cell-cell contact with HUVECs by a 

transwell. PMN were isolated from healthy volunteers and placed in the lower well of a 6-well plate with a 

pre-activated confluent monolayer of HUVEC cells on a transwell on top. This was incubated at 37C for 90 

minutes and the binding of UEA I was assessed in comparison to freshly isolated PMN and those that had 

been incubated in the absence of HUVECs. Figure shows representative histogram and graph of UEA I 

binding. Shaded peak = isotype control. Data are expressed as mean ± SEM, n = 5 per group, * P < 0.05 

vs freshly isolated PMN as analysed by one-way ANOVA with Bonferroni post hoc test.  

3.1.9 Modulation of the Glycophenotype of Neutrophils during 
Exudation to the Buccal Cavity 

Although the transwell transmigration assay is able to provide information on the effect of 

PMN transendothelial migration it is unable to accurately portray the recruitment of PMN that 

occurs pathologically. During inflammation PMN respond to chemokines and cytokines by 

transmigrating through an endothelial monolayer to leave the circulation and then traffic to 

an inflammatory site through the extracellular matrix coming into contact with many other cell 

types; once at the site of inflammation the primary granules are released and the PMN are 

phenotypically very different to those in the circulation (Chilvers et al., 2000). In order to 

provide a more pathophysiological model of human PMN recruitment healthy volunteers 

were utilised to collect PMN that had recruited to the Buccal cavity in response to mild 

inflammation.   
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Healthy volunteers performed the Tobasco mouth rinse as described in section 2.2.3 and 

the exudated PMN were collected (approximately 5-10 x 106 per donor), fixed overnight in 

1% PFA and assessed for their lectin binding compared to paired peripheral blood samples.  

No difference was seen in the binding of RCA120 when comparing peripheral blood 

neutrophils to those recruited in response to neurogenic inflammation suggesting no 

modulation of the expression of -linked galactose residues (760.2  138.7 vs 782.8  145.1) 

Figure 3.31.  

 

Figure 3.31: Lectin binding profile for -linked galactose residues on human peripheral blood and 

exudated PMN. Healthy volunteers rinsed their mouths with a 10% Tobasco solution and following 1 hour 

exudated PMN were collected by saline wash, peripheral blood PMN were also isolated by dextran 

sedimentation. Both groups of PMN were washed twice and fixed overnight in 1% PFA. The fixed PMN were 

incubated with lectins and the binding was assessed using Flow Cytometry. Figure shows representative 

histogram and graph for RCA120 binding. Grey = secondary antibody only, burgundy = peripheral blood PMN 

and purple = exudated PMN. Data are expressed as mean  SEM, n = 7 per group, and are analysed by 

two-tailed T test.  

The expression of mono-LacNAc residues on recruited PMN was significantly higher than 

peripheral blood PMN as shown by a 9-fold increase in binding of PNA (27.83  3.498 vs 

264.3  89.78, P = 0.0411) Figure 3.32a. The binding of LEL and PHA-L was not 

significantly modulated between the two groups suggesting no significant differences could 

be seen in the expression of poly-LacNAc residues (1095  199.1 vs 858.2  239.0) or of 

complex tri- and tetra-antennary N-glycans (850  175.9 vs 936.4  82.02) Figure 3.32.  



CHAPTER 3: RESULTS (1) 

124 

 

Figure 3.32: Lectin binding profile for galectin binding-permissive residues on human peripheral blood and 

exudated PMN. Healthy volunteers rinsed their mouths with a 10% Tobasco solution and following 1 hour 

exudated PMN were collected by saline wash, peripheral blood PMN were also isolated by dextran 

sedimentation. Both groups of PMN were washed twice and fixed overnight in 1% PFA. The fixed PMN were 

incubated with lectins and the binding was assessed using Flow Cytometry. A. Representative histogram 

and graph for PNA binding, B. Representative histogram and graph for LEL binding and C. Representative 

histogram and graph for PHA-L binding. Grey = secondary antibody only, burgundy = peripheral blood PMN 

and purple = exudated PMN. Data are expressed as mean  SEM, n = 7 per group, * P < 0.05 vs peripheral 

blood as analysed by two-tailed T test.  
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The expression of 2,6-linked sialic acid was significantly increased in PMN that have 

trafficked to the buccal cavity compared to those in the peripheral blood with a 2 fold 

increase in SNA binding (333.2  16.76 vs 747.1  56.6, P = 0.0146) Figure 3.33.  

 

Figure 3.33: Lectin binding profile for 2,6-linked sialic acid-specific residues on human peripheral blood 

and exudated PMN. Healthy volunteers rinsed their mouths with a 10% Tobasco solution and following 1 

hour exudated PMN were collected by saline wash, peripheral blood PMN were also isolated by dextran 

sedimentation. Both groups of PMN were washed twice and fixed overnight in 1% PFA. The fixed PMN were 

incubated with lectins and the binding was assessed using Flow Cytometry. Figure shows representative 

histogram and graph for SNA binding. Grey = secondary antibody only, burgundy = peripheral blood PMN 

and purple = exudated PMN. Data are expressed as mean  SEM, n = 7 per group, * P < 0.05 vs peripheral 

blood as analysed by two-tailed T test.  
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Fucose residues were not significantly modulated when comparing recruited PMN to those in 

the peripheral circulation as demonstrated by the lack of difference in UEA I binding (26.62  

6.606 vs 16.24  5.860) Figure 3.34.  

 

Figure 3.34: Lectin binding profile for -linked fucose residues on human peripheral blood and recruited 

PMN. Healthy volunteers rinsed their mouths with a 10% Tobasco solution and following 1 hour exudated 

PMN were collected by saline wash, peripheral blood PMN were also isolated by dextran sedimentation. 

Both groups of PMN were washed twice and fixed overnight in 1% PFA. The fixed PMN were incubated with 

UEA I and the binding was assessed using Flow Cytometry. Figure shows representative histogram and 

graph for UEA I binding. Grey = secondary antibody only, burgundy = peripheral blood PMN and purple = 

exudated PMN. Data are expressed as mean  SEM, n = 7 per group, Data are analysed by two-tailed T 

test.  

3.1.10 Galectin Binding to Neutrophils during Exudation to the 
Buccal Cavity 

Galectin binding was compared between PMN isolated from the peripheral circulation of 

healthy volunteers and those that had trafficked to the buccal cavity in response to pro-

inflammatory stimulation (Tobasco mouth rinse). PMN were collected from paired donors 

and incubated with recombinant galectins-1, -3 or -9 for 15 minutes at 37˚C; following this 

the cells were washed and analysed for the level of bound galectin by subtracting the 

endogenous expression (PMN untreated with recombinant galectins) from the total 

expression.  
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The binding of galectin-1 to peripheral blood PMN was low as previously determined 

however PMN that extravasated to the buccal cavity had significantly diminished galectin-1 

binding (3.860  1.191 vs 0.1167  0.04, P = 0.0348) as shown in Figure 3.35. 

 

Figure 3.35: Binding of recombinant galectin-1 to peripheral blood and exudated human PMN. Healthy 

volunteers rinsed their mouths with a 10% Tobasco solution and following 1 hour recruited PMN were 

collected by saline wash, peripheral blood PMN were also isolated by dextran sedimentation. Both groups 

of PMN were treated with recombinant galectin-1 (10nM) or vehicle for 15 minutes at 37C and assessed 

for their level of galectin-1 on the cell surface using Flow Cytometry compared to freshly isolated PMN. 

Endogenous expression of galectin-1 was subtracted from the total level to obtain the total bound galectin-

1. Figure shows graph of recombinant galectin-1 binding. Data are expressed as mean  SEM, n = 4 per 

group, * P < 0.05 as analysed by one-way ANOVA with two-tailed T-test. 
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Galectin-3 bound to peripheral blood PMN at a higher level than galectin-1 and this 

significantly increased by almost 65% upon exudation of the PMN to an inflammatory site 

(128.6  5.953 vs 209.6  25.4, P = 0.0361) as shown in Figure 3.36. 

 

Figure 3.36: Binding of recombinant galectin-3 to peripheral blood and exudated human PMN. Healthy 

volunteers rinsed their mouths with a 10% Tobasco solution and following 1 hour recruited PMN were 

collected by saline wash, peripheral blood PMN were also isolated by dextran sedimentation. Both groups 

of PMN were treated with recombinant galectin-3 (10nM) or vehicle for 15 minutes at 37C and assessed 

for their level of galectin-3 on the cell surface using Flow Cytometry compared to freshly isolated PMN. 

Endogenous expression of galectin-3 was subtracted from the total level to obtain the total bound galectin-

1. Figure shows graph of recombinant galectin-3 binding. Data are expressed as mean  SEM, n = 4 per 

group, * P < 0.05 as analysed by one-way ANOVA with two-tailed T-test. 
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Galectin-9 binding was high on peripheral blood PMN however, similar to galectin-3, this 

significantly increased by approximately 95% upon exudation to the buccal cavity in 

response to Tobasco stimulation (223.6  19.46 vs 432.4  39.47, P = 0.009) as shown in 

Figure 3.37. 

 

Figure 3.37: Binding of stable, recombinant galectin-9 to peripheral blood and exudated human PMN. 

Healthy volunteers rinsed their mouths with a 10% Tobasco solution and following 1 hour recruited PMN 

were collected by saline wash, peripheral blood PMN were also isolated by dextran sedimentation. Both 

groups of PMN were treated with stable, recombinant galectin-9 (10nM) or vehicle for 15 minutes at 37C 

and assessed for their level of galectin-9 on the cell surface using Flow Cytometry compared to freshly 

isolated PMN. Endogenous expression of galectin-9 was subtracted from the total level to obtain the total 

bound galectin-9. Figure shows graph of stable, recombinant galectin-9 binding. Data are expressed as 

mean  SEM, n = 4 per group, ** P < 0.01 as analysed by one-way ANOVA with two-tailed T-test. 

In summary, galectin-1 binding was not modulated upon human PMN adhesion to an 

endothelial monolayer but increases following transendothelial migration; this contradicts the 

fMLP stimulation assay as those PMN had decreased galectin-1 binding, as do the cells that 

have trafficked to an inflammatory site.  

Galectin-3 binding to human PMN was not significantly modulated by adhesion to or 

transmigration through an endothelial monolayer or by stimulation of the cells with hrTNF-α 

or fMLP; however the binding was significantly increased to PMN that were recruited to the 

buccal cavity in response to pro-inflammatory stimulation (Tobasco mouth wash).  

The binding of stable, recombinant galectin-9 to human PMN was high on freshly isolated 

cells and this was not significantly modulated by adhesion or transmigration through a 

HUVEC monolayer. Upon activation of the PMN with fMLP or trafficking to an inflammatory 

site binding increases, potentially suggesting additional counter-receptor(s) for galectin-9 are 

released under these conditions. 
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3.1.11 Modulation of the Glycophenotype of Murine Neutrophils 
from the Peripheral Blood to the Peritoneal Cavity  

A murine model of acute inflammation was utilised to study the differences in lectin binding 

on murine neutrophils; comparing peripheral blood neutrophils to recruited cells within the 

peritoneal cavity. Zymosan (1mg/mouse) was administered intraperitoneally into male 6-

week old C57BL/6 mice and after 4 hours the mice were anaesthetised and cardiac 

punctures and peritoneal lavages were performed to obtain peripheral blood and exudated 

neutrophils respectively. Neutrophils were identified with a specific Ly6G antibody and a 

validated panel of lectins were used to assess the neutrophil glycophenotype.  

RCA120 binding was low in murine peripheral blood neutrophils compared to human cells and 

binding decreased by approximately 60% when comparing those in the peripheral circulation 

to those that exudated suggesting a loss of -linked galactose upon trafficking (20.84  3.10 

vs 8.18  3.20, P = 0.009) Figure 3.38. 

 

Figure 3.38: Lectin binding profile for -linked galactose residues on murine peripheral blood and 

peritoneal exudate recruited neutrophils. Peritonitis was induced following administration of 1mg zymosan 

ip. and peripheral blood (burgundy) and peritoneal exudate (purple) was collected 4 hours later. 

Neutrophils were labelled with Ly6G and double stained for RCA120 and the binding of lectins to neutrophils 

was analysed by Flow Cytometry. Figure shows representative histogram and graph for RCA120 binding. 

Data are expressed as mean  SEM, N = 3 per group, ** P < 0.01 vs Blood as analysed by two-tailed T 

test. 

Human peripheral blood PMN bind low levels of PNA and high levels of LEL and PHA-L; this 

is altered in murine peripheral blood neutrophils that bind high levels of PNA and PHA-L and 

low levels of LEL. An overall trend towards decreased lectin binding was seen in exudated 

neutrophils compared to those in the peripheral blood with a 81% decrease in the binding of 

PNA (201.53  4.73 vs 38.01  18.51, P = 0.007), a 44% decrease in LEL binding (19.01  

2.07 vs 10.71  1.89, P = 0.001) and an 86% decrease in PHA-L binding (3900.21  193.94 

vs 551.78  125.01, P = 0.0001) Figure 3.39. This was indicative of a significant loss of 
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mono- and poly-LacNAc residues and complex tri- and tetra antennary N-glycans as 

neutrophils trafficked to an inflammatory site.  

 

Figure 3.39: Lectin binding for residues permissive for galectin binding on murine peripheral blood and 

peritoneal exudate recruited neutrophils. Peritonitis was induced following administration of 1mg zymosan 

ip. and peripheral blood (burgundy) and peritoneal exudate (purple) was collected 4 hours later. 

Neutrophils were labelled with Ly6G and double stained for lectins and the binding of lectins to neutrophils 

was analysed by Flow Cytometry. A. Representative histogram and graph for PNA binding, B. 

Representative histogram and graph for LEL binding and C. Representative histogram and graph for PHA-L 

binding. Data are expressed as mean  SEM, N = 3 per group, ** P < 0.01 vs blood as analysed by two-

tailed T test.  
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Murine peripheral blood neutrophils express lower levels of α-linked sialic acid than human 

PMN as demonstrated by lower SNA binding. A significant loss of 2,6-linked sialic acid was 

observed on exudated neutrophils compared to those in the peripheral circulation as 

demonstrated by a 93% loss of SNA binding (49.51  5.32 vs 3.55  1.85, P = 0.006) Figure 

3.40.  

 

Figure 3.40: Lectin binding for 2,6-linked sialic acid residues on murine peripheral blood and peritoneal 

exudate recruited neutrophils. Peritonitis was induced following administration of 1mg zymosan i.p. and 

peripheral blood (burgundy) and peritoneal exudate (purple) was collected 4-hours later. Neutrophils were 

labelled with Ly6G and double-stained for SNA binding and the binding of SNA to neutrophils was analysed 

by Flow Cytometry. Figure shows representative histogram and graph for SNA binding. Data are expressed 

as median fluorescence intensity per sample for paired donors, N = 3 per group, ** P < 0.01 vs blood as 

analysed by two-tailed paired T test.  
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Collectively, the data gathered from human and murine studies should be compared to 

assess whether any species differences are observed in neutrophil glycophenotype. Murine 

neutrophils in the peripheral circulation expressed higher levels of α-linked fucose compared 

to human cells. The expression of fucose residues was significantly diminished upon 

neutrophil trafficking to a site of inflammation as demonstrated by a 75% loss of UEA I 

binding to neutrophils in the peritoneal cavity compared to those in the peripheral circulation 

(94.68  5.81 vs 22.98  3.98, P = 0.005) Figure 3.41.   

 

Figure 3.41: Lectin binding for -linked fucose residues on murine peripheral blood and peritoneal exudate 

recruited neutrophils. Peritonitis was induced following administration of 1mg zymosan ip. and peripheral 

blood (burgundy) and peritoneal exudate (purple) was collected 4-hours later, Neutrophils were labelled 

with Ly6G and double-stained for UEA I binding and the binding of UEA I to neutrophils was analysed by 

Flow Cytometry. Figure shows representative histogram and graph for UEA I binding. Data are expressed as 

median fluorescence intensity per sample for paired donors, N = 3 per group, ** P < 0.01 vs blood as 

analysed by two-tailed paired T test. 
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3.2 Discussion 

The glycophenotype of human PMN was modulated by co-culture with, adhesion to and 

transmigration through an endothelial monolayer; this was not a direct consequence of 

granule release, or of endothelial cell-derived mediators as demonstrated by an inability of 

granule release or conditioned medium to mimic the phenotype changes. Thus the 

modulation seen was most likely a combination of the two factors and also a direct 

consequence of transendothelial migration.  

Murine and human models of pathophysiological inflammation were used to collect 

neutrophils that had migrated to an inflammatory site and although it was hypothesised that 

the lectin binding profile of exudated murine neutrophils would be similar to that of human 

exudated neutrophils this was not the case and large variation was seen with many of the 

lectins.  

This study suggests that analysis of the glycophenotype of neutrophils is not a suitable 

marker for galectin binding permissibility, this may be due to the loss of heavily glycosylated 

proteins from the cell surface upon activation skewing the results rather than the action of 

specific glycosylation enzymes as is seen with adaptive immune cells.  

It was initially postulated that the differential responses seen to galectin binding were 

dependent either on the modulation of the glycophenotype of the neutrophil affecting 

galectin binding permissibility or the differential expression of galectins during an 

inflammatory response thus the next chapter addresses the second part of this hypothesis 

by assessing the galectin expression profile in both isolated human neutrophils that have 

been transmigrated through an endothelial monolayer and murine leukocytes in vivo using a 

resolving model of acute inflammation.  
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CHAPTER 4: 
 

RESULTS (2): MODULATION OF THE GALECTIN 

EXPRESSION PROFILE OF LEUKOCYTES 
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4 Modulation of the Galectin 
Expression Profile of Leukocytes 

4.1 Introduction 

Galectins-1, -3 and -9 are all known to be expressed by leukocytes of the innate 

immune system (Gil et al., 2006a, Truong et al., 1993, Sanchez-Cuellar et al., 2012, 

Sato and Hughes, 1994), however these lectins have opposing actions. Galectins-1 

and -9 act on cells of the innate immune system to promote a reduction in recruitment 

(Cooper et al., 2008, Rabinovich et al., 2000, La et al., 2003, He et al., 2009) while 

galectin-3 increases the recruitment of leukocytes to an inflammatory site (Colnot et al., 

1998b, Hsu et al., 2000). It can therefore be hypothesised that the expression of each 

galectin is tightly controlled to ensure leukocytes are not activated during homeostasis.  

Published studies have also demonstrated that the localisation of the galectin affects 

the function with intracellular galectin-3 binding to Bcl-2 proteins in Jurkat T cells and 

preventing apoptosis (Akahani et al., 1997) while the same lectin bound to the surface 

of CD4+ T cells promotes their apoptosis (Fukumori et al., 2003). Therefore it can be 

hypothesised that the cellular expression is also tightly controlled to ensure the correct 

cellular processes are occurring.  

The aims of this study were therefore to investigate how the expression of galectins 

alters in human neutrophils following an inflammatory stimulus and/or cell trafficking.  

Secondly this study aimed to investigate how the expression of galectins-1, -3 and -9 

are modulated over the course of a resolving inflammatory response using a murine 

model of zymosan-induced peritonitis, a model which has been well-characterised to 

resolve over a 96-hour time period.  

The expression of galectins-1, -3 and -9 were assessed in PMN that had transmigrated 

through an endothelial monolayer, both at the cell surface and intracellularly. The 

modulation of expression of galectins-1, -3 and -9 was also characterised in a human 

model of neutrophil recruitment using a Tobasco mouth wash and compared to paired 

peripheral blood PMN. Finally galectin expression was assessed in an in vivo murine 

model of inflammation to characterise how the expression of the galectins is altered on 

myeloid cells during a resolving inflammatory process.   
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4.1.1 Cell Surface Galectin Expression of Isolated 
Neutrophils Pre- and Post-Transendothelial Migration 

Isolated PMN were assessed for their cell surface expression of galectins-1, -3 and -9 

following transendothelial migration using a model of transwell transmigration as 

described previously in section 2.2.5.  

Non-transmigrated human PMN express low levels of galectin-1 and this was further 

decreased upon transmigration through an endothelial monolayer as demonstrated by 

a 55% decrease in the binding of anti-galectin-1 antibodies (7.77  3.68 vs 3.52  1.45, 

P = 0.012) as seen in Figure 4.1. 

 

Figure 4.1: Cell surface expression of galectin-1 on non-transmigrated and transmigrated human 

PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer 

that had been pre-treated with 10ng/mL hrTNF- for 4 hours. Non-transmigrated (NT) and 

transmigrated (T) PMN were collected from the upper and lower chamber respectively and washed 

before staining with an anti-galectin-1 antibody took place and Flow Cytometry was used to assess 

the expression. Figure shows representative histogram and graph for galectin-1 expression. Data are 

expressed as median fluorescence intensity per sample for paired donors, n = 6 per group, * P < 

0.05 as analysed by two-tailed paired T-test. 
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The basal expression of galectin-3 on non-transmigrated human PMN was higher than 

galectin-1 however this expression was not significantly altered by transmigration 

through an endothelial monolayer (15.82  6.03 vs 14.75  2.31) Figure 4.2.  

 

Figure 4.2: Cell surface expression of galectin-3 on non-transmigrated and transmigrated human 

PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer 

that had been pre-treated with 10ng/mL hrTNF- for 4 hours. Non-transmigrated (NT) and 

transmigrated (T) PMN were collected from the upper and lower chamber respectively and washed 

before staining with an anti-galectin-3 antibody took place and Flow Cytometry was used to assess 

the expression. Figure shows representative histogram and graph for galectin-3 expression. Data are 

expressed as median fluorescence intensity per sample for paired donors, n = 6 per group and are 

analysed by two-tailed paired T-test. 
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Similar to galectin-1, the cell surface expression of galectin-9 was very low on non-

transmigrated PMN and this also decreased by 59% following transendothelial 

migration (3.3  2.23 vs 1.34  1.08, P = 0.014) as demonstrated by decreased binding 

of an anti-galectin-9 antibody (Figure 4.3).  

 

Figure 4.3: Cell surface expression of galectin-9 on non-transmigrated and transmigrated human 

PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer 

that had been pre-treated with 10ng/mL hrTNF-. Non-transmigrated (NT) and transmigrated (T) 

PMN were collected from the upper and lower chamber respectively and washed before staining with 

an anti-galectin-9 antibody took place and Flow Cytometry was used to assess the expression. Figure 

shows representative histogram and graph for galectin-9 expression. Data are expressed as median 

fluorescence intensity per sample for paired donors, n = 6 per group, * P < 0.05 as analysed by two-

tailed paired T-test. 

4.1.2 Intracellular Galectin Expression of Isolated 
Neutrophils Pre- and Post-Transendothelial Migration 

PMN from the transwell transmigration assay were also assessed for their intracellular 

expression of galectins-1, -3 and -9 using Flow Cytometry by permeabilising cells 

before galectin antibodies were added.  
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Low levels of galectin-1 were expressed by freshly isolated PMN (2.373  0.765) and 

this was not modulated in non-transmigrated (1.083  1.044) or transmigrated PMN 

(1.030  0.156), although a trend towards decreased expression could be seen this did 

not reach statistical significance (Figure 4.4).  

 

Figure 4.4: Intracellular expression of galectin-1 on non-transmigrated and transmigrated human 

PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer 

that had been pre-treated with 10ng/mL hrTNF-. Non-transmigrated and transmigrated PMN were 

collected from the upper and lower chamber respectively along with freshly isolated PMN. PMN were 

fixed and permeabilised before staining with an anti-galectin-1 antibody took place and Flow 

Cytometry was used to assess the expression. Figure shows representative histogram and graph for 

galectin-1 expression Data are expressed as mean  SEM, n = 3 per group and are analysed by one-

way ANOVA with Bonferroni post hoc test. 
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Galectin-3 was expressed at higher levels than galectin-1 by freshly isolated PMN 

(13.01  3.96), however this was not significantly modulated in non-transmigrated 

(8.777  1.044) and transmigrated PMN (7.333  1.713) Figure 4.5. Intracellular levels 

of galectin-3 were comparable to those seen at the cell surface suggesting all galectin-

3 expressed by human PMN is localised at the cell surface.  

 

Figure 4.5: Intracellular expression of galectin-3 on non-transmigrated and transmigrated human 

PMN. Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer 

that had been pre-treated with 10ng/mL hrTNF-. Non-transmigrated and transmigrated PMN were 

collected from the upper and lower chamber respectively along with freshly isolated PMN. PMN were 

fixed and permeabilised before staining with an anti-galectin-3 antibody took place and Flow 

Cytometry was used to assess the expression. Figure shows representative histogram and graph for 

galectin-3 expression. Data are expressed as mean  SEM, n = 3 per group and are analysed by one-

way ANOVA with Bonferroni post hoc test. 
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Galectin-9 expression in freshly isolated PMN is negligible (1.413  0.206) and 

although significant decreases are noted in non-transmigrated PMN (0.580  0.150, P 

= 0.012) and transmigrated PMN (0.700  0.134, P = 0.027), due to the extremely low 

levels of expression (MFI values of less than one) these minimal differences can be 

discounted as shown in Figure 4.6. 

 

Figure 4.6: Intracellular expression of galectin-9 on non-transmigrated and transmigrated PMN. 

Freshly isolated PMN were left to transmigrate for 90 minutes through a HUVEC monolayer that had 

been pre-treated with 10ng/mL hrTNF-. Non-transmigrated and transmigrated PMN were collected 

from the upper and lower chamber respectively along with freshly isolated PMN. PMN were fixed and 

permeabilised before staining with an anti-galectin-9 antibody took place and Flow Cytometry was 

used to assess the expression. Figure shows representative histogram and graph for galectin-9 

expression. Data are expressed as mean  SEM, n = 3 per group, * P < 0.05 vs freshly isolated PMN 

as analysed by one-way ANOVA with Bonferroni post hoc test. 

4.1.3 Modulation of the Intracellular Galectin Expression of 
Neutrophils during Exudation to the Buccal Cavity 

Healthy volunteers performed the Tobasco wash as described in section 2.2.3 and the 

exudated PMN collected were paired with isolated peripheral blood PMN from the 

same donor. The PMN were fixed overnight in 1% PFA and then permeabilised before 

anti-galectin-1, -3 and -9 antibodies were used to assess intracellular galectin 

expression of exudated neutrophils compared to those in the peripheral circulation.  
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As previously demonstrated galectin-1 was expressed at low levels by PMN in the 

peripheral circulation and this was not significantly modulated by transmigration to the 

buccal cavity (2.172  0.3474 vs 1.846  0.4532) Figure 4.7.  

 

Figure 4.7: Expression of galectin-1 in human peripheral blood and exudated PMN. Healthy 

volunteers rinsed their mouths with a 10% Tobasco solution and following 1 hour recruited PMN 

were collected by saline wash (purple), peripheral blood PMN were also isolated by dextran 

sedimentation (burgundy). Both groups of PMN were washed twice and fixed overnight in 1% PFA, 

the following day the PMN were permeabilised and labelled with galectin-1 antibodies and the 

expression was assessed using Flow Cytometry. Figure shows representative histogram and graph 

for galectin-1 expression. Data are expressed as mean  SEM, n = 5 and are analysed by two-tailed T 

test.  

Galectin-3 was expressed at higher levels by PMN in the peripheral circulation than 

galectin-1 however this was also not significantly modulated by exudation to an 

inflammatory site (13.07  1.852 vs 15.78  2.074) Figure 4.8. 

  

Figure 4.8: Expression of galectin-3 in human peripheral blood and exudated PMN. Healthy 

volunteers rinsed their mouths with a 10% Tobasco solution and following 1 hour recruited PMN 

were collected by saline wash (purple), peripheral blood PMN were also isolated by dextran 

sedimentation (burgundy). Both groups of PMN were washed twice and fixed overnight in 1% PFA, 

the following day the PMN were permeabilised and labelled with galectin-3 antibodies and the 

expression was assessed using Flow Cytometry. Figure shows representative histogram and graph 

for galectin-3 expression. Data are expressed as mean  SEM, n = 5 and are analysed by two-tailed T 

test.  
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As previously demonstrated galectin-9 was expressed in human peripheral blood PMN 

at low levels, this was reduced further by transmigration to the buccal cavity (1.378  

0.2122 vs 0.760  0.1425, P = 0.0420), again due to the extremely low expression 

levels this must be taken into account (Figure 4.9). 

 

Figure 4.9: Expression of galectin-9 in human peripheral blood and exudated PMN. Healthy 

volunteers rinsed their mouths with a 10% Tobasco solution and following 1 hour recruited PMN 

were collected by saline wash (purple), peripheral blood PMN were also isolated by dextran 

sedimentation (burgundy). Both groups of PMN were washed twice and fixed overnight in 1% PFA, 

the following day the PMN were permeabilised and labelled with galectin-9 antibodies and the 

expression was assessed using Flow Cytometry. Figure shows representative histogram and graph 

for galectin-9 expression. Data are expressed as mean  SEM, n = 5, * P < 0.05 vs blood as 

analysed by two-tailed T test.  

4.1.4 Modulation of Galectin Expression in Myeloid Cells 
during Acute, Resolving Inflammation 

Zymosan-induced peritonitis (1mg/mouse) is a model used to study the inflammatory 

process from induction to resolution, as it is a well-defined, reproducible model of 

inflammation. The inflammation is characterised by a neutrophil and monocyte-driven 

response that resolves completely over a 96-hour period.  

Male C57BL/6 mice were injected with 1mg zymosan ip and during a 96h time-course 

samples were collected (at 0, 4, 24, 48, 72 and 96 hours post injection); cardiac 

punctures were performed to obtain peripheral leukocytes and peritoneal lavages were 

collected for exudated leukocytes. Femurs were also collected, flushed with PBS and 

this was filtered through a 70m cell strainer to collect bone marrow leukocytes. Total 

leukocyte counts were performed in Turk’s solution for all time points and antibodies 

specific for neutrophils (Ly6G, clone 1A8) and monocyte/macrophages (F4/80, clone 

BM8) were used to differentiate between the two populations using Flow Cytometry 

(bone marrow neutrophils were identified using Ly6G and CXCR4 while bone marrow 

monocytes were labelled with Ly6C).  
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There was a rapid increase in the number of total leukocytes in the peritoneal cavity 

within 4-24 hours of zymosan administration and this remained elevated over the 

course of the response with the increased leukocytes still observed at 96 hours 

compared to 0 hours (Figure 4.10a). The neutrophil number in the peritoneal cavity 

increased sharply over 4-24 hours and then returned back to basal levels within the 96 

hour time course. In contrast the monocyte/macrophage numbers declined within the 

first 4 hours of zymosan treatment and then re-populated the peritoneal cavity over the 

time course ending with a significantly higher number of monocyte/macrophages than 

were present at 0 hour (Figure 4.10b). This correlates with previous studies of 

zymosan-induced peritonitis (Ajuebor et al., 1999). 

 

Figure 4.10: Total and differential leukocyte counts from peritoneal exudate over a 96-hour time 

course following 1mg zymosan-induced peritonitis. Mice were given 1mg zymosan ip and over a 96-

hour time course leukocytes were collected from the peritoneal exudate using peritoneal lavage. A. 

Total leukocytes were stained with Turk’s solution and counted using a light microscope and B. 

Differential leukocyte counts were performed using anti-Ly6G (specific for neutrophils) and anti-

F4/80 (specific for monocyte/macrophages). Data are expressed as mean ± SEM, N = 12 per group. 

* P < 0.05 and ** P < 0.01 vs 0hr time point for total leukocytes, ++ P < 0.01 vs neutrophils at 0hr 

time point and # P < 0.05 vs monocytes at 0hr time point as analysed using One-Way ANOVA with 

Dunnetts post hoc test. 
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The number of total leukocytes within peripheral blood decreased rapidly following 

induction of peritonitis, yet returned to basal levels over the course of the response 

(Figure 4.11a). Monocytes account for the decrease in total cells seen at 4 hours, 

which return to basal levels over the time course. Whilst there were no significant 

modulations in the numbers of neutrophils in the peripheral blood, a trend can be seen 

that mirrors the changes in the peritoneal cavity with a decrease as cells migrate from 

the peripheral blood to the peritoneal cavity and then an increase as the peripheral 

blood re-populates (Figure 4.11b).  

 

Figure 4.11: Total and differential leukocyte counts from peripheral blood over a 96-hour time 

course following 1mg zymosan-induced peritonitis. Mice were given 1mg zymosan ip and over a 96-

hour time course peripheral blood was collected via cardiac puncture, the red cells were lysed and 

the leukocytes assessed. A. Total leukocytes were stained with Turk’s solution and counted using a 

light microscope and B. Differential leukocyte counts were performed using anti-Ly6G (specific for 

neutrophils) and anti-F4/80 (specific for monocytes). Data are expressed as mean ± SEM, N = 8 per 

group. * P < 0.05 and ** P < 0.01 vs 0-hour time point for total leukocytes. # P < 0.05 vs 0-hour 

monocytes as analysed by One-Way ANOVA with Dunnetts post-hoc test. 
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Although no significant modulation of the leukocyte number was observed within the 

bone marrow, a similar yet delayed trend followed the peripheral blood neutrophils with 

a decrease in the number of cells in the bone marrow approximately 24-hours later 

than that seen in the peripheral blood. This is likely to account for leukocyte 

mobilisation to repopulate the peripheral circulation (Figure 4.12). 

 

Figure 4.12: Total and differential leukocyte counts from bone marrow over a 96-hour time course 

following 1mg zymosan-induced peritonitis.  Mice were given 1mg zymosan ip and over a 96-hour 

time course bone marrow was collected via removal of the femur and flushing through with PBS, the 

leukocyte were collected by passing the bone marrow through a 70m cell strainer. A. Total 

leukocytes were stained with Turk’s solution and counted using a light microscope and B. Differential 

leukocyte counts were performed using anti-Ly6G and anti-CXCR4 (specific for bone marrow 

neutrophils) and anti-Ly6C (specific for bone marrow monocytes). Data are expressed as mean ± 

SEM, N = 4 per group. Analysed by One-Way ANOVA with Dunnetts post-hoc test. 

It is known that galectins have differing actions on leukocyte recruitment, for instance 

galectin-1 inhibits neutrophil trafficking while galectin-3 activates neutrophils and 

increases neutrophil-endothelial cell interactions (Cooper et al., 2008, Karlsson et al., 

1998, Sato et al., 2002b). Given that galectins function both endogenously and 

exogenously their expression during a resolving inflammatory response must be both 

spatially and temporally modulated.  
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Supernatants from peritoneal exudates were taken at each time point and assessed for 

galectin-1 and -3 concentrations by ELISA analysis. Galectin-1 expression was high in 

untreated mice (1.701  0.324 ng/mL) and this rapidly decreased by approximately 

50% following the onset of inflammation (0.809  0.103 ng/mL) by 24 hours post 

zymosan. A second peak was seen at 48 hours where levels were similar to that seen 

in control animals (1.804  0.266 ng/mL) and this once again decreased and remained 

low at 96h (Figure 4.13).  

 

Figure 4.13: Galectin-1 concentration in peritoneal exudate fluid over a 96-hour time course 

following 1mg zymosan-induced peritonitis. Mice were given zymosan ip (1mg/mouse) and 

peritoneal lavages were performed at 0, 4, 24, 48, 72 and 96 hours post injection. Peritoneal 

exudate was centrifuged at 300g for 10 minutes and the cell-free supernatant was collected and 

assayed for the concentration of galectin-1 by ELISA. Data are expressed as mean  SEM, n = 4-7 

per group, * P < 0.05 vs 0 hour and # P < 0.05 vs 48 hour as analysed by one-way ANOVA with 

Bonferroni post hoc test.  
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Galectin-3 was also detected in the peritoneal wash of mice that did not receive any 

zymosan (2.155  0.450 ng/mL) and levels increased over the time course with a peak 

approximately 4-fold higher than time zero at 72 hours. At 96 hours the galectin-3 

concentration was not significantly different from control levels suggesting a return to 

homeostasis had begun (Figure 4.14). 

 

Figure 4.14: Galectin-3 concentration in peritoneal exudate fluid following zymosan-induced 

peritonitis. Mice were given zymosan ip (1mg/mouse) and peritoneal lavages were performed at 0, 

4, 24, 48, 72 and 96 hours post injection. Peritoneal exudate was centrifuged at 300g for 10 

minutes and the cell-free supernatant was collected and assayed for the concentration of galectin-3 

by ELISA. Data are expressed as mean  SEM, n = 4-7 per group, * P < 0.05 and *** P < 0.001 vs 0 

hour as analysed by one-way ANOVA with Dunnetts post hoc test.  
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4.1.4.1 Modulation of Galectin Expression in Murine 
Neutrophils 

To assess the modulation of galectin expression in neutrophils they were specifically 

labelled with Ly6G (clone 1A8), fixed and then permeabilised and galectin expression 

was assessed using specific antibodies. Murine neutrophils showed no expression of 

galectins-1 or -9 in peritoneal exudate, peripheral blood or bone marrow when 

assessed over a 96-hour time course following zymosan-induced peritonitis (Figure 

4.15).  

 

Figure 4.15: Galectin-1 and galectin-9 expression in PMN from peritoneal exudate, peripheral blood 

and bone marrow over a 96-hour time course following 1mg zymosan-induced peritonitis. Mice were 

given 1mg zymosan ip and over a 96-hour time course leukocytes were collected from the peritoneal 

cavity, peripheral blood and bone marrow. The cells were double stained for Ly6G to identify 

neutrophils and galectin-1 or -9 and the expression was assessed using Flow Cytometry. A. Galectin-

1 expression and B. Galectin-9 expression. Data are expressed as Mean ± SEM, n = 12 per group for 

peritoneal exudate, 8 per group for peripheral blood and 4 per group for bone marrow. Analysed by 

Two Way ANOVA with Bonferroni post hoc test. 
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In contrast to galectins-1 and -9, galectin-3 expression within neutrophils was found to 

be modulated in cells recruited to the peritoneal cavity. Low levels of galectin-3 were 

detected in neutrophils from the peripheral blood and bone marrow, however this was 

significantly increased in exudated neutrophils over 72 hours; levels then declined at 

96 hours at which point homeostasis was restored as seen in Figure 4.16. 

 

Figure 4.16: Galectin-3 expression in PMN from peritoneal exudate, peripheral blood and bone 

marrow over a 96-hour time course following 1mg zymosan-induced peritonitis. Mice were injected 

with 1mg zymosan ip and over a 96-hour time course leukocytes were collected from the peritoneal 

cavity, peripheral blood and bone marrow. A. Representative histogram showing neutrophils double-

stained for Ly6g and galectin-3 expression at 4 hours post zymosan. B. Graph showing galectin-3 

expression in neutrophils from the peritoneal exudate, peripheral blood and bone marrow over 96 

hours. Data are expressed as mean ± SEM, n = 12 per group for peritoneal exudate, 8 per group for 

peripheral blood and 4 per group for bone marrow. * P < 0.05, ** P < 0.01 and *** P < 0.001 vs 

peripheral blood at same time point, # P < 0.05 and ### P < 0.001 vs bone marrow at same time 

point as analysed by Two Way ANOVA with Bonferroni post hoc test. 

4.1.4.2 Modulation of Galectin Expression in Murine 
Monocytes/Macrophages 

Initially cells from the peritoneal exudate and peripheral blood were labelled with an 

anti-F4/80 antibody to differentiate monocyte/macrophages from other leukocytes. The 
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cells were double stained with galectin-1, -3 or -9 antibodies and the expression 

assessed by Flow Cytometry.  

Low levels of galectin-1 were detected in peripheral blood and bone marrow 

monocytes, however this was significantly increased in monocyte/macrophages 

recruited to the peritoneal cavity from 24 to 72 hours of zymosan treatment that peaked 

at 72 hours (Figure 4.17). 

  

Figure 4.17: Galectin-1 expression in murine monocytes/macrophages over a 96-hour time course 

following 1mg zymosan-induced peritonitis. Mice were injected with 1mg zymosan ip. and peritoneal 

exudates, peripheral blood and bone marrow leukocytes were collected from 0-96 hours. 

Permeabilised monocytes/macrophages were labelled with anti-F4/80 or anti-Ly6C for bone marrow 

monocytes (clone – HK1.4) and galectin-1 antibodies. Figure shows graph for galectin-1 expression. 

Data are expressed as mean  SEM, n = 8 per group for peritoneal exudate and peripheral blood 

and 4 per group for bone marrow, *** P < 0.001 vs peripheral blood, # P < 0.05, ## P < 0.01 and 

### P < 0.001 vs bone marrow at same time point as analysed by Two-Way ANOVA with Bonferroni 

post hoc test.  
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Similar to neutrophils, the levels of galectin-3 in peripheral blood and bone marrow 

monocytes was relatively low compared to monocyte/macrophages that exudated to 

the peritoneal cavity. The levels of galectin-3 were raised at 24-72 hours, similar to 

galectin-1, again with a peak in the expression at 72 hours as seen in Figure 4.18. 

 

Figure 4.18: Galectin-3 expression in murine monocytes/macrophages over a 96-hour time course 

following 1mg zymosan-induced peritonitis. Mice were injected with 1mg zymosan ip. and peritoneal 

exudates, peripheral blood and bone marrow leukocytes were collected from 0-96 hours. 

Permeabilised monocytes/macrophages were labelled with anti-F4/80 or anti-Ly6C and galectin-3 

antibodies. Figure shows graph for galectin-3 expression. Data are expressed as mean  SEM, n = 8 

per group for peritoneal exudate and peripheral blood and 4 per group for bone marrow, *** P < 

0.001 vs peripheral blood, ## P < 0.01 and ### P < 0.01 vs bone marrow at same time point as 

analysed by Two-Way ANOVA with Bonferroni post hoc test.  
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The levels of galectin-9 in bone marrow monocytes was low and this was not 

significantly modulated over the course of zymosan peritonitis; unlike all other galectins 

the expression of galectin-9 increased in peripheral blood monocytes at 4 hours before 

returning to basal levels, although this did not reach significance. Galectin-9 expression 

in peritoneal exudate monocyte/macrophages gradually increased from 4 hours until 72 

hours at which point it was significantly different from the levels in the peripheral blood 

and bone marrow monocytes; levels then declined to basal at 96 hours (Figure 4.19).     

 

Figure 4.19: Galectin-9 expression in murine monocytes/macrophages over a 96-hour time course 

following 1mg zymosan-induced peritonitis. Mice were injected with 1mg zymosan ip. and peritoneal 

exudates, peripheral blood and bone marrow leukocytes were collected from 0-96 hours. 

Permeabilised monocytes/macrophages were labelled with anti-F4/80 or anti-Ly6C for bone marrow 

and galectin-9 antibodies. Figure shows graph for galectin-9 expression. Data are expressed as 

mean  SEM, n = 8 per group for peritoneal exudate and peripheral blood and 4 per group for bone 

marrow, *** P < 0.001 vs peripheral blood and ### P < 0.001 vs bone marrow at same time point 

as analysed by Two-Way ANOVA with Bonferroni post hoc test.  

Within the monocyte/macrophage populations of peripheral blood and peritoneal 

exudate there was variation in the galectin expression suggesting that more than one 

population of cells may be present and thus the monocyte/macrophages were 

phenotypically sorted into classical and non-classical subtypes based on Ly6C 

expression. Classical monocytes express high levels of Ly6C while non-classical 

monocytes express low levels of Ly6C (Gordon and Taylor, 2005). 

Cells from the peritoneal exudate and peripheral blood were collected and labelled with 

F4/80 and Gr-1 (an antibody specific to both Ly6G and Ly6C antigens). Leukocytes 

that were F4/80 positive and Gr-1 high were considered classical 

monocyte/macrophages and those that were F4/80 positive and Gr-1 low were 

considered non-classical monocyte/macrophages.  
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In the peritoneal exudate non-classical monocyte/macrophages were detected at time 

0 in significantly higher numbers than classical monocyte/macrophages. These 

resident cells rapidly depleted within 4-24 hours, followed by an increase that peaked 

at 72 hours at which point the number of monocyte/macrophages returned to 

approximately basal levels by 96 hours. Classical monocyte/macrophages were not 

present at 0 hours however they increased until a peak was reached at 24 hours; the 

cells then declined again by 96 hours (Figure 4.20a). 

Both subtypes of monocytes were present at 0 hours in peripheral blood but a 

significantly larger number of non-classical monocytes were seen. The number of 

classical monocytes in the peripheral circulation remained almost constant while the 

number of non-classical monocytes decreased until 24 hours and then increased to 

numbers above that seen at 0 hours (Figure 4.20b).  
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Figure 4.20: Differential counts for classical and non-classical monocytes from the peritoneal 

exudate and peripheral blood taken over a 96-hour time course following 1mg zymosan-induced 

peritonitis. Mice were injected with 1mg zymosan ip. and peritoneal exudates and peripheral blood 

were collected from 0-96 hours. Leukocytes were double stained with anti-F4/80 and anti-Gr-1 and 

the total numbers of classical and non-classical monocytes calculated. A. Peritoneal exudate 

monocyte/macrophages counts and B. Peripheral blood monocyte counts. Data are expressed as 

mean  SEM, n = 4 per group, ** P < 0.01 and *** P < 0.001 vs classical monocyte/macrophages 

at same time point as analysed by two-way ANOVA with Bonferroni post hoc test.  

At 48 and 72 hours both subtypes of monocyte/macrophages were present and thus 

peritoneal exudate and peripheral blood cells were collected at these time points and 

analysed for their intracellular expression of galectins-1, -3 and -9 using specific 

antibodies.  
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Low levels of galectin-1 were detected in both non-classical and classical monocytes in 

peripheral blood; this was not significantly modulated between 48 and 72 hours 

although a trend towards increased levels of galectin-1 was observed in both subtypes 

(Figure 4.21a).  

Very low levels of galectin-1 were detected in all monocyte/macrophages in the 

peritoneal exudate at 48 hours however levels significantly increased over the time 

course (classical 0.513  0.594 vs 17.25  4.239, P = 0.019; non-classical 1.223  

1.133 vs 30.35  8.707, P = 0.000001). The non-classical monocytes/macrophages in 

the peritoneal exudate also have significantly higher levels of galectin-1 than classical 

monocytes/macrophages at 72 hours post zymosan injection (30.35  4.35 vs 17.25  

2.12, P = 0.004) Figure 4.21b.  

 

Figure 4.21: Galectin-1 expression in classical and non-classical monocytes/macrophages collected 

from the peritoneal cavity and peripheral blood at 48 and 72 hours post zymosan ip. Mice were 

injected with 1mg zymosan ip. and peritoneal exudates and peripheral blood were collected at 48 

and 72 hours. Leukocytes were triple stained with anti-F4/80, anti-Gr-1 and anti-galectin-1. The 

expression of galectin-1 was assessed using Flow Cytometry. A. Peripheral blood monocytes and B. 

Peritoneal exudate monocyte/macrophages. Data are expressed as mean  SEM, n = 4 per group, * 

P < 0.05 and *** P < 0.001 vs 48 hour, ## P < 0.01 as analysed by two-way ANOVA with Bonferroni 

post hoc test.  

Peripheral blood monocytes expressed relatively low levels of galectin-3 compared to 

exudated cells at 48 and 72 hours (Figure 4.18). When analysing galectin-3 expression 

based on monocyte/macrophage phenotype, non-classical cells were found to express 

significantly higher levels of galectin-3 at both 48 and 72 hour time points (48-hour 
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25.05  11.14 vs 81.18  34.75, P = 0.007; 72-hour 26.03  12.59 vs 82.00  29.88, P 

= 0.007) with no modulation in levels over time (Figure 4.22a).  

In the peritoneal exudate levels of galectin-3 in monocyte/macrophages were much 

higher than those in the peripheral blood however at 48 hours the levels were 

comparable between non-classical and classical monocyte/macrophages. Non-

classical monocyte/macrophages do not display significant modulation of galectin-3 at 

72 hours but non-classical monocyte/macrophages have an increase of approximately 

2.25-fold (562.7  143.6 vs 1716  246.1, P = 0.00001) and thus expressed 

significantly higher levels of galectin-3 compared to non-classical 

monocyte/macrophages at 72 hours post zymosan administration (762.3  132.0 vs 

1716  246.1, P = 0.00001) Figure 4.22b.  

 

Figure 4.22: Galectin-3 expression in classical and non-classical monocytes/macrophages collected 

from the peritoneal cavity and peripheral blood at 48 and 72 hours post zymosan ip. Mice were 

injected with 1mg zymosan ip. and peritoneal exudates and peripheral blood were collected at 48 

and 72 hours. Leukocytes were triple stained with anti-F4/80, anti-Gr-1 and anti-galectin-3. The 

expression of galectin-3 was assessed using Flow Cytometry. A. Peripheral blood monocytes and B. 

Peritoneal exudate monocyte/macrophages. Data are expressed as mean  SEM, n = 4 per group. 

*** P < 0.001 vs 48 hour, ### P < 0.001 as analysed by two-way ANOVA with Bonferroni post hoc 

test.  

In the peripheral blood both non-classical and classical monocytes expressed low 

levels of galectin-9 at similar levels that were not modulated over the time course 

(Figure 4.23a).  
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Neither phenotype of monocytes/macrophages expressed galectin-9 at 48 hours, 

however levels significantly increased by 72 hours for both peripheral blood and 

peritoneal cavity cells. The levels of galectin-9 increased more in non-classical 

monocyte/macrophages compared to classical monocyte/macrophages and therefore a 

significant difference in the galectin-9 levels was detected between the two subtypes at 

72 hours (6.993  0.8472 vs 21.9  5.758, P = 0.00001) Figure 4.23b.   

 

Figure 4.23: Galectin-9 expression in classical and non-classical monocytes/macrophages collected 

from the peritoneal cavity and peripheral blood at 48 and 72 hours post zymosan ip. Mice were 

injected with 1mg zymosan ip. and peritoneal exudates and peripheral blood were collected at 48 

and 72 hours. Leukocytes were triple stained with anti-F4/80, anti-Gr-1 and anti-galectin-9. The 

expression of galectin-9 was assessed using Flow Cytometry. A. Peripheral blood monocytes and B. 

Peritoneal exudate monocyte/macrophages. Data are expressed as mean  SEM, n = 4 per group. * 

P < 0.05 and *** P < 0.001 vs 48 hour, ### P < 0.001 as analysed by two-way ANOVA with 

Bonferroni post hoc test.  
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4.2 Discussion 

Levels of galectins-1, -3 and -9 were significantly higher in peritoneal cavity recruited 

leukocytes compared to peripheral blood or bone marrow. This spatial modulation 

suggests a local role for the galectins on leukocytes or that leukocyte-derived galectins 

are required at the inflammatory site and leukocytes deliver these. The expression was 

also temporally modulated with a high level of galectin-3 seen in recruited neutrophils 

at the peak of inflammation (4-24 hours) although this did not decrease back to basal 

levels during the resolution period as may be expected.  

Monocyte/macrophages also demonstrated a temporal modulation of galectins with all 

three increased at 72 hours post zymosan in non-classical monocyte/macrophages. As 

classical monocyte/macrophages are known to secrete high levels of the galectins 

(Novak et al., 2012) this provides an explanation for the difference in levels between 

subsets.  

This study demonstrates that the expression of galectins-1, -3 and -9 are modulated 

over the course of an inflammatory response, potentially to ensure that the leukocytes 

are only ever in contact with the galectin which will promote the correct response for 

the stage of inflammation. This study also demonstrated an up-regulation of galectin-3 

later in the inflammatory process, a time in which it would be expected that the pro-

inflammatory lectin would have been cleared to prevent unwanted actions. Thus it can 

be hypothesised that galectin-3 plays a role not only in the induction of an inflammatory 

response but also in the clearance; this was tested in the next section.  
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5 Roles of Galectin-3 in the 
Resolution of Inflammation 

5.1 Introduction 

Many studies using galectin-3 null mice have indicated a pro-inflammatory role of this 

protein. This genotype exhibits defective leukocyte recruitment in models of 

thioglycollate-induced peritonitis, pneumococcal pneumonia, respiratory tularaemia and 

parasitic protozoan cutaneous inflammation (Colnot et al., 1998b, Hsu et al., 2000, 

Farnworth et al., 2008, Mishra et al., 2013, Bhaumik et al., 2013).  

Contrary to the pro-inflammatory role of galectin-3, the deficient mice also exhibit 

defective alternative activation of macrophages, which display reduced phagocytic 

capabilities compared to wild type cells (MacKinnon et al., 2008, Sano et al., 2003). 

Recombinant galectin-3 (20M) induces the exposure of phosphatidylserine on the 

surface of neutrophils, which does not coincide with increased apoptosis but promotes 

the efferocytosis of neutrophils by monocytes (Stowell et al., 2008a). These findings 

suggest a role for galectin-3 in resolution of the innate inflammatory response and this 

was further investigated firstly to confirm this hypothesis and secondly to elucidate a 

mechanism for this.  

The aim of this section was to determine the role of galectin-3 on murine leukocytes 

during a resolving inflammatory response.  

Initially galectin-3 null mice were used to assess the resolution phase of zymosan-

induced peritonitis and determine if a deficiency was present. Following this, wild type 

mice were used to determine the localisation of galectin-3 in murine neutrophils during 

an inflammatory response and attempts were then made to establish whether murine 

neutrophils could in fact produce galectin-3 as this is controversial in the literature 

(Farnworth et al., 2008, Sato et al., 2002b).  

5.1.1 Effects of Galectin-3-Deficiency during Resolution 

The model of zymosan-induced peritonitis used (1mg/mouse) is well characterised by 

Navarro-Xavier and colleagues who determined peak leukocyte recruitment to be at 24 

hours and the resolution interval (time taken for total leukocytes to reduce by 50%) to 
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be 24 hours and therefore the resolution phase in this model begins at 48 hours post 

zymosan (Navarro-Xavier et al., 2010).  

Initially galectin-3 null mice and age- and sex-matched C57BL/6 controls were given 

zymosan i.p. (1mg/mouse) and following 48, 72 and 96 hours peritoneal lavages were 

performed. Total leukocyte counts were then performed. At 48 hours post zymosan, 

total leukocyte counts were comparable for wild type and galectin-3 null mice however 

at 72 hours there was a trend towards more leukocytes in the peritoneal cavities of 

galectin-3 null mice although this did not reach statistical significance. At 96 hours no 

difference was seen in the total leukocyte count comparing the two strains of mice 

(Figure 5.1). 

 

Figure 5.1: Total leukocyte count for galectin-3 null mice with age- and sex-matched wild type 

controls during the resolution phase of zymosan-induced peritonitis. Mice were injected with 1mg 

zymosan ip and following 48, 72 and 96 hours peritoneal lavages were performed to collect 

exudates. An aliquot of leukocytes was taken prior to staining and counted in Turk’s solution using a 

light microscope. Data are expressed as mean  SEM, n = 3-4 per group. Data are analysed using 

two-way ANOVA with Bonferroni post hoc test.  

The leukocytes were double-stained for F4-80 (clone BM8) and Gr-1 (clone RB6-8C5) 

to allow the percentages of neutrophils (Gr-1 high, F4/80 negative), classical 

monocyte/macrophages (Gr-1 high, F4/80 positive) and non-classical 

monocyte/macrophages (Gr-1 low, F4/80 positive) to be distinguished.  
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In wild type mice neutrophils accounted for approximately 10% of total leukocytes 

during the resolution phase of zymosan-induced peritonitis (48-96 hours). In contrast 

the proportion of neutrophils in the exudates of galectin-3 null mice significantly 

increased from 48 to 96 hours with approximately 40% of leukocytes recovered being 

neutrophils (Figure 5.2). 

 

Figure 5.2: Neutrophil percentage collected from peritoneal exudate during the resolution phase of 

zymosan-induced peritonitis. Mice were injected with 1mg zymosan ip and following 48, 72 and 96 

hours peritoneal lavages were performed to collect exudates. Leukocytes were labelled with 

antibodies for F4/80 and Gr-1 and those cells that were Gr-1 high and F4/80 negative were 

identified as neutrophils. Data are expressed as mean  SEM, n = 3-4 per group, * P < 0.05 vs wild 

type at same time point as analysed by two-way ANOVA with Bonferroni post hoc test.  

 

 

 

 

 

 

 

 



CHAPTER 5: RESULTS (3) 

165 

At 48 hours 20% of the cells recovered from the peritoneum were classical 

monocytes/macrophages in both genotypes and this was not significantly altered at 72 

hours although a trend towards a reduced number was seen in the wild type mice with 

approximately 15% of total leukocytes being classical monocyte/macrophages. By 96 

hours no classical monocyte/macrophages could be detected in either strain of mice 

(Figure 5.3).  

 

Figure 5.3: Classical monocyte/macrophage percentage collected from peritoneal exudate during 

the resolution phase of zymosan-induced peritonitis. Mice were injected with 1mg zymosan ip and 

following 48, 72 and 96 hours peritoneal lavages were performed to collect exudates. Leukocytes 

were labelled with antibodies for F4/80 and Gr-1 and those cells that were Gr-1 high and F4/80 

positive were identified as classical monocyte/macrophages. Data are expressed as mean  SEM, n 

= 3-4 per group and analysed by two-way ANOVA with Bonferroni post hoc test.  
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At 48 hours approximately 40% of cells recovered were non-classical 

monocytes/macrophages in both genotypes and this 40% remained stable in galectin-3 

null mice. In contrast the number of non-classical monocytes/macrophages significantly 

increased in wild type mice at 96 hours (Figure 5.4). 

 

Figure 5.4: Non-classical monocyte/macrophage percentage collected from peritoneal exudate 

during the resolution phase of zymosan-induced peritonitis. Mice were injected with 1mg zymosan ip 

and following 48, 72 and 96 hours peritoneal lavages were performed to collect exudates. 

Leukocytes were labelled with antibodies for F4/80 and Gr-1 and those cells that were Gr-1 low and 

F4/80 positive were identified as non-classical monocyte/macrophages. Data are expressed as 

mean  SEM, n = 3-4 per group, * P < 0.05 vs galectin-3 null mice at same time point as analysed 

by two-way ANOVA with Bonferroni post hoc test.  

Galectin-3 null mice have more neutrophils and less non-classical 

monocyte/macrophages at the later stages of zymosan-induced peritonitis suggesting 

that resolution is impeded in these mice. A previous report demonstrated that 

alternative activation of monocyte/macrophages is defective in galectin-3 null mice 

(MacKinnon et al., 2008) which may explain the reduced numbers of non-classical 

monocytes/macrophages found in this model. The mechanism behind the increased 

PMN counts observed during late stages of peritonitis in galectin-3 null mice is not 

known and therefore is further investigated here.  

Galectin-3 is linked to neutrophil clearance through its ability to induce 

phosphatidylserine exposure, in the absence of apoptosis, on the neutrophil 

surface(Stowell et al., 2008b). A defect in this mechanism might therefore result in 

retention, or lack of clearance of PMN at the inflammatory site.   
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Leukocytes from the peritoneal exudate were labelled with Ly6G (clone 1A8) to identify 

neutrophils and then with Annexin V (AnxV) and propidium iodide (PI) to identify cells 

that were Annexin V positive and PI negative as these are not yet apoptotic, yet have 

exposed phosphatidylserine. 

At 48 and 72 hours after zymosan injection approximately 20% of murine neutrophils in 

the peritoneal cavity were early apoptotic (Annexin V positive, PI negative) and this was 

comparable between wild type and galectin-3 null mice. Of the remaining neutrophils 

approximately 70% were positive for both Annexin V and PI and were thus apoptotic, 

while 10% were viable cells (Annexin V negative, PI negative). At 96 hours 

approximately 5% of neutrophils were early apoptotic and again this was comparable 

between the two strains of mice while the remaining 95% of neutrophils were viable 

cells (Figure 5.5).  
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Figure 5.5: Exposure of phosphatidylserine of murine neutrophils in galectin-3 null and wild type 

mice following zymosan-induced peritonitis. Mice were injected with 1mg zymosan ip and following 

48, 72 and 96 hours peritoneal lavages were performed to collect leukocytes. Neutrophils were 

specifically labelled with Ly6G antibodies and then with Annexin V and propidium iodide and the 

percentage of neutrophils that were Annexin V positive and PI negative was calculated. 

Representative dot plots showing Annexin V and PI double staining for wild type mice at 72 hours 

and KO mice at 96 hours. Data are expressed as mean  SEM, n = 3-4 per group and analysed by 

two-way ANOVA with Bonferroni post hoc test.  

A decrease in the number of neutrophils with exposed phosphatidylserine between 72 

and 96 hours without an increase in apoptotic cells may indicate that an increase in 

efferocytosis occurs between these time points. To test this hypothesis leukocytes 

were collected from the peritoneal cavity at 96 hours post zymosan administration and 

labelled with an F4/80 antibody to specifically identify monocyte/macrophages; 

following this the cells were fixed and permeabilised using permeabilisation buffer 
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before labelling with a Ly6G antibody. These leukocytes were analysed using an 

AMNIS ImageStream X MK II, cells positive for F4/80 were assessed for their 

intracellular expression of Ly6G, which was indicative of efferocytosed neutrophils.  

Only a small number of monocyte/macrophages had phagocytosed neutrophils visible 

inside the cell, approximately 2% in wild type and null mice. Detection of very low 

numbers could possibly be due to antigens on phagocytosed neutrophils being 

destroyed before staining occurred and thus substantial differences between 

genotypes could not be determined (Figure 5.6).  

 

Figure 5.6: Efferocytosis of neutrophils by monocyte/macrophages at 96 hours post zymosan 

peritonitis. Mice were injected with 1mg zymosan ip and following 96 hours peritoneal lavages were 

performed to collect leukocytes. Monocyte/macrophages were specifically labelled with F4/80 and 

then fixed and permeabilised before labelling with Ly6G for intracellular neutrophils. The 

internalisation of neutrophils by monocyte/macrophages was assessed using an AMNIS 

ImageStream X MK II. Data are expressed as mean ± SEM, n = 4 per group and analysed by two 

tailed T test.  

5.1.2 Localisation of Galectin-3 in Murine Neutrophils 
Following Recruitment to the Peritoneal Cavity 

Galectin-3 is expressed throughout all cellular compartments and its localisation 

determines its function. When bound to the cell surface of neutrophils it is able to 

induce the exposure of phosphatidylserine without inducing apoptosis and also 

increases the production of reactive oxygen species and degranulation (Stowell et al., 

2008b, Yamaoka et al., 1995). When expressed intracellularly in Jurkat T cells galectin-

3 is able to bind Bcl-2 proteins and inhibit the apoptosis of the cells (Akahani et al., 

1997). The actions of intracellular galectin-3 in neutrophils has not been elucidated 
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primarily because it is believed to be expressed at low levels in these cells, however as 

neutrophils also express Bcl-2 proteins this is a potential mechanism of action for 

galectin-3 within murine neutrophils (Moulding et al., 2001).  

Murine leukocytes were collected from the peritoneal cavity of 6-week old C57BL/6 

mice at 4, 24 and 48 hours post zymosan administration (peak neutrophil time points) 

and Ly6G was used as a specific marker for identifying neutrophils. Leukocytes were 

double-stained for the expression of galectin-3 and Ly6G on the cell surface or were 

permeabilised and the intracellular expression of galectin-3 assessed. The cytosolic 

expression was calculated by subtracting the cell surface expression from the total 

expression.  
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The localisation of galectin-3 was modulated in neutrophils over the course of the 

inflammatory response. At 4 hours galectin-3 was predominantly expressed in the cell 

cytosol (488.5  10.243 vs 17.125  0.491, P = 0.00001). At 24 hours post zymosan, 

galectin-3 was expressed on both the neutrophil surface and in the cytosol at equal 

levels (459.209  76.538 vs 402.667  34.801). At 48 hours post zymosan galectin-3 

was once again expressed predominantly in the cytosol of the neutrophil (367.571  

33.788 vs 11.237  3.741, P = 0.00001) Figure 5.7.   

 

Figure 5.7: Cytosolic and cell surface expression of galectin-3 in murine neutrophils taken from the 

peritoneal exudate at 4, 24 and 48 hours post zymosan ip. Mice were injected with 1mg zymosan ip. 

and peritoneal exudates were collected at 4, 24 and 48. Leukocytes were double stained with anti-

Ly6G (clone – 1A8) and anti-galectin-3 (clone – M3/38) on the cell surface and following 

permeabilisation to give total expression. The expression of galectin-3 was assessed using Flow 

Cytometry and the cytosolic galectin-3 expression calculated by subtracting the cell surface 

expression from the total expression. Data are expressed as mean  SEM, n = 4 per group. *** P < 

0.001 vs cytosol at same time point as analysed by two-way ANOVA with Bonferroni post hoc test.  

5.1.3 Do Murine Neutrophils Produce Galectin-3? 

Murine neutrophils expressed high levels of galectin-3 following extravasation to the 

peritoneal cavity (Figure 4.16), which was located inside the cell at 4 hours post 

zymosan suggesting the cells are capable of producing the lectin upon 

activation/transmigration.  
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To determine whether neutrophils express mRNA for galectin-3 a pure population of 

neutrophils was required. Macrophages and monocytes produce high levels of 

galectin-3 and thus express lgals3 and would contaminate the sample even at low 

numbers. In order to obtain a pure population of neutrophils leukocytes were isolated 

from the peritoneal cavity and bone marrow of male 6-week old C57BL/6 mice as 

previously described (section 2.3.4.1) following 4-hour zymosan-induced peritonitis; 

the leukocyte suspensions were then subjected to negative selection for neutrophils. 

An aliquot of isolated neutrophils (200L) was taken for purity assessment using Ly6G 

and Flow Cytometry; this demonstrated that approximately 80% purity could be 

reached for peritoneal leukocytes and 23% for bone marrow leukocytes as shown in 

Figure 5.8; therefore this isolation method was not suitable for collection of a pure 

population of murine neutrophils (Figure 5.8).  

 

Figure 5.8: Neutrophil population purity following negative selection. Leukocytes were collected from 

peritoneal exudate and bone marrow following 4-hour zymosan-induced peritonitis. Leukocytes were 

negatively selected for neutrophils and an aliquot of the remaining neutrophil-rich sample was 

assessed for purity using a Ly6G antibody by Flow Cytometry. Bar shows percentage of sample 

positive for Ly6G.  

Positive selection of neutrophils was then attempted using Dynabeads, again on 

leukocytes collected from the peritoneal cavity and bone marrow following 4-hour 

zymosan-induced peritonitis on male 6-week old C57BL/6 mice. As the beads remain 

attached to the neutrophils it was not possible to assess the purity by Flow Cytometry 

as with the negative selection and thus PCR was used to assess purity as well as 

determine mRNA levels of lgals3. RNA was extracted using the RNeasy kit and the 

levels and purity were quantified using a Nanodrop as described in section 2.3.10. 

From this cDNA was synthesised and PCR performed using primers for Ly6g, cd68 

and lgals9 for neutrophils, monocytes and eosinophil contamination respectively, rpl32 
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was used as a housekeeping gene and lgals3 levels were determined. This data 

showed that all samples were contaminated with monocytes and eosinophils (Figure 

5.9) and thus a pure population of neutrophils could not be isolated using positive 

selection. 

 

Figure 5.9: Neutrophil population purity following positive selection. Leukocytes were collected from 

peritoneal exudate following 4-hour zymosan-induced peritonitis. Leukocytes were positively selected 

for neutrophils and the neutrophil-rich sample was assessed for purity using PCR. Primers for ly6g, 

cd68 and lgals9 were used to determine levels of neutrophil, monocyte and eosinophils in the 

sample respectively. Lgals3 was used to assess galectin-3 levels and rpl32 was used as a 

housekeeping gene.  

5.1.4 Do Murine Neutrophils Bind Galectin-3 Following its 
Release From Other Sources? 

As it was not possible to isolate a pure population of murine neutrophils without 

monocyte contamination it could not be confidently determined that murine neutrophils 

produce galectin-3 however the lectin was detectable inside exudated neutrophils at 4 

hours. If the galectin-3 was derived from other cell types and being bound by murine 

neutrophils upon their transmigration to the peritoneal cavity the lectin must be 

internalised by the cells and this was assessed using human neutrophils due to the 

difficulties in obtaining large numbers of peripheral blood neutrophils from mice.  

Human PMN were incubated with either 10nM recombinant galectin-3, a concentration 

which is detected under pathophysiological conditions (Iurisci et al., 2000), or 1M as a 
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positive control for 2 hours at either 37C allowing  cellular processes to occur or 4C 

inhibiting them; the PMN were then washed with lactose to remove all surface bound 

lectin. The intracellular expression of galectin-3 was analysed using Flow Cytometry 

compared to vehicle-treated cells.  

At concentrations close to that seen pathophysiologically (10nM) human neutrophils 

were unable to internalise galectin-3, as demonstrated by no change in the intracellular 

expression following incubation at 37°C compared to 4°C, however when an excess of 

galectin-3 was added the neutrophils internalised the lectin as shown in Figure 5.10.  

 

Figure 5.10: Internalisation of galectin-3 by activated human neutrophils. Human neutrophils were 

isolated from healthy volunteers using dextran sedimentation and then incubated with recombinant 

galectin-3 (10nM or 1M) for 2 hours at either 4C or 37C, following this cells were washed with 

lactose to remove any surface bound galectin and then fixed overnight at 4C. Fixed cells were 

permeabilised and labelled with antibodies for galectin-3 and the expression assessed by Flow 

Cytometry. Data are expressed as mean  SEM, n = 3 per group, *** P < 0.001 vs all other 

treatments as analysed by two-way ANOVA with Bonferroni post hoc test.  

An adoptive transfer model was used to determine whether murine neutrophils were 

able to bind or produce galectin-3. Bone marrow neutrophils were isolated from 

C57BL/6 mice using negative selection and labelled with CFSE, these cells were then 

injected into galectin-3 knock out mice via tail vein injection and 15 minutes later 

peritonitis was induced with 1mg zymosan i.p. Four hours later the peritoneal cavities 

were lavaged and the leukocytes obtained fixed in 1% PFA overnight; the following day 

the leukocytes were permeabilised and labelled with galectin-3 antibodies. Cells which 

were positive for CFSE were assessed for their expression of galectin-3. 

Murine bone marrow neutrophils express low levels of galectin-3 compared to those 

that extravasate to the peritoneal cavity in response to zymosan-induced peritonitis. 
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When comparing galectin-3 expression levels from bone marrow neutrophils and 

CFSE-positive neutrophils collected from the peritoneal cavity of galectin-3 null mice 

following adoptive transfer a decrease was observed (Figure 5.11). This decrease can 

be explained by secretion of the lectin into the surrounding tissues during trafficking to 

the peritoneal cavity.  

 

Figure 5.11: Galectin-3 expression in murine neutrophils following adoptive transfer of C57BL/6 

neutrophils to galectin-3 null mice. Bone marrow neutrophils were isolated from male 10-week old 

C57BL/6 mice using negative selection and labeled with CFSE; these cells were transferred into 

galectin-3 null mice using i.v. tail vein injection and 15 minutes later peritonitis was induced using 

1mg zymosan. Four hours later peritoneal lavages were performed and the collected leukocytes 

were fixed, permeabilised and assessed for their intracellular expression of galectin-3. Figure shows 

CFSE-positive cells as analysed by Flow Cytometry and graph comparing bone marrow neutrophils to 

adoptively-transferred neutrophils galectin-3 expression. Data are expressed as mean ± SEM, n = 4-

6 per group, ** P < 0.01 vs bone marrow neutrophils as determined by two-tailed T-test.  

This data strongly suggests that murine neutrophils do not produce galectin-3 but 

rather bind it following its release from other cellular sources. In order to determine the 

source of the galectin-3 an air pouch model of inflammation was used. The murine 

dorsal air pouch model is a manufactured cavity induced by injection of sterile air 

subcutaneously into the dorsal flank of the mouse; this cavity is absent of resident 

macrophages and thus a useful model removing a major source of galectin-3 that could 

bind to exudated neutrophils. Briefly 3mL sterile filtered air was injected 

subcutaneously into the back at day 0 and again at day 3, at day 6 zymosan 

(1mg/mouse) was injected into the pouch and following 4 and 24 hours the mice were 

sacrificed and the pouches lavaged. Collected leukocytes were labeled with Ly6G 

(clone 1A8) to identify neutrophils and then fixed and permeabilised to assess the 

intracellular expression of galectin-3 in these neutrophils.  
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Initially a differential leukocyte count was performed using Ly6G and F4/80  antibodies, 

this demonstrated that, similar to the peritonitis assay, neutrophils were the 

predominant leukocyte type at 4 and 24 hours post zymosan administration (Figure 

5.12).  

 

Figure 5.12: Differential leukocyte count for air pouch exudate at 4 and 24 hours post zymosan 

administration. An air pouch was established by injection of 3mL sterile, filtered air at days 0 and 3, 

at day 6 zymosan (1mg/mouse) was injected into the pouch and after 4 and 24 hours the mice were 

sacrificed and the air pouches lavaged. The collected leukocytes were labelled with Ly6G and F4/80 

to determine numbers of neutrophils and monocyte/macrophages respectively. Data are expressed 

as mean ± SEM, n =4 per group.  
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The intracellular expression of galectin-3 was assessed by labelling fixed and 

permeabilised cells with galectin-3 antibodies. Galectin-3 levels in murine neutrophils 

collected from the air pouch were similar to the peritonitis model of inflammation with 

high levels of galectin-3 expressed at 4 hours post zymosan administration, which 

increased at 24 hours as shown in Figure 5.13. 

 

Figure 5.13: Galectin-3 expression in neutrophils recruited to the murine dorsal air pouch in 

response to 1mg zymosan over 4 and 24 hours. An air pouch was established by injection of 3mL 

sterile, filtered air at days 0 and 3, at day 6 zymosan (1mg/mouse) was injected into the pouch and 

after 4 and 24 hours the mice were sacrificed and the air pouches lavaged. The collected leukocytes 

were labelled with Ly6G and then fixed and permeabilised prior to labelling with galectin-3 

antibodies. The intracellular expression of galectin-3 was determined by Flow Cytometry. Data are 

expressed as mean ± SEM, n =4 per group, *** P < 0.001 vs 4 hour as analysed by two-tailed T-

test.   
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5.3 Discussion 

Using a resolving model of inflammation, a difference in leukocyte recruitment was 

evident between control C57BL/6 and galectin-3 null mice with the latter demonstrating 

higher neutrophil and lower non-classical monocyte/macrophage percentages in the 

peritoneal cavity during the resolution phase. This difference in neutrophil number 

could not be explained by a deficiency in phosphatidylserine exposure. Imagestream 

analysis was utilised to identify whether efferocytosis levels were different between 

genotypes, however only low percentages of monocyte/macrophages contained 

neutrophils (approximately 2% in both genotypes) potentially due to antigen loss as a 

result of efferocytosis.  

It is clear that neutrophils express galectin-3 intracellularly at 4 hours post zymosan 

injection and therefore neutrophils must either produce the lectin or internalise it 

following binding to the neutrophil surface. Unfortunately a pure population of 

neutrophils could not be obtained using either negative or positive selection in order to 

assess mRNA expression and therefore it was important to see if galectin-3 could be 

bound by cells following release from other cellular sources.  

An adoptive transfer model demonstrated that in the absence of galectin-3 from other 

cellular sources (using null recipient mice), wild-type bone marrow neutrophils 

exhibited lower galectin-3 levels following extravasation into the peritoneal cavity. This 

is in contrast to the higher expression levels observed in peritonitis experiments using 

wild-type mice adding support to the hypothesis that galectin-3 is released from other 

sources that subsequently neutrophils can bind. Resident macrophages were unlikely 

to be the source of this galectin-3 as increased expression is still seen in neutrophils 

recruited to a manufactured air pouch that lacks resident macrophages. 
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6 Discussion 

Galectins-1, -3 and -9 play important roles in inflammation via interactions with 

leukocytes. Various animal models of inflammation have demonstrated roles for 

galectins-1 and -9 in the attenuation of inflammation due to reduced leukocyte 

recruitment (Cooper et al., 2012, La et al., 2003, Sakai et al., 2011, He et al., 2009); 

while others show that a genetic knockdown of galectin-3 leads to decreased leukocyte 

recruitment, demonstrating a role for this lectin in perpetuating inflammatory responses 

(Colnot et al., 1998b, Hsu et al., 2000).  

As myeloid cells are able to bind galectins-1, -3 and -9, yet these galectins may have 

opposing effects, it can be hypothesised that mechanisms are in place to allow specific 

galectins to be dominant dependent on the environment at a given point in time. Such 

mechanisms may include modulation of the cellular glycophenotype in response to the 

inflammatory milieu or specific cell-cell interactions leading to modifications of the 

binding permissibility for particular galectins, as they exhibit different affinities for 

different carbohydrate residues. This can be seen with naïve thymocytes which are 

unable to bind galectin-1 until treated with neuraminidase due to the presence of an 

α2,6-linked sialic acid capping structure on a galectin-1 receptor (Earl et al., 2010). 

Another possibility may be a modulation of the expression of galectins by the cells 

pertinent to the inflammatory response over the course of inflammation. This is seen 

with endothelial cells, which express increased levels of galectins-1 and -9 in response 

to activation while levels of galectin-3 are not affected (Thijssen et al., 2008). 

The major aims of this thesis were to assess the PMN glycophenotype in response to 

transendothelial migration and activation along with the binding profile of galectins-1, -3 

and -9. The galectin expression profile was also assessed in an in vivo resolving model 

of inflammation to determine the spatio-temporal expression of each of the galectins 

within myeloid cells. Finally an investigation into the cellular localisation and potential 

role of galectin-3 in the resolution process was performed.  

It was demonstrated that the PMN glycophenotype is modulated by transendothelial 

migration; this modification occurs as a direct consequence of trafficking through the 

endothelium as it could not be mimicked by neutrophil activation or treatment of the 

neutrophils with conditioned medium from activated HUVECs. Secondly it was 

demonstrated that although lectin binding can estimate galectin binding permissibility 

for neutrophils it wasn’t accurate enough to confidently determine binding, although this 
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has been previously demonstrated for T cells and endothelial cells (Toscano et al., 

2007, Mercer et al., 2009, Croci et al., 2014). It can be hypothesised that neutrophil 

glycophenotypic changes are a result of a modulation of the glycoproteins expressed at 

the cell surface upon activation and not due to the actions of glycosylation enzymes 

within the cell. This discrepancy with T cells may be due to the shorter lifespan of the 

neutrophil or the more limited functionality of the neutrophils compared to T cells, which 

can differentiate into Th1 or Th2 cells depending on the extracellular milieu and thus 

may require more glycophenotypic modulation. It was found that the expressions of 

galectins-1, -3 and -9 are modulated over the course of a resolving inflammatory 

response allowing different galectins to be dominant at different times in the response. 

Finally a role was determined for galectin-3 in the resolution of inflammation as 

galectin-3 null mice demonstrated a failure to clear neutrophils and an excess of non-

classical monocyte/macrophages at late time points (96 hours) suggesting a 

dysregulated resolution process compared to age- and sex-matched C57BL/6 controls.   

6.1 Glycophenotype and Galectin Binding Profile of 
Neutrophils  

Plant-derived lectins are a useful model for determining the cellular glycophenotype as 

they have well-defined specificities for glycan residues; these can also be used to 

assess lectin binding permissibility. Galectins-1, -3 and -9 exhibit different binding 

preferences for glycan residues and therefore a combination of lectins can be used to 

estimate galectin binding permissibility. Galectins are defined by their ability to bind -

linked galactose and thus RCA120 can be utilised as a marker for the overall 

permissibility for galectin binding (Goldstein et al., 1981, Baenziger and Fiete, 1979). 

Galectin-1 binds mono-LacNAc residues following removal of the 2,6-linked sialic acid 

capping structure and thus an increase in PNA binding and a concurrent decrease in 

SNA binding could be indicative of increased permissibility for galectin-1 binding 

(Stowell et al., 2004, Leppänen et al., 2005, Ahmad et al., 2002). Galectin-3 binds poly-

LacNAc residues and the binding is enhanced by -linked fucose residues and thus 

increased binding of LEL and UEA I could be indicative of increased galectin-3 binding 

permissibility (Rabinovich and Toscano, 2009, Merkle and Cummings, 1987). Galectin-

9 binds poly-LacNAc residues expressed on complex tri- and tetra-antennary N-

glycans following removal of the 2,6-linked sialic acid capping structure and thus 

increased binding of LEL and PHA-L with decreased binding of SNA can be used to 
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indicate an increase in the permissibility for galectin-9 binding (Rabinovich and 

Toscano, 2009, Sato et al., 2002a).  

Studies have been previously published that utilise lectin binding assays to determine 

galectin binding permissibility in T cells and endothelial cells. Rabinovich et al 

demonstrated that Th1 cells have a lower level of sialylation compared to Th2 cells, 

which results in increased binding of galectin-1 to the Th1 cells and increased cell 

death (Toscano et al., 2007). Similar results were seen when an assessment of the 

glycophenotype of human duodenal samples was performed; Th1 and Th17 cells 

within the duodenum bound PNA with an increased affinity compared to Th2 cells while 

these Th2 cells had higher SNA reactivity suggesting increased sialylation of Th2 cells 

and reduced galectin-1 binding (Mercer et al., 2009). Another study demonstrated that 

glycophenotypic changes in the endothelium can impact galectin binding to these cells; 

treatment of the endothelium with immunosuppressive cytokines (TGF-β and IL-10) led 

to an increase in the expression of tri- and tetra-antennary N-glycans and poly-LacNAc 

residues with a concomitant decrease in α2,6-linked sialic acid, which led to an 

increase in the binding permissibility for galectin-1 (Croci et al., 2014). Taken together 

these data indicate that galectin binding permissibility can be extrapolated from 

changes in the cellular glycophenotype for T cells and endothelial cells and thus 

theoretically the binding of galectins to other cell types may also be deduced from 

lectin binding assays.  

As the initial aims of this project were to characterise the glycophenotype and galectin 

binding phenotype of human neutrophils and to determine whether modulation occurs 

upon trafficking a panel of lectins was carefully selected that bind the most common 

terminal residues on glycan chains, particularly those which bind residues that are 

bound by galectins-1, -3 and -9 (Baenziger and Fiete, 1979, Lotan et al., 1975, Merkle 

and Cummings, 1987, Rogerieux et al., 1993, Hormia et al., 1983, Cummings and 

Kornfeld, 1982). Following this freshly isolated PMN were incubated with recombinant 

galectins to determine whether the binding matches the pattern indicated by the lectin 

binding assay.  

It was initially demonstrated in this study that human PMN express a glycophenotype 

characterised by low levels of mono-LacNAc and 1,3-linked fucose residues and high 

expression of -linked galactose residues, poly-LacNAc chains and 2,6-linked sialic 

acid with complex tri- and tetra-antennary N-glycans (Figure 3.1). This correlates with 

the findings of Babu et al in 2009, who showed via mass spectrometry that human 
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neutrophils have predominantly core 2 O-glycans and complex bi-, tri- and tetra-

antennary N-glycans, both with sialylated and fucosylated branches (Babu et al., 2009, 

Haslam et al., 2008). The high level of sialylation present on freshly isolated human 

neutrophils is indicative of a low level of permissibility for galectins-1 and -9 binding 

(Stowell et al., 2004, Leppänen et al., 2005, Ahmad et al., 2002, Rabinovich and 

Toscano, 2009, Sato et al., 2002a). The low level binding of galectin-1 was confirmed 

by recombinant galectin binding assays however the binding of stable, recombinant 

galectin-9 to freshly isolated PMN was higher than indicated in the lectin binding assay. 

This would suggest a receptor for galectin-9 is constitutively expressed on the 

neutrophil cell surface and this corroborates findings from Vega-Carrascal et al who 

demonstrated the expression of Tim-3 on naïve human neutrophils (Vega-Carrascal et 

al., 2014).  

Two populations of PMN were collected from the 6-well adhesion assay; those that had 

not adhered to the endothelial surface following 30 minute incubation and those that 

had. Non-adherent PMN had extremely high RCA120 reactivity and thus β-galactoside 

expression suggesting a high permissibility for galectin binding but no other significant 

modulations from the freshly isolated PMN glycophenotype were seen. This modulation 

is induced by an endothelial cell-derived factor as it is also seen in PMN that are in co-

culture, but isolated from direct cell-cell contact with HUVECs. As the activated 

endothelium is known to be an important source of galectins it is possible that PMN 

that are trafficking PMN bind these more readily than those in the circulation (Thijssen 

et al., 2008). 

The population of PMN that adhered to the endothelial monolayer following 30 minute 

incubation demonstrated significantly less binding of all lectins when compared to 

those that didn’t adhere. The activation of neutrophils is a two-step process in which 

resting neutrophils are primed by a stimulant, including bacterial products, cytokines 

and chemokines; these primed neutrophils are then trafficked to an inflammatory site 

where activation with a secondary stimulant results in full activation (Hallett and Lloyds, 

1995).  

The phenotype of primed neutrophils differs significantly from naïve neutrophils in the 

peripheral circulation due to many factors; granules are mobilised to the surface upon 

priming leading to an increase in specific cell surface molecules including CD11b and 

CD16 (Faurschou and Borregaard, 2003) and the expression of metalloproteinases at 

the cell surface of the neutrophil also increases (i.e. ADAM17) resulting in cleavage of 
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proteins from the cell surface such as L-selectin (Walcheck et al., 2006). As L-selectin 

is a heavily glycosylated protein it can be hypothesised that the loss of this molecule 

and others may result in the overall decrease in glycosylation seen by the neutrophils.  

Binding of galectins-1, -3 and -9 were not modulated by adhesion of the neutrophil to 

an endothelial surface; this was expected from the lectin binding results as although 

SNA reactivity decreased so did PNA and LEL reactivity suggesting that the reduction 

in α2,6-linked sialic acid residues was not exposing underlying mono- or poly-LacNAc 

residues. This somewhat supports the hypothesis that the decreased lectin reactivity in 

adherent compared to non-adherent PMN is due to a removal of cell surface 

glycoproteins and is not a result of glycosylation enzyme activity.  

It is also pertinent to consider the role of plasma proteins in the modulation of the 

neutrophil glycophenotype; studies have shown that plasma proteins such as albumin 

and α1-antitrypsin bind to neutrophils in the circulation, these proteins are heavily 

glycosylated and are also shed from the cell upon activation and transmigration 

(McCarthy et al., 2014). Therefore it can be postulated that the release of these 

glycosylated proteins from the neutrophil cell surface is another cause of the decrease 

in glycosylation seen in the transmigration assay.  

In the transwell transmigration assay two populations of neutrophils were collected 

once again; those that had neither adhered nor transmigrated and those that had 

trafficked through the endothelial monolayer. Although it could be theorised that the 

PMN that didn’t traffic would have a similar glycophenotype to non-adherent cells in the 

6-well assay this was not the case. This was most likely due to the increased length of 

incubation (90 minutes as opposed to 30 minutes) and thus potentially the prolonged 

activity of endothelial cell-derived factors on the PMN. These non-transmigrated PMN 

did not mimic the increase in β-galactoside residues seen in the 6-well assay but an 

increase in SNA reactivity was seen perhaps indicating a capping of newly exposed β-

galactose residues following 90 minute incubation. An increase in fucose expression 

was also demonstrated in these non-transmigrated neutrophils, which was not seen in 

the 6-well assay. Neutrophils require an up-regulation of sialyl Lewis x motifs in order 

to tether and roll on the endothelium as demonstrated by the loss of these functions in 

mice lacking ST3Gal-IV and FucT-VII enzymes (Ellies et al., 2002, Malý et al., 1996); 

thus it can be hypothesised that following 90 minute incubation with activated HUVECs 

glycoproteins have been mobilised to the surface which potentiate trafficking.  
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A more effective way to determine the significance of these changes would be to use a 

single transwell transmigration assay to collect non-adherent, adherent and 

transmigrated PMN and assess thee glycophenotypic changes between the subsets.  

When assessing PMN that had transmigrated through the endothelial monolayer an 

identical pattern was seen to those that had adhered to the HUVECs with all lectin 

reactivity significantly decreased. A similar pattern of decreased glycosylation was 

seen in murine PMN when comparing those in the peripheral circulation to those 

recruited to the peritoneal cavity in response to zymosan.  

PMN that transmigrated through the endothelium demonstrated increased binding of 

recombinant galectin-1 compared to those that didn’t adhere; this is consistent with 

previous reports that demonstrated that primed neutrophils have an increased 

propensity to bind galectin-1 (Almkvist et al., 2002). Transmigrated PMN had a primed 

phenotype characterised by release of secretory vesicles in this study. Transmigrated 

PMN did not demonstrate any increased binding of recombinant galectin-3 compared 

to those that did not transmigrate; galectin-3 is known to bind preferentially to activated 

neutrophils (Karlsson et al., 1998) and thus may explain the lack of reactivity seen in 

this assay as the neutrophils did not become fully activated. The binding of stable, 

recombinant galectin-9 was not changed when comparing PMN that did not 

transmigrate through an endothelial monolayer to those that did.  

An attempt to recapitulate this in a human model of PMN recruitment to an 

inflammatory site using capsaicin-induced neurogenic inflammation gave significantly 

different results from both the in vitro trafficking assays and the in vivo murine assays. 

Fundamental differences can be noted between these assays including that the 

capsaicin-induced inflammation is neurogenic and thus driven by CGRP and substance 

P while both the in vitro and in vivo assays are driven by cytokine-induced inflammation 

(Helme and McKernan, 1985). A difference in the inflammatory site is also important as 

both the in vitro and in vivo studies were performed under sterile conditions while the 

capsaicin-induced inflammation recruited PMN to the buccal cavity, an area highly 

colonised by bacteria. Although no studies have yet been performed to assess the 

variation in neutrophil glycophenotype between sterile and infectious inflammation it 

was postulated that a difference may occur due to the observation in zebrafish 

embryos that neutrophils recruited in response to sterile inflammation have a higher 

propensity for reverse transmigration than those induced in response to infectious 

agents (Mathias et al., 2006, Kolaczkowska and Kubes, 2013).  
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PMN that had transmigrated to an inflammatory site, the buccal cavity in response to 

capsaicin demonstrated an almost complete loss of galectin-1 binding permissibility. As 

galectin-1 has anti-inflammatory effects on neutrophils (Stowell et al., 2009b, Dias-

Baruffi et al., 2010, Cooper et al., 2008, La et al., 2003) it can be postulated that fully 

activated neutrophils lose their reactivity for galectin-1 to prevent these anti-

inflammatory effects inhibiting the actions of the neutrophils. This may also explain the 

failure of resolution in chronic inflammation as anti-inflammatory pro-resolving proteins 

cannot bind to neutrophils as readily. These recruited PMN demonstrated a significant 

increase in the binding of recombinant galectin-3 compared to freshly isolated PMN, as 

galectin-3 is known to bind more readily to activated neutrophils (Karlsson et al., 1998) 

and thus it would be expected that neutrophils at the inflammatory site are more 

permissible for galectin-3 binding. The binding of stable, recombinant galectin-9 to 

neutrophils significantly increased at the inflammatory site compared to those in the 

circulation; high binding of galectin-9 is seen on freshly isolated neutrophils however 

this did not increase during adhesion or trafficking and was only evident at the 

inflammatory site suggesting the presence of additional receptor(s) for galectin-9 that 

are mobilised to the cell surface of the neutrophil upon activation. This may indicate 

that the trafficking process initiates changes in the glycophenotype that are modulated 

further depending on the local inflammatory milieu.  

As a significantly different glycophenotype was seen in trafficked vs freshly isolated 

PMN it was important to delineate the cause of this modulation. PMN in the circulation 

have a naïve phenotype and have yet to release their granules (Borregaard et al., 

1993) however upon activation these follow a specific pattern of granule release 

resulting in a sequential modulation of cell surface proteins to perform specific 

functions. As demonstrated by Figure 3.18 and Figure 3.19 trafficking through an 

endothelial monolayer promotes the release of secretory vesicles and secondary 

granules from the cells while just being in the presence of activated endothelial cells for 

90 minutes is enough to promote the release of the secretory vesicles from the 

neutrophil. Thus the glycophenotypic changes seen during transmigration may be a 

result of granule release from the cell; unfortunately no work has yet been performed 

on the expression of glycosylation enzymes in neutrophil granules however it is known 

that many of the proteins translocated to the cell surface in response to granule release 

are glycosylated and thus may be the source of the modulation (Borregaard et al., 

1993). To test this hypothesis freshly isolated PMN were treated with hrTNF-α or fMLP 

to induce the release of secretory vesicles and secondary granules respectively; no 
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changes were seen in the binding of any of the lectins suggesting granule release is 

insufficient to cause the modulations seen.  

PMN treated with hrTNF-α and fMLP also did not demonstrate modulated binding of 

recombinant galectins-1 and -3 compared to freshly isolated cells suggesting that, as 

with the glycophenotypic changes, this is mediated by transmigration and not merely 

by granule release from the neutrophil. Galectin-9 binding was significantly increased 

upon treatment with fMLP, but not hrTNF-α; this adds evidence to the hypothesis that 

additional galectin-9 receptor(s) are translocated to the cell surface upon activation and 

further demonstrates that the secondary granules are most likely the location of this 

receptor(s).   

It was then hypothesised that the modulations seen in response to trafficking were due 

to the actions of a HUVEC-derived factor on the neutrophil and thus freshly isolated 

PMN were incubated in co-culture with HUVECs but separated from direct cell-cell 

contact by a transwell insert. These conditions failed to modulate the PMN 

glycophenotype to the same extent as trafficking however as a control of unstimulated 

HUVECs co-cultured with freshly isolated PMN was not used it cannot be confidently 

stated that direct cell-cell contact mediates these changes.  

The binding of galectins-1, -3 and -9 are all modulated on human neutrophils under the 

specific conditions analysed however the lectin binding assay was unable to predict 

these changes accurately; this is most likely due to the modulation being a result 

glycoprotein expression changes and not glycosylation enzyme activity. The leukocyte 

adhesion cascade for neutrophil recruitment is well documented and it is known that a 

great number of receptors are upregulated and downregulated from the neutrophil 

surface upon adhesion and transmigration (Wright and Cooper, 2014); as many of 

these are glycosylated and yet not galectin counter-receptors the limitations of using 

whole cell surface lectin binding assays to determine galectin binding permissibility to 

neutrophils become clear. As demonstrated for galectins-1, -3 and -9 the indicated 

permissibility of lectin binding to neutrophils is only an estimate and the results are 

different when galectin binding assays are used.  

6.2 Galectin Expression of Leukocytes 

The expression of galectins-1 and -3 in both human and murine myeloid cells during 

inflammation is well characterised by various groups (Novak et al., 2012, Ho and 

Springer, 1982, Sato and Hughes, 1994, MacKinnon et al., 2008, Gil et al., 2006b, 
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Truong et al., 1993, Farnworth et al., 2008). However the modulation of these proteins 

has not been fully investigated; thus this project aims to determine how their 

expression is modulated following transendothelial migration, inflammatory stimulation 

or recruitment to an inflammatory site. The expression of galectin-9 in human 

neutrophils has not yet been investigated and therefore this study provides novel 

information on the expression of this protein during inflammation.   

Initially isolated human PMN were assessed for their expression of galectins at the cell 

surface and intracellularly and it was determined that galectins-1 and -9 are lowly 

expressed under basal conditions at both locations; this further decreases upon 

transendothelial migration, which correlates with the findings of Gil et al who 

determined that adhesion of human PMN to an endothelial monolayer decreases the 

expression of galectin-1 (Gil et al., 2006b)(Gil et al., 2006b). It has been postulated that 

galectin-9 can compensate for a loss of galectin-1 during inflammation following a 

study that showed increased galectin-9 mRNA in galectin-1 null mice challenged with 

carrageenan paw oedema (Iqbal et al., 2011); thus it can be hypothesised that these 

proteins share many properties and would be expressed at similar times during 

inflammation.  

Galectin-3 is expressed at higher levels than galectins-1 and -9 in neutrophils and the 

expression is predominantly cell surface as determined by comparable levels of protein 

in both cell surface and intracellular flow cytometry assays. Transendothelial migration 

of human PMN did not alter the expression of this lectin. 

In a more pathophysiological model of inflammation PMN were recruited to the buccal 

cavity in response to neurogenic inflammation and the expression of galectins-1, -3 

and -9 compared to that seen in peripheral blood. Contrary to that seen in the 

transendothelial migration assay the levels of galectin-1 were not significantly 

modulated in PMN that had transmigrated to a site of inflammation and this was also 

true for galectin-3. Similar to what is seen during transendothelial migration galectin-9 

levels significantly decrease upon transmigration to the buccal cavity in human 

neutrophils.   

This study on the expression of galectins-1, -3 and -9 on human PMN confirms what is 

known in the literature; that the lectin expressions are modulated by inflammatory 

stimuli, however it is still unclear at which stage of inflammation these are important 

(Liu et al., 1995, Gil et al., 2006b). It can be hypothesised that different galectins are 

expressed predominantly at different stages of the inflammatory process and this 
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allows specificity of their actions. This was therefore investigated further using a model 

of zymosan-induced peritonitis in mice, a model that is well defined and resolves over a 

96-hour time course (Navarro-Xavier et al., 2010, Ajuebor et al., 1999).  

Following confirmation that the model is resolving, ELISAs were performed for 

galectins-1 and -3 to determine the peak expression time points for these lectins in the 

peritoneal cavity. Levels of both galectins were similar in untreated mice however upon 

inflammatory stimulation galectin-1 rapidly decreases while galectin-3 increases 

dramatically suggesting at this time point galectin-3 is dominant in the response. 

Galectin-3 is proposed to be important in leukocyte recruitment while galectin-1 inhibits 

this process therefore it would be expected that galectin-3 be dominant at 4-24 hours 

as this is the peak leukocyte recruitment period  (Nieminen et al., 2008, Norling et al., 

2008). A second peak in the galectin-1 level can be seen at 48 hours, a time point in 

which non-classical monocytes are being recruited and the resolution process has 

begun. This peak in galectin-1 expression at the start of the resolution process was 

also seen in a model of carrageenan-induced paw oedema (Iqbal et al., 2011) and may 

be indicative of a decrease in leukocyte recruitment as resolution begins. As galectin-3 

is considered pro-inflammatory it would be expected to decrease at this stage however 

this did not occur and levels of the lectin remained high until 96 hours when resolution 

had been achieved, possibly suggesting a role for galectin-3 in resolution.  

In this model of inflammation murine neutrophils do not express any galectin-1 or -9 at 

any time point in peritoneal exudate, peripheral blood or bone marrow; galectin-3, on 

the other hand is expressed by all murine neutrophils at relatively low levels except for 

those that have trafficked to the peritoneal cavity where levels are greatly increased. 

This contradicts published work by Sato and colleagues and Farnworth et al who 

suggested that murine neutrophils do not express any galectin-3 (Sato et al., 2002b, 

Farnworth et al., 2008); this may be due to collection methods as this assay kept 

neutrophils on ice until fixed, preventing secretion of the lectin from the cell while Sato 

and Farnworth incubated neutrophils at 37C which would allow secretion. This work 

provides the first confirmation that murine neutrophils do express galectin-3 and that 

this increases as cells are recruited to a site of inflammation.  

Murine monocytes in the bone marrow and peripheral blood express all three galectins 

at low levels and these are all significantly increased in cells that have trafficked to the 

inflammatory site. Due to large variation in the levels of each galectin within a time 

point it was postulated that monocyte/macrophage subtypes may be present that 
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express galectins differentially depending on their function. This would correlate with 

the current literature, as it appears that classical monocyte/macrophages secrete 

galectins-1 and -3 while non-classical monocyte/macrophages do not and thus express 

higher levels of galectins (Novak et al., 2012, MacKinnon et al., 2008, Sato and 

Hughes, 1994, Liu et al., 1995). While the expression levels of galectin-9 have not 

previously been assessed this correlates with the suggested compensation function for 

galectin-1 as these have similar effects (Iqbal et al., 2011).  

It has previously been demonstrated that galectins-1 and -9 are anti-inflammatory 

proteins that act to decrease leukocyte recruitment and promote conversion of murine 

monocytes to a pro-resolving phenotype (Barrionuevo et al., 2007, Rostoker et al., 

2013, Kashio et al., 2003) and thus increased expression of these proteins by non-

classical monocytes/macrophages would be expected as these cells are highly 

implicated in the resolution process. 

This work thus provides the first confirmation that galectin-3 is expressed, or taken up 

by murine neutrophils during inflammation and this is both temporally and spatially 

modulated with recruited neutrophils expressing significantly higher levels of the 

protein. Galectins-1, -3 and -9 are expressed by monocyte/macrophages, also at low 

levels and this is also significantly increased upon transmigration to an inflammatory 

site. It has also confirmed that non-classical monocyte/macrophages express higher 

levels of the galectins compared to classical monocytes possibly due to secretion of 

the galectins by classical monocyte/macrophages.  

6.3 A role for Galectin-3 in Resolution? 

The pro-inflammatory role of galectin-3 has been demonstrated in many models of 

inflammatory diseases; mice lacking this galectin are less susceptible to the 

development of T cell-driven pathologies including experimental autoimmune 

encephalomyelitis, hepatic fibrosis and antigen-induced arthritis (Jiang et al., 2009, 

Henderson et al., 2006, Forsman et al., 2011). This pro-inflammatory role has been 

further characterised in the early stages of an acute inflammatory response where 

galectin-3 null mice exhibit reduced leukocyte recruitment in response to thioglycollate-

induced peritonitis and parasitic protozoan cutaneous infection (Colnot et al., 1998b, 

Hsu et al., 2000, Bhaumik et al., 2013).  

Contrary to these findings other studies have demonstrated that galectin-3 null 

macrophages have defective phagocytic capabilities and alternative macrophage 
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activation; the lectin is also able to induce the exposure of phosphatidylserine and 

subsequent efferocytosis of human neutrophils without a concurrent increase in 

apoptosis and when taken together this suggests that galectin-3 may have a pro-

resolution effect on leukocytes towards the end of an inflammatory response (Karlsson 

et al., 2009, Caberoy et al., 2012, Stowell et al., 2008b).  

Galectin-3 is found at high levels in neutrophils that have been recruited to the 

peritoneal cavity following zymosan-induced peritonitis and while this level peaks 

during the initial stages of the response it remains elevated compared to peripheral 

blood cells until resolution has been reached at 96 hours (Figure 4.16). In 

monocyte/macrophages recruited to the peritoneal cavity the levels are greater than 

that seen in the peripheral blood and this peaks at 72 hours (Figure 4.18). The 

expression of galectin-3 at the later stages of the inflammatory response suggests a 

role for the lectin in the resolution of this response.  

Initially it was essential to confirm that the lectin plays a role in the resolution of 

inflammation; this was assessed by once again utilising the zymosan-induced 

peritonitis mouse model but with galectin-3 null mice, as well as age- and sex-matched 

wild type controls, to determine whether the resolution is impaired in these mice. 

Although no differences could be seen in the number of classical 

monocyte/macrophages when comparing the wild type and the galectin-3 null mice 

(Figure 5.3), it was shown that the knock out mice had reduced numbers of non-

classical monocyte/macrophages at 96 hours (Figure 5.4). This data is in line with 

previous reports showing defective alternative activation of macrophages in galectin-3 

null mice (MacKinnon et al., 2008). Galectin-3 null mice also have increased levels of 

neutrophils at the later stages of inflammation compared to the wild type mice (Figure 

5.2). This is different to what was seen in a model of thioglycollate-induced peritonitis in 

which galectin-3 null mice have fewer granulocytes at day 4 post thioglycollate 

treatment (Colnot et al., 1998b); marked differences are seen in the peritoneal 

inflammatory responses between thioglycollate and zymosan-induced peritonitis with a 

significantly prolonged response in thioglycollate-induced peritonitis thus it can be 

postulated that at day 4 the resolution process has yet to begin and the responses are 

not comparable at this time point (Davies et al., 2013). This data taken together 

confirms a difference in the resolution process when comparing galectin-3 null and wild 

type mice and thus assays were performed to assess the explanation for this 

difference.  
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Galectin-3 is known to function as an opsonin on cells, to prepare them for 

efferocytosis by phagocytes and to promote the exposure of phosphatidylserine (a well 

characterised “eat-me” signal) on activated neutrophils and thus it was important to 

determine whether this was defective in neutrophils from galectin-3 null mice (Sano et 

al., 2003, Karlsson et al., 2009, Stowell et al., 2008b). No difference was seen between 

the strains of mice when assessing the binding of Annexin V, which identifies cells with 

exposed phosphatidylserine or the percentage of F4/80 macrophages containing 

Ly6G-labelled neutrophils suggesting that this mechanism is not defective in these 

mice.  

In order to better characterise the role of galectin-3 on murine neutrophils it was 

important to determine the cellular localisation of this protein. Galectin-3 is known to 

promote the efferocytosis of neutrophils when bound to cell surface receptors by 

inducing the exposure of phosphatidylserine and by acting directly as an opsonin 

(Sano et al., 2003, Stowell et al., 2008b, Karlsson et al., 2009); galectin-3 can also 

inhibit apoptosis when bound intracellularly through interactions with Bcl-2 proteins 

(Akahani et al., 1997). It was therefore important to characterise the location of 

galectin-3 in murine neutrophils at the peak of neutrophil recruitment. At 4 hours 

galectin-3 was predominantly intracellular, by 24 hours this had translocated to the cell 

surface, which may potentially be a mechanism of clearing satiated neutrophils by 

facilitating efferocytosis. This is supported by the fact that at 48 hours galectin-3 was 

localised inside the cell, potentially suggesting that any cells that had cell surface lectin 

were cleared by phagocytes.  

Galectin-3 was expressed intracellularly at 4 hours in the peritoneal cavity; this could 

either be due to production of the lectin by activated neutrophils, or due to binding of 

the lectin to neutrophil cell surface receptors following its release from other cellular 

sources and internalisation. Initially attempts were made to isolate a pure population of 

murine neutrophils from the peritoneal exudate and bone marrow in order to assess 

differences in the mRNA expression for Lgals3, however it was not possible to obtain a 

pure population of neutrophils. Therefore it was essential to determine whether 

galectin-3 can be bound and internalised by activated neutrophils. Human neutrophils 

were isolated from healthy donors as it is easier to obtain a pure population of human 

neutrophils than murine neutrophils. Following activation of these cells with fMLP the 

neutrophils were incubated with a physiologically relevant concentration of galectin-3 

(10nM) and with a non-physiological concentration as a positive control, whilst it 
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appears that galectin-3 can be internalised at 1µM any internalisation at physiological 

concentrations was below the level of detection by Flow Cytometry.  

Although it couldn’t be clearly demonstrated that galectin-3 binds to neutrophils and is 

internalised in vitro it is still a possibility that could occur in vivo and thus it was 

important to determine whether galectin-3 is secreted from other cell types. Murine 

bone marrow neutrophils express low levels of galectin-3 compared to those at the 

inflammatory site and thus these were isolated from wild type mice, fluorescently 

labelled and administered intravenously to galectin-3 null mice. Peritonitis was induced 

in galectin-3 null mice and galectin-3 expression was determined in these fluorescent, 

wild-type neutrophils. If galectin-3 was produced by neutrophils in response to 

inflammation these cells would demonstrate increased galectin-3 levels, however if the 

lectin binds following its release from other cell types there would be no change as 

these mice do not produce galectin-3. The galectin-3 expression of wild type 

neutrophils did not increase in the galectin-3 null mice; this would be expected only if 

the neutrophils generated the lectin, therefore the results support the theory that 

galectin-3 binds following release from other cellular sources.  

The role of resident macrophages in the secretion of galectin-3 was easy to assess 

using a model of murine dorsal air pouch inflammation; a cavity is manufactured in 

which no resident macrophages are located and zymosan is injected into this cavity. 

Upon trafficking of neutrophils to this site of inflammation neutrophil galectin-3 levels 

were assessed and found to be very similar to that seen in the peritoneal cavity.  

Although this assay provided evidence that excluded resident macrophages as the 

source of galectin-3 bound to murine neutrophils it could not discount other cellular 

sources as in both models the neutrophils must pass through endothelial cells and 

stromal cells to reach the site of inflammation, where lots of other inflammatory cells 

are present that are capable of secreting galectin-3 in response to inflammation, for 

example monocytes and endothelial cells.  
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7 Conclusions and Future 
Directions 

In conclusion this study has demonstrated that human and murine neutrophils exhibit a 

modulation of their glycophenotype upon trafficking through an endothelial monolayer, 

however unlike T cells and endothelial cells this does not correspond to changes in the 

galectin binding profile. This is most likely due to the neutrophil cellular glycoprotein 

expression being markedly altered upon trafficking rather than actions of glycosylation 

enzymes as demonstrated in the other cell types. A previous study assessed the 

glycophenotype of naïve neutrophils by mass spectrometry (Babu et al., 2009) and 

thus could be a useful tool for determining the changes seen during transmigration as 

this method determines overall glycosylation changes rather than modulation of the 

terminal residues only, this may help to determine whether the changes seen are due 

to removal of ligands from the surface of the neutrophil or enzymatic activity.  

Galectin binding permissibility is also modulated upon trafficking, with naïve neutrophils 

being more permissive to the binding of anti-inflammatory galectin-1 while activated 

neutrophils at the inflammatory site are more permissive to binding galectin-3 and also 

galectin-9, a novel finding of this study that has yet to be further investigated. The role 

of galectin-9 on human neutrophils has yet to be characterised, this study 

demonstrated that galectin-9 binds to naïve human neutrophils at high levels and this 

increases dramatically upon activation of the cells thus further investigation should take 

place using these two populations of cells including: 

1. Annexin V and PI staining should be performed on naïve and activated human 

neutrophils following treatment with stable, recombinant galectin-9 to determine 

whether this lectin induces apoptosis or the exposure of phosphatidylserine in 

either population of neutrophil 

2. Flow chamber assays should be used to determine the role of galectin-9 on the 

interaction between HUVECs and neutrophils; galectin-9 has been postulated 

to act in compensation for galectin-1 (Iqbal et al., 2011) and as it is known that 

galectin-1 inhibits neutrophil transmigration (Cooper et al., 2008) it can be 

hypothesised that galectin-9 would perform similar roles 

3. The constitutive receptor for galectin-9 on human neutrophils has been 

identified as Tim-3 (Vega-Carrascal et al., 2014), this study demonstrated a 

second receptor for galectin-9 is located in the secondary granules of human 
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neutrophils and thus identification of this receptor would be of great importance 

for the study of galectin-9 on human neutrophils  

The expression of galectins-1, -3 and -9 are spatially and temporally modulated upon 

trafficking of monocytes from bone marrow to peripheral blood to an inflammatory site, 

in this study the peritoneal cavity. These are all expressed at low levels by bone 

marrow and peripheral blood cells but significantly increase upon trafficking to an 

inflammatory site. Higher levels of these proteins were found in non-classical vs 

classical monocytes/macrophages as previously determined in the literature. A recent 

paper demonstrated that the resolution phase of an acute inflammatory response is 

followed by an influx of monocyte-derived macrophages and resident macrophages 

that act to bridge the innate and adaptive immune responses; determination of the 

galectin expression profile of these cells would add a further layer of information to this 

study and help to fully characterise the modulation of galectin expression over a 

resolving inflammatory response (Newson et al., 2014).   

Galectin-3 is found in murine neutrophils, another novel finding of this study, and the 

levels significantly increased as the neutrophils trafficked to an inflammatory site; 

previous studies have designated galectin-3 as a pro-inflammatory lectin however due 

to increased expression during the resolution phase of zymosan-induced peritonitis it 

can be postulated that this protein plays a role in resolution. This was further 

investigated and it was found that the resolution process was dysregulated in galectin-

3 null mice however the exact mechanism of this was not delineated in this study; it 

was demonstrated that neutrophil apoptosis and the exposure of phosphatidylserine 

were unchanged in these mice suggesting no defect in efferocytosis was occurring. 

Secondly it was shown that wild type bone marrow neutrophils adoptively transferred 

into galectin-3 null mice did not demonstrate increased galectin-3 following 

transmigration to the peritoneal cavity; this suggests that the galectin-3 is being bound 

to the neutrophil however does not confirm that murine neutrophils are incapable of 

producing the lectin. Further investigation into the mechanism underlying potential pro-

resolution roles of galectin-3 on murine neutrophils should be performed including: 

1. In situ hybridisation studies or single cell PCR to confidently determine whether 

galectin-3 is produced by murine neutrophils or binds to the cell following 

transmigration to the inflammatory site 

2. The use of other resolving inflammatory models in galectin-3 null mice to 

determine whether the resolution is defective in other models including the 
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K/BxN serum transfer model of arthritis, a model of arthritis in which neutrophils 

are mediators 

3. The determination of galectin-3 expression in neutrophils over the course of a 

chronic inflammatory response such as zymosan-induced peritonitis (10mg 

zymosan/mouse) to determine whether a difference in the expression of 

galectin-3 is seen when resolution does not occur 
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