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Abstract

A method of designing early clinical trials is developed for �nding an optimum dose

level of a new drug to be recommended for use in later phases. During the trial,

the e�cacious doses are allocated to the patients more often and those with a high

probability of toxicity are less likely to be chosen. The method proposed is adaptive

in the sense that the statistical models are updated after the data from each cohort

of patients are collected and the dose level is adjusted at each stage based on the

current data.

Two classes of designs are presented. Although both are for e�cacy and toxicity

responses, one of them also considers pharmacokinetic information. The dose opti-

misation criteria are based on the probability of success and on the determinant of

the Fisher information matrix for estimation of the dose-response parameters. They

can be constrained by both acceptable levels of the probability of toxicity and desir-

able levels of the area under the concentration curve or the maximum concentration.

The method presented is general and can be applied to various dose-response and

pharmacokinetic models. To illustrate the methodology, it is applied to two di�erent

classes of models. In both cases, the pharmacokinetic model incorporates the popu-

lation variability by making appropriate assumptions about the model parameters,

while the dose responses are assumed to be either trinomial or bivariate binomial.

Various design properties of the method are examined by simulation studies. E�-

ciency measures and the sensitivity of the designs to the assumed prior parameter

values are presented. All of the computations are conducted in R, where the D-
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optimal sampling time points are obtained by using the package PFIM. The results

show that the proposed adaptive method works well and could be appropriate as a

seamless phase IB/IIA trial design.

vi



Contents

1 Introduction 1

1.1 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Pharmacokinetics and Pharmacodynamics . . . . . . . . . . . 1

1.1.2 Dose-Response Relationship . . . . . . . . . . . . . . . . . . . 4

1.1.3 Incorporating PK Information . . . . . . . . . . . . . . . . . . 5

1.2 Motivation for the Work . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Review of Early Clinical Trials 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Phase I Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Rule-Based Designs . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Model-Based Designs . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Phase II Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Designs using E�cacy and Toxicity as Endpoints . . . . . . . . . . . 27

2.5 PK-Guided Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Population PK Models and Design 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Population Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 PK Compartmental Models . . . . . . . . . . . . . . . . . . . 33

3.3 Important PK Parameters . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Non-Linear Mixed E�ects Model . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Linearisation of the Model . . . . . . . . . . . . . . . . . . . . 42

vii



3.4.2 Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . 44

3.5 Optimal Experimental Designs . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.2 Locally Optimal Design . . . . . . . . . . . . . . . . . . . . . 50

3.6 Parameter Estimation in NLME Models . . . . . . . . . . . . . . . . 52

3.7 PK Mixed E�ects Model Examples . . . . . . . . . . . . . . . . . . . 53

3.7.1 One-Compartment Model with Bolus Input and First-Order

Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7.2 One-Compartment Model with First-Order Absorption . . . . 59

3.8 Properties of the Derived PK Parameters . . . . . . . . . . . . . . . . 61

3.8.1 Area Under the Concentration Curve . . . . . . . . . . . . . . 62

3.8.2 Maximum Concentration . . . . . . . . . . . . . . . . . . . . . 65

4 Dose-Response Models 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Trinomial Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.4 Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . 75

4.3 Bivariate Binary Response . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.4 Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . 83

5 Adaptive Designs 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Criteria for Dose Optimisation . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Maximisation of Probability of Success . . . . . . . . . . . . . 90

viii



5.3.2 Maximisation of Determinant of FIM . . . . . . . . . . . . . 91

5.3.3 Combined Criterion . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Constraint on Probability of Toxicity . . . . . . . . . . . . . . . . . . 96

5.5 PK-Constrained Dose Optimisation . . . . . . . . . . . . . . . . . . . 97

5.5.1 Area Under the Concentration Curve . . . . . . . . . . . . . . 97

5.5.2 Maximum Concentration . . . . . . . . . . . . . . . . . . . . . 99

5.6 Stopping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Evaluation of the Designs . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7.1 Distribution of Dose Allocation . . . . . . . . . . . . . . . . . 102

5.7.2 Distribution of Optimum Dose . . . . . . . . . . . . . . . . . . 102

5.7.3 Decision E�ciency . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7.4 Sampling E�ciency . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Simulation Studies 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Software Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5.1 Priors for Dose-Response Parameters . . . . . . . . . . . . . . 137

6.5.2 Priors for PK Parameters . . . . . . . . . . . . . . . . . . . . 140

6.5.3 Target Maximum Concentration . . . . . . . . . . . . . . . . . 142

6.6 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 150

6.7 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . . . 154

ix



7 Conclusions and Future Work 160

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A Flow Chart for the Design and Supplementary Material 165

A.1 Solutions to the Di�erential Equations: One-Compartment PKModel

with First-Order Absorption . . . . . . . . . . . . . . . . . . . . . . . 165

A.2 Structure of the Proposed Design . . . . . . . . . . . . . . . . . . . . 167

A.3 E�ciency versus Design Points: Example 1 . . . . . . . . . . . . . . . 168

A.4 Dose-Response Scenarios at the Prior Ends . . . . . . . . . . . . . . . 169

A.5 Boxplots of PK Parameter Estimates Obtained in Example 1 . . . . . 170

A.6 Boxplots of Dose-Response Parameter Estimates Obtained in Exam-

ple 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.7 E�ciency versus Design Points: Example 2 . . . . . . . . . . . . . . . 173

A.8 Boxplots of PK Parameter Estimates Obtained in Example 2 . . . . . 174

A.9 Boxplots of Dose-Response Parameter Estimates Obtained in Exam-

ple 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.10 Con�dence Intervals for Dose Selections . . . . . . . . . . . . . . . . . 176

B R Code 178

B.1 R Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.2 Functions in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Bibliography 208

x



List of Figures

1.1 A schematic diagram showing how dose of a drug works. . . . . . . . 2

1.2 Typical dose-response curves. . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Concentration pro�les of six individuals following the intravenous in-

jection of indomethacin. . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 A one-compartment model. . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 A two-compartment model. . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 A three-compartment model. . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Concentration pro�les for di�erent individuals following the model

function in (3.21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Standardised variance function plot for a continuous D-optimum de-

sign for the model in (3.15). . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Location of optimum design points in the mean concentration pro�le

for collecting blood samples . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Sensitivity of the design to the assumed prior values of the parameters. 59

4.1 Dose-response scenarios for the continuation ratio model. . . . . . . . 72

4.2 Dose-response scenarios for the Cox model. . . . . . . . . . . . . . . . 80

6.1 Simulated concentrations following the administration of the lowest

dose to a cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Scenario 1 with the OD at 0.5. . . . . . . . . . . . . . . . . . . . . . 113

6.3 Scenario 2 with the OD at 5.5. . . . . . . . . . . . . . . . . . . . . . 114

6.4 Scenario 3 with the OD at 6.5. . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Scenario 4 with the OD at 10.0. . . . . . . . . . . . . . . . . . . . . . 116

xi



6.6 Relative D-e�ciency in a randomly selected trial from Scenario 2. . . 117

6.7 Optimal design points in a trial. . . . . . . . . . . . . . . . . . . . . . 117

6.8 Average numbers of cohorts used in the four scenarios by the two

dose-allocation methods. . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.9 Boxplots of the PK parameter estimates obtained from the simula-

tions for Scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.10 Boxplots of the dose-response parameter estimates obtained from the

simulations for Scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . 120

6.11 Optimum dose selection and dose allocation when the target AUC is

taken at the doses below the true optimum dose. . . . . . . . . . . . . 121

6.12 Optimum dose selection and dose allocation when the target AUC is

taken at the true optimum dose and also at the doses above it. . . . . 122

6.13 Dose allocation to successive cohorts in four randomly chosen trials

for the PK-guided design for Scenario 2. . . . . . . . . . . . . . . . . 123

6.14 Simulated concentrations at the locally D-optimum time points fol-

lowing the administration of the lowest dose to a cohort. . . . . . . . 126

6.15 Scenario 1 with the OD at -0.6. . . . . . . . . . . . . . . . . . . . . . 130

6.16 Scenario 2 with the OD at -0.6. . . . . . . . . . . . . . . . . . . . . . 131

6.17 Scenario 3 with the OD at -0.6. . . . . . . . . . . . . . . . . . . . . . 132

6.18 Scenario 4 with the OD at -1.8. . . . . . . . . . . . . . . . . . . . . . 133

6.19 Relative e�ciencies in a randomly selected trial from Scenario 1. . . . 133

6.20 Optimal design points in a trial. . . . . . . . . . . . . . . . . . . . . . 134

6.21 Average numbers of cohorts used by the two dose-allocation methods. 134

6.22 Boxplots of the PK parameter estimates obtained from the simula-

tions for Scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.23 Boxplots of the dose-response parameter estimates obtained from the

simulations for Scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . 136

6.24 Possible dose-response curves for margins of 3, 2 and 1 on either side

of the true parameter values. . . . . . . . . . . . . . . . . . . . . . . . 138

xii



6.25 Optimum dose selection and dose allocation under di�erent prior val-

ues for Scenario 1 in Example 2. . . . . . . . . . . . . . . . . . . . . . 139

6.26 Design points obtained at various sets of prior values following the

administration of the lowest dose to a cohort. . . . . . . . . . . . . . 141

6.27 Optimum dose selection and dose allocation when the target Cmax is

taken at the doses below the true optimum dose. . . . . . . . . . . . . 143

6.28 Optimum dose selection and dose allocation when the target Cmax is

taken at the true optimum dose and the doses above it. . . . . . . . . 144

6.29 Penalty function for the four scenarios assuming CS = CT = 1. . . . . 148

6.30 Percentage of cohorts treated at the toxic doses during the trials,

percentage of toxic doses recommended as the optimum dose and

percentage of trials with the correct OD selection. . . . . . . . . . . . 149

6.31 Biases of the parameter estimates for di�erent choices of control pa-

rameters CS and CT assuming CS = CT = C. . . . . . . . . . . . . . 150

6.32 Mean square errors of the parameter estimates for di�erent choices of

control parameters CS and CT assuming CS = CT = C. . . . . . . . . 151

A.1 Rationale for setting the number of design points in the one-compartment

PK model with bolus input and �rst-order elimination. . . . . . . . . 168

A.2 Dose-response curves at the lower and upper ends of the priors used

in the simulation study. . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.3 Boxplots of the PK parameter estimates obtained from the simulations.170

A.4 Boxplots of the dose-response parameter estimates obtained from the

simulations for Scenarios 2 and 3. . . . . . . . . . . . . . . . . . . . . 171

A.5 Boxplots of the dose-response parameter estimates obtained from the

simulations for Scenario 4. . . . . . . . . . . . . . . . . . . . . . . . . 172

A.6 Rationale for setting the number of design points in the one-compartment

PK model with �rst-order absorption . . . . . . . . . . . . . . . . . . 173

A.7 Boxplots of the PK parameter estimates obtained from the simula-

tions for Scenarios 2 and 3. . . . . . . . . . . . . . . . . . . . . . . . . 174

xiii



A.8 Boxplots of the PK parameter estimates obtained from the simula-

tions for Scenario 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.9 Boxplots of the dose-response parameter estimates obtained from the

simulations for Scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . 175

A.10 Boxplots of the dose-response parameter estimates obtained from the

simulations for Scenarios 3 and 4. . . . . . . . . . . . . . . . . . . . . 176

xiv



List of Tables

4.1 Relation between trinomial and bivariate binary responses. . . . . . . 79

6.1 Percentage of best doses recommended for further studies (%BD),

percentage of doses recommended as optimum, but carrying the prob-

ability of toxicity above the maximum allowed threshold (%TD), and

percentage of cohorts treated at the best doses throughout the trials

(%AD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Decision and sampling e�ciencies of the designs. . . . . . . . . . . . . 119

6.3 Sensitivity of the design to the assumed target for AUC in Scenario 2. 120

6.4 Sensitivity of the PK-guided design to the dose-skipping constraint. . 123

6.5 Sensitivity of the design to the dose-skipping constraint in the absence

of PK information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Percentage of best doses recommended for further studies (%BD),

percentage of doses recommended as optimum, but carrying the prob-

ability of toxicity above the maximum allowed threshold (%TD), and

percentage of cohorts treated at the best doses throughout the trials

(%AD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7 Decision and sampling e�ciencies of the designs. . . . . . . . . . . . . 134

6.8 Sensitivity of the design to the assumed priors for the dose-response

parameters in Scenario 1 that takes into account PK information. . . 139

6.9 Sensitivity of the design to the assumed priors for the dose-response

parameters in Scenario 1 that ignores PK information. . . . . . . . . 140

6.10 PK parameter values for the sensitivity analysis. . . . . . . . . . . . . 141

xv



6.11 Sensitivity of the design to the assumed priors for the PK parameters

in Scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.12 Sensitivity of the design to the assumed target for Cmax in Scenario 1. 143

6.13 Combined criterion for Scenario 1. . . . . . . . . . . . . . . . . . . . . 150

6.14 Combined criterion for Scenario 2. . . . . . . . . . . . . . . . . . . . . 152

6.15 Combined criterion for Scenario 3. . . . . . . . . . . . . . . . . . . . . 152

6.16 Combined criterion for Scenario 4. . . . . . . . . . . . . . . . . . . . . 153

A.1 The 95% con�dence intervals for the measures in Example 1. . . . . . 177

A.2 The 95% con�dence intervals for the measures in Example 2. . . . . . 177

xvi



Chapter 1

Introduction

1.1 Preliminary Concepts

Clinical trials, commonly classi�ed into four phases, have become an integral part

of drug development. Phase I is the �rst stage of testing in humans and designed

to assess safety, tolerability and the pharmacokinetics (PK) of a drug. Phase II is

designed to assess how well the drug works (pharmacodynamics, PD) and it also

monitors safety in a large group of patients. Another goal of the early phases is

to establish a dose level to recommend for further studies in later phases. Phase

III assesses the e�ectiveness of the drug in comparison with the current standard

treatments. Phase IV, also known as post-marketing surveillance, aims to detect

any rare or long-term adverse e�ects over a large population.

1.1.1 Pharmacokinetics and Pharmacodynamics

Pharmacokinetics is generally de�ned as what the body does to the drug. It re�ects

the movement of the drug in the body, that is, how the drug enters into the body,

how it is distributed throughout the body and how it leaves the body. It involves

the study of the processes that a�ect the plasma concentration of drug in the body

at any time after the administration of a dose (Rosenbaum, 2011). PK modelling

helps in determining important PK parameters.

Pharmacodynamics is de�ned as what the drug does to the body. PD e�ects are usu-



ally classi�ed as changes in biomarkers, surrogate endpoints and clinical endpoints.

A biomarker re�ects any pharmacological e�ect that has some link to the therapeu-

tic bene�t of the drug. A surrogate endpoint is a biomarker which is intended to

substitute for a clinical endpoint. A clinical endpoint is a response variable measur-

ing the direct bene�t to a patient, that is, how a patient feels, functions or survives

(Derendorf et al., 2000). For antihypertensive drugs, blood pressure is a biomarker

and stroke is the clinical endpoint. For anticancer agents, tumour shrinkage and

survival are the biomarker and clinical endpoint, respectively. PD modelling estab-

lishes the relationship between the dose and the resulting e�ect.

After administration of a dose, the PK mechanism transforms it into plasma con-

centration and through the systematic circulation of blood, it reaches the site of

action and produces a response: see Figure 1.1. The extent of response depends on

the concentration at the site of action. We cannot measure concentration at the site

of action, but can measure the plasma, which re�ects the concentration at the site.

Concentration needs to be kept high enough to produce a desirable response, but

low enough to avoid toxicity. Even if the same dose is given to a group of individ-

uals, concentration pro�les are very likely to be di�erent since it depends on how a

body functions. Therefore, for the e�cient determination of the optimum dose, it

is essential to monitor concentration.

Figure 1.1: A schematic diagram showing how dose of a drug works.

Generally, concentration is modelled as a function of time for a given dose and the

PD e�ect is often modelled as a function of dose. However, in the PK/PD approach,

the PD response is modelled as a function of concentration. Concentration is in-

herently more informative than dose because unlike dose, which is only a nominal

mass �xed by the clinicians, it gives biological information (Riviere, 2011). Such

an approach establishes the dose-concentration-e�ect relationship and is capable of

predicting the e�ect at any time after administering a dose. It also helps in estimat-
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ing dose and dosing interval to achieve the e�ect of a desired level.

The PK/PD approach has been described in Hooker and Vicini (2005) and Davidian

(2010). To illustrate the approach, we introduce an example that comprises a one-

compartment PK model with bolus input and �rst-order elimination and the Emax

model for the PD e�ect. The PK model for modelling the drug concentration is

y1 = f1(t1;θ1) + ε1 =
x

V
exp

(
−Cl
V
t1

)
+ ε1, (1.1)

where x is the dose received by an individual, θ1 = (V,Cl)T is the vector of PK pa-

rameters with V and Cl as the volume of distribution and clearance, respectively, t1

denotes the sampling time for measuring concentration and ε1 is the random error.

More detailed explanations on the volume of distribution and clearance are available

in Section 3.3.

The simple Emax model for modelling the PD e�ect is given as

y2 = f2(x;θ2) + ε2 = E0 +
Emax x

C50 + x
+ ε2, (1.2)

where θ2 = (E0, Emax, C50)T is the vector of PD parameters with E0, Emax and C50

as the e�ect at baseline, the maximum e�ect and the dose needed to observe half of

the maximum e�ect, respectively, and ε2 is the random error. The parameter Emax

measures the e�cacy for a drug and C50 re�ects a drug's potency.

The PK/PD approach expresses the PD e�ect as a function of the mean concentra-

tion. In our case, we can write

y2 = E0 +
Emax f1(t2;θ1)

C50 + f1(t2;θ1)
+ ε2, (1.3)

where t2 represents the sampling time for measuring the PD response. It is also

assumed that ε1 and ε2 are independent.
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There are two approaches to �t the above models: sequential �tting and simultane-

ous �tting. In sequential �tting, the PK model is �tted �rst to obtain the parameter

estimates θ̂1. These parameters are then �xed and assumed known in �tting the

model (1.3) to obtain θ̂2. This approach is based on the simplifying assumption that

the two sets of parameters are independent. In the simultaneous �tting approach,

the model (1.3) is �tted directly. It allows the assumption that the two sets of pa-

rameters are correlated (Hooker and Vicini, 2005).

The PK/PD approach requires the PD response to be a continuous random variable.

However, the type of PD response we are interested in in this thesis is categorical.

We want to see how the rate of success of a drug changes in the population of

patients with the change of dose level. Therefore, the dose-response models that are

going to be used are di�erent from those in the PK/PD approach.

1.1.2 Dose-Response Relationship

The dose-response relationship describes the relation between a response and doses

of a drug. The graphical presentation of such a relationship is known as a dose-

response curve. More speci�cally, a dose-response curve considered in this thesis

is a two-dimensional graph, where the x-axis represents dose and the y-axis repre-

sents the percentage of the population that exhibits the response. Depending on the

response, which can be toxicity or desired e�ect, there are two types of important

dose-response curves. A dose-e�cacy curve is the one that describes the relationship

between dose and some e�cacy endpoint. The other one is the dose-toxicity curve

that describes the relationship between dose and a toxicity endpoint (Chow and

Liu, 2004). Although dose-response curves can assume any shape, there are many

drugs for which the curves are S-shaped. Figure 1.2 shows such dose-response curves.

The dose-response relationship on toxicity is as equally important as that on e�cacy.

These relationships together help in identifying an appropriate dose. Development

of these relationships is a central part in clinical trial studies to make the safe and
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Figure 1.2: Typical dose-response curves.

e�ective use of a drug. Regression methods for modelling the probabilities of re-

sponses are used in developing such models. The main interest is to assess the

e�cacy and toxicity levels of a drug in a population of patients.

Although dose-response relationships mainly depend on dose, covariates are often

considered to account for some known patient characteristics which may in�uence

the dose e�ects. Generally, lower doses produce no desired e�ect and higher doses

produce undesired side e�ects. To reduce the time for drug development and also to

decrease the cost of the studies, accurate and early establishment of the relationships

is essential.

1.1.3 Incorporating PK Information

A drug's pharmacokinetics are determined by the processes of absorption, distribu-

tion, metabolism and excretion (ADME). Also, concentrations at the site of action

are determined by the ADME. It is the concentrations at the site of action which

produce the PD response. The objectives in a early phase clinical trial are to quan-

tify the ADME of the drug and also to identify an optimal dose for further studies.

Quantifying these PK parameters is often straightforward, as it does not require the

administration of an optimal dose (Piantadosi and Liu, 1998). However, obtaining

the optimal dose is a di�cult task. There are drugs for which the therapeutic range

is narrow and as such careful dose escalation is essential since a small increase in

dose may lead to a drastic change in outcomes.
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Since the PD response depends on the concentration at the site of action, it may not

be enough to consider only the administered dose in establishing the dose-response

relationship. Rather, the resulting concentration from that dose has a vital role in

it. One possible way to consider such pharmacokinetic data could be the formal

inclusion of measures like area under the concentration curve or the maximum con-

centration in the dose-response model. One such method that puts the area under

the concentration curve in the dose-response model is that of Piantadosi and Liu

(1998). But that method requires many blood samples to be collected for measuring

the concentration of a drug, as it uses the trapezoidal rule to obtain the area under

the concentration curve. A larger number of blood samples gives more trapeziums

to �nd an accurate estimate of the area.

Other possible ways of considering PK data in dose-�nding studies could be con-

straining the area under the concentration curve or the maximum concentration

during dose escalation. In this case, the measures are not incorporated in the dose-

response model directly, rather they help the dose-�nding procedure to identify an

optimal dose. Such a PK-guided design will be more careful, so that patients do

not receive doses which are too toxic or have no therapeutic bene�t. This kind of

approach is di�erent from the standard PK/PD approach in the sense that unlike

the PK/PD approach, we have a categorical PD response, and instead of replacing

the dose by concentration, we take some PK parameters associated with the best

dose.

1.2 Motivation for the Work

As indicated at the beginning, a phase I trial is the �rst step in applying a new drug

to humans. The designs for phase I trials, particularly those in cancer, focus on the

maximum tolerated dose (MTD). This MTD is based on the toxicity response and

it ignores the e�cacy response. Phase II designs aim to determine the e�cacy level

of an experimental drug assuming that a dose range has been established in phase
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I.

For cytotoxic agents that are used in treating cancer, it is believed that the higher

doses are more likely to be toxic, and also more likely to kill the cancer cells and

therefore will be e�cacious. As a consequence, cancer clinical trials assume that the

dose-toxicity and dose-e�cacy relationships are monotone non-decreasing functions

of dose. Therefore, the MTD determined from the phase I trial will provide a dose

with a desirable level of e�cacy.

In recent years, targeted therapies have drawn attention for treating cancer patients.

These are drugs or other substances that block the growth and spread of cancer by

interfering with speci�c molecules that are involved in the growth, progression and

spread of cancer. According to Cunningham et al. (2004), many clinical trials of

targeted therapies are underway and many such therapies are already in use for cur-

ing the patients. For these targeted agents, the dose-e�cacy curve may not increase

with dose and therefore e�cacy may occur at doses that lie in the middle of the

range of possible doses. Therefore, conducting the phase II trials based on the MTD

from phase I for those agents may not be an e�cient way of running the trial. In

such situations, it will be useful to consider the toxicity and e�cacy simultaneously

to come up with an optimum dose for further investigation in the next phase. Some

examples that illustrate combined phase I/II trials are available in Gooley et al.

(1994), O'Quigley et al. (2001), Braun (2002) and Zhang et al. (2006).

Zhang et al. (2006) consider an agent for targeted therapy which is theorised to

boost haemoglobin levels (HbL) in patients for whom the HbL is below the stan-

dard range (14-18 g/dL for men; 12-16 g/dL for women). The response that is

obtained following the administration of the agent can be categorised as follows: no

response, success and toxicity. These successive categories mean that patients are

under-stimulated and their HbL is still below the standard range; rightly stimulated

and their HbL raised to the standard level; and over-stimulated and their HbL raised
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above the standard level.

Also for drugs other than those for cancer, a dose will be acceptable only if it is e�-

cacious and safe. Since it is quite di�cult to �nd a dose which is both e�cacious and

non-toxic, e�orts are necessary to make a trade-o� between the two. The speci�c

goal is to �nd a dose which has a high probability of e�cacy and a low probability

of toxicity.

Regardless of the method, phase I trials are small and as a consequence the dose-

toxicity curves are not well estimated. They often determine the dose which is either

unacceptably toxic or ine�ective. Phase I/II trials can be larger and so the methods

could potentially lead to more e�cient dose selection.

The designs that we are going to consider are for combined phase IB/IIA trials.

We also consider pharmacokinetic constraints during dose escalation in cases where

it is important to avoid doses likely to cause toxicity, considered as possibly life-

threatening. Since inter-patient variability in the plasma concentration is very likely,

random e�ects PK models are being considered. The purpose of this thesis is to

develop an e�cient method for dose �nding in early phase clinical trials.

1.3 Outline of Thesis

In Chapter 2, we review the literature on the commonly used designs in early phase

clinical trials. The discussed designs are mainly used in phase I and II trials.

Chapter 3 contains the general population PK model and its Fisher information

matrix. Some commonly used optimality criteria in designing experiments are also

discussed. The chapter then introduces one-compartment PK models and the asso-

ciated Fisher information matrices to be used in the simulation study. The general

expressions for measuring the inter-patient variability in the area under the con-

centration curve and the maximum concentration following the administration of a
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dose are presented. As special cases, analytical forms for these variances have been

obtained for the PK models introduced.

Chapter 4 gives the dose-response models that will be used in the simulation study.

The associated Fisher information matrices have been derived. Properties of the

models are also discussed and some plausible dose-response scenarios for each of

them are presented.

Chapters 5 and 6 are the ones with major contributions in dose-�nding studies and

they present new results. Chapter 5 introduces the general algorithm for the pro-

posed dose-�nding design. It also describes an up-and-down design to gather infor-

mation prior to any estimation of the model parameters. Possible dose-optimisation

criterion, constraints and stopping rules are also discussed in the chapter. To eval-

uate the quality of the designs, we introduce some performance measures.

Simulation studies using various dose-optimisation criteria and constraints are pre-

sented in Chapter 6. The numerical computations are implemented in R. The main

purpose is to understand the behaviour of the designs numerically. Three examples

are introduced with the dose-response and PK models introduced in the earlier chap-

ters. Sensitivity analyses of the designs to the assumed values for the parameters

are also presented. Finally, we discuss the major �ndings.

In Chapter 7, we draw conclusions of the work and discuss possible future research.

It has been found from the simulation studies that the proposed dose-optimisation

criteria and constraints can �nd the optimal dose accurately. The methods can limit

toxic doses as the optimum dose by a considerable amount and assign most relevant

doses to the cohorts during the trial. We have also seen that the e�ciency of the

design can be increased if it is possible to assume target values for the PK parame-

ters like the area under the concentration curve and the maximum concentration.
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Finally, we present the appendices. Appendix A gives a �ow chart indicating the

di�erent steps of the proposed design and some supplementary material. Appendix

B shows the R code that is used to simulate designs using various dose-optimisation

criteria and constraints.
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Chapter 2

Review of Early Clinical Trials

2.1 Introduction

This chapter gives a brief introduction to some commonly used designs in the early

phases of clinical trials. Clinical trial designs are broadly classi�ed as adaptive and

non-adaptive. Here we present some adaptive early phase designs.

The goal of the early phases is to study the pharmacokinetics and pharmacodynam-

ics of new drugs, and also to explore e�cacy and toxicity pro�les. For nontoxic

agents, phase I trials are often conducted with healthy volunteers. But for toxic

agents, such as those for cancer treatments, phase I trials are conducted among

cancer patients at the last stage for whom standard treatments have failed. Since

the bene�ts from such agents are believed to increase with dose, the highest possible

dose is searched for during the development of an agent. However, toxicity also

increases with dose. Therefore, the main challenge for those trials is to �nd a dose

with a low chance of toxicity among the patients. This dose is usually referred to

as the MTD.

Early phase clinical trials test drugs that were found promising in preclinical stud-

ies. For cytotoxic agents, usually the starting dose is one tenth of the LD10 in mice,

that is, the dose lethal to 10% of mice, or one-third of the toxic dose low (TDL) in

dogs or monkeys (Collins et al., 1986). The TDL is de�ned as the lowest dose that



produces drug-induced pathological alterations in haematological, chemical, clini-

cal or morphological parameters and which, when doubled, produces no lethality

(Prieur et al., 1973). In areas other than oncology, the approaches that are used to

estimate the starting dose include: (1) the dose-by-factor approach; (2) the similar

drug approach; (3) the pharmacokinetically-guided approach; and (4) the compar-

ative approach. A detailed description of these methods is available in Reigner and

Blesch (2002).

The dose-by-factor approach is based on the highest dose of the compound found to

have no toxic e�ect in the most sensitive species tested in the preclinical toxicology

studies. The maximum starting dose for a �rst-in-human study is the smallest of

the following three doses: 1/10 of the highest no-e�ect dose in rodents, 1/6 of the

highest no-e�ect dose in dogs and 1/3 of the highest no-e�ect dose in monkeys.

This classical approach is used widely. However, it is often criticised as it ignores

preclinical pharmacokinetic data.

The similar drug approach can be applied when human safety data are available

for a drug similar to the one under investigation. The similar drug is usually of

the same chemical class, with similar or related chemical structure. The method

assumes that the ratio of the starting dose to the dose at which no adverse e�ect

is observed is the same for similar drug and investigational drug, and from that

relation it is possible to �nd the starting dose for the investigational drug. The dose

thus obtained is again multiplied by a factor to accommodate the uncertainty about

the safety. One can proceed with the method only if it is found that the assumption

upon which it is based is valid.

The pharmacokinetically-guided approach uses systemic exposure rather than dose

for the extrapolation from animal to human. The area under the concentration

curve from the preclinical study for a dose at which no adverse e�ect is observed is

multiplied by the predicted clearance for humans to obtain the starting dose. The
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uncertainty about the prediction of human clearance is a shortcoming of the method.

The practice of using this approach in pharmaceutical companies is increasing. The

comparative approach utilises two or more methods to estimate a starting dose and

then critically compares the results to arrive at the starting dose. This method

can be criticised for being time consuming. However, obtaining similar results from

several approaches is reassuring. This is not a very commonly used method.

Dose increment, dose assignment, cohort size and number of cohorts are the impor-

tant components of dose-escalation schemes. Once the starting dose is determined,

the subsequent dose levels need to be established. Sometimes they are determined

by the modi�ed Fibonacci sequence. A Fibonacci sequence is a sequence where

each number is the sum of the previous two numbers in the sequence. For in-

stance, {1, 1, 2, 3, 5, 8, 13, 21, . . .} is a Fibonacci sequence. Dose increments follow

the percentages of increments in this sequence and are {100, 50, 67, 60, 63, 62, . . .}.

A slightly modi�ed version of this sequence is used in practice where the increment

decreases. However, simple dose levels like 5 mg/kg, 10 mg/kg, 15 mg/kg, 20 mg/kg

are often used in many studies.

Dose assignment is the way in which new patients entering the trial are allocated to

doses. It depends on the design chosen, as di�erent designs have di�erent allocation

rules. A dose allocation design to be used in early phases should be such that it

does not expose too many patients either to subtherapeutic or to toxic doses. Often,

patients are treated in cohorts of size 3 or 6. Determining the number of cohorts

that will be appropriate for a trial is also an interesting research problem.

By early phase, we mean phases I and II. Ratain et al. (1993) discussed the statistical

and ethical issues that need to be addressed in the early phases of development of

anticancer agents. Many phase I trials deal with the estimation of the best dose

rather than testing a hypothesis about it. On the other hand, many standard phase

II trials test a hypothesis in order to select the best dose out of a set of candidate
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doses. It may seem contradictory that sometimes the patients in phase I trials

experience less toxicity than those in phase II trials. But this may happen because

many patients are often under-treated in phase I trials, whereas phase II trials treat

many patients at a dose that can result in moderate to severe toxicity. The statistical

issue in early phase trials is to locate the best dose in an e�cient way. However,

the ethical one concerns the minimisation of under- and over- treatment during a

trial. A dose-�nding design will be ideal if it reaches the best dose in an e�cient

and ethically appropriate way. In the following sections, we present some commonly

used dose-allocation designs for early phases.

2.2 Phase I Designs

Although several improved statistical methods have been developed in recent years,

many current studies still use a traditional 3+3 design (Le Tourneau et al., 2009).

The 3+3 design, which we describe in more detail in the next subsection, is often

used as the speci�c issues to be achieved in phase I trials are not stated clearly.

According to O'Quigley et al. (1990), a phase I design should aim to: (1) minimise

the number of under-treated patients and the number of over-treated patients; (2)

minimise the number of patients needed to complete the study; and (3) rapidly

escalate the dose in the absence of toxicity or rapidly de-escalate the dose in the

presence of an unacceptable level of toxicity. It is possible in a 3+3 design to come

to a conclusion by using only a few patients, but Reiner et al. (1999) and Lévy et al.

(2001) showed that the probability of an incorrect recommendation for the MTD is

very high for this design.

Phase I designs can be classi�ed into two types: rule-based and model-based. Many

rule-based designs only utilise information from the current cohort in allocating

a dose to the next cohort. O'Quigley and Zohar (2006) called these memoryless

designs, as the previous information is completely ignored. The opposite of these

are the designs which carry information through the trial. Designs with memory are

mostly model-based.
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2.2.1 Rule-Based Designs

The essence of the rule-based designs is that they do not assume any parametric

dose-response model, but they use instead pre-speci�ed rules. Some of these designs

are based on the up-and-down rule (Dixon and Mood, 1948), where escalation or

de-escalation of dose depends on the occurrences of toxicity in the previous cohort.

Commonly used rule-based designs are the 3+3 design, Storer's up-and-down de-

signs, accelerated titration designs (Simon et al., 1997), pharmacologically-guided

dose-escalation design and designs using isotonic regression.

3+3 Design

The 3+3 design is the most widely used design in clinical practice. Starting with a

pre-speci�ed number of doses {x(1), . . . , x(d)}, the design �rst assigns the dose x(1) to

a cohort of three patients. Escalation to dose x(2) is carried out if none of the three

patients experiences toxicity. The trial stops if at least two of the three patients

have toxicities. The same dose x(1) is given to three additional patients if one of the

initial three patients has a toxic response. Then, if only one of the six patients has

toxicity, escalation to dose x(2) is made; otherwise, the trial stops. In such a design,

the MTD is usually de�ned as the highest dose at which the observed toxicity rate

is no more than 0.33. Some researchers claim that the MTD should be the dose

at which 2 or fewer toxicities in six patients are observed. Therefore, it is recom-

mended to check exactly six patients at the MTD, which may sometimes require a

single de-escalation in the 3+3 design.

Simplicity of implementation and safety concerns made the 3+3 design very pop-

ular. However, the design is ine�cient when the starting dose is very low and the

dose increment is moderate. In such a case, the design requires an excessive number

of steps to reach the desirable dose, which in turn means that many patients are

treated at subtherapeutic doses and very few patients receive doses at or near the

MTD. Also, the maximum probability of toxicity that the MTD can have is �xed

once the de�nition is set. For instance, if we de�ne the MTD as the dose at which
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2 or fewer toxicities are observed in six patients, then the toxicity rate at that dose

is less than or equal to 0.33.

Some modi�ed versions of the design, such as 2+4, 3+3+3 and 3+1+1, are also

available to accelerate the dose escalation (Storer, 2001). In the 2+4 design, an

additional cohort of size 4 is added if one of the two individuals in the �rst cohort

shows toxicity. The same stopping rule as the traditional 3+3 design is followed.

In the 3+3+3 design, the same dose is applied to an additional cohort of size 3 if

two individuals in the �rst two cohorts experience toxicity. The trial stops if three

or more individuals in three cohorts show toxicity. The 3+1+1 design is a more

aggressive design than 3+3 and is known as `best-of-�ve' design in the literature. If

one or even two of the individuals in the �rst cohort experience toxicity, the same

dose is given to one more individual. If two individuals in the �rst four experience

toxicity, the dose is administered to one more individual. The trial stops if three or

more toxicities are observed in �ve individuals. Although the modi�ed versions are

aimed at accelerating the dose escalation, it is not clear in the literature whether

they are completely better than the conservative 3+3 approach or even which is best

out of all these modi�ed versions.

Storer's Up-and-Down Designs

The 3+3 design and its modi�ed versions that have been discussed only allow dose

to be escalated upward. Therefore, as a precaution, the starting dose level is the

lowest one and hence many patients are treated at the subtherapeutic doses. Another

problem with the design is that, since many patients are treated at the low doses, it

may take a long time to reach the MTD. To overcome these problems, Storer (1989)

recommended three designs which allow both dose escalation and de-escalation, and

do not require the lowest dose to be the starting dose. The proposed designs are as

follows:

1. Cohort size is one at each dose. Escalate to the next higher dose if a nontoxic

outcome is observed; otherwise, de-escalate to the next lower dose.
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2. Similar to the design in 1, except that escalation is done only if two consecutive

nontoxic responses are seen. De-escalate if a toxic response is seen.

3. Cohort size is three at each dose. Escalation is made if there is no toxic

response, stay at the same dose level if one toxic response is seen and de-

escalate if two or more toxic responses are seen.

Design 1 is not implemented as a single-stage design itself, but together with design

2 or 3 to make a two-stage design. All of these designs are implemented with a �xed

sample size usually ranging from 12 to 36. At the end of a two-stage trial, a logistic

regression model is �tted to the data and the MTD is determined from that model

for a particular choice of target toxicity rate.

Pharmacologically-Guided Dose Escalation

Collins et al. (1990) proposed pharmacologically-guided dose escalation (PGDE). It

needs the area under the concentration curve (AUC) in humans to be extrapolated

from preclinical data and the AUC value at the LD10 in mice is usually used as

the target. At the �rst stage of the design, dose escalation proceeds with one pa-

tient per dose level as long as the target AUC is not reached and typically at 100%

dose increments between successive patients. When the target AUC is reached or

if dose-limiting toxicity occurs, the design turns into stage 2 where dose escalation

is carried out by following the traditional 3+3 design and the MTD is determined

accordingly. Successive doses are increased by around 40% in the second stage.

The method has been found to produce good results for some cytotoxic agents,

such as certain anthracyclines and platinum compounds. It has been found to be

inappropriate for other classes of agents, such as antifolates where high inter-patient

variability in pharmacokinetics exists (Berry et al., 2010). Some other practical

issues, such as logistical di�culties in obtaining real-time pharmacokinetic results

and problems in extrapolating preclinical pharmacokinetic data, impede the frequent

use of PGDE. The method also su�ers from the risk of exposing the next patient

to a highly toxic dose if the AUC for the last patient was considerably lower due
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to inter-patient variability in drug metabolism. One possible way to overcome this

problem could be the consideration of inter-patient variability in the AUC.

Designs using Isotonic Regression

Leung and Wang (2001) introduced a design which uses the idea of isotonic regres-

sion to estimate the risk at each dose, so that toxicity is non-decreasing with dose.

Generally speaking, if we have d dose levels {x(1), . . . , x(d)} to be tested, the risk at

x(i) (1 ≤ i ≤ d) must satisfy the monotonic relationship with dose. For any dose

x(r) below x(i) (r ≤ i) and any dose x(s) above x(i) (s ≥ i), the pooled estimate of

risk can be expressed as

wr,i,s =

∑s
j=r number of toxicities at x(j)∑s

j=r number of patients tested at x(j)
. (2.1)

The estimate of the risk of toxicity at x(i) is obtained by using the isotonic regression

q̂i = min
i≤s≤d

max
1≤r≤i

wr,i,s. (2.2)

The idea is that q̂i must be at least as large as any of w1,i,s, w2,i,s, . . . , wi,i,s (or the

maximum of these) for any s (s ≥ i). Similarly, q̂i must be no larger than any of

wr,i,i, wr,i,i+1, . . . , wr,i,d (or the minimum of these) for any r (r ≤ i).

Starting with dose x(i), the algorithm for the design proceeds as follows:

1. Treat a cohort of c patients at dose x(i).

2. Evaluate the risk at di�erent doses by using (2.2). Choose the dose for which

q̂i is closest to the target toxicity rate γ, where i is the level of the last dose

used. If q̂i < γ, then escalate if γ− q̂i ≥ q̂i+1− γ for i < d; otherwise, continue

at the same dose. If q̂i ≥ γ, then de-escalate if γ − q̂i−1 < q̂i − γ for i > 1;

otherwise, continue at the same dose.

3. Repeat steps 1-2 until some pre-speci�ed stopping criterion is met.
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Usually the target toxicity rate is set at γ = 0.33 and the cohort size is chosen to

be 3. Although the method allows starting with any dose level between 1 and d,

the safest option is to start with 1. The trial can be stopped based on two criteria:

if the same dose has been assigned consecutively to 3 or 4 cohorts or if the trial

reaches a sample of 24 patients. The MTD is the dose indicated for the next cohort

when the trial stops. This design has the �exibility to choose any percentile as the

target risk of toxicity and usually more than six patients are treated at the MTD,

which lessens the variability of the estimate of the MTD.

The most attractive feature of the rule-based designs is that they are easy to imple-

ment and no specialised software is required for computation. But their operating

characteristics are not very attractive. The designs often allocate doses based on the

outcomes from the last cohort, rather than considering the cumulative data from

all of the treated cohorts. Some of these designs are unable to establish a dose that

meets any speci�c target toxicity. Despite all of these limitations, rule-based designs

have been used in many clinical trials.

2.2.2 Model-Based Designs

Model-based designs are alternatives to rule-based designs and they assume a para-

metric model to establish the dose-response relationship. Such designs select a dose

level that produces a target probability of toxicity using all of the accrued data in a

trial. These designs are usually implemented under the Bayesian framework, as the

sample size remains small at the early stages of a trial. The common model-based

designs include the continual reassessment method, escalation with overdose control

and others.

Continual Reassessment Method

The continual reassessment method (CRM) (O'Quigley et al., 1990) is a Bayesian

model-based procedure for dose escalation. The design aims to reduce the number of

patients at subtherapeutic doses and to obtain a more accurate estimate of the MTD.
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Assume that d pre-speci�ed doses {x(1), . . . , x(d)} are available for an experimental

drug. Let Yk be the response from the kth patient (k = 1, 2, . . . , n), which may be

toxic or nontoxic with value 1 or 0, respectively. The method employs parametric

models, such as the hyperbolic tangent model, logistic model or power model to

characterise the dose-response relationship. For example, a one-parameter logistic

model is given as

ψ(xk, β) =
exp(3 + βxk)

1 + exp(3 + βxk)
, (2.3)

where 3 is the assumed value for the intercept parameter (Ishizuka and Ohashi,

2001), β is the unknown slope parameter, xk is the dose administered to the kth

patient and ψ denotes the probability of toxicity. The advantage of using a one-

parameter model is that it requires fewer patients to obtain precise estimate of the

unknown parameter. However, such a model may not be �exible enough to represent

the dose-response relationship accurately.

Let us assume that Θ is the parameter space for β. Initially, a prior distribution

g(β) for β is considered, which is updated sequentially. Denote the prior distribution

for β for the kth patient by f(β, Sk) where Sk = {y1, y2, . . . , yk−1}. This prior is the

posterior distribution for β based on the outcomes from the �rst k− 1 patients and

is obtained as

f(β, Sk) =
f(β, Sk−1) L(β|xk−1, yk−1)∫

Θ
f(β, Sk−1) L(β|xk−1, yk−1) dβ

=
g(β)

∏k−1
l=1 L(β|xl, yl)∫

Θ
g(β)

∏k−1
l=1 L(β|xl, yl) dβ

, (2.4)

where L(β|xl, yl) = {ψ(xl, β)}yl {1 − ψ(xl, β)}1−yl is the likelihood function of β

given the response yl at xl, the dose received by the lth patient. The mean of the

posterior distribution of β, denoted by µk, is obtained as

µk =

∫
Θ

β f(β, Sk) dβ. (2.5)

With this mean, the risk of toxicity at each of the doses is updated by using the

equation

ψik = ψ(x(i), µk), i = 1, 2, . . . , d. (2.6)
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For a pre-speci�ed target probability of toxicity γ, the trial starts with the dose for

which the prior probability of toxicity is around γ. That dose is chosen for the kth

patient for which the absolute di�erence between the updated estimate of probabil-

ity of toxicity and the target toxicity rate is minimum. The process continues until

a �xed sample size n is achieved and the MTD is the dose that would be allocated

to patient n+ 1 if he were in the trial.

To investigate how the CRM would perform if adopted in some completed trials,

O'Quigley and Zohar (2006) reported some retrospective analyses. Their reanalysis

of the studies in Giles et al. (2004), Gelmon et al. (2004), Bos et al. (2005), and

Okamoto et al. (2006) clearly show the advantage of using the CRM over the 3+3

design. That is, it reaches the MTD more quickly and treats more patients at and

close to the MTD.

There was considerable debate in the statistical literature about the original version

of the CRM, as it starts with the initial MTD and also many patients are likely to

be exposed to high toxicity because of skipping dose. Various modi�cations have

been suggested to make it safer. Some of these include: (1) treating the �rst pa-

tient at the lowest dose level (Korn et al., 1994); (2) not allowing dose escalation

for the next patient if a patient experiences toxicity (Faries, 1994); (3) increasing

the dose by only one pre-speci�ed level at a time (Goodman et al., 1995); and (4)

treating several patients at the same dose level, especially for the higher dose levels

(Goodman et al., 1995). Møller (1995) proposed a two-stage CRM in which the

�rst stage involves an up-and-down method until the �rst toxicity is observed. The

design then moves to the second stage and starts using the CRM. Also, it does not

allow skipping of more than one dose level at a time during the second stage. Heyd

and Carlin (1999) suggested stopping a trial if the estimated MTD achieves a pre-

speci�ed precision. The time-to-event continual reassessment method (TITE-CRM)

is another modi�ed version proposed by Cheung and Chappell (2000), which takes

into account the time to toxicity for each patient in the dose-escalation procedure.
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These modi�cations have been implemented in clinical practice.

O'Quigley and Shen (1996) proposed a new version of the CRM based on the clas-

sical likelihood approach of parameter estimation which is known as the continual

reassessment maximum likelihood (CRML) method. There are some perceived di�-

culties by clinicians regarding the original version of the CRM. These include starting

with the dose which is the best prior guess of the MTD, incorporating prior infor-

mation regarding the model parameters and the numerical integration necessary in

the implementation of the method. The CRML appears to deal with the above

three di�culties. Since initially the new design uses an up-and-down design which

starts with the lowest dose, it does not require the best prior guess of the MTD to

start with. Also, as the design is based on the frequentist approach, it ignores any

prior information regarding the parameters. The operating characteristics of the two

methods are very similar. Although simulation studies show some minor di�erences

in dose allocation during the trials, the �nal recommendations are almost the same.

As the likelihood equation has no solution until a toxic outcome is observed, the

CRML can be applied only after the occurrence of such an outcome. To overcome

this, a suggestion is to initially use either a standard up-and-down procedure or the

CRM until a toxic outcome is observed, after which dose allocation can be based on

the CRML.

Escalation with Overdose Control

As the original version of the CRM received a lot of criticism for its potential for ex-

posing patients to overly toxic doses, various suggestions have been made to improve

it further as discussed earlier. In a further attempt, Babb et al. (1998) introduced

an alternative method that directly reduces the chance of overdosing. The main

argument is that allocating doses which are close to the MTD, as in the CRM, is

not attractive from an ethical point of view, and, therefore, their design tries to

allocate doses more cautiously.
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This new method is known in the statistical literature as escalation with overdose

control (EWOC) and it is designed to approach the MTD as fast as possible, subject

to the constraint that the predicted proportion of patients who receive an overdose is

equal to a speci�ed value α, called the feasibility bound. The method is implemented

by computing the posterior cumulative distribution function of the MTD after each

assignment of a dose to a patient. At the kth stage of a trial, the posterior cumulative

distribution function of the MTD is a function given by

πk(xMTD) = P{MTD ≤ xMTD|Sk},

where xMTD is the dose expected to produce toxicity in a speci�ed proportion γ of

patients and Sk denotes the responses available from the previous patients. The

EWOC method then selects the dose xk for the kth patient such that

πk(xk) = α.

That is, the method selects the dose for each patient so that the predicted proba-

bility that it exceeds the MTD is equal to α. Generally, a trial is continued until

the maximum sample size n is reached. Upon completion of the trial, the MTD

is estimated by minimising the posterior expected loss with respect to some choice

of loss function. One should consider asymmetric loss functions since underestima-

tion and overestimation have very di�erent e�ects. The simulation study shown

in the paper revealed that, relative to the CRM, the EWOC method overdosed a

smaller proportion of patients, exhibited fewer toxicities and estimated the MTD

with slightly lower average bias and marginally higher mean square error. Similarly,

relative to designs based on up-and-down schemes, EWOC treated fewer patients

at subtherapeutic and toxic doses, treated a higher proportion of patients at doses

near the MTD and estimated the MTD with lower average bias and mean square

error.

Although the original paper suggested α to be 0.25, the feasibility of varying α dur-
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ing the trial has also been studied by di�erent authors. These include Babb and

Rogatko (2001, 2004) and Cheng et al. (2004). This approach is motivated by the

fact that, in the early stages of a trial, the uncertainty about the MTD remains

high and a small value of α can prevent the method from choosing doses higher

than the MTD. The uncertainty decreases with the advancement of a trial and the

likelihood of selecting a dose which is higher than the MTD becomes smaller. Chu

et al. (2009) proposed a hybrid method in which EWOC begins with α = 0.1 and

then α gradually increases according to a �xed schedule up to α = 0.5.

Tighiouart et al. (2005) addressed the issue of the choice of prior distributions for

xMTD and ρ0, which are the MTD and the probability of toxicity at the starting

dose, respectively. They extended the class of restrictive priors used in the original

version of EWOC by relaxing some of the constraints placed on (ρ0, xMTD). Through

simulation, they showed that a candidate joint prior distribution for (ρ0, xMTD) with

negative a priori correlation between these two parameters could lead to a safer trial

than the one which assumes independent priors.

Babb and Rogatko (2001) extended the idea of EWOC further to include covariates,

so that patient-speci�c dose allocation is possible.

Cheung (2005) studied the coherence conditions of dose-�nding studies in the context

of phase I clinical trials. Many phase I designs are outcome-adaptive, as the selection

of dose for the next patient depends on the accumulated observations. An escalation

of dose for the next patient is said to be coherent when the outcome from the previous

patient was not toxic. Similarly, a de-escalation is said to be coherent if the last

outcome was a toxic one. A design with these conditions is called coherent. The

feature limits the risk of exposing patients to highly toxic doses. As reported by

Cheung (2005), most of the phase I designs like the 3+3, the CRM and EWOC

have this attractive feature. Incoherence of these designs may happen due to ad hoc
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modi�cations that are often made in the course of a trial.

2.3 Phase II Designs

In phase II studies, the focus moves from toxicity to e�cacy. The investigators want

to examine whether a drug has su�cient e�cacy to be studied in the next phase.

Phase II trials are mainly divided into two parts: IIA and IIB. The phase IIA trials

are usually single-arm studies and devoted to assessing the e�cacy of the experi-

mental drug with the goal of identifying the best dose. The phase IIB trials are

multi-arm studies and aim to compare the experimental drug with other standard

drugs, so that large-scale comparison is possible in phase III for the most promising

drug. Multi-stage designs are often useful in phase IIA trials, so that trials can stop

early due to futility or e�cacy.

A two-stage design is a special case of a multi-stage design. The essence of a two-

stage design is that in the �rst stage a small group of patients are enrolled and

enrolment of another group of patients in the second stage depends on the outcomes

from the previous stage. The motivation behind a two-stage design is that we do

not want to enrol a large group of patients if a drug is not found to be promising.

A �rst of this type of two-stage design was proposed by Gehan (1961). The method

received criticism since the sample size remains �xed in the �rst stage. Use of a �xed

sample size ignores the possibility of stopping a trial early. Simon (1989) proposed

two approaches to �nd a two-stage design. The �rst one is the minimax design that

minimises the maximum trial sample size. The second is the optimal design that

minimises the expected sample size under the null hypothesis that the true response

probability is equal to a speci�ed value.

Jung et al. (2001) proposed a graphical method to search for a design that is a com-

promise between the optimal and minimax designs. This approach helps in �nding

a design that has sample size close to that of the minimax design and expected

sample size close to that of the optimal design. Jung et al. (2004) proposed a family
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of two-stage designs that are admissible according to a Bayesian decision-theoretic

criterion. It is based on an ethically justi�ed loss function, which is a weighted

average of the maximum sample size and the expected sample size under the null

hypothesis. An admissible design is one that minimises the loss function for some

chosen weights. The family, as special cases, includes the minimax, optimal and

compromise designs. Mander et al. (2012) extended the methodology by incorpo-

rating an additional term in the loss function. More speci�cally, the expected sample

size under the alternative hypothesis that the true probability of response is above

the value speci�ed in the null is also considered in the loss function.

Bryant and Day (1995) allowed the simultaneous monitoring of e�cacy and toxicity

in a two-stage design. Mander and Thompson (2010) suggested a two-stage design

for cancer clinical trials that minimises the expected sample size under the alterna-

tive hypothesis. The Simon two-stage design allows early stopping for futility only.

However, the above new design allows stopping for e�cacy. Wason et al. (2011)

showed that the consideration of a continuous endpoint in a two-stage cancer clini-

cal trial can reduce the sample size. This gain is signi�cant in the sense that it will

reduce the development time of a drug.

On the other hand, phase IIB is carried out if a drug passes through phase IIA. The

trials in this phase are smaller in comparison with the phase III trials. They are

often randomised, multi-arm trials with the aim of identifying the optimal dose for

extensive study in the next phase.

All of the phase I designs that we have described in the previous section utilise the

toxicity data only and make the implicit assumption that higher e�cacy rates are

associated with higher doses. This assumption may not be true for all classes of

drugs. Also, an independent study for establishing the e�cacy of the drug through

phase IIA trials can extend the time for development. To overcome all of these

shortcomings, we need designs that can take care of both toxicity and e�cacy data:
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see Section 1.2 for more explanation. In the following section, we describe some such

designs which combine the objectives of both phase I and phase II.

2.4 Designs using E�cacy and Toxicity as Endpoints

These designs are appropriate when we have no reason to assume that both toxicity

and e�cacy follow the same pattern of relationship with dose, and we also want

to minimise the time and costs associated with the drug development. The main

essence of these designs is that they �nd a dose for further studies which is both

safe and e�cacious.

Thall and Russell (1998) developed a dose-�nding method that satis�es e�cacy

and also safety requirements. The dose-response outcome in this case is trinomial,

accounting for both e�cacy and toxicity. The outcome is categorised as neutral,

e�cacious or toxic. The dose-response relationship is modelled by assuming the

proportional odds (PO) model (McCullagh and Nelder, 1989). The trial starts with

the lowest dose assigned to a cohort of patients. At each step, it determines the set

of acceptable doses based on minimum e�cacy and maximum toxicity requirements.

The acceptable dose, for which the e�cacy criterion probability is largest, is allo-

cated to the next cohort. The trial terminates if none of the doses are acceptable;

otherwise, it continues until the maximum sample size is reached. The method treats

a su�cient number of patients to estimate the rates of e�cacy and toxicity at the

selected dose with a given reliability. But it su�ers from the limitation that in the

settings where all of the doses have acceptable toxicity with higher e�cacy at the

higher doses, it does not escalate to the more desirable doses with high probability.

So the method often fails to detect the best dose in the presence of a number of

candidate doses.

Thall and Cook (2004) proposed another method based on the trade-o�s between

treatment e�cacy and toxicity. The method uses the previous methodology for

�nding acceptable doses. However, it computes a desirability index for all of the
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acceptable doses. The index depends on the marginal probabilities of e�cacy and

toxicity of the corresponding doses. As in the previous case, if no acceptable dose is

available, the trial terminates and no dose is recommended for further evaluation.

Otherwise, the dose with maximum desirability is assigned to the next cohort, sub-

ject to the condition that no untried dose may be skipped when escalating. The trial

is continued until the maximum sample size is reached and the dose with maximum

desirability is recommended for further studies. It provides a substantial improve-

ment over the earlier version and also accommodates bivariate binary outcomes.

The method is known as E�Tox in the statistical literature.

Zhang et al. (2006) proposed another such idea considering trinomial responses. The

design has a similar approach to that of Thall and Russell (1998), but it utilises a

more �exible continuation ratio (CR) model. The design selects a dose based on

a optimal dose selection criterion that is expressed as the di�erence between the

probabilities of e�cacy and toxicity multiplied by a scalar in the range between

0 and 1. However, the advantage of this scale parameter is not clear. There are

dose-response scenarios where consideration of such an optimality criterion will lead

to the recommendation of doses which are far away from the true optimal dose.

The method is popularly known as TriCRM. The previous two approaches involve

considerable e�ort to elicit priors. In that regard, TriCRM is a simple alternative.

Dragalin and Fedorov (2006) suggested an adaptive procedure considering e�cacy

and toxicity as endpoints. The modelling of these endpoints is based on either Gum-

bel bivariate binary logistic regression or the Cox bivariate binary model. They

express a dose-�nding problem in terms of a penalised D-optimality criterion. The

design maximises the information under the control of a penalty function for treat-

ing patients at doses which are too low or too high.

Thall et al. (2008) presented a dose-�nding procedure based on bivariate outcomes

that incorporates patient covariates and dose-covariate interactions. This is an ex-
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tension of the methodology in Thall and Cook (2004) to allow for covariate e�ects.

More recently, Thall and Nguyen (2012) proposed a new approach based on elicited

utilities of the possible dose-response outcomes.

Since the model-based designs use all of the available data, they are e�cient in

�nding the best dose for further studies. They also avoid treating many patients

at the subtherapeutic doses. Because most of the designs are based on a Bayesian

framework, the success of the trials depends on the assumed prior distribution for

the model parameters. Specialised software is required for identifying the best dose

at each step of a trial. Since these designs have attractive operating characteristics,

they are becoming more popular.

2.5 PK-Guided Designs

Although clinical researchers possess the opinion that PK information has an im-

portant role in clinical response (Govindarajulu, 1988), very little e�ort has been

made so far to incorporate such information in dose-response studies. Piantadosi

and Liu (1998) described a method for incorporating PK information as a covariate

in a dose-response model suitable for binary toxicity responses. In particular, they

put the AUC in the dose-response model. Their objective is to consider drug con-

centration rather than just dose administered. They want to prevent patients from

receiving too high a dose of the experimental drug. The study demonstrates that the

e�ciency and accuracy of phase I clinical trials can be improved by incorporating

such information. Although the implementation of the method requires accurate PK

data, they have not used the theory of optimal design to collect the data. Moreover,

estimating the AUC following the usual approaches will require many blood samples

to be collected.

Whitehead et al. (2007) presented an approach for phase I trials based on simulta-

neous monitoring of pharmacokinetic and pharmacodynamic responses. Following a

logarithmic transformation, a linear model is employed to relate dose to the pharma-
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cokinetic endpoint and a quadratic model to relate the pharmacokinetic endpoint to

the pharmacodynamic endpoint. A logistic model is used to relate the pharmacoki-

netic endpoint to the risk of an adverse event. The approach allows us to relate the

amount of drug absorbed, re�ected by the AUC, rather than the dose, to the risk of

an adverse event. The doses which lead to an excessive plasma concentration or high

risk of toxicity are avoided during each stage of the trial. The �nal dose at each stage

is selected based on the predictive distribution of the pharmacodynamic endpoint.

From the discussion, it appears that the method is appropriate for phase I trials only.

The methodology in Zhou et al. (2008) is for phase I trials in healthy volunteers. For

each individual in the trial, it monitors two continuous pharmacokinetic measures

AUC and Cmax, and a binary indicator variable for an undesirable event. The method

uses no dose for which the posterior value of P (AUC > LAUC), or P (Cmax > LC)

or P (DLT) is greater than 0.2. The safety limits LAUC and LC are set prior to the

start of a trial and are expected to be obtained from expert opinion in preclinical

studies. The smallest dose that satis�es all three conditions is recommended at the

end of each step of the trial.

Observe that the methods that incorporate PK measurements in dose-escalation

are mostly for phase I trials. To our knowledge, no method is available in the

literature that can explicitly take into account PK data along with e�cacy and

toxicity endpoints. Moreover, even in the methods for phase I trials, we have not

seen the use of population optimum design for PK sampling. The use of optimum

design can reduce the number of samples and can also provide precise estimates of

the model parameters. This is very important, as often the parameters have physical

meanings. Our design is di�erent, since it is for seamless phase IB/IIA trials and it

also considers population optimum design for PK sampling.
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Chapter 3

Population PK Models and Design

3.1 Introduction

The concentration of a drug depends on absorption, distribution, metabolism and

excretion. Since these mechanisms di�er among patients, an approach to describe

PK data should be such that it can capture the inter-patient variability. Moreover,

it should allow us to generalise the �ndings to a population of patients. Population

modelling, based on mixed e�ects models, is one such approach that helps in under-

standing how the individuals from a population di�er from one another. Therefore,

this chapter begins with an introduction to the population approach to modelling

PK data.

Starting with the underlying idea, we introduce compartmental models that are

commonly used in the analysis of PK data. These models are based on the solutions

to di�erential equations representing the distribution of a drug in the body's com-

partments. Such models are non-linear in the parameters. Therefore, the population

approach in this thesis will lead us to non-linear mixed e�ects models.

We introduce the general non-linear mixed e�ects model and derive the associated

Fisher information matrix. To illustrate the general model, we consider two speci�c

PK models and the analytical forms are obtained for the information matrices. We

then discuss di�erent optimality criteria in the context of design. The properties of



the parameters AUC and Cmax are also studied in detail. The results will assist in

the optimum dose selection in an adaptive clinical trial.

3.2 Population Approach

The population approach to PK modelling quanti�es the e�ect of a drug in a popu-

lation of patients. It allows the quanti�cation of variability in plasma concentration

over a patient population.

For a drug, the concentration pro�les over individuals often have similar shapes but

they may vary: see Figure 3.1. The data presented are from an experiment on the

pharmacokinetics of the drug indomethacin (Kwan et al., 1976). The same dose was

given to six individuals through bolus intravenous injection. The plasma concentra-

tions of each of the individuals were then measured in mcg/ml 11 times during a

period of 8 hours and 15 minutes. The measurement time points were the same for

all six individuals. These data are also available in the R library nlme as the object

Indometh. Figure 3.1 indicates that the concentration curves have a similar shape

but they vary across the individuals. For instance, the peaks for individuals 1, 4

and 2 are close to each other, but they are lower than those for individuals 5, 6 and 3.

If we can assume the underlying mechanism is the same for all individuals, then we

can use the same regression function but with individual parameter values for each

subject. Thus, we can think of individual parameter values to be realisations of

random variables. The mean parameters provide a pro�le for a typical individual.

The population approach is based on non-linear mixed e�ects (NLME) models and

have been widely used in the literature for many years (Sheiner et al., 1972; Yuh

et al., 1994; Sheiner and Steimer, 2000).

Since sampling PK responses involves a cost, it is desirable to keep the number of

samples and the number of patients as low as possible during an experiment. Also,

a trial should be conducted in such a way that it ensures reliable estimates of the
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Figure 3.1: Concentration pro�les of six individuals following the intravenous injec-
tion of indomethacin.

parameters. The theory of optimal design for non-linear mixed e�ects models helps

to achieve this.

3.2.1 PK Compartmental Models

The recording of plasma concentration over time after the administration of a drug

gives a concentration pro�le as in Figure 3.1. The concentration at any time de-

pends on dose and the processes of absorption, distribution, metabolism and excre-

tion. Therefore, the concentration of a drug at a given time point can be expressed

through a function that incorporates dose and the rates of ADME. The models

which serve this purpose are compartmental and are non-linear in the parameters.

In compartmental models, the body is thought to consist of several compartments.

The central compartment is the one that remains in any model. A compartment is

a homogeneous unit that is used to represent a group of tissues with similar rates of

drug distribution. Usually one- to three-compartment models are used to quantify

concentration-time pro�les. If a drug is found to be distributed in the tissues of
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a body very quickly, we may use a one-compartment model. If it appears that

the drug is distributed at slower rates in di�erent tissues, use of either a two- or a

three-compartment model would be reasonable.

One-Compartment Model

In a one-compartment model, the body is regarded as a single compartment. The

tissues in that compartment have a high rate of drug intake. It is assumed that the

Figure 3.2: A one-compartment model.

drug is instantaneously distributed throughout the body after the administration

and also that it achieves equilibrium between the tissues. Figure 3.2 (Dubois et al.,

2011) depicts the structure for a one-compartment model, where the central com-

partment has the volume of distribution V of the drug. The drug is cleared from

that compartment at the rate ke.

One-Compartment Model without Absorption

Assume that a drug is administered intravenously with bolus injection. It is then

absorbed immediately in the central compartment. The drug is eliminated from

the body following the �rst-order kinetics, where the speed of the elimination is

proportional to the amount of drug left in the compartment. This can be expressed

in terms of the equation

dX(t)

dt
= −keX(t),

where X(t) is the amount of drug in the central compartment at time t and ke is the

elimination rate. Initially, X(0) = x, where x is the dose that has been administered.

To obtain the solution to this di�erential equation, we integrate both sides of the

equation
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dX(t)

X(t)
= −kedt,

which leads to

X(t) = ce−ket,

where c is a constant. Using the initial condition at t = 0, the above equation gives

c = x, and so

X(t) = xe−ket.

Therefore, the concentration at time t can be written as

C(t) =
X(t)

V
=
x

V
e−ket =

x

V
e−

Cl
V
t, (3.1)

where Cl is the clearance of the drug, V is the volume of distribution and ke = Cl/V .

A description of these parameters is given in Section 3.3.

One-Compartment Model with First-Order Absorption

Now we assume that the administered drug has an absorption phase following the

�rst-order kinetics. That is, the speed of the absorption is proportional to the

amount of drug that is yet to be absorbed. Then the processes of absorption and

elimination can be described by the following set of di�erential equations:

dX1(t)

dt
= kaX2(t)− keX1(t),

dX2(t)

dt
= −kaX2(t),

with initial conditions X1(0) = 0 and X2(0) = x. Here, X1(t) is the amount of drug

in the central compartment at time t, X2(t) is the amount of drug that is yet to be

absorbed and ka is the absorption rate. From the solution to this set of di�erential
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equations given in Section A.1, it can be shown that the concentration at time t is

C(t) =
X1(t)

V
=

xka
V (ka − ke)

(e−ket − e−kat). (3.2)

Two-Compartment Model

For many drugs, the body cannot be assumed to be a single homogeneous unit, but

it is su�cient to consider two compartments: a central one and a peripheral one.

The tissues in the central compartment are highly perfused such as the heart, kidney,

liver, lung and brain. The peripheral compartment comprises of less perfused tissues

such as muscle and skin. So the tissues and plasma in the central compartment can

Figure 3.3: A two-compartment model.

absorb the drug rapidly, whereas those in the peripheral compartment absorb the

drug at a slower rate. The central and peripheral compartments have V1 and V2

as the volumes of distribution, respectively. The rates of transfer from the central

compartment to the peripheral compartment and back are k12 and k21, respectively.

The drug is eliminated from the central compartment at the rate ke. Figure 3.3

represents such a model.

Two-Compartment Model with First-Order Absorption

The drug is absorbed and eliminated via the central compartment. The exchange

between the central compartment and the peripheral compartment follows �rst-order

kinetics. The overall process can be explained by the following set of di�erential

equations:
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dX1(t)

dt
= −(ke + k12)X1(t) + k21X2(t) + kaX3(t),

dX2(t)

dt
= k12X1(t)− k21X2(t),

dX3(t)

dt
= −kaX3(t),

with initial conditions X1(0) = 0, X2(0) = 0 and X3(0) = x. Here, X1(t) and X2(t)

are the amounts of drug in the central and peripheral compartments, respectively,

and X3(t) is the amount of drug to be absorbed at time t. The concentration in

the central compartment at a given time point after the administration of a dose

can obtained by solving the above set of di�erential equations. The derivation will

follow similar steps to the one shown in Section A.1.

Three-Compartment Model

This is an extension of the two-compartment model, where the drug is distributed

at a very slow rate to certain tissues such as fat and bone. These tissues constitute

the third compartment.

Figure 3.4: A three-compartment model.

The mechanism for such a three-compartment model is illustrated in Figure 3.4

(Dubois et al., 2011).

Three-Compartment Model with First-Order Absorption

For the three-compartment model when the drug is absorbed following the �rst-

order absorption, the following set of di�erential equations express the structure of
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the process:

dX1(t)

dt
= −(ke + k12 + k13)X1(t) + k21X2(t) + k31X3(t) + kaX4(t),

dX2(t)

dt
= k12X1(t)− k21X2(t),

dX3(t)

dt
= k13X1(t)− k31X3(t),

dX4(t)

dt
= −kaX4(t),

with initial conditions X1(0) = 0, X2(0) = 0, X3(0) = 0 and X4(0) = x. Here,

X1(t), X2(t) and X3(t) are the amounts of drug in the central and two peripheral

compartments, respectively, and X4(t) is the amount of drug yet to be absorbed at

time t. This set of di�erential equations can be solved to obtain the concentration

in the central compartment at any time following the administration of a dose. The

derivation is similar to the one shown in Section A.1 for the one-compartment model.

Since most of the kinetic functions are derived from di�erential equations, as shown

above, they are non-linear in the parameters. These parameters often have physical

interpretations. For example, those in (3.1) and (3.2) have their own meanings, as

will be explained in Section 3.3.

From the discussion in Section 3.2, we know that variability in the concentration

pro�les is very likely to be present among patients after receiving the same dose.

We always try to identify the sources of such variability in an attempt to model it

accurately. The theory of mixed e�ects models allows us to do this. Since com-

partmental models, which are non-linear in the parameters, are to be used and as

inter-patient variability in the concentration pro�les exists, we plan to use non-linear

mixed e�ects models for the purpose of modelling PK data.

3.3 Important PK Parameters

In this section, we list some commonly used PK parameters that will be used

throughout the thesis. Some of these also appear in the functions that express
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concentration as a function of time.

Volume of Distribution

The volume of distribution is de�ned as that volume of plasma in which the total

amount of drug in the body would be required to be dissolved in order to re�ect the

drug concentration attained in plasma. It is denoted by V and quanti�es the distri-

bution of a medication between plasma and the rest of the body after dosing. It can

be calculated by dividing the amount of drug in the body (X) by the concentration

(C), that is,

V =
X

C
.

Clearance

The clearance is de�ned as the amount of plasma that is cleared of the drug per

unit of time. It is denoted by Cl and its units are volume/time. Clearance can be

expressed as

Cl = V × ke,

where ke is the elimination rate.

Absorption Rate

The absorption rate, denoted by ka, determines the time required for the adminis-

tered drug to reach an e�ective plasma concentration. Therefore, the rate in�uences

both the occurrence of the maximum concentration (Cmax) and the time to achieve

it (tmax).

Elimination Rate

The elimination rate describes the rate at which the drug is removed from the body

and is denoted by ke.
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Area Under the Concentration Curve

The area under the concentration curve (AUC) re�ects the overall amount of drug

in the plasma after the administration of a dose. Its units are the product of con-

centration and time. For instance, they could be mg/l× hr. There are situations

where a small increment in dose may produce a large increase in AUC (Graham

and Workman, 1992). Also, drugs tend to produce toxicity at higher levels of AUC.

Therefore, a drug can be administered safely by monitoring plasma concentration.

The AUC can be regarded as one of the important PK parameters to guide in pre-

venting patients being allocated toxic doses.

A non-parametric approach is often used to obtain the AUC. It employs the trape-

zoidal rule (Gabrielsson and Weiner, 2000) and requires a large number of samples

per subject. An alternative is estimation based on a PK model. For many PK mod-

els, it is possible to obtain an analytical form for the AUC by integrating the model

function over the design region. Use of optimal sampling time points will reduce the

number of samples to be collected per subject, and so the parametric approach has

an advantage over the non-parametric one. Hence, the parametric approach will be

used here to �nd the AUC.

Maximum Concentration

The maximum concentration, denoted by Cmax, is the peak in the concentration that

is achieved after the administration of a dose. The time at which this concentration

is observed is denoted by tmax. For a PK model, it is possible to �nd tmax and thus

Cmax. A high value of Cmax is likely to produce side e�ects and therefore monitoring

this parameter is often crucial in clinical practice.

Figure 3.5 shows the concentration pro�les for di�erent individuals. Although they

receive the same dose, the pro�les are di�erent. The shapes are similar but each

individual has distinct values for the parameters. The AUC and Cmax also vary

over the individuals. To model these variabilities, an appropriate choice would be a
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Figure 3.5: Concentration pro�les for di�erent individuals following the model func-
tion in (3.21).

non-linear mixed e�ects model.

3.4 Non-Linear Mixed E�ects Model

We have a PK response to be measured on each individual i (i = 1, . . . , N). The

response will be measured at ni sampling times denoted by ξi = (ti1, . . . , tini
). We

describe the population design for the total number of observations n =
∑N

i=1 ni by

Ξ = {ξ1, . . . , ξN}.

The responses can be represented through a known function f : R+ → R+. Then,

for the ith individual, we can write f(ξi;θi) = (f(ti1;θi), . . . , f(tini
;θi))

T , where θi

is the vector of all the individual parameters. The vector θi has two components

β and bi, where β is the p-vector of mean population parameters and bi is the p-

vector of random e�ects for the ith individual. These are related through a vector of

functions g, that is, θi = g(β, bi). The functions g are often chosen to be additive

or exponential. We consider the simple case of θi = β + bi. It is assumed that

bi ∼ Np(0,Ω), with Ω de�ned as a p× p diagonal matrix. We denote the kth diag-

onal element of Ω by σ2
k (k = 1, . . . , p), which is the variance of the kth component

of bi.

Let yi = (yi1, . . . , yini
)T represent the vector of observations for the ith individual.
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Then the statistical model is given by

yi = f(ξi; g(β, bi)) + εi, (3.3)

where εi = (εi1, . . . , εini
)T is the vector of random errors associated with the re-

sponses. We assume that εi ∼ Nni
(0, σ2Ini

). The vector of all the population param-

eters to be estimated is represented by Ψ = (βT ,λT )T , where λ = (σ2
1, . . . , σ

2
p, σ

2)T

is the vector of variances.

3.4.1 Linearisation of the Model

Since our model is non-linear in the parameters, derivation of an analytical expres-

sion for the log-likelihood function is not possible. Various approximations to the

information matrix have been proposed in the literature. A comparison of di�erent

methods is presented by Mielke (2012), who concludes that none of the methods is

uniformly best. Lindstrom and Bates (1990) use a �rst-order Taylor series expansion

of the model function f about the �xed parameters and the random e�ects at their

estimates. At the design stage, there are no data to obtain the estimates, and so

we use pre-speci�ed values β0 for the �xed e�ects and the expectation of the ran-

dom e�ects. That is, we approximate the log-likelihood using the �rst-order Taylor

series expansion of the function f(ξi;θi) = f(ξi; g(β, bi)) about φi = (β, bi)
T at

φ0 = (β0, E(bi))
T

= (β0,0)
T
.

Following the Taylor series expansion, we have
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f(ξi; g(β, bi)) ∼= f(ξi; g(β, bi))

∣∣∣∣
φ0

+

(
∂f(ξi; g(β, bi))

∂φi

)T ∣∣∣∣
φ0

(φi − φ0)

= f(ξi; g(β0,0)) +

(
∂f(ξi; g(β, bi))

∂β

)T ∣∣∣∣
φ0

(β − β0)

+

(
∂f(ξi; g(β, bi))

∂bi

)T ∣∣∣∣
φ0

(bi − 0)

= µi +

(
∂f(ξi; g(β, bi))

∂β

)T ∣∣∣∣
φ0

β +

(
∂f(ξi; g(β, bi))

∂bi

)T ∣∣∣∣
φ0

bi,

where µi is a ni × 1 vector of constants. With this approximation, the model in

(3.3) becomes a linear mixed e�ects model of the form

yi ∼= µi +

(
∂f(ξi; g(β, bi))

∂β

)T ∣∣∣∣
φ0

β +

(
∂f(ξi; g(β, bi))

∂bi

)T ∣∣∣∣
φ0

bi + εi. (3.4)

With matricesHi = (∂f(ξi; g(β, bi))/∂β)T
∣∣
φ0 and Li = (∂f(ξi; g(β, bi))/∂bi)

T
∣∣
φ0 ,

the model can be written as

yi ∼= µi +Hiβ +Libi + εi. (3.5)

Hence, we have

E(yi) ∼= Ei = µi +Hiβ (3.6)

and also, assuming that bi and εi are independent, we obtain

Var(yi) ∼= Vi = LiΩL
T
i + σ2Ini

. (3.7)

Since the matrices Hi and Li are evaluated at φ0, they no longer depend on the

parameters. However, the design solution will depend on the assumed prior values

φ0.
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3.4.2 Fisher Information Matrix

The Fisher information matrix (FIM) for the ith individual and design ξi is given

by

Mi(Ψ, ξi) = E

[
−∂

2li(Ψ | yi)
∂Ψ∂ΨT

]
,

where li(Ψ | yi) is the log-likelihood function for individual i.

Since bi and εi are assumed to be normal, the log-likelihood function is approximated

by

li(Ψ | yi) ∼= log

[
(2π)−

ni
2 |Vi|−

1
2 exp{−1

2
(yi −Ei)

TV −1
i (yi −Ei)}

]
.

That is,

− 2li(Ψ | yi) ∼= ni log(2π) + log |Vi|+ (yi −Ei)
TV −1

i (yi −Ei). (3.8)

Successive di�erentiation of (3.8) with respect to βl and βm gives

∂(−2li(Ψ | yi))
∂βl

∼= −2(yi −Ei)
TV −1

i

(
∂Ei

∂βl

)

and

∂2(−2li(Ψ | yi))
∂βm∂βl

∼= 2

(
∂Ei

∂βm

)T
V −1
i

(
∂Ei

∂βl

)
.

Therefore,

E

(
−∂

2li(Ψ | yi)
∂βm∂βl

)
∼=

(
∂Ei

∂βm

)T
V −1
i

(
∂Ei

∂βl

)
. (3.9)

Di�erentiation of (3.8) with respect to λl gives

∂(−2li(Ψ | yi))
∂λl

∼= tr

(
V −1
i

∂Vi
∂λl

)
+ (yi −Ei)

T

(
−V −1

i

∂Vi
∂λl

V −1
i

)
(yi −Ei), (3.10)
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since

∂ log |Vi|
∂λl

= tr

(
V −1
i

∂Vi
∂λl

)

and

∂V −1
i

∂λl
= −V −1

i

∂Vi
∂λl

V −1
i .

Also,

∂2(−2li(Ψ | yi))
∂βm∂λl

∼= 2(yi −Ei)
T

(
−V −1

i

∂Vi
∂λl

V −1
i

)(
− ∂Ei

∂βm

)
.

Therefore,

E

(
−∂

2li(Ψ | yi)
∂βm∂λl

)
∼= 0. (3.11)

Again, di�erentiation of (3.10) with respect to λm yields

∂2(−2li(Ψ | yi))
∂λm∂λl

∼= −tr

(
V −1
i

∂Vi
∂λm

V −1
i

∂Vi
∂λl

)

+ (yi −Ei)
T

(
V −1
i

∂Vi
∂λm

V −1
i

∂Vi
∂λl

V −1
i + V −1

i

∂Vi
∂λl

V −1
i

∂Vi
∂λm

V −1
i

)
(yi −Ei),

so that

E

(
∂2(−2li(Ψ | yi))

∂λm∂λl

)
∼= −tr

(
∂Vi
∂λm

V −1
i

∂Vi
∂λl

V −1
i

)
+ 2 tr

(
∂Vi
∂λm

V −1
i

∂Vi
∂λl

V −1
i

)
,

since, for a quadratic form, we have

E(XTAX) = tr(AΣ) + µTAµ,

where µ and Σ are the mean and variance of X, respectively.
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Therefore,

E

(
−∂

2li(Ψ | yi)
∂λm∂λl

)
∼=

1

2
tr

(
∂Vi
∂λm

V −1
i

∂Vi
∂λl

V −1
i

)
. (3.12)

Then the FIM for individual i can be approximated by the block diagonal matrix

Mi(Ψ, ξi) ∼=

 Ai 0

0 Bi

 , (3.13)

where the elements of matrices Ai and Bi are

(Ai)ml =

(
∂Ei

∂βm

)T
V −1
i

∂Ei

∂βl
for m, l = 1, . . . , p,

and

(Bi)ml =
1

2
tr

(
∂Vi
∂λm

V −1
i

∂Vi
∂λl

V −1
i

)
for m, l = 1, . . . , p+ 1.

The population FIM for the design Ξ is de�ned as the sum of N elementary Fisher

information matrices, that is,

M(Ψ,Ξ) =
N∑
i=1

Mi(Ψ, ξi).

For a single group of N individuals with identical designs, the population FIM is

M(Ψ,Ξ) = NM (Ψ, ξ). (3.14)

Unlike in linear models, here the FIM depends on the parameters of the model.

This is important as most of the criteria for design optimality are functions of the

information matrix, as is explained in the next section.

Retout et al. (2001) use a �rst-order Taylor series expansion of the model function

f about the expectation of the parameters to linearise the model. Although their

linearised model is di�erent from ours in (3.5), we have found that the FIMs in
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both cases are the same. To derive the FIM in their approach, one needs to assume

that Vi is independent of β. But their expression for Vi clearly indicates that this

will not be the case. However, in our approach, we do not need to make any such

assumption. Both FIMs produce the same design. This is because, in the criteria for

design optimality, only a function of the FIM is used and it will not matter whether

the two linearised models are exactly the same.

3.5 Optimal Experimental Designs

Optimal design depends on the statistical model and it optimises a chosen design

criterion. Compared to an optimal design, a non-optimal one requires a greater

number of experimental runs to provide the same statistical e�ciency. Use of optimal

design thus reduces the cost of conducting an experiment. Utmost care should be

taken in the choice of an optimality criterion so that it is consistent with the objective

of an experiment.

3.5.1 Optimality Criteria

In this section, we discuss some widely used design criteria which are based on the

books by Atkinson et al. (2007), Fedorov (1972), Berger and Wong (2009), and

Fedorov and Hackl (1997). Out of all of the optimality criteria to be presented, our

work only uses the D-criterion, since the objective is to minimise the variability in

the parameter estimates.

D-Criterion

The uncertainty in a set of parameter estimators can be expressed in terms of the vol-

ume of a con�dence ellipsoid. The precision of the estimators increases as the volume

decreases. The D-optimality criterion minimises the volume of the con�dence ellip-

soid, which is a function of the determinant of the covariance matrix. More specif-

ically, a design ξ∗D is called D-optimal if it minimises ΦD{M (ξ)} = log |M−1(ξ)|,

where M (ξ) is the FIM. That is,
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ξ∗D = arg min
ξ

log |M−1(ξ)|.

One important feature of the D-criterion is that the design obtained is invariant

under linear transformations of the scale of the explanatory variables. This im-

plies that, if the design region is changed, we can directly deduce the D-optimal

design from the one previously constructed. This property may not hold for other

optimality criteria.

A-Criterion

The A-optimality criterion minimises the sum or average of the variances of the

parameter estimators. A design ξ∗A is called A-optimal if it minimises ΦA{M (ξ)} =

trace{M−1(ξ)}. That is,

ξ∗A = arg min
ξ

trace{M−1(ξ)}.

This criterion su�ers from a few drawbacks. Firstly, it is not invariant under lin-

ear transformations of the scale of the explanatory variables. Secondly, sometimes

the variances of the parameter estimator may have very di�erent magnitudes and

therefore minimising the sum may mislead.

G-Criterion

Sometimes interest lies in predicting the response over the design region e�ciently. A

G-optimum design minimises the maximum standardised variance of the predicted

response over the design region. A design ξ∗G is called G-optimal if it minimises

ΦG{M(ξ)} = max
t∈T

ηT (t)M−1(ξ)η(t). That is,

ξ∗G = arg min
ξ

max
t∈T
{ηT (t)M−1(ξ)η(t)},

where η(t) = (∂f/∂θ1, . . . , ∂f/∂θp)
T is the vector of parameter sensitivities and T

is the design region. This criterion has a connection to the D-optimality criterion.
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Kiefer and Wolfowitz (1960) showed that the D- and G-optimality criteria are equiv-

alent in the case of so-called continuous designs, which are probability measures on

the discrete support of the design points. It is also known from their equivalence

theorem that the standardised variance function for a continuous G-optimum design

ξ∗ is always less than or equal to the number of parameters p in the model, that is,

d(t, ξ∗) ≤ p, with equality at the design points, where d(t, ξ∗) = ηT (t)M−1(ξ∗)η(t)

and d(t∗, ξ∗) = p.
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Figure 3.6: Standardised variance function plot for a continuous D-optimum design
for the model in (3.15).

To give an illustration, let us consider the one-compartment PK model with bolus

input and �rst-order elimination given by

yi =
x

V
exp

(
−Cl
V

ti

)
+ εi, i = 1, . . . , N, (3.15)

where yi is the concentration of a drug in the blood for the ith individual observed

at time ti, x is the dose received, V and Cl are the two parameters volume of

distribution and clearance, and εi is the random error term. Figure 3.6 presents

the standardised variance function plot for the evenly distributed D-optimal time

points ξ∗ = {0, 6.627}, obtained for the values β0 = (0.4, 0.06)T of the parameters.

The �gure indicates that the design has a standardised variance function satisfying

d(t, ξ∗) ≤ 2, where 2 is the number of parameters in the model, and also that equality

holds at the design points. So the design is both G- and D-optimal. This property

is quite often used to check the D-optimum designs obtained numerically and it is
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used for constructing algorithms to calculate D-optimum designs. The equivalence

theorem holds for continuous designs only. The D-optimum design that we use in

the thesis is of discrete type and hence we cannot employ the theorem to judge the

optimality of the design.

c-Criterion

When interest lies in a design to estimate a linear combination of the parameters,

cTβ, with minimum variance, the criterion to be used is c. A design ξ∗c is called

c-optimal if it minimises Φc{M(ξ)} = cTM−1(ξ)c. That is,

ξ∗c = arg min
ξ
{cTM−1(ξ)c}.

This criterion can also be used to estimate a non-linear function of the parameters

with minimum variance. For instance, assume that we have a non-linear function

g(β) to be estimated e�ciently. The function can be linearised by a Taylor series

expansion to give the components of vector c as

cj(β) =
∂g(β)

∂βj
, j = 1, . . . , p,

evaluated at prior values β0.

3.5.2 Locally Optimal Design

In linear models, the information matrix does not depend on the model parameters.

However, for non-linear models, the information matrix depends on the prior values

of the model parameters. Therefore, the optimal design that we derive for a non-

linear model is optimal locally only for a set of values of the parameters (Cherno�,

1953). Since the parameters are unknown and we want to estimate these through

the experiment in an optimal way, the search for an optimal design starts with some

prior values of the parameters.

Di�erent approaches are available in the literature to overcome the dependence of
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an optimum design on the unknown parameters. These include a sequential design,

a Bayesian design and a maximin design (Atkinson et al., 2007). The sequential

approach starts with some guess for the parameter values and as soon as the new

estimates are available, they are replaced. The process continues until the parameter

estimates are su�ciently precise or the experimental resources are exhausted. In

the thesis, we employ the sequential approach for constructing designs. Since, in an

adaptive dose-�nding design, we update the estimates of the model parameters at

each stage, they are likely to stabilise after several stages of the trial, as will the

design points.

Optimisation Algorithms

In our work, we want to minimise the variability in the PK parameter estimates,

and therefore the appropriate criterion for design optimality is D. The Cramér-Rao

inequality tells us that the covariance matrix of the parameter estimators is greater

than, and asymptotically approaches, the inverse of the FIM. Therefore, by min-

imising the inverse of the FIM through the D-criterion, we minimise the asymptotic

lower bound for the variance of the estimated model parameters.

It has already been mentioned that the derived FIM for our non-linear mixed e�ects

model has the same expression as in Retout, Du�ull, and Mentré (2001). Bazzoli

et al. (2010) developed PFIM 3.2, an R package, to evaluate and optimise designs

in the context of population PK/PD experiments. It has a library of PK models

with FIMs in Retout et al. (2001). Since both FIMs are the same, we can compute

the D-optimum design for PK responses using PFIM 3.2.

The package applies two algorithms for design construction: the Fedorov-Wynn al-

gorithm (Wynn, 1972) and the simplex algorithm (Nelder and Mead, 1965). The

Fedorov-Wynn algorithm relies on the equivalence theorem of Kiefer and Wolfowitz

(1960). It is an iterative algorithm that maximises the determinant of the FIM

within a �nite set of possible designs. It is important to note that maximisation of
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the determinant of the FIM is equivalent to the minimisation of the determinant of

the inverse of the FIM. Prior to the optimisation, one needs to provide the set of

possible time points. It is therefore possible to avoid clinically unfeasible sampling

times in this approach. Starting with an initial design, the algorithm then �nds a

design iteratively which satis�es the optimality criterion.

In many cases, feasible sampling times may not be known and therefore one can

assume a continuous interval of time as the design region. The algorithm to be

used in that case is the simplex algorithm, which is based on the method by Nelder

and Mead (1965). The method uses the concept of a simplex, which is a generalised

triangle in N dimensions. It iteratively generates a sequence of simplices to approxi-

mate an optimal point. An initial design is required to start the optimisation. From

this initial design, initial vertices for the simplex algorithm are derived. At each

iteration, the vertices of the simplex are ordered according to the objective function

values. The worst vertex, where the function has the maximum value, is rejected

and replaced with a new one. A new simplex is formed and the search is continued.

The method thereby produces a sequence of simplices for which the function values

at the vertices get smaller and smaller. The size of the simplex is reduced and the

coordinates of the optimum point are found. In our work, we employ the simplex

algorithm for the construction of designs, as the feasible sampling times are not

known.

3.6 Parameter Estimation in NLME Models

A number of methods are available in the literature for �tting non-linear mixed ef-

fects models with ongoing debate as to which is the most accurate method. Sheiner

and Beal (1980), Wol�nger and Lin (1997), and Lindstrom and Bates (1990) pro-

posed methods based on linearisation. Pinheiro and Bates (1995), Vonesh (1996)

and Wol�nger (1993) developed integral approximation methods. Kuhn and Lavielle

(2005), Walker (1996) and Wang (2007) proposed methods that use the expectation-

maximisation (EM) algorithm.
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In the linearisation method, an approximate linear model is derived using a �rst-

order Taylor series expansion of the model to obtain the analytical form for the

likelihood function. A Laplace approximation, Gaussian quadrature or importance

sampling are used in the integral approximation methods to obtain the marginal

distribution of the response variable. The method then maximises the likelihood

directly. Instead of a direct approximation to the marginal likelihood, the EM algo-

rithm approximates the conditional expectation of the log-likelihood in the E-step

and then maximises the expected log-likelihood to estimate the parameters in the

M-step. Of these, the linearisation methods are the most popular due to their nu-

merical simplicity.

The linearisation methods di�er with respect to the expansion locus of the random

e�ects. Beal and Sheiner (1982) suggested a method in which the likelihood function

is based on a �rst-order Taylor series expansion of the model function about the

mean of the random e�ects. Beal and Sheiner (1992) implemented this method in

the software package NONMEM. Lindstrom and Bates (1990) developed a method

in which the model function is expanded about the current estimate of the �xed

parameters and their random e�ects. Pinheiro and Bates (2000) implemented the

method in the package nlme, which is available in both the package S-PLUS and

in R. This is the method which we use for estimation of the PK parameters in

the examples presented in Chapter 6. It is worth mentioning that two di�erent

linearisation approaches are used in our work. These should not make a di�erence

as one is for designing purposes and the other is related to parameter estimation.

3.7 PK Mixed E�ects Model Examples

This section describes two models that we use for the concentrations for the purpose

of simulations in Chapter 6. Although the route of administration of the dose is

di�erent, both models treat the whole body as a single compartment.
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3.7.1 One-Compartment Model with Bolus Input and First-

Order Elimination

The one-compartment PK mixed e�ects model with bolus input and �rst-order

elimination is de�ned as

yil = f(til;θi) + εil

=
x

Vi
exp

(
−Cli
Vi

til

)
+ εil for i = 1, . . . , N and l = 1, . . . , ni,

(3.16)

where yil is the concentration of a drug in the blood for the ith individual observed

at time til, x is the dose received by the individual, and θi = β + bi = (Vi, Cli)
T is

the vector of parameters with β = (V,Cl)T and bi = (bVi , bCli)
T . We assume that

εi ∼ Nni
(0, σ2Ini

) and bi ∼ N2(0,Ω), where Ω = diag(σ2
1, σ

2
2). We can write,

f(ξi;θi) = f(ξi; g(β, bi)) =



x

Vi
exp

(
−Cli
Vi

ti1

)
x

Vi
exp

(
−Cli
Vi

ti2

)
...

x

Vi
exp

(
−Cli
Vi

tini

)


. (3.17)

To linearise the model, we expand it using a �rst-order Taylor series about φi =

(V,Cl, bVi , bCli)
T at φ0 = (V 0, Cl0, 0, 0)T. We obtain as an approximation the linear

mixed e�ects model

yi ∼= µi +Hiβ +Libi + εi,

where µi, Hi and Li are as in Section 3.4.1. For this speci�c model, we have
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Hi =


∂f(ti1; g(β, bi))

∂V

∂f(ti1; g(β, bi))

∂Cl
...

...

∂f(tini
; g(β, bi))

∂V

∂f(tini
; g(β, bi))

∂Cl


φ0

=



x

(V 0)2
exp

(
−Cl

0

V 0
ti1

)(
Cl0

V 0
ti1 − 1

)
− x ti1

(V 0)2
exp

(
−Cl

0

V 0
ti1

)
...

...

x

(V 0)2
exp

(
−Cl

0

V 0
tini

)(
Cl0

V 0
tini
− 1

)
−x tini

(V 0)2
exp

(
−Cl

0

V 0
tini

)

.

Since θi = β + bi, we have Hi = Li, where

Li =


∂f(ti1; g(β, bi))

∂bVi

∂f(ti1; g(β, bi))

∂bCli
...

...

∂f(tini
; g(β, bi))

∂bVi

∂f(tini
; g(β, bi))

∂bCli


φ0

.

Furthermore, E(yi) ∼= Ei = µi + Hiβ and Var(yi) ∼= Vi = LiΩL
T
i + σ2Ini

. Ac-

cording to (3.13), the FIM for the ith individual can be approximated by the block

diagonal matrix

Mi(Ψ, ξi) ∼=

 Ai 0

0 Bi

 , (3.18)

where

(Ai)ml =

(
∂Ei

∂βm

)T
V −1
i

∂Ei

∂βl
for m, l = 1, 2 and β1 = V, β2 = Cl,

and

(Bi)ml =
1

2
tr

(
∂Vi
∂λm

V −1
i

∂Vi
∂λl

V −1
i

)
for m, l = 1, 2, 3 and λ = (σ2

1, σ
2
2, σ

2)T .
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Di�erentiation of Ei and Vi with respect to the components of β and λ, respectively,

gives

∂Ei

∂V
= Hi

1

0

 , ∂Ei

∂Cl
= Hi

0

1

 ,

∂Vi
∂σ2

1

= Li

 1 0

0 0

LTi , ∂Vi
∂σ2

2

= Li

 0 0

0 1

LTi and
∂Vi
∂σ2

= Ini
.

Therefore,

(Ai)12 =

[
1 0

]
Di

0

1

 = (Di)12,

where Di = HT
i V

−1
i Hi.

Altogether, we have Ai = HT
i V

−1
i Hi, since e

T
i Xej = xij, where ei is a unit vector

with 1 in the ith position and zeros elsewhere, and X is a matrix with elements xij.

Continuing,

(Bi)12 =
1

2
tr

(
∂Vi
∂σ2

1

V −1
i

∂Vi
∂σ2

2

V −1
i

)

=
1

2
tr

Li
 1 0

0 0

LTi V −1
i Li

 0 0

0 1

LTi V −1
i



=
1

2
tr

Wi

 1 0

0 0

Wi

 0 0

0 1


 ,

where Wi = LTi V
−1
i Li. Thus (Bi)12 = 1

2
(Wi)12(Wi)21. Similarly, (Bi)11 =

1
2
{(Wi)11}2, (Bi)22 = 1

2
{(Wi)22}2 and (Bi)21 = 1

2
(Wi)12(Wi)21. Also,
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(Bi)13 =
1

2
tr

(
∂Vi
∂σ2

1

V −1
i

∂Vi
∂σ2

V −1
i

)

=
1

2
tr

Li
 1 0

0 0

LTi V −1
i Ini

V −1
i



=
1

2
tr

Pi
 1 0

0 0


 ,

where Pi = LTi V
−2
i Li. Thus (Bi)13 = 1

2
(Pi)11. Similarly, (Bi)23 = 1

2
(Pi)22, (Bi)31 =

1
2
(Pi)11 and (Bi)32 = 1

2
(Pi)22. Furthermore, (Bi)33 = 1

2
tr
(
V −2
i

)
. All of these

expressions assist in obtaining (3.18), the approximate FIM for individual i as

Mi(Ψ, ξi) ∼=

 HT
i V

−1
i Hi 0

0 Bi

 , (3.19)

where

Bi =
1

2


{(Wi)11}2 (Wi)12(Wi)21 (Pi)11

(Wi)12(Wi)21 {(Wi)22}2 (Pi)22

(Pi)11 (Pi)22 tr
(
V −2
i

)
 .

For a single group of N individuals with identical designs, the FIM simpli�es to

M (Ψ,Ξ) = N

 HT
i V

−1
i Hi 0

0 Bi

 . (3.20)

The information matrix in (3.20) is used to obtain the D-optimum time points to

measure the concentration of a drug in the blood for a cohort of N patients. We

compute the D-optimum time points using the R package PFIM 3.2 (Bazzoli et al.,

2010). Figure 3.7 shows the optimum time points for our model for the true values

of the parameters. We assume that the dose 0.5 mg/kg body weight has been

administered to a cohort of size 3.
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Figure 3.7: Location of optimum design points in the mean concentration pro�le
for collecting blood samples. True parameter values are assumed as prior, that is,
Ψ0 = (0.5, 0.06, 0.004, 0.00005, 0.000225)T .

The block diagonal form of the information matrix is useful in examining the sensi-

tivity of the design to the prior parameter values β0. This is because

∣∣∣∣∣∣∣
Ai 0

0 Bi

∣∣∣∣∣∣∣ = |Ai| |Bi|,

which decreases the dimensions of the determinant. Keeping the prior values of the

variances �xed and varying V and Cl, we can numerically obtain the values of the

criterion for a given design for a range of V and Cl. The sensitivity factor in this

case is the relative e�ciency, de�ned as

Efficiency =

(
|M(Ψ̃, ξ∗true)|
|M(Ψtrue, ξ∗true)|

) 1
5

,

where Ψtrue = (0.5, 0.06, 0.004, 0.00005, 0.000225)T , Ψ̃ = (V,Cl, 0.004, 0.00005, 0.00

0225)T and ξ∗true is the D-optimum design obtained for Ψtrue. Figure 3.8 shows the

relative e�ciencies of the designs for various choices of V and Cl that are within the

three standard deviation of the means. It is clear that the design is not very sensitive

to the parameter values, since the e�ciency value is always very high, irrespective

of the choice.
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Figure 3.8: Sensitivity of the design to the assumed prior values of the parameters.

3.7.2 One-Compartment Model with First-Order Absorption

The one-compartment PK model with �rst-order absorption is de�ned as

yil = f(til;θi) + εil

=
xkai

Vi(kai − kei)
(
e−kei til − e−kai til

)
+ εil for i = 1, . . . , N and l = 1, . . . , ni,

(3.21)

where yil is the concentration of a drug in the blood for the ith individual observed

at time til, x is the dose received by the individual, and θi = β+bi = (Vi, kei , kai)
T is

the vector of parameters with β = (V, ke, ka)
T and bi = (bVi , bkei , bkai )

T . We assume

that εi ∼ Nni
(0, σ2Ini

) and bi ∼ N3(0,Ω), where Ω = diag(σ2
1, σ

2
2, σ

2
3). We can

write

f(ξi;θi) = f(ξi; g(β, bi)) =



xkai
Vi(kai − kei)

(
e−kei ti1 − e−kai ti1

)
xkai

Vi(kai − kei)
(
e−kei ti2 − e−kai ti2

)
...

xkai
Vi(kai − kei)

(
e−kei tini − e−kai tini

)


. (3.22)

To linearise the model, we expand it using a �rst-order Taylor series about φi = (V,
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ke, ka, bVi , bkei , bkai )
T at φ0 = (V 0, k0

e , k
0
a, 0, 0, 0)T , where V 0, k0

e and k0
a are some

prior values of the population mean parameters. We obtain as an approximation

the linear mixed e�ects model

yi ∼= µi +Hiβ +Libi + εi,

where µi, Hi and Li are as in Section 3.4.1. In particular, we have

Hi =


∂f(ti1; g(β, bi))

∂V

∂f(ti1; g(β, bi))

∂ke

∂f(ti1; g(β, bi))

∂ka
...

...
...

∂f(tini
; g(β, bi))

∂V

∂f(tini
; g(β, bi))

∂ke

∂f(tini
; g(β, bi))

∂ka


φ0

.

The elements of Hi are given as



∂f(til; g(β, bi))

∂V

∂f(til; g(β, bi))

∂ke

∂f(til; g(β, bi))

∂ka


φ0

=



− xk0
a

(V 0)2(k0
a − k0

e)

(
e−k

0
etil − e−k0atil

)
xk0

a

V 0(k0
a − k0

e)

(
e−k

0
etil − e−k0atil
k0
a − k0

e

− tile−k
0
etil

)

x

V 0(k0
a − k0

e)

−k
0
e

(
e−k

0
etil − e−k0atil

)
k0
a − k0

e

+ k0
atile

−k0atil




.

Similar to Section 3.7.1, since θi = β + bi, here we also have Hi = Li, where

Li =


∂f(ti1; g(β, bi))

∂bVi

∂f(ti1; g(β, bi))

∂bkei

∂f(ti1; g(β, bi))

∂bkai
...

...
...

∂f(tini
; g(β, bi))

∂bVi

∂f(tini
; g(β, bi))

∂bkei

∂f(tini
; g(β, bi))

∂bkai


φ0

.

Following analogous derivations to those in Section 3.7.1, we obtain the approximate

FIM for individual i as

Mi(Ψ, ξi) ∼=

 HT
i V

−1
i Hi 0

0 Bi

 , (3.23)
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where

Bi =
1

2



{(Wi)11}2 (Wi)12(Wi)21 (Wi)13(Wi)31 (Pi)11

(Wi)12(Wi)21 {(Wi)22}2 (Wi)23(Wi)32 (Pi)22

(Wi)13(Wi)31 (Wi)23(Wi)32 {(Wi)33}2 (Pi)33

(Pi)11 (Pi)22 (Pi)33 tr
(
V −2
i

)


,

(Wi)lk for l, k = 1, 2, 3 are elements of Wi = LTi V
−1
i Li and (Pi)ll are diagonal

elements of Pi = LTi V
−2
i Li.

Since matrix Mi is 7 × 7, it is even more useful for numerical calculations to have

a block diagonal structure to the matrix. The sensitivity analysis can be performed

as in the previous case, but the graphical representation here would not be so clear.

3.8 Properties of the Derived PK Parameters

It is very common that, even if the same dose is given to a group of patients, the

concentration pro�les are di�erent. This is due to the di�erences in biological factors

among the patients. As the pro�les vary, so do the AUC and Cmax. An obvious issue

then is to quantify the variability in these parameters.

We employ a non-linear mixed e�ects model for the concentration data. The purpose

is to describe the situation in a better way, since one can assume that each individual

has distinct values for the model parameters. Because the AUC and Cmax are derived

from the model function, they rely on its parameters. This section describes way to

�nd the variability in these PK parameters following the administration of a dose.

Quantifying the variability is particulary important for two reasons. Firstly, it will

tell us the extent of the variability from patient to patient, and, secondly, it may

guide us in the selection of doses in a clinical trial design. Our purpose is to use it

in the dose selection.
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3.8.1 Area Under the Concentration Curve

Assume that the dose x is given to a cohort of patients and that h(x,θi) is the AUC

for individual i in that group based on a PK model. Here, θi is the vector of random

PK parameters introduced in Section 3.4 and h is a di�erentiable function of the

parameters. Since the parameters are random, individuals in the cohort will have

di�erent AUC values. We want to derive an expression so that the variability can

be assessed. Since a PK model is non-linear in the parameters, the AUC will be

too. Therefore, we linearise the function using a �rst-order Taylor series expansion

of h(x,θi) about θi at E(θi) to obtain

h(x,θi) ∼= h(x,θi)

∣∣∣∣
E(θi)

+

(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

(θi − E(θi))

= h(x,β) +

(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

bi,

where θi = β + bi and E(θi) = β. Since bi ∼ Np(0,Ω), h(x,θi) will be approxi-

mately normally distributed as well.

Therefore,

E{h(x,θi)} ∼= h(x,β) (3.24)

and

Var{h(x,θi)} ∼=
(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

Var(bi)

(
∂h(x,θi)

∂θi

) ∣∣∣∣
E(θi)

=

(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

Ω

(
∂h(x,θi)

∂θi

) ∣∣∣∣
E(θi)

. (3.25)

This derivation is based on the δ-method (Oehlert, 1992). The general expres-

sion in (3.25) can be used to �nd the variability in the AUC for a population

based on a PK model after the administration of a dose. Also, we have h(x,θi) ∼

N [h(x,β),Var{h(x,θi)}] approximately.
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Example 1

For the one-compartment PK model with bolus input and �rst-order elimination in

(3.16), the AUC for individual i over the range [0, t1] is de�ned as

h(x,θi) =

∫ t1

0

f(t;θi) dt

=

∫ t1

0

x

Vi
exp

(
−Cli
Vi

t

)
dt

=
x

Cli

{
1− exp

(
−Cli
Vi
t1

)}
. (3.26)

Assuming that E(Vi) = V and E(Cli) = Cl, we obtain

E{h(x,θi)} ∼= h(x,β) =
x

Cl

{
1− exp

(
−Cl
V
t1

)}
. (3.27)

Also,

Var{h(x,θi)} ∼=
(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

Ω

(
∂h(x,θi)

∂θi

) ∣∣∣∣
E(θi)

=

(
∂h(x,θi)

∂Vi

∂h(x,θi)

∂Cli

)
E(θi)

 σ2
1 0

0 σ2
2




∂h(x,θi)

∂Vi

∂h(x,θi)

∂Cli


E(θi)

=

{
∂h(x,θi)

∂Vi

∣∣∣∣
E(θi)

}2

σ2
1 +

{
∂h(x,θi)

∂Cli

∣∣∣∣
E(θi)

}2

σ2
2. (3.28)

Furthermore,

∂h(x,θi)

∂Vi

∣∣∣∣
E(θi)

= −xt1
V 2

exp

(
−Cl
V
t1

)

and

∂h(x,θi)

∂Cli

∣∣∣∣
E(θi)

=
x

Cl
exp

(
−Cl
V
t1

)(
1

Cl
+
t1
V

)
− x

Cl2
.
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Hence, we obtain the approximate variance of the AUC as

Var{h(x,θi)} ∼=
{
−xt1
V 2

exp

(
−Cl
V
t1

)}2

σ2
1

+

{
x

Cl
exp

(
−Cl
V
t1

)(
1

Cl
+
t1
V

)
− x

Cl2

}2

σ2
2.

The approximate AUC and its variance are used to impose a constraint in Section

5.5.1 in order to �nd optimal doses for the cohorts in a trial. The essence of the con-

straint is to be careful during dose escalation by taking into account the variability

in the AUC among the patients in a cohort after receiving a dose.

Example 2

For the one-compartment PK model with �rst-order absorption that was introduced

in (3.21), the AUC for individual i over the range [0, t1] is de�ned as

h(x,θi) =

∫ t1

0

f(t;θi) dt

=

∫ t1

0

xkai
Vi(kai − kei)

(e−kei t − e−kai t) dt

=
xkai

Vi(kai − kei)

(
1− e−kei t1

kei
− 1− e−kai t1)

kai

)
. (3.29)

Assuming that E(Vi) = V , E(kei) = ke and E(kai) = ka, we obtain

E{h(x,θi)} ∼= h(x,β) =
xka

V (ka − ke)

(
1− e−ket1

ke
− 1− e−kat1

ka

)
. (3.30)
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Also,

Var{h(x,θi)} ∼=
(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

Ω

(
∂h(x,θi)

∂θi

) ∣∣∣∣
E(θi)

=

{
∂h(x,θi)

∂Vi

∣∣∣∣
E(θi)

}2

σ2
1 +

{
∂h(x,θi)

∂kei

∣∣∣∣
E(θi)

}2

σ2
2

+

{
∂h(x,θi)

∂kai

∣∣∣∣
E(θi)

}2

σ2
3. (3.31)

Putting z1 = 1− e−ket1 and z2 = 1− e−kat1 , we obtain

∂h(x,θi)

∂Vi

∣∣∣∣
E(θi)

= − xka
V 2(ka − ke)

(
z1

ke
− z2

ka

)
,

∂h(x,θi)

∂kei

∣∣∣∣
E(θi)

=
xka

V (ka − ke)2

(
z1

ke
− z2

ka

)
+

xka
V (ka − ke)

(
− z1

k2
e

+
t1e
−ket1

ke

)

and

∂h(x,θi)

∂kai

∣∣∣∣
E(θi)

= − xke
V (ka − ke)2

(
z1

ke
− z2

ka

)
+

xka
V (ka − ke)

(
z2

k2
a

− t1e
−kat1

ka

)
.

These partial derivatives enable us to �nd the approximate variance in (3.31). The

approximate mean and variance thus obtained can help in implementing the PK

constraint in Section 5.5.1 when the model of interest is for one compartment with

�rst-order absorption.

3.8.2 Maximum Concentration

Assume that l(x,θi) represents the maximum concentration for individual i for a

given dose x, based on a PK model. Here, θi is the vector of random PK parameters

introduced in Section 3.4 and l is a di�erentiable function of those parameters. The

main motivation is to derive an expression to assess the variability in l(x,θi). Since

the PK models are non-linear in the parameters, the maximum concentration will

be too. To obtain the inter-patient variability in Cmax, we linearise the function
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using a �rst-order Taylor series expansion of l(x,θi) about θi at E(θi) as

l(x,θi) ∼= l(x,θi)

∣∣∣∣
E(θi)

+

(
∂l(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

(θi − E(θi))

= l(x,β) +

(
∂l(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

bi,

where θi = β + bi and E(θi) = β.

Therefore,

E{l(x,θi)} ∼= l(x,β) (3.32)

and

Var{l(x,θi)} ∼=
(
∂l(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

Var(bi)

(
∂l(x,θi)

∂θi

) ∣∣∣∣
E(θi)

=

(
∂l(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

Ω

(
∂l(x,θi)

∂θi

) ∣∣∣∣
E(θi)

. (3.33)

The general expression in (3.33) can be used to �nd the variability in Cmax for

a population based on a PK model for a given dose x. Here, also, l(x,θi) ∼

N [l(x,β),Var{l(x,θi)}] approximately.

Example 2

We are interested in the value of the concentration at a time point, denoted by

tmax, at which it is the largest at a given time interval. The tmax is obtained by

di�erentiating the model function with respect to t and Cmax is found by substituting

that value for t into the model function. For a simple decay function, as in Example

1, it is always at t = 0. Here, we present a more interesting case of the one-

compartment PK model with �rst-order absorption. The tmax is a solution of the

equation
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df(t;θi)

dt
= 0.

That is, solving

xkai
Vi(kai − kei)

(
−kei e−kei t + kai e

−kai t
)

= 0

for t, we obtain

tmaxi
=

log(kai)− log(kei)

kai − kei
.

Therefore, Cmax for this model has the form

l(x,θi) =
xkai

Vi(kai − kei)
(
e−kei tmaxi − e−kai tmaxi

)
. (3.34)

Assuming that E(Vi) = V , E(kei) = ke and E(kai) = ka, we have

E{l(x,θi)} ∼= l(x,β) =
xka

V (ka − ke)
(
e−ketmax − e−katmax

)
. (3.35)

Also,

Var{l(x,θi)} ∼=
(
∂l(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

Ω

(
∂l(x,θi)

∂θi

) ∣∣∣∣
E(θi)

=

{
∂l(x,θi)

∂Vi

∣∣∣∣
E(θi)

}2

σ2
1 +

{
∂l(x,θi)

∂kei

∣∣∣∣
E(θi)

}2

σ2
2

+

{
∂l(x,θi)

∂kai

∣∣∣∣
E(θi)

}2

σ2
3. (3.36)

After some simpli�cation, it can be shown that

∂l(x,θi)

∂Vi

∣∣∣∣
E(θi)

= − xka
V 2(ka − ke)

(
e−ketmax − e−katmax

)
,
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∂l(x,θi)

∂kei

∣∣∣∣
E(θi)

=
xka

V (ka − ke)2

[
e−ketmax(2− katmax)− e−katmax

{
1 +

ka(1− ketmax)

ke

}]

and

∂l(x,θi)

∂kai

∣∣∣∣
E(θi)

=
x

V (ka − ke)2

[
kee
−ketmax {−1 + ka(katmax − 1)}+ e−katmax {ke − ka(ketmax − 1)}

]
.

These partial derivatives are plugged into (3.36) to obtain the approximate variance

of Cmax among the patients following the adminstration of a dose. The approximate

mean and variance in (3.35) and (3.36) aid in implementing the constraint de�ned

in Section 5.5.2.

It is clear from the above expressions that the mean and variance of the AUC and

Cmax depend on the unknown parameters β and λ associated with the PK model.

We use D-optimum design to collect blood samples to measure the concentrations.

Since the AUC and Cmax, together with their variances, are non-linear functions of

the model parameters, a natural question arises about the suitability of c-optimum

design. We have three issues here: model parameter estimation, and estimation

of the mean and variance of the derived PK parameters. It will be quite di�cult,

or even impossible, to �nd a design that will minimise the variability of each of

these. Therefore, we rely on D-optimum design only to estimate precisely the model

parameters. We believe that with such a set of estimates, it is also possible to obtain

precise estimates for the derived PK parameters and their variances.

68



Chapter 4

Dose-Response Models

4.1 Introduction

This chapter introduces two dose-response models that will be used in the simu-

lation studies in Chapter 6. We assume that the dose range is pre-speci�ed from

pre-clinical studies. The aim is to select the dose level which can be recommended

for further investigation on a larger group of patients in a phase IIB trial, where it

is compared with other standard treatments.

We consider adaptive designs in Chapter 5 in that context, where an analysis of the

data is performed after treating each cohort of patients, and a decision on the dose

to be allocated is made for the next cohort based on the updated knowledge of the

responses. The �rst model assumes trinomial responses representing e�cacy, toxicity

and a neutral response. The second one assumes binary outcomes for e�cacy and

toxicity end points.

4.2 Trinomial Response

4.2.1 Model

We assume a trinomial response Y = (Y0, Y1, Y2)T for a given dose for each patient,

where Yi takes values 0 or 1 for i = 0, 1, 2 depending on the patient's response to



the drug. Here, Y0 = 1 when neither toxicity nor e�cacy occurs, Y1 = 1 when

e�cacy occurs without toxicity and Y2 = 1 when toxicity is the outcome, irrespec-

tive of the e�cacy. Throughout the thesis, we call an e�cacious but non-toxic

response a success, since it is the outcome indicating some bene�t from taking the

drug. The probability of each of these outcomes depends on dose. It is commonly

accepted that a drug's toxicity increases with dose. The probability of success also

increases in many cases. However, it is possible for some drugs that it attains a

plateau or increases and then decreases, as the dose is increased. For an exper-

imental drug, let us assume that the probability of a neutral response decreases

monotonically with dose and that the probability of toxicity increases monotoni-

cally with dose. The probability of success may be non-monotonic, increasing or

decreasing. The corresponding cell probabilities are ψ0(x,ϑ), ψ1(x,ϑ) and ψ2(x,ϑ),

so that ψ0(x,ϑ) + ψ1(x,ϑ) + ψ2(x,ϑ) = 1 for a given dose x, where ϑ denotes the

vector of dose-response parameters.

The continuation ratio model of McCullagh and Nelder (1989) is used to model the

responses, and is given by

log

(
ψ1(x,ϑ)

ψ0(x,ϑ)

)
= ϑ1 + ϑ2x (4.1)

and

log

(
ψ2(x,ϑ)

1− ψ2(x,ϑ)

)
= ϑ3 + ϑ4x, (4.2)

where ϑ = (ϑ1, ϑ2, ϑ3, ϑ4)T is the vector of parameters to be estimated. The param-

eter ϑ1 represents the baseline log-relative probability, ϑ2 re�ects the contribution

of dose in the log-relative probability of a success relative to the probability of a

neutral outcome, ϑ3 is the baseline log odds and ϑ4 is the contribution of dose in the

log odds when interest lies in the occurrence of a toxic outcome relative to a neutral

outcome or a success.
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From (4.1), we have

ψ1(x,ϑ) = ψ0(x,ϑ) eϑ1+ϑ2x,

and, from (4.2),

ψ2(x,ϑ) = {ψ0(x,ϑ) + ψ1(x,ϑ)} eϑ3+ϑ4x

= ψ0(x,ϑ)(1 + eϑ1+ϑ2x)eϑ3+ϑ4x.

Since ψ0(x,ϑ) + ψ1(x,ϑ) + ψ2(x,ϑ) = 1, we obtain

ψ0(x,ϑ) =
1

(1 + eϑ1+ϑ2x)(1 + eϑ3+ϑ4x)
.

Therefore,

ψ1(x,ϑ) =
eϑ1+ϑ2x

(1 + eϑ1+ϑ2x)(1 + eϑ3+ϑ4x)

and

ψ2(x,ϑ) =
eϑ3+ϑ4x

1 + eϑ3+ϑ4x
.

These three non-linear functions represent the probabilities for the trinomial re-

sponses. The selection of dose depends on the parameters in ϑ. Di�erent values of

ϑ will lead to di�erent dose-response curves, as shown in Figure 4.1.

4.2.2 Parameter Space

De�ning the dose-response parameter space is an essential part in ensuring that the

three non-linear functions exhibit the assumed behaviour.

Di�erentiation of ψ2(x,ϑ) with respect to x gives

dψ2(x,ϑ)

dx
=

ϑ4 e
−(ϑ3+ϑ4x)

{1 + e−(ϑ3+ϑ4x)}2
,
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Figure 4.1: Dose-response scenarios for the continuation ratio model. The respective
parameter values are: Scenario 1, ϑ = (1.44, 0.26,−1.70, 0.25)T ; Scenario 2, ϑ =
(−3.50, 1.00,−6.00, 0.72)T ; Scenario 3, ϑ = (−0.80, 0.50,−3.80, 0.30)T ; and Scenario
4, ϑ = (−6.50, 0.75,−8.00, 0.65)T .

which is positive only if ϑ4 > 0. Therefore, ψ2(x,ϑ) is an increasing function of dose

only if ϑ4 > 0.

Equation (4.1) indicates that ϑ2 is the change in the log-relative probability due

to a unit change in dose. Since we expect dose to have a positive impact on the

transition from a neutral response to a success, we should have ϑ2 > 0.

When x = 0, we have

log

(
ψ1(0,ϑ)

ψ0(0,ϑ)

)
= ϑ1, that is,

ψ1(0,ϑ)

ψ0(0,ϑ)
= eϑ1
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and

log

(
ψ2(0,ϑ)

ψ0(0,ϑ) + ψ1(0,ϑ)

)
= ϑ3,

from which it follows that

ψ2(0,ϑ)

ψ0(0,ϑ)
= eϑ3(1 + eϑ1).

We assume that, at very small doses, ψ1 ≥ ψ2. Consequently,

ψ1(0,ϑ)

ψ0(0,ϑ)
≥ ψ2(0,ϑ)

ψ0(0,ϑ)
,

which reduces to

ϑ1 − ϑ3 ≥ log(1 + eϑ1) > 0.

Therefore, we can conclude that ϑ1 > ϑ3.

Since ψ2 represents the probability of toxicity, we expect it to be low at very small

doses. This function reduces to ψ2(0,ϑ) = eϑ3/(1 + eϑ3) when x = 0 and further

reduces to 1
2
when ϑ3 = 0. For any ϑ3 > 0, this probability is greater than 1

2
. Thus,

the only choice to keep this probability low at the small doses is ϑ3 < 0.

So, the parameter space can be written as

Θ = {(ϑ1, ϑ2, ϑ3, ϑ4) : ϑ1 > ϑ3, ϑ3 < 0 and ϑ2, ϑ4 > 0} . (4.3)

Figure 4.1 shows some plausible dose-response scenarios for di�erent choices of the

parameters in the continuation ratio model. These scenarios will be investigated in

the simulation study in Chapter 6. It should be mentioned that di�erent assumptions

about the shapes of the functions ψ0, ψ1 and ψ2 would give di�erent parameter spaces

Θ. Although the method of adaptive design that we propose in this thesis does not
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depend on the choice of Θ, still it has to be speci�ed.

4.2.3 Likelihood Function

Let us assume that we are at the kth stage in an adaptive clinical trial and that

we want to conduct an interim analysis of the data. This means that k cohorts

have been treated so far with selected doses from the dose range X . Let x be a

k × 1 dose vector with components xl and let R be a k × 3 outcome matrix with

R̃l = (Rl0, Rl1, Rl2) as the lth row (l = 1, . . . , k). It is important to note that

Rl0 + Rl1 + Rl2 = c, where c is the number of subjects in a cohort treated at dose

xl. The successive components of R̃l are the counts of neutral, success and toxic

responses for the lth cohort. Thus, for our dose-response model, the likelihood

function is

Lk(ϑ | x,R) ∝
k∏
l=1

{ψ0(xl,ϑ)}Rl0{ψ1(xl,ϑ)}Rl1{ψ2(xl,ϑ)}Rl2 .

The parameters in ϑ can be estimated using either a Bayesian or frequentist ap-

proach. Since maximum likelihood estimation is unsuitable because of small sample

sizes in the early stages of a trial, we employ a Bayesian approach.

The posterior estimates of the components of ϑ = (ϑ1, ϑ2, ϑ3, ϑ4)T at the kth stage

are obtained as

ϑ̂ik =

∫
Θ
ϑi p(ϑ)Lk(ϑ | x,R)dϑ∫

Θ
p(ϑ) Lk(ϑ | x,R) dϑ

, i = 1, 2, 3, 4, (4.4)

where p(ϑ) is the prior distribution of the parameters. We assume a uniform distri-

bution on a restricted parameter space Θ̃. Let 0 < ϑ2 < u1, 0 < ϑ4 < u2, l1 < ϑ1 < l2

and l3 < ϑ3 < l4. Then the condition ϑ1 > ϑ3 leads to l3 < ϑ3 < ϑ1 < l2. We de�ne

Θ̃ as

Θ̃ = {ϑ : l3 < ϑ3 < ϑ1 < l2, 0 < ϑ2 < u1, 0 < ϑ4 < u2} .
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As the probability density function for a uniform distribution is constant, we let

p(ϑ) = A and can write

∫
Θ̃

A dϑ3 dϑ1 dϑ4 dϑ2 = 1.

It follows that

A

∫ u1

0

∫ u2

0

∫ l2

l3

∫ ϑ1

l3

dϑ3 dϑ1 dϑ4 dϑ2 = 1,

which yields A = 2/{u1u2(l2 − l3)2}. Therefore,

p(ϑ) =
2

u1u2(l2 − l3)2
, ϑ ∈ Θ̃. (4.5)

This function will be used in our example of simulating clinical trials in Section 6.3.

4.2.4 Fisher Information Matrix

The likelihood function for a single cohort at dose x is

L(ϑ|x, R̃) =
c!

R0!R1!R2!
(ψ0)R0 (1− ψ0 − ψ2)c−R0−R2 (ψ2)R2 ,

and so the log-likelihood function can be written as

l(ϑ|x, R̃) = constant +R0 log(ψ0) + (c−R0 −R2) log(1− ψ0 − ψ2) +R2 log(ψ2).

The information matrix associated with ϑ can be obtained as

I(x,ϑ) =

(
∂ψ

∂ϑ

)T
I(x,ψ)

(
∂ψ

∂ϑ

)
, (4.6)

where

I(x,ψ) = E

[
−∂

2l(ϑ|x, R̃)

∂ψ ∂ψT

]

and ψ = (ψ0, ψ2). The second-order partial derivatives of the components of
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l(ϑ|x, R̃) are

∂2 log(ψ0)

∂ψ ∂ψT
=

 − 1

ψ2
0

0

0 0

 ,

∂2 log(1− ψ0 − ψ2)

∂ψ ∂ψT
= − 1

(1− ψ0 − ψ2)2

 1 1

1 1


and

∂2 log(ψ2)

∂ψ ∂ψT
=

 0 0

0 − 1

ψ2
2

 .
Therefore,

I(x,ψ) = E

[
−∂

2l(ϑ|x, R̃)

∂ψ ∂ψT

]

= E(R0)

 1

ψ2
0

0

0 0

+ E(c−R0 −R2)
1

(1− ψ0 − ψ2)2

 1 1

1 1



+E(R2)

 0 0

0
1

ψ2
2

 . (4.7)

Using a property of the trinomial distribution, we have E(R0) = cψ0, E(c − R0 −

R2) = c(1− ψ0 − ψ2) and E(R2) = cψ2. Thus, (4.7) reduces to

I(x,ψ) = c




1

ψ0

0

0
1

ψ2

+
1

(1− ψ0 − ψ2)

 1 1

1 1




=
c

(1− ψ0 − ψ2)


1− ψ2

ψ0

1

1
1− ψ0

ψ2

 . (4.8)
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Furthermore,

∂ψ

∂ϑ
=


∂ψ0

∂ϑ1

∂ψ0

∂ϑ2

∂ψ0

∂ϑ3

∂ψ0

∂ϑ4

∂ψ2

∂ϑ1

∂ψ2

∂ϑ2

∂ψ2

∂ϑ3

∂ψ2

∂ϑ4

 ,

where the derivatives are

∂ψ0

∂ϑ1

= − eϑ1+ϑ2x

(1 + eϑ1+ϑ2x)2 (1 + eϑ3+ϑ4x)
= − ψ1

1 + eϑ1+ϑ2x
,

∂ψ0

∂ϑ2

= − xeϑ1+ϑ2x

(1 + eϑ1+ϑ2x)2 (1 + eϑ3+ϑ4x)
= x

∂ψ0

∂ϑ1

,

∂ψ0

∂ϑ3

= − eϑ3+ϑ4x

(1 + eϑ1+ϑ2x) (1 + eϑ3+ϑ4x)2
= −ψ0ψ2,

∂ψ0

∂ϑ4

= − xeϑ3+ϑ4x

(1 + eϑ1+ϑ2x) (1 + eϑ3+ϑ4x)2
= x

∂ψ0

∂ϑ3

,

∂ψ2

∂ϑ1

= 0,
∂ψ2

∂ϑ2

= 0,

∂ψ2

∂ϑ3

=
eϑ3+ϑ4x

1 + eϑ3+ϑ4x
−
(

eϑ3+ϑ4x

1 + eϑ3+ϑ4x

)2

= ψ2(1− ψ2)

and

∂ψ2

∂ϑ4

= x

{
eϑ3+ϑ4x

1 + eϑ3+ϑ4x
−
(

eϑ3+ϑ4x

1 + eϑ3+ϑ4x

)2
}

= x
∂ψ2

∂ϑ3

.
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That is, we have the matrix of derivatives

∂ψ

∂ϑ
=

 −
ψ1

1 + eϑ1+ϑ2x
x
∂ψ0

∂ϑ1

−ψ0ψ2 x
∂ψ0

∂ϑ3

0 0 ψ2(1− ψ2) x
∂ψ2

∂ϑ3

 .

Applying the results to (4.6), after some simpli�cation, we obtain the FIM for ϑ as

I(x,ϑ) = c



ψ1(1− ψ2)

ψ0(1 + eϑ1+ϑ2x)2

xψ1(1− ψ2)

ψ0(1 + eϑ1+ϑ2x)2
0 0

xψ1(1− ψ2)

ψ0(1 + eϑ1+ϑ2x)2

x2ψ1(1− ψ2)

ψ0(1 + eϑ1+ϑ2x)2
0 0

0 0 ψ2(1− ψ2) xψ2(1− ψ2)

0 0 xψ2(1− ψ2) x2ψ2(1− ψ2)


.

. (4.9)

This matrix is of rank 2. It is block diagonal and has non-zero submatrices of rank

1. So we need at least two di�erent doses, say x1 and x2, to obtain a combined

nonsingular information matrix I(x1,ϑ) + I(x2,ϑ). This is important when con-

sidering D-optimum dose selection, where the optimality criterion is de�ned as the

determinant of the FIM. We present such criteria in Sections 5.3.2 and 5.3.3. In

Section 6.6, we apply this form of the FIM to determine the optimum dose in an

adaptive clinical trial.

4.3 Bivariate Binary Response

4.3.1 Model

Here, we assume that e�cacy and toxicity are two 0/1 binary variables and denote

these by Y and Z, respectively. This will result in four possible (y, z) outcomes

(0,0), (0,1), (1,0) and (1,1). The Cox model (Cox, 1970) treats each of the four

possible outcomes as a separate response category. The corresponding cell probabil-

ities are ψ00(x,ϑ), ψ01(x,ϑ), ψ10(x,ϑ) and ψ11(x,ϑ), so that ψ00(x,ϑ)+ψ01(x,ϑ)+
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ψ10(x,ϑ) + ψ11(x,ϑ) = 1.

The probabilities of the four outcomes are given by

ψ00(x,ϑ) =
1

1 + eϑ1+ϑ2x + eϑ3+ϑ4x + eϑ5+ϑ6x
,

ψ01(x,ϑ) =
eϑ1+ϑ2x

1 + eϑ1+ϑ2x + eϑ3+ϑ4x + eϑ5+ϑ6x
,

ψ10(x,ϑ) =
eϑ3+ϑ4x

1 + eϑ1+ϑ2x + eϑ3+ϑ4x + eϑ5+ϑ6x

and

ψ11(x,ϑ) =
eϑ5+ϑ6x

1 + eϑ1+ϑ2x + eϑ3+ϑ4x + eϑ5+ϑ6x
,

where ϑ = (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6)T is the vector of parameters.

Table 4.1: Relation between trinomial and bivariate binary responses.

Binary responses
E�cacy Toxicity

Trinomial Neutral No No
responses Success Yes No

Toxic No Yes
Yes Yes

In this set up, we call the outcome (1,0) a success, since it is the outcome that pro-

duces e�cacy without exposing a patient to toxicity. The trinomial response model

that was introduced in Section 4.2.1 considers (0,1) and (1,1) as a single category,

toxic, irrespective of the e�cacy. Thus, it ignores the simultaneous occurrence of

e�cacy and toxicity as an individual category, as shown in Table 4.1. This is im-

portant when toxicity is a serious concern and compromising it may lead to serious

health issues.
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Figure 4.2: Dose-response scenarios for the Cox model. The respective parameter
values are ϑ = (0.0, 1.0, 4.0, 2.0, 3.0, 3.0)T , ϑ = (−0.5, 1.0, 0.5, 1.0, 0.0, 2.0)T , ϑ =
(−1.0, 2.0, 1.0, 2.0, 1.0, 4.0)T and ϑ = (−2.0, 0.5, 0.0, 0.5, 4.0, 4.0)T .

As before, we are interested in designing the trial so that the recommended dose

maximises the probability of success. However, this model gives more �exibility to

consider other outcomes.

Again, we want to avoid doses with too high a risk of toxicity. Hence, we consider

the total risk of toxicity. Also, we may be interested in the probability of e�cacy,

whatever the toxicity outcome. In Figure 4.2, we present three curves for various

scenarios: the probability of success ((1,0) outcome), the probability of toxicity

((0,1) or (1,1) outcomes) and the probability of e�cacy ((1,0) or (1,1) outcomes).

We are primarily interested in the �rst one. However, the toxicity curve is used to

control the risk of undesired side e�ects. The e�cacy curve is included for additional

information.
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For the simulation study in Section 6.4, we consider some plausible dose-response

scenarios, as shown in Figure 4.2, which are taken from Dragalin and Fedorov (2006).

The doses in these scenarios are on a log scale. The curve which is labelled as success

is simply obtained by plotting ψ10(x,ϑ) against x. The other two curves are the

marginal probabilities of e�cacy and toxicity, obtained as ψ1.(x,ϑ) = ψ10(x,ϑ) +

ψ11(x,ϑ) and ψ.1(x,ϑ) = ψ01(x,ϑ) + ψ11(x,ϑ), respectively.

4.3.2 Properties

This section introduces some properties of the Cox model. Although these are not

explicitly used in our work, they give some insight into the nature of the model. In

this model, the marginal probabilities for Y and Z are neither logistic nor necessarily

monotonic in dose. Rather, it is the conditional probabilities of the responses that

are logistic in dose. For example,

P (Y = 1|Z = 0, x) =
eϑ3+ϑ4x

1 + eϑ3+ϑ4x
.

According to Murtaugh (1989), the Cox bivariate binary model has the following

properties:

1. If ϑ1 + ϑ3 = ϑ5 and ϑ2 + ϑ4 = ϑ6, then the marginal probabilities for Y and Z

are logistic in dose.

2. If the marginal dependence of Y and Z on x is logistic and ϑ2 6= 0 or ϑ4 6= 0,

then ϑ1 + ϑ3 = ϑ5 and ϑ2 + ϑ4 = ϑ6.

3. The variables Y and Z are independent if and only if ϑ1 + ϑ3 = ϑ5 and

ϑ2 + ϑ4 = ϑ6.

4. The correlation between e�cacy and toxicity has the form

Corr(Y, Z|x) =
ez3 − ez1+z2√

(ez2 + ez3)(1 + ez1)(ez1 + ez3)(1 + ez2)
,

where z1 = ϑ1 + ϑ2x, z2 = ϑ3 + ϑ4x and z3 = ϑ5 + ϑ6x.
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In the continuation ratio model case, we derived the parameter space under some

assumptions about the shapes of the functions. Although we have tried a similar

approach here, we could not obtain any solution, since the Cox model is more

complex with more functions and parameters than the previous one. Therefore, we

use the unrestricted parameter space

Θ = {(ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6) : −∞ < ϑi <∞ for i = 1, . . . , 6} . (4.10)

4.3.3 Likelihood Function

With the advancement of an adaptive clinical trial, we update the likelihood func-

tion, and hence obtain up-to-date estimates of the model parameters. Assume that

di�erent doses from the dose range X have been assigned to the successive cohorts

up to the kth stage of a trial. Denote the k-dimensional column vector of the as-

signed doses by x. The responses of the cohorts to the doses are represented through

a k×4 matrix R. More speci�cally, each row R̃l = (Rl0, Rl1, Rl2, Rl3) consists of the

outcomes that result upon receiving dose xl (l = 1, . . . , k). The successive elements

in R̃l are the counts of (0,0), (0,1), (1,0) and (1,1) responses for the lth cohort.

Moreover, Rl0 +Rl1 +Rl2 +Rl3 = c, where c is the number of subjects in a cohort.

Thus, the likelihood function for our model is

Lk(ϑ | x,R) ∝
k∏
l=1

{ψ11(xl,ϑ)}Rl3{ψ10(xl,ϑ)}Rl2{ψ01(xl,ϑ)}Rl1{ψ00(xl,ϑ)}Rl0 .

Since at an early stage in a trial the sample size is small, the Bayesian approach

is employed to estimate the parameters. We obtain the posterior estimates of the

components of ϑ = (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6)T at the kth stage as

ϑ̂ik =

∫
Θ
ϑi p(ϑ)Lk(ϑ | x,R)dϑ∫

Θ
p(ϑ) Lk(ϑ | x,R) dϑ

, i = 1, 2, 3, 4, 5, 6, (4.11)

where p(ϑ) is the prior distribution of the parameters. Let us assume that li1 <

ϑi < li2 for i = 1, . . . , 6 and that the prior joint probability density function of the

parameters is uniform. De�ne Θ̃ = {ϑ : li1 < ϑi < li2 for i = 1, . . . , 6}. Then we
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have

p(ϑ) =
1

(l12 − l11)(l22 − l21)(l32 − l31)(l42 − l41)(l52 − l51)(l62 − l61)
, ϑ ∈ Θ̃.

(4.12)

This function will be used in our example of simulating clinical trials in Section 6.4.

4.3.4 Fisher Information Matrix

The likelihood function for a single cohort at dose x is

L(ϑ|x, R̃) =
c!

R0!R1!R2!R3!
(ψ11)R3(ψ10)R2(ψ01)R1(1− ψ11 − ψ10 − ψ01)(c−R3−R2−R1),

and so the log-likelihood function is

l(ϑ|x, R̃) = constant +R3 log(ψ11) +R2 log(ψ10) +R1 log(ψ01)

+(c−R3 −R2 −R1) log(1− ψ11 − ψ10 − ψ01).

As before, the information matrix associated with ϑ can be obtained using the

formula (4.6) for ψ = (ψ11, ψ10, ψ01). Analogous derivations as for the previous

model, presented below, lead to the form of the FIM which can further be used in

optimal dose selection. The partial derivatives are

∂2 log(ψ11)

∂ψ ∂ψT
=


− 1

ψ2
11

0 0

0 0 0

0 0 0

 , ∂2 log(ψ10)

∂ψ ∂ψT
=


0 0 0

0 − 1

ψ2
10

0

0 0 0

 ,

∂2 log(ψ01)

∂ψ ∂ψT
=


0 0 0

0 0 0

0 0 − 1

ψ2
01


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and

∂2 log(1− ψ11 − ψ10 − ψ01)

∂ψ ∂ψT
= − 1

(1− ψ11 − ψ10 − ψ01)2


1 1 1

1 1 1

1 1 1

 .

Therefore,

I(x,ψ) = E

[
−∂

2l(ϑ|x, R̃)

∂ψ ∂ψT

]

= E(R3)


1

ψ2
11

0 0

0 0 0

0 0 0

+ E(R2)


0 0 0

0
1

ψ2
10

0

0 0 0

+ E(R1)


0 0 0

0 0 0

0 0
1

ψ2
01



+E(c−R3 −R2 −R1)
1

(1− ψ11 − ψ10 − ψ01)2


1 1 1

1 1 1

1 1 1

 . (4.13)

Since E(R3) = cψ11, E(R2) = cψ10, E(R1) = cψ01 and E(c − R3 − R2 − R1) =

c(1− ψ11 − ψ10 − ψ01) , after some simpli�cation, (4.13) reduces to

I(x,ψ)

= c




1

ψ11

0 0

0
1

ψ10

0

0 0
1

ψ01

+
1

(1− ψ11 − ψ10 − ψ01)


1 1 1

1 1 1

1 1 1




=
c

(1− ψ11 − ψ10 − ψ01)


1− ψ10 − ψ01

ψ11

1 1

1
1− ψ11 − ψ01

ψ10

1

1 1
1− ψ11 − ψ10

ψ01

 .
(4.14)
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It can also be shown that

(
∂ψ

∂ϑ

)T
=



−ψ11ψ01 −ψ10ψ01 ψ01 − ψ2
01

−xψ11ψ01 −xψ10ψ01 x(ψ01 − ψ2
01)

−ψ11ψ10 ψ10 − ψ2
10 −ψ01ψ10

−xψ11ψ10 x(ψ10 − ψ2
10) −xψ01ψ10

ψ11 − ψ2
11 −ψ10ψ11 −ψ01ψ11

x(ψ11 − ψ2
11) −xψ10ψ11 −xψ01ψ11


.

Furthermore, we have

I(x,ψ)

(
∂ψ

∂ϑ

)
= c


0 0 0 0 1 x

0 0 1 x 0 0

1 x 0 0 0 0

 .

Finally, we obtain the FIM for a cohort of patients as

I(x,ϑ) =

(
∂ψ

∂ϑ

)T

I(x,ψ)

(
∂ψ

∂ϑ

)

= c



ψ01 − ψ2
01 x(ψ01 − ψ2

01) −ψ01ψ10 −xψ01ψ10 −ψ01ψ11 −xψ01ψ11

x(ψ01 − ψ2
01) x2(ψ01 − ψ2

01) −xψ01ψ10 −x2ψ01ψ10 −xψ01ψ11 −x2ψ01ψ11

−ψ10ψ01 −xψ10ψ01 ψ10 − ψ2
10 x(ψ10 − ψ2

10) −ψ10ψ11 −xψ10ψ11

−xψ10ψ01 −x2ψ10ψ01 x(ψ10 − ψ2
10) x2(ψ10 − ψ2

10) −xψ10ψ11 −x2ψ10ψ11

−ψ11ψ01 −xψ11ψ01 −ψ11ψ10 −xψ11ψ10 ψ11 − ψ2
11 x(ψ11 − ψ2

11)

−xψ11ψ01 −x2ψ11ψ01 −xψ11ψ10 −x2ψ11ψ10 x(ψ11 − ψ2
11) x2(ψ11 − ψ2

11)


.

The information matrix I(x,ϑ) has rank 3, since it has three linearly independent

rows or columns. Therefore, we require at least three di�erent doses to be assigned to

the cohorts to obtain a nonsingular information matrix. This is particularly impor-

tant as both D and the combined criterion are de�ned in terms of the determinant

of the FIM.
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Chapter 5

Adaptive Designs

5.1 Introduction

This chapter introduces approaches for dose �nding in phase IB/IIA clinical trials.

In one of the approaches, along with dose-response outcomes, we also incorporate

PK information in dose escalation. The aim is to develop an e�cient dose-�nding

method, so that it exposes not too many patients to either subtherapeutic or toxic

doses and also it can identify the best dose for further study in the next phase.

We begin with the general algorithm in Section 5.2. Assume that the patients

enter a clinical trial sequentially and cohorts of the same size are treated with a

dose level determined from the updated information. The choice of dose level for

each cohort is model based and satis�es an optimisation criterion. There are various

possible criteria, such as the maximum tolerated dose, the biologically optimum dose

or the D-optimum dose. The maximum tolerated dose is the dose level for which

the probability of toxicity attains a maximum permissible value. This criterion is

often used in oncology trials, as it is usually assumed that both the e�cacy and

toxicity probabilities increase with dose level. However, in cases where we can

observe e�cacy with no toxicity, the outcome which we call a success, it makes

sense to consider a criterion which allows for the highest chance of such an outcome.

Alternatively, one can consider a criterion which in principle should lead to the best

dose-response model prediction and so the best indication of the e�cacious dose



level.

5.2 General Algorithm

The proposed method is model based. Hence, we assume that a dose-response model

and a PK model, when appropriate, are known apart from the parameters. The

choice of these models for a speci�c drug is generally elicited from the experts in the

area. Pre-clinical studies of the candidate drug or previous studies of similar drugs

can provide guidance. We assume that the set of d ordered doses X = {x(1), . . . , x(d)}

of a candidate drug is available for experimentation. The goal is to �nd the best

of these doses, which we call the optimum dose (OD), for further study in the next

phase. Below we present the main steps of the adaptive design, where k represents

the stage in a trial. We set k = 1 initially.

Step 1: Treat cohort k with the current best dose.

Step 2: Observe the PK responses at the locally D-optimal sampling time points,

when appropriate.

Step 3: Observe the dose-response outcomes.

Step 4: Estimate the model parameters and update the models.

Step 5: Select the best dose for the next cohort based on the chosen dose optimi-

sation criterion and constraints.

Step 6: Stop if the stopping rule is met, otherwise set k = k + 1 and repeat Steps

1-5.

Step 7: Carry out a complete analysis of the data to recommend a dose for further

study.

At any stage of the trial, if it is found that none of the available doses satisfy the

constraints, then we assign the lowest dose to the next cohort. The above adaptive

procedure requires estimation of the dose-response model parameters, and also the

PK parameters in the case when PK constraints are used. With a small cohort

size, we need to gather data from a few cohorts before we estimate any parame-

ters. Hence, we start the trial with an up-and-down procedure, which is run for the
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�rst four cohorts before we start the fully adaptive parametric algorithm described

above. This is similar to the procedure of Ivanova (2006), where a dose is increased,

stays at its present level or is decreased depending on the responses of the most

recent cohort. Here, however, we take into account responses from all cohorts up to

the most recent one (Bogacka et al., 2014). The basis of the method lies in the toxic

outcomes, which can stop the trial if toxicity is above the acceptable level.

Assume that we are at the kth stage in a trial and that patients in the successive k

cohorts have received doses from a pre-speci�ed sequence of doses X , the same dose

within a cohort. Let us denote the proportion of toxic responses up to cohort k by

p̂k, that is,

p̂k =
1

kc

k∑
i=1

Rtoxi
,

where c is the cohort size and Rtoxi
is the number of toxic responses for the ith

cohort upon receiving a dose. The algorithm starts with the lowest dose from X .

Then, for given thresholds pL, pM and pU , we increase, stay at the same dose level,

decrease or stop the trial, depending on the value of p̂k. In our study, we set

pL = γ/3, pM = 2γ/3 and pU = γ, where γ is the maximum acceptable level for the

probability of toxicity. More speci�cally, the algorithm has the following structure

to follow:

p̂k



≤ pL increase the dose to the next level if not at the highest

level, otherwise stay at the highest level,

∈ (pL, pM) stay at the current dose,

∈ [pM , pU) decrease the dose by one level if not at the lowest

level, otherwise stay at the lowest level,

≥ pU stop the trial.

Although we choose the above steps to be 1/3, it can be changed if some indications

of the chances of toxicity suggest that other thresholds may be more appropriate.

The main underlying idea of this stage of the trial is to gather information on the
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responses, and thus on the parameters without exposing many patients to a risk of

toxicity.

Once the trial is �nished with the up-and-down stage, it moves to the adaptive

parametric algorithm. As we have seen in Chapter 4, since the FIMs for a cohort

are singular, to facilitate the computation of the D-optimum design for the contin-

uation ratio model, we ensure that at least two of the four doses are di�erent in

the up-and-down stage. Assume that a trial stops after revisiting the above two

algorithms K times. Then we will have K cohorts treated at the doses x1, . . . , xK ,

selected from X in the di�erent stages. A �ow chart indicating di�erent steps of the

proposed design is given in Section A.2.

Since the PK models are non-linear in the parameters, the search for the optimal

time points depends on the parameter values. As they are unknown initially, we

begin with some guesses, which may be quite inaccurate. It is therefore important

to check the sensitivity of the design to appreciate the impact of such a choice of

parameter values. However, as the trial proceeds, more accurate estimates are cal-

culated and hence we obtain more reliable optimal sampling time points.

The dose-selection criteria at each stage and also the stopping rule are important

decision functions. They will depend on the objective of the trial.

5.3 Criteria for Dose Optimisation

At each stage in the trial, we select that dose for the next cohort for which the

desired criterion is maximised, subject to the condition that a number of constraints

are satis�ed. Often, it is not advisable to skip dose levels when they are increased for

application in the next cohort. Therefore, in our method, we introduce an option

of constraining the increase by any number of dose levels. However, we impose

no such constraint on the levels when they are decreased. For example, the next

best dose could be �ve levels higher then the previous one, but with a constraint
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of not skipping more than one dose level, we apply the one two levels higher than

the previous one. The following sections describe some possible dose-optimisation

criteria that can be used in a trial. We use these criteria in the simulation studies

in Chapter 6.

5.3.1 Maximisation of Probability of Success

This criterion is based on the probability of success. Recall that a success is de�ned

as that outcome which produces a desired level of e�cacy without severe toxicity.

Assume that we are at the kth stage in a trial and based on the current data, we

have the estimates ϑ̂k of the dose-response parameters. Then we select the dose

xk+1 for the next cohort of patients so that

xk+1 = arg max
x∈X

ψS(x, ϑ̂k), (5.1)

where ψS is the probability of success at a given dose. In the trinomial dose-response

model introduced in Chapter 4, ψ1 is taken as ψS. For bivariate binary outcomes,

it is ψ10.

The above criterion is de�ned so that it allocates the most e�cacious doses to the

cohorts during a trial. The issue of allocating the most e�cacious doses during a

trial is very important from an ethical point of view. The criterion, by de�nition,

does not take into account the e�ciency of parameter estimation. As mentioned in

Chapter 4, the estimates ϑ̂k can be obtained by using either a Bayesian or frequen-

tist approach. Some authors (Pronzato, 2000; Fedorov et al., 2011) report that the

above algorithm may converge to a sub-optimal dose. These studies are based on

the frequentist approach, the least squares or the maximum likelihood estimates of

the parameters.

We are using Bayesian parameter estimation, and, to our knowledge, the convergence

properties are not known. The above algorithm may converge to a sub-optimal dose
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due to the possibility of poor estimates of the parameters. This possibility is em-

bedded in the criterion (5.1), which chooses the best dose for the e�cacy purpose

rather than for precise estimation of the parameters. It may happen that, when the

responses are e�cacious for the same dose given to a number of consecutive cohorts,

the algorithm will not explore other doses very much and consequently will choose

that dose as the optimum one. Hence, for a small number of cohorts, we observe

that on some occasions the algorithm chooses a sub-optimal dose. However, in the

majority of cases, the algorithm stops at the true optimum dose, as shown in Figures

6.2-6.5 and 6.15-6.18.

Fedorov et al. (2011) showed that the convergence property holds for the penalised

D-optimum design in Section 5.3.3 when a large number of patients, such as 400, are

enrolled in the trial. For small numbers of patients, all known methods can lead to a

sub-optimal dose. The criterion in (5.1) has been found to outperform the penalised

D-optimum design in (5.8) for three of the presented scenarios: see Tables 6.13-6.16.

This provides evidence of where a design with the convergence property may end

up with a sub-optimal dose. Employing a very large number of patients is di�cult,

as most of the early phase designs aim for a small number like 30-60. Consequently,

in a practical situation, there will always be a risk of selecting a sub-optimal dose

whatever the convergence properties of the applied method.

5.3.2 Maximisation of Determinant of FIM

This approach allocates those doses to the cohorts which contribute most to the

e�cient estimation of the dose-response parameters. Assume that we are at the kth

stage in a trial. So, the doses allocated to the cohorts are ξk = {x1, x2, . . . , xk}.

Also, based on the data so far we have the estimates ϑ̂k. Let us de�ne

M(x|ξk, ϑ̂k) =
k

k + 1
M(ξk, ϑ̂k) +

1

k + 1
I(x, ϑ̂k), (5.2)

where M(ξk, ϑ̂k) =
∑k

i=1 I(xi, ϑ̂k) and I(x, ϑ̂k) is the Fisher information matrix

for a cohort which received the dose x. For both of our dose-response models, the
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expressions for I(x,ϑ) are shown in Chapter 4. Atkinson et al. (2014) discuss the

construction of designs based on augmented FIMs. Bogacka et al. (2014) use the

same approach for the construction of design.

Then we select the dose xk+1 for the next cohort of patients such that

xk+1 = arg max
x∈X

ΦD{M(x|ξk, ϑ̂k)}, (5.3)

where ΦD{M} = |M |. It is well known that a D-optimum design tends to assign

doses from the extremes of X . Therefore, patients are likely to receive non-e�cacious

and toxic doses during a trial.

5.3.3 Combined Criterion

Clinicians may be interested in achieving several objectives, such as e�cient esti-

mation of the model parameters and allocation of the most e�cacious doses to the

cohorts during a clinical trial. The combined criterion in (5.6) and the penalised

version in (5.9) balance these two objectives. The criterion is de�ned so that one can

obtain the design which ensures either e�cient parameter estimation or e�cacious

dose allocation or a combination of both.

The combined criterion that we want to utilise for dose selection is a linear com-

bination of the determinant of the Fisher information matrix for the dose-response

model and the probability of success. At each stage of the trial, we will be selecting

that dose for which the criterion is maximised. The main idea is to �nd a dose that

will be appropriate from the e�cacy point of view and will also lead to the e�cient

estimation of the dose-response parameters.

To implement the method, we initially determine the doses that maximise the de-

terminant of the FIM and the probability of success

xDk+1 = arg max
x∈X

ΦD{M(x|ξk, ϑ̂k)}
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and

xψS

k+1 = arg max
x∈X

ψS(x, ϑ̂k),

where M(x|ξk, ϑ̂k) is de�ned in (5.2). Since the determinant and the probability of

e�cacy may have quite di�erent magnitudes, we scale them at the dose x as

ED(x) =
ΦD{M(x|ξk, ϑ̂k)}

ΦD{M(xDk+1|ξk, ϑ̂k)}
(5.4)

and

EψS
(x) =

ψS(x, ϑ̂k)

ψS(xψS

k+1, ϑ̂k)
. (5.5)

The combined criterion then selects the dose xk+1 for the next cohort of patients so

that

xk+1 = arg max
x∈X
{aED(x) + (1− a)EψS

(x)} , (5.6)

where a is some weight such that 0 ≤ a ≤ 1 .

It is clear that, when a = 1, the combined criterion is simply the D-criterion.

Similarly, for a = 0, we have dose selection based on the probability of success

only. This design is expected to allocate the most e�cacious doses to the cohorts

compared to the D-optimum design and also to recommend the best dose for further

study.

Penalty Function

In the D-optimal design for the dose-response model, de�ned in (5.3), the doses allo-

cated to the cohorts are often found at the extremes of the design region. Therefore,

such a design su�ers from the limitation that patients in a trial may be exposed to

non-e�cacious or highly toxic doses. To reduce the possibility of exposing patients

to such doses, we introduce a penalty function in the search for D-optimum doses
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and consider a penalised D-optimum design (Dragalin and Fedorov, 2006).

We denote the penalty function for an observation taken at the design point x by

ϕ(x,ϑ). Following Dragalin and Fedorov (2006), a simple choice for that function

would take the form

ϕ(x,ϑ) = {ψS(x,ϑ)}−CS{1− ψT (x,ϑ)}−CT , (5.7)

where ψS and ψT are the probabilities of success and toxicity at a given dose, respec-

tively, CS and CT are control parameters used to construct an appropriate penalty

function at the low and high dose levels. The function is de�ned so that the lower

the probability of success and/or the higher the probability of toxicity at the as-

signed dose, the higher the penalty for the observation taken.

For a given x and ϑ, the larger the values of CS and CT , the higher the value of the

penalty function will be, and thus the design will avoid allocating doses with a low

probability of e�cacy or a high probability of toxicity to the patients. Assume that

CS = CT = C = 0, which in turn means no penalty. Then this will lead to the D-

optimum design. The larger the value of C is, the further it is from the D-optimum

design and the less e�cient the parameter estimation.

Penalised D-Criterion

The penalised D-criterion takes into account a penalty function, as shown in (5.7).

In this version of the D-optimum design, we select the dose as

xk+1 = arg max
x∈X

ΦPD{M(x|ξk, ϑ̂k)}, (5.8)

where ΦPD{M} = |M/ϕ|.
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The matrix M(x|ξk, ϑ̂k) is de�ned in (5.2) and also

ϕ(x|ξk, ϑ̂k) =
k

k + 1
ϕ(ξk, ϑ̂k) +

1

k + 1
ϕ(x, ϑ̂k),

where

ϕ(ξk, ϑ̂k) =
k∑
i=1

ϕ(xi, ϑ̂k).

Penalised Combined Criterion

The penalised combined criterion is similar to the one in (5.6). The only di�erence

is that, instead of the D-criterion, we are considering here the penalised D-criterion.

As before, we need to determine the doses based on the maximisation of the deter-

minant of the FIM and the probability of success. The penalised D-optimal dose at

stage k of the adaptive procedure is obtained as

xPDk+1 = arg max
x∈X

ΦPD{M(x|ξk, ϑ̂k)}.

We scale the determinant value at the dose x as

EPD(x) =
ΦPD{M(x|ξk, ϑ̂k)}

ΦPD{M(xPDk+1|ξk, ϑ̂k)}
.

Then the penalised combined criterion selects the dose xk+1 such that

xk+1 = arg max
x∈X
{aEPD(x) + (1− a)EψS

(x)}, (5.9)

where EψS
(x) is obtained as in (5.5). If a = 1, then (5.9) simply becomes the pe-

nalised D-criterion. For a = 0, the dose selection is based on the probability of

success only. When a = 0.5, it gives equal weight to both.

Although the penalised D-criterion introduces a penalty function to improve the

quality of treatments during dose escalation, we have found the quality not to be

improved as expected. Therefore, further e�ort has been taken through the above
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combined criterion. Although the probability of success appears twice in the crite-

rion, through EPD(x) and EψS
(x), the roles they play are di�erent. In the penalised

D-criterion, the probability of success is used to scale the FIM so that doses with low

e�cacy or high toxicity result in small values for the determinant of the FIM. The

EPD part of the criterion guides us to choose the dose that will provide maximum

information regarding parameter estimation taking into account the e�cacy levels

of all of the available doses. The maximisation of the probability of success on the

other hand tends to choose a dose from the e�cacy view point, without caring for

parameter estimation. A combination of them, as presented above, is expected to

facilitate a balance between the two approaches.

A design is presented in Section 6.6 that utilises the penalised combined criterion.

The gains over the penalised D-criterion are quite evident from the results in Ta-

bles 6.13-6.16. All of the performance measures are found to be improved there.

Most importantly, we notice an appreciable improvement in the quality of treat-

ment allocation, re�ected through the sampling e�ciency measure, SE. The quality

of optimum dose selection for the next phase, presented through DE, is also found

to be improved.

5.4 Constraint on Probability of Toxicity

Let γ be the maximum acceptable level for the probability of toxicity. Then, for

the next cohort of patients, we select the dose xk+1 for which the chosen dose-

optimisation criterion is maximised subject to the constraint

ψT (xk+1, ϑ̂k) ≤ γ, (5.10)

where ψT is the probability of toxicity evaluated at the current estimates of the

parameters. In the trinomial dose-response case, ψT is simply ψ2. But, in the case

of bivariate binary outcomes, it is the marginal probability of toxicity obtained as

ψ.1 = ψ01 + ψ11.
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The main purpose of introducing this constraint is to select a subset of doses which

are safe, and then to administer one of them to the next cohort based on a dose-

optimisation criterion. The constraint restricts us from choosing a dose for which

the estimated probability of toxicity is above the acceptable level.

5.5 PK-Constrained Dose Optimisation

Here, we focus on the constrained dose-optimisation algorithm based on pharma-

cokinetic parameters, such as the AUC and Cmax. Too low a concentration provides

no e�ect and similarly too high a concentration leads to a toxic outcome. It is

possible to avoid excessive drug concentration by putting restrictions on the AUC

or Cmax. Therefore, from the safety point of view, restricting these parameters will

be worthwhile. Although one can restrict the choice of a dose by the probability

of toxicity constraint, it does not take into account population variability in PK

measures. However, the additional PK constraint incorporates this variability.

5.5.1 Area Under the Concentration Curve

We have explained how the concentration of a drug contributes towards the e�ects in

Section 1.1.1. The area under the concentration curve is an important PK parameter

and it depends on the concentration: see Section 3.3. The outcomes in dose-�nding

studies are often dichotomised, and, as a result, we lose some information. In par-

ticular, an outcome which is not toxic may be just below the cut-o� point or a toxic

outcome may be far above the cut-o� point. Similarly, the e�cacy is dichotomised.

Usually these issues are not considered in the dose-escalation methods. However,

they can be considered implicitly by taking into account continuous measures like

the AUC in the dose-�nding methods.

The proposed constraint is related to the total concentration of the drug in the body

so that the curative purpose is likely to be achieved, and this is expressed by the

area under the concentration curve over time. We select a dose xk+1 so that the
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chosen criterion is maximised subject to the condition

h(xk+1, β̂k)− AUC0

ŜD{h(xk,θi)}
≤ δ(xk, ϑ̂k). (5.11)

The vector of estimates of the population mean PK parameters is β̂k and h(x, β̂k) is

the estimate of the approximate population mean AUC at stage k. The estimate of

the approximate standard deviation of the AUC is denoted by ŜD{h(xk,θi)}. This

notation is explained in Section 3.8.1. Also, AUC0 is a value for the AUC that is

considered to be desirable and δ(xk, ϑ̂k) = 1/ψS(xk, ϑ̂k). A desirable AUC is one for

which the curative purpose is likely to be achieved, allowing some acceptable level

of toxicity. The choice of such a value will require expert opinion. Previous studies

of similar drugs or pre-clinical studies can help in this context.

The left-hand side of (5.11) represents a relative di�erence between h(xk+1, β̂k) and

AUC0. We constrain the choice of xk+1 so that, for large values of the estimated

probability of success, this di�erence is small. This `forces' convergence of the dose

to the one giving the required exposure to the drug. On the other hand, when the

estimated probability of success is small, the constraint is weak, allowing for a wider

choice for the next dose level. The PK constraint (5.11) is dynamic, that is, the

value of δ(xk, ϑ̂k) changes during the trial according to the current estimate of the

probability of success. This gives some �exibility to the algorithm. A �xed δ might

lead to choosing a sub-optimal dose, and, in any case, it would be di�cult to decide

on its value.

Hence, instead of using a �xed δ, we are expressing it in terms of ψS, whose value is

updated after each cohort. Further justi�cation for choosing δ as the reciprocal of

ψS is that, for a dose at which the probability of success is high, we can assume that

the optimum dose is in the neighbourhood of the current dose and therefore would

like to restrict the search through the small value of δ. On the other hand, for a

dose with a small probability of success, we want the algorithm to be able to search

a wide dose region. The δ can be regarded as the tolerance, since its values have
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an impact on the selection of the optimum dose. The relationship between δ and

ψS is intended to have small tolerance towards the end of a trial, so that it enables

the choice of a dose which has a mean AUC close to the target. If the tolerance is

high, the margin to the right of the target will be high, and there is a possibility to

choose a dose which is excessively toxic.

It follows from the constraint that h(xk+1, β̂k) ≤ AUC0 +δ(xk, ϑ̂k) ŜD{h(xk,θi)}. If

ψS(xk, ϑ̂k) attains the maximum possible value 1, then δ(xk, ϑ̂k) will have the value

1 and consequently we will choose a dose with a mean AUC within one standard

deviation of the target, which accommodates the population variability. However,

in the majority of cases, δ will have a larger value than 1. Therefore, we will usually

be selecting a dose with a mean AUC within more than one standard deviation of

the target value. This constraint, as well as the next, is introduced as an additional

precaution against allocation of too toxic doses. They work di�erently to (5.10),

which is the constraint on the estimated probability of toxicity. The AUC and Cmax

not only take into account the population variability, but also directly constrain the

pharmacokinetic parameters responsible for the drug's action.

To the best of our knowledge, such constraints have not been considered before in

the adaptive design set-up. We have tried other functions of ψS for a choice of δ,

such as δ = 1/2ψS and δ = 1/(1 +ψS), but they were too conservative in identifying

the optimum dose.

5.5.2 Maximum Concentration

The quantity Cmax is related to the side e�ects that may result from excessive drug

concentration. Therefore, it is required to be maintained at a level to ensure safety.

We introduce another dynamic constraint for Cmax to avoid unacceptable adverse

events. The criterion tells us to select the dose xk+1 based on a dose-optimisation
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criterion so that

l(xk+1, β̂k)− C0
max

ŜD{l(xk,θi)}
≤ δ(xk, ϑ̂k). (5.12)

The vector of estimates of the population mean PK parameters is β̂k, l(x, β̂k) is the

estimate of the approximate population mean Cmax at stage k and ŜD{l(xk,θi)} is

the estimate of the approximate standard deviation of the maximum concentration:

see Section 3.8.2. Also, C0
max is a value for the Cmax that is considered to be desir-

able, and, as before, we have δ(xk, ϑ̂k) = 1/ψS(xk, ϑ̂k).

It is important to note that the constraints alone are not used for dose �nding,

but rather together with a dose-optimisation criterion, they help in dose �nding.

The choice of optimisation criterion and constraints depends on the purpose to be

achieved.

5.6 Stopping Rules

A variety of stopping rules are possible and the choice of one solely depends on

the purpose of a trial. In many of the designs, a trial is run for a �xed number of

cohorts. O'Quigley and Reiner (1998) stop the trial early on the basis that con-

tinuing it would not lead to a change in the dose recommendation. The essence of

the method is that, before recruiting all of the patients, if we can predict with high

probability what the �nal recommendation will be, the trial can stop. This early

stopping rule is based on precise probabilistic calculations and not straightforward

to implement. Heyd and Carlin (1999) recommend a stopping rule based on an

approximate con�dence interval for the probability of toxicity at the recommended

dose. A trial is stopped if this con�dence interval contains some pre-speci�ed range

of target toxicities. However, the approach su�ers from the limitation that reaching

a precise interval would require a reasonable number of patients to be recruited in

the trial. Also, �nding the range for target toxicities is a major concern. A simple

rule is proposed by O'Quigley (2002). It stop the trial if the dose recommended to
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the next patient has already been allocated m times, where m is some number �xed

at the beginning of the trial. Zhang et al. (2006) terminate a trial after treating at

least n1 patients, provided at least n0 are treated at the recommended dose, or a

maximum number of n2 subjects are treated. Dragalin and Fedorov (2006) stop a

trial after reaching a �xed sample size.

A simple rule is employed in our examples in Chapter 6. We stop a trial when the

same dose is repeated for r cohorts or when the trial reaches the maximum number

of m cohorts, whichever comes �rst. The idea behind early stopping is the saving of

resources if it is found that the same dose is being selected repeatedly. The assump-

tion is that no further improvement is possible for the current trial. Otherwise, it

will run for the maximum number of cohorts available. For early stopped trials, the

OD is de�ned as the dose that has been repeated r times. However, for the trials

that reach the maximum number of cohorts m, we carry out a complete analysis of

the data and de�ne the OD as the dose that would be allocated to cohort m + 1 if

that cohort were in the trial.

5.7 Evaluation of the Designs

To compare the produced adaptive designs based on di�erent criteria and con-

straints, we introduce some performance measures. The measures are based on

the simulation results. By a simulation, we refer to the completion of the up-and-

down procedure and the adaptive algorithm to recommend a dose. We have two

dose-response models and di�erent dose-response scenarios for each of them, which

were introduced in Chapter 4. For each of the scenarios, we have the true values

of the dose-response parameters ϑ. The following sections de�ne the performance

measures.
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5.7.1 Distribution of Dose Allocation

To �nd the distribution of the allocated doses to the cohorts over all simulations,

we de�ne

ξ̄ =

 x(1) , . . . , x(d)

w(1) , . . . , w(d)

 , (5.13)

where w(j) is the proportion of times that dose x(j) was allocated to the cohorts over

all simulated trials, j = 1, . . . , d, and d is the number of available dose levels. So

w(j) =
1

ntotal

U∑
i=1

nji, (5.14)

where ntotal =
∑U

i=1 n(i) and n(i) denotes the number of cohorts used in the ith

simulated trial. Thus, ntotal is the total number of cohorts used in all simulations

and nji is the number given dose x(j) in the ith simulation.

5.7.2 Distribution of Optimum Dose

The distribution of the OD is presented as

ξ̃ =

 x(1) , . . . , x(d)

w̃(1) , . . . , w̃(d)

 , (5.15)

where w̃(j) denotes the proportion of times that dose x(j) was recommended for the

next phase. It is obtained as

w̃(j) =
qj
U
, (5.16)

where qj is the number of times that dose x(j) was recommended for the next phase

in U trials.
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5.7.3 Decision E�ciency

Since, at the end of each trial a dose is recommended for the next phase, we introduce

an e�ciency criterion which is called the decision e�ciency (DE). Denote the ratio

of ψS at a recommended dose x for the next phase to ψS at the dose xOD by ρ.

The latter dose is the true OD obtained from a scenario assumed for the simulation

study. Therefore, we have

ρ(x,ϑtrue) =
ψS(x,ϑtrue)

ψS(xOD,ϑtrue)
. (5.17)

The ratio assesses how good the recommended dose level is. To measure the global

e�ciency of choosing the OD, we calculate the weighted sum

DE =
d∑
j=1

w̃(j) ρ(x(j),ϑtrue) IA(x(j)), (5.18)

where IA(x(j)) is an indicator function de�ned as

IA(x(j)) =

 1 if x(j) /∈ A,

0 if x(j) ∈ A,
(5.19)

and A is the set of doses for which the probability of toxicity is above the acceptable

level. If xOD is recommended in each of the simulated trials, then the weight is 1

corresponding to the OD and 0 for all other dose levels, and henceDE = 1. Similarly,

if all of the recommended doses are from the toxic region, then the indicator function

takes the value 0 for each of them, and hence DE = 0. In general, 0 ≤ DE ≤ 1.

5.7.4 Sampling E�ciency

We de�ne the sampling e�ciency (SE) based on the information on the allocated

doses to the cohorts over the simulations. With the w(j) de�ned in (5.14), we have

SE =
d∑
j=1

w(j) ρ(x(j),ϑtrue) IA(x(j)). (5.20)
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This criterion assesses the quality of treatment received by the patients during the

trials. If the cohorts in the trials only receive the OD, then the SE will have the

value 1. In that case, there will be no experimental variation in the dose level. In

general, we can expect the SE to be appreciably less than the DE, unless the vari-

ation in ψS over X is small. We have 0 < SE ≤ 1.

Hardwick et al. (2003) consider similar e�ciency measures. However, they do not

penalise for doses which have a probability of toxicity above the acceptable level.

We have found that, in some dose-response scenarios, ρ may be greater than 1 for

a few doses which have a probability of toxicity above the acceptable level. As a

consequence, a design choosing these doses more frequently will have larger values

for the e�ciency measures than one that does not. This should not be the case,

since these are the doses which a good design should not choose because of their

toxicity. Therefore, we have presented measures that penalise for toxic doses. Our

measures are capable of judging a design selecting low e�cacious or high toxic doses

as a poor one.
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Chapter 6

Simulation Studies

6.1 Introduction

This chapter aims to study the operating characteristics of the designs obtained

using the various dose-optimisation criteria and constraints introduced in the previ-

ous chapter. We present three examples utilising the PK and dose-response models

introduced in Chapters 3 and 4. The �rst example comprises a one-compartment

PK model with bolus input and �rst-order elimination and the continuation ratio

model for the probabilities of the dose-response outcomes. The second one uses one-

compartment PK model with �rst-order absorption and the Cox bivariate binary

model as the dose-response model. The third example only uses dose-response data

and the continuation ratio model is employed.

Section 6.2 gives a detailed description of the software used. For both dose-response

models, in Chapter 4, we presented some plausible scenarios. Simulation studies

are based on those scenarios to explore the behaviour of the designs. Section 6.3

contains a detailed description of the �rst example. The second example is presented

in Section 6.4. Since the presented designs depend on various parameters, we also

conduct sensitivity analyses to assess the robustness of the designs, the results of

which are given in Section 6.5. The simulation results for the third example are

presented in Section 6.6. Finally, there is a discussion in Section 6.7.



6.2 Software Used

All of the computations involved in the simulation studies are conducted using code

written in R (R Core Team, 2014), which is available in Appendix B. The com-

puter program follows the adaptive procedure which is shown schematically in the

�ow chart in Appendix A. The program has the following major parts: running the

up-and-down design; obtaining the D-optimal time points for measuring concen-

tration; the generation of the concentrations and dose-response outcomes; PK and

dose-response parameter estimation; dose selection for the next cohort; checking the

stopping rules; and identifying the OD.

The D-optimal time points for PK sampling are obtained by using PFIM 3.2 (Baz-

zoli et al., 2010), an R package to evaluate and optimise designs in the context

of population PK/PD experiments. The package PFIM 3.2 includes two folders:

PFIM 3.2 and examples. Some illustrations of the package using various models are

available in the folder examples. The folder PFIM 3.2 contains three principal �les:

PFIM3.2.r, model.r and Stdin.r. These are the main program �le, the model �le and

the input �le, respectively. They need to be put in a working directory. Then we

specify the working directory and the program directory in the �le PFIM3.2.r. The

package has a library of PK and PD models. In addition to these, users can de�ne

their own model. Since our models are available in the library, we can specify them

in the model �le. The input �le requires speci�cation of the optimisation method

and essential parameter values to obtain the optimal time points. We have kept the

model �le general, so that the current estimates from the trial can be fed into it to

�nd the locally optimal time points.

To obtain the maximum likelihood estimates of the PK parameters, we employ the

R procedure nlme (Pinheiro and Bates, 2000). Bayesian estimates of the dose-

response parameters are obtained by numerical integration using cubature, an R

package (Johnson and Narasimhan, 2013). The combined criterion for dose opti-

misation requires the penalised D-optimal dose to be found, which is achieved by
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some further code written in R. Here, we search for the dose, out of a set of discrete

doses, for which the determinant of the FIM is maximum.

The program is structured in such a way that one has to �rst specify the dose range,

acceptable level for the probability of toxicity, cohort size, dose-response and PK

models, true parameter values, prior values, steps for the up-and-down design, dose-

optimisation criterion and constraints, target values for the AUC and Cmax, early

stopping rule and maximum number of cohorts to be employed. At the end of each

simulation, it records the OD, the allocated doses to the cohorts and the parameter

estimates. The simulations were implemented on a DELL PC with an Intel Core

2 Duo processor running at 3.00 GHz and RAM 4.00 GB. The processing time for

1,000 simulations depends on the choice of the models. It takes 6-8 hours when we

only consider dose-response data. For both dose-response and PK data, it takes

10-15 hours.

6.3 Example 1

We assume a one-compartment model with bolus input and �rst-order elimination,

introduced in Section 3.7.1, for modelling the concentrations of the experimental

drug collected from the patients. The dose-response outcomes are assumed to be

trinomial and the continuation ratio model, introduced in Section 4.2.1, is used to

model the outcomes. Based on the updated information, we select a new dose for

the next cohort so that the estimated probability of success is maximum, subject to

a set of constraints. The trial stops according to the stopping rules described in the

previous chapter.

6.3.1 Simulation Settings

Choice of Design Parameters

We assume that the set of doses of an experimental drug is X = {0.5, 1.0, . . . , 10.0}.

Four hypothetical dose-response scenarios are considered: see Figure 4.1. Scenario
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1 has a monotonically decreasing e�cacy curve with dose 0.5 as the OD. Scenarios

2 and 3 depict non-monotonic e�cacy curves with respective ODs of 5.5 and 6.5.

A monotonically increasing e�cacy curve is considered in Scenario 4 with 10 as the

OD. Two kinds of responses need to be generated for the simulation study: the

concentration of the drug in the blood and the trinomial dose-response outcomes.

The values of the PK parameters for the simulation study are V = 0.5, Cl = 0.06,

σ2
1 = 0.004, σ2

2 = 0.00005 and σ2 = 0.000225. The parameter values are chosen such

that the coe�cient of variation is around 12%.

Each trial starts with the lowest dose of 0.5 mg/kg body weight. The acceptable

toxicity level γ is taken to be 0.2. Doses for the �rst four cohorts in each trial are

allocated according to the up-and-down design in Section 5.2. The value of AUC0

is taken to be the AUC obtained from (3.27) for the true OD in the scenario and

the true mean PK parameters. Although we consider the same γ for each scenario,

we have di�erent values of AUC0. The doses which satisfy the safety level γ = 0.2

are 1 mg/kg, 6 mg/kg, 8 mg/kg and 10 mg/kg for the four scenarios, respectively.

For each trial, we set the maximum number of cohorts to be m = 20. To allow the

trials to stop early when it is found that no further improvement in dose selection

is possible, we set r = 6.

Generation of PK and Dose-Response Outcomes

A vector of random e�ects bi for individual i is generated from the normal dis-

tribution N2(0,Ω), where Ω = diag(0.004, 0.00005). The PK parameters for that

individual are then obtained as θi = β + bi, where β = (0.5, 0.06)T . The next step

is to �nd the individual concentrations at the D-optimal time points. The design

region for the sampling times is T = [0, t1] hours, where t1 = 30. To decide what

is the best number of sampling times, we use the relative e�ciency de�ned in (6.1).

Although we consider the prior Ψ0 in each case, the designs have a di�erent number

of design points. It has been found that the e�ciency of a 3-point design relative to

a 2-point one is double. The e�ciency of a 4-point design relative to a 3-point one
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falls to 1.15. As we increase the number of design points, such e�ciencies become

closer to 1: see Figure A.1. This means that the gain is substantial if we consider

3 design points rather than 2. The increase from 3 design points to 4, or from 4 to

5 is negligible. The model has two so-called parameter sensitivities, which are the

partial derivatives of the model function with respect to the parameters V and Cl.

It is known from Section 3.7 that the FIM depends on the parameter sensitivities.

For one of them, the maximum lies at the beginning of the design region, while, for

the other, it is towards the end. Therefore, if the number of design points is in-

creased, a more uniform distribution of the points over the region can be expected,

as shown in Figure A.1. Furthermore, collecting many blood samples is often not

possible. Therefore, three optimal time points are considered for the individuals in

each cohort of size c = 3, and so ni = 3 for all i. We use the R package PFIM

3.2 (Bazzoli et al., 2010) to �nd these optimal time points. The random errors

of the observations at the optimal sampling time points are then generated from

N3(0, σ2I3), where σ2 = 0.000225, and added to the previously generated individual

concentrations to produce the simulated PK responses for individual i. The same

scheme is followed to simulate the responses for all individuals in each cohort. Figure

6.1 shows the generated concentrations for a cohort of three patients who received

the dose 0.5 mg.
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Figure 6.1: Simulated concentrations following the administration of the lowest dose
to a cohort. The black curve indicates the true mean PK pro�le.
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Under each of the scenarios in Figure 4.1, we have speci�c probabilities at each dose

to generate the trinomial dose-response outcomes, that is, we also assume some true

values for the model parameters.

Priors

We chose the prior values Ψ0 = (V 0, Cl0, (σ2
1)0, (σ2

2)0, (σ2)0)
T

= (0.1, 0.005, 0.0007,

0.0000006, 0.000004)T to obtain the optimal time points for the �rst four cohorts

in the up-and-down stage of the trial. The prior values are quite far away from

the true values Ψ = (0.5, 0.06, 0.004, 0.00005, 0.000225)T of the parameters, which

would normally be unknown and could be wrongly assumed at the beginning of the

trial. For the �fth cohort onwards, the current maximum likelihood estimates are

used.

We use a joint uniform prior distribution for ϑ, given in (4.5). The parameter space

Θ̃ is chosen for each scenario so that the true values of the parameters lie in the

middle of the corresponding intervals. For instance, since Scenario 1 has the true

parameters ϑ = (1.44, 0.26,−1.70, 0.25)T , Θ̃ has 0 < ϑ1 < 2.88, 0 < ϑ2 < 0.52,

−3.40 < ϑ3 < 0 and 0 < ϑ4 < 0.50. More speci�cally, u1 = 0.52, u2 = 0.50, l1 =

0, l2 = 2.88, l3 = −3.40 and l4 = 0 in (4.5). The same approach is followed for

the other scenarios. The chosen priors allow for any extreme scenario, as shown

in Figure A.2. Since the parameters ϑ2 and ϑ4 have the value 0 in each case, the

graphs in the left panel are identical. In evaluating the integrals in (4.4) with the

uniform distribution speci�ed in (4.5), the prior distributions in the numerator and

denominator cancel out, as they are constants.

Model Fitting

Once we have data on the concentrations and the dose-response outcomes, we can

update the �tted model. We obtain the maximum likelihood estimates of the PK

parameters using the R procedure nlme (Pinheiro and Bates, 2000). The posterior

estimates of the dose-response parameters in (4.4) are obtained by numerical inte-

gration using cubature, an R package (Johnson and Narasimhan, 2013). The package
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carries out the adaptive multidimensional integration over hypercubes. One needs

to specify the tolerance limit and the maximum number of function evaluations de-

sired. The smaller the tolerance limit or the larger the maximum number of function

evaluations, the more accurate an estimate is. Since the computational time is also

an important consideration, we set these to be 0.001 and 5,000, respectively.

Dose Selection for the Next Cohort

Once we have the updated PK and dose-response parameter estimates, we select the

dose for the next cohort based on the dose-optimisation criterion in (5.1), subject

to two di�erent sets of constraints in two separate runs of the simulations, that is,

subject to (5.10) and to (5.10) together with (5.11). As discussed in Section 5.3,

we do not allow the design to skip more than one dose level at a time when it is

increased.

Checking the Stopping Rules and the OD Selection

We continue the process of allocating doses to the cohorts until the stopping rules

in Section 5.6 are satis�ed. Once a trial reaches m cohorts, we carry out a complete

analysis to �nd the OD. At the end of each trial, we record the doses allocated to the

cohorts, the PK and dose-response parameter estimates, whether the trial stopped

early or not and the OD selected. Each of the four scenarios is investigated through

1,000 simulated trials. The following section summarises the results.

6.3.2 Numerical Results

We compare the operating characteristics of the PK-guided design, incorporating the

AUC constraint, with the one that does not take into account the PK information.

Dose selection in the latter design is based on the estimated probability of success

and the toxicity condition only, de�ned in (5.1) and (5.10). Although the method

is similar to the one presented by Zhang et al. (2006), their design criterion is the

maximisation of the di�erence between the estimated probabilities of success and

toxicity, subject to a toxicity constraint. The simulation results for our two designs
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are presented in Table 6.1 and Figures 6.2-6.5. In these �gures, the �rst row shows

the summaries when the additional PK constraint is employed. The summaries in

the second row are based on the toxicity constraint only. The bars in the left panel

represent the proportions of the doses selected as the OD in the simulations and

those in the right panel represent the proportions of the cohorts treated at the allo-

cated doses during the trials. The acceptable level for the probability of toxicity is

indicated by the horizontal dashed line.

Table 6.1 clearly shows the advantages of incorporating the additional constraint on

the AUC pro�le. The gain in percentage of the doses correctly recommended for

further studies depends on the scenario, but, in all cases considered, the PK-guided

designs are uniformly better.

Table 6.1: Percentage of best doses recommended for further studies (%BD), per-
centage of doses recommended as optimum, but carrying the probability of toxicity
above the maximum allowed threshold (%TD), and percentage of cohorts treated at
the best doses throughout the trials (%AD).

Scenario Best Doses %BD %TD %AD
PK No PK PK No PK PK No PK

1 0.5 99.0 52.4 0.6 32.7 65.3 31.8
2 5.5 and 6.0 80.2 66.2 0.9 9.5 41.1 33.5
3 5.5-7.5 91.7 85.7 0.0 2.5 52.4 49.2
4 10.0 47.9 46.3 0.0 0.0 17.8 17.5

As seen in Table 6.1, as well as in the left panels of Figure 6.2, the largest bene�t

is shown in Scenario 1, where the best dose is the �rst one and small doses have a

high probability of toxicity. Scenario 1 is an example of a dose range which is not

well de�ned, as the smallest dose level gives the highest probability of success and

all other doses give toxicity rates too high with a lower chance of success. Such a

situation may be rather rare in real applications, though it is not unlikely to hap-

pen. Hence, it is important to know how the methodology works in such an extreme

scenario. The PK-guided design avoids doses with a high chance of toxicity, while

the other design has not prevented this from happening. Despite the toxicity prob-

ability increasing sharply with dose levels in the upper dose range, there are still
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high doses allocated to patients when only the toxicity condition restricts the design.

The dose range is well chosen in Scenario 2, where the best dose levels are in the

middle of the range. Although the rate of success is very similar for two middle dose

levels, it drops o� rather fast on both sides of the middle dose range. The PK-guided

approach in Scenario 2 selects 5.5 as the OD in 39.7% of the trials. It selects dose

6.0 in 40.5% of the trials. This happens as the true probabilities of success at these

doses are quite close. These two �gures together make 80.2% of what we call in

Table 6.1 �best doses�. The corresponding �gure for the other approach is 66.2%.

Again, we observe that the PK-guided design avoids recommending doses with a

high probability of toxicity, and, moreover, such doses are used much less in the

simulated trials in this case: see Figure 6.3.
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Figure 6.2: Scenario 1 with the OD at 0.5.

The new approach in Scenario 3 identi�es exactly 6.5 as the OD in 17.8% of the trials.

Because of the �at shape of the success curve, this scenario has a number of doses
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Figure 6.3: Scenario 2 with the OD at 5.5.

with probabilities of success quite close to that for the OD. The doses are 5.5, 6.0,

6.5, 7.0 and 7.5, and these �best doses� are selected in 91.7% of the trials. Although

the other approach selects these doses in 85.7% of the trials, it recommends doses

above the toxicity probability threshold in 2.5% of cases. Furthermore, from Figure

6.4, the allocation of doses in the trials is again more ethical in the PK-guided design.

There is little di�erence between the two designs in Scenario 4, as shown in Table

6.1 and also in Figure 6.5. This is the case where both the probability of success

and the probability of toxicity increase with dose, where only higher doses have a

better chance of having an e�ect and all doses are below the toxicity threshold. This

scenario illustrates a very cautiously chosen dose range. As a consequence, this leads

to slow learning in the trial and requires the collection of a lot of information before

a recommendation can be made.

This is also shown in Figure 6.8, where, for this scenario, all available cohorts were
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Figure 6.4: Scenario 3 with the OD at 6.5.

used almost all of the time. This is in contrast to Scenario 1, where, especially in

the PK-guided design, the learning process was fast and there were much smaller

numbers of cohorts required in the trials. The other two scenarios use slightly lower

numbers of cohorts than the maximum, since the OD lies in the middle of the dose

range.

Now we try to understand how the e�ciency of the design and also the optimal

sampling time points change in successive stages of a trial. We de�ne the relative

D-e�ciency of a design ξ∗k to ξ
∗
true as

Relative Efficiency =

(
|M(Ψ̂k, ξ

∗
k)|

|M (Ψtrue, ξ∗true)|

) 1
p

, (6.1)

where ξ∗k is the optimum design obtained at the kth stage of a trial using the cur-

rent estimates of the parameters Ψ̂k, ξ
∗
true is the optimum design obtained for the
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Figure 6.5: Scenario 4 with the OD at 10.0.

true values of the parameters and p is the number of parameters in the model. In

both cases, dose remains �xed and it is the dose administered to the cohort at the

kth stage. Since both designs depend on the parameter values, it is possible, with

completely di�erent parameter values to the true ones, to have a design for which

the relative e�ciency is very high. A larger determinant of the information matrix

means a smaller general variance of the estimators. But, in our case, that will mean

that the variance is underestimated. Hence, we want the numerator to be close to the

denominator in (6.1). This, in turn, means that we want to have an optimum design

which is obtained for values around the true values of the parameters. This can be

achieved in a trial as we update the parameter estimates at each stage. After a su�-

cient number of stages, the estimates will be stable and the design points will be too.

Figure 6.6 shows the relative D-e�ciency of the designs computed at each of the

stages using (6.1) for Scenario 2. Though not presented, we have found underes-

timated variances for the initial four stages. Recall that we use the up-and-down
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Figure 6.6: Relative D-e�ciency in a randomly selected trial from Scenario 2.
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Figure 6.7: Optimal design points in a trial. The left one shows the points for the
true values of the PK parameters and the one on the right gives the points using
the current estimates.

design for the �rst four cohorts and that blood samples for these cohorts are collected

at the optimal time points which are based on an initial guess about the parameter

values. From the �fth cohort onwards, we use the current estimates obtained from

the trial data. Here, we observe a decreasing trend in the e�ciency. Since the es-

timates stabilise as the trial proceeds, there is not much change at the later stages

and also the e�ciency approaches to one.

The design points are displayed in Figure 6.7. With the true values of the parame-

ters, the design points are very similar at the various doses received by the cohorts

in the trial. This is because the shape of the concentration pro�le does not change

much with dose. But, of course, the amount of concentration changes rapidly with

dose. There is good agreement between the time points at the later stages with the
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corresponding true ones. This suggests that, after a reasonable number of steps, the

optimal time points stabilise.

It has already been mentioned that we stop a trial early if the same dose is repeated

for six of the cohorts and that we call the associated dose the OD. We have found

that, as the location of the OD moves from left to right in the dose region of a

scenario, more cohorts are needed to stop early. Most of the early stopped trials

identify the OD accurately. Figure 6.8 compares the average numbers of cohorts

used by the two approaches. It is observed that the PK-guided approach utilises

fewer cohorts in each scenario.
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Figure 6.8: Average numbers of cohorts used in the four scenarios by the two dose-
allocation methods.

Figures 6.9 and A.3 indicate a small bias and variance for the PK parameter esti-

mates for all of the scenarios. Since the design employs theD-criterion for measuring

the PK responses, it is ensuring accuracy and e�ciency in parameter estimation.

Figures 6.10, A.4 and A.5 show that the dose-response parameter estimates obtained

from the two approaches are similar. Obviously, they are not as good as the PK es-

timates. This is due to the fact that the information on the trinomial dose-response

model is not gathered in a way that would be optimum for parameter estimation.

Here, we focussed on the criterion which would provide a good dose for further

studies in an ethical trial, which is particularly important in classes of drugs where

toxicity can be very serious.
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The decision and sampling e�ciencies of the designs, obtained using (5.18) and

(5.20), are presented in Table 6.2. Both measures are larger for the PK-guided de-

sign than for the other design. These again re�ect the fact that the former design

is capable of identifying the OD more accurately and also allocating the most e�-

cacious doses to the cohorts in a trial.

We have checked the sensitivity of the optimal design to the prior values of the

parameters in Section 3.7.1. It has been found that the design is not sensitive to the

values. We now check the sensitivity of our dose-�nding design to the target value

of the AUC.
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Figure 6.9: Boxplots of the PK parameter estimates obtained from the simulations
for Scenario 1. The horizontal dashed lines indicate the true parameter values.

Table 6.2: Decision and sampling e�ciencies of the designs.

Scenario DE SE
PK No PK PK No PK

1 0.994 0.670 0.778 0.522
2 0.975 0.882 0.694 0.608
3 0.991 0.964 0.859 0.830
4 0.806 0.796 0.453 0.449
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Figure 6.10: Boxplots of the dose-response parameter estimates obtained from the
simulations for Scenario 1. The horizontal dashed lines indicate the true parameter
values. For each parameter, the left boxplot corresponds to the design which takes
into account the AUC and the right boxplot to the one which ignores it.

Sensitivity to Target AUC

The PK-guided design depends on the target value of the AUC. In our simulations

so far, we have considered it as the one at the true OD. To assess the sensitivity of

the design to the target value, we set it at doses other than the true OD. Scenario

2 is studied for this purpose. This scenario has 5.5 and 6.0 as the best doses. Table

6.3 gives a summary of the results. The notation in the table is de�ned as follows:

percentage of best doses recommended for further studies (%BD), percentage of

doses recommended as optimum, but carrying the probability of toxicity above the

maximum allowed threshold (%TD), and percentage of cohorts treated at the best

doses throughout the trials (%AD). Also, % of 3-BD is the percentage of the three

best doses. DE and SE are the decision and sampling e�ciencies, respectively.

Table 6.3: Sensitivity of the design to the assumed target for AUC in Scenario 2.

Dose %BD % of 3-BD %TD %AD DE SE
4.5 0.5 88.0 0.0 2.0 0.948 0.647
5.0 72.7 96.0 0.1 33.6 0.983 0.696
5.5 80.2 94.0 0.9 41.1 0.973 0.694
6 72.0 93.1 3.5 34.2 0.950 0.697
6.5 62.9 84.8 8.5 34.0 0.892 0.633

No PK 66.2 81.7 9.5 33.5 0.882 0.608
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By the three best doses, we mean the doses 5.0, 5.5 and 6.0, since the probabilities

of success at these are close to each other. The �gures in the table indicate that

the design is sensitive to the choice of target value for the AUC. %BD is smaller as

the target is further away from that at the true OD. If we choose a target below

that at the true OD, the design will avoid recommending a toxic dose as the OD

and will also not allocate toxic doses to the cohorts. But that will have a neg-

ative impact on the correct identi�cation of the optimum dose. The distributions

of optimum dose selection and dose allocation are presented in Figures 6.11 and 6.12.
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Figure 6.11: Optimum dose selection and dose allocation when the target AUC is
taken at the doses below the true optimum dose.

Sensitivity to Dose-Skipping Constraint

Section 5.3 discusses a restriction of not skipping more than one dose level at a time

when the level is increased. This is to make the design more cautious to avoid any

unacceptable toxicity from a high dose following a relatively small dose. In both
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Figure 6.12: Optimum dose selection and dose allocation when the target AUC is
taken at the true optimum dose and also at the doses above it.

PK-guided and other designs, we have employed this skipping constraint. To see the

impact, we compare them with those that do not employ any such constraint. Again,

we study Scenario 2. Tables 6.4 and 6.5 summarise the results from 1,000 simulated

trials. It is found that there is no appreciable di�erence between the �gures under

the two di�erent situations, except for dose allocation. That might be due to the

reason that, when there is no constraint to avoid dose skipping, the cohorts after

the up-and-down phase receive doses which are close to the most e�cacious ones.
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Therefore, patients are likely to be treated more often at the optimum dose at an

earlier stage of the trial than in the case of a slow-dose increase.

Figure 6.13 shows the dose allocation to successive cohorts for four randomly chosen

trials for both cases. As we can see, there may be situations when there is a sharp

increase in the dose level to the upper end of the dose range, which has a very high

Table 6.4: Sensitivity of the PK-guided design to the dose-skipping constraint.

Constraint %BD %TD %AD DE SE
Yes 80.2 0.9 41.1 0.975 0.694
No 79.0 0.7 47.3 0.979 0.692

Table 6.5: Sensitivity of the design to the dose-skipping constraint in the absence
of PK information.

Constraint %BD %TD %AD DE SE
Yes 66.2 9.5 33.5 0.882 0.608
No 67.3 9.5 40.0 0.886 0.582
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Figure 6.13: Dose allocation to successive cohorts in four randomly chosen trials for
the PK-guided design for Scenario 2.

probability of toxicity. This kind of event is avoided by the dose-skipping restriction.

In some cases, where toxicity is of less concern, a clinician may choose to skip more

than one dose level. This is one of the input parameters in the computer program.

To summarise the �rst example, we have seen that the e�ciency of a dose-�nding
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design can be improved by the use of pharmacokinetic information. Such a design

can restrict the recommendation of toxic doses for further studies and also allow

allocation of more e�cacious doses to the cohorts. We have found the design to be

sensitive to the choice of the target AUC and therefore care is needed in setting it.

6.4 Example 2

In this example, we assume that the drug is administered orally and that the whole

body is a single compartment. Assume that the dose-response outcomes are bivariate

binary. The Cox model for bivariate binary responses is used to model the dose-

response outcomes. This is accompanied by the one-compartment PK model with

�rst-order absorption. The details of these models are given in Sections 4.3 and 3.7.2,

respectively. Here, we present two adaptive designs: one considers PK data and the

other does not. The dose-optimisation criterion in both cases is the same, which is

the maximisation of the estimated probability of success, discussed in Section 5.3.1.

The toxicity constraint in Section 5.4 is also common to both designs. However, the

PK-guided design considers an additional constraint, introduced in Section 5.5.2,

that is, the constraint on the maximum concentration. The aim is to study the

operating characteristics of these designs and also to compare them.

6.4.1 Simulation Settings

Choice of Design Parameters

Assume that our experimental drug has 11 available doses on the log scale be-

tween -3 and 3 with a grid width of 0.6. Therefore, the set of doses is X =

{−3.0,−2.4, . . . , 3.0}. We investigate four plausible dose-response scenarios, as

shown in Figure 4.2, and taken from Dragalin and Fedorov (2006). We assume

that the acceptable level for the probability of toxicity is γ = 0.33. The assumed

optimal dose that maximises the probability of success in the �rst three scenarios

is -0.6 and in Scenario 4, is -1.8. These scenarios have doses 0, -0.6, -0.6 and -1.2

for which the probability of toxicity is no larger than γ. The PK parameter values
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assumed for the simulation study are V = 2.0, ke = 0.05, ka = 0.50, σ2
1 = 0.16,

σ2
2 = 0.0001, σ2

3 = 0.01 and σ2 = 0.00005. The parameters are chosen in such a way

that the coe�cient of variation is 20%.

Starting with the lowest dose -3.0, the up-and-down design in Section 5.2 continues

for the �rst four cohorts to gather information prior to any parameter estimation.

The target value of Cmax is taken to be the Cmax at the true OD in the scenario,

obtained from (3.35) for the true mean PK parameters.

Generation of PK and Dose-Response Outcomes

Following the administration of a dose to a cohort of patients, we observe the concen-

tration of the drug in the blood samples and the dose-response outcomes. The design

that considers PK data also requires the population D-optimal time points to collect

blood samples to measure the concentrations. The purpose is to ensure e�ciency

in the estimation of model parameters, even if we collect only a few samples from

each patient. As before, the time points are obtained using the R package PFIM 3.2

(Bazzoli et al., 2010). The PK sampling region is assumed to be T = [0, 50] hours.

To decide on the optimal number of sampling points, we have checked the eligibility

of either 3, 4, 5 or 6 points. A 2-point design is not possible, as the model has more

parameters, and therefore has been avoided as a candidate. As shown in Figure

A.6, the e�ciency of a 4-point design relative to a 3-point one is much higher. If

we increase the number of design points, the e�ciency at each point relative to the

previous point decreases. The PK model has three parameter sensitivities for its

parameters V , ke and ka. We have checked that two of the sensitivities have an ex-

tremum at the beginning, while the other has an minimum further to the right of the

design region. Some graphical investigation of the concentration pro�les with ran-

dom parameters, chosen within three standard deviations of the means, also showed

the variability to be high in those areas. Therefore, consideration of many design

points will lead to the choice of design points from those neighbourhoods. Since
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patients are usually unwilling to give many samples and also not much is gained by

considering many design points, we decide to collect blood samples at the four op-

timal time points for the individuals in each cohort of size c = 3. More speci�cally,

ni = 4 for all i in (3.21).

To obtain the concentrations at these time points, we generate a vector of ran-

dom e�ects bi for individual i from the normal distribution N3(0,Ω), where Ω =

diag(0.16, 0.0001, 0.01). The random PK parameters are then obtained as θi =

β+bi, where β = (2.0, 0.05, 0.50)T . We generate the random errors fromN4(0, σ2I4),

where σ2 = 0.00005. These are added to the generated concentrations to produce

the simulated PK responses for an individual. The same principle is adopted to

generate responses for the remaining individuals in a cohort. Such generated con-

centrations for a cohort are presented in Figure 6.14.
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Figure 6.14: Simulated concentrations at the locally D-optimum time points follow-
ing the administration of the lowest dose to a cohort. The true mean PK pro�le is
indicated by the black curve.

The dose-response scenarios to be used in the simulation study are presented in

Figure 4.2. We have the true parameter value ϑ for each of these scenarios. The

true probabilities of the four possible dose-response outcomes are then available

corresponding to the doses in X . Thus, the dose-response outcomes are generated
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from a multinomial distribution with four categories having these probabilities.

Priors

To obtain the optimal time points for the �rst four cohorts in the up-and-down

stage of a trial, we chose the values Ψ0 = (V 0, k0
e , k

0
a, (σ

2
1)0, (σ2

2)0, (σ2
3)0, (σ2)0)T =

(3.20, 0.08, 0.80, 0.04, 0.000025, 0.0025, 0.0000125)T for the PK parameters. The pri-

ors are chosen such that the mean PK parameters are three standard deviations

above the true values, and the variance components and error variance are one

quarter of the true values. The motivation behind choosing such priors is to make

them as vague as possible, since in reality these would normally be unknown and

could be wrongly assumed at the beginning of the trial. For any cohort after the

up-and-down stage, the current maximum likelihood estimates of the parameters

are used.

A joint uniform prior distribution for ϑ, given in (4.12), is used for Bayesian esti-

mation of the dose-response parameters. The parameter space Θ̃ is chosen for each

scenario so that the margin is 3 on either side of the true values. As Scenario 1

has the true parameters ϑ = (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6)T = (0.0, 1.0, 4.0, 2.0, 3.0, 3.0)T , Θ̃

takes the values −3 < ϑ1 < 3, −2 < ϑ2 < 4, 1 < ϑ3 < 7, −1 < ϑ4 < 5, 0 < ϑ5 < 6

and 0 < ϑ6 < 6. The other scenarios follow the same approach. As we utilise the

uniform prior distribution, the distributions cancel out in evaluating the integrals

in (4.11).

Model Fitting

Upon receiving the PK and dose-response data, we update the estimates of the

model parameters. A similar approach to that described for Example 1 is used for

�tting the models.

Dose Selection for the Next Cohort

Dose selection for the �rst four cohorts is based on the up-and-down design in Section

5.2. After the up-and-down stage, we estimate the PK and dose-response parameters
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based on the data to hand and proceed to select the dose for the next cohort.

The dose-optimisation criterion to be used is the maximisation of the estimated

probability of success. Assume that we are at the kth stage of the trial, and, based

on the current data, we have the estimates Ψ̂k and ϑ̂k of the PK and dose-response

parameters, respectively. Then we select the dose xk+1 for the next cohort of patients

based on the dose-optimisation criterion in Section 5.3.1, subject to two di�erent

sets of constraints in two separate runs of the simulations, that is, subject to (5.10),

and to (5.10) and (5.12).

Checking the Stopping Rules and the OD Selection

The same approach as was applied in the previous example is used for stopping a

trial and in identifying the optimum dose. Like before, we have r = 6 and m = 20

in this example. Each scenario is investigated through 1,000 simulated trials.

6.4.2 Numerical Results

The performance of the PK-guided design, which constrains Cmax, is compared with

the one which does not use such a constraint. Other than this constraint, the designs

are the same. Tables 6.6-6.7 and Figures 6.15-6.18 summarise the simulation results

for the four scenarios. As before, in these �gures, the bars in the left panel represent

the proportions of the doses selected as the OD in the simulations and those in the

right panel represent the proportions of the cohorts treated at these doses during

the trials. The acceptable level for the probability of toxicity is indicated by the

horizontal dashed line.

Table 6.6 shows the results for the designs in terms of three performance measures:

percentage of best doses recommended for further studies (%BD), percentage of

doses recommended as optimum, but carrying the probability of toxicity above the

maximum allowed threshold (%TD), and percentage of cohorts treated at the best

doses throughout the trials (%AD). The higher the values of %BD and %AD, the

better the design is. Similarly, we would expect %TD to be as small as possible.
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Except for Scenario 4, the advantage of the PK-guided design is clearly illustrated

by the �gures in the table. However, in Scenario 4, there is a slight improvement in

avoiding the doses with a high chance of toxicity.

Table 6.6: Percentage of best doses recommended for further studies (%BD), per-
centage of doses recommended as optimum, but carrying the probability of toxicity
above the maximum allowed threshold (%TD), and percentage of cohorts treated at
the best doses throughout the trials (%AD).

Scenario Best Doses %BD %TD %AD
PK No PK PK No PK PK No PK

1 -0.6 62.9 54.0 2.0 5.6 37.5 32.6
2 -0.6 63.1 46.1 1.5 21.7 35.6 26.9
3 -0.6 94.8 83.1 0.0 11.5 52.4 43.9
4 -1.8 and -1.2 80.7 88.2 0.1 1.1 62.2 66.6

Figure 6.15 shows the distributions of optimum dose selection and dose allocation

for Scenario 1. The left panel shows the OD selection and the right panel shows the

dose allocation for the two di�erent adaptive designs. The �gures are obtained by

following Sections 5.7.1 and 5.7.2. The scenario has -0.6 as the true OD. The PK-

guided approach selects this as the OD in 62.9% of the trials compared to 54.0% by

the other approach. The designs also select -1.2 as the OD in an appreciable number

of trials. This is due to the fact that the probabilities of success at these doses are

quite close. These two doses are selected in 90.2% of the trials, while the �gure

is 82.3% for the other approach. The PK-guided approach lessens the selection of

highly toxic doses as the OD. It also allocates more patients to the most e�cacious

doses.

The PK approach in Scenario 2 identi�es -0.6 as the OD in 63.1% of the trials.

Since its probability of success is close, it selects -1.2 in 26.7% of the trials. These

two doses are recommended in 89.8% of the trials. The design is very careful in

recommending toxic doses as the OD. It also treats a good proportion of cohorts

with the best dose throughout the trials. The corresponding �gure for the doses -1.2

and -0.6 in the other approach is 68.1%.

129



−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OD: with PK

Dose

P
ro

ba
bi

lit
y 

of
 R

es
po

ns
e

Success
Efficacy
Toxicity

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dose allocation: with PK

Dose

P
ro

ba
bi

lit
y 

of
 R

es
po

ns
e

Success
Efficacy
Toxicity

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

OD: without PK

Dose

P
ro

ba
bi

lit
y 

of
 R

es
po

ns
e

Success
Efficacy
Toxicity

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dose allocation: without PK

Dose

P
ro

ba
bi

lit
y 

of
 R

es
po

ns
e

Success
Efficacy
Toxicity

Figure 6.15: Scenario 1 with the OD at -0.6.

The dose -0.6 has been chosen in 94.8% of the trials in Scenario 3 by the PK-guided

approach. The other approach selects it in 83.1% of the trials. More than half of the

cohorts have been treated at the best dose in the simulated trials. The PK approach

avoids selecting toxic doses as the OD in a good percentage of trials.

In Scenario 4, the true OD is -1.8. But the doses -1.2 and -1.8 have probabilities of

success which are quite close. These two doses are selected in 80.7% of the trials.

The other approach selects these in 88.2% of the trials. This is the scenario where

the PK approach is not performing more satisfactorily than the other approach.

Since we put the PK constraint on the true OD, the design fails to select -1.2, which

is next to -1.8.

As we move through the scenarios, the steepness of the toxicity curve increases.

The di�erences in the results for di�erent scenarios can be related to this. We see

that gradually more patients are saved from toxic doses by the PK-guided approach.
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Figure 6.16: Scenario 2 with the OD at -0.6.

Figure 6.19 gives the relative e�ciencies at successive stages of a trial in Scenario 1

using (6.1). Although there are �uctuations at the beginning, the e�ciency measure

stabilises at the later stages. This, in turn, means that the parameter estimates are

becoming close to the true values towards the end of the trial. Also, the associated

design points stabilise as the trial proceeds: see Figure 6.20.

Figure 6.21 shows the average numbers of cohorts used in a trial by the dose-�nding

approaches. The di�erence in the numbers of cohorts is not signi�cant, since the

�gures are quite similar for the two approaches. The most noticeable feature is that,

although we allow a trial to use a maximum number of 20 cohorts, the average in

all scenarios is far less. This indicates that most of the trials stop before reaching

the maximum sample size.

Table 6.7 presents the decision and sampling e�ciencies for the scenarios, obtained
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Figure 6.17: Scenario 3 with the OD at -0.6.

using (5.18) and (5.20). The decision e�ciencies are usually higher in the PK-

guided design than in the design which does not constrain Cmax. The largest dif-

ference between the DEs is seen in Scenario 2. Since the PK-guided design does

not recommend toxic doses as the OD many times compared to the other design,

it gives the maximum gain in decision e�ciency. The DEs for the two designs are

close in Scenario 4. This is because the optimum dose selection is more accurate in

the other approach, and also the di�erence in %TD between the two designs is small.

The sampling e�ciency for the PK-guided design is also higher than that of the

other design for all of the scenarios. However, in Scenario 4, they are quite close.

This is the case since the distribution of dose allocation in the two designs is very

similar: see Figure 6.18.

Figure 6.22 summarises the distribution of the PK parameter estimates obtained

from simulations for Scenario 1. We see some outliers in the estimates for each of
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Figure 6.18: Scenario 4 with the OD at -1.8.
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Figure 6.19: Relative e�ciencies in a randomly selected trial from Scenario 1.

the parameters. Apart from these, the bias and variance of the estimates are small.

The distributions for the other scenarios are shown in Figures A.7-A.8. We �nd

a similar behaviour of the estimates as in the �rst scenario. Since the approach

utilises D-optimal time points for collecting concentrations, it ensures accuracy and

e�ciency in parameter estimation. Figure 6.23 displays the distribution of the dose-

response parameter estimates for Scenario 1. We have considered wide uniform
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Figure 6.20: Optimal design points in a trial. The left one shows the points for the
true values of the PK parameters and the one on the right gives the points using
the current estimates.
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Figure 6.21: Average numbers of cohorts used by the two dose-allocation methods.

priors for the scenarios to allow extreme cases that might possibly occur.

Table 6.7: Decision and sampling e�ciencies of the designs.

Scenario DE SE
PK No PK PK No PK

1 0.925 0.875 0.774 0.743
2 0.882 0.679 0.685 0.540
3 0.974 0.858 0.629 0.525
4 0.939 0.944 0.887 0.882

As a consequence, we have found outliers in the estimates of the parameters. A

similar pattern is seen for the other scenarios presented in Figures A.9-A.10. These

estimates are not as good as the PK estimates. The reason is that we have allocated

doses to the cohorts so that the estimated probability of success is maximum, rather
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Figure 6.22: Boxplots of the PK parameter estimates obtained from the simulations
for Scenario 1. The horizontal dashed lines indicate the true parameter values.

than allocating doses for which the e�ciency in parameter estimation is maintained.

Moreover, the dose-response parameter estimates obtained from the PK-guided ap-

proach are similar to those from the other approach. These indicate that consider-

ation of PK data is not improving the estimates of the dose-response parameters.

The percentages of the trials that stopped in the up-and-down stage are 15, 10, 3

and 8, respectively, for the four scenarios. The �gures are almost identical for the

two approaches. Scenario 3 has the lowest percentage, since the probabilities of

toxicity at the early doses are very low compared with the other scenarios.

We have learnt from this example that a dose-�nding design can be made more

e�cient if we can allocate doses to the cohorts entering a trial around a target value

for Cmax. Of course, the gain in e�ciency depends on the underlying scenario. The

gain is maximum in a scenario with a steep toxicity curve. Along with dose-response

data, both examples have utilised pharmacokinetic information. They are similar

in both cases apart from the di�erent PK constraint. The intention is to keep the
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Figure 6.23: Boxplots of the dose-response parameter estimates obtained from the
simulations for Scenario 1. The horizontal dashed lines indicate the true parameter
values. For each parameter, the left boxplot corresponds to the design which takes
into account Cmax and the right boxplot to the one which ignores it.

method a �exible one, so that one can constrain either of the PK parameters AUC

and Cmax, depending on the availability of the information and the interest of the

researchers.

6.5 Sensitivity Analysis

In this section, we present the sensitivity analysis of the proposed design to the

di�erent parameters via simulation studies. We restrict ourselves to Scenario 1 in

Example 2, since checking all of the scenarios involves considerable computational

time. However, we would expect similar results for the other scenarios. There are a

number of parameters in the design that one can vary. However, we are particularly

interested in the most crucial ones. These include the priors for the PK and dose-

response parameters, and also the target value for the maximum concentration.

Each case is investigated through 1,000 simulated trials. All other parameters are

kept �xed during the simulations to see the e�ect of the parameter being varied.
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6.5.1 Priors for Dose-Response Parameters

The prior distribution plays an important role in Bayesian estimation of parameters.

Here, we express the uncertainty about the parameters in terms of a probability dis-

tribution and combine this with the new data to form the posterior distribution.

Then we �nd the posterior means of the parameters, which we call the Bayesian

estimates. It is always a good idea to assess the sensitivity of the estimates to the

assumed prior values. To ensure the prior has less e�ect and the data dominate,

we use non-informative priors in both examples presented in Sections 6.3 and 6.4.

More speci�cally, we use the uniform distribution over some sensible range of values

as the prior. The ranges are chosen in such a way that they encompass any possible

extreme case.

In the simulation studies in Section 6.4, we assumed priors with a margin of 3 on

either side of the true values. These priors are wide enough. To see what happens

in the presence of narrower priors, we plan to employ priors which have margins of 2

and 1. The true parameter values in Scenario 1 are ϑ = (0.0, 1.0, 4.0, 2.0, 3.0, 3.0)T .

The margin 3 allows the parameter space Θ̃ to have the values −3 < ϑ1 < 3,

−2 < ϑ2 < 4, 1 < ϑ3 < 7, −1 < ϑ4 < 5, 0 < ϑ5 < 6 and 0 < ϑ6 < 6. Similarly, for

margin 2, the parameter space consists of the values −2 < ϑ1 < 2, −1 < ϑ2 < 3,

2 < ϑ3 < 6, 0 < ϑ4 < 4, 1 < ϑ5 < 5 and 1 < ϑ6 < 5. The margin 1 gives the values

−1 < ϑ1 < 1, 0 < ϑ2 < 2, 3 < ϑ3 < 5, 1 < ϑ4 < 3, 2 < ϑ5 < 4 and 2 < ϑ6 < 4.

The possible scenarios that might occur at the boundaries of these priors are shown

in Figure 6.24. The graphs in the right panel are fairly similar and also similar to

the original scenario. We have found that the graphs keep a similar shape for any

margin above the true values of the parameters. Although the graphs in the left

panel are di�erent in shape, if we increase the margin further, they converge to a

shape where the marginal probability of toxicity decreases as dose increases. This

contradicts the usual form of toxicity curves. Also, in all of the current left-panel

graphs, toxicity decreases initially and then increases with dose. Moreover, since

there are six parameters, any change in one of the parameters will lead to a change
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in the shape of the curves. With all of these considerations, the set of priors that

we are going to use can be regarded as vague enough.
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Figure 6.24: Possible dose-response curves for margins of 3, 2 and 1 on either side of
the true parameter values. The left panel represents the cases where the parameter
values are below the true values and those in the right panel represent the cases
where the parameter values are above the true values.

Figure 6.25 shows the distributions of optimum dose selection and dose allocation

for the PK-guided design for various prior distributions. Table 6.8 summarises the

results. All of the performance measures improve as the margin decreases.
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Figure 6.25: Optimum dose selection and dose allocation under di�erent prior values
for Scenario 1 in Example 2.

Table 6.8: Sensitivity of the design to the assumed priors for the dose-response
parameters in Scenario 1 that takes into account PK information.

Margin %BD %TD %AD DE SE
3 62.9 2.0 37.5 0.925 0.774
2 71.6 0.6 42.5 0.977 0.799
1 82.3 0.0 47.9 0.989 0.803
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Table 6.9: Sensitivity of the design to the assumed priors for the dose-response
parameters in Scenario 1 that ignores PK information.

Margin %BD %TD %AD DE SE
3 54.0 5.6 32.6 0.875 0.743
2 71.3 0.2 41.3 0.956 0.737
1 81.7 0.0 49.0 0.971 0.780

The correctness in the optimum dose selection (%BD) increases as the ranges of the

parameter values decrease. Fewer trials recommend a dose for further studies which

carries the probability of toxicity above the acceptable level. The percentage of such

trials completely disappears for a margin of 1. Also, the allocation of the best doses

to the cohorts over the trials increases quite signi�cantly for the dense priors. The

decision and sampling e�ciencies much improve as we choose narrower ranges. As

%BD and %AD increase and %TD decreases for such a choice of priors, it is obvious

that DE and SE will improve. The trend in improvements is similar in Table 6.9,

which summaries the results for the design without the PK constraint. Though not

presented, we have found the similar distributions for the optimum dose selection

and dose allocation to those presented. On the whole, the results show that the

e�ciency of the proposed adaptive design can be improved by the choice of more

appropriate priors for the dose-response parameters.

6.5.2 Priors for PK Parameters

Since our PK model is non-linear in the parameters, the Fisher information matrix

depends on them. Therefore, in the search for the D-optimal time points, we need

to assume some prior values for the parameters: see Section 3.5.2. We start with

some best guess about the parameters. However, once the estimates are available

from the trial, we use them to �nd the optimal time points. Also, the maximum

likelihood estimation procedure for the PK parameters requires some initial values.

To see whether the assumed prior values have an impact on the design, we conduct

some simulation studies.

Six sets of prior values are investigated in the simulation studies. Each set consists
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of the mean PK parameters which are some multiple of the standard deviation away

from the true values. The main idea is to make them as far away as possible to see

the impact on the design when we have complete ignorance about the parameters.

The �rst set assumes that the mean PK parameters β are 3 standard deviations

below the true ones. The variance components and error variance are assumed to

Table 6.10: PK parameter values for the sensitivity analysis.

Set V ke ka σ2
1 σ2

2 σ2
3 σ2

1 0.80 0.02 0.20 0.040 0.000025 0.0025 0.0000125
2 1.20 0.03 0.30 0.053 0.000033 0.0033 0.0000166
3 1.60 0.04 0.40 0.080 0.000050 0.0050 0.0000250
4 2.40 0.06 0.60 0.080 0.000050 0.0050 0.0000250
5 2.80 0.07 0.70 0.053 0.000033 0.0033 0.0000166
6 3.20 0.08 0.80 0.040 0.000025 0.0025 0.0000125

be one quarter of the true values. The second set contains the mean parameters

which are 2 standard deviations below the true values, whereas the variance compo-

nents and error variance are one third of the true values. In a similar way, we have

the third set of prior values. In the fourth set, the PK parameters are one standard

deviation above the true values, with the variance components and error variance

one half of the true values. Similarly, we construct the �fth and sixth sets of priors.
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Figure 6.26: Design points obtained at various sets of prior values following the
administration of the lowest dose to a cohort.

Table 6.10 gives the six sets of values that we obtain. The D-optimal time points

obtained for the various prior values are shown in Figure 6.26. Some of the points

corresponding to di�erent sets are almost identical and therefore we see three points
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instead of four. It seems that the time points change with the di�erent priors.

Therefore, emphasis should be given to the priors. We do this by replacing the prior

values with the current knowledge in advance of a trial.

Table 6.11: Sensitivity of the design to the assumed priors for the PK parameters
in Scenario 1.

Set %BD %TD %AD DE SE
1 65.5 2.1 39.8 0.932 0.779
2 65.5 2.4 39.5 0.928 0.776
3 67.1 0.8 39.9 0.951 0.781
4 66.1 1.1 39.5 0.941 0.775
5 65.1 1.1 38.5 0.952 0.786
6 62.9 2.0 37.5 0.925 0.774

Table 6.11 summarises the simulation results obtained under di�erent sets of priors.

It is evident from the �gures that the design is less sensitive to the assumed prior

values for the PK parameters. The small variability that is seen in the numerical

results is mainly due to randomness. Set 6 is the one that has been used in the

original simulation study for Example 2. Although the priors have an impact on

optimal design, they do not have an impact on the adaptive design. This might

be due to the fact that the learning through gathering information in the �rst few

cohorts is substantial and it stabilises the estimates.

6.5.3 Target Maximum Concentration

The implementation of the design presented in Example 2 requires a target value for

the maximum concentration. We set that target at the true optimal dose. That is,

we obtain the target Cmax using (3.35) for the true values of the OD and the mean

PK parameters β. However, the target may be misspeci�ed, and, therefore, this

section is devoted to assessing the impact of such misspeci�cation on the design.

Other than taking it at the true OD, we will set this target at the doses which are

one and two levels away. Moreover, we check it for Scenario 1 only. Checks for the

other scenarios are possible using the same idea.
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The true optimal dose in Scenario 1 is -0.6. The other doses that we are interested

in are -1.8, -1.2, 0.0 and 0.6. As discussed earlier, we set the target Cmax at these

doses in separate runs of the trials.

Table 6.12: Sensitivity of the design to the assumed target for Cmax in Scenario 1.

Dose %BD % of 3-BD %TD %AD DE SE
-1.8 0.8 10.5 2.0 3.0 0.672 0.627
-1.2 0.8 85.4 2.0 3.8 0.885 0.722
-0.6 62.9 91.2 2.0 37.5 0.925 0.774
0.0 59.4 91.6 0.6 34.8 0.935 0.790
0.6 55.3 85.9 4.0 33.4 0.889 0.756

No PK 54.0 85.1 5.6 32.6 0.875 0.743
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Figure 6.27: Optimum dose selection and dose allocation when the target Cmax is
taken at the doses below the true optimum dose.

Table 6.12 contains a summary of the simulation results obtained from 1,000 trials.

Figures 6.27-6.28 present the distributions of the recommended doses and allocated

doses to the cohorts under di�erent choices of target values. When targets are taken

at the doses below the true optimum dose, all performance indicators give poor val-
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Figure 6.28: Optimum dose selection and dose allocation when the target Cmax is
taken at the true optimum dose and the doses above it.

ues. In such cases, the design identi�es the optimum dose very poorly. Although

the decision e�ciency for -1.8 is poor, the measure provides a satisfactory value for

-1.2. This is because of the fact that the probabilities of a successful outcome at

doses -1.2 and -0.6 are quite close.

The scenario has three doses -1.2, -0.6 and 0.0 for which the probabilities of success

are 0.73, 0.77 and 0.71, respectively. Therefore, we create a column % of 3-BD

144



in Table 6.12 showing how frequently these were recommended for further studies.

As the target moves to the doses above the true OD, correct identi�cation of the

optimum dose is less likely. Also, fewer patients are allocated to the true OD. % of

3-BD gives a better picture of the recommended doses. Although we have a very

small �gure for %BD corresponding to -1.2, % of 3-BD gives a very high �gure. This

means that many of the trials recommended doses -1.2 and -0.6. There is a similar

behaviour for dose allocation. As a result, we have fairly large values for DE and SE.

The DE corresponding to dose 0.0 is higher than that at dose -0.6, since the above

three doses are selected more often than for the original design. Similarly, for dose

0.0, SE is slightly higher and that is evident from the relevant distribution of dose

allocation in Figure 6.28. It is important to note that the performance indicators are

more sensitive when the design considers the target Cmax at a dose below the true

OD. However, it is less sensitive when the dose is above the true OD. All of these

results demonstrate the need for care in setting the target value for the maximum

concentration, although there is some margin for misspeci�cation.

6.6 Example 3

This example tries to explore the behaviour of a design which uses the combined

criterion in Section 5.3.3 for dose optimisation. As mentioned earlier, the criterion

is intended to serve two purposes: allocation of the most e�cacious doses to the

cohorts and improvement in the estimation of the dose-response parameters. We

conduct simulation studies, details of which are given in the following section, to

investigate whether the intended objectives are met.

6.6.1 Simulation Settings

Here, we use the continuation ratio dose-response model introduced in Section 4.2.

The dose-response scenarios in Figure 4.1 are investigated. The same scenarios have

been used as in Example 1 and more details of them are available in Section 6.3.1.

We assume that the acceptable level for the probability of toxicity is γ = 0.2.
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The design follows the general algorithm described in Section 5.2. Each trial assigns

the lowest available dose of 0.5 mg/kg body weight to the �rst cohort of patients.

Escalation or de-escalation of doses to the �rst four cohorts is based on the up-and-

down design presented in Section 5.2. Since the Fisher information matrix in (4.9)

is singular, to have a non-zero value for the determinant of M(ξk, ϑ̂k) in Section

5.3.2 immediately after the up-and-down stage, we need to ensure that at least two

of the doses allocated to the �rst four cohorts are di�erent.

The design does not use any PK constraint and therefore only requires dose-response

outcomes to be simulated. These are drawn from a trinomial distribution with the

true probabilities corresponding to a dose obtained for the respective scenario. Once

the trial passes the up-and-down stage, the model-based procedure starts. This re-

quires estimation of the dose-response parameters and assignment of the best dose

to the next cohort. The Bayesian estimates of the dose-response parameters are

obtained at each steps after the up-and-down stage, using the same set of priors as

in Example 1.

The penalised combined criterion in (5.9) is utilised to assign doses at each step of

a trial. As the dose-optimisation criterion to be used already penalises observations

for low e�cacy or high toxicity or both, not additional constraint is imposed. The

rules presented in Section 5.6 are used to stop a trial. Here, the optimum dose is

de�ned as the dose that has been repeated r times. However, for the trials that

utilise the maximum number of cohorts m, the optimum dose is de�ned as the one

for which the estimated probability of success is maximum, subject to the constraint

that the estimated probability of toxicity at that dose is no more than γ. Utilisation

of the maximum number of cohorts means that the trial came through a reasonable

number of steps. Consequently, we can expect the estimates of the parameters to be

reliable, as the determinant of the FIM is in the optimisation criterion. Therefore,

we can use these estimates to predict the dose-response curves more accurately to
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obtain the dose which is best in terms of the probabilities of success and toxicity.

We set r = 6 and m = 20 in our simulations.

The penalty function to be used in the simulation study was introduced in (5.7).

It has the control parameters CS and CT . To motivate on the values for these

parameters, we conduct an investigation described below.

Optimum Values for CS and CT

Figure 4.1 shows the dose-response scenarios that we are going to consider in this

example. In Scenario 1, the true optimal dose lies at the beginning. Since the

probability of success is low and the probability of toxicity is high at the higher doses,

the penalty resulting from high CS and CT values will restrict the dose selection

from the end of the dose region: see Figure 6.29. In Scenario 2, success is low at the

beginning and toxicity is high at the higher doses. Therefore, penalising doses from

both ends will keep the dose selection in the middle, where the true optimal dose

lies. The success curve in Scenario 3 is of a �at type. Even at the early doses, suc-

cess is quite high, and toxicity at the higher doses is not as high as in the previous

two scenarios. As a result, the penalty for taking observations from both ends is

smaller than that for the previous scenario. However, it still keeps the dose selection

in the middle of the dose region. The true optimal dose in Scenario 4 lies at the

end of the dose region. The probabilities of success and toxicity remain very low for

more than half of the available doses. Also, we do not have any dose for which the

probability of toxicity is very high. Penalising observations for low success and high

toxicity gives very high penalty values for most of the early doses in this scenario

and thereby will keep the dose selection from the upper end of the dose region. To

summarise, for all of our scenarios, we plan to penalise for taking a dose which is

either low o�cious or highly toxic or both.

Having decided on the non-zero values for the control parameters, we assume that

they take the same value, that is, CS = CT = C. Since a non-zero value of C will
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Figure 6.29: Penalty function for the four scenarios assuming CS = CT = 1.

keep patients away from low e�cacious or highly toxic doses, we need to �nd its

optimum value. We have tried various values of C. Figures 6.30-6.32 depict some

features of the resulting designs to guide the choice for C.

In each case, the results are based on 200 simulations of the respective scenario. In

Figure 6.30, we have the percentages indicating how often toxic doses are allocated

to the patients. It also shows the percentages of toxic doses selected as the OD.

The percentages for correct identi�cation of the OD are displayed too. It reveals

that, as the value of C increases, fewer patients are treated with toxic doses. In

all of the scenarios, there is a fall in the percentage of toxic doses as the OD when

the value of C increases from 0 to 1. It increases and then decreases for the other

values of C. However, it levels o� for Scenario 3 at C = 1. As C increases, the

percentage for correct identi�cation of the OD usually increases initially. It then

levels o� in Scenario 3 and gradually decreases in Scenario 1. The corresponding
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Figure 6.30: Percentage of cohorts treated at the toxic doses during the trials,
percentage of toxic doses recommended as the optimum dose and percentage of
trials with the correct OD selection. Di�erent values for the control parameters CS
and CT have been used assuming CS = CT = C.

change in Scenario 2 is very slight. Since Scenario 4 is one where we do not have

any dose for which the toxicity level is higher than the acceptable level, although we

cannot draw the �rst two curves related to toxic doses, we can show the percentage

for correct identi�cation of the OD. All of these results suggest that C = 1 could be

a reasonable choice.

Figures 6.31-6.32 present the bias and mean square error for di�erent scenarios. As

C increases, one would expect the penalised D-optimum design to be further away

from the D-optimum design. Consequently, the bias and mean square error would

also increase. This was found to be true on some occasions, but not always. Small

number of simulations could be a possible reason. Therefore, together with the

previous results, we decide to use C = 1 in this example.
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Figure 6.31: Biases of the parameter estimates for di�erent choices of control pa-
rameters CS and CT assuming CS = CT = C.

6.6.2 Numerical Results

With the control parameter values set to 1, we run the penalised combined criterion

for each of the scenarios. One thousand simulated trials are generated in each case

for various values of the weight a. It is important to note that, when a = 0, the

dose selection is based on the probability of success only with no PK constraint. On

the other hand, the criterion reduces to the penalised D for a = 1: see (5.9). Tables

6.13-6.16 illustrate the simulation results.

Table 6.13: Combined criterion for Scenario 1.

a %BD %TD %AD DE SE
0.0 53.5 31.8 31.9 0.681 0.516
0.2 64.0 27.8 35.2 0.722 0.515
0.4 74.0 21.9 37.8 0.780 0.478
0.6 86.0 12.6 42.0 0.873 0.502
0.8 94.3 4.7 43.8 0.952 0.513
1.0 81.1 12.3 32.0 0.877 0.377
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Figure 6.32: Mean square errors of the parameter estimates for di�erent choices of
control parameters CS and CT assuming CS = CT = C.

Table 6.13 shows the results for Scenario 1. The penalised D-criterion gives better

results than maximisation of the probability of success. It is seen for all measures

apart from SE. This is expected, as the criterion based on the maximisation of the

probability of success only is de�ned so that more patients are treated during the

trial with e�cacious doses more often. The penalised D-optimum criterion does not

take care of this. The design performs the best overall when a = 0.8. Here, the

design can identify the true optimum dose 0.5 most accurately. Only a few trials

gave toxic doses for further study in the next phase. About 44% of the cohorts

are treated at the OD throughout the trials. On the whole, the combined criterion

enhances the performance for Scenario 1.

The results for Scenario 2 for di�erent values of a are compared in Table 6.14. The

best result in terms of all the performance indicators is attained at the weight 0.

However, there is little variation in the performance for the values of a between 0
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and 0.6. The only noticeable di�erence is observed for a = 1. For this choice of

weight, the design identi�es the OD less accurately compared with the other weights.

Fewer cohorts are treated with the best dose as the weight increases and there is

also a sharp drop when the weight is 1. The e�ciency measures DE and SE are

both considerably smaller in this case.

We obtain similar results for the weights ranging between 0 and 0.8 in Scenario 3. As

in the previous scenario, we observe a decreasing trend in the dose allocation, with

a sharp drop at weight 1. All of the performance values indicate that the penalised

D is performing poorly compared to the other cases. However, it might be worth

combining the criteria in this case, with a in [0.2,0.8].

Table 6.14: Combined criterion for Scenario 2.

a %BD %TD %AD DE SE
0.0 68.0 7.0 36.2 0.913 0.638
0.2 66.0 7.8 35.6 0.903 0.629
0.4 66.0 7.8 35.3 0.901 0.622
0.6 64.2 7.4 34.0 0.905 0.616
0.8 57.6 8.3 30.4 0.888 0.590
1.0 49.7 8.1 16.2 0.843 0.493

Table 6.15: Combined criterion for Scenario 3.

a %BD %TD %AD DE SE
0.0 84.5 2.2 49.5 0.968 0.842
0.2 86.9 1.7 48.9 0.973 0.838
0.4 84.6 2.2 47.6 0.969 0.824
0.6 85.4 2.6 45.8 0.964 0.801
0.8 85.6 1.1 42.0 0.971 0.771
1.0 62.1 3.8 22.6 0.899 0.652

The optimum value of a in Scenario 4 is 0.4, since both DE and SE attain their

largest values. However, looking at the �gures for the best dose recommendation

and allocation, it can be claimed that the design is performing similarly for the

weights between 0.4 and 0.8. That is, higher values of a gives the design the best

performance. But, as in Scenarios 2 and 3, the penalised D-optimum design is not

performing well in this scenario.
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When a = 0, for the �rst three scenarios, the performance values are consistent with

the ones obtained for the case 'No PK' in Tables 6.1-6.2. Although the combined

criterion does not consider the toxicity constraint in Section 5.4 during dose alloca-

tion, the �gures are very similar. However, for a = 0 in Scenario 4, the results are

better than those that we obtained earlier. Since the optimum dose is the last dose

in the dose region, the toxicity constraint often restricts us from choosing it for the

cohorts. This can be regarded as one possible reason for having better results than

before.

Table 6.16: Combined criterion for Scenario 4.

a %BD %TD %AD DE SE
0.0 69.5 0 27.0 0.899 0.485
0.2 69.5 0 27.3 0.888 0.484
0.4 73.4 0 28.2 0.914 0.488
0.6 72.0 0 28.2 0.893 0.481
0.8 75.0 0 29.6 0.901 0.481
1.0 47.3 0 26.4 0.784 0.460

It is worth mentioning that SE is large when the weight is 0 and small when the

weight is 1 for Scenarios 1-3. This is because maximisation of probability of suc-

cess allocates most of the cohorts to the most e�cacious doses compared to the

D-criterion. Even though we penalise the D-criterion for low e�cacious or high

toxic doses, the improvement in SE is not that noticeable. In Scenario 4, the SE

values are close to each other, apart from the one corresponding to a = 1. This is a

scenario where we do not have any dose for which the probability of toxicity exceeds

the acceptable level, but it has many doses for which the probability of success is

very low. Therefore, the di�erences among the SEs are not very substantial for this

scenario.

We have looked at three approaches for dose �nding in our examples. In one ap-

proach, the intention is to allocate doses to the patients that are best in terms of

current knowledge. This kind of approach is known as the "best intention" approach
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in the literature. The other approach targets the most e�ective gathering of infor-

mation and is based on the theory of optimal design. The third approach tries to

make a trade-o� between the two. Best intention designs are ethically attractive, as

they take care of the patients, but, unlike the one based on optimal design, it has

limitations in terms of convergence. Since here we have small numbers of cohorts,

the convergence property of the D-optimum design is not that important. However,

combining the two approaches, on the whole, may improve the performance of the

adaptive design.

6.7 Discussion of the Results

This chapter has made detailed simulation studies to learn about the adaptive de-

signs. Two classes of designs are presented: one considers e�cacy and toxicity end

points and the other, along with these outcomes, also considers pharmacokinetic

information. Three examples are introduced in this context and the major results

are discussed below.

The design presented in Section 6.3 is conceptually similar to that of Zhang et al.

(2006), but their design does not incorporate pharmacokinetic information. They

�nd a dose that maximises the di�erence between the estimated success probability

and λ times the estimated toxicity probability, given that the estimated toxicity

probability is smaller than a pre-speci�ed level, where 0 ≤ λ ≤ 1. The value of λ

can be varied to include toxicity in the criterion and no general recommendation is

made about its value. But, in many real scenarios, such a di�erence with a non-zero

λ may lead to doses which are not optimum. Scenario 3 in Example 1 is such a case,

where the di�erence at some sub-optimal doses is the same as that at the optimal

dose. Therefore, we decide to use λ = 0. The decision also helps to avoid double

dependence on the probability of toxicity.

In this example, along with dose-response outcomes, we have considered an im-

portant PK measure, AUC, and its inter-patient variability in the dose escalation.
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The main purpose of this study was to investigate the role of PK measures in dose

�nding, and, by means of detailed comparisons, we showed that utilising the PK

information can be very bene�cial.

The simulation results from four di�erent dose-response scenarios indicate that the

incorporation of such measures can improve the accuracy of dose-�nding studies. It

is also shown that the method is capable of limiting overdosing by a considerable

amount depending on the location of the OD. The proposed PK-guided approach

can therefore be used as a reliable dose-�nding procedure in situations where more

careful escalation is essential to avoid toxicity. However, we have found the design

to be sensitive to the target AUC, but less sensitive to the dose-skipping constraint.

Section 6.4 presents the second example with a di�erent set of PK and dose-response

models. The dose-optimisation criterion and the toxicity constraint used are the

same as in Example 1. However, this time the PK constraint is on the maximum

concentration. The reason for using the maximum concentration is that often clini-

cians are more interested in it than the AUC because of the simplicity in comparing

it with a threshold to decide on the nature of the dose-response outcome. The inter-

patient variability in Cmax is also taken into consideration in the dose escalation.

Results from the simulation study of four plausible dose-response scenarios show a

gain in the e�ciency of dose �nding due to considering additional PK information.

We can identify the optimum dose accurately and can allocate most relevant doses

to the cohorts in a trial by using the proposed design. It also restricts us from

recommending a toxic dose as the optimum dose for further study in the next phase.

We achieve similar gains in both examples when PK information is used. It is im-

portant to mention that, in both cases, we obtained a small bias and mean square

error for the PK parameter estimates. This happens as the D-criterion has been

employed to obtain the time points to collect blood samples to measure the concen-
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tration of the drug. The bias and mean square error of the dose-response parameter

estimates obtained using the two approaches are very similar. Therefore, consider-

ation of the additional pharmacokinetic information is not improving the quality of

the dose-response parameter estimates, but rather it is helping us to �nd the best

dose.

To assess whether the observed di�erences between the PK-guided design and the

other design are appreciable, we present con�dence intervals for the various measures

in Tables A.1 and A.2. Non-overlapping intervals are found in most cases, which

con�rms our claim regarding the PK-guided design. Because of time constraints,

the number of simulations was restricted to 1,000 in both examples. We expect that

a larger number of simulations would not change the estimated values very much,

and, therefore, we would obtain similar results for optimum dose selection and dose

allocation. However, as the standard error of the proportions would decrease with

the increased number of simulations, shorter con�dence intervals for the measures

would be obtained. That is, the signi�cance of our results would then be even more

pronounced.

Sensitivity analyses of the designs to the di�erent parameters are presented in Sec-

tion 6.5. Since the computations are very time consuming, we restrict ourselves to

Scenario 1 in Example 2. However, investigation for the other examples and scenar-

ios will be straightforward.

Section 6.5.1 shows the results for the assumed priors of the dose-response param-

eters. It is seen that, as the priors become narrower, the e�ciency of the method

increases. That is, the method can identify the optimum dose more accurately and

does not recommend toxic doses as the optimum dose very often. Also, more pa-

tients are allocated to the best doses throughout the trials. This means that the

more one knows about the scenario, the better the chance of a successful trial. A

summary of the results is also presented for the design which does not consider the
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constraint on Cmax in Table 6.9. It is observed that both methods produce similar

results as the priors become more dense. Therefore, the additional constraint on

the PK parameter is useful in the presence of a vague prior. If a reliable prior is

available, the method itself is able to produce reliable results, even if we do not

consider pharmacokinetic information.

The priors for the PK parameters are mainly used to initiate the �nding of D-

optimal time points and the maximum likelihood estimates of the parameters. Once

estimates from the trial data are available, they are used. The sensitivity of the

design to the assumed priors for the PK parameters is shown in Section 6.5.2 for

six sets of values. The results are very similar to each other. Therefore, we can

conclude that the design is not especially sensitive to the priors. The whole idea

was to see what happens in the presence of vague priors. If the initial values for the

parameters are far away from the true ones, these may lead the PK sampling times

to be di�erent initially, but that will not have a great impact on the optimum dose

�nding for the next phase.

Section 6.5.3 contains the simulation results to check the sensitivity of the design to

the assumed value of Cmax. The design is much more sensitive when the target is

taken at a dose below the true optimum dose. The degree of sensitivity is less when

the target is at a dose above the true optimum dose. Also, the results are still better

when we do not have any PK constraint. On the whole, the design is sensitive to the

target value of the maximum concentration. Therefore, to implement the proposed

PK-guided design, one needs to carefully select the target value, since the future of

the trial depends highly on it.

We have explained in Section 1.1.1 how the response following a dose depends on

the concentration of the drug. Although concentration is a function of the dose,

for a �xed value of the latter, due to population variability, we can obtain di�erent

values of the former for di�erent patients. The proposed PK constraints in (5.11)
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and (5.12) take into account the concentration along with the inter-patient vari-

ability. Since a population D-optimum design is used to collect blood samples, we

achieve precise estimates of the parameters. The constraints are de�ned in terms

of the population mean parameters and their standard errors, as shown in Section

3.8. Although the constraints are working like a brake on dose escalation, they are

adapted during the trial and work in a �exible way by modifying the strength of

restriction. Other constraints such as the toxicity limit (5.10) or the dose-skipping

constraint work di�erently. They are not �exible and are purely for safety reasons.

For instance, the constraint of not skipping more than one dose level at a time is

used in both PK-guided and the other designs: see Section 5.3. The impact was re-

ported in Section 6.3.2. The results in Tables 6.4 and 6.5 tell us that, other than the

di�erence in dose allocation, the dose-skipping constraint does not have a noticeable

e�ect on optimum dose selection. So, the gain that we claim in the presented designs

is largely due to the PK constraint. The PK constraint and the constraint on dose

skipping work di�erently. The dose-skipping constraint aims to minimise jumps over

multiple doses. Although it slows down the escalation procedure to make it safer,

this may still lead to unacceptably toxic doses being applied. The PK constraints are

intended to limit such occurrences, as well as to choose the best dose more accurately.

Although PK-guided designs are found to be sensitive to target values, we have no-

ticed that they still outperform the other designs in the cases where the target is at

the dose above the true OD: see Tables 6.3 and 6.12. As the PK-guided designs are

sensitive, we recommend using them in situations where such targets can be reason-

ably well assessed. With such targets, people would expect improved performance

of the design, and we have shown it numerically in our work.

PK information is commonly collected in early clinical trials and it is often analysed

for the purpose of dose selection. Here, we propose a systematic method with a

two-fold aim: �rst, to obtain the best dose level for further study in the next phase

with the minimum chance of toxic responses during the trial, and, second, to obtain
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the most e�cient estimates of the population PK parameters. The second goal is

achieved by using the population D-optimum design for the sampling times. A PK-

guided trial will make sense only if the PK information is accurate and we assure

this by the choice of design.

The results obtained in Section 6.6 indicate that the proposed combined criterion is

a promising one in dose-�nding studies. It has been found that, for Scenarios 1 and

4, the combined criterion produces the best results for large values of the weight.

Dose-optimisation criteria like maximisation of the probability of success and the

penalised D-criterion are not that attractive for these scenarios. For Scenarios 2

and 3, there is not much di�erence between the results for the combined criterion

and those for the criterion that maximises the probability of success. However, as

we expect to obtain better estimates of the dose-response function, it would be good

to use the combined criterion in these scenarios too. We have also found the com-

bined criterion to always outperform the penalised D-criterion. Except in Scenario

1, maximisation of the probability of success is found to produce better results than

the penalised D-criterion.
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Chapter 7

Conclusions and Future Work

The development of a new drug product is a lengthy and costly process. Since a

lengthy development time is not very well accepted, continuous e�orts have been

made by researchers to shorten it. As a consequence, adaptive dose-�nding designs

are available in the literature to minimise the drug development time and costs. The

main essence of an adaptive design is that the dose level to be used for the next

patient depends on the outcomes obtained from the previous patients who have al-

ready received di�erent doses from the dose region.

Although many adaptive designs are available, we believe that there is still scope for

further improvements. The whole purpose of our research has been to develop a �ex-

ible model-based design to �nd the optimum dose more often without exposing many

patients to either subtherapeutic or toxic doses. Furthermore, if recommended, by

applying the population D-optimum design for blood sampling, the method allows

us to e�ciently estimate the population PK parameters, and, also to use the �tted

PK models to enhance the dose-�nding studies.

7.1 Conclusions

The expressions derived in Chapter 3 for measuring the inter-patient variability in

the area under the concentration curve and the maximum concentration are gen-

eral. The methodology can be adapted for any underlying pharmacokinetic model.



People researching in this area often use a non-parametric approach to �nd these

quantities. But that requires collecting too many blood samples to measure the

concentration of the drug. Even if the AUC and Cmax are obtained from such data,

there is no straightforward method to assess the inter-patient variability. In that

way, the proposed method is very �exible. The use of the D-optimum design will

ensure the e�ciency in parameter estimation with fewer blood samples. This will

lead e�cient estimation of the area under the concentration curve and the maximum

concentration, and also their inter-patient variabilities.

Chapter 4 has the continuation ratio and Cox models, which we use to model the

probabilities of the dose-response outcomes. It has been shown that the associated

Fisher information matrix in each case is singular. Although other work mentions

the singularity, there are no explicit results for the information matrices. The an-

alytical forms will reduce the time for any optimisation problem involving these

matrices. Also, knowing the rank of the FIM tells us how many di�erent dose levels

are necessary to ensure non-singularity of the matrix.

The essence of the methodology presented in Chapter 5 is that, following the assign-

ment of the current best dose to a cohort of patients, the dose-response outcomes

are observed. The algorithm runs following an up-and-down design for the initial

four cohorts. The up-and-down stage need not be exactly for four cohorts. Since

the ranks for the continuation ratio and Cox models are 2 and 3, respectively, to

implement the combined criterion, we have to run the up-and-down design so that

at least 2 or 3 di�erent doses are assigned to the cohorts. Therefore, we have set

it as four to keep it general. Once the trial is past the up-and-down stage, the

dose is selected for each cohort based on a chosen dose-optimisation criterion and

constraints evaluated at the current estimates of the model parameters. If we plan

to incorporate pharmacokinetic information, we also need to measure the concen-

tration of a drug in the blood at the sequentially obtained locally D-optimal time

points after each assignment of dose. The algorithm, dose-optimisation criterion
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and constraints presented in this chapter are general. The criterion that maximises

the estimated probability of success is ethical, since the current knowledge about

success is employed in dose escalation. The penalised D-criterion gathers informa-

tion so that the variability in the parameter estimates is minimised. The combined

criterion provides a bridge between these two. All of the presented methodology can

be applied to any dose-response and pharmacokinetic models.

To study the design properties under di�erent dose-optimisation criteria and con-

straints, we have introduced three di�erent examples in this thesis. The �rst exam-

ple is a one-compartment PK mixed-e�ects model with bolus input and �rst-order

elimination and a continuation ratio dose-response model. In this case, the dose-

optimisation criterion is the maximisation of the estimated probability of success

with constraints on toxicity and the area under the concentration curve. The sec-

ond example assumes the Cox model for binary e�cacy and toxicity responses.

This is accompanied by a one-compartment PK mixed-e�ects model with �rst-order

absorption. The dose-optimisation criterion employed is the maximisation of the

estimated probability of success with constraints on toxicity and the maximum con-

centration. The last example utilises the penalised combined criterion for �nding

doses for each successive cohort in a trial. This example is based on the continuation

ratio model for trinomial dose-response outcomes. Unlike the other examples, here

we apply the criterion without any additional constraint, since it utilises a penalty

function to address the issue of low e�cacy or high toxicity.

We have developed code to conduct all of the computations in R. The code is written

so that it can be applied to other dose-response models. But, of course, that will

require us to de�ne any such model in R. It is important to note that the part of

the code that deals with the D-optimal time points is based on the package PFIM

3.2. Since the package can work with other PK models from the literature, it will

not be di�cult to extend the methodology to those models.
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Simulation studies for various plausible dose-response scenarios in the di�erent ex-

amples show that the designs are able to identify the optimum dose accurately. They

limit toxic doses as the optimum dose by a considerable amount and assign the most

relevant doses to the cohorts during a trial. We have also seen that the e�ciency of

a dose-�nding design can be increased if it is possible to assume a target value for

the AUC or Cmax. Finally, we can conclude that the presented designs are e�cient

and ethical, and can be used as reliable dose-�nding procedures.

Implementation of the PK-guided approach requires a reliable value for the target

AUC and Cmax. Since we did not have one for our examples, for the simulations,

we set the target value as the one obtained for the true PK parameters and the

true OD. In real trials for new drugs, it may be elicited from the experiences of

the clinicians. Previous studies of similar drugs or extrapolation from pre-clinical

studies of the same drug could be some possible options as well. If no information

on the target values is available, we cannot implement the methods. In that case,

the combined criterion will be the best option.

Although we have listed existing designs in Chapter 2 for combined phase I/II trials,

none of them utilise pharmacokinetic information. Our motivation was to see if any

improvement is possible due to the use of this kind of data. Also, we wanted to

combine the objectives of best intention and optimum designs into a single frame-

work. The purpose is to ensure that patients are allocated at the most e�cacious

doses and also we obtain precise estimates of the parameters.

7.2 Future Work

The current research e�ort is dedicated to developing a �exible dose-�nding design

for early phase clinical trials. In the future, we want to focus on the following issues,

which are not covered in the thesis.

The penalised combined criterion has been used for the continuation ratio dose-
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response model. Although we believe that it will perform in a similar way, it would

be interesting to apply it to the Cox model. This will require us to develop code for

computing the penalised D-optimum design. Since we have the analytical form for

the information matrix, this will be straightforward.

We want to develop an R package to have functions to run the presented methods

in the thesis. These functions will enable us to �nd a dose for the next cohort of

patients and to generate simulated trials under a speci�ed dose-response relation-

ship. That is, given data from a trial, the package will guide us to administer doses

to the successive cohorts. Also, it will have the feature to summarise the behaviour

of dose selection for a speci�c scenario through simulations.

In many practical situations, the probability of response may not be limited to dose

only, but may also depend on the covariates of the individual. If such a dependence

is overlooked in the modelling, we may end up with unreliable estimates of the

model parameters. For accurate prediction of the dose-response relationship in such

a situation, it will be worthwhile to consider the covariates. Therefore, another

possible direction would be the extension of the presented methodology to include

covariates.
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Appendix A

Flow Chart for the Design and

Supplementary Material

A.1 Solutions to the Di�erential Equations: One-

Compartment PK Model with First-Order Ab-

sorption

From Section 3.2.1, we have

dX1(t)

dt
= kaX2(t)− keX1(t)

and

dX2(t)

dt
= −kaX2(t).

For notational simplicity, we write

X ′1 = kaX2 − keX1

and

X ′2 = −kaX2,
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which in matrix form can be expressed as X ′ = AX, where X ′ = (X ′1, X
′
2)T ,

X = (X1, X2)T and

A =

 −ke ka

0 −ka

 .
We obtain the eigenvalues λ = −ka and λ = −ke from the characteristic equation

|A − λI2| = 0. It can be shown that the corresponding eigenvectors are (ka/(ka −

ke),−1)T and (ka/(ka − ke), 0)T . Therefore, the general solution to the di�erential

equations is

 X1(t)

X2(t)

 = c1

 ka
ka − ke
−1

 e−kat + c2

 ka
ka − ke

0

 e−ket.

That is, X1(t) = c1ka/(ka − ke)e
−kat + c2ka/(ka − ke)e

−ket and X2(t) = −c1e
−kat.

Using the initial conditions, we have c1 = −x and c2 = x. Thus, we �nd that

X1(t) =
xka

ka − ke
(e−ket − e−kat)

and X2(t) = xe−kat.
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A.2 Structure of the Proposed Design

The �ow chart below shows the di�erent steps of the general algorithm presented in

Section 5.2.
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A.3 E�ciency versus Design Points: Example 1

The graphs below are for deciding the number of blood samples to be considered

per patient in Section 6.3.1.
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Figure A.1: Rationale for setting the number of design points in the one-
compartment PK model with bolus input and �rst-order elimination. The locally
D-optimum design points are obtained using the initial prior values Ψ0 assuming
that the lowest dose is given to a cohort of 3 patients.
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A.4 Dose-Response Scenarios at the Prior Ends

The graphs below are the scenarios that can be obtained at the prior ends.
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Figure A.2: Dose-response curves at the lower and upper ends of the priors used in
the simulation study. These are for the continuation ratio model in Example 1.
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A.5 Boxplots of PK Parameter Estimates Obtained

in Example 1

The boxplots below are for the PK parameter estimates in Example 1 in Section

6.3.
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Figure A.3: Boxplots of the PK parameter estimates obtained from the simulations.
The horizontal dashed lines indicate the true parameter values.
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A.6 Boxplots of Dose-Response Parameter Estimates

Obtained in Example 1

The boxplots below are for the dose-response parameter estimates in Example 1 in

Section 6.3.
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Figure A.4: Boxplots of the dose-response parameter estimates obtained from the
simulations for Scenarios 2 and 3. The horizontal dashed lines indicate the true
parameter values. For each parameter, the left boxplot corresponds to the design
which takes into account the AUC and the right boxplot to the one which ignores
it.
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Figure A.5: Boxplots of the dose-response parameter estimates obtained from the
simulations for Scenario 4. The horizontal dashed lines indicate the true parameter
values. For each parameter, the left boxplot corresponds to the design which takes
into account the AUC and the right boxplot to the one which ignores it.
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A.7 E�ciency versus Design Points: Example 2

The graphs below are for deciding the number of blood samples to be considered

per patient in Section 6.4.1.
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Figure A.6: Rationale for setting the number of design points in the one-
compartment PK model with �rst-order absorption. The locally D-optimum design
points are obtained using the initial prior values Ψ0 assuming that the lowest dose
is given to a cohort of 3 patients.
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A.8 Boxplots of PK Parameter Estimates Obtained

in Example 2

The boxplots below are for the PK parameter estimates in Example 2 in Section

6.4.
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Figure A.7: Boxplots of the PK parameter estimates obtained from the simulations
for Scenarios 2 and 3. The horizontal dashed lines indicate the true parameter
values.
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Figure A.8: Boxplots of the PK parameter estimates obtained from the simulations
for Scenario 4. The horizontal dashed lines indicate the true parameter values.

A.9 Boxplots of Dose-Response Parameter Estimates

Obtained in Example 2

The boxplots below are for the dose-response parameter estimates in Example 2 in

Section 6.4.

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−
10

0
10

20
30

ϑ1

E
st

im
at

es

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−
10

0
10

20
30

ϑ1

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●●●
●●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

−
20

0
20

40
60

80

ϑ2

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−
20

0
20

40
60

80

ϑ2

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●

●

●
●

●

●

●●●
●

−
15

0
−

10
0

−
50

0
50

ϑ3

●●●●

●

●

●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−
15

0
−

10
0

−
50

0
50

ϑ3

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

−
60

−
40

−
20

0
20

40

ϑ4

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

−
60

−
40

−
20

0
20

40

ϑ4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−
20

−
10

0
10

20

ϑ5

●

●

●
●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−
20

−
10

0
10

20

ϑ5

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●
●

●

●
●

●

●
●

●

●
●

●

●●

●
●
●

●

●
●

●●

●

●●

●

●

●
●
●

●

●

●

●●

−
10

0
−

50
0

50

ϑ6

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●
●

●●

●
●●
●

−
10

0
−

50
0

50

ϑ6

Figure A.9: Boxplots of the dose-response parameter estimates obtained from the
simulations for Scenario 2. The horizontal dashed lines indicate the true parameter
values.
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Figure A.10: Boxplots of the dose-response parameter estimates obtained from the
simulations for Scenarios 3 and 4. The horizontal dashed lines indicate the true
parameter values. For each parameter, the left boxplot corresponds to the design
which takes into account the Cmax and the right boxplot to the one which ignores
it.

A.10 Con�dence Intervals for Dose Selections

The tables below present con�dence intervals for each of the performance measures

in Examples 1 and 2. They correspond to Tables 6.1 and 6.6.
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Appendix B

R Code

B.1 R Program

Below is the R code for simulating designs under various dose-optimisation criteria

and constraints introduced in Chapter 5.

####################################################
################ Calling PFIM ######################
####################################################

source("E:\\PKmodels\\elimination\\optimisation\\PFIM3.2.r")

#main programme

source("E:\\PKmodels\\elimination\\optimisation\\model.r")

#first-order elimination model (model 1)

source("E:\\PKmodels\\absorption\\optimisation\\PFIM3.2.r")

#main programme

#source("E:\\PKmodels\\absorption\\optimisation\\model.r")

#first-order absorption model (model 2)

#if working directory changes, directory

#in PFIM3.2.r needs to be changed

####################################
###### Libraries to be used ########
####################################

library(mvtnorm)

library(nlme)

library(deSolve)

library(lattice)

library(cubature)
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library(compiler)

###################################################
####### Functions to be used in the program #######
###################################################

source("E:\\Programme functions\\functions.R")

###################################################
############## Design parameters #################
###################################################

lower.dose<-0.5

upper.dose<-10

increment<-0.5

dose.scale<-"not log"

#first eg.

#lower.dose<--3

#upper.dose<-3

#increment<-0.6

#dose.scale<-"log"

#second eg.

true.dose<-seq(lower.dose,upper.dose,increment)

#sequence of doses

cohort.size<-3

trial.cohort<-20 #number of cohorts in a trial

stop.freq<-6

#a trial stops early when the same dose is repeated r times (r=6)

dose.skip<-2

#to ensure a dose not more than 2 level higher

up.down<-4

#no. of cohorts in the up-and-down procedure

########################################################
############## Methods and criteria ################
########################################################

scenario<-1

nsim<-1000

#number of simulations to run

######## Include PK? ###########

method<-"PK"

#method<-"not PK"

########### Dose-response model ###########
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doseresponse.model<-"CR"

#doseresponse.model<-"Cox"

########### PK model ###########

PK.model<-1

#bolus input and first-order elimination

#PK.model<-2

#first-order absorption

######## Dose-optimisation criteria ##########

criterion<-"maximisation of prob. of success"

#criterion<-"combined"

######### PK constraint #############

# PK.constraint<-"none"

PK.constraint<-"auc"

#PK.constraint<-"cmax"

###### Acceptable level for probability of toxicity #######

target.toxicity<-0.20

#target.toxicity<-0.33

#### Control parameters and weight for the combined criterion ####

#CS<-1

#CT<-1

#a<-0.6

#weight in the combined criterion

#a=1 means penalised D-criterion and a=0 means

#max. of prob. of success

######## Thresholds in up-and-down design ########

pL<-target.toxicity/3

pM<-(2*target.toxicity)/3

pU<-target.toxicity

## Tolerance limit and max. function evaluation ##

tol.limit<-1e-3

#tolerance limit for the integration

maxEval.limit<-5000

#maximum number of function evaluations needed

##### True PK parameters for simulation #####

if(method=="PK") {

if(PK.model==1) {
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lower.sampling<-0 #sampling region for PK

upper.sampling<-30

#sampling time for PK (in hours)

fixed<-c(0.5,0.06) #fixed PK parameters: (v,cl)

var.comp<-c(0.004,0.00005) #variance-components of the parameters

error.variance<-0.000225 #error variance

}

if(PK.model==2) {

lower.sampling<-0

upper.sampling<-50

#sampling time for PK (in hours)

#theta=(v,ke,ka)

fixed<-c(2.0,0.05,0.50)

var.comp<-c(0.1600, 0.0001, 0.0100) # CV is exactly 20%

error.variance<-0.00005 #since my obs. are also tiny (STD is 0.007)

}

}

#####################################################
### True dose-response parameters for simulation ###
#####################################################

############# CR model ##############

if(scenario==1 & doseresponse.model=="CR") {

theta1.true<-1.44

theta2.true<-0.26

theta3.true<--1.70

theta4.true<-0.25

lower.lim<-c(-3.4,0,-3.4,0)

upper.lim<-c(2.88,0.52,2.88,0.50)

}

if(scenario==2 & doseresponse.model=="CR") {

theta1.true<--3.5

theta2.true<-1.0

theta3.true<--6

theta4.true<-0.72

lower.lim<-c(-12,0,-12,0)

upper.lim<-c(0,2,0,1.44)
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}

if(scenario==3 & doseresponse.model=="CR") {

theta1.true<--0.80

theta2.true<-0.50

theta3.true<--3.80

theta4.true<-0.30

lower.lim<-c(-7.6,0,-7.6,0)

upper.lim<-c(0,1,0,0.60)

}

if(scenario==4 & doseresponse.model=="CR") {

theta1.true<--6.50

theta2.true<-0.75

theta3.true<--8.00

theta4.true<-0.65

lower.lim<-c(-12,0,-12,0)

upper.lim<-c(0,1.5,0,1.30)

}

################# Cox model ##################

if(scenario==1 & doseresponse.model=="Cox") {

theta1.true<-0

theta2.true<-1

theta3.true<-4

theta4.true<-2

theta5.true<-3

theta6.true<-3

lower.lim<-c(-3,-2,1,-1,0,0)

upper.lim<-c(3,4,7,5,6,6)

#margin: 3

}

if(scenario==2 & doseresponse.model=="Cox") {

theta1.true<--0.5

theta2.true<-1.0

theta3.true<-0.5

theta4.true<-1.0
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theta5.true<-0.0

theta6.true<-2.0

lower.lim<-c(-3.5,-2,-2.5,-2,-3,-1)

upper.lim<-c(2.5,4,3.5,4,3,5)

#margin: 3

}

if(scenario==3 & doseresponse.model=="Cox") {

theta1.true<--1.0

theta2.true<-2.0

theta3.true<-1.0

theta4.true<-2.0

theta5.true<-1.0

theta6.true<-4.0

lower.lim<-c(-4,-1,-2,-1,-2,1)

upper.lim<-c(2,5,4,5,4,7)

#margin: 3

}

if(scenario==4 & doseresponse.model=="Cox") {

theta1.true<--2.0

theta2.true<-0.5

theta3.true<-0.0

theta4.true<-0.5

theta5.true<-4.0

theta6.true<-4.0

lower.lim<-c(-5,-2.5,-3,-2.5,1,1)

upper.lim<-c(1,3.5,3,3.5,7,7)

#margin: 3

}

##### Initial values for a trial to start with #####

starting.dose.level<-1

if(method=="PK") {

if(PK.model==1) {

ini.pkpara<-c(0.1,0.005) #PK parameters

ini.varcomp<-c(0.0007,0.0000006) #variance-components

ini.error.std<-0.002 #error std.
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ini.time<-c(1,5,20) #time points. sampling region [0,30]

}

if(PK.model==2) {

#PK parameters : (v,ke,ka)

ini.pkpara<-c(3.20, 0.08, 0.80) #fixed+3*sqrt(var.comp)

ini.varcomp<-c(4.0e-02, 2.5e-05, 2.5e-03) #var.comp/4

ini.error.std<-0.003535534 #error std. #sqrt(error.variance/4)

ini.time<-c(1,15,30,40) #time points. sampling region [0,50]

}
}

##### True probabilities of dose-response #####

##### outcomes under a specific scenario #####

if(doseresponse.model=="CR") {

true.neu<-psi0(theta1.true,theta2.true,theta3.true,theta4.true,

true.dose)

true.effi<-psi1(theta1.true,theta2.true,theta3.true,theta4.true,

true.dose)

true.toxic<-psi2(theta3.true,theta4.true,true.dose)

}

if(doseresponse.model=="Cox") {

true.psi00<-psi00(theta1.true,theta2.true,theta3.true,theta4.true,

theta5.true,theta6.true, true.dose)

true.psi01<-psi01(theta1.true,theta2.true,theta3.true,theta4.true,

theta5.true,theta6.true,true.dose)

true.effi<-psi10(theta1.true,theta2.true,theta3.true,theta4.true,

theta5.true,theta6.true,true.dose)

#true prob. of success

true.psi11<-psi11(theta1.true,theta2.true,theta3.true,theta4.true,

theta5.true,theta6.true,true.dose)

#true.effi<-psi1.(theta1.true,theta2.true,theta3.true,theta4.true,

theta5.true,theta6.true,true.dose)

#marginal prob. of efficacy. no need

true.toxic<-psi.1(theta1.true,theta2.true,theta3.true,theta4.true,

theta5.true,theta6.true,true.dose)

#marginal prob. of toxicity

}
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##### Identifying the true optimal dose #####

index.safe<-which(true.toxic<=target.toxicity)

#index of safe doses

candi.true.effi<-true.effi[index.safe]

true.efficacy.od<-max(candi.true.effi)

#prob.of success at the true OD

true.od.level<-which(true.effi==true.efficacy.od &

true.toxic<=target.toxicity)

true.od<-true.dose[true.od.level]

#true OD

true.toxicity.od<-true.toxic[true.od.level]

#prob. of toxicity at the true OD

##### Identifying the target AUCs #####

if(PK.constraint=="auc") {

if(PK.model==1) {

auc.true<-auc1(fixed[1],fixed[2],upper.sampling,true.dose)

#first-order elimination

}

if(PK.model==2) {

auc.true<-auc2(fixed[1],fixed[2],fixed[3],upper.sampling,true.dose)

#first-order absorption

}

auc.lim<-auc.true[true.od.level]

#value for target AUC

}

######## Identifying the target Cmax ########

if(PK.constraint=="cmax") {

if(PK.model==2) {

tmax.true<-(log(fixed[3])-log(fixed[2]))/(fixed[3]-fixed[2])

cmax.true<-cmax2(fixed[1],fixed[2],fixed[3],tmax.true,true.dose)

#first-order absorption

}

cmax.lim<-cmax.true[true.od.level]

#value for target Cmax

}
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##########################################################
########## Declaring variables to store the ##########
########## estimates over the simulations ##########
##########################################################

pk1.hat=c()

pk2.hat=c()

pk3.hat=c()

varcomp1.hat=c()

varcomp2.hat=c()

varcomp3.hat=c()

stddev.error.hat=c()

#to store PK parameter estimates

od=c()

#to store optimal doses

theta1.hat=c()

theta2.hat=c()

theta3.hat=c()

theta4.hat=c()

theta5.hat=c()

theta6.hat=c()

#to store dose-response parameter estimates

count.stops<-0

#counts trial with early stopping (achieving r)

count.stops.updown<-0 #counts trial stopped at up-and-down stage

updown.dose=c() #dose at which a trial stops in up-and-down stage

updown.cohort=c() #cohorts used in up-and-down stage

od.complete=c() #from the complete analysis

stopped.at=c() #no. of cohorts used in a trial when it stops early

stopped.dose=c() #optimum dose selected in such a trial

########################################################
############## Start of the Program #############
########################################################

for(l in 1:nsim) {

########### Values to start with ###########

h<-starting.dose.level #starting dose level

d<-1 #to create an index for the subjects

if(method=="PK") {

pk.esti<-ini.pkpara
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var.comp.esti<-ini.varcomp

error.esti<-ini.error.std

# initial values for PK parameters

}

next.dose<-true.dose[h] #dose for a trial to start with

previ.level<-h #to be used in the skip calculation

stage<-1 #stage of a trial

######### End of values to start with ###########

if(doseresponse.model=="CR") {

alloc.first<-true.dose[h]

tri.res<-rmultinom(1,size=cohort.size,prob=c(true.neu[h],

true.effi[h],true.toxic[h]))

#generating dose-response outcomes for the starting dose

r0.1<-tri.res[1,1] #neutral response

r1.1<-tri.res[2,1] #efficacious response

r2.1<-tri.res[3,1] #toxic response

alloc.dose=c(alloc.first) #allocated doses to cohorts in a trial

r0=c(r0.1) #neutral outcomes over cohorts in a trial

r1=c(r1.1) #efficacious outcomes over cohorts in a trial

r2=c(r2.1) #toxic outcomes over cohorts in a trial

}

if(doseresponse.model=="Cox") {

alloc.first<-true.dose[h]

dose.res<-rmultinom(1,size=cohort.size,prob=c(true.psi00[h],

true.psi01[h],true.effi[h],true.psi11[h]))

#dose-response outcomes for the starting dose

r0.1<-dose.res[1,1] #(0,0)

r1.1<-dose.res[2,1] #(0,1)

r2.1<-dose.res[3,1] #(1,0)

r3.1<-dose.res[4,1] #(1,1)

alloc.dose=c(alloc.first) #allocated doses to cohorts in a trial

r0=c(r0.1) #(0,0) outcomes over cohorts in a trial

r1=c(r1.1) #(0,1) outcomes over cohorts in a trial

r2=c(r2.1) #(1,0) outcomes over cohorts in a trial

r3=c(r3.1) #(1,1) outcomes over cohorts in a trial

}
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stop.iter<-0

for(i in 1:trial.cohort) {

#############################################################
############# Generation of PK responses ##############
#############################################################

if(method=="PK") {

con.cohort=c()

#concentrations obtained from a cohort

#after receiving a specific dose

if(PK.model==1) {

source("E:\\PKmodels\\elimination\\optimisation\\stdin.r")

#input file

res<-tryCatch(PFIM(),error=function(e)NULL)

if(!is.null(res)) {

time<-round(c(res$prot.opti[[1]][[1]][[1]][1],res$prot.opti[[1]]

[[1]][[2]][1],res$prot.opti[[1]][[1]][[3]][1]),digits=2)

#extracting the optimal time points

} else {

stop.iter<-stop.iter+1

}

}

#end of (PK.model==1)

if(PK.model==2) {

source("E:\\PKmodels\\absorption\\optimisation\\stdin.r")

res<-tryCatch(PFIM(),error=function(e)NULL)

if(!is.null(res)) {

time<-round(c(res$prot.opti[[1]][[1]][[1]][1],res$prot.opti[[1]]

[[1]][[2]][1],res$prot.opti[[1]][[1]][[3]][1],res$prot.opti[[1]]

[[1]][[4]][1]),digits=2)

} else {

stop.iter<-stop.iter+1

}

}

#end of (PK.model==2)

k<-1

for(a in 1:cohort.size) {
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mean.b<-rep(0,length(beta))

varcov.b<-diag(var.comp,nrow=length(mean.b),ncol=length(mean.b))

b<-rmvnorm(1,mean.b,varcov.b) #random effects for an individual

theta<-fixed+b #PK parameters for an individual

x<-true.dose[h]

if(dose.scale=="log") {

x<-exp(x)

}

Theta1<-theta[1,1]

Theta2<-theta[1,2]

f=c()

for(g in 1:length(time)) {

if(PK.model==1) {

f[g]<-f1(x,Theta1,Theta2,time[g])

} else {

Theta3<-theta[1,3]

f[g]<-f2(x,Theta1,Theta2,Theta3,time[g])

}

}

mean.error<-rep(0,length(time))

varcov.error<-diag(error.variance,nrow=length(mean.error),

ncol=length(mean.error))

epsi<-rmvnorm(1,mean.error,varcov.error)

y<-f+epsi #concentration for an individual

s<-1

for(u in k:(k+length(time)-1)) {

con.cohort[u]<-y[1,s]

s<-s+1

}

k<-k+length(time)

}

#end of the loop with index 'a'

subject<-c(rep(d,length(time)),rep(d+1,length(time)),

rep(d+2,length(time)))

dose<-rep(x,cohort.size*length(time))

t<-rep(time,cohort.size)
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data.cohort=data.frame(subject=subject,dose=dose,t=t,

conc=con.cohort)

if(d==1) {

data.d<-data.cohort

} else {

data.d<-rbind(data.d,data.cohort)

}

d<-d+cohort.size

}

#end of (method=="PK")

##################################################
## Dose selection based on up-and-down design ##
##################################################

if(stage<up.down) {

if((stage==(up.down-1))&(all(alloc.dose[1]==alloc.dose))) {

h<-h+1

} else {

if(doseresponse.model=="CR") {

prop.toxic<-(sum(r2)/(cohort.size*stage))

}

if(doseresponse.model=="Cox") {

prop.toxic<-(sum(r1+r3)/(cohort.size*stage))

}

if(prop.toxic<=pL) {

if(h==length(true.dose)) {

h<-h } else {

h<-h+1 }

}

else if((prop.toxic>pL)&(prop.toxic<pM)) {

h<-h

}

else if((prop.toxic>=pM)&(prop.toxic<pU)) {

if(h==1) {

h<-h } else {

h<-h-1

}
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} else {

count.stops.updown<-count.stops.updown+1

updown.dose<-c(updown.dose,true.dose[h])

updown.cohort<-c(updown.cohort,stage)

break #breaks the trial to the end

}

}

} else {

## start of stage>up.down: model-based approach ##

if(method=="PK") {

#applies when PK information is considered

#######################################################
############# Fitting the PK model ###############
#######################################################

if(PK.model==1) {

grouped.data<-groupedData(formula=conc~t|subject,data=data.d)

model.d<-tryCatch(nlme(conc~f1(dose,Theta1,Theta2,t),

fixed=Theta1+Theta2~1,data=grouped.data,

random=Theta1+Theta2~1,start=list(fixed=pk.esti))

,error=function(e)NULL)

if(!is.null(model.d)) {

summ<-summary(model.d)

pk.esti<-c(summ$coefficients$fixed[[1]],

summ$coefficients$fixed[[2]])

var.comp.esti<-c(as.numeric(VarCorr(summ)[1,1]),

as.numeric(VarCorr(summ)[2,1]))

error.esti<-summ$sigma } else {

stop.iter<-stop.iter+1

}

}

#end of (PK.model==1)

if(PK.model==2) {

grouped.data<-groupedData(formula=conc~t|subject,data=data.d)

model.d<-tryCatch(nlme(conc~f2(dose,Theta1,Theta2,Theta3,t),

fixed=Theta1+Theta2+Theta3~1,data=grouped.data,

random=Theta1+Theta2+Theta3~1,start=list(fixed=pk.esti))
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,error=function(e)NULL)

if(!is.null(model.d)) {

summ<-summary(model.d)

pk.esti<-c(summ$coefficients$fixed[[1]]

,summ$coefficients$fixed[[2]],summ$coefficients$fixed[[3]])

var.comp.esti<-c(as.numeric(VarCorr(summ)[1,1]),

as.numeric(VarCorr(summ)[2,1]),as.numeric(VarCorr(summ)[3,1]))

error.esti<-summ$sigma } else {

stop.iter<-stop.iter+1
}

}

#end of (PK.model==2)

}

#end of(method=="PK")

###############################################################
############## Fitting the dose-response model ##############
###############################################################

if(doseresponse.model=="CR") {

denomit.integ<-adaptIntegrate(lf1.cond,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

#integrates the likelihood function

theta1.integ<-adaptIntegrate(theta1.f1,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta2.integ<-adaptIntegrate(theta2.f1,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta3.integ<-adaptIntegrate(theta3.f1,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta4.integ<-adaptIntegrate(theta4.f1,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta1<-(theta1.integ$integral/denomit.integ$integral)

theta2<-(theta2.integ$integral/denomit.integ$integral)

theta3<-(theta3.integ$integral/denomit.integ$integral)

theta4<-(theta4.integ$integral/denomit.integ$integral)

#posterior estimates

}

if(doseresponse.model=="Cox") {

denomit.integ<-adaptIntegrate(lf2.c,lowerLimit=lower.lim,
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upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

#integrates the likelihood function

theta1.integ<-adaptIntegrate(theta1.f2,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta2.integ<-adaptIntegrate(theta2.f2,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta3.integ<-adaptIntegrate(theta3.f2,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta4.integ<-adaptIntegrate(theta4.f2,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta5.integ<-adaptIntegrate(theta5.f2,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta6.integ<-adaptIntegrate(theta6.f2,lowerLimit=lower.lim,

upperLimit=upper.lim,tol=tol.limit,maxEval=maxEval.limit)

theta1<-(theta1.integ$integral/denomit.integ$integral)

theta2<-(theta2.integ$integral/denomit.integ$integral)

theta3<-(theta3.integ$integral/denomit.integ$integral)

theta4<-(theta4.integ$integral/denomit.integ$integral)

theta5<-(theta5.integ$integral/denomit.integ$integral)

theta6<-(theta6.integ$integral/denomit.integ$integral)

#posterior estimates

}

############################################################
########### Dose selection for the next cohort ###########
############################################################

if(doseresponse.model=="CR") {

psi1.hat<-psi1(theta1,theta2,theta3,theta4,true.dose)

#estimates of prob. of success at different doses

psi2.hat<-psi2(theta3,theta4,true.dose)

#estimates of prob. of toxicity at different doses

}

if(doseresponse.model=="Cox") {

psi1.hat<-psi10(theta1,theta2,theta3,theta4,theta5,theta6,true.dose)

#estimates of prob. of success at different doses

psi2.hat<-psi.1(theta1,theta2,theta3,theta4,theta5,theta6,true.dose)

#estimates of prob. of toxicity at different doses
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}

######################################################
#### Criterion: maximisation of prob. of success #####
######################################################

if (criterion=="maximisation of prob. of success" ) {

if(method=="not PK") {

index<-which(psi2.hat<=target.toxicity)

#identifying indexes of the doses for which the condition is met

} else {

#when (method=="PK")

if(PK.model==1) {

if(PK.constraint=="auc") {

auc.hat<-auc1(pk.esti[1],pk.esti[2],upper.sampling,true.dose)

#AUC estimates at various doses

c.v.f1.esti<-c.v.f1(pk.esti[1],pk.esti[2],upper.sampling,next.dose)

c.cl.f1.esti<-c.cl.f1(pk.esti[1],pk.esti[2],upper.sampling,next.dose)

c.var.esti<-(((c.v.f1.esti^2)*var.comp.esti[1])+((c.cl.f1.esti^2)*

var.comp.esti[2]))

#variance of AUC

}

}

if(PK.model==2) {

if(PK.constraint=="auc") {

auc.hat<-auc2(pk.esti[1],pk.esti[2],pk.esti[3],upper.sampling,

true.dose)

c.v.f2.esti<-c.v.f2(pk.esti[1],pk.esti[2],pk.esti[3],

upper.sampling,next.dose)

c.ke.f2.esti<-c.ke.f2(pk.esti[1],pk.esti[2],pk.esti[3],

upper.sampling,next.dose)

c.ka.f2.esti<-c.ka.f2(pk.esti[1],pk.esti[2],pk.esti[3],

upper.sampling,next.dose)

c.var.esti<-(((c.v.f2.esti^2)*var.comp.esti[1])+((c.ke.f2.esti^2)*

var.comp.esti[2])+((c.ka.f2.esti^2)*var.comp.esti[3]))

#variance of AUC

} else {

#when (PK.constraint=="cmax")

tmax.hat<-(log(pk.esti[3])-log(pk.esti[2]))/(pk.esti[3]-pk.esti[2])
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cmax.hat<-cmax2(pk.esti[1],pk.esti[2],pk.esti[3],tmax.hat,true.dose)

cmax.v.f2.esti<-cmax.v.f2(pk.esti[1],pk.esti[2],pk.esti[3],

tmax.hat,next.dose)

cmax.ke.f2.esti<-cmax.ke.f2(pk.esti[1],pk.esti[2],pk.esti[3],

tmax.hat,next.dose)

cmax.ka.f2.esti<-cmax.ka.f2(pk.esti[1],pk.esti[2],pk.esti[3],

tmax.hat,next.dose)

cmax.var.esti<-(((cmax.v.f2.esti^2)*var.comp.esti[1])+

((cmax.ke.f2.esti^2)*var.comp.esti[2])+

((cmax.ka.f2.esti^2)*var.comp.esti[3]))

#variance of Cmax

}

}

if(PK.constraint=="auc") {

c.std.esti<-sqrt(c.var.esti)

rel.c<-(auc.hat-auc.lim)/c.std.esti

} else {

cmax.std.esti<-sqrt(cmax.var.esti)

rel.c<-(cmax.hat-cmax.lim)/cmax.std.esti

}

delta<-(1/psi1.hat[previ.level])

index<-which(psi2.hat<=target.toxicity & rel.c<=delta)

#indexes of the doses for which both conditions are met

}

#end of (method=="PK")

if(length(index)==0) {

h<-1

} else {

candi.psi1.hat<-psi1.hat[index]

#extracting efficacy estimates for these doses

h<-which(psi1.hat==max(candi.psi1.hat))

#the dose level with maximum efficacy estimate

}

} else {
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#end of first dose-optimsation criterion

##########################################################
############# Criterion: combined criterion ############
##########################################################

m.mat<-matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

nrow=4,ncol=4,byrow="TRUE")

#initial 'M' matrix

for(i in 1:length(alloc.dose)){

x<-alloc.dose[i]

I11.x<-I11(theta1,theta2,theta3,theta4,x)

I12.x<-I12(theta1,theta2,theta3,theta4,x)

I22.x<-I22(theta1,theta2,theta3,theta4,x)

I33.x<-I33(theta3,theta4,x)

I34.x<-I34(theta3,theta4,x)

I44.x<-I44(theta3,theta4,x)

I<-matrix(c(I11.x,I12.x,I13,I14,I12.x,I22.x,I23,I24,I31,I32,I33.x,

I34.x,I41,I42,I34.x,I44.x),nrow=4,ncol=4,byrow=TRUE)

#FIM for an individual

m.mat<-m.mat+(cohort.size*I)

#contructs the matrix 'M'

}

penalty.upto<-penalty(theta1,theta2,theta3,theta4,alloc.dose)

#penalty at the adminstered doses

penalty.sum<-sum(penalty.upto)

#sum of penalties at the administered doses

#formation of the objective function

combined.cri<-function(x) {

I11.x<-I11(theta1,theta2,theta3,theta4,x)

I12.x<-I12(theta1,theta2,theta3,theta4,x)

I22.x<-I22(theta1,theta2,theta3,theta4,x)

I33.x<-I33(theta3,theta4,x)

I34.x<-I34(theta3,theta4,x)

I44.x<-I44(theta3,theta4,x)

I<-matrix(c(I11.x,I12.x,I13,I14,I12.x,I22.x,I23,I24,I31,I32,I33.x,

I34.x,I41,I42,I34.x,I44.x),nrow=4,ncol=4,byrow=TRUE)

#FIM for an individual

penalty.x<-penalty(theta1,theta2,theta3,theta4,x)
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det(((stage/(stage+1))*m.mat+(1/(stage+1))*cohort.size*I)/

((stage/(stage+1))*penalty.sum+(1/(stage+1))*penalty.x))

# penalised D-criterion is here

}

combined.cri.values=c()

x.dose<-lower.dose

for (i in 1:length(true.dose)) {

combined.cri.values[i]<-combined.cri(x.dose)

x.dose<-x.dose+increment

}

scaled.d<-combined.cri.values/max(combined.cri.values)

scaled.psi1<-psi1.hat/max(psi1.hat)

#standardising the values

cri.values<-a*scaled.d+(1-a)*scaled.psi1

#combining two criterion

if(stage<trial.cohort) {

index<-which(cri.values==max(cri.values))

if(length(index)==0) {

h<-1

} else {

h<-index

}

} else {

#when ("stage==trial.chort"), the last estimates

#are used to find the OD

index<-which(psi2.hat<=target.toxicity)

#identifying indexes of the doses for which the condition is met

if(length(index)==0){

h<-1

} else {

candi.psi1.hat<-psi1.hat[index]

#extracting the estimates of the prob. of success at these doses

h<-which(psi1.hat==max(candi.psi1.hat))

#dose level with the maximum prob. of success

}
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}

}

#end of the combined criterion

#########################################################
########### Restriction on dose escalation ############
#########################################################

if(stage<=trial.cohort) {

#with <=, the restriction is on the last stage also

if((h-previ.level)>dose.skip){

h<-previ.level+dose.skip

#to avoid restriction on the last stage

} else {

h<-h

}

}

}

####### end of stage>up.down #########

next.dose<-true.dose[h]

#selected dose for the next cohort

previ.level<-h

#current dose level is going to be the previous

#dose level in the next stage

stage<-stage+1

#counts stage for a trial

if(doseresponse.model=="CR") {

tri.res<-rmultinom(1,size=cohort.size,prob=c(true.neu[h],

true.effi[h],true.toxic[h]))

#dose-response outcomes for a cohort which received the new dose

r0<-c(r0,tri.res[1,1])

r1<-c(r1,tri.res[2,1])

r2<-c(r2,tri.res[3,1])

alloc.dose<-c(alloc.dose,true.dose[h])

}

if(doseresponse.model=="Cox") {

dose.res<-rmultinom(1,size=cohort.size,prob=c(true.psi00[h],

true.psi01[h],true.effi[h],true.psi11[h]))

#dose-response outcomes for a cohort which receives the new dose
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r0<-c(r0,dose.res[1,1])

r1<-c(r1,dose.res[2,1])

r2<-c(r2,dose.res[3,1])

r3<-c(r3,dose.res[4,1])

alloc.dose<-c(alloc.dose,true.dose[h])

}

max.freq<-max(table(alloc.dose))

#determines the maximum frequency that a dose occurred with

if(max.freq==stop.freq & stage<=(trial.cohort-1)) {

count.stops<-count.stops+1

stopped.at<-c(stopped.at,length(alloc.dose))

stopped.dose<-c(stopped.dose,true.dose[h])

break

#breaks the trial and moves to store the estimates

}

}

#end of the loop with index 'i'

##############################################################
####### Storing the estimates only when the trial is #######
####### above the up-and-down phase #######
##############################################################

if(stage>up.down) {

if(method=="PK") {

pk1.hat<-c(pk1.hat,pk.esti[1])

pk2.hat<-c(pk2.hat,pk.esti[2])

pk3.hat<-c(pk3.hat,pk.esti[3])

varcomp1.hat<-c(varcomp1.hat,var.comp.esti[1])

varcomp2.hat<-c(varcomp2.hat,var.comp.esti[2])

varcomp3.hat<-c(varcomp3.hat,var.comp.esti[3])

stddev.error.hat<-c(stddev.error.hat,error.esti)

}

#end of (method=="PK")

if(stage==trial.cohort+1) { #recommended dose for the next phase

od.complete<-c(od.complete,true.dose[h])

#OD from complete analysis

alloc.sim<-capture.output(alloc.dose[-length(alloc.dose)])

#removing the recommended dose for the next
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#phase from the list of allocated doses

cat(alloc.sim,file="E:/Office/alloc

dose/alloc.txt",sep="\n",append=TRUE)

#saving the doses allocated to cohorts to an external file

} else {

alloc.sim<-capture.output(alloc.dose)

cat(alloc.sim,file="E:/Office/alloc

dose/alloc.txt",sep="\n",append=TRUE)

}

od<-c(od,true.dose[h])

#records all the ODs: early and complete

theta1.hat<-c(theta1.hat,theta1)

theta2.hat<-c(theta2.hat,theta2)

theta3.hat<-c(theta3.hat,theta3)

theta4.hat<-c(theta4.hat,theta4)

#theta5.hat<-c(theta5.hat,theta5)

#theta6.hat<-c(theta6.hat,theta6)

}

#end of stage>up.down

}

#end of the loop with index 'l'

################## End of the program ###################
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B.2 Functions in R

Below are the functions used in the program.

####################################################
######## One-compartment PK model with bolus #######
######## input and first-order elimination #######
####################################################

################ Model ###################

f1<-function(x,v,cl,t) {

(x/v)*exp(-(cl/v)*t)

}

#'x' represents dose

############ AUC and its variance ###############

auc1<-function(v,cl,t1,x) {

(x/cl)*(1-exp(-(cl/v)*t1))

}

#t1 is the upper sampling time

c.v.f1<-function(v,cl,t1,x) {

((x*t1)/(v^2))*(-exp(-(cl/v)*t1))

}

#derivative w.r.t. v

c.cl.f1<-function(v,cl,t1,x) {

(x/cl)*(exp(-(cl/v)*t1))*((1/cl)+(t1/v))-(x/cl^2)

}

#derivative w.r.t. cl

###################################################
######### One-compartment PK model with #########
######### first-order absorption #########
###################################################

################# Model #####################

f2<-function(x,v,ke,ka,t) {

((x*ka)*(exp(-ke*t)- exp(-ka*t)))/(v*(ka-ke))

}

#'x' represents dose

############ AUC and its variance ################

auc2<-function(v,ke,ka,t1,x) {

((x*ka)/(v*(ka-ke)))*((1-exp(-ke*t1))/ke-(1-exp(-ka*t1))/ka)

}

#t1 is the upper sampling time
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c.v.f2<-function(v,ke,ka,t1,x) {

z1<-1-exp(-ke*t1)

z2<-1-exp(-ka*t1)

(-(x*ka)/((v^2)*(ka-ke)))*(z1/ke-z2/ka)

}

c.ke.f2<-function(v,ke,ka,t1,x) {

z1<-1-exp(-ke*t1)

z2<-1-exp(-ka*t1)

((x*ka)/(v*((ka-ke)^2)))*(z1/ke-z2/ka)+

((x*ka)/(v*(ka-ke)))*(-z1/ke^2+(t1*exp(-ke*t1))/ke)

}

c.ka.f2<-function(v,ke,ka,t1,x) {

z1<-1-exp(-ke*t1)

z2<-1-exp(-ka*t1)

(-(x*ke)/(v*((ka-ke)^2)))*(z1/ke-z2/ka)+

((x*ka)/(v*(ka-ke)))*(z1/ka^2-(t1*exp(-ka*t1))/ka)

}

############## Cmax and its variance ###############

cmax2<-function(v,ke,ka,tmax,x) {

((x*ka)/(v*(ka-ke)))*(exp(-ke*tmax)-exp(-ka*tmax))

}

cmax.v.f2<-function(v,ke,ka,tmax,x) {

-((x*ka)/(v^2*(ka-ke)))*(exp(-ke*tmax)-exp(-ka*tmax))

}

cmax.ke.f2<-function(v,ke,ka,tmax,x) {

((x*ka)/(v*(ka-ke)^2))*(exp(-ke*tmax)*(2-ka*tmax)-

exp(-ka*tmax)*(1+(ka*(1-ke*tmax))/ke))

}

cmax.ka.f2<-function(v,ke,ka,tmax,x) {

(x/(v*(ka-ke)^2))*(ke*exp(-ke*tmax)*(-1+ka*(ka*tmax-1))+

exp(-ka*tmax)*(ke-ka*(ke*tmax-1)))

}

##########################################################
######## Functions representing the probabilities #######
######## of trinomial dose-response outcomes #######
##########################################################

psi0<-function(theta1,theta2,theta3,theta4,x) {
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z1<-exp(theta1+theta2*x)

z2<-exp(theta3+theta4*x)

1/((1+z1)*(1+z2))

}

psi1<-function(theta1,theta2,theta3,theta4,x) {

z1<-exp(theta1+theta2*x)

z2<-exp(theta3+theta4*x)

z1/((1+z1)*(1+z2))

}

psi2<-function(theta3,theta4,x) {

z2<-exp(theta3+theta4*x)

z2/(1+z2)

}

#########################################################
######### Likelihood function for the CR model #########
#########################################################

lf1<-function(w) {

v<-1

w1<-w[1]

w2<-w[2]

w3<-w[3]

w4<-w[4]

for (i in 1:length(alloc.dose)) {

dose.i<-alloc.dose[i]

r0.i<-r0[i]

r1.i<-r1[i]

r2.i<-r2[i]

z1<-exp(w1+w2*dose.i)

z2<-exp(w3+w4*dose.i)

psi0<-1/((1+z1)*(1+z2))

psi1<-z1*psi0

v<-v*(psi0^r0.i)*(psi1^r1.i)*((1-psi0-psi1)^r2.i)

}

return(v)

}

lf1.c<-cmpfun(lf1) #compiling the likelihood function

203



lf1.cond<-function(w) { #likelihood function with

lf1.c(w)*(w[1]>=w[3]) #the condition that theta1>theta3

}

theta1.f1<-function(w) {

(w[1])*lf1.c(w)*(w[1]>=w[3]) #function in the numerator when we find

} #the posterior estimate for theta1

theta2.f1<-function(w) { #function in the numerator when we find

(w[2])*lf1.c(w)*(w[1]>=w[3]) #the posterior estimate for theta2

}

theta3.f1<-function(w) { #function in the numerator when we

(w[3])*lf1.c(w)*(w[1]>=w[3]) #find the posterior estimate for theta3

}

theta4.f1<-function(w) { #function in the numerator when we

(w[4])*lf1.c(w)*(w[1]>=w[3]) #find the posterior estimate for theta4

}

#in the likelihood function and thereafter,

#w[1], w[2], w[3] and w[4] represent theta1, theta2,

#theta3 and theta4, respectively

###########################################################
########### Penalty function for the CR model #########
###########################################################

penalty<-function(theta1,theta2,theta3,theta4,x) {

((psi1(theta1,theta2,theta3,theta4,x))^(-CS))*

((1-psi2(theta3,theta4,x))^(-CT))

}

###########################################################
################# FIM for the CR model ##################
###########################################################

I11<-function(theta1,theta2,theta3,theta4,x) {

(psi1(theta1,theta2,theta3,theta4,x)*(1-psi2(theta3,theta4,x)))/

(psi0(theta1,theta2,theta3,theta4,x)*((1+exp(theta1+theta2*x))^2))

}

I12<-function(theta1,theta2,theta3,theta4,x) {

(x*I11(theta1,theta2,theta3,theta4,x))

}

I13<-0

I14<-0

#I21<-I12
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I22<-function(theta1,theta2,theta3,theta4,x) {

((x^2)*I11(theta1,theta2,theta3,theta4,x))

}

I23<-0

I24<-0

I31<-0

I32<-0

I33<-function(theta3,theta4,x) {

(psi2(theta3,theta4,x))*(1-psi2(theta3,theta4,x))

}

I34<-function(theta3,theta4,x) {

(x*I33(theta3,theta4,x))

}

I41<-0

I42<-0

#I43<-I34

I44<-function(theta3,theta4,x) {

((x^2)*I33(theta3,theta4,x))

}

####################################################################
###### Defining the associated functions for the Cox Model #######
####################################################################

psi00<-function(theta1,theta2,theta3,theta4,theta5,theta6,x) {

z1<-exp(theta1+theta2*x)

z2<-exp(theta3+theta4*x)

z3<-exp(theta5+theta6*x)

1/(1+z1+z2+z3)

}

psi01<-function(theta1,theta2,theta3,theta4,theta5,theta6,x) {

z1<-exp(theta1+theta2*x)

z2<-exp(theta3+theta4*x)

z3<-exp(theta5+theta6*x)

z1/(1+z1+z2+z3)

}

psi10<-function(theta1,theta2,theta3,theta4,theta5,theta6,x) {

z1<-exp(theta1+theta2*x)
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z2<-exp(theta3+theta4*x)

z3<-exp(theta5+theta6*x)

z2/(1+z1+z2+z3)

}

psi11<-function(theta1,theta2,theta3,theta4,theta5,theta6,x) {

z1<-exp(theta1+theta2*x)

z2<-exp(theta3+theta4*x)

z3<-exp(theta5+theta6*x)

z3/(1+z1+z2+z3)

}

psi1.<-function(theta1,theta2,theta3,theta4,theta5,theta6,x) {

#marginal prob. of efficacy

psi10(theta1,theta2,theta3,theta4,theta5,theta6,x)+

psi11(theta1,theta2,theta3,theta4,theta5,theta6,x)

}

psi.1<-function(theta1,theta2,theta3,theta4,theta5,theta6,x) {

#marginal prob. of toxicity

psi01(theta1,theta2,theta3,theta4,theta5,theta6,x)+

psi11(theta1,theta2,theta3,theta4,theta5,theta6,x)

}

#####################################################################
############# Likelihood function for the Cox model ###############
#####################################################################

lf2<-function(w) {

v<-1

w1<-w[1]

w2<-w[2]

w3<-w[3]

w4<-w[4]

w5<-w[5]

w6<-w[6]

for (i in 1:length(alloc.dose)) {

dose.i<-alloc.dose[i]

r0.i<-r0[i]

r1.i<-r1[i]

r2.i<-r2[i]

r3.i<-r3[i]
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z1<-exp(w1+w2*dose.i)

z2<-exp(w3+w4*dose.i)

z3<-exp(w5+w6*dose.i)

psi00<-1/(1+z1+z2+z3)

psi01<-z1*psi00

psi10<-z2*psi00

v<-v*(psi00^r0.i)*(psi01^r1.i)*(psi10^r2.i)*

((1-psi00-psi01-psi10)^r3.i)

}

return(v)

}

lf2.c<-cmpfun(lf2)

# compiling the likelihood function

theta1.f2<-function(w) {

(w[1])*lf2.c(w)

}

theta2.f2<-function(w) {

(w[2])*lf2.c(w)

}

theta3.f2<-function(w) {

(w[3])*lf2.c(w)

}
theta4.f2<-function(w) {

(w[4])*lf2.c(w)

}

theta5.f2<-function(w) {

(w[5])*lf2.c(w)

}

theta6.f2<-function(w) {

(w[6])*lf2.c(w)

}

#in the likelihood function and thereafter, w[1], w[2],

#w[3] and w[4] etc. represent theta1, theta2, etc.

########################## End ##############################
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