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ABSTRACT 
 

Desmosomes and adherens junctions are intercellular junctions crucial for epithelial 

cell-cell adhesion and maintenance of normal tissue architecture. Desmoglein 3 

(Dsg3), a member of the desmoglein sub-family, serves as an adhesion molecule in 

desmosomes. Its importance in cell-cell adhesion has been highlighted by the 

autoimmune blistering disease pemphigus vulgaris, where autoimmune antibodies 

directed against Dsg3 trigger a cascade of intracellular events, resulting in structural 

defects and blister formation in the skin and oral mucosa. In addition to its adhesive 

function, Dsg3 is also acknowledged to have other important roles in the regulation 

of cell proliferation and differentiation. Our group suggested that Dsg3 is involved in 

the regulation of keratinocyte stem cell differentiation, but the underlying 

mechanism(s) were unclear (Wan et al, 2003; Wan et al, 2007). We hypothesise that 

Dsg3 may be involved in the regulation of the E-cadherin-mediated cell adhesion and 

the reorganisation of actin cytoskeleton, which in turn contributes to differentiation 

programs and tissue morphogenesis. Thus, the aim of this study was to examine the 

interactions between Dsg3, E-cadherin and actin and to explore the underlying 

signalling pathways that are associated with these intercellular junctions. Using both 

a gain and loss of Dsg3 functional approaches, I demonstrate that Dsg3 is capable of 

interacting with E-cadherin and involved in the regulation of calcium-induced E-

cadherin junction assembly and the activation of Src signalling pathway. 

Overexpression of Dsg3 increased E-cadherin/Src signalling with enhanced levels of 

Src and pSrc co-purified with E-cadherin. Knockdown of Dsg3 inhibited this pathway 

with reversed effect, suggesting that Dsg3 acts as an upstream regulator of Src 

signalling in the regulation of E-cadherin-mediated adherens junction formation. In 

addition, I show another novel function of Dsg3 in promoting actin dynamics through 

regulating Rac1 and Cdc42-GTPase activities, resulting in pronounced membrane 

protrusions and enhanced rate of actin turnover. Taken together, my work suggests 

that Dsg3 play an important signalling role in the assembly of E-cadherin-mediated 

cell adhesion and the dynamic of actin cytoskeleton.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Epidermis 

The epidermis, the outermost layer of the skin, serves as the body’s primary 

barrier against water loss and provides essential protective functions. It is a 

multi-layered stratified squamous epithelium composed of four sub-layers: the 

basal layer, spinous layer, granular layer and the stratum corneum (Figure 1) 

(Eckert & Rorke, 1989; Morasso & Tomic-Canic, 2005). To allow for constant 

renewal of the skin, epidermis is replenished through mitosis of the proliferating 

cells at the basal layer and maintained by continual stratification and 

differentiation throughout one’s lifetime. When this balanced regulation is 

disturbed, a range of human diseases characterised by varying degrees of 

epidermal fragility and blistering may ensue. 

 

Figure 1: The composition of the epidermis and the distribution of intercellular 
junctions. 

The epidermis is composed of the basal layer, spinous layer, granular layer and the 

stratum corneum. Desmosomes (DSMs) and adherens junctions (AJs) are found 

throughout the epidermis, while the tight junctions (TJs) are found only in the granular 

layers (Green et al, 2010). 
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Keratinocytes of the basal layers are attached to the basement membrane 

through hemidesmosomes and other integrin-mediated cell adhesion junctions. 

When terminal differentiation begins, some of their daughter keratinocytes lose 

their attachment from the basement membrane and migrate upward toward the 

upper stratum corneum. During this process, they undergo a continuous 

remodelling of adhesive junctions and reorganisation of the cytoskeletal 

networks, in which the expression levels of many structural proteins including 

intercellular junction components change, as does the expression of 

transcription factors. Once they reach the stratum corneum of the skin, these 

terminally differentiated keratinocytes begin to shed from the skin surface and 

are replaced by cells arising from the basal proliferative compartment. In normal 

skin, the whole process of cell renewal is over a period of 30 days (Kerr, 1999). 

 

1.2 Intercellular junctions 

Intercellular junctions are specialised attachment structures that mediate firm 

cellular adhesion between adjacent cells. They are abundantly expressed in 

epithelial tissues that experience extensive mechanical stress. In vertebrates, 

there are three major groups of intercellular junctions: tight junctions (also 

known as occluding junctions), adhering junctions (including adherens junctions 

and desmosomes) and gap junctions (also known as channel-forming junctions) 

(Simpson et al, 2011) (Figure 1 and 2). Besides imparting structural integrity, 

these dynamic structures are also involved in various functions such as the 

maintenance of tissue polarity, regulation of cell shape, exchange of selected 

small ions and molecules and signalling events. Studies are beginning to suggest 

a broader role for these intercellular junctions and hence, there is no doubt that 

the formation, maturation and homeostasis of epidermis require dynamic 

coordination between assembly and disassembly of these junctions. Dysfunction 

of any aspect not only disrupts their intercellular adhesive functions, but also 

affects the signalling pathways associated with de-differentiation and 

malignance. It is therefore believed that the precisely controlled mechanisms of 
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cell adhesion can in addition serve as crucial regulators for other downstream 

processes such as proliferation, differentiation, cell migration and wound 

healing. Here I am focusing on the adhering junctions and their associated 

signalling pathways and explore how these mechanisms are associated to 

desmoglein related disease-pemphigus vulgaris. 

 

Figure 2: A schematic diagram of intercellular junctions in epithelial cells. 

Intercellular junctions consist of tight junctions, adhering junctions (adherens junctions 

and desmosomes) and gap junctions. In adherens junctions, classical E- and P-cadherins 

are linked to the actin cytoskeleton via β- and α-catenins, while in desmosomes, 

desmogleins and desmocollins are linked to the intermediate filaments through 

plakoglobin, plakophilins and plakin family members such as desmoplakin (Green & 

Simpson, 2007).  

 

Adherens junctions and desmosomes, are composed of members of the cadherin 

superfamily of transmembrane proteins. Their extracellular domains mediate 

calcium-dependent homophilic and/or heterophilic adhesion, while the 

cytoplasmic domains form a stable attachment with the underlying cytoskeletal 

filaments through armadillo and cytoskeletal adaptor proteins. In adherens 

junctions, the classical E- and P-cadherins are linked to the actin cytoskeleton via 



 

 

18 
 

catenins, while in desmosomes the desmosomal cadherins: desmogleins and 

desmocollins are linked to the intermediate filaments through armadillos and 

plakin family proteins (Simpson et al, 2011). Together desmosomes and adherens 

junctions work cooperatively with the underlying actin and intermediate 

filaments, which serve as a mechanical link between adjacent cells in epithelial 

layer, and thereby providing mechanical stability and the maintenance of the 

overall tissue integrity of the epidermis. The function of intermediate filaments 

will not be discussed in this thesis. 

 

1.3 Desmosomes and the desmosomal components 

1.3.1 Desmosomal cadherins 

Desmosomes are calcium-dependent, cadherin-based cell adhesion structures. 

They are mainly composed of three sub-families and these include the 

desmosomal cadherins: desmogleins (Dsgs) and desmocollins (Dscs), the 

armadillo family proteins: plakoglobin (Pg) and plakophilins (PKPs) and the 

plakins: desmoplakin (DSP), plectin, envoplakin and periplakin (Bazzi et al, 2007; 

Green & Gaudry, 2000; Ishii et al, 2001). As illustrated in Figure 3, the 

transmembrane core of desmosomes is composed of desmosomal cadherins. 

Desmogleins (Dsgs) cooperate with desmocollins (Dscs) to form the initial 

adhesive interface via their EC1 extracellular domains. Their cytoplasmic tails 

then interact with the armadillo family members, including plakoglobin and 

plakophilins (Garrod et al, 2002; Getsios et al, 2004; Green & Gaudry, 2000; 

Hatzfeld, 2007), which in turn links the plakin family member desmoplakin to the 

intermediate filaments (Green & Simpson, 2007).  

 



 

 

19 
 

 

Figure 3: A model for the structure of desmosomes. 

A) Electron micrograph of a desmosome. B) Schematic diagram of desmosomal proteins 

and relative distance from the plasma membrane (PM); Plakoglobin (PG); Plakophilins 

(PKPs); Desmoplakin (DP); Keratin intermediate filaments (KIF); Inner dense plaque 

(IDP); Outer dense plaque (ODP) (Kottke et al, 2006). 

 

1.3.1.1 The structure of desmosomal cadherins  

In terms of molecular structure, the extracellular N-terminal domains of 

desmosomal cadherins are highly homologous to those of the classical E-

cadherin. As shown in Figure 4, the N-terminal consists of five sub-domains: EC 1-

4 and the extracellular anchor (EA) domain. These domains are approximately 

110 amino acids long (Pokutta & Weis, 2007) and are separated by calcium-

dependent binding sites essential for cell-cell adhesion (Gloushankova, 2008). 

The precise molecular mechanisms of cadherin adhesion are still unclear. It has 

been reported that the EC1 domain contains a highly conserved cell adhesion 

recognition sequence (CAR) primarily responsible for mediating adhesive 

interaction between cadherins (Heupel et al, 2008).  
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Next to the extracellular anchor (EA) domain is a single pass transmembrane 

domain (TM), which is followed by an intracellular C-terminal domain (IC) 

containing variable numbers of sub-domains. In particular, desmoglein has a 

much longer IC domain, which consists of an intracellular anchor (IA), an IC 

cadherin segment (ICS), an intracellular proline-rich linker domain (IPL), a repeat 

unit domain (RUD) and a glycine rich desmoglein terminal domain (DTD) (Huber, 

2003). It is known that the ICS and IA domains bind to the armadillo family 

members such as plakoglobin and p120, respectively (Kanno et al, 2008b; Mathur 

et al, 1994). The functions of the remaining C-terminal domains are currently not 

clear. 

 

 

 

 

 

 

 

Figure 4: The structure of desmosomal and classical cadherins. 

The extracellular N-terminal domains consist of five sub-domains: EC1-4 and the 

extracellular anchor (EA) domain. Next to the extracellular anchor domain is a single 

pass transmembrane domain (TM), which is followed by an intracellular C-terminal 

domain (IC) containing variable numbers of sub-domains. IA, intracellular anchor 

domain; ICS, intracellular cadherin specific domain; IPL, proline-rich linker domain; RUD, 

repeating unit domain; DTD, desmoglein-specific terminal domain (Amagai, 1999; Ishii et 

al, 2001).  
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As for desmocollin, each isoform comes in splice variant ‘a’ and a shortened ‘b’ 

isoform due to alternative splicing. Splice variant ‘a’ interacts with plakophillin 3 

(Bonne et al, 2003), plakoglobin and desmoplakin (Troyanovsky et al, 1994), 

while splice variant ‘b’ which lacks the catenin-binding domain only interacts 

with plakophillin 3 (Choi et al, 2009). The function of the Dsc ‘b’ form is currently 

unknown. It was hypothesised that the cytoplasmic tail of ‘b’ is involved in Dsc 

signalling activity. However, Hardman and colleagues demonstrated that the 

expression of both Dsc3 splice variant ‘a’ and ‘b’ driven by the keratin 1 

promoter have similar β-catenin-inducing activities in culture, suggesting that the 

cytoplasmic tail of ‘b’ may not solely play a key role in signalling function 

(Hardman et al, 2005). The authors instead suggest that Dsc3 ‘b’ might be 

involved in Dsc signalling via plakophillin 3, since it is the only known Dsc3 ‘b’-

protein interaction to date (Bonne et al, 2003).  

 

1.3.1.2 Homophilic and heterophilic binding of desmosomal cadherins 

It is known that both desmocollin and desmoglein are required to confer strong 

cell-cell adhesion between keratinocytes. Studies based on the cadherin-null L-

cell system demonstrated that co-expression of both types of desmosomal 

cadherins Dsc2a and Dsg1 together with plakoglobin greatly increased cell 

aggregation (Andl & Stanley, 2001; Marcozzi et al, 1998; Tselepis et al, 1998). At 

present, it is unclear how desmosomal cadherins interact with each other in vivo 

since data supporting both homophilic and heterophilic trans-interaction have 

been reported. For instance, heterophilic interactions between Dsg2 and Dsc1a 

or Dsc2 have been observed on the molecular level (Chitaev et al 1997; Syed et al 

2002), while homophilic interactions mediated by desmosomal cadherins such as 

Dsg2 or Dsc2 have also been observed in in vitro studies (Waschke et al 2005; 

Heupel et al 2008). More recently, Nie and colleagues suggested that homophilic, 

isoform-specific binding is a much preferred pairing as compared with 

heterophilic binding in HaCaT cells that contains abundant desmosomes (Nie et 

http://cshperspectives.cshlp.org/content/1/2/a002543.long#ref-33
http://cshperspectives.cshlp.org/content/1/2/a002543.long#ref-120
http://cshperspectives.cshlp.org/content/1/2/a002543.long#ref-120
http://cshperspectives.cshlp.org/content/1/2/a002543.long#ref-126
http://cshperspectives.cshlp.org/content/1/2/a002543.long#ref-65
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al, 2011). Further studies are required to understand how these interactions may 

contribute to epidermal cohesion in vivo. 

 

1.3.1.3 Calcium-dependent desmosomal cadherin adhesion 

Calcium is a necessary prerequisite for a variety of cellular processes such as the 

assembly of intercellular junctions, differentiation and stratification (Brooke et 

al, 2012). The dynamic assembly of adherens junctions and desmosomes can be 

monitored experimentally in culture by the calcium switch assay (Hennings et al, 

1980; Watt et al, 1984). In low calcium medium (below 0.1 mM), keratinocytes 

grow as a monolayer and do not form desmosomes or adherens junctions. Under 

such conditions, the junctional proteins continue to be synthesised, but they are 

unstable and do not assemble into intercellular junctions. The junctional proteins 

become quickly degraded, resulting in a diffuse cytoplasmic staining of the 

junctional proteins including E-cadherin (Hodivala & Watt, 1994; Lewis et al, 

1994; O'Keefe et al, 1987; Wheelock & Jensen, 1992). Upon raising the 

extracellular calcium concentration of the growth medium from µM range to 0.2 

mM and above (Yin et al, 2005a), E-cadherin begins to bind to its counterpart on 

the surface of neighbouring cells, and in turn provides a structural framework or 

signalling cues to guide the formation of other intercellular junctions such as 

desmosomes. It has been reported that the assembly of desmosome begins with 

the binding of desmocollin to β-catenin, a component of the adherens junctions 

(Hanakawa et al, 2000).  

 

Following the calcium switch assay, the Triton solubility assay (Green & Simpson, 

2007) is commonly used to distinctly extract the non-ionic detergent soluble 

fraction of cells, while leaving the cytoskeletal associated proteins as the 

insoluble fraction (Patton et al, 1989). The soluble fraction of Dsg3 is referred to 

as the “free” non-junctional Dsg3 found outside of desmosomes, whereas the 

insoluble fraction is found in desmosomes, which is associated with the 

intermediate filaments (Aoyama et al, 1999). The titration of the desmosomal 

components from the soluble to insoluble fractions upon the addition of calcium 
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reflects the recruitment of desmosomal components from the cytoplasm to the 

plasma membrane where they form stable interactions with the intermediate 

filaments (Kowalczyk et al, 1994). In accordance with this, the stability of the 

desmosomal proteins especially the detergent insoluble fraction increases over 

the course of junction assembly. It is important to note that the calcium 

concentration of tissue fluid is maintained at around 1 mM and hence, variations 

of the extracellular calcium concentrations may not truly represent the 

regulation of cell-cell adhesion. However with careful interpretation, these 

methods are still useful in studying junction assembly in vivo (Garrod, 2010). 

Another characteristic feature of desmosomes is the acquisition of hyper-

adhesion, which does not appear to occur in adherens or tight junctions (Wallis 

et al, 2000). It was demonstarted that desmosomes in early stages of junction 

assembly or during wound healing exhibit a weaker calcium-dependent 

adhesion, in which the protein stability and assembly process could easily be 

disrupted by depletion or chelation of extracellular calcium. Continued culture of 

cells over several days (2-6 days) increases the levels of adhesion between 

neighbouring cells and desmosomes gradually mature to become functionally 

calcium-independent, a concept known as hyper-adhesion (Garrod & Kimura, 

2008; Kimura et al, 2007). In general, it is believed that hyper-adhesion in 

desmosomes is associated with tissue strength. Wallis and colleagues suggested 

that desmosomes in tissues are calcium-independent unless wounded or 

diseased and such condition cannot be replicated in sub-confluent or early 

confluent epithelial cells in culture (Wallis et al, 2000). The authors went on to 

hypothesise that epidermal wounding causes desmosomes to lose their hyper-

adhesiveness at the wound edge, which in turn facilitate cell migration and re-

epithelialisation (Garrod & Kimura, 2008).  

To date, the underlying mechanisms and signalling pathways governing the 

acquisition of hyper-adhesion remain unclear. Garrod and colleagues suggested 

that cells in their hyper-adhesion state undergo structural reorganisation that 

resists calcium-induced uncoupling (Garrod & Kimura, 2008). Other independent 

studies demonstrated that the activation of protein kinase C (PKC), a family of 
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serine/threonine protein kinases (Cosentino-Gomes et al, 2012), is involved in 

converting desmosomes from a calcium-independent to a calcium-dependent 

state in both Madin-Darby canine kidney (MDCK) and HaCaT cell lines (Cirillo et 

al, 2010; Wallis et al, 2000). This finding is further supported by a study of Cirillo 

and colleagues, who showed that inhibition of protein kinase C induces hyper-

adhesion, which in turn prevents epithelial sheets from PV IgG-mediated loss of 

cell-cell adhesion and cadherins depletion (Cirillo et al, 2010).  

 

1.3.2 Armadillo family Proteins 

Armadillo family proteins are characterised by a central domain containing 

variable numbers of amino acid repeats. They include plakoglobin, plakophilins, 

p0071 (also known as plakophilin 4), α- and β-catenin, p120 and ARVC (Hatzfeld, 

2007). Mutations of armadillo proteins are associated with defects in the heart 

such as arrhythmogenic right ventricular cardiomyopathy (ARVC) and skin such 

as ectodermal dysplasia or skin fragility syndrome. 

Plakoglobin (Pg), also known as γ-catenin, is a major regulatory component in 

both desmosomes and adherens junctions. It exhibits a higher affinity for 

desmosomal cadherins (Garrod & Chidgey, 2008) and found predominately in 

desmosomes. Plakoglobin links desmosomal cadherins to desmoplakin and 

anchors it to the intermediate filaments (Troyanovsky et al, 1994). Its binding to 

Dsg3 was reported to be essential for desmosome assembly (Andl & Stanley, 

2001). As for the adherens junctions, plakoglobin links E-cadherin to the α- and 

β-catenin complex. It shares more than 76% in homology with β-catenin (Peifer 

& Wieschaus, 1990) and is known to compensate the function of β-catenin and 

modulates the Wnt/β-catenin signaling pathway (Miravet et al, 2002; Yin & 

Green, 2004). Like other junctional proteins, plakoglobin is subjected to 

modulation by tyrosine kinases and its downstream effect could affect the 

cadherin-mediated adhesion in both adherens junctions and desmosomes 

(Getsios et al, 2004). It was shown that EGF-induced tyrosine phosphorylation of 

plakoglobin results in a loss of desmoplakin from desmosomes with the 

consequent weakening of cell adhesion strength (Yin et al, 2005b). Taken 
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together, it is believed that plakoglobin is vital for cross-talk between 

desmosomes and adherens junctions (Lewis et al, 1997). 

The plakophilin family consists of four members: PKP 1 to 3 and p0071 (Bonne et 

al, 1999; Hatzfeld et al, 2000). They are found predominantly at desmosomes 

and involved in reinforcing junction stability through lateral interactions between 

desmosomal proteins and the intermediate filaments (Hatzfeld, 2007). 

Plakophilins also share a high functional conservation with p120 and play a 

regulatory role in adherens junctions (Getsios et al, 2004; Kowalczyk et al, 1997). 

Both plakophilin 1 and 2 come in two isoforms ‘a’ and ‘b’ due to alternative 

splicing (Hatzfeld, 2007). Plakophilin 1, the major component of desmosomes, 

interacts with Dsg1, desmoplakin and the intermediate filaments (Hatzfeld et al. 

2000). Its functions include recruitment of desmoplakin to the cell borders 

(Getsios et al, 2004), ensuring proper attachment of intermediate filaments to 

the desmosomes (Kottke et al, 2006; McGrath et al, 1997) as well as influencing 

the transition of desmosomes from a calcium-dependent to a calcium-

independent state (Garrod & Kimura, 2008). Plakophilin 2 and 3 are also known 

to be involved in mediating distinct effects on desmosomal adhesion such as the 

formation of functional desmosomes (Bass-Zubek et al, 2009; Godsel et al, 2010). 

Emerging evidence suggests that plakophilins might have an additional role in 

nuclear function. PKP1 are sometimes present in the nucleus (Green & Simpson, 

2007), while PKP2 and PKP3 are associated with RNA polymerase III and 

cytoplasmic particles containing RNA-binding proteins, respectively (Mertens et 

al, 2001). It is currently unclear what role these proteins may play in nuclear 

function (Hatzfeld et al, 2000). 

 

1.3.3 Plakin family proteins  

Like plakophilins, desmoplakins come in two isoforms: DPI and DPII due to 

alternative splicing. They are found in all desmosome-containing tissues (Getsios 

et al, 2004) and mutation of this gene is associated with a wide range of 

inherited disorders affecting the heart and the skin (Awad et al, 2006; Kljuic et al, 

http://cshperspectives.cshlp.org/content/1/2/a002543.long#ref-63
http://cshperspectives.cshlp.org/content/1/2/a002543.long#ref-63
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2003; Pilichou et al, 2006; Rickman et al, 1999). Desmoplakins are primarily 

involved in linking desmosomal plaque to the intermediate filament networks 

and disruption of such attachment has been shown to impair cell-cell adhesive 

strength in vitro (Bornslaeger et al, 1996; Huen et al, 2002).  

The desmoplakin N-terminal globular plakin domain is essential for protein-

protein interactions, where it binds to plakoglobin, plakophilin, Dsc1a (Kowalczyk 

et al, 1997; Smith & Fuchs, 1998; Troyanovsky et al, 1994) and possibly Dsg1 

(Getsios et al, 2004). The function of the N-terminal domain is involved in 

recruiting the desmoplakin to the desmosomal plaque (Stappenbeck et al, 1993), 

while the C-terminal tail is thought to facilitate the binding of desmoplakin to 

intermediate filaments of epithelial cells (Kouklis et al, 1994; Stappenbeck et al, 

1993). Other important functions of desmoplakins include the proper assembly 

of functional desmosomes (Vasioukhin et al, 2001b), regulation of desmosome 

hyper-adhesion (Hobbs & Green, 2012)(Refer to Introduction Chapter 1.3.1.3) 

and reorganisation of the microtubule and actin cytoskeleton (Lechler & Fuchs, 

2007).  

 

1.3.4 Expression patterns of desmosomal cadherins 

Considerable variations in the expression patterns and molecular composition of 

desmosomes are observed along different epithelial layers of a given tissue or 

cell types. Four desmoglein (Dsg1-4) and three desmocollin (Dsc1-3) isoforms 

have been identified in human tissues and each isoform is encoded by different 

genes (Green & Simpson, 2007). The schematic diagram in Figure 5 shows the 

isoform-specific expression pattern of the desmosomal cadherins in normal 

human epidermis. Dsg1 and Dsc1 are expressed predominately in the upper 

layers and decrease gradually toward the lower layers. Dsg2 is expressed in the 

basal cell layer. Dsg3 and Dsc2/3 are expressed more to the basal and immediate 

suprabasal layers and decrease gradually toward the upper layers (Brennan et al, 

2007; Delva & Kowalczyk, 2009). Distinctively, Dsg4 is only expressed in the 
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highly differentiated granular layer of the epidermis (Getsios et al, 2009; Ishii et 

al, 2001).  

 

 

Figure 5: Isoform-specific expression pattern of the desmosomal cadherins in 
normal human epidermis. 

The epidermis is a stratified epithelium comprised of four distinct layers: the basal layer, 

spinous layer, granular layer, and the stratum corneum. Variations in the expression 

patterns of desmosomal cadherins were observed along distinctive epithelial layers. The 

relative expression profiles are depicted on the left (Green & Simpson, 2007). 

 

The precise role for such distinct expression patterns of desmosomal cadherins is 

still a matter of discussion and not fully understood. Early evidence 

demonstrated that desmosomes at different epithelial layers are involved in 

transducing signalling events associated with epidermal differentiation (Fuchs & 

Byrne, 1994). A followup study suggested that reciprocally graded distributions 

of desmosomal isoforms are required at different levels of the stratified epithelia 

to suit specialised mechanical needs during morphogenesis of multi-layered 

tissues (Thomason et al, 2010). In general, it is believed that the correct 

stoichiometry ratios of these desmoglein isoforms in the epidermis are crucial to 

the normal tissue homeostasis. Nonetheless, there is some evidence of 

functional redundancy between different desmosomal components or isoforms 

since overlapping expression patterns of plakophilins and other desmosomal 
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components are detected in mammalian tissues (Neuber et al, 2010). The 

expression pattern of desmosomal components and associated diseases in 

human and mouse models are depicted in Table 1 (Page 29).  
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Table 1: The expression patterns of desmosomal proteins, desmosome associated human diseases and transgenic 
mouse models (H, human; M, mouse; KO, knockout). 

Desmosomal 

components 

Expression patterns in the skin Desmosome-associated human diseases (H)/Transgenic 

mouse models (M) 

Dsg1 Only in stratified squamous epithelia, predominately 

in the upper layers of the epidermis (Evangelista et 

al, 2008) 

H: mutation-> Striate palmplantar keratoderma (Getsios et 

al, 2004); PV-IgG->Pemphigus foliaceus, ETA-

>staphylococcus scalded skin syndrome (Waschke, 2008)  

Dsg2 Ubiquitously in most desmosome containing tissues, 

basal layer of the epidermis (Evangelista et al, 2008) 

H:mutation-> Arrhymogenic right ventricular 

cardiomyopathy (Awad et al, 2006) M:KO->Embryonic 

lethality (Getsios et al, 2004) 

Dsg3 Basal and lower spinous layers of the epidermis, 

decreases gradually toward the upper layers 

(Evangelista et al, 2008) 

H: PV-IgG->Pemphigus vuglaris (Amagai et al, 1991)  

M:KO->Supra-basal acantholysis (Saito et al, 2009) 

Dsg4 Hair follicles, granular layer 

(Delva et al, 2009) 

H:mutation-> Hypotrichosis (Kljuic et al, 2003) 

M:KO->Defective hair follicle differentiation in mice (Getsios 

et al, 2004) 

Dsc1 Throughout the epidermis, highly in the upper layers 

(Evangelista et al, 2008) 

M:KO->Hyperproliferation, hair follicles degeneration, 

increased expressions of keratin 6 and 16 (Chidgey et al, 

2001) 

Dsc2 Ubiquitously in most desmosome containing tissues, 

(Evangelista et al, 2008), basal and lower spinous 

layers (Delva et al, 2009) 

H:mutation->  Arrhymogenic right ventricular 

cardiomyopathy (Awad et al, 2006) 
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Dsc3 Lower epidermis, decreases gradually toward the 

upper layers (Evangelista et al, 2008) 

M:KO->Epidermal fragility, hair loss, preimplantation 

embryonic lethality (Chen et al, 2008)  

PKP1 Highly in suprabasal layers of stratified epithelia 

(Delva et al, 2009) 

H:mutation-> Ectodermal dysplasia, skin fragility syndrome 

(McGrath et al, 1997)  

PKP2 Simple epithelia, the heart, a variety of 

mesenchymal cell types, lower stratified epithelia 

(Lahtinen et al, 2008) 

H:mutation-> Arrhymogenic right ventricular 

cardiomyopathy (Gerull et al, 2004) 

M:KO->Heart Defects (Grossmann et al, 2004) 

PKP3 Simple, stratified epithelia (Mertens et al, 2001), 

uniform expression throughout the epidermis 

(Bonne et al, 1999)  

 

plakoglobin Throughout the epidermis (Waschke, 2008) H:mutation-> Naxos disease (McKoy et al, 2000) 

M:KO->Fragility of the myocardium (Bierkamp et al, 1996) 

Desmoplakin In all desmosomes containing tissues (Getsios et al, 

2004). 

H:mutation-> Arrhymogenic right ventricular 

cardiomyopathy, striate palmplantar keratoderma 

(Armstrong et al, 1999; Rampazzo et al, 2002) 

M:KO->Embryonic lethality (Gallicano et al, 1998) 



 

 

 31 

1.3.5 Desmosome function  

Desmosomes have long been recognised as an adhesive core that anchors the 

intermediate filaments to the plasma membrane. Their primary role is to 

provide strong cell-cell adhesion to maintain the structural and functional 

integrity of tissues. They are crucial for tissues that are subjected to 

continuous mechanical stress and are particularly abundant in stratified 

epithelia such as skin, mucous membranes (Farquhar & Palade, 1963), 

myocardial and Purkinje fibre cells of the heart (Green & Gaudry, 2000). 

Besides serving as an adhesion structure, desmosomes are also involved in the 

regulation of epithelial morphology, tissue homeostasis (Getsios et al, 2004), 

cell positioning (Runswick et al, 2001), proliferation and differentiation (Allen 

et al, 1996; Hardman et al, 2005; Merritt et al, 2002; Morasso & Tomic-Canic, 

2005).  

 

The importance of desmosomes in development can be observed from gene 

ablation studies (Table 1). Mice with ablation of Dsg3 are normal at birth but 

exhibit epidermal adhesion and differentiation defects at 6 months of age 

(Koch et al, 1997). Mice with ablation of Dsg2 exhibit an embryonic lethal 

phenotype and die shortly after implantation (Eshkind et al, 2002). Even more 

remarkably, ablation of Dsc3 is lethal before implantation suggesting an 

additional non-desmosomal role prior to the formation of desmosomes during 

development (Den et al, 2006). 

 

Other misexpression experiments also revealed that a tight regulation of 

desmosomal cadherin expression is critical to the normal tissue homeostasis. 

It was demonstrated that redirecting the expression of desmosomal cadherins 

to suprabasal layers of the skin has a dramatic effect on cell proliferation and 

differentiation. For instance, misexpression of desmosomal cadherins Dsc3a 

and Dsc3b to suprabasal differentiating keratinocytes is strongly associated 

with altered stability of β-catenin, impaired keratinocyte proliferation and 

differentiation in transgenic mice (Hardman et al, 2005). The expression of 
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NH2-terminally truncated Dsg3 mutant driven by the K14 promoter, resulted 

in the widening of the intercellular spaces, accumulation of truncated Dsg3 

proteins and disruption of the ultrastructural organisation of desmosomes. 

These phenotypes are also accompanied with hyper-proliferation, altered 

epidermal differentiation and inflammatory response in some skin regions of 

the transgenic animal (Allen et al, 1996). Similarly, it was demonstrated that 

overexpression of Dsg3 by the K1 promoter in the suprabasal epidermis of 

transgenic mice was associated with hyper-proliferation and altered 

differentiation (Elias et al, 2001; Hardman et al, 2005; Merritt et al, 2002). 

However, this finding is in contrast with another study, in which 

overexpression of Dsg3 by the involucrin promoter resulted in altered 

differentiation and severe barrier defects. It converts the stratum corneum to 

a mucous like phenotype leading to early postnatal lethality due to 

dehydration or water loss, but fails to induce hyper-proliferation at the 

granular layer (Elias et al, 2001). The underlying cause of the discrepancy is 

still unclear. The role of desmosomal cadherins in the regulation of 

keratinocyte proliferation can also be demonstrated clinically in the 

autoimmune skin blistering disease pemphigus vulgaris (PV). It was shown 

that PV autoantibodies impair Dsg3/plakoglobin signalling and in turn leads to 

c-Myc overexpression and enhanced keratinocyte proliferation in PV patients 

(Muller et al, 2008; Williamson et al, 2006) (Refer to Introduction Chapter 

1.5.2).  

 

It is also known that desmosomal cadherins are mediators of diverse signalling 

pathways that could influence the regulation of epidermal morphogenesis. 

Getsios and colleagues showed that the expression of Dsg1 without its N-

terminal domain, which is responsible for cell-cell adhesion, is capable of 

promoting keratinocyte differentiation. The authors suggested that such 

response is mediated through the inhibition of the epidermal growth factor 

receptor-extracellular signal-regulated kinase 1/2 (EGFR-Erk1/2) signalling 

pathway, an adhesion-independent pathway that does not rely on its adhesive 

capability with other desmosomal cadherins (Getsios et al, 2009). Similarly, 
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Brennan and colleagues showed that overexpression of Dsg2 under the 

control of the involucrin promoter enhances the activation of multiple 

signalling pathways such as phosphatidylinositol-3-kinase (PI3-kinase), MEK-

MAPK and STAT3, contributing to enhanced growth rate, anchorage-

independent cell survival and malignant phenotype in the epidermis of 

transgenic mice (Brennan & Mahoney, 2009). Taken together, these studies 

suggest that desmosomal cadherins are capable of activating signalling events 

that are independent of their adhesive function (Refer to Introducton Chapter 

1.5.2.4). 

 

1.4 Molecular crosstalk between desmosomes and other 

junctional components 

It has long been an area of interest in understanding the cross-talk between 

desmosomes, adherens junctions and the actin cytoskeleton. It was 

demonstrated that these intercellular junctions are mutually dependent and 

emerging evidence suggests that adherens junctions and the actin 

cytoskeleton are also involved in the pathogenesis of skin blistering disease 

pemphigus vulgaris. Thus, it will be interesting to identify how desmosomes 

couple to other intercellular junctions and signalling pathways to drive the 

differentiation programs and tissue morphogenesis. 

 

1.4.1 Adherens junctions 

Adherens junctions (AJs) are another type of cell adhesion structure, which 

differs from desmosomes both in terms of morphological structure and 

molecular composition (Haftek et al, 1996). They are expressed throughout 

the epidermis and participate in various important cellular functions such as 

embryonic development, maintenance of tissue integrity, epithelial polarity 

and differentiation (Tu et al, 2008). Adherens junctions are primarily 

composed of the classical E- and P-cadherins and the cytoplasmic catenins 

such as p120, β- and -catenins (Figure 6). The classical cadherins mediate 
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homophilic cell-cell adhesion through their extracellular domains, while the 

cytoplasmic tails link the cadherin complex to -catenin or plakoglobin and α-

catenin. α-catenin in turn binds directly to actin filaments or indirectly 

through association with vinculin and VASP (Green & Simpson, 2007). This 

cadherin–catenin complex further interacts with other proteins such as the 

nectin–afadin complex (Niessen, 2007) and signalling molecules such as 

phosphatidylinositol 3-kinases, Rho family GTPases and Src family tyrosine 

kinases (Braga et al, 1997; Calautti et al, 1995; Tu et al, 2008), rendering the 

adherens junctions into a highly dynamic supramolecular complex. The 

presence of these signalling molecules has been well associated with both 

positive and negative regulatory roles on the cadherin function (Behrens et al, 

1993; Calautti et al, 1998; Matsuyoshi et al, 1992; Tsukita et al, 1991). 

The conventional view of adherens junctions is that E-cadherin links through 

α-/-catenin complex to the actin cytoskeleton (Skoudy et al, 1996; Tsukita et 

al, 1992). However, recent biochemical and protein dynamics analysis have 

shown that such a direct physical linkage between α-catenin to actin filaments 

might not exist (Yamada et al, 2005). On the contrary, a more transient 

interaction between α-catenin and actin filaments is proposed (Kobielak & 

Fuchs, 2004) and such linkage may involve other actin-related proteins such as 

vinculin, α-actinin, formin, ZO-1, afadin and a recently discovered protein: 

EPLIN (Gumbiner, 1996; Harris & Tepass, 2010).  
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Figure 6: A model for the structure of adherens junctions. 

The extracellular domains of the classical cadherin interact with the opposing cells, 

while the cytoplasmic tails link the cadherin complex to p120 and -catenin or 

plakoglobin at different regions, the latter of which binds to α-catenin and the actin 

filaments (Kobielak & Fuchs, 2004). 

 

1.4.1.1 Classical cadherins 

The classical E-cadherin, the principal component of adherens junctions, is 

found in all layers of the epidermis (Hirai et al, 1989), while P-cadherin is 

restricted only to the basal cell layer (Delva et al, 2009). E-cadherin interacts 

with other catenins and the actin cytoskeleton to mediate strong cell-cell 

adhesion. Loss or mutation of E-cadherin not only disrupts intercellular 

adhesion, but also contribute to the epithelial-mesenchymal transition. A 

common hallmark of cancer progression where epithelial cells become less 

polarised in apical-to-basal axis and acquire a more migratory and invasive 

phenotype (Furukawa et al, 1997). Studies have confirmed that aberrant 

expression of E-cadherin is associated with invasiveness and metastasis 

potential for many cancer types including lung, prostate, gastric, breast and 

colon cancers (Shinmura et al, 1999). Thus, it is believed that E-cadherin 
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expression can serve as a significant prognostic marker for tumour 

progression and behaviour (Wijnhoven et al, 2000).  

 

1.4.1.2 Catenins 

-catenin and p120 are members of the armadillo-repeat-containing family of 

proteins and they share a high sequence similarity. -catenin binds to the 

distal part of the E-cadherin cytoplasmic tail and connects it to the actin 

cytoskeleton via α-catenin (Figure 7). Besides bridging E-cadherin with the 

actin-binding proteins, -catenin has a second function as a transcriptional co-

activator in the Wnt signalling pathway. Abnormal Wnt signalling caused by 

mutation of β-catenin is frequently detected in cancer (Austinat et al, 2008).  

p120 catenin is originally described as a substrate of Src. It binds to the 

juxtamembrane region of E-cadherin and does not bind to α-catenin (Figure 

7). At present, four isoforms derived from alternative splicing have been 

identified. p120 is known to participate in a wide range of biological processes 

such as influencing cell motility (Shen et al, 2008), cadherin clustering (Yap et 

al, 1998) and modulating the activities of Rho family GTPases in cell adhesion 

and the reorganisation of actin cytoskeleton (Michael & Yap, 2013; Noren et 

al, 2000). There is a substantial body of literature suggesting that p120 catenin 

is involved in stabilising the E-cadherin catenin complex. It was shown that 

p120 protects E-cadherin at the cell surface from endocytosis and in turn 

strengthens the adhesiveness of the adherens junctions (Yap et al, 2007). This 

finding is in line with a study by Reynolds and colleagues, which showed that 

down-regulation of p120 is associated with the concomitant loss of E-cadherin 

in some cases of metastatic cancer (Reynolds, 2007).  

α-catenin is an actin-binding protein that lacks the armadillo domain and 

differs from other catenins in terms of sequence and structural organisation. 

Its N-terminal domain interacts with -catenin, while the C terminal tail binds 

to α-actinin, vinculin (Yamada et al, 2005) and links the E-cadherin-catenin 
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complex to the actin cytoskeleton (Kobielak & Fuchs, 2004). It was suggested 

that α-catenin could not simultaneously bind to both E-cadherin--catenin 

and actin filaments in vitro, suggesting a more complex molecular events 

between α-catenin and actin complex (Yamada et al, 2005). Besides serving as 

an essential component of adherens junctions, α-catenin can integrate 

adhesion with other essential cellular events. It was demonstrated that 

ablation of α-catenin enhances the Ras-MAPK signalling pathway resulting in 

hyper-proliferation and defective cell polarisation of keratinocytes 

(Vasioukhin et al, 2001a). Taken together, catenins play a crucial role in linking 

cadherins to the actin cytoskeleton and control the overall adhesive function 

of adherens junctions. 

 

1.4.2 Actin cytoskeleton 

The actin cytoskeleton provides mechanical stability and strong cell adhesion 

based on their anchorage to adherens junctions and focal contacts (Brieher & 

Yap, 2012; Perez-Moreno et al, 2003), a prerequisite for epithelial polarisation 

and stratification (Zhang, 2005). However, in response to environmental cues, 

rapid and localised disassembly of adhesive interactions and reorganisation of 

the underlying actin cytoskeleton allow remodelling of epithelial cells into an 

alternate morphology state more favourable to cell migration and wound 

healing. These spatial and temporal regulations of intercellular adhesions and 

the actin cytoskeleton are often associated with a wide range of cell signalling 

molecules including Rho GTPases (Blanchoin & Michelot, 2012; Fukata & 

Kaibuchi, 2001; Michael & Yap, 2013). 

 

During early phases of calcium-induced intercellular junction formation, cells 

project membrane protrusions such as lamellipodia and filopodia at the 

leading edge of cells (Kovacs & Yap, 2008). This forward translocation 

mechanism helps to initiate cell-cell contacts and allows a series of transient 

weak adhesion zipper to form (Borisy & Svitkina, 2000; Mack et al, 2011; 

Zhang et al, 2005). The adhesion zipper attaches the extending membrane to 
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the extracellular matrix, which is followed by the clustering of adherens 

junctional proteins such as E-cadherin, β-/α-catenins along the developing 

cell-cell contacts (Hansen et al, 2002; Perez et al, 2008). Concomitantly, these 

cadherin-catenin complexes trigger the reorganisation of actin cytoskeleton 

and other regulators such as Rho GTPases to form a productive and stable 

adhesion (Zhang, 2005).  

As shown in Figure 9, Braga and her group have identified two spatial 

populations of actin at the cell-cell contacts during the process of calcium-

induced junction formation. One of the populations is referred as the 

junctional actin, which is associated with wavy, thin punctate staining pattern 

at junctions. The second population is referred as the peripheral thin bundles, 

which are associated with an array of thin bundles of actin filaments prior to 

the formation of cell-cell contacts. During the assembly of adherens junctions, 

progressive reorganisation of these two populations merges at the cell-cell 

contacts, resulting in a continuous line of mature junctional actin around the 

cell periphery (Zhang, 2005). 
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Figure 7: Two spatial actin populations. 

 As adherens junctions assemble, peripheral thin bundles and junctional actin merge 

at the cell-cell contacts to form mature junctional actin. Arrows indicate bundles; 

arrowheads indicate junctional actin (Zhang, 2005). 

 

1.4.3 Molecular dialogue between desmosomes, adherens junctions and the 

actin cytoskeleton. 

It is well established that adherens junctions assemble first during 

development and play a master regulatory role in the initiation, organisation 

and formation of other adhesive junctions such as desmosomes and gap 

junctions. Studies have shown that inhibition of E-cadherin or P-cadherin in 

vivo not only impairs the adherens junctions, but also affects the 

desmosomes, tight junctions and the cortical actin cytoskeleton (Hodivala & 

Watt, 1994; Lewis et al, 1994; Tinkle et al, 2008). More recently, emerging 

evidence suggests that reduced function of desmosomes may also interfere 

with the formation and/or maintenance of adherens junctions and the actin 

cytoskeleton.  
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Studies have shown that loss of plakoglobin resulted in the intermingling of 

desmosomal and adherens junctional components in the intercalated discs of 

heart tissue (Bornslaeger et al, 1996; Ruiz et al, 1996; Vasioukhin et al, 2001b). 

Similarly, keratinocytes derived from desmoplakin-null skin have very few 

desmosomes or adherens junctions in vitro. They also lack the intermediate 

filaments to connect desmosomes at sites of cell–cell contact, which in turn 

compromise the actin reorganisation and membrane sealing during epithelial 

sheet formation (Vasioukhin and Fuchs, 2001). Others reported that 

plakophilin (PKP), a p120-related desmosomal plaque protein, is involved in 

the regulation actin-dependent regulation of desmosome assembly. Godsel 

and colleagues showed that a pool of PKP2 localises to cell–cell borders is 

essential for proper localisation of RhoA at cell–cell interfaces and facilitates 

the translocation of desmoplakin into newly forming desmosomes (Godsel et 

al, 2010; Godsel et al, 2005).  

 

1.4.4 Signalling pathways associated with these junctions 

Intracellular signalling pathways play an essential role in the interplay 

between different adhesion systems. Their downstream effects have been 

associated with both positive and negative changes in the stability and 

function of intercellular adhesion. Thus, understanding the spatiotemporal 

and bidirectional intracellular signalling events between these systems are 

important in addressing the molecular mechanisms involved. Here I focus on 

the signalling pathways that are associated with desmosomes, adherens 

junctions and the underlying actin cytoskeleton, in particularly the activation 

of small GTPases and Src family tyrosine kinases. 

 

1.4.4.1 Rho family GTPases 

The Rho GTPases family consists of three subfamilies: Rho, Rac and Cdc42 

(Noren et al, 2001). They belong to a group of low molecular weight GTP 

binding proteins, which can be activated by a variety of growth factors and 
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adhesion molecules. The Rho family GTPases cycle between the inactive GDP-

bound and active GTP-bound states, which are catalysed by three key classes 

of regulators (Braga & Yap, 2005; Menke & Giehl, 2012). Guanine nucleotide 

exchange factors (GEFs) regulate the exchange of GDP for GTP; GTPase-

activating proteins (GAPs) enhance the GTPase activity and reconvert it back 

to the inactive GDP-bound form; Rho GDP dissociation inhibitors (Rho GDIs) 

prevent the exchange of GDP for GTP. Upon activation, the GTP-bound 

GTPases are translocated to specific membrane sites, where they interact 

with other effector proteins to regulate a wide range of biological processes 

such as the organisation of actin cytoskeleton, morphogenesis, apoptosis and 

tumourigenesis (Ridley, 2012). 

 

The Rac subfamily consists of three members namely: Rac1, -2 and -3 (Ridley, 

2006). Rac co-localises with E-cadherin at sites of cell–cell contact and its 

activation is primarily associated with the formation of lamellipodia and 

membrane ruffles via Arp2/3 and WAVE complex (Menke & Giehl, 2012). The 

Cdc42 subfamily consists of G25k and Cdc42Hs (Johnson, 1999; Kodama et al, 

1999) and are found at sites of cell–cell contacts as well as the Golgi apparatus 

(Friesland et al, 2013). The activation of Cdc42 GTPases is primarily involved in 

the formation of filopodia and establishment of cell polarity through the 

reorientation of the microtubule organising center (MTOC) and Golgi 

apparatus (Desai et al, 2009; Palazzo et al, 2001). The Rho subfamily consists 

of primarily three members namely: RhoA, -B and -C. In contrast to Rac and 

Cdc42, the localisation of Rho varies depending on cell type (Yonemura et al, 

2004). For instance, RhoA and -C are localised in both cytoplasm and at the 

cell membrane, while RhoB is localised primarily on endosomes (Dietrich et al, 

2009; Takaishi et al, 1997; Wheeler & Ridley, 2004). The activation of Rho 

GTPase is mainly associated with the formation of stress fibers and 

maturation of focal adhesion (Ridley, 2006). Its downstream effect influences 

the myosin light chain kinase (MLCK), cell contractility (Renaudin et al, 1999) 

as well as maintenance of cell-cell adhesion (Spindler & Waschke, 2011). It has 

been demonstrated that signalling downstream of Rho through ROCK 
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destabilises adherens junctions, whereas signalling through Diaphanous is 

required for maintenance of adherens junctions (Sahai & Marshall, 2002).  

 

1.4.4.2 Rho GTPases in cadherin-mediated adhesion 

The Rho family GTPases have emerged as key players in the regulation of 

cadherin-mediated cell-cell adhesion. The inside-out signalling activated by 

GTPases can either act directly on the cadherin-catenin complex or indirectly 

through influencing other junctional components or the cadherin recycling 

and degradation pathways. Braga and colleagues reported that blocking the 

function of Rac1 and RhoA inhibits the accumulation of cadherin at sites of 

cell–cell contact following calcium-induced intercellular adhesion in 

keratinocytes (Braga et al, 1997). Takaishi and colleagues showed that 

overexpression of dominant positive Rac (Rac1V12) induces the accumulation 

of E-cadherin, β-catenin and actin filaments at sites of cell–cell contact in 

MDCKII cells, while overexpression of dominant negative Rac (Rac1N17) 

reverses this effect with reduced accumulation of these components (Takaishi 

et al, 1997). These studies suggest that the activation of Rho proteins 

especially Rac1 is required for the cadherin-directed actin assembly (Braga et 

al, 1997; Noren et al, 2001; Yap & Kovacs, 2003a). 

It was reported that Cdc42 and Rac1 could indirectly regulate the E-cadherin 

activity via IQGAP1 (Fukata et al, 1999). For instance, the binding of active 

GTP-bound Cdc42/Rac1 to IQGAP1 inhibits the interaction of IQGAP1 with β-

catenin. This in turn positively regulates cadherin function by enhancing the 

association of cadherin/catenin complex with the actin cytoskeleton (Fukata 

et al, 2001). However, Hage and colleagues showed that the binding of active 

Rac1 to IQGAP1 decreases the E-cadherin-mediated adherens junctions in 

pancreatic carcinoma cells, suggesting a cell type-specific Rac1-E-cadherin-

IQGAP mechanism (Hage et al, 2009). Alternatively, Rac1 and Cdc42 were 

reported to regulate the activity of matrix metalloproteinases (MMP-2), 

thereby indirectly modifying E-cadherin-mediated cell–cell adhesion (Fukata 

et al, 2001).  
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The signals triggered by these newly formed adherens junctions can in turn 

generate a feedback loop influencing the organisation of the established 

adhesions. Homophilic binding of E-cadherin at cell-cell contacts can trigger 

the activation of outside-in signal, resulting in local activation of Rac1 and 

Cdc42 essential for the junction stability. It was demonstrated that homophilic 

binding of E-cadherin activates Rac1 through PI3K-dependent pathway in 

MDCKII cells to control adhesive contacts (Jeanes et al, 2009) and induces 

rapid activation of Cdc42 in MCF-7 epithelial cells (Kim et al, 2000). However, 

the requirement of Cdc42 in new junction assembly or maintenance is still 

unclear. Erasmus and colleagues assessed the activation of Cdc42 specifically 

using only confluent keratinocytes cultures and induced cell–cell contacts by 

the addition of calcium ions to avoid cell migration or growth factor-related 

Cdc42 activation. It was found that cell-cell contacts do not induce filopodia or 

require Cdc42 to initate stable cadherin adhesion in keratinocytes (Erasmus et 

al, 2010).  

 

With respect to desmosomes, it was shown that activation of Rho GTPases 

RhoA, Rac1 and Cdc42 using an array of bacterial toxins resulted in an 

enhanced Dsg3 cell membrane staining and increased Dsg1-mediated 

adhesion (Spindler & Waschke, 2011). In reverse, inhibition of these GTPases 

showed fragmented Dsg3 membrane staining, enlarged intercellular gap 

formation and reduced Dsg1 and Dsg3-mediated adhesion, suggesting that 

these GTPases regulate keratinocyte adhesion, at least in part, on the level of 

desmosomal cadherins (Spindler & Waschke, 2011). The clinical relevance of 

Rho GTPase signalling in modulation of desmosomal adhesion will be 

discussed in Chapter 1.5.2.4 Signal transduction pathways. 

 

Taken together, the functions of cadherins and small GTPases correlate in 

many different levels and one could not exclude the possibility that they 

cooperate/ overlap with one another to regulate specific targets such as cell-

cell adhesion. It is believed that cooperation of these downstream signalling 
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events is required during establishment and maintenance of the epithelial 

phenotype (Braga et al, 1997; Takaishi et al, 1997) and the precise regulation 

of these GTPases is dependent upon the degree of junction maturation, 

cellular context and the cell system used (Braga, 2002).  

 

1.4.4.3 Tyrosine kinases 

Non-receptor Src family consists of a large number of structurally related-

tyrosine kinases. They are known to play essential role in signalling 

transduction pathways that regulate cell proliferation, migration, cell-cell/cell-

matrix adhesions and differentiation (Calautti et al, 1998; Nagathihalli & 

Merchant, 2012; Serrels et al, 2011). Among the nine known family members, 

Src, Fyn and Yes are expressed in the keratinocytes. c-Src, the cellular form of 

protein tyrosine kinase, is composed of six functional domains such as SH4, a 

unique domain, SH3, SH2, SH1 and a C-terminal tail, which varies among 

family members (Brown & Cooper, 1996). The oncogenic v-Src, which lacks 

the C-terminal inhibitory phosphorylation site (Tyr530) differs from the 

cellular form primarily in enzymatic activity and is constitutively active as 

opposed to normal c-src.  

External stimuli such as growth factor or cell-cell adhesion can trigger 

transient activation of Src through a number of different mechanisms such as 

phosphorylation of Tyr416/de-phosphorylation Tyr530 (in vivo), protein-

protein interactions via its SH domains or other kinase independent pathways. 

Among these mechanisms, regulation of Src by phosphorylation of Tyr416 

seems to play a key role in the formation of E-cadherin-mediated adherens 

junctions (McLachlan et al, 2007). Structural analysis demonstrated that Src 

kinase can switch between active and inactive states in response to intra- or 

extracellular signals. As shown in Figure 8, auto-phosphorylation of Tyr416 

activates Src through a conformational change in SH domains, which 

“opening” up the molecule for intermolecular interactions with other Src 

binding partners. Conversely, phosphorylation of Tyr530 inactivates Src 

through blocking its active site with the SH and kinase domains, resulting in a 
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“closed” auto-inhibited conformation (Brown & Cooper, 1996; Xu et al, 1997). 

This “closed” conformation can also be reversed by dephosphorylation of 

Tyr530, which relieves the intramolecular inhibition of c-Src kinase activity 

and leads to Src activation. 

 

 

 

Figure 8: Activation of Src proteins. 

Phosphorylation of Tyr530 results in a “closed” conformation, which prevents access 

of other Src binding partners to the kinase domain. Conversely, auto-phosphorylation 

of Tyr416 mediates a conformational change in the SH domains, which “opening” up 

the molecule for intermolecular interactions with other substrates. M, 

myristoylation; P, phosphorylation (Yeatman, 2004). 

 

1.4.4.4 Src family kinases in cadherin-mediated adhesion 

The functional interplay between Src kinases and cadherin-mediated cell 

adhesion has been well reported. It has been shown that the E-cadherin 

mediated cell–cell contacts trigger the activation of c-Src and/or other Src 

family kinases (SFKs) at the site of cell–cell contacts. Once activated, these 

kinases are recruited to specific membrane sites such as adherens junctions 

(Baumgartner et al, 2008), where they phosphorylate multiple effector 

proteins and transduce signals from the extracellular cues to the cell interior. 

Junctional proteins including E-cadherin, β-catenin, plakoglobin and p120 
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catenins have been identified as the major targets for Src-induced tyrosine 

phosphorylation in the adherens junctions (Abram & Courtneidge, 2000; 

McLachlan & Yap, 2011; Parsons & Parsons, 1997; Tsukamoto & Nigam, 1999).  

Calautti and colleagues found that β-catenin, plakoglobin and p120 are all 

tyrosine phosphorylated at the onset of calcium-induced keratinocyte 

differentiation in primary mouse keratinocytes. Such changes were also 

accompanied by increased association between α-catenin and p120 with E-

cadherin, suggesting tyrosine phosphorylation of the cadherin-catenin 

complex plays a positive role in the strengthening of cell-cell adhesion. 

Consistently, it was demonstrated that cells treated with tyrosine kinase 

inhibitors or keratinocytes of Src/fyn double-knockout mice have similar effect 

with reduced adhesive strength of differentiating keratinocytes (Calautti et al, 

1998; Calautti et al, 2002). These studies suggested that tyrosine 

phosphorylation of Src kinases is essential in the keratinocyte junction 

formation and differentiation (Calautti et al, 1998; Calautti et al, 2002).  

Unlike what has been proposed for differentiating keratinocytes, tyrosine 

phosphorylation of adherens junctional components is also associated with 

the increased invasiveness in human cancer (Behrens et al, 1993; Hamaguchi 

et al, 1993; Irby & Yeatman, 2000). The expression of v-Src or constitutively 

active Src has been shown to enhance the tyrosine phosphorylation of the 

cadherin/catenin complex components and thereby perturbing the cadherin 

adhesion and cell–cell integrity (Behrens et al, 1993; Matsuyoshi et al, 1992). 

For instance, overexpression of Src and Fyn enhance the tyrosine 

phosphorylation of β-catenin with a concomitant downregulation of E-

cadherin-mediated adhesion (Irby & Yeatman, 2000). Similarly, Fyn was 

shown to induce phosphorylation of β-catenin at Tyr-142, resulting in a loss of 

the β-catenin/α-catenin interaction and disruption of cell-cell adhesion 

(Piedra et al, 2003). Additionally, modulation of cadherin-mediated adhesion 

by Src kinase can arise indirectly through other processes such as E-cadherin 

turnover/degradation. It was showed that the expression of v-Src alters the E-
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cadherin trafficking from a recycling pathway to a lysosomal targeting 

pathway, thus further weakening of cell-cell adhesion (Palacios et al, 2005).  

Based on these studies, it was concluded that increased tyrosine 

phosphorylation of the cadherin–catenin complex is a negative regulator of 

cadherin function in oncogene-transformed or mitogenically stimulated cells 

and thus implicated as a key promoter of cell migration. Some studies suggest 

that targeting Src signalling pathways could potentially restore E-cadherin-

mediated cell adhesion with a concomitant suppression of migratory capacity. 

For instance, Src-specific inhibitor PP2 was reported to restore the E-

cadherin/catenin adhesion system, possibility through up-regulation of E-

cadherin/catenin gene expression or other mechanisms involving downstream 

effector, Rho (Nam et al, 2002).  

One possible explanation regarding this discrepancy is that Src has both 

positive and negative regulatory role in cell-cell adhesion depending on the 

signalling events and cell system used (McLachlan et al, 2007). McLachlan and 

colleagues pointed out that the loss of function approach may reduce the 

enhanced levels of tyrosine phosphorylation in adherens junctions and hence 

contributes to its positive regulatory role on cadherin function (Calautti et al, 

1998). On the other hand, the gain of function approach may give excessive 

tyrosine phosphorylation that is far beyond the physiological levels and thus 

perturbs the cadherin adhesion and cell–cell integrity (Amagai et al, 2000; 

Behrens et al, 1993; Matsuyoshi et al, 1992; McLachlan et al, 2007).  

Unlike the adherens junctions, the effects of tyrosine phosphorylation on 

desmosomes are less studied. Gaudry and colleagues demonstrated EGFR-

induced tyrosine phosphorylation of plakoglobin compromises the linkage 

between the desmosomal plaque protein desmoplakin and the intermediate 

filaments and thus destabilises the desmosomal adhesion (Gaudry et al, 

2001). Conversely, Kowalczyk and colleagues showed that Src-induced 

phosphorylation of plakoglobin Tyr643 increases its association with 

desmoplakin (Green & Gaudry, 2000; Kowalczyk et al, 1997), suggesting a 

http://europepmc.org/abstract/MED/11335725/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=EGFR&sort=score
http://europepmc.org/abstract/MED/11335725/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0045111
http://europepmc.org/abstract/MED/11335725/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0045111
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positive function in desmosomes.  This finding is in line with another study, 

which showed that MDCK cells treated with tyrosine phosphatase inhibitor 

sodium pervanadate increase the tyrosine phosphorylation of Dsg2 and 

plakoglobin, which in turn stabilise the desmosomal adhesion with enhanced 

hyper-adhesiveness (Garrod et al, 2008). The reason for such discrepancy is 

still not clear. The underlying molecular mechanism could be dependant on 

the signalling strength and cellular context similarly to adherens junctions. 

 

1.4.4.5 Caveolin 

Caveolae are small indentations of the plasma membrane that function in a 

number of cellular processes such as cholesterol homeostasis, membrane 

trafficking, lipid recycling and signalling transduction (Echarri et al, 2007). 

They have a characteristic flask shape and are enriched with a variety of 

signalling molecules such as G proteins subunits, receptor and non-receptor 

tyrosine kinases and mitogen-activated protein kinases (Hernandez-Deviez et 

al, 2008). 

Caveolins (Cav), the 21 to 24k Da integral membrane proteins, are the 

principal structural component of caveolae. Among its three family members, 

Cav-1 and Cav-2 are expressed in adipocytes, endothelial, epithelial and 

fibroblastic-cells, whereas Cav-3 is predominately found in muscle tissue types 

(Tang et al, 1996). Cav-1 is essential for the structural and regulatory role of 

caveolae formation and involved in other functions such as cell migration, 

apoptosis, cellular proliferation and differentiation (Williams & Lisanti, 2005). 

In human cancers, both up- and down-regulation of this gene are associated 

with cell transformation and metastasis. 

In Chapter 6.1.4, it was shown that Dsg3 is involved in the regulation of Src 

activation. However, the underlying mechanism is still unknown. Since Dsg3 

does not possess a tyrosine kinase domain, another protein that associates 

with both Src and Dsg3 is likely involved in the Dsg3-induced Src activation. 
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We hypothesised that Dsg3 might activate Src through its association with 

caveolin-1, which has been reported to interact with desmosomal cadherin 

Dsg2 and Src kinases. Lisanti and colleagues proposed a popular caveolin 

signalling mechanism. It was showed that caveolin-1 might regulate the 

activation state of caveolae-associated signalling molecules through holding 

the signalling molecules in their inactive state via its 'caveolin-scaffolding 

domain' (CSD) (Lisanti et al, 1995). Similarly, a follow-up study by Li and 

colleagues also demonstrated that binding of caveolin residues 82-101 to Src 

inhibits the auto-activation of c-Src (Li et al, 1996). Brennan and colleagues 

suggested that Cav-1 is associated with Dsg2 through a putative Cav-1 binding 

motif and involved in the Dsg2-induced signalling and malignant 

transformation. It was shown that the enhanced expression and proteolytic 

processing of Dsg2, possibly through its interaction with Cav-1, interferes with 

the assembly and maintenance of desmosome junctions and homeostasis 

(Brennan et al, 2007; Brennan & Mahoney, 2009; Brennan et al, 2012). 

 

1.5 Desmosome-associated diseases 

1.5.1 Genetic and infectious diseases 

A wide range of studies revealed that disruption of desmosomal cadherins 

and cytoplasmic plaque proteins could have significant clinical consequences, 

particularly affecting the heart and the skin. These human diseases highlight 

the important functions for desmosomes in cell–cell adhesion and tissue 

intergrity. Firstly, inherited disorders can be found in three of the desmoglein 

isoforms. Mutations in Dsg1 lead to skin disorder such as striate palmoplantar 

keratoderma (Getsios et al, 2004), while mutations in Dsg2 are associated 

with heart disorder isoarrhythmogenic right ventricular cardiomyopathy 

(ARVC) (Awad et al, 2006).  There is no example for the inherited disorder 

induced by mutation of the Dsg3 gene was identified (Delva et al, 2009). Loss 

of Dsg4 is associated with defective hair-follicle differentiation (Kljuic et al, 
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2003). Other desmosomal components and associated diseases in human and 

mouse models are depicted in Table 1 (Page 28). 

In addition to genetic defects, desmosomal cadherins can be inactivated by 

infectious bacteria toxins. Staphylococcal scalded-skin syndrome and bullous 

impetigo (Amagai et al, 2000) are caused by infectious bacteria toxins 

produced by some strains of staphylococcus aureus bacteria resulting in 

widespread or localised superficial blistering. The histopathologies of these 

diseases are similar to patients with pemphigus foliaceus, where bacterial 

proteases specifically cleave the extracellular domain of Dsg1 and lead to the 

disruption of cell–cell adhesion and blister formation in the superficial layer of 

the epidermis (Amagai et al, 2000; Hanakawa et al, 2000). 

 

1.5.2 Desmoglein-related disease: Pemphigus 

Pemphigus is an autoimmune, life threatening blistering skin disease. It is 

characterised by autoantibody binding to Dsg1 and Dsg3, resulting in the loss 

of cell-cell adhesion and blister formation in skin and mucous membranes. 

This process is also known as pemphigus acantholysis, which referred to the 

disruption of the intercellular connections between the stratum spinosum of 

the epidermis or mucosa, resulting in the separation and atrophy of the 

prickle cells layer (Amagai, 2009; Mascaro et al, 1997). There are two major 

types of pemphigus: pemphigus foliaceus (PF) and pemphigus vulgaris (PV). In 

pemphigus foliaceus (PF), patients with autoantibodies targeting Dsg1 are 

characterised by blistering lesions in the upper granular cell layer of the 

epidermis (Beutner et al, 1965), without affecting the mucosal epithelia 

(Rivitti et al, 1994).  Pemphigus vulgaris (PV), the more severe form, is further 

divided into two subtypes. Patients with mucosal dominant PV produce 

autoantibodies against Dsg3, resulting in blistering lesions in the 

basal/spinous epidermal layers (Figure 9). Patients with mucocutaneous 

dominant PV experience additional skin lesions involving autoantibodies 

against both Dsg3 and Dsg1 (Amagai, 1999; Culton et al, 2008).  
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Figure 9: Normal and PV oral mucosal sections. 

Normal and pemphigus vulgaris (PV) oral mucosal sections show characteristic blister 

formation (*) between basal and suprabasal layers. The dotted line denotes the basal 

membranes. Confocal images co-stained for E-cadherin (Green) and phospho-Src 

(pSrc) (Red) (courtesy of Wan H). 

 

Unlike other autoimmune diseases, PV-IgG are sufficient to induce blistering 

even in the absence of complement system or cellular factors such as 

leukocytes in vivo (Anhalt et al, 1982; Schiltz & Michel, 1976). To date, it 

remains unclear how exactly the pemphigus autoantibodies cause loss of cell 

cohesion. Several mechanisms of blister formation including proteinase 

activation, steric hindrance, desmoglein isoform compensation and signal 

transduction have been proposed in the literature, and will be discussed 

below.  

 

1.5.2.1 Proteolytic cleavage of desmosomal cadherins  

It was first proposed that proteolytic cleavage of desmosomal cadherins is a 

potential mechanism for the disruption of cell-cell adhesion in pemphigus 

acantholysis (Hashimoto et al, 1983; Morioka et al, 1987). For instance, a 

number of studies have shown that inflammatory mediators such as ICAM-1, 

TNF- and IL-6 (Narbutt et al, 2008) and a series of metalloproteinases (MMP) 

increase following treatment with PV/PF-IgG in skin samples of PV patients 

(Feliciani et al, 2003; Lo Muzio et al, 2002; Schaefer et al, 1996). These 
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findings are in line with other independent studies, which demonstrated that 

the proteinase inhibitors such as anti-uPA (urokinase plasminogen activator) 

are sufficient to inhibit PV/PF-IgG-induced acantholysis in skin cultures 

(Feliciani et al, 2003; Morioka et al, 1987).  

The significance of these findings is still unclear since no direct evidence has 

yet demonstrated that these inflammatory mediators or metalloproteinases 

are able to cleave members of the desmosomal proteins. It is possible that the 

proteolytic cleavage of demosomal cadherins is a secondary event to 

keratinocyte detachment, which aggravates the phenotype of the disease. 

This view is in line with a study by Mahoney and colleagues, who showed that 

the plasminogen activator system is not required for gross blistering in the 

mouse disease model (Mahoney et al, 1999). Recent work on cellular 

responses such as proteolytic cleavage of Dsg3 has been demonstrated in in 

vitro PV model (Cirillo et al, 2009), prompting investigators to reconcile the 

"specific proteolysis theory” in PV pathogenesis.   

 

1.5.2.2 Direct inhibition of desmoglein binding 

Amagai and colleagues proposed the direct inhibition theory based on the 

discovery that PV-IgG bind to Dsg3 in pemphigus vulgaris (Amagai et al, 1991). 

Subsequent insights from the protein structural analysis suggested that 

pathogenic PV-IgG are primarily targeting the aminoterminal part of the EC1 

domain (1-162 amino acids), a region responsible for trans-interaction of 

desmoglein cadherins. This view is further supported by a number of 

functional studies, which demonstrated that blocking the EC1 domain with 

peptides or pathogenic monoclonal anti-Dsg3 antibody-AK23 contributes to 

loss of cell-cell adhesion in PV pathogenesis in vitro (Al-Amoudi et al, 2007; 

Amagai et al, 1991; Ishii et al, 2008; Muller et al, 2008; Sharma et al, 2007). 

These and other studies have led to a concept that direct inhibition is most 

likely caused by steric hindrance, where pathogenic PV antibodies induce loss 

of keratinocyte cell adhesion by directly interfering with the desmosomal 
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transinteraction (Sekiguchi et al, 2001). Similarly, other studies using atomic 

force microscopy experiments revealed that PV-IgG and AK23 are capable of 

interfering with homophilic Dsg3 binding under cell-free condition, providing 

direct evidence that inhibition of Dsg3 binding is important for PV 

pathogenesis (Heupel et al, 2008). However using the same technique, PF-IgG 

were unable to directly interfere with Dsg1 transinteraction (Heupel et al, 

2008) and hence, this theory is unable to fully explain the mechanism of PF 

acantholysis. Conversely, other study using the laser trapping technique 

showed that PF-IgG cause significant release of Dsg1-coated microbeads and 

cellular dissociation in cultured human keratinocytes, suggesting that the loss 

of cell-cell adhesion in PF is likely mediated by signalling events (Heupel et al, 

2008; Waschke et al, 2005).  

 

1.5.2.3 Desmoglein compensation hypothesis  

Stanley and colleagues proposed the desmoglein compensation hypothesis to 

explain the autoantibody profiles and clinical phenotypes of PV and PF 

patients (Payne et al, 2004; Sharma et al, 2007; Stanley & Amagai, 2006; Udey 

& Stanley, 1999). This hypothesis is also used to support the “steric 

hindrance” theory where autoantibodies are assumed to reduce Dsg binding 

via direct inhibition (Amagai, 1999). According to this concept (Figure 10), 

Dsg3 in the lower layers of the epidermis is able to compensate for the 

functional loss of Dsg1 induced by PF-IgG, resulting in superficial blistering in 

the region where Dsg3 is absent. Blistering would not occur in the mucous 

membrane since Dsg3 is expressed uniformly throughout the membrane to 

compensate for the functional loss of Dsg1 induced by PF-IgG. In mucosal-

dominant PV, Dsg1 is present in the upper layers of the mucous membrane to 

compensate the functional loss of Dsg3 induced by PV-IgG, resulting in more 

suprabasal blistering in the mucous membranes. In the same way, Dsg1 is 

expressed throughout the epidermis to compensate for any functional loss of 

Dsg3. Therefore, in mucocutaneous-dominant PV, epidermal blistering would 

only occur when PV-IgGs are targeting both Dsg1 and Dsg3.  
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Figure 10: The desmoglein compensation hypothesis. 

In PF, Dsg3 compensates the functional loss of Dsg1 induced by PF-IgG, resulting in 

superficial blistering. In mucocutaneous-dominant PV, PV-IgG target both Dsg1 and 

Dsg3 resulting in suprabasal blistering (Amagai, 2009).  

 

Unfortunately, the clinical spectrum of pemphigus is more complex and this 

theory cannot fully explain the blister formation. For instance, it is unclear 

why autoantibodies of mucocutaneous-dominant PV, which target to both 

Dsg1 and 3, induce blistering only between the basal and first suprabasal cell 

layer and not throughout the epidermis. Similarly, it has been reported in 

certain cases that the autoantibody profiles do not correlate to the clinical 

phenotypes of the patients (Amagai, 2009; Bystryn & Rudolph, 2005; Muller et 

al, 2002; Spindler et al, 2007).  

 

These conflicting findings may be explained by the fact that this theory is 

based on two assumptions obtained from the mouse model. Firstly, the 

hypothesis is that the expression patterns of Dsg1 and 3 do not overlap with 
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each other in epidermal and mucosal layers. However, recent studies 

indicated that the expression patterns of Dsg1 and 3 in humans are different 

from those in mice with broadly overlapping expression in the epidermis 

(Mahoney et al, 2006). The second assumption is made on the basis that 

autoantibodies against Dsg1 and Dsg3 only lead to inactivation of their 

respective desmoglein subtype (Mahoney et al, 2006). However, Spindler and 

colleagues demonstrated that PF/PV-IgG containing Dsg1/Dsg3-specific 

antibodies from patients are equally effective in reducing the binding 

between Dsg1/3-coated beads and the surface of cultured keratinocytes and 

hence, fail to support the second assumption of the compensation hypothesis 

(Spindler et al, 2007).  

 

1.5.2.4 Signal transduction pathways  

In disease model, cellular signalling responses triggered by PV autoantibodies 

were first reported by Yasuo Kitajima (Amagai, 1999; Seishima et al, 1995). 

Since then, it has been convincingly demonstrated that binding of PV-IgG to 

keratinocytes evokes an array of intracellular signalling cascades resulting in 

acantholysis. Indeed, passive transfer of PV-IgG into neonatal mice together 

with chemical inhibitor have confirmed that binding of PV-IgG to Dsg3 

activates signalling effectors such as p38 MAPK, protein kinase C, Src and 

EGFR, further defining the role of Dsg3 as a mediator of diverging extracellular 

information into intracellular responses (Muller et al, 2002).  

Waschke and colleagues observed that PV and PF IgG-induced keratinocyte 

dissociation resulted in loss of Dsg1 and Dsg3 binding in cultured 

keratinocytes. Such effect is mediated by the p38 mitogen-activated protein 

kinase pathway (p38MAPK) with concomitant inactivation of RhoA GTPase 

and reorganisation of the actin cytoskeleton, which could be abolished by the 

bacterial toxin cytotoxic necrotizing factor y (CNFy). This finding suggests that 

p38MARK-mediated RhoA inhibition is one of the main events responsible for 

the loss of cell-cell adhesion in pemphigus pathogenesis (Spindler et al, 2007; 

Waschke et al, 2006). The important of RhoA in the regulation of desmoglein 
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cytoskeletal anchorage is further supported by other experiment, which 

showed that RhoA activation could prevent PV-IgG-induced intermediate 

filaments and actin cytoskeleton rearrangement (Waschke et al, 2006). Gliem 

and colleagues found that the protective effect of Rho GTPase activation on 

cell-cell adhesion is prevented by inhibition of actin polymerisation and hence 

suggests that the actin cytoskeleton is likely involved (Gliem et al, 2010).  

 

These studies are in line to the work of Berkowitz and colleagues, who 

demonstrated the activation of p38MARK is involved in epithelial blistering 

pathophysiology. They showed that pharmacologic inhibition of p38MARK 

activation could abolish blister formation in PV and PF-IgG-treated 

keratinocytes and found that phosphorylation of the heat shock protein 

(HSP27) is the main downstream effector of activated p38MAPK (Berkowitz et 

al, 2008; Berkowitz et al, 2006). However, it is known that p38MAPK is also 

associated with the apoptotic cascade, which can be triggered by the cell 

injury or downstream after the loss of intercellular adhesion (Mao et al, 2011; 

Marchenko et al, 2010). Hence, one cannot completely rule out that p38MAPK 

is activated secondary to keratinocyte detachment.  

 

Limited studies were carried out focusing on the role of Src in PV-IgG induced 

blistering formation. Chernyavsky and colleagues reported that the tyrosine 

kinase Src is involved in PV acantholysis. It was showed that PV-IgG are 

capable of inducing Src tyrosine kinase activation within 30 minutes and such 

activation is correlated with the subsequent enhancement of EGFR and 

p38MAPK activities. This finding is supported by inhibition of Src, which 

reduced both the pathogenic effects of PV-IgG as well as the phosphorylation 

of EGFR and p38MAPK (Chernyavsky et al, 2007). Alternatively, Src-induced 

loss of cell-cell adhesion could be mediated via other mechanism such as 

phosphorylation of adherens junctional proteins. It was demonstrated that 

PV-IgG-induced phosphorylation of p120 is associated with keratinocyte 

dissociation in pemphigus (Chernyavsky et al, 2007). However, these results 

are in contrast to the work by Heupel and colleagues, who showed that 



 

 

 57 

inhibition of c-Src signalling does not prevent the loss of Dsg3 transinteraction 

in response to PV-IgG (Heupel et al, 2009).  

 

Among the desmosomal proteins, plakoglobin is being viewed as the prime 

candidate to have signalling capacity. Plakoglobin can influence the Wnt/β-

catenin signalling pathway in the absence of β-catenin. Its signaling capacity is 

believed to be critical to govern outside-in signalling in PV pathophysiology 

(Muller et al, 2008). It was shown that keratinocytes of plakoglobin-deficient 

mice resists the PV IgG-induced loss of cell-cell adhesion and retraction of 

intermediate filaments from cell-cell junctions (de Bruin et al, 2007). A follow-

up study by Williamson and colleagues suggested the mechanism underlying 

the plakoglobin-dependent disruption of cell-cell adhesion in pemphigus is in 

part mediated by continuing keratinocyte proliferation. It was found that PV-

IgG depletion of plakoglobin triggers downstream up-regulation of c-Myc, 

which in turn triggers hyper-proliferation and disrupts the desmosomal 

plaque at the plasma membrane. The clinical relevance of this pathway was 

confirmed using c-Myc inhibitors, which prevent skin blistering in newborn 

pups injected with PV-IgG (Williamson et al, 2006; Williamson et al, 2007). 

 

Currently, inhibition of the specific signalling pathways targeted in PV is 

viewed as a new therapeutic approach to treat this blistering skin disease 

(Berkowitz et al, 2005; Sanchez-Carpintero et al, 2004). However, it is noted 

that direct manipulation of a single signalling pathway without desmoglein-

specific autoantibodies could not fully reproduce the distinct clinical and 

immunopathologic features of pemphigus (Amagai, 2009).  This indicates that 

a single signalling pathway alone is not sufficient to induce loss of cell-cell 

adhesion and blister formation. 

 

1.5.3 Desmosomal cadherins and cancer 

Studies on the desmosomal proteins, genes and expression patterns during 

cancer development have yielded conflicting results. There is a substantial 
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amount of evidence supporting that both up- and down-regulation of 

desmosomal components are associated with epithelial cancer progression 

(Brennan et al, 2007; Teh et al, 2011; Yashiro et al, 2006). It has been reported 

that down-regulation of desmoglein isoforms 1–3 is associated with poor 

prognosis in human squamous cell carcinomas (SCC) of the oral, head and 

neck, stomach and lungs (Teh et al, 2011; Wang et al, 2007; Yashiro et al, 

2006). Up-regulation of Dsg2 and Dsg3 was also reported in squamous cell 

carcinoma of the head, neck and lung cancers (Chen et al, 2007; Savci-Heijink 

et al, 2009).  

 

The mechanism(s) by which these cadherins particularly Dsg3 are involved in 

tumourgenesis have not been fully elucidated. Various models have been 

proposed to explain how de-regulation of desmosome could promote cancer. 

The most straightforward explanation is that dysfunction or loss of 

desmosomal cadherins compromises cell-cell adhesion and encourages 

metastasis of cancer cells during malignant transformation. It is also possible 

that modulation of cell-cell adhesion releases a desmosomal constituent with 

oncogenic potential, leading to hyper-proliferation, enhanced inflammation 

and augmented survival. For instance, the release of plakoglobin can 

substitute for β-catenin and regulate the transcription of LEF/TCF-target genes 

(Miravet et al, 2002; Yin & Green, 2004). Similarly, the redistribution of 

plakophilins (PKPs) from desmosomes to cytoplasm or nucleus, which plays an 

essential role in cell adhesion and differentiation, could stimulate abnormal 

gene expression. PKP2 has been reported to interact with β-catenin and 

induces the endogenous β-catenin–TCF transcriptional activity. Lastly, as the 

role of desmosomal cadherins in signalling becomes more apparent, 

dysfunction or modulation of desmosomal cadherins could activate signalling 

pathways associated with cellular proliferation and survival during cancer 

development.  
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1.6 Desmoglein 3 (Dsg3)  

Dsg3, a member of the desmoglein subfamily, serves as an adhesion molecule 

in desmosomes. It is expressed in the basal and immediate suprabasal layers 

of the skin and uniformly in oral mucosa. The importance of Dsg3 in the 

maintenance of normal desmosomal adhesion has been well demonstrated. It 

now appears clear that Dsg3 have an important role in regulating important 

aspects of cell behaviour such as cell proliferation and differentiation.  

Previously, Wan and colleagues showed an inverse correlation between the 

protein levels of Dsg3 and cell proliferative capacity in various keratinocyte 

populations. Cells with low levels of Dsg3 protein (Dsg3-dim) exhibit increased 

colony forming efficiency and enhanced skin regeneration capability as 

compared with cells with high levels of Dsg3 protein (Dsg3-bright) (Wan et al, 

2003). These findings have led to the hypothesis that Dsg3 may play a 

potential role in cell differentiation process through mechanism(s) involving 

the regulation of E-cadherin-mediated cell adhesion and the actin 

cytoskeleton. Additionally, intracellular signalling pathways also play an 

essential role in the interplay between different adhesion systems. Hence, the 

aim of this study was to examine the interactions between Dsg3, E-cadherin 

and actin and to explore the underlying signalling pathways associated with 

these intercellular junctions. 

The mechanisms underlying PV-induced loss of cell-cell adhesion are the 

subject of intense debate in the field of pemphigus research for a long time. It 

seems that impaired desmosome functions are more complex than previously 

thought. PV-IgG is known to activate a number of signalling pathways and 

changes in these signalling transduction pathways are almost certainly 

involved in pemphigus pathogenesis. However, a direct mechanism that 

adequately explains how Dsg3 triggers these signalling events in response to 

PV-IgG has yet been proposed. Other evidences suggested that PV-induced 

loss of cell-cell adhesion is accompanied by alterations of adherens junctions 

with profound cytoskeletal reorganisation including increased formation of 

stress fibres and fragmentation of actin filament bundles (Berkowitz et al, 
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2005; Gliem et al, 2010; Waschke et al, 2006). At present, it is unclear if the 

alterations of adherens junctions and the actin cytoskeleton contribute 

directly to acantholysis or are triggered consequently by keratinocyte 

dissociation.  

 

Identifying the 1) signalling capacity of Dsg3 and its downstream targets and 

2) the mechanism(s) that adequately explain how PV-IgG trigger the 

disruption of adherens junctions and the reorganisation of actin cytoskeleton 

will help to elucidate the early events responsible for PV-induced acantholysis. 

Taken together, further analysis of desmosome function and signalling 

pathways are warranted to shed new light on both the basic developmental 

processes such as wound healing and pathological processes underlying 

desmosomal diseases such as pemphigus and cancer. 
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CHAPTER 2  

RESEARCH AIMS 
 

Previous studies suggested that Dsg3 is involved in the regulation of 

keratinocyte stem cell differentiation through an unknown mechanism (Wan 

et al, 2003; Wan et al, 2007). Here, we speculate that Dsg3 may be involved in 

the regulation of E-cadherin-mediated cell adhesion and the reorganisation of 

actin cytoskeleton, which in turn contribute to differentiation programs and 

tissue morphogenesis.  

 

The hypothesis is that Dsg3 is capable of interacting with E-cadherin and actin 

and regulates the associated intracellular signalling pathways involving Rho 

family GTPases and Fyn/Src tyrosine kinases. Therefore, the first aim of this 

investigation was to confirm the association between Dsg3 and E-cadherin or 

actin, while the second aim was to identify the roles and signalling capacity of 

Dsg3 in the regulation of E-cadherin-mediated adherens junctions and the 

reorganisation of the actin cytoskeleton.  

 

The specific objectives of this study are as follows: 

 In Chapter 4 and 7, to examine in detail the association between Dsg3 and 

E-cadherin or actin in a number of cell lines and human skin tissue. 

 In Chapter 5, to determine whether manipulation of Dsg3 affects the 

protein levels of other junctional cadherins and the assembly of E-

cadherin-mediated adherens junctions.  

 In Chapter 6, to study if Dsg3 is an upstream regulator of Src-mediated 

signalling pathway. 

 In Chapter 7, to study whether Dsg3 is involved in the Rho GTPase-

mediated actin reorganisation and dynamics.  



 

 

 62 

This study will broaden our knowledge of Dsg3 in cell biology and enhances 

our understanding of its roles in the pathogenesis of pemphigus. 
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CHAPTER 3  

MATERIALS AND METHODS 
 

3.1 Cell culture methods 

3.1.1 Cell lines and culture conditions 

A431 cell line 

A431 cell line is derived from squamous cell carcinoma of the vulva. It is 

morphologic and phenotypic similar to the normal differentiated squamous 

epithelium but with reduced expression of junctional proteins (Atsumi et al, 

2008). A431 also expresses high levels of the epidermal growth factor 

receptor (EGFR) and contains no functional p53. This is often used as a model 

to study desmosome function and EGFR downstream signalling cascades such 

as Src family tyrosine kinases. These cells were cultured routinely in 

Dulbecco's Modified Eagle Medium (DMEM) (Gibco, Invitrogen) 

supplemented with 10% Fetal Calf Serum (FCS) (Biosera, UK). 

 

HaCaT cell line 

HaCaT is a spontaneously immortalised keratinocyte line derived from normal 

human skin. It retains all the functional differentiation properties of normal 

keratinocytes and serves as an ideal in vitro model to study normal cellular 

processes such as cell-cell adhesion, proliferation and differentiation 

(Boukamp et al, 1988). These cells were cultured routinely in Dulbecco's 

Modified Eagle Medium (DMEM) (Gibco, Invitrogen) supplemented with 10% 

Fetal Calf Serum (FCS) (Biosera, UK). 

 

All cells were maintained in an appropriate tissue culture flask and incubated 

at 370C in a 10% CO2 humidified incubator. Upon 80-90% confluence, cells 

were trypsinised with 2-5ml of trypsin/EDTA (Lonza) for 5-20 minutes at 37oC 

to dissociate cell attachment. Subsequently, the trypsin activity was 

http://en.wikipedia.org/wiki/P53
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neutralised by adding equal volume of culture medium containing serum and 

recovered by centrifugation at 800-1200 rpm for 3-5 minutes. The resulting 

pellet was re-suspended with 5-10ml of culture medium and seeded into an 

appropriate tissue culture flask depending on the density required. Culture 

medium was changed every 2-3 days. 

 

NHEK cell line 

Primary cultures of normal human epidermal keratinocytes (NHEK) were 

obtained from neonatal foreskin. Primary cultures give comparable result to in 

vivo studies and therefore used to valid the results obtained from HaCaT 

keratinocyte cell line (Tsang et al, 2012b). NHEK cells were routinely cultured 

in EpiLife (Invitrogen) and were passaged upon reaching 60–70% confluence 

as described above. The medium was replaced every 2 days and cells were 

discarded after 5 passages.  

 

3.1.2 Cryopreservation and recovery of cells 

For cryopreservation, cells were trypsinised to dissociate adherent cells and 

recovered by centrifugation. The resulting pellet was re-suspended with 

freezing medium containing 90% FCS and 10% DMSO. Subsequently, 1ml of 

cell suspension was transferred to each plastic cryovial and stored in cryobox 

in a -80°C freezer for 2 days before transferring to liquid nitrogen for long 

term storage. For recovery, the cryovial was thawed in water bath at 37°C for 

1 minute or so and disinfected with 70% ethanol. The cell suspension was 

washed with 3-5ml of culture medium and recovered by centrifugation. The 

resulting pellet was re-suspended in culture medium and allowed to grow for 

a week prior to use. 
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3.2 The experimental models 

3.2.1 Gain of Dsg3 function 

A431 cells, which express low levels of endogenous Dsg3, were used for my 

gain-of-function study. Stable cell lines with Dsg3 overexpression were 

generated as follows: Full-length human Dsg3 cDNA tagged with a myc 

epitope was cloned into the pBABE.puro retroviral vector (pBABE-hDsg3.myc). 

This and two other matched controls: an empty vector control (pBABE-V) and 

a vector containing GFP transgene (pBABE-GFP) were transduced individually 

into A431 cells. All stable lines were subjected to 2µg/ml puromycin selection 

for 2 weeks and were further cultured in normal growth medium (DMEM with 

10% FCS) for a week prior to use or storage. Drug selection is repeated every 

3-4 months to ensure all growing cells express the puromycin resistance gene. 

It was tested that the levels of Dsg3 protein in hDsg3.myc cells remained 

below the endogenous levels found in HaCaT and primary oral keratinocytes, 

indicating that the increased levels of Dsg3 protein is not supra-physiological. 

Both the retroviral transfection and transduction were carried out in this 

laboratory by Wan H. 

 

3.2.2 Generation of hDsg3.myc clones  

Limiting dilution and clonal expansion were used to select clones with high 

levels of Dsg3 protein. A431-pBABE-hDsg3.myc mixed clone was first diluted 

with normal growth medium (DMEM+10% FCS) and the resulting cell 

suspension was aliquoted into each well of 96-well plates to give a cell density 

of approximately 1 cell/well. Three days after cell seeding, those wells with a 

single cell were marked and allowed to grow for a couple of weeks to form a 

larger colony. Each of these clones was transferred to larger dishes for clonal 

expansion, while an aliquot of the cell suspension was taken for Western blot 

analysis. The clones with the lowest/highest levels of Dsg3 protein such as 

C11/C7 were used in the subsequent experiments.  
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3.2.3 Loss of Dsg3 function by siRNA  

HaCaT cells, which express high levels of endogenous Dsg3, were used for my 

loss-of-function study. Two siRNA sequences specifically targeting the human 

Dsg3 gene were used. RNAi-1: A siRNA sequence 

(AAATGCCACAGATGCAGATGA) specific for human Dsg3 mRNA (Accession: 

NM_001944), which corresponds to nucleotides 620–640 of the respective 

coding region, was designed by Wan H and synthesised by Dharmacon 

Research (USA). RNAi-2: An On-TARGETplus SMARTpool of siRNAs targeting 

human Dsg3 was purchased from Dharmacon Research (USA) (Table 2). 

Control siRNA: A randomised control sequence based on RNAi-1, which does 

not target to any genes (AACGATGATACATGACACGAG), was designed by Wan 

H and synthesised by Dharmacon Research (USA). RNAi-1, the more potent 

duplex, was used in most experiments, while the results obtained from RNAi-2 

were comparable to those obtained from RNAi-1. 

To transiently knockdown Dsg3 using RNAi-1, 2x105 cells were plated in a       

6-well plate for 24 hours before transfection. Five to ten microliters (µl) of 

Dsg3 RNAi-1 and 5µl of oligofectamine (Invitrogen) were diluted with 175-

180µl and 10µl of OPTI-MEM (Invitrogen), respectively and incubated at room 

temperature for 5 minutes. Contents of the tubes were mixed gently and 

incubated for another 20 minutes at room temperature. The culture medium 

in the 6-well plate was replaced with 800µl of OPTI-MEM without serum. Two 

hundred microliters (µl) of RNAi-oligo mixture were subsequently added to 

each well to give a final concentration of 50-200nM of RNAi-1. Four hours 

post-transfection, 500µl of OPTI-MEM containing 30% FCS was added and 

incubated for at least 24 hours prior to other analysis. Silencing efficiency was 

optimised using PT-PCR by Dr Muy-Teck Teh (Institute of Dentistry) and the 

result showed no off-target effects, particularly on Dsg2 and other 

desmosomal cadherins. For negative control, cells were transfected with 

control siRNA at the same concentration following the same protocol. 

To transiently knockdown Dsg3 using RNAi-2, 2x105 cells were plated in a 6-

well plate for 24 hours before transfection. Three to five microliters (µl) of 
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Dsg3 RNAi-2 and 3µl of Dharmfect transfection reagent were diluted with 95-

97µl and 97µl of OPTI-MEM (Invitrogen), respectively and incubated at room 

temperature for 5 minutes. Contents of the tubes were mixed gently and 

incubated for another 20 minutes at room temperature. The culture medium 

in the 6-well plate was replaced with 800µl of fresh DMEM containing 10% 

FCS. Two hundred microliters (µl) of RNAi-Dharmfect mixture were 

subsequently added into each well and incubated for at least 48 hours prior to 

other analysis. A final concentration of 50-200nM of RNAi-2 was used per 

well. Transient knockdown of plakoglobin and p120 were carried out following 

the same protocol. RNAi sequences and transfection timeline are depicted 

below in Table 2 and 3. 

Table 2: RNAi sequences 
 

 

ON-TARGET plus SMARTpool (5nmol) RNAi sequences 

Human Dsg3 (RNAi-2) GAUCCUUGCUCCCGUCUAA 
GAGAAACCACUUAUACUAA 
GUGGAUACCUAAUGAUUGA 
CAAGAUUACUUCAGAUUAC 

Human JUP (Plakoglobin) AGACAUACACCUACGACUC 
UGAGUGUGGAUGACGUCAA 
CCACCAACCUGCAGCGACU 
UGUACUCGUCGGUGGAGAA 

Human BRD8 (p120) GAGAGAUUCUACCCGCAAA 
GAUGAUGGCUUCAGCAUAC 
AAUAGUAGCUGGAGUUGUU 
CCGAAGCACAGCUGAAUUU 

 

 

 

Self-designed (40µM) RNAi sequences 

Human Dsg3 (RNAi-1) 
(Accession: NM_001944) 
 

AAATGCCACAGATGCAGATGA 
 

Control siRNA 
 

AACGATGATACATGACACGAG 
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Table 3: Timeline of transfection experiment 

Day 0 Day 1 Day 2 Day 3 

2x105 cells/well were 

seeded in a 6-well 

plate in normal 

growth medium. 

Transfections were 

carried out in 

triplicate wells. 

Cells were trypsinised 

from 3 wells and 

pulled together into 2 

wells at 

approximately 75% 

confluence. 

Freshly confluent cells 

were sequentially 

treated with calcium-

free and normal 

calcium containing 

medium for 1 hour and 

5 hours, respectively. 

 

3.3 Molecular biology methods 

3.3.1 Preparation of E.coli competent cells 

A tube of STBL2 competent E coli cells (Invitrogen) was thawed on ice. One 

microliter (µl) of EosFP-actin or Rac1N17 plasmid (generous gifts of Dr Ann 

Wheeler) was added to 20μl of E coli cells. The mixture was incubated on ice 

for 30 minutes, heated at 42°C for 30 sec and returned to ice for 1 minute. 

Subsequently, the mixture was added to a conical flask with 500µl of Super 

Optimal Broth (SOC) medium (Invitrogen) containing ampicillin and incubated 

for 24 hours at 37°C with shaking. On the next day, the E coli culture was 

transferred into a bigger conical flask with 400ml of LB medium (Invitrogen) 

containing ampicillin and incubated for another 24 hours at 37°C with shaking. 

The final concentration for ampicillin was 100μg/mL. The cells were recovered 

by centrifugation in Sorval GSA rotor at 4oC for 10 minutes at 3,000 g.  

 

3.3.2 Plasmid DNA extraction: Maxi-prep® 

Plasmid DNA preps were performed using a QIAGEN® maxi-prep® kit. DNA 

was eluted with 50µl of elution buffer and their concentrations were 

measured using an ND-1000 Spectrophotometer (Nanodrop).  

http://en.wikipedia.org/wiki/Broth
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3.3.3. Transient transfection 

Transfection was performed using Fugene6 (Roche) according to the 

manufacturer’s instructions. A431-V and -D3 cells were transiently transfected 

with either the EosFP-actin construct or the dominantly inhibitory N17Rac1 

mutant for 48 hours. Fugene6 transfection reagent was diluted with OPTI-

MEM (Invitrogen) in a ratio of 3:2 and incubated at room temperature for 5 

minutes. Two micrograms (µg) of DNA was added to the diluted Fugene6 

transfection reagent, mixed well and incubated at room temperature for a 

further 15 minutes. Subsequently, the Fugene6-DNA complex was added to 

each well in a drop-wise manner and left for another 48 hours prior to other 

analysis.  

 

3.4 Calcium treatment 

3.4.1 Calcium-free media 

De-calcificated FCS was prepared as follows: 5g of chelating resin (Sigma) was 

mixed with 250ml of distilled water and adjusted to pH 7.4. After 3 hours of 

equilibration at pH 7.4, the beads were collected by filtration through 

Whatman No1 filter paper. Five grams (g) of the resulting chelating resin was 

mixed with 50ml of FCS and stirred overnight. The resin was collected by 

centrifugation at 15,000 rpm for 10 minutes and the FCS was sterilised 

through a 0.22 um filter prior to use or storage at -20C (Mattey & Garrod, 

1986). Calcium-free medium was prepared as follows: DMEM supplemented 

with 10% decalcified FCS plus 3 mM EGTA (Wallis et al, 2000).  

For all Src signalling experiments in Chapter 6, cells were initially grown to 

90% confluence in a normal growth medium (DMEM+10% FSC) and treated 

with calcium-free medium for 1 hour. During this period, it was noted under 

the phase contrast microscope that the intercellular junctions of epithelial 

cells were disrupted. Cells were seen rounded up but remained attached to 
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the substrate. Subsequently, the cells were replenished Dulbecco's Modified 

Eagle Medium (DMEM) (Gibco, Invitrogen) supplemented with 10% Fetal Calf 

Serum (FCS) (Biosera, UK)(containing 1.8mM calcium) for 5 hours to allow the 

re-establishment of cell junctions prior to cell extraction and other analysis.  

 

3.4.2 Calcium switch experiments 

HaCaT cells were seeded at high density and grown to 90% confluence in a 

low calcium medium for 24 hours (EpiLife; Ca++ 60M, Cascade Biologics). 

Subsequently, 2mM of calcium ions were added for different periods of time 

according to the individual experiments. For the extraction of the Triton 

soluble and insoluble fractions in Figure 15, cells were calcium switched for 2 

hours, 8 hours, 16 hours, 1 day, 3 days and 6 days prior to protein extraction 

and Western blot analysis. For co-immunoprecipitaion experiment in Figure 

18, cells were calcium switched for 0 hour, 16 hours and 48 hours prior to 

protein extraction and Western blot analysis. For immunofluorescence 

staining in Figure 23, HaCaT cells with or without Dsg3 knockdown were 

calcium switched for 1 hour, 8 hours and 24 hours prior to fixation.  
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3.5 Antibodies 

Table 4: Antibodies used for Western blotting (WB) and Immunfluorescence 
(IF) analysis. 

Antibodies Clone Host Working 

dilution 

(WB) 

Working 

dilution  (IF) 

Company 

Anti-Dsg3 5H10 mouse 1:500 neat Gift from Professor M 

Amagai 

Anti-Dsg3 AHP319 rabbit 1:500 1:100 Serotec 

Anti-Dsg2 10G11 mouse 1:50 1:50 Progen 

Anti-Dsc3 Dsc3-U114 mouse 1:50 1:50 Progen 

Anti-Dsc2a/b Pab -Dsc2 rabbit 1:4000 1:100 Progen 

Anti-Dp 115F mouse 1:50 neat Gift from Professor D 

Garrod 

Anti-Dp AHP320 rabbit 1:1000 1:100 Serotec 

Anti- Pg PG5.1 mouse 1:100 1:20 Millipore 

Anti-PP2 (2a+2b)  mouse 1:50 --- Progen 

Anti-E-cadherin HECD-1 mouse 1:1000 1:100 Abcam 

Anti-P-cadherin  mouse 1:500 --- Zymed laboratories Inc 

Anti-β-catenin 6F9 mouse 1:2000 1:100 Sigma 

Anti-p120 

catenin 
 mouse 1:250 1:100 BD Transduction 

Laboratories 

Anti-Myc tag  rabbit 1:500 1:100 Abcam and Novus 

Biologicals 

Anti-phospho-

Src (Tyr416) 

32G6 rabbit 1:500 

 

1:100 Cell Signaling 

Anti-

nonphospho-Src 

(Tyr416) 

 mouse 1:500 1:100 Cell Signaling 
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Anti-phospho-

Tyrosine 
 mouse 1:500 1:100 R&D system 

Anti- β-Actin ab8227 rabbit 1:1000 1:100 Abcam 

Anti- Tubulin ab7291 mouse 1:1000 --- Abcam 

AlexaFluor 

488/568 

conjugated goat 

IgGs 

 Mouse/ 

rabbit IgG 

--- 1:100 Invitrogen 

 

3.6 Experiments with inhibitors  

For the tyrosine phosphorylation experiment in Figure 25, cells were grown to 

90% confluence and treated with calcium-free medium for 1 hour before 

being replenished with normal calcium-containing medium. Inhibitor was 

added 30 minutes after replenished with normal calcium-containing medium 

as a precaution to allow cells to re-establish cell-cell junctions prior to other 

treatments. 10µM of Src specific inhibitor, PP2 or equal volume of DMSO 

(vehicle control) was added into the medium for 5 hours (Nam et al, 2002) 

prior to co-immunoprecipitation. PP2 stock solution (Calbiochem) was 

dissolved in DMSO and diluted at least 1000-fold into culture medium to give 

a final concentration of 10µM.  

For the study of actin dynamics in Figure 39-40, cells were grown to 90% 

confluence (without any calcium-free treatment) and treated with or without 

Rac1 inhibitor, NSC23766 at 30-50µM for 6 hours (Gao et al, 2004) prior to 

other analysis. Rac1 inhibitor stock solution (Tocris Bioscience) was dissolved 

in water and diluted at least 1000-fold into culture medium to give a final 

concentration of 30-50µM. 
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3.7 Protein methods 

3.7.1 Determination of protein concentration  

Bio-Rad Detergent Compatible (DC) protein assay was used to measure the 

protein concentrations. Each sample was measured in triplicate and the 

optical density (OD) for each sample was read out using a Wallac 1420 UV/Vis 

Spectrophotometer with the absorbance reading of 650nm. Protein 

concentration was determined using a standard curve of BSA. This assay has 

been shown to be compatible with our extraction buffers containing SDS, NP-

40 or Triton X-100 and 10% (v/v) -mercaptoethanol is only added to the 

samples after the Bio-Rad DC protein assay. 

 

3.7.2 Cell extraction 

3.7.2.1 Total cell extraction  

Cells were grown to 90% confluence, washed with ice cold PBS and lysed on 

ice with either 2x sodium dodecyl sulfate (SDS) laemmli sample buffer 

containing 0.125M Tris-Cl pH 6.8, 4% SDS, 20% Glycerol and 10% (v/v) -

mercaptoethanol, which was added to the samples after the Bio-Rad DC 

protein assay. The cell lysate was immediately scraped from the plate, 

collected in a tube and centrifuged at 15,000 rpm for 10 minutes. Protein 

concentration was measured prior to Western blot analysis. The unused 

lysates were stored at -20C.  

 

3.7.2.2 Triton X-100 soluble and insoluble fractions 

Cells were grown to 90% confluence in 100mm Petri dishes, washed with ice 

cold PBS and 200µl of Triton X-100 extraction buffer  (10mM Tris-HCL, pH7.5, 

150mM NaCl, 2mM ethyleneglycol-bis-(β-aminoethylether)-N,N,N’,N’ 

tetraacetic acid (EGTA), 5mM ethylenediamine tetraacetic acid (EDTA), 1% 

Triton X-100, 1mM phenylmethylsufonyl fluoride and protease inhibitor 

cocktail (Boehringer Mannheim)) was added and incubated on ice for 10 
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minutes. The cell lysate was scraped from the plate, collected in a tube and 

centrifuged at 15,000 rpm for 10 minutes to separate detergent-soluble from 

detergent-insoluble fraction. The resulting supernatant was denoted as the 

Triton X-100 soluble fraction. The detergent-insoluble pellet was re-

suspended with 200µl SDS Laemmli sample buffer and the supernatant was 

denoted as the Triton X-100 insoluble fraction. For co-immunoprecipitation, 

RIPA buffer instead of SDS Laemmli sample buffer was used to recover 

proteins from the Triton insoluble fraction. Protein concentration for each 

fraction was measured prior to Western blot analysis. In Figure 17, the pellet 

collected after RIPA buffer extraction was further dissolved in a SDS Laemmli 

sample buffer to recover the rest of the highly insoluble proteins including the 

desmosomal proteins that are associated with the intermediate filaments.  

 

3.7.2.3 Cell extraction for co-immunoprecipitation experiments 

Cells were washed with ice-cold PBS, lysed with 1 x RIPA buffer (Upstate) 

containing 1% NP-40, protease-inhibitor cocktail (Calbiochem) and phosphase 

inhibitors (e.g. 10mM sodium fluoride and 2mM sodium orthovanadate) and 

incubated on ice for 10 minutes. The cell lysate was scraped and collected in a 

tube and centrifuged at 15,000 rpm for 10 minutes. Protein concentration was 

measured prior to co-immunoprecipitation analysis. 

 

3.7.2.4 Cell extraction from human skin  

The tissue was obtained from breast reduction following ethical approval and 

patient consent. The skin was washed thoroughly with PBS and cut into small 

pieces before incubated with 2.5mg/ml dispase in PBS for 24 hours. The 

epidermis was separated from dermis and lysed on ice with 1 x RIPA buffer as 

described in section 3.7.2.3.  
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3.7.3 Co-Immunoprecipitation (co-IP)  

Three to twenty microliters (µl) of the indicated antibody was first incubated 

with 30µl of Dynabeads (Invitrogen). After 3 hours of incubation, 

approximately 500 to 1000g of the protein lysates were added to the 

antibody-Dynabeads mixture and incubated overnight at 4°C on rotation. On 

the next day, the Dynabeads containing immune complexes were washed 

with RIPA buffer 3 x 5 minutes and re-suspended in 10µl of 2 x SDS buffer. The 

bead-bound complexes were boiled for 3 minutes before loading onto a 

Nupage Bis-Tris gel and analysed by Western blotting as described below. 

 

3.7.4 Rho GTPase pull down assay  

The CRIB domain of Pak-PBD fused with GST was used to pull down the active 

GTP-bound Rac1 and Cdc42 from A431-V and -D3 cells following the 

manufacturing protocol (Rac1/Cdc42 Activation Assay Kit, Millipore). Five 

hundred micrograms (µg) of protein lysates were incubated with 10µg of 

Rac/Cdc42 assay reagent (PAK-1 PBD, agarose) at 4°C on rotation for 60 

minutes. Twenty microliters (µl) of 2 x SDS buffer was used to elute the GST-

fusion protein from the glutathione resin. Bead-bound complexes were loaded 

onto a Nupage Bis-Tris gel and the amount of activated GTPase was analysed 

by Western blotting with anti-Rac1 and Cdc42 antibodies.  

 

3.7.5 Western blotting  

3.7.5.1 Sample preparation and loading 

All samples were heated at 99°C for 3 - 5 minutes before loading onto a 

Nupage 10% or 4 - 12% gradient Bis-Tris gel (Invitrogen). Full range molecular 

weight Rainbow Markers (Amersham) were used to determine the molecular 

weight of the proteins.  
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3.7.5.2 Chemiluminutescent detection of antibodies 

The proteins were separated by SDS gel electrophoresis and transferred to a 

nitrocellulose transfer membrane (Millipore) using an electrophoresis 

apparatus. The membrane was blocked with 5% (w/v) non-fat milk in Tris 

Buffered Saline containing 0.1% Tween 20 (TBS-T) for 15 minutes and 

incubated with primary antibody against the specific proteins either for 1 hour 

at room temperature or overnight at 4°C. The membrane was washed 3 x 5 

minutes with TBS-T and incubated with either anti-mouse or anti-rabbit IgG 

horseradish peroxidase-linked antibody (Chemicon) in 5% (w/v) non-fat milk 

in TBS-T for 1 hour. Subsequently, the membrane was washed thoroughly 

with TBS-T 3 x 5 minutes at room temperature with shaking. 

Chemiluminutescent solution-SuperSignal® west fermto maximum sensitivity 

substrate (Thermo scientific) or Amersham ECL plus Western blotting 

detection system (GE healthcare) was added onto the membrane following 

the manufacturers’ instructions. The membrane was then exposed to 

Amersham Hyperfilm ECL and developed in an AGFA Curix 60 developer. 

 

3.8 Immunofluorescence and analysis 

Cells were grown on coverslips to 90% confluence, washed with ice cold PBS 

and fixed with either ice-cold 1:1 methanol/acetone for 10 minutes or 4% 

formaldehyde for 8 minutes and permeabilised with 0.1% Triton X-100 for 3 

minutes. In Figure 12, cells were first treated with ice-cold cytoskeleton (CSK) 

buffer containing 5mM NaCl, 300mM sucrose, 10mM PIPES (pH 6.8), 3mM 

MgCl2, 0.5% Triton X-100 and 1.2mM PMSF for 20 minutes to strip away 

proteins that do not associate with the intermediate filaments prior to 

immunostaining. The coverslips were then blocked with 10% goat serum 

(Sigma) for 15 minutes and incubated with primary antibody diluted in 10% 

goat serum for 1 hour at room temperature. After three washes in PBS plus 

0.1% Tween 20, the samples were incubated with secondary conjugated 

antibody (Alexa Fluor 568 and Alexa Fluor 488 or A488 conjugated phalloidin) 

diluted in 10% goat serum for 1 hour at room temperature. Subsequently, the 
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coverslips were washed, mounted on glass slides using Prolong© gold anti-

fade reagent with DAPI (Invitrogen) and analysed with a Leica DM5000 epi-

fluorescence microscope.  

The peripheral fluorescence levels of E-cadherin across the monolayer in 

Figure 23 was analysed by ImageJ software and only confluence images were 

quantified. As demonstrated in Figure 11, the confocal images were set to 8 

bits and the cytoplasmic staining was cut out from each cell using the drawing 

tool of ImageJ software (Figure 11B). The integrated density was determined 

by gating out the intracellular signal before thresholding (Figure 11C). The 

junctional fluorescence intensity per cell was obtained by dividing the 

integrated density over the number of cells found (approximately 50 cells) in 

each field. Four arbitrary fields in each sample were measured and presented 

as the mean±sd.   

The degree of colocalisation in Figure 32 and 40 was analysed by ImageJ 

software. The colocalisation index, a merge of red and green channels, was 

quantified and highlighted in white (http://www.macbiophotonics.ca/). 

 

Figure 11: Quantification of peripheral E-cadherin fluorescence intensity.  

A) Representative images taken by confocal microscopy. B) The cytoplasmic staining 

was removed from each cell using a drawing tool. C) Post-processed image using a 

threshold of 50 in a 8 bits grayscale. 

 

A B C 

http://www.macbiophotonics.ca/
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3.9 Proximity ligation assay (PLA)  

Cells were grown on coverslips to 90% confluence, washed with ice-cold PBS 

and fixed with 1:1 methanol/acetone for 10 minutes. The cells were blocked 

with 10% goat serum (Sigma) for 15 minutes and incubated with primary 

antibody diluted in 1× antibody diluent (Olink Bioscience) for 1 hour at room 

temperature. Next, the cells were co-incubated with anti-mouse PLA MINUS 

and anti-rabbit PLA PLUS secondary probes diluted in 1× antibody diluent at 

37°C for 2 hours. The cells were sequentially incubated with 1× diluted 

hybridisation solution for 15 minutes, 1× diluted ligation solution for 15 

minutes, duolink polymerase (1:80) in 1× amplification stock for 60 minutes 

and 1x diluted detection probes for 60 minutes. Subsequently, the cells were 

washed, mounted on a glass slide and examined with a Leica DM5000 epi-

fluorescence microscope under a 40/60× objective. Washing procedures were 

carried out in between steps by rinsing the coverslips with TBS-T. All 

incubation was carried out in a humidified chamber at 37°C and all 5x stocks 

were diluted with high purity water in a ratio of 1:5. 

 

3.10 Live cell imaging and analysis 

3.10.1 Cell migration 

A431-V and -D3 cells were grown on a 6-well plate to 90% confluence and 

treated with or without 30µM Rac1 inhibitor in a normal growth medium 

(DMEM+10% FCS) for 6 hours. Cells were then trypsinised, recovered by 

centrifugation and seeded onto glass-bottom cell culture dishes (WPI) at 

1x105 cells/dish in a low calcium medium (EpiLife). Once the cells were seeded 

(30 minutes), NSC23766 was added back into the medium to ensure cells 

were maintained in the inhibitor for the experiment’s duration. During the 

experiment, cells were incubated in a humidified chamber at 37°C with 10% 

CO2. Time-lapse imaging was carried out in an inverted microscope (Zeiss) 

using a 10x objective and phase contrast optics. A time-lapse series was 

collected every 5 minutes for 18 hours using Metamorph (Molecular Devices). 
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Analysis of speed was performed by manual tracking of cells over the 

sequence of time-lapse digital images for the first 3 hours because cells die 

after 3 hours of imaging. Eighty cells for each condition from three 

independent experiments were tracked.  

 

3.10.2 Membrane protrusion 

Spinning disk confocal microscope was used for the analysis of membrane 

protrusions. Cells were prepared in the same way as the above experiment. 

One micromole (µM) of carboxyfluorescein diacetate, succinimidyl ester 

(CFSE) was added to culture medium to label the cell membranes for 30 

minutes before live cell imaging. A time-lapse series was collected every 5 sec 

for 5 minutes using a 60×1.4NA objective. Image sequences were analysed 

with the kymograph function in Metamorph. Three to four different regions 

per cell near the edge of cell protrusions were selected. Straight lines were 

drawn in the direction of individual protrusions and the slopes of these lines 

were used to calculate the velocities (Bear et al, 2002). Eight cells for each 

condition from two independent experiments were analysed. The total 

number of cell edges analysed per condition is >24.  

 

3.10.3 Actin dynamics 

A431-V and -D3 cells were transiently transfected with the photoconvertable 

EosFP-actin for 48 hours. Transfection was performed using Fugene6 

(Promega) according to the manufacturer’s instructions. At 48 hours post-

transfection, cells were trypsinised, recovered by centrifugation and seeded 

onto glass-bottom cell culture dishes at 2x105 cells/dish in a low calcium 

medium (EpiLife). A small region of actin was photoconverted from GFP to 

RFP and the dynamics of this region were followed by collecting an image 

every 10 sec for 10 minutes. Data were collected on a Zeiss 510LSM inverted 

microscope using a 63×1.4NA objective. Pre- and post-conversion images 

were acquired using 488 and 543 nm laser lines. Images were acquired within 
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10 sec after photo-conversion (Schenkel et al, 2008). The intensity profiles for 

each image (frames 1–10) were normalised and the mean percentage 

recovery was quantified. Five cells for each condition and 4-5 different regions 

per cell near the edge of the cell were analysed. The total number of cell 

edges analysed per condition is >20.  

 

3.11 Statistical Analysis 

Statistical differences between experimental groups were evaluated by 2-

tailed Student t test. A P valve less than 0.05 was considered statistical 

significance. 
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CHAPTER 4  

ASSOCIATION BETWEEN DSG3 AND E-CADHERIN  

4.1 Results 

4.1.1 Complex formation and colocalisation between Dsg3 and E-cadherin  

It has long been an area of interest in understanding the cross-talk between 

desmosomes and adherens junctions since emerging evidence suggests that 

these two junctions are mutually dependent. Immunofluorescence data from 

our laboratory showed that Dsg3 colocalises with adherens junctional proteins 

such as E-cadherin, suggesting that Dsg3 may play an important role in 

regulating cross-talk between these junctions. To gain further insight into the 

nature of the Dsg3/E-cadherin interaction, I took advantage of the A431 cell 

line stably expressing either the full-length human Dsg3 tagged with a c-Myc 

epitope at the C-terminus (A431-D3) or the empty vector control (A431-V), 

which was established in our laboratory, to examine in detail the interaction 

between Dsg3 and E-cadherin, a marker for adherens junctions. As 

demonstrated in Figure 12, the representative confocal images clearly 

indicate a substantial colocalisation of E-cadherin (green) and Dsg3.myc (red) 

at the plasma membrane in Dsg3 overexpressing A431 cells (A431-D3). Such 

interaction persisted in cells treated with the cytoskeletal buffer (CSK), 

suggesting a high affinity of protein-protein interaction.  

 

To examine whether Dsg3 and E-cadherin physically interacted with each 

other, a series of biochemical analysis such as co-immunoprecipation and 

proximity ligation assay (PLA) were carried out. For co-immunoprecipitation 

assay, freshly confluent A431-V and -D3 cells were first extracted using RIPA 

buffer (Upstate) containing 1% NP-40 and the resulting protein lysates were 

immunoprecipated with mouse anti-E-cadherin antibody, HECD-1 and 

Western blotted for the indicated proteins such as Dsg3, Myc-tag and E-

cadherin. In Figure 12B, the Western blots of E-cadherin immunoprecipitates 
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show that overexpression of Dsg3 increased the association between Dsg3 

and E-cadherin as compared with A431-V control cells. It was also noted that a 

small amount of Dsg3 and E-cadherin association was present in A431-V 

control cells. For the negative control, no binding of E-cadherin was seen in 

the mouse pre-immune immunoprecipitate (Figure 12B). The Western blot 

was re-probed with the same immunoprecipitating anti-E-cadherin antibody 

to verify immunoprecipitation efficiency and equal amount of E-cadherin was 

observed in each lane. 

These findings were confirmed in the reverse approach (Figure 12C and D), in 

which the co-immunoprecipitations were carried out in A431, HaCaT cells and 

human breast skin. Freshly confluent A431 and HaCaT cells were extracted 

using RIPA buffer as described above, while the epidermis was separated from 

dermis using dispase and subsequently extracted with RIPA buffer. The 

resulting protein lysates were co-immunoprecipated individually with either 

mouse anti-Dsg3 antibody, 5H10 or rabbit anti-Myc tag antibody and Western 

blotted for β-catenin, E-cadherin and Dsg3. In Figure 12C, overexpression of 

Dsg3 increased the association between Dsg3 and β-catenin as compared with 

A431-V control cells. Similarly, the endogenous Dsg3 was immunoprecipitated 

with E-cadherin in HaCaT cells as well as skin lysates directly extracted from 

human breast epidermis (Figure 12C, bottom). No binding of Myc-tag was 

seen in the rabbit pre-immune immunoprecipitate and was used as the 

negative control (Figure 12D). Taken together, these results demonstrate that 

Dsg3 (both endogenous and exogenous) associates with E-cadherin in various 

epithelial cell lines, including normal keratinocyte HaCaT cells, A431 cancer 

cells as well as in human breast skin.  
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Figure 12: Dsg3 colocalises and associates with E-cadherin. 

A) Confocal images of the colocalisation between Dsg3 and E-cadherin in A431-D3 

cells. A431-D3 cells were treated with or without cytoskeletal buffer (CSK) prior to 

fixation and co-stained with rabbit anti-Myc-tag (red) and mouse anti-E-cadherin, 

HDEC-1 (green) antibodies. Scale bars are 10 μm. (Arrows in XY, XZ and YZ image 

panels, confocal images courtesy of Wan H). B, C and D) Western blots of 

immunoprecipitates from protein lysates of A431 cells, HaCaT cells and the epidermis 

of human breast skin. Freshly confluent cells and epidermis of breast skin were 

extracted with RIPA buffer containing 1% NP-40. Five hundred micrograms (μg) of the 

resulting protein lysates were subjected to co-immunoprecipation with the indicated 

antibody and Western blotted for Dsg3, E-cadherin, Myc-tag and β-catenin. Pre-

immune rabbit and mouse serum were used as the negative control. The 

representative confocal images (A) and Western blots of (B, C and D) were obtained 

from at least two independent experiments. 

 

 

A 

B C D 
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To further consolidate these findings, proximity ligation assay (PLA) was 

carried out in A431 cells. This method not only allows one to visualise protein-

protein interactions, it also offers unprecedented levels of specificity and 

sensitivity for protein-protein interactions in close proximity, i.e. less than 30-

40 nm (Landegren et al, 2004). The PLA proximity probes (PLUS and MINUS) 

are designed to bind pairs of target proteins and a fluorescence signal is 

generated if these probes are brought in close proximity of each other. To 

begin, the freshly confluent A431-V and -D3 were fixed with 1:1 

methanol/acetone, blocked with 10% goat serum and co-incubated with 

primary antibody. After primary antibody incubation, the cells were 

sequentially incubated with PLA plus and minus probes and other PLA 

reagents following the manufacturer’s protocol (Refer to Materials and 

Methods Chapter 3.8). Five arbitrary images were taken by fluorescence 

microscopy and the number of fluorescence dots per cell was quantified by 

ImageJ. The positive and negative controls were A431-V and -D3 cells co-

incubated with mouse anti-Dsg3, 5H10 and rabbit anti-Myc-tag antibodies.  In 

A431-D3 positive control cells, both of these antibodies target the same 

protein - the anti-Dsg3 antibody binds specifically to the EC1-EC2 domains of 

Dsg3, while the anti-Myc-tag antibody binds to the Myc epitope at the C-

terminus. However, in A431-V negative control cells, the anti-Myc-tag 

antibody recognises only the endogenous c-Myc in the nucleus. As expected, 

overexpression of Dsg3 in A431-D3 cells (positive control) significantly 

increased the amount of PLA signals as compared with A431-V control cells 

(negative control). 

 

As for the test sample, A431-D3 cells were co-incubated with mouse anti-E-

cadherin, HDEC-1 and rabbit anti-Dsg3 antibodies (Figure 13). The 

representative images clearly show an enhanced level of PLA signal between 

Dsg3 and E-cadherin in A431-D3 cells as compared with the negative control 

(** p<0.01). This result confirms that Dsg3 and E-cadherin are indeed in close 

proximity (<40nm) of each other. The bar chart in Figure 13 represents the 

average number of fluorescence dots per cell from five different images. 
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Figure 13: Proximity Ligation Analysis (PLA) demonstrates Dsg3 and E-
cadherin are in close proximity of each other in A431-D3 cells. 

Representative immunofluorescence images of Proximity Ligation Analysis in A431 

cells. Freshly confluent A431-V and -D3 were blocked with 10% goat serum and co-

incubated with primary antibodies. The positive and negative controls were A431-V 

and -D3 cells co-incubated with mouse anti-Dsg3, 5H10 and rabbit anti-Myc-tag, 

while the test sample was A431-D3 cells co-incubated with mouse anti-E-cadherin, 

HDEC-1 and rabbit anti-Dsg3 antibodies. Each protein-protein interaction was 

detected by Duolink® 100 Detection kit and represented by a fluorescence red dot. 

The bar chart shows the average number of fluorescence red dots per cell (** 

p<0.01). Scale bars are 10 μm. (Posit Ct, Positive control; Neg Ct, Negative control). 

Two independent experiments were performed and similar reproducible results were 

obtained.   
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4.1.2 Association between Dsg3 and E-cadherin is calcium dependent  

Calcium is a necessary prerequisite for a variety of cellular processes such as 

the assembly of intercellular junctions, differentiation and stratification. To 

determine the biological relevance of the Dsg3/E-cadherin association, the co-

immunoprecipitation assay was used to examine if such association was 

enhanced over the time course of calcium exposure. It was demonstrated that 

the complex formation between Dsg3 and E-cadherin was gradually enhanced 

upon calcium addition in HaCaT cells, particularly after longer calcium 

exposures e.g 48 hours (Tsang et al, 2012b). To verify whether the Dsg3/E-

cadherin association also existed in primary cultures, co-immunoprecipitation 

of E-cadherin was performed in epidermal keratinocytes. Primary cells at 

passage 3 were initially grown to 90% confluence in a low calcium medium 

(EpiLife, 60M Ca2+) and 2mM of calcium was added into the medium for 16 

hours and 48 hours prior to RIPA buffer extraction. The resulting protein 

lysates were co-immunoprecipated with mouse anti-E-cadherin antibody, 

HECD-1 and Western blotted for Dsg3 and other indicated proteins.  

In Figure 14, the Western blots of E-cadherin immunoprecipitates show the 

association between E-cadherin and Dsg3 increased progressively upon the 

addition of extracellular calcium. To justify the immunoprecipitation 

efficiency, the Western blot was re-probed with β-catenin, a closely 

associated protein of E-cadherin and the heavy chains of antibodies and equal 

amount of β-catenin and the heavy chains of antibodies were observed in 

each lane. For input, the total lysates were Western blotted for Dsg3, E-

cadherin and β-catenin with actin as the loading control. As expected, the 

levels of Dsg3 protein increased progressively upon the addition of calcium, 

while the protein levels of E-cadherin, β-catenin and actin remained relatively 

consistent throughout this time period (Figure 14, right). Taken together, the 

association between Dsg3 and E-cadherin was consistently enhanced upon 

the addition of calcium in primary epidermal keratinocytes and HaCaT cells 

(Tsang et al, 2012b), highlighting its biological relevance during the process of 

junction formation and cellular differentiation.  
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Figure 14: The Dsg3 and E-cadherin association increases upon the addition 
of calcium. 

Western blots of E-cadherin immunoprecipitates and total lysates after a calcium 

switch assay in primary epidermal keratinocytes. Primary cells were initially grown to 

90% confluence in a low calcium medium (EpiLife, 60M Ca2+) and 2mM of calcium 

was added into the medium to trigger the assembly of the intercellular junctions. 

Protein extraction using RIPA buffer was carried out after 0 hour, 16 hours and 48 

hours of calcium exposures. Five hundred micrograms (μg) of the resulting protein 

lysates were co-immunoprecipated with mouse anti-E-cadherin antibody, HECD-1 

and Western blotted for Dsg3, β-catenin and heavy chains of antibodies. For input, 

10µg of protein lysates were loaded in each lane and Western blotted for the 

indicated proteins. Two independent experiments were performed and similar 

reproducible results were obtained.   
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4.1.3 Detergent solubility of Dsg3 and E-cadherin  

It is known that there are two fractions of Dsg3 protein present in epithelial 

cells: the Triton X-100 soluble and insoluble fractions. The latter fraction is 

found in desmosomes, which is associated with the intermediate filaments 

(Aoyama et al, 1999). Hence, the next question was to determine in which 

cellular fraction of Dsg3 bound to E-cadherin. Before answering this question, 

it is important to determine the protein levels and cellular distribution of the 

desmosomal and adherens junctional proteins in response to the addition of 

extracellular calcium in HaCaT cells. To study the dynamics of junction 

assembly (Green & Simpson, 2007), the calcium switch assay (Hennings et al, 

1980; Watt et al, 1984) and the Triton X-100 solubility assay were used. It is 

established that the titration of desmosomal components from the detergent-

soluble to detergent-insoluble fractions reflects the recruitment of 

desmosomal components from the cytoplasm to plasma membrane where 

they form stable interactions with the intermediate filaments (Kowalczyk et 

al, 1994).  

 

HaCaT is an immortalised normal human keratinocytes, which retain normal 

morphogenesis and differentiation features (Boukamp et al, 1988). It 

expresses high levels of endogenous Dsg3 and serves as an ideal model to 

study the formation of the intercellular junctions and cellular differentiation 

(Garrod & Chidgey, 2008). HaCaT cells were initially grown to 90% confluence 

in a low calcium medium (EpiLife, 60M Ca2+) and 2mM of calcium was added 

into the medium to trigger the assembly of intercellular junctions. Protein 

extraction of the Triton X-100 soluble and insoluble fractions was carried out 

after different time periods of calcium exposure (2 hours, 8 hours, 16 hours, 1 

day, 3 days and up to 6 days). The soluble fraction was extracted with 1% 

Triton X-100 buffer (Cirillo et al, 2009), while the insoluble fraction was 

recovered by dissolving the pellet with SDS Laemmli sample buffer. Equal 

amounts of cell lysates from each fraction (5µg per lane) were loaded and 

analysed by Western blot analysis. In Figure 15, the Western blot analysis 

shows the levels of intercellular junctional proteins in both soluble and 
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insoluble fractions. The bar charts in Figure 16 are results of the band 

densitometry analysis of Figure 15, which show the average Triton solubility of 

Dsg3 and E-cadherin obtained from three independent experiments with β-

actin as the loading control. 

 

As shown in Figure 15, the protein levels of Dsg3 and E-cadherin exhibited 

distinct distribution in terms of Triton solubility. At time 0 hour before the 

addition of calcium, a higher partition of Dsg3 protein was observed in the 

Triton X-100 insoluble fraction of HaCaT cells. Upon the addition of calcium 

(2mM), the levels of desmosomal proteins were markedly increased, 

particularly after longer calcium exposures (1-6 days). For instance, the 

protein levels of Dsg2 and 3 increased gradually from 0 hour to 16 hours and 

became largely consistent after 1 day of calcium exposure. Similarly, the 

protein levels of Dsc2 and 3 increased progressively for up to 6 days. These 

results demonstrate that the levels of desmosomal proteins, including Dsg3, 

were enhanced by calcium in a time-dependent manner. A higher partition of 

desmosomal cadherins (70-80%) was observed in the Triton X-100 insoluble 

fraction, while the remaining fraction (20-30%) was found in the soluble 

fraction of cells (Figure 16). Additionally, the relative ratio of desmosomal 

cadherins between Triton soluble (20-30%) and insoluble fractions (70-80%) 

was consistent throughout the time frame of study. 

As for the adherens junctions, the levels of E-cadherin and other junctional 

proteins such as - and β-catenins did not increase upon the addition of 

calcium and remained largely in the Triton soluble fraction (Figure 15). It was 

observed that the relative ratio between the soluble and insoluble fractions of 

E-cadherin or P-cadherin was less consistent than that of Dsg3 throughout the 

time frame of study (Figure 16). 
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Figure 15: The protein levels of junctional cadherins in Triton soluble and 
insoluble fractions after a calcium switch assay. 

Western blots of HaCaT cells following the calcium switch and Triton X-100 solubility 

assays. HaCaT cells were grown in EpiLife medium till 90% confluence. Two millimolar 

(mM) of calcium was added into the medium for 2 hours, 8 hours, 16 hours, 1 day, 3 

days and 6 days. At each time point, cells were extracted sequentially using 1% Triton 

X-100 buffer and SDS Laemmli sample buffer for the soluble (S) and insoluble (I) 

fractions, respectively. Five micrograms (μg) of protein lysates were loaded in each 

lane and Western blotted for the indicated proteins. Three independent experiments 

were performed and similar reproducible results were obtained.   
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Figure 16: Dsg3 is predominantly distributed in the Triton insoluble fraction, 
while E-cadherin is mainly distributed in the soluble fraction.  

Densitometry analysis of Western blots in Figure 15. The bar charts show the average 

protein levels of Dsg3 and E-cadherin in Triton soluble and insoluble fractions 

obtained from three independent experiments (mean+/-SD). Soluble (Black) and 

insoluble (Grey).  
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To address which cellular fraction of Dsg3 bound to E-cadherin, freshly 

confluent HaCaT cells were sequentially extracted with 1% Triton X-100 buffer 

and RIPA buffer containing 1% NP-40 for the Triton soluble and insoluble 

fractions, respectively. This procedure is similar to experiments described in 

Figure 15 but RIPA buffer instead of SDS Laemmli sample buffer was used to 

recover proteins from the Triton insoluble fraction. The resulting protein 

lysates were co-immunoprecipitated individually with mouse anti-E-cadherin 

antibody, HECD-1 and Western blotted for Dsg3.  

In Figure 17A (left), the Western blots of E-cadherin immunoprecipitates show 

that the association between Dsg3 and E-cadherin was only detectable in the 

Triton X-100 soluble fraction and no Dsg3 band was detected in the insoluble 

fraction. The heavy and light chains of antibodies were used to justify for the 

immunoprecipitation efficiency and equal amount of heavy and light chains of 

antibodies were observed in each lane. This finding was in agreement with the 

reverse approach as shown in Figure 17A (right), where co-

immunoprecipitation with rabbit anti-Dsg3 antibody was carried out and 

Western blotted for E-cadherin and Dsg3. Consistently, the association 

between E-cadherin and Dsg3 was detected only in the Triton soluble fraction.  

The Western blot was re-probed with the same immunoprecipitating anti-

Dsg3 antibody to verify immunoprecipitation efficiency and equal amount of 

Dsg3 was observed in each lane. For input, freshly confluent HaCaT cells were 

sequentially extracted using 1% Triton X-100 buffer and RIPA buffer 

containing 1% NP-40. After RIPA buffer extraction, the remaining pellet was 

dissolved in SDS sample buffer to recover the rest of the highly insoluble 

proteins.  In Figure 17B, the Western blots of these fractions show that Dsg3 

and E-cadherin were present in both soluble and insoluble (RIPA and SDS) 

fractions. Taken together, the Dsg3 and E-cadherin association was detected 

in the Triton soluble fraction of HaCaT cells.  
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Figure 17: Dsg3 associates with E-cadherin in Triton X-100 soluble fraction.  

Western blots of E-cadherin and Dsg3 immunoprecipitates and total lysates of HaCaT 

cells. A) Freshly confluent HaCaT cells were extracted sequentially using Triton X-100 

for the soluble fraction and RIPA buffer for the insoluble fraction. Five hundred 

micrograms (μg) of the resulting protein lysates were co-immunoprecipitated with 

mouse anti-E-cadherin, HDEC-1 or rabbit anti-Dsg3 antibody and Western blotted for 

Dsg3 and E-cadherin. B) For input, freshly confluent HaCaT cells were sequentially 

extracted in a series of buffers as described above. After RIPA buffer extraction, the 

remaining pellet was dissolved in SDS sample buffer to recover the rest of the highly 

insoluble proteins. Ten micrograms (μg) of protein lysates were loaded in each lane 

and Western blotted for Dsg3 and E-cadherin. Two independent experiments (both 

direct and reverse co-immunoprecipitations) were performed and similar 

reproducible results were obtained.   
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4.1.4 Plakoglobin and p120 catenins are required for the association 

between Dsg3 and E-cadherin  

It was demonstrated that the association between Dsg3 and E-cadherin 

existed in HaCaT cells, A431 cells and human breast skin. I further speculated 

that such association might involved other junctional proteins such as 

plakoglobin (Pg) and p120 catenin, which are known to bind to both 

desmosomal and adherens junctional proteins (Kanno et al, 2008b; Roh & 

Stanley, 1995). It was demonstrated that co-expression of plakoglobin with E-

cadherin is essential for the initiation of desmosome assembly in A431 cells 

(Lewis et al, 1997), while p120 was shown to interact with Dsg3 at the same IA 

domain that binds E-cadherin (Kanno et al, 2008b). To address this question, 

siRNA-mediated knockdown of these catenins was performed. HaCaT cells 

were transiently transfected with p120 or Pg siRNA (smartpool) or control 

siRNA for 48 hours prior to co-immunoprecipitation with mouse anti-E-

cadherin antibody, HECD-1 and Western blotted for Dsg3. In Figure 18 (left), 

the Western blots of E-cadherin immunoprecipitates show that knockdown of 

p120 or Pg greatly reduced the association between E-cadherin and Dsg3. The 

Western blot was re-probed with same immunoprecipitating anti-E-cadherin 

antibody to verify immunoprecipitation efficiency and equal amount of E-

cadherin was observed in each lane. 

For input, the total lysates were Western blotted for a number of junctional 

proteins. The best knockdown result out of the three experiments was shown 

in Figure 18. On the average, there were an approximately 40% reduction of 

p120 protein in p120-depleted cells and a 80% reduction of Pg protein in Pg-

depleted cells as compared with their respective control siRNA-treated cells. 

No significant change was observed in the protein levels of Dsg3 and E-

cadherin in neither of the knockdown cells with actin as the loading control. 

Taken together, knockdown of these proteins exert a negative effect on the 

Dsg3/E-cadherin association, suggesting that both p120 and Pg are required 

for the association between Dsg3 and E-cadherin. 
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Figure 18: p120 and Pg catenins are required for the association between 
Dsg3 and E-cadherin. 

Western blots of E-cadherin immunoprecipitates and total lysates of HaCaT cells with 

or without p120 or Pg knockdown. siRNA-mediated knockdown of p120 or Pg 

(smartpool) was performed in HaCaT cells for 48 hours prior to RIPA buffer 

extraction. Five hundred micrograms (μg) of the resulting protein lysates were 

immunoprecipitated with anti-E-cadherin antibody, HECD-1 and Western blotted for 

Dsg3. For input, 10 µg of protein lysates were loaded in each lane and Western 

blotted for the indicated proteins with actin as the loading control. Two (co-IP) and 

three (input) independent experiments were performed and similar reproducible 

results were obtained.  Pg, Plakoglobin. 
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4.2 Discussion 

 

4.2.1 The interaction between Dsg3 and E-cadherin 

CSK buffer is commonly used to remove the soluble component of junctional 

proteins, but not the intermediate filaments and its associated proteins. It has 

been shown that cell extraction using CSK buffer retains many of the 

morphological characteristics of the intact cells such as intercellular junctional 

complexes and permits visualising the internal network with great clarity (Fey 

et al, 1984). In this experiment, cells were treated with ice-cold CSK buffer 

containing 0.5% Triton X-100 for 20 minutes to strip away proteins that do not 

associate with the intermediate filaments prior to immunostaining. The CSK 

buffer removed most of the Dsg3/E-cadherin colocalisation and a significant 

lesser amount of Dsg3 and E-cadherin colocalisation was present in the CSK-

treated A431 cells as compared to the CSK-untreated cells (Figure 12A). This 

experiment does suggest that a larger proportion of Dsg3/E-cadherin 

colocalisation was present in the Triton soluble fraction, which is not 

associated with the intermediate filaments. 

To confirm the protein-protein interaction between Dsg3 and E-cadherin, co-

immunoprecipitation was carried out using Dynabeads (Invitrogen). It was 

demonstrated that Dsg3 could be immunoprecipitated with E-cadherin or β-

catenin in cultured A431 cells, HaCaT cells and/or human breast skin (Figure 

12B). This finding is in contrast with the work of Plott and colleagues, who 

showed that Dsg3 is immunoprecipitated only with plakoglobin using radio-

isotope labelled human keratinocytes (Plott et al, 1994). To ensure proper 

experimental controls were in place, co-immunoprecipitation with 

mouse/rabbit pre-immune serum was carried out and no binding of Dsg3 or E-

cadherin was seen in either of the controls. Furthermore, it was tested that 

Dsg3 was unable to co-immunoprecipitate with desmoplakin or desmocollins 

(internal communication), confirming that the association between Dsg3/E-

cadherin is unlikely to be an artifactual interaction e.g Dsg3 does not bind to 

all junctional proteins.  
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To further support this novel Dsg3 and E-cadherin interaction, the proximity 

ligation assay (PLA) was used to detect protein proximity in situ.  This method 

not only depends upon the use of antibodies from two different species 

targeting on the same or different protein(s) of interest, but also requires two 

species-specific PLA probes to be in close proximity of each other before a 

signal is generated. Overexpression of Dsg3 significantly enhanced the PLA 

signal between Dsg3 and E-cadherin in A431-D3 cells as compared to the 

negative control (Figure 13), indicating that Dsg3 and E-cadherin were in a 

close proximity of each other (<30-40 nm). Our results were normalised 

against the signals from the negative controls and thus minimising the non-

specific signals. This method provides supporting evidence to the co-

immunoprecipitation studies, proving that Dsg3 and E-cadherin interaction 

was less than 40nm of each other. However, due to the lack of a cell surface 

marker in this assay, we were unable to demonstrate that the detected PLA 

signals were located on the cell surface or in the cytoplasm by this technique. 

Immunostaining in conjunction with cell surface markers are needed to 

determine whether the Dsg3/E-cadherin interaction was present in the 

cytoplasm. Therefore, we are more inclined to believe that the Dsg3/E-

cadherin interaction is present at cell-cell contacts as shown by the 

immunofluorescence data (Figure 12). 

We speculated that the association between Dsg3 and E-cadherin was 

facilitated by plakoglobin and p120 catenin, which are known to interact with 

both cadherins (Kanno et al, 2008b; Roh & Stanley, 1995). To determine 

whether these catenins was required for the Dsg3/E-cadherin association, 

siRNA-mediated knockdown of plakoglobin or p120 was performed in HaCaT 

cells prior to co-immunoprecipitation (Figure 18). Knockdown of p120 and 

plakoglobin greatly reduced the binding between E-cadherin and Dsg3 (Figure 

18), suggesting that both p120 and plakoglobin are involved in mediating such 

an interaction. Dave and colleagues reported that knockdown of p120 affects 

both the total and cell surface protein levels of E-cadherin (Davis et al, 2003).  

In my experiment, no significant difference was observed in the levels of E-
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cadherin protein in p120-depleted cells (Figure 18). However, a slight 

decrease of plakoglobin protein was observed and future work is needed to 

examine the efficiency of p120-RNAi on the levels of plakoglobin protein.  

Collectively, my study does demonstrate that both plakoglobin and p120 

catenin are involved in the association between Dsg3 and E-cadherin. It is 

known that p120 interacts with Dsg3 in the same region as E-cadherin (Kanno 

et al, 2008a) and its crucial role in the adherens junctions is associated with 

the dynamic regulation of cadherin adhesiveness (Anastasiadis & Reynolds, 

2001). We hypothesise that p120 may play a similar stabilising role in 

promoting the complex formation between Dsg3 and E-cadherin.  As the co-

immunoprecipitation technique is unable to distinguish a direct from an 

indirect interaction, other techniques are needed to confirm the nature of the 

Dsg3 and E-cadherin interaction and examine whether p120 and Pg are 

directly involved. 

Taken together, my colleagues and I have used a variety of different 

techniques to confirm the interaction between Dsg3 and E-cadherin and 

hence, the reason for the discrepancy with the work of Plott and colleagues 

might well be due to different culture conditions, different detection 

methodologies and/or the sensitivity of each technique.  

 

4.2.2 The biological significant of the Dsg3 and E-cadherin complex 

formation 

To determine the biological relevance of the Dsg3/E-cadherin association, a 

series of co-immunoprecipitations were carried out to examine if such an 

association was enhanced upon the addition of extracellular calcium. 

Consistently, the Dsg3/E-cadherin interaction in primary epidermal 

keratinocytes was shown to increase progressively upon the addition of 

calcium in a time-dependent manner. This finding helps to rule out the 

possibility that the calcium-induced Dsg3/E-cadherin complex formation was 

regulated differently in different cell systems i.e HaCaT cells and primary 
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epidermal keratinocytes. It is believe that the increased stability of the Dsg3 

protein after calcium introduction plays an important role in enhancing the 

complex formation between Dsg3 and E-cadherin. Since calcium is known to 

be involved in the regulation of early keratinocyte differentiation including 

junction formation, polarisation and stratification, we thus speculate the 

Dsg3/E-cadherin complex formation is likely one of the key molecular events 

that is required for early keratinocyte differentiation. 

 

4.2.3 Detergent solubility of the desmosomal and classical cadherins  

There are two fractions of Dsg3 proteins: one in desmosomes and the other 

outside of desmosomes that does not associate with the intermediate 

filaments (non-junctional Dsg3) (Aoyama et al, 1999). The calcium switch 

assay (Hennings et al, 1980; Watt et al, 1984) and the Triton X-100 solubility 

assay (Green & Simpson, 2007) were used to study the changes in the protein 

levels and cellular distribution of the desmosomal and adherens junctional 

proteins upon the addition of calcium. HaCaT cells, a normal keratinocyte cell 

line, which express a high level of endogenous Dsg3 was used. It was tested 

that the endogenous levels of Dsg3 proteins in HaCaT and primary oral 

keratinocytes were much higher than that of the A431-D3 cells (Tsang et al, 

2010).  

At time 0 hour before the addition of calcium, a higher partition of Dsg3 was 

noted in the Triton X-100 insoluble fraction of HaCaT cells (Figure 15 and 16). 

This observation may add support to the hypothesis proposed by Demlehner 

and colleagues, where desmosomal components in low calcium medium are 

co-assembled on the cell surface in the form of half-desmosomes. It is 

believed that these structures are unable to participate in adhesive binding 

and are quickly internalised and degraded (Demlehner et al, 1995). Upon the 

addition of calcium (2mM), my results showed that the levels of desmosomal 

proteins, including Dsg3, were markedly increased in a time-dependent 

manner for both soluble and insoluble fractions. As mentioned earlier, 

calcium plays an essential role in the stability of desmosomal proteins and 
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proper assembly of intercellular junctions. These results support the view 

made by others in the field that extracellular calcium enhances the levels of 

desmosomal proteins, most probably through protein stabilisation (Denning 

et al, 1998; Garrod et al, 2002). Additionally, it was observed that the 

desmosomal proteins were mostly detergent-insoluble with only a small 

fraction (20-30%) presented in the soluble fraction of HaCaT cells. These 

findings are in agreement with the general notion that desmosomal proteins 

are being recruited from the cytoplasm to the plasma membrane upon 

calcium addition, where they are incorporated into the desmosomes and 

become highly insoluble in non-ionic detergents.  

As for the adherens junctions, the levels of adherens junctional proteins did 

not increase upon calcium addition and were distributed mainly in the soluble 

fraction of HaCaT cells (Figure 15 and 16). Wheelock and colleagues 

demonstrated that the levels of E-cadherin protein are not affected by the 

addition of extracellular calcium, but greatly enhanced in confluent cultures 

(Wheelock & Jensen, 1992). This finding is in agreement with our Western 

blot analysis, in which enhanced levels of E-cadherin protein were observed in 

the confluent cultures as compared with the sub-confluent cultures (internal 

communication). It was noted that the relative ratio between soluble and 

insoluble fractions was less consistent throughout the time frame of analysis. 

The reason for this variability cannot be explained as yet, we hypothesise that 

the spatiotemporal pattern of cadherin expression is correlated to the 

dynamic processes necessary for tissue morphogenesis such as epithelial 

polarisation, stratification and differentiation. 

 

Desmosomal proteins are highly insoluble and they are often treated with an 

extremely harsh buffer containing SDS and urea to aid solubility during 

protein purification. However, this method is not suitable for the analysis of 

protein interactions as it would disrupt the protein-protein interactions and 

does not provide information relating to intact desmosomes per se (Garrod, 

2010). In Figure 17, the Dsg3 and E-cadherin interaction was biochemically 
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undetectable in the Triton insoluble fraction and this could be due to several 

reasons. Firstly, RIPA buffer containing 1% NP-40 was unable to fully dissolve 

the detergent-insoluble proteins and the undissolved pellet was excluded 

from the analysis. Thus after RIPA extraction, the cell lysates that were used 

for co-immunoprecipitation may contain low levels of the insoluble proteins 

and hence cannot truly represent all the proteins found in the Triton X-100 

insoluble fraction. Secondly, the co-immunoprecipitation techique is not 

feasible to assess interactions of protein in the insoluble fraction as this 

method requires the target proteins to be soluble in the buffer that was used 

(Ueki et al, 2011) e.g RIPA buffer in our studies. Thirdly, boiling the sample in 

SDS buffer before Western blot analysis could disrupt the stable protein-

protein interaction and hence, unable to yield any interaction. As 

demonstrated in Figure 12A, we showed that there were a subset of Dsg3 and 

E-cadherin association persisted in cells treated with CSK buffer, suggesting 

that the Dsg3/E-cadherin interaction is likely present in both soluble and 

insoluble fractions of HaCaT cells.  

 

4.2.4 Future work 

It is still not clear whether the association between Dsg3 and E-cadherin was 

direct or indirect as the co-immunoprecipitation technique is unable to 

distinguish a direct from an indirect interaction. Future experiments such as a 

GST pull-down assay can be use to confirm the existence interactions as 

demonstrated by co-immunoprecipitation. Using this method, a purified 

protein is used to capture its protein-binding partner and we can establish if 

E-cadherin or plakoglobin or p120 is directly interacted with the purified GST 

fusion protein containing the full-length or C-terminus of the Dsg3 protein 

immobilised on glutathione-agarose beads. To further identify which domains 

are involved, GST fusion proteins carrying various portions of the cytoplasmic 

domain of Dsg3 can be used to pull down with E-cadherin or other junctional 

proteins. Another limitation of co-immunoprecipitation is that this technique 

is not feasible to assess interactions of the insoluble proteins. Other 
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techniques such as electron microscopy and the use of chemical cross-linking 

agents to stabilise in vivo protein interactions may provide additional 

information about the insoluble proteins. As for the knockdown experiments 

in Figure 18, titrating the siRNA and use it at its lowest effective concentration 

may help ensure target specificity and minimise the non-specific silencing 

effects of p120-RNAi. 

 

4.2.5 Summary 

I have shown that the association between Dsg3 and E-cadherin 1) occurred in 

cultured A431 cells, HaCaT cells, primary keratinocytes and human breast 

skin; 2) required both P120 and plakoglobin since depletion of either catenin 

attenuated the complex formation dramatically; and most importantly 3) 

enhanced in a calcium-dependent manner in both HaCaT cells and primary 

epidermal keratinocytes. These findings suggest that the Dsg3 and E-cadherin 

association is biologically relevant and most likely occurs during the process of 

early keratinocyte differentiation. 
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CHAPTER 5  

RELATIONSHIP BETWEEN THE LEVELS OF DSG3 

PROTEIN AND OTHER JUNCTIONAL PROTEINS  

5.1 Results 

5.1.1 Western blot analysis of desmosomal and adherens junctional proteins 

Misexpression of desmosomal cadherins is strongly associated with altered 

stability of cell-cell junctions and disturbance of keratinocyte differentiation 

and barrier function (Hardman et al, 2005). Figure 19 shows that 

overexpression of Dsg3 reduced the protein levels of classical E-cadherin and 

a lesser extent on the reduction of P-cadherin as compared with control cell 

lines such as A431 parental and A431 expressing the empty vector or GFP 

transgene (Tsang et al, 2010). No significant difference was observed in the 

protein levels of -catenin and p120 with α-tubulin as the loading control. As 

for the desmosomal proteins, a slight reduction was observed in the protein 

levels of Dsg2 and Dsc2. To confirm that this was not a specific feature of the 

highly malignant, tumour-derived A431 cells, I sought to determine whether 

knockdown of Dsg3 affected the levels of other junctional proteins in HaCaT 

cells, which expresses high levels of Dsg3 protein. The siRNA transfection has 

been optimised and efficient suppression of Dsg3 protein by RNAi-1/2 was 

demonstrated by Western blot analysis (Tsang et al, 2010).   

 

siRNA-mediated knockdown of Dsg3 was performed in HaCaT cells prior to 

Western blot analysis. HaCaT cells were transiently transfected with Dsg3 

RNAi-2 or control siRNA for 48 hours prior to SDS sample buffer extraction 

and Western blotted for various desmosomal and adherens junctional 

proteins. As shown in Figure 20, knockdown of Dsg3 effectively reduced the 

levels of Dsg3 protein and other desmosomal proteins including desmocollin 

2/3 (Dscs), desmoplakin (DP), plakoglobin (Pg), plakophilins 1-3 (PKPs) and a 

lesser extent on the reduction of Dsg1/2 as compared with control siRNA-
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treated cells. As for the adherens junctional proteins, no significant difference 

was observed in the protein levels of E-cadherin, -catenin and p120 with 

actin as the loading control. Similar results were obtained with RNAi-1 (Tsang 

et al, 2010).  

 

 

Figure 19: Overexpression of Dsg3 reduces the levels of classical and 
desmosomal cadherins.  

Western blot analysis of total lysates of A431 cells with or without Dsg3 

overexpression. Freshly confluent A431-D3 and control cells (A431 parental and A431 

expressing the empty vector or GFP transgene) were extracted with SDS sample 

buffer. Ten micrograms (μg) of protein lysates were loaded in each lane and Western 

blotted for desmosomal and adherens junctional proteins with α-tubulin and -actin 

as the loading control (Western blots courtesy of Wan H). *Western blots of p120 

and α-tubulin were carried out in a separate experiment. Two independent 

experiments with similar results were obtained. α-tub, α-tubulin; Dscs, Desmocollins; 

Dp, Desmoplakin; Pg, Plakoglobin; and PKPs, Plakophilins. 
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Figure 20: Knockdown of Dsg3 reduces the levels of desmosomal proteins 
but not the adherens junctional proteins.  

Western blot analysis of total lysates of HaCaT cells with or without Dsg3 knockdown. 

Knockdown of Dsg3 (RNAi-2) was performed in HaCaT cells for 48 hours prior to SDS 

sample buffer extraction. Ten micrograms (μg) of protein lysates were loaded in each 

lane and Western blotted for desmosomal and adherens junctional proteins with 

actin as the loading control. Three independent experiments with similar results 

were obtained using both Dsg3 RNAi-1 (data not shown) and RNAi-2. Dscs, 

Desmocollins; Dp, Desmoplakin; Pg, Plakoglobin; and PKPs, Plakophilins. 
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5.1.2 Overexpression of Dsg3 enhances the E-cadherin-catenin complex 

formation  

The E-cadherin-catenin complex plays a crucial role in the maintenance of 

tissue architecture including regulation of cell polarity, cell migration and 

proliferation. Hinck and colleagues showed that at least five additional 

proteins were incorporated into the cadherin/catenin complexes by cross-

linking experiments, which also suggest that desmosomal proteins might be 

involved (Hinck et al, 1994). Hence, the next question was to determine 

whether altering the levels of Dsg3 protein, either by Dsg3 knockdown or 

overexpression, would affect the E-cadherin-catenin complex formation using 

my routine co-immunoprecipitation approach. 

Co-immunoprecipitiations were carried out using cell lysates prepared from 

overexpression and knockdown Dsg3 cells. Freshly confluent A431-V and -D3 

cells were subjected to RIPA buffer extraction and the resulting protein lysates 

were immunoprecipitated with mouse anti-E-cadherin antibody, HECD-1 and 

Western blotted for Dsg3 and a number of adherens junctional proteins such 

as p120, -catenin and E-cadherin. As shown in Figure 21, the Western blots 

of E-cadherin immunoprecipitates clearly show that overexpression of Dsg3 

increased the association between E-cadherin and p120 or -catenin as 

compared with A431-V control cells. The Western blot was re-probed with the 

same immunoprecipitating anti-E-cadherin antibody to verify 

immunoprecipitation efficiency and equal amount of E-cadherin was observed 

in each lane. For input, the total lysates were Western blotted for Dsg3. As 

expected, overexpression of Dsg3 enhanced the levels of Dsg3 protein as 

compared with A431-V control cells.  

In parallel, siRNA-mediated knockdown of Dsg3 was performed. HaCaT cells 

were transiently transfected with Dsg3 siRNA (RNAi-1 and RNAi-2) or control 

siRNA for 48 hours prior to RIPA buffer extraction. The resulting protein 

lysates were co-immunoprecipitated with mouse anti-E-cadherin antibody, 

HDEC-1 as described above. As shown in Figure 22, no significant change was 

observed in association between E-cadherin and -catenin or p120 in Dsg3-
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depleted cells treated with either RNAi-1/2 (Figure 22). The Western blot was 

re-probed with same immunoprecipitating anti-E-cadherin antibody to verify 

immunoprecipitation efficiency and equal amount of E-cadherin was observed 

in each lane. For input, efficient suppression of Dsg3 protein by RNAi-1/2 was 

demonstrated by Western blot analysis. No significant difference was seen in 

the protein levels of -catenin and p120. Taken together, my results show 

that overexpression of Dsg3 promotes the association between E-cadherin 

and p120 or β-catenin, while knockdown of Dsg3 has no significant effect on 

either of these associations. 

 

Figure 21: Overexpression of Dsg3 promotes the association between E-
cadherin and p120 or β-catenin. 

Western blots of E-cadherin immunoprecipitates and total lysates of A431 cells. 

Freshly confluent A431-V and -D3 were extracted using RIPA buffer. Five hundred 

micrograms (μg) of the resulting protein lysates were immunoprecipitated with 

mouse anti-E-cadherin antibody, HECD-1 and Western blotted for the adherens 

junctional proteins. For input, 10µg of protein lysates were loaded in each lane and 

Western blotted for Dsg3. Two independent experiments were performed and 

similar reproducible results were obtained.   
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Figure 22: Knockdown of Dsg3 does not affect the association between E-
cadherin and p120 or β-catenin.  

Western blots of E-cadherin immunoprecipitates and total lysates of HaCaT cells with 

or without Dsg3 knockdown. HaCaT cells were transiently transfected with Dsg3 

RNAi-1/2 or control siRNA for 48 hours prior to RIPA buffer extraction. Five hundred 

micrograms (μg) of the resulting protein lysates were used and subjected to the same 

procedures as described in Figure 21. For input, 10µg of protein lysates were loaded 

in each lane and Western blotted for Dsg3, p120 and β-catenin. Two independent 

experiments were performed and similar reproducible results were obtained.   
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5.1.3 Knockdown of Dsg3 affects the calcium-induced E-cadherin junction 

formation. 

Next, I sought to determine if knockdown of Dsg3 affected the E-cadherin 

junction formation during the process of calcium induced cell-cell contacts. To 

analyse the E-cadherin membrane staining in response to the extracellular 

calcium (2mM), immunofluorescence of E-cadherin was carried out in HaCaT 

cells with or without Dsg3 knockdown. HaCaT cells were first transiently 

transfected with Dsg3 siRNA (RNAi-1) or control siRNA and subsequently 

grown on coverslips in a low calcium medium (EpiLife) to reach freshly 

confluence. At 36 hours post-transfection, 2mM of calcium was added into 

the medium to trigger the assembly of the intercellular junctions. Cells were 

fixed after 1 hour, 8 hours and 24 hours of calcium exposures and 

immunostained for E-cadherin. Four arbitrary images were acquired in each 

sample using a confocal microscope by Wan H. The periphery fluorescence 

intensity of E-cadherin was analysed by ImageJ and compared between Dsg3 

knockdown and control cells (Refer to Materials and Methods Chapter 3.8). As 

shown in Figure 23A, the Western blot analysis demonstrates efficient 

suppression of Dsg3 protein by RNAi-1 with no significant difference in the 

total levels of E-cadherin protein at 24 hours. Unfortunately, due to the poor 

quality of the Western blot, the total levels of E-cadherin protein at 1 hour 

and 8 hours were not shown. 

Representative immunofluorescence images of E-cadherin show that 

knockdown of Dsg3 significantly reduced the E-cadherin staining at the cell 

periphery especially at 8 hours as compared with control siRNA-treated cells. 

At 1 hour post-calcium addition, the junctional E-cadherin appeared to be 

substantially reduced in the Dsg3-depleted cells. At 8 hours, the E-cadherin 

staining remained largely cytoplasmic with evident intercellular gaps. At 24 

hours, the cytoplasmic aggregates of E-cadherin were still obvious and a 

weaker E-cadherin staining was observed in cells surrounding those areas. 

Conversely, in control siRNA-treated cells, the localisation of E-cadherin at 

cell-cell contacts could be seen after 1 hour of calcium exposure. Gradual 
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decrease of the cytoplasmic staining became progressively more evident over 

the time course of calcium exposure. At 24 hours, enhanced and more 

continuous distribution of peripheral E-cadherin staining could be detected at 

sites of cell-cell contacts. 

In Figure 23B, the bar chart shows the quantitation analysis of the peripheral 

E-cadherin fluorescence levels obtained from four arbitrary confocal images. 

The peripheral E-cadherin staining was significantly lower in the Dsg3 

knockdown cells after 8 hours of calcium exposure, suggesting that Dsg3 is 

involved in the regulation of calcium-induced E-cadherin junction formation. 
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Figure 23: Knockdown of Dsg3 reduces the peripheral E-cadherin staining 
during calcium induced cell-cell contacts.  

A) Representative fluorescence images of E-cadherin staining in HaCaT cells with or 

without Dsg3 knockdown. Cells were transiently transfected with Dsg3 siRNA (RNAi-

1) or control siRNA. At 24 hours post-transfection, cells were transferred onto the 

coverslips and allowed to grow in a low calcium medium (EpiLife) overnight. At 36 

hours post-transfection, 2mM of calcium was added and cells were fixed after 1 hour, 

8 hours and 24 hours of calcium exposures. All coverslips were processed for 

immunofluorescence for E-cadherin. B) The bar chart shows the average peripheral 

E-cadherin fluorescence intensity obtained from four arbitrary confocal images 

(courtesy to Wan H).  (* p<0.05). Scale bars are 20 μM. C) Western blots of total Dsg3 

and E-cadherin at 24 hours post-calcium addition. 
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5.2 Discussion 

5.2.1 Overexpression of Dsg3 

I demonstrated that overexpression of Dsg3 reduced the levels of classical 

proteins and a lesser extent on the reduction of the desmosomal proteins in 

A431 cells (Figure 19). E-cadherin plays a crucial role in epithelial cell-cell 

adhesion and the loss of E-cadherin in tumourgenesis is associated with 

increased motility and invasive potential, a characteristic of epithelial-

mesenchymal transition (EMT) (Menke & Giehl, 2012). Since upregulation of 

desmosomal cadherins such as Dsg2 and Dsg3 has also been reported in 

squamous cell carcinoma (Chen et al, 2007; Savci-Heijink et al, 2009), we 

speculate that the mechanism(s) by which overexpression of Dsg3 is involved 

in tumourgenesis might be associated with the loss of E-cadherin protein. Our 

speculation is in line with the scratch wound assay, which showed that 

overexpression of Dsg3 enhanced the rate of cell migration as compared to 

A431 control cells (Tsang et al, 2010).  

It is acknowledged that the degree of decrease in the levels of E-cadherin 

protein in A431-D3 cells was somewhat variable between different 

experiments with no significant statistical difference. However, a slight 

decrease was consistently observed in the total levels of E-cadherin protein of 

A431-D3 cells as compared with A431-V control cells. We speculate that such 

variability could be related to the spatiotemporal regulation of cadherin 

expression as mentioned earlier in Chapter 4.2.3 Discussion. 

Based on a large body of studies on pemphigus vulgaris, Dsg3 is believed to 

play a paramount role in maintaining strong adhesion and junctional integrity. 

Hence, we were surprised that overexpression of Dsg3 also resulted in 

reduced levels of desmosomal proteins. Further studies are needed to clarify 

the underlying molecular mechanism(s) and we do not exclude the possibility 

that these results are cell-context dependent (Refer to Chapter 8 Final 

discussion).  
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5.2.2 Knockdown of Dsg3 

Next, we examined whether knockdown of Dsg3 would affect the levels of 

other junctional proteins in HaCaT cells.  Ideally, A431 cells should be used for 

the loss of function studies. However, siRNA-mediated knockdown of 

junctional proteins in A431-V or -D3 cells resulted in a loss of cell morphology. 

These cells were less healthy and a longer period of time is required to reach 

confluence in the culture. Hence, we performed the loss of function studies in 

HaCaT cells, in which significant knockdown was routinely achieved and was 

used throughout all our experiments except Figure 25. 

 

Before the start of my experiment, real-time PCR was carried out by Dr Muy-

Teck Teh to confirm the efficiency of Dsg3 siRNA. It was demonstrated that 

Dsg3 siRNA does not cause non-specific silencing effects on 

other desmosomal cadherins, particularly on the closely related isoform Dsg2 

(Teh et al, 2011). The Western blot analysis (Figure 20) showed that 

knockdown of Dsg3 reduced the levels of desmosomal proteins such as 

desmocollin 2/3 (Dscs), desmoplakin (DP), plakoglobin (Pg), plakophilins 1-3 

(PKPs) and a lesser extent on the reduction of the Dsg1/2 protein. No 

significant difference was observed on the levels of adherens junctional 

proteins such as E-cadherin and -catenin. This set of experiment has been 

confirmed by other colleagues using Dsg3-specific RNAi-1, which gave 

reproducible results (Tsang et al, 2012b). The slight reduction in the levels of 

Dsg1/2 protein could be partly due to its high endogenous protein levels in 

HaCaT cells (Chitaev & Troyanovsky, 1997). 

 

The second question was to examine if knockdown of Dsg3 affected the E-

cadherin junction formation during the process of calcium induced cell-cell 

contacts. It is acknowledged that some of the RNAi images were in sub-

confluent density and hence, the data was re-analysed and only confluence 

images were quantified. Knockdown of Dsg3 significantly reduced the 

peripheral E-cadherin staining especially after 8 hours of calcium exposures 

(Figure 23). Although the difference in the peripheral fluorescence levels of E-
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cadherin at 24 hours was not as significant as at 8 hours, this finding suggests 

that knockdown of Dsg3 delays the early phase of the E-cadherin-mediated 

junction assembly. We postulate that the decrease in the amount of E-

cadherin at the plasma membrane is most likely due to reduction or 

retardation of the E-cadherin recruitment at the plasma membrane. The 

possible mechanism by which knockdown of Dsg3 interferes with the 

assembly of E-cadherin-mediated adherens junctions will be discussed in the 

Final Discussion.  

 

5.2.3 E-cadherin-catenin complex formation 

It is known that the E-cadherin-catenin complex plays a crucial role in the 

maintenance of cell-cell adhesion and tissue architecture. I examined whether 

altering the levels of Dsg3 protein, either by Dsg3 knockdown or 

overexpression, would affect the E-cadherin-catenin complex formation. It 

was showed that overexpression of Dsg3 enhanced the endogenous binding 

of E-cadherin with p120 or β-catenin (Figure 21), while knockdown of Dsg3 

had no significant effect on the formation of cadherin complexes as compared 

to control cells (Figure 22). It is acknowleged that overexpression of Dsg3 

promoted the formation of cadherin complexes was inconsistent with the 

results shown in Figure 19 and 20, in which both overexpression and 

knockdown of Dsg3 did not affect the protein levels of p120 or β-catenin. In 

addition, the total lysates (input) of E-cadherin, p120 and β-catenin were not 

available in Figure 21, which could affect the overall reliability of this result. 

Hence, it is difficult to explain how on one hand overexpression of Dsg3 

reduced the levels of E-cadherin protein, and on the other hand promote the 

formation of E-cadhein/catenin complexes. The apparent contradictory results 

between overexpression and knockdown studies could be due the use of two 

different cell lines and the results presented here might be of cell line specific. 

Alternatively, the results of this study could suggest a complex process, in 

which the levels of E-cadherin protein might not be directly related the 

formation of the E-cadherin/catenin complex. 
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In addition, my results are in contrast with a number of studies, which 

established that the complex stoichiometry between E-cadherin, β-catenin 

and α-catenin is 1:1:1 (Aberle et al, 1994; Drees et al, 2005; Hinck et al, 1994). 

As the co-immunoprecipitation technique is unable to distinguish a direct 

from an indirect interaction, it is possible that the enhanced binding of E-

cadherin with p120 or β-catenin was mediated through a third-party protein 

that contacts with both E-cadherin and p120 or β-catenin. Taken together, the 

results from this set of experiments are inconclusive and require further 

experimental supports. It is likely that manipulation the levels of Dsg3 protein 

can lead to divergent outcomes and a single mechanism is not sufficient to 

explain the relationship between the levels of Dsg3 protein and other 

junctional proteins. 

 

5.2.4 Future work 

It will be interesting to repeat the same experiment in Figure 23 and examine 

whether overexpression of Dsg3 would affect the assembly of E-cadherin-

mediated adherens junctions. We do not exclude the possibility that this 

result is also cell-context dependent. 

 

5.2.5 Summary 

Overexpression of Dsg3 reduced the levels of E-cadherin protein and a lesser 

extent on the desmosomal proteins in A431 cell. On the other hand, 

knockdown of Dsg3 reduced the majority of the desmosomal proteins and 

affected the calcium-induced E-cadherin junction formation in HaCaT cells. 

Perhaps, different mechanisms are involved in each case, which warrant 

further investigation. 
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CHAPTER 6  

DSG3 ASSOCIATES WITH SRC AND REGULATES ITS 

ACTIVATION 
 

6.1 Results 

6.1.1 Overexpression of Dsg3 enhances tyrosine phosphorylation of E-

cadherin, p120 and β-catenin. 

 
Among the mechanisms involved in the remodelling of E-cadherin mediated-

adherens junctions and cellular differentiation, tyrosine phosphorylation of 

adherens junctional proteins plays an important role (Yap & Kovacs, 2003b). It 

was demonstrated that overexpression of Dsg3 not only suppresses the levels 

of E-cadherin protein (Chapter 5), but also enhances the membrane 

protrusions and cell migration (Tsang et al, 2010). These morphological and 

functional alterations resemble the phenotypic changes induced by 

constitutively active Src with the consequent de-regulation of cadherin-

mediated cell-cell contacts (Avizienyte et al, 2002).  

Hence, the first question was to determine whether overexpression of Dsg3 

would affect the levels of phospho-tyrosine protein as compared to A431-V 

control cells. To address this question, co-immunoprecipitation with the 

phospho-tyrosine antibody was carried out in A431 cells. Freshly confluent 

A431-V and -D3 cells were treated with calcium-free medium for 1 hour to 

disrupt the intercellular junctions before being replenished with normal 

calcium containing medium for 5 hours to trigger signalling events associated 

with the junction assembly. Cell extraction was carried out using RIPA buffer. 

The resulting protein lysates were co-immunoprecipitated with mouse anti-

phospho-tyrosine (pTyr) antibody and Western blotted for total Src and other 

adherens junctional proteins. For input, the total lysates were Western 

blotted for the indicated proteins. Phospho- and non-phospho-specific 
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antibody to Src Tyr416, a phosphorylation marker for Src activation (Obergfell 

et al, 2002) were used. 

In Figure 24A, the Western blots of phospho-tyrosine immunoprecipitates 

clearly show that overexpression of Dsg3 enhanced the phospho-tyrosine 

levels of Src and adherens junctional proteins such as E-cadherin, β-catenin 

and p120 catenin as compared with A431-V control cells. No significant 

difference was observed in the phospho-tyrosine levels of EGFR between 

A431-V and -D3 cells in my culture condition and thus served as the negative 

control. For input, the Western blots of total lysates show that overexpression 

of Dsg3 enhanced the phosphorylation levels of Src (pY416), with a 

concomitant reduction of non-phospho-Src in A431-D3 cells as compared with 

A431-V control cells. No significant difference was observed in the total 

protein levels of Src, β-catenin, p120, α-catenin and EGFR. As expected, a 

small decrease in E-cadherin protein level was observed in A431-D3 cells.  

These results were confirmed in the reverse co-immunoprecipitation 

approach as shown in Figure 24B, where adherens junctional proteins 

including E-cadherin, p120 and -catenin were immunoprecipited individually 

from the lysates of A431-V and -D3 cells and Western blotted for phospho-

tyrosine (pTyr). Consistent with the above findings, overexpression of Dsg3 

enhanced the tyrosine phosphorylation of E-cadherin, p120 and -catenin as 

compared with A431-V control cells. For input, no significant difference was 

observed in the total protein levels of p120 and β-catenin, while a small 

decrease in E-cadherin protein level was noted in A431-D3 cells. Taken 

together, my results strongly suggest that Dsg3 functions as an upstream 

regulator of Src signalling and tyrosine phosphorylation of E-cadherin, p120 

and β-catenin. 
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Figure 24: Overexpression of Dsg3 increases tyrosine phosphorylation of Src 
and its downstream adherens junctional proteins such as E-cadherin, p120 
and β-catenin.  

A) Western blots of phospho-tyrosine immunoprecipitates and total lysates of A431 

cells. Freshly confluent A431-V and -D3 cells were sequentially treated with calcium-

free medium for 1 hour and normal calcium containing medium for 5 hours. Protein 

extraction was carried out using RIPA buffer. Five hundred micrograms (µg) of the 

resulting protein lysates were immunoprecipitated with mouse anti-phospho-

tyrosine (pTyr) antibody and Western blotted for E-cadherin/catenins proteins. For 

input, 10µg of protein lysates were loaded in each lane and Western blotted for the 

indicated proteins. B) Western blots of the reverse co-immunoprecipitation. E-

cadherin, p120 and β-catenins were co-immunoprecipitated with 500µg of the 

protein lysates from A431-V and -D3 cells and Western blotted for tyrosine 

phosphorylation. For input, 10µg of protein lysates were loaded in each lane and 

Western blotted for E-cadherin, p120 and β-catenin. Two independent experiments 

(A and B) were performed and similar reproducible results were obtained.   

 

 

 

B 
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To verify that the enhanced tyrosine phosphorylation seen in Figure 24 was 

indeed Src and Dsg3 specific, pharmacological inhibition of Src kinase activity 

and siRNA-mediated knockdown of Dsg3 were used. Freshly confluent A431-V 

and -D3 cells were treated routinely with calcium-free medium for 1 hour 

before being replenished with normal calcium-containing medium. During the 

calcium-free treatment, cells were seen significantly rounded up and easily 

detachable from the flask and hence, inhibitors were added 30 minutes after 

replenished with normal calcium-containing medium as a precaution to allow 

cells to re-establish cell-cell junctions prior to other treatments. 10µM of Src 

specific inhibitor, PP2 or same volume of vehicle control, DMSO was added 

into the medium for another 5 hours. The cells were then extracted following 

the routine procedures and analysed by co-immunoprecipitation with mouse 

anti-phospho-tyrosine antibody and Western blotted for total Src and E-

cadherin.  

In Figure 25A, the Western blots of phospho-tyrosine immunoprecipitates 

show a substantial inhibition of Src phosphorylation in both PP2-treated 

A431-V and -D3 cells as compared with vehicle control-treated cells. 

Correspondingly, the enhanced tyrosine phosphorylation of E-cadherin in 

A431-D3 cells was diminished by the PP2 treatment. For input, the total 

lysates were Western blotted for the indicated proteins. In the absence of PP2 

treatment (Figure 25B), a slight reduction of E-cadherin protein was seen in 

A431-D3 cells, as expected. However, in the presence of PP2 treatment, equal 

levels of E-cadherin protein was observed in both A431-V and -D3 cells. 

Although there is no statistical difference, the reduced levels of E-cadherin 

protein in A431-D3 cells appears to be recovered by the PP2 treatment. The 

bar chart in Figure 25B represents the average densitometry reading of E-

cadherin obtained from three independent experiments.  

To determine if the depletion of Dsg3 was able to reduce the Src 

phosphorylation, siRNA-mediated knockdown of Dsg3 was performed. Both 

A431-V and -D3 cells were transiently transfected with Dsg3 siRNA (RNAi-1) or 

control siRNA. At 48 hours post-transfection, cells were treated with calcium-
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free medium for 1 hour before being replenished with normal calcium-

containing medium for 5 hours. The total lysates were extracted with SDS 

sample buffer and Western blotted for Dsg3, phospho-Src (pY416), total Src 

and E-cadherin. As showed in Figure 25C, knockdown of Dsg3 not only 

reduced the levels of Dsg3 protein in both A431-V and -D3 cells, but also 

substantially attenuated the increased phosphorylation levels of Src in A431-

D3 cells. No significant difference was observed in total protein levels of Src 

between these cells. 

Taken together, both the pharmacological inhibition of Src kinase activity and 

siRNA-mediated knockdown of Dsg3 abrogated the enhanced tyrosine 

phosphorylation of E-cadherin in A431-D3 cells, suggesting that the enhanced 

tyrosine phosphorylation of E-cadherin is indeed Dsg3 and Src specific.  
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Figure 25: The enhanced tyrosine phosphorylation of E-cadherin is 
attenuated by both Src specific inhibition and Dsg3-mediated knockdown.  

A) Western blots of phospho-tyrosine immunoprecipitates and total lysates of A431 

cells pre-treated with or without Src specific inhibitor, PP2. Freshly confluent A431-V 

and A431-D3 cells were treated with calcium-free medium for 1 hour before being 

replenished with normal calcium-containing medium. After 30 minutes of medium 

replenishment, cells were treated with 10µM of Src specific inhibitor, PP2 or equal 

volume of vehicle control, DMSO for 5 hours. Protein extraction was carried out using 

RIPA buffer. Five hundred micrograms (µg) of the resulting protein lysates were co-

immunoprecipitated with mouse anti-phospho-tyrosine antibody and Western 

blotted for Src and E-cadherin. B) For input, 10µg of protein lysates were loaded in 

each lane and Western blotted for the indicated proteins. The bar chart represents 

the average densitometry reading of E-cadherin obtained from three independent 

experiments. C) Western blots of A431 cells with or without Dsg3 knockdown. Both 

A431-V and -D3 cells were transiently transfected with Dsg3 siRNA (RNAi-1) or 

control siRNA. At 48 hours post-transfection, cells were subjected to routine calcium 

treatment and SDS sample buffer extraction. Ten micrograms (µg) of protein lysates 

were loaded in each lane and Western blotted for the indicated proteins. Two (A and 

C) and three (B) independent experiments were performed and similar reproducible 

results were obtained.  
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6.1.2 Overexpression of Dsg3 increases the association between E-cadherin 

and total Src or pSrc. 

The results from the above experiments strongly suggest that Dsg3 functions 

as an upstream regulator of Src signalling in the E-cadherin-mediated junction 

formation. As such, I predicted that Dsg3 would associate with Src co-purified 

with E-cadherin. To address this question, co-immunoprecipitation of E-

cadherin was carried out in A431 cells in the following experiments.  

Freshly confluent A431-V and -D3 cells were subjected to routine calcium 

treatment and extracted with RIPA buffer prior to co-immunoprecipitation 

with mouse anti-E-cadherin antibody, HECD-1 and Western blotted for Dsg3, 

pSrc (Tyr416), total Src and E-cadherin. In Figure 26, the Western blots of E-

cadherin immunoprecipitates show a substantial increase in the levels of total 

Src (also the phosphorylated form) co-purified with E-cadherin in Dsg3 

overexpressed A431-D3 cells as compared with A431-V control cells. The 

Western blot was re-probed with the same immunoprecipitating anti-E-

cadherin antibody to verify immunoprecipitation efficiency and equal amount 

of E-cadherin was observed in each lane. For input, the Western blots of total 

lysates show enhanced protein levels of Dsg3 and pSrc (pY416) as compared 

with A431-V control cells and no significant difference was observed in the 

protein levels of Src. Taken together, overexpression of Dsg3 substantially 

increases the association between E-cadherin and Src or pSrc, providing 

evidence that Dsg3 functions as an upstream regulator of the Src-E-cadherin 

signalling pathway in A431 cells. 
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Figure 26: Overexpression of Dsg3 enhances the association between E-
cadherin and total Src or pSrc. 

Western blots of E-cadherin immunoprecipitates and total lysates of A431 cells. 

Freshly confluent A431-V and -D3 cells were treated with calcium-free medium for 1 

hour before being replenished with normal calcium-containing medium for 5 hours. 

Five hundred micrograms (μg) of the resulting protein lysates were co-

immunoprecipitated with mouse anti-E-cadherin antibody, HECD-1 and Western 

blotted for Dsg3, pSrc, Src and E-cadherin. For input, 10µg of protein lysates were 

loaded in each lane and Western blotted for the indicated proteins. Three 

independent experiments were performed and similar reproducible results were 

obtained.   
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6.1.3 Knockdown of Dsg3 reduces the association between E-cadherin and 

total Src or pSrc. 

To consolidate my finding as demonstrated in Figure 26, the co-

immunoprecipitation was repeated in HaCaT cells with knockdown of Dsg3. 

HaCaT cells were transiently transfected with Dsg3 siRNA (RNAi-2) or control 

siRNA for 48 hours prior to routine calcium treatment, RIPA buffer extraction 

and co-immunoprecipitation with E-cadherin antibody as described above. In 

Figure 27 (left), the Western blots of E-cadherin immunoprecipitates show 

that knockdown of Dsg3 reduced the association between E-cadherin and 

total Src or pSrc in Dsg3-depleted cells as compared with control siRNA-

treated cells. Similar results of reduced pSrc and Src were obtained in cells 

treated with RNAi-1 (Tsang et al, 2010). The Western blot was re-probed with 

the same immunoprecipitating anti-E-cadherin antibody to verify 

immunoprecipitation efficiency and equal amount of E-cadherin was observed 

in each lane. For input, the total lysates were Western blotted for Dsg3, 

phospho-Src (Tyr416), total Src and E-cadherin. Figure 27 (right) shows that 

knockdown of Dsg3 reduced the protein levels of Dsg3 and pSrc, while no 

significant difference was observed in the protein levels of total Src and E-

cadhern between Dsg3-depleted and control siRNA-treated cells. My results 

indicate that knockdown of Dsg3 reduces the levels of total Src and pSrc co-

purified with the E-cadherin antibody as compared with A431-V control cells. 

Next, I sought to examine whether knockdown of Dsg3 would affect the levels 

of phospho-tyrosine protein of the adherens junctional proteins. To address 

this question, siRNA-mediated knockdown of Dsg3 was carried out prior to co-

immunoprecipitation with mouse anti-phospho-tyrosine (pTyr) antibody and 

Western blotted for Dsg3, E-cadherin, p120 and β-catenins (same analysis as 

Figure 24). Figure 28 shows that knockdown of Dsg3 significantly reduced the 

phospho-tyrosine levels of E-cadherin, p120 and β-catenins as compared with 

control siRNA-treated cells. For input, the total lysates were Western blotted 

for the indicated proteins. Efficient suppression of Dsg3 protein was observed 

in RNAi-treated cells with no significant change in the protein levels of E-
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cadherin, p120 and β-catenins between these cell lines (Figure 28, right). 

Taken together, knockdown of Dsg3 significantly reduces the phospho-

tyrosine levels, but not the total protein levels of E-cadherin, p120 and β-

catenins in HaCaT cells. 

 

 

Figure 27: Knockdown of Dsg3 reduces the association between E-cadherin 
and total Src or pSrc. 

Western blots of E-cadherin immunoprecipitates and total lysates of HaCaT cells with 

or without Dsg3 knockdown. HaCaT cells were transiently transfected with Dsg3 

siRNA (RNAi-2) or control siRNA for 48 hours and were treated with calcium-free 

medium for 1 hour and normal calcium-containing medium for 5 hours. The total 

lysates were extracted with RIPA buffer. Five hundred micrograms (μg) of the 

resulting protein lysates were co-immunoprecipitation with mouse anti-E-cadherin 

antibody, HDEC-1 and Western blotted for Dsg3, pSrc, Src and E-cadherin. For input, 

10µg of protein lysates were loaded in each lane and Western blotted for the 

indicated proteins. Three independent experiments were performed and similar 

reproducible results were obtained.   
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Figure 28: Knockdown of Dsg3 decreases the phospho-tyrosine levels of 
p120, β-catenin and E-cadherin.  

Western blots of phospho-tyrosine immunoprecipitates and total lysates of HaCaT 

cells with or without Dsg3 knockdown. Cells were transiently transfected with Dsg3 

siRNA (RNAi-2) or control siRNA for 48 hours and were treated with calcium-free 

medium for 1 hour and normal calcium-containing medium for 5 hours. The total 

lysates were extracted with RIPA buffer. Five hundred micrograms (μg) of the 

resulting protein lysates were co-immunoprecipitation with mouse anti-phospho-

tyrosine antibody and Western blotted for Dsg3, E-cadherin, p120 and β-catenin. For 

input, 10µg of protein lysates were loaded in each lane and Western blotted for the 

indicated proteins. Two independent experiments were performed and similar 

reproducible results were obtained.   
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6.1.4 Dsg3 colocalises and associates with caveolin-1 

The exact molecular mechanism(s) by which Dsg3 regulates Src signalling 

remains unclear. A possible candidate protein that might be involved in this 

process is caveolin-1, which is known to interact with Src-family tyrosine 

kinases (Li et al, 1996) and Dsg2 (Brennan et al, 2011). Based on these 

findings, I hypothesised that caveolin-1 is involved in the Dsg3-induced Src 

activation. 

First, I sought to determine whether Dsg3 colocalised with caveolin-1 in A431 

cells. A431-V and -D3 cells were co-stained with mouse anti-Dsg3, 5H10 

(green) and rabbit anti-caveolin-1 (red) antibodies. In Figure 29A, the 

representative confocal images show an enhanced co-localisation between 

Dsg3 and caveolin-1, particularly at the cell borders in A431-D3 cells. This 

finding is confirmed using the proximity ligation assay (PLA), in which the fixed 

HaCaT cells were co-incubated with mouse anti-Dsg3, 5H10 and rabbit anti-

caveolin-1 or rabbit anti-Src or rabbit anti-Myc tag antibodies. In Figure 29B, 

the representative immunofluorescence images show that the detected PLA 

signal for Dsg3 and caveolin-1 was significantly higher compared to the signal 

between Dsg3 and Myc-tag (negative control). Taken together, these data 

suggest that Dsg3, Src and caveolin-1 is in close proximity (<40nm) of each 

other. 
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Figure 29: Dsg3 colocalises and associates with caveolin-1 in HaCaT cells.  

A) Confocal images of A431-V and -D3 cells co-stained with mouse anti-Dsg3, 5H10 

(green) and rabbit anti-caveolin-1 (red) antibodies (Confocal images courtesy of Wan 

H). Scale bars are 10 μM. B) Representative fluorescence images of PLA in HaCaT 

cells. The fixed HaCaT cells were co-incubated with mouse anti-Dsg3, 5H10 and rabbit 

anti-caveolin-1 or rabbit anti-Src or rabbit anti-Myc-tag antibodies. The bar chart 

shows the average number of fluorescence red dots per cell from four arbitrary 

images (** p<0.01, n=3). Scale bars are 10 μM. (Neg Ct, Negative control). 

B 
A A 
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6.1.5 A possible model of Dsg3 in the regulation of Src activation via 

Caveolin-1 

I hypothesised that Dsg3 might regulate Src activation by competing with the 

inactive Src for a common binding site on the scaffolding domain of caveolin-1 

and in turn triggers the release and auto-phosphorylation (activation) of Src 

tyrosine kinase. If this hypothesis is correct, I would expect to see an 

increased binding of Dsg3 with caveolin-1 in Dsg3 overexpressing cells as 

compared with control cells. Correspondingly, knockdown of Dsg3 would 

increase the binding between Src and caveolin-1 and thus functionally inhibits 

the auto-activation of Src.  

To address these questions, co-immunoprecipitiations were carried out in 

both Dsg3 overexpressed A431 and Dsg3 knockdown HaCaT cells. Both cell 

lines were grown to freshly confluent and subjected to calcium treatment.  

The resulting protein lysates were extracted with RIPA buffer prior to co-

immunoprecipitation with rabbit anti-caveolin-1 antibody. In Figure 30A, the 

Western blots of caveolin-1 immunoprecipitates show that overexpression of 

Dsg3 not only enhanced its binding with caveolin-1, but also concomitantly 

reduced the binding between Src and caveolin-1 as compared with A431-V 

control cells. For input, the total lysates were Western blotted for Dsg3 and 

Src with actin as the loading control. No significant difference was observed in 

the protein levels of Src and actin between these cell lines. 

This finding is confirmed in the reverse approach (Figure 30B), in which 

knockdown of Dsg3 increased the binding of Src with caveolin-1 as compared 

with control siRNA-treated cells. The Western blot was re-probed with same 

immunoprecipitating anti-caveolin antibody to verify immunoprecipitation 

efficiency and equal amount of caveolin-1 was observed in each lane. For 

input, the Western blots of total lysates show efficient suppression of Dsg3 by 

RNAi-1 with no significant change in the protein levels of Src and actin. Several 

attempts have been made to probe for pSrc in the caveolin-1 

immunoprecipitates of A431 and HaCaT cells, but no detection of pSrc was 

observed under my experimental conditions. Further experimental 
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investigations are needed to clarify this issue. Taken together, these 

preliminary results suggest a close relationship between Dsg3, Src and 

caveolin-1.  
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Figure 30: Dsg3 regulates the caveolin-1 and Src complex formation.  

Western blots of caveolin-1 immunoprecipitates and total lysates of A431 and HaCaT 

cells. Both Dsg3 overexpressed A431 and knockdown HaCaT cells were grown to 

freshly confluence, subjected to routine calcium treatment and RIPA buffer 

extraction. Five hundred micrograms (µg) of the resulting protein lysates were co-

immunoprecipitated with rabbit anti-caveolin-1 antibody and Western blotted for 

Dsg3 and total Src. For input, 10µg of protein lysates were loaded in each lane and 

Western blotted for the indicated proteins. One experiment (A and B) was performed 

with actin as the loading control. 

 

A 

B 
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6.2 Discussion 

6.2.1 Dsg3 acts as an upstream regulator of Src activation 

It is known that Src family tyrosine kinases have both positive and negative 

regulatory role on cell-cell adhesion and tissue integrity (Kovacs et al, 2002b). 

However, little is known about the upstream mechanism(s) or receptor(s) that 

activate these signalling activities during the process of E-cadherin-mediated 

junction assembly.  

I showed that overexpression of Dsg3 enhanced the phospho-tyrosine levels 

of Src and its target effector proteins such as E-cadherin, p120 and β-catenin 

as compared with A431-V cells (Figure 24A). This result was confirmed in the 

reverse co-immunoprecipitation, where antibodies against E-cadherin or p120 

or β-catenin were used for immunoprecipitation and Western blotted for 

phospho-tyrosine antibody. As expected, overexpression of Dsg3 enhanced 

tyrosine phosphorylation of adherens junctional proteins (Figure 24B). The 

specificity of this effect was further confirmed by pre-treating the A431 cells 

with an Src-specific inhibitor, PP2 or siRNA-mediated Dsg3 knockdown. PP2 

was tested not to affect the levels of Dsg3 protein. Both experiments showed 

that the enhanced tyrosine phosphorylation of E-cadherin in A431-D3 cells 

was indeed Dsg3-and Src-specific (Figure 25). I depict that the enhanced levels 

of phospho-tyrosine proteins in A431-D3 cells was mediated via an EGFR-

independent pathway since no significant difference was seen in the phospho-

tyrosine or total protein levels of EGFR between A431-D3 and -V control cells. 

Based on these findings, we speculate that Dsg3 functions as an upstream 

regulator of the E-cadherin-Src signalling pathway. Using both a gain and loss 

of function analysis, I showed that overexpression of Dsg3 increased the 

binding of E-cadherin with Src or pSrc, while knockdown of Dsg3 reversed this 

effect with reduced binding of E-cadherin with Src or pSrc (Figure 26 and 27). 

Furthermore, I showed that depletion of Dsg3 significantly reduced the 

phospho-tyrosine levels of adherens junctional proteins, indicating that Dsg3 

is indeed involved in the regulation of Src activation and phosphorylation of 
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its downstream effector proteins (Figure 28). It is acknowledged that 

immunoprecipitation with phospho-tyrosine antibody would subject to 

caveats concerning non-specific effects and future experiment is needed to 

confirm this result. Taken together, I present new insight into the E-cadherin-

Src signalling and show that Dsg3 acts as an upstream regulator of Src 

signalling. 

It is noted that PP2 treatment seemed to recover the reduced levels of E-

cadherin protein in Dsg3 overexpressed A431 cells (Figure 25B), suggesting 

that Src may be involved in the molecular mechanism underlying the loss of E-

cadherin in the A431 cells. This suggestion is consistent with a study by Nam 

and colleagues, who showed that the inhibition of Src by PP2 can restore E-

cadherin-mediated cell adhesion possibility through up-regulation of E-

cadherin/catenin gene expression or other mechanisms involving downstream 

effector, Rho (Nam et al, 2002). Alternatively, the reduced levels of E-cadherin 

protein could be related to an E3 ubiquitin-ligase Hakai, which is known to 

interact with the tyrosine phosphorylated E-cadherin and causes 

ubiquitination and endocytosis of E-cadherin (Fujita, 2002). 

It is acknowledged that there is insufficient loading control for 

immunoprecipitation efficiency and total lysates in some of my experiments. 

To verify immunoprecipitation efficiency, the Western blot should be re-

probed with the same immunoprecipitating antibody to ensure equal amount 

of immunoprecipitation was carried out in each lane i.e anti-phospho-tyrosine 

antibody in Figure 24A and 25A; anti-E-cadherin, -p120 and -β-catenin 

antibodies in Figure 24B, C and D and anti-caveolin-1 antibody in Figure 30A. 

Similarly, the appropriate loading control for total lysates in Figure 25B, 25C, 

26, 27 and 28 were not available. Re-probing the Western blot with anti-actin 

or anti-tubulin antibodies will improve the reliability of the results. However, 

in these experiments, no significant change was observed in the levels of total 

Src protein between A431-V and -D3 and hence we argue that the total Src 

could be used to demonstrate relatively equal protein loading. In Figure 24B 

and 28, anti-phospho-tyrosine was used as the immunoprecipitating antibody 
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and a very high background was observed, which affected the quality of my 

Western blots. Nevertheless, the changes in the signal intensities of the test 

samples could still be observed and compared with the control cells. 

 

6.2.2 The involvement of Caveolin-1 

The Dsg3 protein does not possess a tyrosine kinase domain and hence 

another protein that associates with both Src and Dsg3 is likely involved in the 

Dsg3-induced Src activation. One of the possible candidates is caveolin-1, a 

ubiquitously expressed integral membrane protein, which plays a major 

physiological function, including endocytosis and transcytosis processes, 

signal transduction and cholesterol homeostasis (Williams & Lisanti, 2005). It 

was suggested that caution must be taken when interpreting the data relating 

to the multiple actions of caveolin as the list of putative caveolin interacting 

partners is extensive. For instance, it was shown that depletion of caveolin-1 

is associated with changes in the expression or phosphorylation of Akt, 

glycogen synthase kinase 3β, Paxillin, Src, c-Jun N-terminal kinase and 

mitogen-activated protein kinase (Hehlgans et al, 2009).  

To demonstrate that Dsg3 is capable of interacting with caveolin-1, 

immunofluorescence and PLA assay were carried out. I showed that 

overexpression of Dsg3 enhanced the colocalisation between Dsg3 and 

caveolin-1 as compared to A431-V control cells. This result was also validated 

by the PLA assay, confirming that Dsg3 and caveolin-1 were indeed in close 

proximity of each other (Figure 29A and B). Furthermore, other result based 

on sequence analysis suggested that the interaction between Dsg3 and Cav-1 

is likely mediated via a potential binding site at the residues 789-899 in the C-

terminal of Dsg3 (internal communication), the same site in Dsg2 that has 

been shown to bind to Cav-1 (Brennan et al, 2011). 

Wei and colleagues proposed a integrin clustering theory, in which integrins 

functionally modify the physical interaction between caveolin-1 and Src and in 
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turn lead to the release of Src and its subsequent autoactivation (Wei et al, 

1999). Based on this study, we hypothesise that Dsg3 might activate Src by a 

similar mechanism, i.e. Dsg3 competes with Src for a potential binding site on 

the scaffold domain of caveolin-1 protein (Couet et al, 1997) and in turn leads 

to the release and auto-activation of Src. Using both a gain and loss of Dsg3, I 

showed that overexpression of Dsg3 enhanced its binding with caveolin-1 and 

reduced the association between caveolin-1 and Src compared to that of 

A431-V control cells (Figure 30). This finding was confirmed in HaCaT cells 

with Dsg3 depletion, in which knockdown of Dsg3 reduced its associaton with 

caveolin-1 and increased the binding of caveolin-1 and Src as compared with 

control siRNA-treated cells.  

My attempts to probe for pSrc that was co-purified with caveolin-1 were 

unsuccessful. We speculate that Src is released from or loss its binding 

capacity with the caveolin-1 complex upon activation, allowing Src to 

associate preferentially with the E-cadherin/catenins complex and engages in 

E-cadherin-Src signalling. Alternatively, this could be due to the sensitivity of 

the Western blot analysis, which precludes the limited amount of pSrc protein 

or spatial analysis of phosphorylation. Although my model offers a possible 

molecular explanation of how caveolin-1 is involved in the Dsg3 induced-Src 

activation, this requires considerable further investigation. 

 

6.2.3 Src signalling 

Individual signalling pathways often overlap and ‘cross-talk’ with each other. 

Understanding the spatiotemporal and bidirectional intracellular signalling 

events is important in addressing the molecular mechanisms involved. We 

found that pSrc (Figure 26 and 27) was only detectable by Western blot 

analysis in a narrow window of time when cells were approaching confluence. 

Negative result for pSrc was consistently observed in both sparse culture (less 

than ~90%) and over confluent cells (more than 2 days), suggesting that the 

Src activation in our system is depended upon the cell density and degree of 
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culture confluence. To ensure general reproducibility of the overall results, 

the culture condition for all my experiments on Src signalling was 

standardised and carried out in freshly confluent culture. Cells were treated 

with calcium-free medium for 1 hour to disrupt the existing cell-cell adhesion 

and subsequently replaced with normal calcium containing medium 

(DMEM+10% FCS) for another 5 hours to allow the re-establishment of cell-

cell contacts prior to co-immunoprecipitation. In this experimental setting, it 

is unlikely that replacing the calcium-free medium with normal calcium 

containing medium could contribute to the altered levels of Src activation as 

our measurement was based on the relative comparison between test and 

control samples. However, we cannot rule out the possibility that the baseline 

levels of tyrosine phosphorylation in my control cells (both A431-V and 

HaCaTs) were contributed by the growth factor from the normal calcium-

containing medium. Alternative experimental approaches are required to 

validate whether the reduced levels of phospho-Src in E-cadherin 

immunoprecipitates was caused by the overall decrease of phospho-Src in 

lysates of Dsg3 RNAi (Figure 27). Nevertheless, our results do support the 

concept that the Dsg3 is involved in the regulation of Src signalling and the 

tyrosine phosphorylation of its downstream adherens junctional proteins.  

Taken together, we believe that Dsg3 has a novel modulatory role in the 

regulation of E-cadherin-mediated adherens junctions by fine-tuning Src 

activation. The clinical relevant of this finding was further supported by 

immunostaining in pemphigus patient samples. Enhanced pSrc signals and 

disruption of E-cadherin are readily detected in the suprabasal layers above 

the blister as well as in the pre-lesional areas of oral mucosa in PV patients 

(Tsang et al, 2012b). This finding is consistent with our observation that the 

Src activation in our system is dependent upon the degree of culture 

confluence. Thus, we hypothesise that Src is only activated in conditions 

where cell-cell adhesion is weak/destabilised such as wounding or diseased 

skin such as pemphigus. It is likely that Src signalling is required during 

junction assembly or wound healing but shut down after establishment of 
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cell–cell junctions in confluent monolayer culture / intact normal epithelial 

tissue.  

 

6.2.5 Future work 

The Src family members such as c-Src, Yes and Fyn are predominantly 

expressed in keratinocytes and thus analysis of other Src family members or 

isoform(s) will provide further insight into the specific role(s) of Dsg3 in the 

regulation of Src family kinases. It is acknowledged that immunoprecipitation 

with phospho-tyrosine antibodies (Figure 28) would subject to caveats as this 

method does not distinguish between tyrosine-phosphorylated proteins and 

proteins associated with tyrosine-phosphorylated protein. Other experiment 

using reverse co-immunoprecipitation with specific catenin or cadherin can be 

used to confirm this result. 

 

To confirm that the reduced levels of phospho-Src in E-cadherin 

immunoprecipitates are specific (Figure 27), other techniques such as kinase 

activity assay and phospho-specific Enzyme-Linked Immunosorbent Assay 

(ELISA) can be used. Kinase activity assay is used to directly detect or assess 

the activity of the specific kinases in vitro. It is performed by 

immunoprecipitating Src from lysate and incubates it with tyrosine kinase 

substrate in the presence of ATP. The kinase activity is measured by detecting 

the enzyme reaction by product, ATP. As for the indirect phospho-specific 

Enzyme-Linked lmmunosorbent Assay, cell lysate was first added onto the 

plate coated with the capture antibody specific for Src. Subsequently, a 

secondary antibody, specifically for the phosphorylation site was added for 

the detection process. The intensity of the resulting signal from these 

methods could be measured using colorimetric or fluorometric detection 

systems. ELISAs are more quantitative than Western blotting and the use of 

two antibodies specific for the target protein increase the specificity and allow 

phospho-protein levels to be accurately assessed.  
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In agreement with the finding for Dsg2 (Brennan et al, 2011), other results 

based on sequence analysis identified a potential binding site at the residues 

789-899 in the C-terminal of Dsg3 that could bind to caveolin-1 (internal 

communication). To examine whether caveolin-1 is indeed involved in the 

Dsg3 induced-Src activation, a GST pull down assay can be used to examine if 

caveolin-1 is directly interacted with the purified GST fusion protein 

containing the full-length or C-terminus of the Dsg3 protein immobilised on 

glutathione-agarose beads. To evaluate whether the Dsg3/caveolin-1 

interaction occurs in this domain (aa 789-899), GST fusion proteins carrying 

various portions of the cytoplasmic domain of Dsg3 can be used to pull down 

with caveolin-1. This experiment will help to confirm that the interaction 

between Dsg3 and caveolin-1 is located within residues 789-899 of the C-

terminal of Dsg3. To further substantiate the functional requirement of this 

domain in vivo, the same pull down experiment can be carried out with the 

truncated mutant of Dsg3 that lacks aa 789 – 899 and compare it with the full-

length Dsg3 protein.  

Since we assume that Dsg3 and Src bind to the same site of the caveolin-1 

protein, it would be necessary to determine whether they can interact 

competitively with caveolin-1. To test this, pull down assay can be carried out 

in A431 cells using a purified GST fusion protein carrying the full-length 

caveolin-1 molecule immobilised on glutathione-agarose beads. If my 

hypothesis is correct, the GST-caveolin-1 would be able to pull-down Src in 

A431-V control cells as expected. Conversely, the enhanced levels of Dsg3 in 

A431-D3 cells would interfere with the interaction between Src and caveolin-

1, such that the binding of Src to GST-caveolin-1 would be reduced 

accordingly. We would also expect to see the enhanced binding between Src 

and E-cadherin in A431-D3 cells. 
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6.2.6 Summary 

Using both a gain- and loss-of-function analysis, I demonstrated that Dsg3-

induced tyrosine phosphorylation of adherens junction proteins was Src-

dependent in A431 cells. Overexpression of Dsg3 increased E-cadherin/Src 

signalling with enhanced levels of Src and pSrc co-purified with E-cadherin, 

while knockdown of Dsg3 inhibited this pathway with reversed effect. I also 

showed evidence that caveolin-1 is involved in this signalling pathway. It is 

likely that Dsg3 completes with Src for a common binding site of caveolin-1 

and in turn causes the activation of Src in my system. Taken together, we 

believe that Dsg3 acts as an upstream regulator of Src signalling in the 

regulation of E-cadherin-mediated adherens junction formation. 
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CHAPTER 7 

DSG3 IS INVOLVED IN THE REGULATION OF ACTIN 

CYTOSKELETON  

7.1 Results 

7.1.1 Dsg3 and actin colocalisation 

It was demonstrated that overexpression of Dsg3 in A431 cells significantly 

enhances the membrane protrusions as compared with A431-V control cells 

or cells with relatively low levels of Dsg3 protein (Tsang et al, 2010). This 

observation was in line with the confocal analysis in Figure 31, which shows 

that Dsg3 co-localises with F-actin in HaCaT cells, particularly with the cortical 

actin at the cell borders (Tsang et al, 2012a). Based on these results, I 

speculated that Dsg3 might play a role in the regulation of actin organisation. 

 

Figure 31: Colocalisation between Dsg3 and actin at the cell borders in 
HaCaT cells. 

HaCaT cells were co-stained with mouse anti-Dsg3 antibody, 5H10 and the secondary 

conjugated antibody (Alexa Fluor 568) along with A488 conjugated phalloidin. Arrows 

indicate colocalisation between Dsg3 and F-actin at the cell borders. Two 

independent experiments were performed and similar reproducible results were 

obtained (confocal images courtesy of Wan H). 
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To address whether Dsg3 is involved in the regulation of actin organisation, 

immunofluorescence staining for Dsg3 and actin was carried out in cells with 

either overexpressing or knockdown of Dsg3 and the degree of colocalisation 

was quantifed and compared with their respective controls. In the gain of 

function approach, A431-V and -D3 cells were fixed with 3.8% formaldehyde 

and permeabilised with 0.1% Triton X-100. The cells were co-stained for 

mouse anti-Dsg3 antibody, 5H10 and the secondary conjugated antibody 

(Alexa Fluor 568) along with A488 conjugated phalloidin. Six arbitrary images 

were taken by fluorescence microscopy. The colocalisation index in Figure 32, 

which highlighted in white was quantified by ImageJ. As shown in Figure 32A 

and C, overexpression of Dsg3 enhanced the colocalisation of Dsg3 and actin 

by ~6-fold as compared with A431-V control cells (p<0.001). This finding is 

further strengthened by the loss of function approach in which siRNA-

mediated knockdown of Dsg3 (RNAi-2) was carried out in HaCaT cells and co-

stained with Dsg3 and F-actin as mentioned above. Figure 32C and D show 

that knockdown of Dsg3 caused the opposite effect with ~4-fold reduction in 

the colocalisation between Dsg3 and actin as compared with control siRNA-

treated cells (p<0.001). The Western blots of total lysate show that Dsg3 was 

overexpressed in A431-D3 cells (Figure 32B), while efficient suppression of 

Dsg3 by RNAi-2 was observed in HaCaT cells (Figure 32D) with actin as the 

loading control. Taken together, these results suggest that the degree of 

colocalisation between Dsg3 and actin is highly dependent upon the Dsg3 

protein levels. 
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Figure 32: The colocalisation index between Dsg3 and F-actin in A431 and 
HaCaT cells. 

A and C) The representative immunofluorescence images of cells with either 

overexpression of Dsg3 in A431 or knockdown of Dsg3 in HaCaT cells. Cells were co-

stained for mouse anti-Dsg3 antibody, 5H10 and the secondary conjugated antibody 

(Alexa Fluor 568) (red) along with A488 conjugated phalloidin (green). The 

colocalisation between Dsg3 and F-actin was highlighted in white and measured by 

ImageJ. B and D) Western blot analysis of Dsg3 protein levels in A431 and HaCaT cells 

with actin as the loading controls. Two independent experiments were performed 

and similar reproducible results were obtained. The bar charts show the average 

colocalisation between Dsg3 and actin per cell. Error bars indicate mean ± SEM. Scale 

bars are 20μM.  
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7.1.2 Association between Dsg3 and actin  

To determine whether Dsg3 formed a complex with actin, co-

immunoprecipitation was performed using cell lysates prepared from both 

HaCaT cells and human breast skin samples. The epidermis was first separated 

from dermis using dispase and subsequently extracted with RIPA buffer 

containing 1% NP-40. In parallel, HaCaT cells were grown to freshly confluent 

and extracted using the same lysis buffer. The resulting protein lysates were 

subjected to co-immunoprecipation with mouse anti-Dsg3 antibody, 5H10 and 

Western blotted for actin, E-cadherin and Dsg3.  

As shown in Figure 33, the Western blots of Dsg3 immunoprecipitates show 

that the Dsg3/actin association was detected in HaCaT cells as well as lysates 

from human epidermis. No binding of Dsg3 with actin was seen in the mouse 

pre-immune immunoprecipitate and was used as the negative control. For 

input, the Western blots of total lysates show that the protein levels of actin, 

E-cadherin and Dsg3 in both lysates. Taken together, these results indicate 

that Dsg3 associates with actin in normal keratinocyte HaCaTs as well as in the 

epidermis of human breast skin samples. 
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Figure 33: Association between Dsg3 and actin.  

Western blots of Dsg3 immunoprecipitates and total lysates of HaCaT cells and the 

epidermis of human breast skin. Confluent HaCaT cells and epidermis of human 

breast skin were extracted with RIPA buffer containing 1% NP-40. Five hundred 

micrograms (µg) of the resulting protein lysates were subjected to co-

immunoprecipation with mouse anti-Dsg3 antibody, 5H10 and Western blotted for 

actin, E-cadherin and Dsg3. Pre-immune mouse serum was used as the negative 

control. For input, 10µg of protein lysates were loaded in each lane and Western 

blotted for the indicated proteins. Two independent experiments were performed 

and similar reproducible results were obtained. 
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7.1.3 Overexpression of Dsg3 enhances cellular membrane protrusions and 

actin dynamics 

In Figure 34A, the representative phase contrast images show that 

overexpression of Dsg3 elicited striking morphological changes, resulting in 

the formation of enhanced membrane protrusions in A431-D3 cells. Similarly, 

enhanced membrane protrusions were also observed in other Dsg3 

overexpressing epithelial cells such as MDCK cells (internal communication). 

To compare the relative enhancement of membrane protrusions between 

A431-V and D3 cells, time-lapse video microscopy was used. 

Firstly, a limiting dilution assay and clonal expansion were carried out (Refer 

to Material and Methods Chapter 3.2.2) to ensure a more homogeneous 

phenotype of A431-D3 cells prior to time-lapse video microscopy. Clones with 

relatively high levels of Dsg3 protein were selected from the A431-D3 mixed 

population. As demonstrated in Figure 34B, the Western blot shows that 

A431-C7 has the highest levels of Dsg3 protein as compared to A431-D3 cells 

with GAPDH as the loading control. We believe that A431-C7, the clone with 

the highest levels of Dsg3 protein, will give a more homogeneous phenotype 

and hence, was used in the time-lapse microscopy instead of A431-D3 cells. 

The video stills in Figure 34C shows that A431-V cells were less spread out and 

displayed much less pronounced membrane protrusions compared to that of 

A431-C7 cells. 
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Figure 34: Overexpression of Dsg3 enhances membrane protrusions in A431-
C7 cells. 

A) The representative phase contrast images of A431-V and -D3 cells in the uncoated 

culture dish. B) Western blot analysis of Dsg3 protein levels in A431 cells with GAPDH 

as the loading control. C) The representative time-lapse video stills of A431-V and -C7 

cells at 5 minutes interval (video courtesy of Wan H) (Tsang et al, 2012a). Cells were 

seeded in a dish 3 hours before time-lapse video microscopy. 
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Based on these observations, there appeared to be a direct positive 

relationship between the levels of Dsg3 protein and the formation of 

membrane protrusions, speculating that Dsg3 might exert a role in the 

regulation of actin organisation and dynamics. To address this question, the 

photoconvertible probe EosFP-actin, which switches from green (488 nm) to 

red emission (543 nm) upon photoconversion was used in the following 

experiment. By photoconverting a small region of actin, it is possible to 

analyse the actin turnover and trafficking of the photoconverted actin 

(Burnette et al, 2011). A431-V and -D3 cells were transiently transfected with 

the photoconvertible probe EosFP-actin and the effect of Dsg3 on the actin 

dynamics was analysed using a spinning disk confocal microscope.  

At 48 hours post-transfection, cells were seeded onto the glass-bottom cell 

culture dishes in a low calcium medium (EpiLife) for 1 hour prior to 

photoconversion. Four to five different regions near the edge of cells 

expressing EosFP-actin were photoconverted and the dynamics for each 

region was followed by collecting an image every 10 sec for 10 minutes. The 

results were then combined to account for inherent variability in actin 

dynamics. As shown in Figure 35, quantitative analysis of the fluorescence 

intensity of actin in the photoconverted regions shows that A431-D3 cells 

exhibited a significantly faster turnover of actin as compared with A431-V 

control cells (P< 0.001, Figure 36A-C). In addition, the stress fibres were 

observed to be less stable (Figure 36A) and reduced immobile fraction of actin 

was noted in Dsg3 overexpressing cells as compared with A431-V cells 

(p=0.05, Figure 36D). Taken together, my results suggest that overexpression 

of Dsg3 causes the actin cytoskeleton to be more dynamic near the edges of 

cells.  
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Figure 35: Overexpression of Dsg3 enhances actin turnover in A431 cells. 

A) Confocal time-lapse series of A431 cells transfected with Eos-FP Actin. Images 

were acquired using 488 and 543nm laser lines showing the GFP and RFP species of 

actin. Images were acquired over a 3 minute duration, seconds after photo-

conversion. Time-lapse frame rate was 1 image every 10 sec. Boxes show the region 

of interest (ROI) after being photoconverted. B) Graph shows quantification of actin 

dynamics in A431-V and -C7 cells following photoconversion of Eos-FP Actin from GFP 

to RFP over time. The intensity profiles for each ROI were normalised and the mean 

percentage recovery was measured. C) Graph shows quantification of the rate of 

actin turnover following photoconversion of a small region of Eos-FP actin. D) 

Summary table of results (courtesy of Wheeler A). Data were pooled of 20 ROI from 4 

independent experiments (*P<0.05, ***P<0.001 using Students t-test). Scale bars, 

5μM.  
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7.1.4 Dsg3 activates Rac1 and Cdc42 GTPases 

It is known that overexpression or up-regulation of Rac1 and Cdc42 are 

associated with increased membrane protrusions and filopodia/microspike 

formation (Ridley, 2006), implying that Dsg3 may be involved in regulating 

these small GTPases. To determine whether overexpression of Dsg3 altered 

Rac or Cdc42 activity, a series of pull down experiments of the Rac1/Cdc42 

activation assay were carried out (Refer to Materials and Methods Chapter 

3.7.3.1). The CRIB domain of Pak-PBD fused with GST was used as the baits to 

selectively pull down the active GTP-bound form of Rac1 and Cdc42 from 

A431-V and-D3 cells and Western blotted for Cdc42 and Rac1.  

In Figure 36A, the GST Pak-PBD pull down experiment shows that 

overexpression of Dsg3 significantly enhanced the active Rac1 and Cdc42 GTP 

levels as compared with A431-V control cells. No binding was observed in the 

GST alone and hence, rules out the possibility of non-specific binding. For 

input, the Western blots of total cell lysates show no difference in the total 

protein levels of Rac1 and Cdc42. In parallel, RhoA pull down was performed 

using the GST fused Rhotekin-PBD. Figure 36B shows that overexpression of 

Dsg3 also enhanced the active RhoA GTP levels, but to a lesser extent as 

compared to Rac1 and Cdc42. The Western blots of the total cell lysate show a 

small reduction of RhoA in A431-D3 cells. These findings suggest that Dsg3 

might be involved in the regulation of Rho GTPase signalling pathways that 

control the actin-based junction formation, maintenance of cell shape and the 

epithelial morphogenesis. 
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Figure 36: Overexpression of Dsg3 significantly enhances the active Rac1 and 
Cdc42 GTP levels.  

Western blots of GST Pak- or Rhotekin-PBD pull down and total lysates of A431 cells. 

A431 cells were grown to freshly confluence, subjected to RIPA buffer extraction and 

500 g of the resulting protein lysates were used. A) The CRIB domain of Pak-PBD or 

B) Rhotekin-PBD fused with GST was used to pull down the active GTP-bound A) Rac1 

and Cdc42 or B) RhoA from A431-V and -D3 cells. SDS sample buffer was used to 

elute the GTP-bound Rac1 and Cdc42/RhoA and their associated proteins. Twenty 

microliters (µl) of the protein lysates were loaded and Western blotted for Rac1, 

Cdc42 and RhoA. For input, 20µg of protein lysates were loaded in each lane and 

Western blotted for the indicated proteins. Three experiments (A) and two 

experiments (B) were performed and similar reproducible results were obtained.   
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To test whether Rac1 activation was required for the Dsg3-induced membrane 

activity, the A431 cells were treated with the Rac1 inhibitor, NSC23766, prior 

to spinning disk confocal microscopy. A431-V and -C7 cells were treated with 

or without 30µM Rac1 inhibitor for 6 hours before being transferred onto the 

glass-bottom culture dishes in a low calcium medium (EpiLife). Thirty minutes 

later, 1µM of carboxyfluorescein diacetate, succinimidyl ester (CFSE), which 

was used to label the cell membrane, was added into the medium prior to live 

cell imaging. Time-lapse series was collected every 10 sec for 3 minutes. Three 

to four different active regions per cell near the edge of cell were selected and 

data were pooled from 24 ROI in each cell type. The image data were analysed 

using kymograph in MetaMorph software. 

Figure 37A shows the representative time-lapse video images of A431-V and -

C7 cells prior to the addition of Rac1 inhibitor. The membrane protrusions 

were significantly enhanced in A431-C7 cells, whereas the plasma membrane 

of A431-V cells was relatively less active (P< 0.01). In addition, A431-C7 cells 

appeared to be larger and more spread out in proportion to the cell body size 

as compared with A431-V control cells. The addition of Rac1 inhibitor strongly 

affected the cell morphology of A431-D3 cells by reducing the average 

protrusion velocity to the baseline levels similar to that of A431-V cells treated 

with the Rac1 inhibitor (data not shown). It was also noted that the Rac1-

inhibited cells were less spread out and smaller as compared with the 

untreated cells, suggesting that Rac1 activation is important in the Dsg3-

induced protrusive membrane dynamics in A431 cells. The bar chart in Figure 

37B shows the average protrusion velocity of A431-V and D3 cells with or 

without the drug treatment. 

The observed Dsg3-dependent membrane protrusions are the morphological 

aspects of cell migration (Navarro et al, 2004) and hence, I sought to 

determine if the Dsg3-induced cell protrusions were associated with the 

enhancement of cell migration. To test this, A431 cells were treated with or 

without the Rac1 inhibitor NSC23766 (same as above) and the effect of Dsg3 

on cell migration was filmed using a time-lapse microscopy for a duration of 
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18 hours. A time-lapse series was collected every 5 minutes and the cell speed 

was quantified by tracking an individual cell over the sequence of time-lapse 

digital images. However, only the first 3 hours of the time-lapse series were 

analysed since cells die after 3 hours of imaging. 

As shown in Figure 38, no obvious change in the cell migration was observed 

in A431-V and -D3 cells within the 3 hours time frame. The bar chart shows 

the combined results of 80 cells from three independent experiments for each 

condition. Interestingly, it was noted that overexpression of Dsg3 enhanced 

cell motility initially in the presence of Rac1 inhibitor, NSC23766, but this 

phenomenon disappeared later due to cell death, which occurred after a 3 

hour period of drug treatment. However, cell death was not observed in 

A431-V cells with NSC23766, which remained viable and grew normally. 

Further experimental investigations are needed in order to draw conclusions. 

These data suggest that the regulation of Dsg3 and Rac1 could play a role in 

apoptosis and cell survival. 
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Figure 37: Overexpression of Dsg3 enhances the average protrusion velocity. 

A431 cells were treated with or without the Rac1 inhibitor, NSC23766, at the 

concentration of 30μM and labeled with 1µM of carboxyfluorescein diacetate, 

succinimidyl ester (CFSE). Time-lapse series was collected every 10 sec for 3 minutes. 

A) The representative time-lapse video images of A431-V and -C7 cells without 

NSC23766. B) Bar chart shows the average protrusion velocity of A431-V and -C7 cells 

in Figure 37A. Velocity measurements were obtained from kymograph analysis of the 

cell membrane. The total number of cell edges analysed per condition is >24 (***p< 

0.001). 
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Figure 38: Overexpression of Dsg3 enhanced cell motility initially in the 
presence of Rac1 inhibitor, NSC23766, but this phenomenon was 
disappeared later. 

Bar chart shows the average velocity of cell migration in A431-V and -D3 cells treated 

with or without Rac1 inhibitor. Time-lapse series of 18 hours duration were acquired 

at every 5 minutes intervals. Data were collected from the first 3 hours of migration 

due to cell death in A431-D3 cells treated with NSC23766 inhibitor. Data were pooled 

from three independent experiments (n=80, mean ± SEM, ***p< 0.001).  
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7.1.5 Rac1 activation is required for Dsg3/actin interaction and 

colocalisation 

My result showed that Rac1 activity is enhanced in Dsg3 overexpressed A431 

cells, raising the possibility that Rac1 might be involved in the interaction 

between Dsg3 and actin. To address this question, the effect of Rac1 mutants 

and Rac1 inhibitor on Dsg3/actin association and colocalisation were 

investigated. Co-immunoprecipiation with rabbit anti-actin antibody was 

performed in HaCaT cells pre-treated with either the dominantly negative 

N17Rac1 mutant or the Rac1 NSC23766 inhibitor. As demonstrated in Figure 

39, transient expression of the dominantly negative N17Rac1 mutant, which 

suppresses the activity of cellular Rho GTPases, greatly reduced the 

association between Dsg3 and actin. In parallel, titrating the dose of the Rac1 

inhibitor NSC23766 at the concentration of 30-50µM for 6 hours shows dose-

dependent inhibition of Dsg3 and actin association. These results suggest that 

Rac1 activity is involved in the Dsg3-actin complex formation. 

 

To validate this findings, A431 cloned cells expressing high (C7) or low (C11) 

levels of Dsg3 protein were pre-treated with either the Rac1 mutant or the 

Rac1 inhibitor prior to immunostaining for anti-Dsg3 antibody, 5H10 and the 

secondary conjugated antibody (Alexa Fluor 568) (red) along with A488 

conjugated phalloidin (green). The percentage of colocalisation, which 

highlighted in white was quantified by ImageJ. In Figure 40, the representative 

immunofluorescence images show that the colocalisation between Dsg3 and 

F-actin was greatly reduced in cell expressing the N17Rac1 mutant or treated 

with the NSC23766 inhibitor (n=6, p<0.001), demonstrating that the 

colocalisation Dsg3 and actin is dependent on Rac activity. Taken together, 

both biochemical and immunostaining analysis suggest that Dsg3, Rac1 and 

actin are components of a novel signalling complex that might be associated 

with the actin-based motility and morphogensis. 
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Figure 39: Rac1 activation is required for the association between Dsg3 and 
actin. 

Western blots of actin immunoprecipiates and total lysates of HaCaT cells with or 

without treatment. HaCaT cells with either the expression of Rac1 dominant negative 

mutant (N17Rac1) or treated with the Rac1-specific inhibitor (NSC23766, 30-50µM, 6 

hours) were extracted with RIPA buffer containing 1% NP-40. Five hundred 

micrograms (µg) of the resulting protein lysates were subjected to co-

immunoprecipation with rabbit anti-actin antibody and Western blotted for Dsg3, 

actin and heavy chain. Pre-immune rabbit serum was used as the negative control. 

For input, 10µg of protein lysates were loaded in each lane and Western blotted for 

the indicated proteins. The representative Western blots were obtained from three 

independent experiments and similar reproducible results were obtained. B) The bar 

chart shows the average band densitometry of the association between Dsg3/actin 

obtained from three independent experiments (mean ± SEM, *P=0.03). 

 

 

 

 

 

A 

B 



 

 

 157 

 

 

Figure 40: Rac1 activation is required for the colocalisation between Dsg3 
and actin.  

The representative immunofluorescence images of A431 cloned cells. A431-C11 and -

C7 cells were pre-treated with either the N17Rac1 or NSC23766 (30µM) and co-

stained with anti-Dsg3 antibody, 5H10 and the secondary conjugated antibody (Alexa 

Fluor 568) along with A488 conjugated phalloidin. Six arbitrary images in each 

coverslip were acquired. The colocalisation index, which highlighted in white was 

measured by ImageJ. B) Western blot of A431 cloned cells with actin as the loading 

control. Ten micrograms (µg) of protein lysates were loaded in each lane. C) The bar 

chart shows the average Dsg3/actin colocalisation obtained from two independent 

experiments (mean ± SEM, ***p<0.001). 
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7.2 Discussion 

7.2.1 Role of Dsg3 in the regulation of actin cytoskeleton  

We showed that the endogenous Dsg3 was partially colocalised with actin at 

cell periphery (Figure 31). Such colocalisation was affected by both 

overexpression and knockdown of Dsg3 (Figure 32), suggesting that the 

degree of colocalisation was dependent upon the levels of Dsg3 protein. It is 

acknowledged that the immunostaining in Figure 32 and Figure 39 were not 

carried out in freshly confluent cell culture like the Src signalling experiments 

in Chapter 6. However, we found that the interaction between Dsg3 and actin 

was consistently detected by both immunostaining and Western blot analysis. 

In addition, the levels of actin protein were not affected by calcium or cell 

confluence (Internal communication) and hence we believe that the effect of 

cell confluence would not be of any significance.  

We further confirmed the Dsg3/actin association by co-immunoprecipitation, 

which showed that Dsg3 and actin could be immunoprecipitated as a complex 

in HaCaT cells as well as in human breast skin samples (Figure 33). The 

biological relevance of such interaction was supported by the observation that 

the junctional actin is severely affected in pemphigus vulgaris, where PV-IgG 

target Dsg3 and cause its depletion from the desmosomes. One may concern 

that the Dsg3/actin association could be a non-physiological event especially 

with the abundant proteins such as actin. However, this finding is further 

supported by other evidence obtained from the mass spectrometry studies, 

which showed that actin is indeed bound to the Dsg3 cytoplasmic tail (internal 

communication). Other experiment such as the GST pull down assays can be 

used to confirm the Dsg3 and actin interaction.  

Next, Rac1 inhibition was carried out prior to immunostaining and co-

immunoprecipitation to address whether Rac is important in the Dsg3/actin 

interaction. I showed that the Dsg3 and actin association was reduced by both 

Rac1 dominantly negative mutant, N17Rac1 and Rac1 specific inhibitor, 

NSC23766 in a dose-dependent manner (Figure 38). It is believe that the 
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reduced Dsg3/actin association was not related to the off-target effect of the 

Rac inhibition. It was established that NSC23766 is effective in inhibiting the 

Rac activation without interfering with Cdc42 or Rho and their respective GEFs 

(Gao et al, 2004). Additionally, its specificity has been validated by Rac 

silencing and Rac knock-out experiments in more than 90 scientific studies 

(Dwivedi et al, 2010). It is acknowleged that inhibition of Rac could remove 

cadherin complexes from junctions and have a negative impact on the actin 

cytoskeleton (Braga et al, 1997). However, the Western blot analysis of input 

showed that the protein levels of actin or Dsg3 were not affected by both 

treatments (Figure 38). Further investigation is needed to confirm this issue 

since it is known that the regulation of cadherin function by the small GTPases 

could be ascribed to cell type specificity. 

A similar inhibitory effect with reduced colocalisation between Dsg3 and actin 

was observed following the Rac1 inhibition (Figure 39). The colocalisation 

index was quantified by ImageJ. We ruled out any false positive results 

contributed by bleed-through of fluorescence emission in the colocalisation 

analysis. The bleed-through artefact is unlikely to be an issue as each channel 

was acquired sequentially and no signal was detected when we tested the 

Alexa Fluor 488 fluorescence using the Alexa Fluor 568 detection channel and 

vice versa. 

We further speculate that Dsg3 might exert a role in the regulation of the 

actin cytoskeleton via Rho GTPases. The PAK-GST pull down experiments 

revealed that overexpression of Dsg3 significantly enhanced the levels of GTP 

bound-Rac1 and -Cdc42 (Figure 36). This result was confirmed by the pull 

down of GST alone, a critical control, which rule out the possibility of non-

specificity. The notion that Dsg3 regulates the actin dynamics is further 

corroborated by the fact that overexpression of Dsg3 considerably increased 

the rate of actin turnover. While the ability of active Rac1 and Cdc42 to 

produce enhanced membrane protrusions and ruffling has been well 

described previously (Ridley, 2006; Rudini & Dejana, 2008), the upstream 

signal regulators activating Rac1/Cdc42 during the process of cell-cell 



 

 

 160 

adhesion is less studied. Other evidence suggests that both protein kinase C 

and the Rac exchange factor, Tiam-1 are acting upstream of Rac (Kovacs et al, 

2002a). Our results indicate that Dsg3 is another potential candidate as the 

activator of Rac1/Cdc42 in cell adhesion, cell polarisation and dynamic 

morphogenesis. In the same set of experiments, a slight increase in the levels 

of RhoA GTP levels was detected in A431-D3 cells as compared to control 

cells. However, changes in the active RhoA levels between A431-V and D3 

cells were not as significant as compared with Cdc42 and Rac1, and thus not 

investigated further in the present study.  

A limiting dilution assay and clonal expansion were carried out to ensure a 

more homogeneous phenotype of A431-D3 cells. We believe that A431-C7, 

the clone with the highest levels of Dsg3 protein, will give a more 

homogeneous phenotype and hence, was used in the time-lapse microscopy 

instead of A431-D3 cells (Figure 34). It is acknowledged that the use of A431-

C7 and -D3 cells interchangeably in different experiments are not ideal as this 

could affect the reliability of my results. The time-lapse video images of A431-

V and -C7 cells showed that the membrane protrusions were significantly 

enhanced in A431-C7 cells as compared with A431-V control cells (Figure 

37A). The addition of Rac1 inhibitor strongly affected the cell morphology of 

A431-D3 cells and reduced the average protrusion velocity to the baseline 

levels similar to that of A431-V cells treated with the Rac1 inhibitor. These 

findings suggest that Rac1 activation is likely required for the Dsg3-induced 

membrane activity. Unfortunately, this data was not shown due to corrupted 

files. The involvement of Cdc42 was not tested in the above experiments due 

to time limitation. 

It is intriguing that overexpression of Dsg3 enhanced cell motility initially in 

the presence of Rac1 inhibitor, NSC23766, but this phenomenon disappeared 

later due to cell death that occurred after 3 hours of drug treatment (Figure 

38). It is still unclear the molecular mechanism underlying this phenomenon, 

perhaps it is associated with cell apoptosis and survival and cell-cell/matrix 

adhesion mediated by Rac1. In this experiment, A431 cells were seeded 
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sparsely prior to the live cell microscopy and examined the individual cell 

migration by manual tracking of the cell over the sequence of time-lapse 

digital images. We anticipated that this analysis of A431-V and D3 cells would 

show differences in cell migration as the other method using the scratch 

wounding assay has shown enhanced cell migration in Dsg3 overexpressed 

A431 cells (Tsang et al, 2010). 

The only difference between these two experiments was the cell density in 

which confluent culture was used in the scratch wounding assay, while sparse 

culture was used in the migration assay (Figure 38). We believe that cell death 

is unlikely caused by the cytotoxic effect of Rac1 inhibition as the 

concentrations of NSC23766 used in this study are similar to the 

concentrations used by others (Akunuru et al, 2012; Mitchell et al, 2008; Xu et 

al, 2009) and A431-V cells with NSC23766 remained viable throughout the 

duration of the experiment (18 hours). However, we cannot rule out the 

possibility that overexpression of Dsg3 in sparse culture might make cells 

more sensitive to the Rac inhibition-mediated apoptosis. This remains an 

interesting avenue of investigation in the future.  

 

7.2.2 Future work 

Further studies such as a GST pull-down assay can be use to confirm the 

existence of Dsg3 and actin interaction. The additional loss of function 

approach such as repeating the co-immunoprecipitation (Figure 33) in the 

Dsg3 knockdown cells or the use of reverse co-immunoprecipitation with actin 

and Western blot for Dsg3 will help to improve the reliablity of the results. 

Similarly, adjusting the washing stringency using a higher stringency buffer 

may help to reduce non-specific binding. It is noted that the Dsg3/actin 

colocalisation was not carried out in freshly confluent cell culture (Figure 32). 

It will be useful to evaluate the effect of cell density on the Dsg3/actin 

interaction and standardise the degree of cell confluence in each set of 

experiments. We demonstrated that Rac is important in the Dsg3/actin 
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association. To confirm the specificity of Rac1 inhibition (Figure 38 and 39), 

additional immunostaining experiments are needed to examine whether the 

inhibition of Rac could disrupt the localisation of E-cadherin in our cell system. 

Additionally, siRNA-mediated knockdown of Rac-1 prior to co-

immunoprecipitation can be carried out and we would expect to get similar 

result with reduced Dsg3/actin association as observed in Figure 38.  

 

We believe that A431-C7, the clone with the highest levels of Dsg3 protein, 

will give a more homogeneous phenotype in the time-lapse microscopy 

(Figure 34). Further characterisation on the protein levels of E-cadherin and 

Src will help to ensure that the A431-C7 sub-cloned cells remain similar (same 

basic phenotypes) to that of the parental A431-D3 cells. We hypothesised that 

the molecular mechanism underlying Dsg3-induced cell death in the presence 

of Rac1 inhibitor is associated with cell survival and cell-cell/matrix adhesion 

mediated by Rac1 (Figure 37). This experiment can be repeated with lower 

concentrations of the Rac1 inhibitor to rule out the possibility that cell death 

was induced by the cytotoxic effect of Rac1 inhibition. This will also help to 

determine if overexpression of Dsg3 in sparse culture would make cells more 

sensitive to Rac-mediated apoptosis. Alternatively, the scratch wounding 

assay can be used to examine cell migration in the presence or absent of Rac1 

inhibitor.  

 

7.2.3 Summary 

Owing to the nature of protein abundant such as actin, I was unable to make a 

conclusion of the physiological interaction between Dsg3 and actin. However, 

my results suggested that Dsg3 colocalised and interacted with actin in a 

Rac1-dependent manner. In addition, overexpression of Dsg3 caused an 

overall increase in Rac1- and Cdc42-GTP activities, resulting in pronounced 

membrane protrusions and enhanced rate of actin turnover. The relationship 

between Dsg3 and Cdc42 or Rac1 activation is still only marginally analysed. 

We believe that this novel Dsg3-Rac1/Cdc42-actin pathway is essential for the 
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process of E-cadherin junctional assembly, cell polarisation and 

morphogenesis. 
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CHAPTER 8  

FINAL DISCUSSION  
 

8.1 Cross-talk between Dsg3 and E-cadherin as well as the actin 

cytoskeleton 

Figure 41: A schematic diagram of my working model.  

A) The association between Dsg3 and E-cadherin enhances in a calcium-dependent 

manner and most likely involves both P120 and plakoglobin. B) Dsg3 might compete 

with Src for a potential binding site on the scaffold domain of caveolin-1 protein 

(Couet et al, 1997). Subsequently, Src is released from or loss its binding capacity 

with the caveolin-1 complex upon activation, allowing Src to associate preferentially 

with the E-cadherin/catenins complex and engages in E-cadherin-Src signalling. C) 

Dsg3 is also involved in the dynamic reorganisation of actin via Rho GTPases. 

 

The aim of this study was to investigate the association between Dsg3 and E-

cadherin or actin and determine whether these interactions have any 

functional influence on E-cadherin-mediated adherens junction formation, 

which in turn contributes to epithelial differentiation programs and tissue 
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morphogenesis. My study so far suggests that Dsg3 is capable of physically 

associating with E-cadherin or actin and functionally engages in the E-

cadherin-mediated adherens junction formation and the reorganisation of 

actin cytoskeleton through mechanisms involving the activation of Src and 

Rho GTPases signalling pathways.  The summary of my findings is shown in 

Figure 41. 

Using both immunofluorescence and biochemical approaches, I demonstrated 

that Dsg3 and E-cadherin colocalised and associated with each other in 

keratinocytes of both cultured cell lines and human breast skin samples. I 

further demonstrated that this complex formation is dependent on the 

extracellular calcium and gradually enhanced in a time-dependent manner 

upon calcium induction of cell-cell contacts and junction formation in 

differentiating keratinocytes. Owing to the technical limitation of biochemical 

analysis, I cannot rule out the possibility that the Dsg3/E-cadherin association 

also existed in non-ionic detergent insoluble fraction that is associated with 

the intermediate filaments. However, we have evidence suggesting that the 

majority of the Dsg3/E-cadherin interaction was present outside of the 

intercellular junctions, i.e. in the Triton soluble fraction of epithelial cells.  

The interactions between desmosomal and adherens junctional proteins have 

been reported in other tissues such as the intercalated discs of cardiac 

muscle (Borrmann et al, 2006), their biological significance remains unclear. 

To explore the physiological relevance of the Dsg3 and E-cadherin interaction 

in keratinocytes, a number of biochemical analysis were performed. We 

established our loss of function analysis in normal HaCaT keratinocytes, a 

spontaneously immortalised keratinocyte line-derived from human skin. My 

results indicated that knockdown of Dsg3 in HaCaT cells 1) caused reduction in 

the levels of the majority of desmosomal proteins; 2) resulted in retardation 

of E-cadherin recruitment to cell surface at early stages of calcium-induced 

cell-cell contacts and intercellular junction formation; and 3) had a negative 

impact on E-cadherin/Src signalling pathway with a consequence of reduction 
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in the phospho-tyrosine levels of the downstream adherens junctional 

proteins. 

We observed that knockdown of Dsg3 in HaCaT cells caused substantial 

reduction in the levels of the majority of the desmosomal proteins (Figure 20). 

We believe that this effect could not be solely attributed by the reduction of 

the Dsg3 protein, but rather by the secondary events of Dsg3 depletion on the 

protein levels and/or distribution of plakoglobin and E-cadherin. It was 

suggested that plakoglobin and E-cadherin are required to direct the initiation 

and organisation of desmosome formation (Gosavi et al, 2011). Hence, it is 

likely that knockdown of Dsg3 affects the amount of plakoglobin and E-

cadherin at the plasma membrane and this in turn prevents proper 

recruitment of desmosomal components into the junctions. This consequently 

changes the homeostasis of desmosomes and leads to elevated protein 

degradation and reduced levels of desmosomal proteins as observed by 

Western blot analysis (Figure 20). In this thesis, I did not address the effect of 

Dsg3 depletion on cell-cell adhesion strength. However, the results of the 

hanging drop and fragmentation assays obtained by other colleagues showed 

that weakening of cell-cell adhesion strength in epithelial cells with Dsg3 

knockdown, suggesting that Dsg3 indeed plays a positive role in the 

maintenance of strong cell-cell adhesion (Mannan et al, 2011). 

 

Although knockdown of Dsg3 did not affect the overall levels of E-cadherin 

protein (Figure 20), it caused delay or retardation of the E-cadherin 

recruitment at the cell-cell contacts during the process of calcium-induced 

junction assembly (Figure 23). We speculate that the molecular mechanism 

underlying the retardation of E-cadherin recruitment could be due to 

downregulation of Src signalling, which reduced the tyrosine phosphorylation 

of the adherens junctional proteins (Figure 28). As mentioned earlier in my 

introduction, Src-mediated tyrosine phosphorylation of the adherens junction 

proteins has a positive role in the regulation of cell-cell adhesion. For instance, 

inhibition of tyrosine kinase suppresses tyrosine phosphorylation of the 
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adherens junctional proteins and causes a significant reduction in adhesive 

strength of differentiating keratinocytes (Calautti et al, 1998). This is 

consistent with another study, which demonstrated that the decreased levels 

of tyrosine phosphorylation of E-cadherin cause its diffuse cytoplasmic 

distribution, resulting in a loss of functionality of the E-cadherin-catenin 

complex (Nawrocki et al, 1998). It is therefore attractive to postulate that 

knockdown of Dsg3 reduces the tyrosine phosphorylation of adherens 

junctional proteins and in turn affects the establishment of E-cadherin-

mediated cell-cell contacts and junction formation in epithelial cells. 

Alternatively, other proteins such as caveolin and p120 might play a role in 

the redistribution of E-cadherin in Dsg3 knockdown cells. Simultaneous 

expression of caveolin-1 and E-cadherin has been reported to be essential for 

the organisation and stability of adherens junctions. It was showed that 

knockdown of Cav-1 results in a fainter and discontinuous membrane staining 

of E-cadherin with a concomitant increase of its intracellular distribution 

(Miotti et al, 2005). In our study, we showed that overexpression of Dsg3 

enhanced its colocalisation with caveolin-1 at the plasma membrane and 

proposed that such interaction is likely involved in the E-cadherin/Src 

signalling pathway (Figure 41B). Thus, it is likely that knockdown of Dsg3 could 

affect the Cav-1 distribution at the plasma membrane, and in turn impairs Src 

signalling and the E-cadherin-mediated junction formation. 

It was shown that p120 is involved in stabilising the E-cadherin complexes 

when bound to the cell membrane (Anastasiadis & Reynolds, 2001). In the 

absence of E-cadherin, p120 is believed to accumulate in the cytoplasm and 

this characteristic is potentially relevant to the loss of E-cadherin in Dsg3-

deficient cells. My results suggested that p120 might be involved in the 

complex formation between Dsg3 and E-cadherin (Figure 41A) and hence, we 

anticipate that p120 may accumulate in the cytoplasm in Dsg3-deficient cells 

and potentially affects E-cadherin recruitment to the cell surface. However, 

this possibility requires further experimental support as knockdown of Dsg3 

did not affect the levels of P120 protein in HaCaT cells (Figure 18). 
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Aberrant levels of Dsg3 protein have been associated with tumourigenesis 

and metastasis (Chen et al, 2007; Teh et al, 2011), but its function during 

cancer progression has not been well investigated. We established our gain of 

function analysis in A431 cells and examined the effect of Dsg3 

overexpression on the protein level of E-cadherin and its associated junction 

formation. It was tested that overexpression of Dsg3 in A431 cells, which 

express low levels of endogenous Dsg3 protein, was several folds higher than 

the A431-V control cells (Tsang et al, 2010). Our results showed that 

overexpression of Dsg3 in A431 reduced the levels of both adherens 

junctional and desmosomal proteins, suggesting that the cell-cell adhesion in 

Dsg3 overexpressed A431 cells is likely compromised. In addition, 

overexpression of Dsg3 also increased the tyrosine phosphorylation of 

adherens junctional proteins with enhanced levels of membrane protrusions, 

a similar phenotype to cells with aberrantly increased Src activation. These 

findings are consistent with others, which demonstrated that increased 

tyrosine phosphorylation of β-catenin, plakoglobin and p120 are correlated to 

the reduced cell-cell adhesion upon neoplastic transformation (Irby & 

Yeatman, 2000).  

Based on these results, overexpression of Dsg3 appears to “hijack” the E-

cadherin/Src signalling in A431 cells, and in turn has a negative impact on 

cadherin function, including cell-cell adhesion and junction stability. Thus, we 

speculate that overexpression of Dsg3 could have a negative regulatory 

influence on Src signalling, which in turn affects the assembly of E-cadherin in 

A431 cancer cell line. The Src-specific inhibitor PP2 has been reported to 

restore the E-cadherin/catenin adhesion system in human cancer cell lines 

(Nam et al, 2002). This is in agreement with my results, in which treating the 

A431-D3 cells with the Src-specific inhibitor PP2 was able to restore the 

reduced levels of E-cadherin protein as compared to control cells. It is 

therefore likely that Src inhibition is able to restore the negative impact of Src 

signalling in Dsg3 overexpressed A431 cells. 
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Taken together, my results agree with the notion proposed by McLachlan et al 

that a critical control of Src signalling is required for normal function of E-

cadherin adhesion and stability i.e both up- and down-regulation of the Src 

signalling pathway could have a negative regulatory role on E-cadherin 

function (McLachlan et al, 2007) (Refer to Introduction Chapter 1). We believe 

that depletion of Dsg3 in normal HaCaT cells downregulates Src signalling and 

reduces the strength of tyrosine phosphorylation below the normal 

physiological levels and hence, contributes to its negative regulatory role. 

Overexpression of Dsg3 in tumour-derived A431 cells enhances this signalling 

pathway with abnormally high levels of tyrosine phosphorylation of adherens 

junction proteins and thus perturbing the cadherin-based adhesion. 

In my A431 model, I also observed that overexpression of Dsg3 activated Rac1 

and Cdc42 GTPases, resulting in pronounced membrane protrusions and 

enhanced rate of actin turnover. Other study demonstrated that the 

activation of Rac1 reduces the levels of E-cadherin at the cell surface, leading 

to internalisation of E-cadherin–catenin complexes and destabilisation of cell 

junctions in SCC12f keratinocytes. In agreement with this notion, we 

hypothesise that the enhanced levels of Rac1 GTPases (i.e activation) in 

response to Dsg3 overexpression might be correlated to the loss of E-cadhern 

protein and enhanced Src activation, all of which cooperatively contribute to 

destabilisation of cell junctions, enhanced membrane protrusions and cell 

migration (Tsang et al, 2012b). Taken together, we believe that the 

abnormally up-regulated Dsg3-Rac1/Cdc42 signalling is associated with 

reduced intercellular adhesion, an epithelial-mesenchymal transition-like 

phenotype in A431 cancer cells. 

Numerous reports have demonstrated that Rac and other GTPases are 

required for the establishment of proper cadherin-mediated cell–cell 

adhesion and the reorganisation of actin cytoskeleton in normal 

keratinocytes. Using both immunofluorescence and biochemical approaches, I 

demonstrated that Dsg3 is capable of interacting with F-actin in HaCaT and 

human breast skin samples. This finding suggests a potential direct 
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participation of Dsg3 on actin remodeling at cell–cell contacts. However, I was 

unable to make a conclusion of the physiological interaction between Dsg3 

and actin owing to the nature abundant of actin protein. Further studies such 

as the pull-down assay can be use to confirm the existence Dsg3 and actin 

interaction and identify the potential binding domain(s) involve. Additionally, I 

demonstrated that Rac is important in the Dsg3/actin interaction since 

reduction of this interaction was observed in cells treated with either Rac1 

dominantly negative mutant, N17Rac1 or the Rac1 inhibitor, NSC23766. We 

speculate that Dsg3 might be involved in the local activation of GTPases at the 

plasma membrane that could contribute to actin accumulation and 

reorganisation necessary for cadherin adhesion in epithelial cells. Although it 

is known that these GTPases have both positively and negatively regulatory 

role on adherens junctions depending on cell context (Akhtar & Hotchin, 

2001; Braga et al, 1997), we have yet to determine if the Dsg3-Rac1/Cdc42 

signalling pathway participates in the assembly or the maintenance of cell-cell 

adhesion in normal keratinocytes.  

Furthermore, the role of Cdc42 in A431 cancer cells and normal keratinocytes 

was not discussed in great details due to time limitation. Our initial results 

showed that the enhanced membrane protrusions were accompanied by 

changes in cell height (Tsang et al, 2012a). We believe that Dsg3 could exert 

its influence on cell polarity by modulating the downstream events of Cdc42 

signalling pathway (Tsang et al, 2012a).  

Taken together, both overexpression and knockdown of this gene have a 

negative impact on cell-cell adhesion and hence, we believe that a critical 

control of Dsg3 and its associated Src and Rho GTPases signalling are crucial 

for normal function and homeostasis of intercellular junctions. My study is in 

agreement with the work of Vasioukhin and colleagues, who suggested that 

desmosomal proteins are involved, at least in part, in stabilising the 

cytoskeletal anchorage of actin and cadherin–catenin complexes (Vasioukhin 

et al, 2001b). However, one main limitation was that our experiments were 

carried out in two different systems: keratinocyte cell and cancer cell systems. 
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A direct comparison between these systems is not ideal as each interpretation 

is strongly cell-type and context dependent. Thus, a single mechanism is not 

sufficient to explain the relationship between both a gain and loss of function 

of Dsg3. 

 

8.2 Possible implication in the pathgenesis of pemphigus 

acantholysis 

In the last few decades, the understanding in the pathogenesis of pemphigus 

has been significantly improved. However, there are also a number of crucial 

questions remained to be answered. A key question is whether the binding of 

autoantibodies to desmogleins contributes directly to epidermal blistering or 

whether the subsequent intracellular events are responsible for the loss of 

desmosome adhesion and blistering formation in the skin and oral mucosa. In 

addition, a growing body of evidence suggests that disruption of adherens 

junctions is involved in the pathogenesis of pemphigus acantholysis. It was 

demonstrated that E-cadherin is an additional immunological target for 

pemphigus autoantibodies, while other suggested that PV-IgG-induced 

inactivation of RhoA destabilises the adherens junctions and in turn affects 

the assembly of desmosomes (Evangelista et al, 2008; Sharma et al, 2007). It 

was also reported that the effect of PV-IgG on adherens junctions is not as 

severe as compared with desmosomes (de Bruin et al, 2007; Muller et al, 

2008; Waschke et al, 2006), suggesting that E-cadherin is not the major 

contributor to blister formation. Thus, the role of E-cadherin in the 

pathogenesis of pemphigus remains an issue of debate.    

Based on this study, we are inclined to believe that the direct disruption of 

desmosomal adhesion in pemphigus vulgaris is not the primary event 

responsible for the loss of cell-cell adhesion induced by PV-IgG, but rather by 

the inside-out signalling involving Src and GTPase signalling pathways. Indeed, 

confocal analysis of pemphigus patients specimens revealed that disruption of 
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E-cadherin junction and increased phospho-Src staining are readily detectable 

in the suprabasal layers above the blister as well as in the pre-lesional areas of 

oral mucosa in PV patients but not in those of normal control samples (Tsang 

et al, 2012b). This finding is also in line with other independent study based 

on the laser tweezer trapping of Dsg3-coated microbeads, which showed the 

initial loss of Dsg3 binding does not require Dsg3 depletion (Waschke et al, 

2005). 

 

We speculate that the Dsg3-induced activation of Src signalling and loss of E-

cadherin in pemphigus vulgaris would make the region of the basal layer more 

vulnerable and rendering the site prone to separation. It is also believed that 

the down-regulation of other desmosomal proteins and the rearrangement of 

actin cytoskeleton in pemphigus are secondary events owing to the loss of E-

cadherin and its associated junction. As such, it is inevitable that the 

activation of Rac1/Cdc42 could act synergistically in advancing the progression 

of pemphigus acantholysis.  The new insights from this study not only advance 

our knowledge on the role of Dsg3 in epithelial cell biology but also enhance 

our understanding of the pathogenesis of skin diseases including pemphigus. 

 

8.3 Future perspective 

Epithelial junction formation is a complex process that involves the initiation 

of cell–cell contacts to the formation and maintanence of various intercellular 

junctions. In this study, I demonstrated the novel interactions between Dsg3 

and E-cadherin or actin. We speculate that these associations may provide 

additional epidermal cohesions in vivo that are crucial for the maintenance 

and homeostasis of the adherens junctions. In addition, I showed that Dsg3 is 

an upstream regulator of Src and possibly Rho GTPases in the regulation of E-

cadherin-mediated adherens junctions and the actin cytoskeleton. Future 

studies are necessary to support these novel concepts.  
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Characterisation of the nature interaction between Dsg3 and other junctional 

proteins: In vitro GST pull down assays with constructs carrying various 

portions of the cytoplasmic and/or N-terminus domain of Dsg3 can be used to 

pull down with E-cadherin or actin or plakoglobin or p120. This will allow us to 

distinguish a direct from an indirect interaction and map out the domain(s) 

involve.   

The role of Dsg3 in the regulation of actin reorganisation: It would be 

interesting to determine if Dsg3 is involved in the regulation of actin 

accumulation and organisation through clustering of cadherin complexes. This 

question can be addressed by an established bead-binding assay using HaCaT 

cells with or without Dsg3 depletion. A suspension of latex beads coated with 

a specific antibody against E-cadherin can be used to cluster cadherin 

complexes and double labeled with phalloidin and anti–β-catenin, a marker 

for adherens junctions (Braga et al, 1997). This experiment will help to 

examine whether the F-actin and β-catenin recruitment to beads coated with 

anti-cadherin antibodies is indeed perturbed by Dsg3 depletion as compared 

to control cells.  

The effects of Cdc42 and Rac1 on the Dsg3-induced membrane protrusions: 

Our results suggested that there is a direct positive relationship between the 

levels of Dsg3 protein and the formation of membrane protrusions. It is 

known that Cdc42 is the main driver for this type of membrane protrusions i.e 

filopodia (Krugmann et al, 2001) and hence, it will be interesting to carry out 

siRNA-mediated depletion of Cdc42 in HaCaT or A431 cells and assess the 

membrane activity by time-lapse video microscopy (same experiment as 

Figure 34). This experiment can be repeated using siRNA-mediated depletion 

of Rac1 to dissect the effects of Cdc42 and Rac1 on the Dsg3-induced 

membrane protrusions. To further confirm that Dsg3 is an upstream regulator 

of Rho GTPases, GST pull down assay can be used to determine whether 

knockdown of Dsg3 altered Rac or Cdc42 activity (same experiment as Figure 

36). 
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Role of Caveolin/p120 in Dsg3-mediated Src activation: We proposed that 

modulation of Src signalling via caveolin-1 is one of the potential mechanisms 

underlying the loss of surface E-cadherin during the calcium-induced junction 

assembly. To validate this finding, it will be useful to examine whether 

knockdown of Dsg3 could concomitantly result in the loss of caveolin-1 and/or 

p120 catenin at the cell surface.  

 

Establish both a gain and loss of Dsg3 function in one cell system: One of the 

main issues in this study is that two different cell systems were used and thus 

the results are difficult to reconcile with each other. In order to consolidate 

my results i.e the activation of Src signalling on E-cadherin junctions, it would 

be better to perform both overexpression and knockdown of Dsg3 in one cell 

system, which will help to clarify the conflicting findings in my study. 

 

Triton soluble and insoluble fractions of Dsg3: Earlier, we suggested that the 

non-junctional Dsg3 pool is involved in the pathophysiology of pemphigus. 

Fractionation of Triton X-100 soluble and insoluble fractions can be repeated 

using other method such as the sedimentation of extracted proteins in 

sucrose gradients (Pasdar et al, 1991). Additional co-immunoprecipitation 

with PV IgG1 (Caldelari et al, 2001) using the soluble fraction of Dsg3 protein 

lysates would help to determine if the PV autoantibodies bind specifically to 

the non-junctional Dsg3. 

 

The role of Dsg3 in pemphingus acantholysis: Finally, it will be useful to carry 

out in vitro studies on keratinocytes treated with or without PV-IgG and 

determine whether PV-IgG directly trigger Src activation and tyrosine 

phosphorylation of the E-cadherin/catenins proteins. This supplementary 

study will provide evidence of a direct link between PV-IgG and the activation 

of Dsg3-Src-E-cadherin pathway.  



 

 

 175 

CHAPTER 9  
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APPENDIX-1 
 

Figure 37: Overexpression of Dsg3 enhances the average protrusion velocity  

 

  w/o drug w drug 

  V D3 V D3 

1 0.354 0.115 0.293 0.430 
2 0.582 0.475 0.647 0.430 
3 0.095 0.092 0.102 0.513 
4 0.475 0.255 0.754 0.690 
5 0.458 0.439 0.466 0.924 
6 0.761 0.353 0.931 1.792 

7 0.344 0.377 0.573 0.804 
8 1.718 1.601 1.178 0.554 
9 0.267 0.604 1.346 0.686 

10 1.592 4.198 1.365 0.089 
11 0.641 2.075 0.520 0.857 
12 0.275 1.177 0.772 0.645 
13 0.513 0.418 0.579 0.860 
14 0.795 0.663 0.544 1.580 
15 0.689 0.174 0.688 0.277 
16 0.679 1.492 0.095 0.753 
17 0.446 0.338 0.520 0.904 
18 0.682 1.023 0.208 0.277 
19 0.469 1.057 0.638 0.427 

20 1.211 0.542 0.169 0.452 
21 0.416 3.310 0.633 0.452 
22 0.946 3.235 1.142 0.621 
23 0.258 1.951 1.267 0.095 

       

  w/o drug w drug 

  V D3 V D3 

Average 0.682 1.264 0.719 0.687 
STDEV 0.405 1.136 0.384 0.404 

ST Error 0.084 0.237 0.080 0.084 

P Value  0.029   0.907   
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Figure 38: Overexpression of Dsg3 enhanced cell motility initially in the 

presence of Rac1 inhibitor, NSC23766, but this phenomenon was 

disappeared later 

w/o NSC23766 w NSC23766 

    Mean    Mean      Mean    Mean  

 Name   Velocity  Name Velocity    Name Velocity  Name Velocity 

v p2-1wo  0.197 D p2-1wo 0.189  v p2-1w 0.160 D p2-1w 0.312 

v p2-1wo  0.222 D p2-1wo 0.380  v p2-1w 0.206 D p2-1w 0.346 

v p2-1wo  0.291 D p2-1wo 0.212  v p2-1w 0.257 D p2-1w 0.356 

v p2-1wo  0.172 D p2-1wo 0.225  v p2-1w 0.189 D p2-1w 0.377 

v p2-1wo  0.155 D p2-1wo 0.247  v p2-1w 0.261 D p2-1w 0.395 

v p2-1wo  0.175 D p2-1wo 0.215  v p2-1w 0.171 D p2-1w 0.219 

v p2-1wo  0.210 D p2-1wo 0.375  v p2-1w 0.276 D p2-1w 0.316 

v p2-1wo  0.213 D p2-1wo 0.151  v p2-1w 0.270 D p2-1w 0.362 

v p2-1wo  0.150 D p2-1wo 0.135  v p2-1w 0.296 D p2-1w 0.257 

v p2-1wo  0.193 D p2-1wo 0.283  v p2-1w 0.203 D p2-1w 0.392 

v p2-1wo  0.236 D p2-1wo 0.245  v p2-1w 0.234 D p2-1w 0.367 

v p2-1wo  0.289 D p2-1wo 0.248  v p2-1w 0.246 D p2-1w 0.378 

v p2-2wo  0.320 D p2-1wo 0.243  v p2-1w 0.262 D p2-1w 0.311 

v p2-2wo  0.231 D p2-1wo 0.133  v p2-1w 0.268 D p2-2w 0.342 

v p2-2wo  0.427 D p2-1wo 0.157  v p2-2w 0.288 D p2-2w 0.315 

v p2-2wo  0.149 D p2-2wo 0.161  v p2-2w 0.228 D p2-2w 0.397 

v p2-2wo  0.187 D p2-2wo 0.127  v p2-2w 0.228 D p2-2w 0.309 

v p2-2wo  0.312 D p2-2wo 0.280  v p2-2w 0.329 D p2-2w 0.327 

v p2-2wo  0.410 D p2-2wo 0.256  v p2-2w 0.206 D p2-2w 0.354 

v p2-2wo  0.352 D p2-2wo 0.149  v p2-2w 0.340 D p2-2w 0.263 

v p2-2wo  0.248 D p2-2wo 0.174  v p2-2w 0.257 D p2-2w 0.370 

v p2-2wo  0.171 D p2-2wo 0.282  v p2-2w 0.283 D p2-2w 0.344 

v p2-2wo  0.345 D p2-2wo 0.212  v p2-2w 0.273 D p2-2w 0.364 

v p2-2wo  0.300 D p2-2wo 0.134  v p2-2w 0.389 D p2-2w 0.321 

v p2-2wo  0.173 D p2-2wo 0.136  v p2-2w 0.269 D p2-2w 0.364 

v p2-2wo  0.162 D p2-2wo 0.192  v p2-2w 0.288 D p2-2w 0.340 

v p3-1wo  0.227 D p2-2wo 0.471  v p2-2w 0.260 D p2-2w 0.306 

v p3-1wo  0.109 D p2-2wo 0.203  v p2-2w 0.260 D p2-2w 0.437 

v p3-1wo  0.199 D p2-2wo 0.194  v p3-1w 0.337 D p2-2w 0.327 

v p3-1wo  0.328 D p2-2wo 0.263  v p3-1w 0.128 D p3-1w 0.289 

v p3-1wo  0.150 D p2-2wo 0.180  v p3-1w 0.280 D p3-1w 0.405 

v p3-1wo  0.192 D p2-2wo 0.215  v p3-1w 0.152 D p3-1w 0.162 

v p3-1wo  0.362 D p2-2wo 0.196  v p3-1w 0.352 D p3-1w 0.263 

v p3-1wo  0.110 D p3-1wo 0.344  v p3-1w 0.213 D p3-1w 0.338 

v p3-1wo  0.346 D p3-1wo 0.256  v p3-1w 0.212 D p3-1w 0.307 

v p3-1wo  0.169 D p3-1wo 0.441  v p3-1w 0.143 D p3-1w 0.319 
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v p3-1wo  0.332 D p3-1wo 0.267  v p3-1w 0.161 D p3-1w 0.319 

v p3-1wo  0.333 D p3-1wo 0.175  v p3-1w 0.331 D p3-1w 0.250 

v p3-1wo  0.135 D p3-1wo 0.105  v p3-2w 0.271 D p3-1w 0.335 

v p3-2wo  0.189 D p3-1wo 0.285  v p3-2w 0.284 D p3-1w 0.298 

v p3-2wo  0.200 D p3-1wo 0.363  v p3-2w 0.245 D p3-1w 0.162 

v p3-2wo  0.230 D p3-1wo 0.161  v p3-2w 0.202 D p3-1w 0.243 

v p3-2wo  0.223 D p3-1wo 0.289  v p3-2w 0.309 D p3-1w 0.313 

v p3-2wo  0.238 D p3-1wo 0.352  v p3-2w 0.258 D p3-1w 0.206 

v p3-2wo  0.228 D p3-1wo 0.186  v p3-2w 0.285 D p3-2w 0.320 

v p3-2wo  0.157 D p3-1wo 0.145  v p3-2w 0.243 D p3-2w 0.348 

v p3-2wo  0.225 D p3-1wo 0.410  v p3-2w 0.335 D p3-2w 0.376 

v p3-2wo  0.128 D p3-2wo 0.167  v p4-1w 0.220 D p3-2w 0.384 

v p3-2wo  0.178 D p3-2wo 0.181  v p4-1w 0.153 D p3-2w 0.310 

v p3-2wo  0.222 D p3-2wo 0.134  v p4-1w 0.234 D p3-2w 0.378 

v p3-2wo  0.191 D p3-2wo 0.128  v p4-1w 0.341 D p3-2w 0.284 

v p4-1wo  0.179 D p3-2wo 0.206  v p4-1w 0.241 D p3-2w 0.287 

v p4-1wo  0.226 D p3-2wo 0.251  v p4-1w 0.255 D p3-2w 0.092 

v p4-1wo  0.271 D p3-2wo 0.113  v p4-1w 0.311 D p3-2w 0.074 

v p4-1wo  0.276 D p3-2wo 0.250  v p4-1w 0.195 D p3-2w 0.120 

v p4-1wo  0.212 D p3-2wo 0.195  v p4-1w 0.279 D p4-1w 0.350 

v p4-1wo  0.363 D p3-2wo 0.218  v p4-2w 0.173 D p4-1w 0.379 

v p4-1wo  0.237 D p3-2wo 0.134  v p4-2w 0.342 D p4-1w 0.298 

v p4-1wo  0.394 D p3-2wo 0.221  v p4-2w 0.241 D p4-1w 0.343 

v p4-1wo  0.283 D p3-2wo 0.184  v p4-2w 0.236 D p4-1w 0.315 

v p4-1wo  0.342 D p3-2wo 0.280  v p4-2w 0.218 D p4-1w 0.383 

v p4-1wo  0.141 D p3-2wo 0.116  v p4-2w 0.187 D p4-1w 0.398 

v p4-1wo  0.151 D p4-1wo 0.301  v p4-2w 0.238 D p4-1w 0.344 

v p4-1wo  0.246 D p4-1wo 0.181  v p4-2w 0.204 D p4-1w 0.256 

v p4-2wo  0.251 D p4-1wo 0.172  v p4-2w 0.268 D p4-1w 0.255 

v p4-2wo  0.231 D p4-1wo 0.202  v p2-1w 0.196 D p4-1w 0.360 

v p4-2wo  0.258 D p4-1wo 0.111  v p2-1w 0.226 D p4-1w 0.275 

v p4-2wo  0.401 D p4-1wo 0.172  v p2-1w 0.249 D p4-1w 0.288 

v p4-2wo  0.283 D p4-1wo 0.112  v p2-1w 0.269 D p4-1w 0.324 

v p4-2wo  0.146 D p4-1wo 0.236  v p2-1w 0.200 D p4-2w 0.340 

v p4-2wo  0.181 D p4-1wo 0.112  v p2-1w 0.335 D p4-2w 0.270 

v p4-2wo  0.306 D p4-1wo 0.216  v p2-1w 0.195 D p4-2w 0.433 

v p4-2wo  0.228 D p4-1wo 0.140  v p2-1w 0.231 D p4-2w 0.308 

v p4-2wo  0.230 D p4-1wo 0.268  v p2-1w 0.234 D p4-2w 0.404 

v p4-2wo  0.201 D p4-2wo 0.432  v p2-1w 0.266 D p4-2w 0.341 

v p4-2wo  0.438 D p4-2wo 0.243  v p2-1w 0.282 D p4-2w 0.301 

v p4-2wo  0.190 D p4-2wo 0.221  v p2-2w 0.158 D p4-2w 0.392 

v p4-2wo  0.254 D p4-2wo 0.126  v p2-2w 0.259 D p4-2w 0.281 

v p4-2wo  0.260 D p4-2wo 0.129  v p2-2w 0.284 D p4-2w 0.350 

v p4-2wo  0.142 D p4-2wo 0.168  v p2-2w 0.203 D p4-2w 0.361 
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v p4-2wo  0.290 D p4-2wo 0.120  v p2-2w 0.212 D p4-2w 0.319 

v p4-2wo  0.384 D p4-2wo 0.205  v p2-2w 0.275 D p4-2w 0.317 

v p4-2wo  0.231 D p4-2wo 0.299  v p2-2w 0.289 D p4-2w 0.315 

             

Average   0.240   0.217     0.249   0.318 

                    

 

    Mean Velocity STDEV ST Error P value 

            

w/o drug V 0.240 0.079 0.009 0.06592336 

  D3 0.217 0.083 0.009   

w drug V 0.249 0.054 0.006 2.0287E-11 

  D3 0.318 0.068 0.008   

            

 


