
Generating Uniformly-Distributed Random

Generalised 2-designs with Block Size 3
School of Mathematical Sciences, Queen Mary University of London

A thesis submitted in partial fulfillment of the requirements of the Degree of

Doctor of Philosophy

Andy L. Drizen

December 2012

Abstract

Generalised t-designs, defined by Cameron, describe a generalisation of many

combinatorial objects including: Latin squares, 1-factorisations of K2n (the

complete graph on 2n vertices), and classical t-designs.

This new relationship raises the question of how their respective theory

would fare in a more general setting. In 1991, Jacobson and Matthews published

an algorithm for generating uniformly distributed random Latin squares and

Cameron conjectures that this work extends to other generalised 2-designs with

block size 3.

In this thesis, we divide Cameron’s conjecture into three parts. Firstly, for

constants λRC , λRS and λCS , we study a generalisation of Latin squares, which

are (r × c) grids whose cells each contain λRC symbols from the set {1,2, . . . , s}

such that each symbol occurs λRS times in each column and λCS times in each

row. We give fundamental theory about these objects, including an enumeration

for small parameter values. Further, we prove that Cameron’s conjecture is true

for these designs, for all admissible parameter values, which provides the first

method for generating them uniformly at random.

Secondly, we look at a generalisation of 1-factorisations of the complete

graph. For constants λNN and λNC , these graphs have n vertices, each incident

with λNN coloured edges, such that each colour appears at each vertex λNC

times. We successfully show how to generate these designs uniformly at random

when λNC ≡ 0 (mod 2) and λNN ≥ λNC .

Finally, we observe the difficulties that arise when trying to apply Jacobson

and Matthews’ theory to the classical triple systems. Cameron’s conjecture

remains open for these designs, however, there is mounting evidence which

suggests an affirmative result.

A function reference for DesignMC, the bespoke software that was used

during this research, is provided in an appendix.

Acknowledgements

I am grateful to Queen Mary University of London for having such a vibrant and

high-calibre mathematics department. With international travel opportunities,

discussions with academics who perform cutting-edge research in their fields,

and a social environment which breeds collaboration, Queen Mary has been a

good home. In particular, Peter Cameron, Leonard Soicher, Mark Jerrum and

my fellow PhD students have been invaluable sources of knowledge, confidence,

inspiration and fun.

I am indebted to my secondary school teacher, Liz Rabett, my mother, Kate,

and my wife, Anna, for getting me there.

Andy Drizen

London, 2012

Contents

1 Introduction 1

1.1 An Overview . 1

1.2 Software Used . 5

1.3 Original Content . 7

2 Generalised t-designs 9

3 Generating Latin Squares Uniformly at Random 15

3.1 Latin Squares . 15

3.1.1 Counting Latin Squares . 16

3.1.2 Generating Latin Squares 17

3.2 Markov Chains . 22

3.2.1 Example: Random Walk . 24

3.3 Jacobson and Matthews’ Technique 26

3.3.1 Pair Graphs . 32

3.3.2 Proving Connectedness . 39

4 Generalised Latin squares 47

4.1 Definition . 47

4.1.1 Generalised Squares . 49

4.2 Pair Graphs . 52

4.2.1 Square Row-Pair Graph Analysis 53

i

4.3 Generating Squares Uniformly at Random 55

5 Generalised Factorisations 61

5.1 Definition . 61

5.1.1 Counting 1-factorisations 62

5.1.2 Generalised Factorisations 63

5.1.3 Generalised λNC-factorisation of λNNKn 63

5.2 Pair Graphs . 65

5.3 Generating Factorisations Uniformly at Random 71

5.4 Experimental Results . 74

6 Generalised Triple Systems 77

6.1 Definition . 77

6.1.1 Counting Triple Systems . 79

6.2 Pair Graphs . 81

6.3 Evidence Supporting the ±1-move 82

7 Decomposing Latin Rectangles 87

7.1 Decomposing Latin Rectangles . 89

8 Conclusion 95

Appendix A DesignMC User Guide 99

A.1 Background . 99

A.1.1 Licence . 99

A.1.2 Requirements . 100

A.1.3 Installation . 100

A.1.4 Function Reference . 100

Appendix B Latin Squares App 119

B.1 Detailed Tour . 119

ii

Bibliography 131

Index 132

iii

iv

Chapter 1

Introduction

1.1 An Overview

A fortunate consequence of working with objects as ubiquitous as Latin

squares, 1-factorisations of the complete graph, and triple systems (defined

shortly), is that motivating their study, even to non-mathematicians, is relatively

easy. Fundamentally, they are abstract mathematical concepts with many

beautiful and interesting properties. Their open problems are straightforward

to understand and devilishly difficult to resolve, which only add to their allure.

Although they appear in many guises in different areas of mathematics (for

example, designing experiments, tournament scheduling, cryptography and

error correcting codes), their uses also filter through into non-mathematical

environments such as marketing, manufacturing, and gaming; anyone who has

completed a Sudoku puzzle has worked with a Latin square.

Given the simplicity of the definition of a Latin square, (an n×n grid in which

the numbers {1,2, . . . ,n} appear, such that each row and each column contains

each number exactly once), one might expect that generating a uniformly-

distributed random Latin square would be trivial. However, as we shall discuss

1

in section 3.1, this is not the case. Naïve approaches (for example, enumeration

or hill-climbing) are either too expensive with regard to time or space, or do not

actually yield the uniform distribution.

However, in 1991, Jacobson and Matthews developed a method that

successfully generates (approximately) uniformly-distributed random Latin

squares [29]. The technique, which we will investigate in detail in section 3.3,

takes a random walk on graph whose vertices represent not only proper Latin

squares, but also objects that are “almost” Latin squares, called “improper” Latin

squares.

In chapter 2 we will discuss Generalised t-designs, pioneered by Cameron

[6], which offer a new perspective on the relationship between combinatorial

objects such as Latin squares, 1-factorisations of the complete graph, and triple

systems. Before seeing the formal definition of a generalised t-design, we

proceed with a broad outline of the contents of this thesis and the motivation

behind it.

Cameron conjectured that it is possible to generate generalisations of the

three aforementioned combinatorial objects uniformly at random by using an

altered version of the Markov chain that Jacobson and Matthews described.

In chapter 4 we shall discuss generalised Latin squares, which are simliar to

Latin squares except the constant number of symbols in each cell (denoted λRC),

the constant number of times a symbol occurs in each row (denoted λRS), and

the constant number of times a symbol occurs in each column (denoted λCS)

may all be different values. Much less appears in the literature about these

designs, although for some particular parameter values, they have been studied

(for example semi-Latin squares [1]).

Our first main result completely resolves one third of Cameron’s conjecture

by showing that in the case of generalised Latin squares on n symbols, for any

values of λRC , λRS , λCS which yield a square, Jacobson and Matthews’ Markov

2

chain may be used to generate them uniformly at random.

In chapter 5 we shall recall the definition and a selection of the known theory

relating to the traditional 1-factorisation of the complete graph on 2n vertices.

We shall see that generating these designs uniformly at random is hindered

slightly because whereas Latin squares have three types of points (row, columns

and symbols); here we only have two (vertices and colours). This seemingly

benign difference results in the loss of useful features of the underlying graph.

The reason for this is that whilst proving that the Markov chain is connected, we

aim to show that we may transform any design to any other design with the same

parameters. This is achieved in much the same way as one solves a Rubik’s cube,

that is, row by row. In proving connectedness for 1-factorisations of K2n, we try

to transform one into another colour by colour, however, with only two types of

points, so-far insurmountable difficulties arise.

However, for a generalisation of these designs in which the number of edges

connecting each pair of vertices (denoted λNN) and the number of times an edge

of each colour appears at each vertex (denoted λNC) may vary, the situation

is markedly improved. In fact, we are able to prove that a generalisation of

Jacobson and Matthews’ method will manage to generate the designs uniformly

at random when λNN ≥ λNC , λNC ≡ 0 (mod 2), and a design with these

parameters exists. This work, and the reasons for these constraints are detailed

in chapter 5.

The final member of this family is the generalised triple system. Note that

these are simply the classical 2-designs with block size 3. In this case, whether

λ = 1 (that is, Steiner triple systems) or λ > 1, the problem of generating

uniformly-distributed random generalised triple systems is impervious to

current theory. Again, it appears that by losing another type of point, things

become much harder. There is mounting evidence that Jacobson and Matthews’

technique may work (as over 100 distinct trades can be actioned [15]), but

3

probably with a significantly different method of proof. This and other evidence

is discussed in more detail in chapter 6.

A more concise description of the theory presented in chapters 4-6 can be

found in the author’s paper [14].

The software that was used in this research (described in the next section)

lends itself to many other problems in this area. For example, in chapter

7, experimentation led to a new result in the area of Latin rectangles and

transversal decompositions. Namely, for n = 3,6,9,12, any n×n/3 Latin rectangle

has a transversal decomposition. This also proves the new result that any 12×12

Latin square may be decomposed into 36 partial transversals of length 4.

In chapter 8, we summarise all that we have discovered and talk through

some of the most interesting open problems that remain. These problems

include generating Steiner triple systems uniformly at random, and the mixing

time of Jacobson and Matthews’ Markov chain for Latin squares, (or any of the

other generalised t-designs).

4

1.2 Software Used

Throughout this thesis I will make references to software that has been crucial

in studying these designs. The most fundamental of these is GAP [20] – a

computer algebra program. GAP is a high-level, loosely-typed, open source,

multi-platform, extendable programming language.

Two such extensions created by Soicher, which ultimately led to my use of

the software, are the DESIGN [39] and GRAPE [40] packages. Although I did

not interface with GRAPE directly, its interface with McKay’s nauty package

(for finding automorphism groups and isomorphism testing of graphs [34]) is

wrapped by the DESIGN package.

The DESIGN package, amongst other things, is able to create and classify

block designs. It is a laudable tool for both its robustness and generality; it is

quite capable of handling generalised t-designs despite being created prior to

Cameron’s initial paper on the topic.

The new DesignMC package [11], amongst other things, is a wrapper for

the DESIGN package that drastically simplifies the creation and classification of

generalised 2-designs with block size 3.

DesignMC is open source and may be obtained from http://www.maths.

qmul.ac.uk/~ald/DesignMC. Its features include:

• Interface with the DESIGN package to generate proper and improper

designs using the ProduceSquare , ProduceFactorisation and

ProduceTripleSystem functions;

• Implementation of Jacobson and Matthews’ Markov chain for all

generalised 2-designs with block size 3 with the Hopper , OneStep

and ManyStepsProper functions;

• Generate and analyse a random sample of designs using the included C++

file, Sample.cpp (GAP is useful for us due to the DESIGN package, but we

5

http://www.maths.qmul.ac.uk/~ald/DesignMC
http://www.maths.qmul.ac.uk/~ald/DesignMC

revert to C++ for speed in the absence of requiring the DESIGN package’s

features);

• Mathematica integration for creating graphs useful in the analysis of the

Markov chains;

• Export any design to JSON (using the new JSONGAP package[12]);

Rather than give a thorough overview of what the DesignMC package can do,

I will mention how the package helped with the exploration of designs as and

when they appear by using the following styled box:

To construct a Latin square with r = 5 rows, c = 5 columns and

s = 5 symbols, we use the following command:

gap> r:=5;; c:=5;; s:=5;;

gap> square:=ProduceSquare(rec(v:=[r,c,s]));;

The blocks of the design are stored as a list of lists. For a Latin

square, the points that represent rows are stored as {1,2, . . . ,n}.

Columns and symbols are stored as {n + 1,n + 2, . . . ,2n} and

{2n+ 1,2n+ 2, . . . ,3n} respectively.

gap> square[1].blocks;

[[1, 6, 11], [1, 7, 12], [1, 8, 13], [1, 9, 15], [1,

10, 14], [2, 6, 12], [2, 7, 11], [2, 8, 15], [2, 9, 14

], [2, 10, 13], [3, 6, 13], [3, 7, 15], [3, 8, 14], [

3, 9, 11], [3, 10, 12], [4, 6, 15], [4, 7, 14], [4, 8,

12], [4, 9, 13], [4, 10, 11], [5, 6, 14], [5, 7, 13],

[5, 8, 11], [5, 9, 12], [5, 10, 15]]

Also for your reference, a user guide that explains how to use the DesignMC

package is included in appendix A.

6

Also, a new mobile application for generating random Latin squares was

created during this research. To appeal to a wider audience, the application

contains information on basic theory, papers, books and open problems. The

application is freely available for download from the Apple App Store by

searching for “Latin Squares”. It will run on any iPhone, iPad or iPod touch

running iOS 3.0 or above.

A tour of the application can be found in appendix B.

1.3 Original Content

The work presented in this thesis is my own, however there are numerous

references to historical work throughout the text, which are clearly labelled

as such. Below is a summary of the novel material in this thesis, and

acknowledgement of co-authors where appropriate.

• Chapter 3: Lemmas 5 and 7 are generalised versions of statements used

in Jacobson and Matthews’ paper on generating uniformly distributed

random Latin squares [29].

• Chapters 4, 5: Unless otherwise stated, the contents of these chapters are

new and have also been published in a peer-reviewed journal [14].

• Chapter 6: Contains new (also published) joint work with M. Grannell and

T. Griggs [15].

• Chapter 7: Presents a new result, and a new technique, to a problem posed

by Hilton [27].

During the course of this research, various pieces of software were created.

The following three have been packaged and released under an open-source

licence.

7

• DesignMC (see appendix A): a GAP [20] package for generating

uniformly distributed random generalised 2-designs with block size 3.

• Latin Squares App (see appendix B): a universal iOS application aimed

at a mathematically-interested, but not university-educated audience.

• JSONGAP: a JSON parser written for GAP [20]. This GAP parser has

been used to export designs from GAP for publication on the web (see

http://www.maths.qmul.ac.uk/~ald/designs2.html). The designs can

also be imported back into GAP, or the Latin squares application (which

can also export Latin squares in this JSON format). A useful feature of the

JSONGAP software is that it is able to export GAP objects, such as Groups;

these objects are preceded by a "GAP://" scheme and automatically

converted back to a object when imported.

8

http://www.gap-system.org
http://www.gap-system.org
http://www.maths.qmul.ac.uk/~ald/designs2.html

Chapter 2

Generalised t-designs

A block design is an ordered pair (V ,B), where V = {1, . . . , v}, with v > 0, and B is

a finite, non-empty multiset of subsets of V . The elements of V are called points

and the elements of B are called blocks.

If all of the blocks of a block design (V ,B) have the same cardinality k > 0,

and, for some non-negative integer t ≤ k, each t-subset of V is contained in

exactly λ > 0 blocks, then this block design is a t-design. Such a t-design is often

described as a t − (v,k,λ) design; notice that we do not directly offer information

on how many blocks there are, or how many times a given point occurs amongst

the blocks because this information is easily deduced.

Some of the most interesting questions in this area are also the most

fundamental. Given t,v,k, and λ, does a design with those parameters exist?

If so, is there a construction? How many are there? Is there an algorithm for

selecting such a design uniformly at random?

As a case study, we investigate the parameters t = 2, k = 3 and λ = 1; the

Steiner triple systems on v points (abbreviated to STS(v)). One of the earliest

results in Design Theory is due to Kirkman, who proved that a STS(v) exists

9

1

2

3
4

5

6

7

Figure 2.1: The Fano Plane. This is a graphical representation of a Steiner triple
system on 7 points.

if and only if v ≡ 1 or 3 (mod 6).

The famous Fano Plane (also known as the projective plane of order 2) is a

graphical representation of a Steiner triple system on 7 points (figure 2.1). Each

line of the Fano plane represents a block of the triple system. Every vertex that

the line passes through is considered to be a point in that block. Except for one

circle, all of the lines are usually straight. Up to isomorphism, there is only one

STS(7).

For any v ≥ 21, it is currently unknown how many STS(v) exist, and worse

still, there is no known algorithm for choosing such a STS(v) uniformly at

random in an acceptable time. An attempt to rectify this situation, not just for

Steiner triple systems, but all 2 − (v,3,λ) designs will be the topic of study for

chapter 6.

Prompted by the similarity of Steiner triple systems to other combinatorial

designs, Cameron developed the theory of generalised t-designs [6]. Informally,

the difference between a classical and generalised t-design is a partition of the

point set with the consequence that the blocks may specify how many points

from each part they require, and multiple λ values dictate how many blocks

contain each t-subset of the point set, depending on from which parts the points

are drawn.

10

For example, consider the Latin square of order n, which is an n×n grid whose

cells each contain one of the elements of the symbol set S = {1,2, . . . ,n} such that

each row and each column of the grid contains each symbol exactly once.

There are ways of describing a Latin square as a t-design, but they are not

intuitive nor instructive for our purposes, so we omit them; the interested reader

should see [2] for a longer discussion of the matter.

In the language of generalised t-designs, however, the description of a Latin

square is very intuitive. The point set is partitioned into three types of points:

rows, columns and symbols. Each block is of size three and contains exactly one

point of each type. A block {r, c, s} exists in the block set B if and only if row r

and column c of the Latin square contains symbol s. Any 2-subset of the point

set that does not contain two points of the same type occurs amongst the block

set exactly once. For example, two rows do not occur in any block together, but

each row and column occur in exactly one.

For n ≥ 12, it is not known how many Latin squares of order n exist. However,

unlike the Steiner triple systems, generating Latin squares uniformly at random

is possible thanks to Jacobson and Matthews’ algorithm [29], which will be the

focus of chapter 3. Fuelled by Cameron’s conjecture below, this algorithm will be

a core theme of this thesis with new proofs of various generalisations appearing

in chapters 4, 5, and 6.

To formally define generalised t-designs, we use the variant of Cameron’s

original definition described by Soicher, who investigated generalised t-designs

from their classical counterpart’s perspective [41]. The key difference between

the definitions is that Soicher’s allows a block multiset, rather than a block set.

Given a partition V = (V1, . . . ,Vm) for some set V = ∪mi=1Vi , and some subset S

of V , the V-height of S is

[S]V = (|S ∩V1|, . . . , |S ∩Vm|).

11

Let t be a non-negative integer and V a finite, non-empty set. A t − (v,k, (λt))

design, or a generalised t-design with point set V , is an ordered pair (V,B), where

V = (V1, . . . ,Vm) is an ordered partition of V with |Vi | = vi , (V ,B) is a block design

and the following properties hold:

• V has V-height v;

• each block has the same V-height, k, with each entry in k positive and the

value of t is at most the sum of the entries of k;

• for each m-tuple t of non-negative integers with the sum of the entries of t

equal to t ≤ k, each t-subset T of V having [T]v = t is contained in the same

(positive) number λt of blocks.

We now return to the two previous examples and describe them as

generalised t-designs.

A STS(v) has no distinction between the points, so V = (V) = ({1,2, . . . , v}).

Each block has size three, that is k = (3), and every pair of points occurs in

exactly one block, so t = 2 and λ(3) = 1. Therefore, STS(v) may be classified as a

2− ((v), (3),1) design.

A Latin square of order n has three point types (rows, columns and symbols)

and hence the point set may be partitioned as V = (R,C,S) with |R| = |C| = |S | = n.

As each block contains exactly one row, one column, and one symbol, we have

k = (1,1,1), and the block set is

B ⊆ R×C × S. (2.1)

The values λRC ,λRS and λCS dictate exactly how many blocks contain any

row/column, row/symbol and column/symbol combination respectively. In the

case of Latin squares, each of these values is equal to one. Therefore, a Latin

square of order n may be described by a 2− ((n,n,n), (1,1,1), (1,1,1)) design.

12

After defining generalised t-designs and demonstrating which objects could

be found for small parameter values, Cameron discussed the aforementioned

algorithm by Jacobson and Matthews. In particular, he made the following

conjecture:

Conjecture 1 (Cameron, [6]). Jacobson and Matthews’ algorithm for generating

uniformly distributed Latin squares of order nmay be used to generate any generalised

2-designs with block size 3 uniformly at random, where such a design exists.

The conjecture covers three classes of designs:

• k = (1,1,1): Corresponds to a generalisation of Latin squares, (and

orthogonal arrays), which in this thesis will simply be referred to as

“squares”. Jacobson and Matthews have already handled the case when

each of the λ values are equal to one. In chapter 4, we will prove this

conjecture for squares of all admissible parameter values.

• k = (2,1). Corresponding to a generalisation of 1-factorisations of the

complete graph. In chapter 5, we give a proof of the conjecture for some

parameter values (that is, when λ(2,0) ≥ λ(1,1) and λ(1,1) is even) and explain

why this case was harder to handle than that of squares.

• k = (3). The final case is the same as the classical triple systems. With only

one type of point to work with, this case seems harder still as we will see

in chapter 6. Although we will do not provide a proof that Jacobson and

Matthews’ method works for these objects, we will see evidence in favour

of the conjecture.

We end this section and chapter with one final definition. As it will

sometimes be appropriate to discuss all three of these objects simultaneously,

we will use the umbrella term designs to refer to them collectively.

For further reading on this topic, Cameron’s paper is the suitable place to

start for a good introduction to the area with examples of designs for small

13

parameter values [6]. As well as the variant definition, Soicher’s paper provides

a number of results including strong restrictions on k for generalised t-designs

with block size k, constant λt, and 2 ≤ t ≤ k − 2 [41]. Finally, Martin studied and

gave constructions for t−(v, (k1, k2), (λt)) designs ten years prior to Cameron [32];

he called these mixed block designs.

14

Chapter 3

Generating Latin Squares

Uniformly at Random

3.1 Latin Squares

Let L be an n × n grid with the property that each cell of L contains exactly one

symbol from the set S = {1,2, ...,n}. We say L is a Latin square of order n, denoted

LS(n), if every symbol occurs in each row, and each column, exactly once. We

will usually index the rows and columns with {r1, r2, . . . , rn} and {c1, c2, . . . , cn}

respectively.

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

Figure 3.1: The cyclic LS(5). To generate this square we write down the numbers
from 1 to 5 in the first row. For each subsequent row, cycle the numbers around
by one position.

15

The DesignMC package represents rows as {1,2, . . . ,n}, columns

as {n+ 1,n+ 2, . . . ,2n}, and symbols as {2n+ 1,2n+ 2, . . . ,3n}. For

example, the first two rows in the grid shown in figure 3.1 may

be represented by the DesignMC package as:

[[1, 6, 11], [1, 7, 12], [1, 8, 13], [1, 9, 15], [1,

10, 14], [2, 6, 12], [2, 7, 11], [2, 8, 15], [2, 9, 14

], [2, 10, 13]]

Given a positive integer n ≥ 2, it is easy to see that a LS(n) exists. For example,

setting the symbol found in row i, column j to be (i + j − 1) (mod n) constructs

the cyclic Latin square [28], whose interesting properties will be discussed later.

3.1.1 Counting Latin Squares

One of the biggest open problems for Latin squares is determining exact values

for the number of “different” Latin squares of a given order. In the mainstream

literature, three tiers of “difference” are usually given.

Two squares L and L′ are:

1. Isotopic: If there exists a permutation of the rows, coloumns and symbols

that transforms L into L′. For example, if we have a function f : Z→ Z,

f (a) = (a (mod n)) + 1 and we apply f to the row component of each block

in the block set of some Latin square, the result is an isotopic Latin square.

2. Conjugate: If there exists a permutation of the roles of the rows, columns

and symbols that transforms L into L′. For example, switching the roles of

the rows and columns transposes the square.

3. Main class isotopic: If L is isotopic to a conjugate of L′.

16

We define two squares to be isomorphic if and only if they are main class

isotopic, otherwise, they are non-isomorphic.

For 1 ≤ n ≤ 11 the following table gives the exact number of non-isomorphic

Latin squares or order n. At the time of writing, no exact values are known for

n ≥ 12.

n Number of non-isomorphic LS(n) References
1 1
2 1
3 1
4 2
5 2 Euler, 1782 [16]
6 12 Frolov, 1890 [19]
7 147 Sade, 1948 [37]
8 283657 Wells 1967, [47]
9 19270853541 S. Bammel, J. Rothstein, 1975 [4]
10 34817397894749939 B. McKay, E. Rogoyski, 1995 [33]
11 2036029552582883134196099 McKay, Wanless, 2005 [35]

Figure 3.2: A table showing the number of non-isomorphic Latin squares for
small orders; as you can see from the table, the number of squares explodes
quite quickly.

For a comprehensive overview of the information on the number of Latin

squares of order up to 11 see [35].

3.1.2 Generating Latin Squares

So far we have only seen a construction for the cyclic square. How can we find

other squares? Can we find a square uniformly at random?

To select a square uniformly at random, it would suffice to enumerate

each square and then pick one uniformly at random. However, it would be

quite a formidable task to enumerate all of the Latin squares of order 11, and

presumably by the time the order passes the relatively low value of, say, 20, there

are more squares than there are elementary particles in the visible universe!

17

Hill Climbing

Clearly the idea of enumerating every square is not feasible. One of the most

common methods to generate a Latin square is hill climbing. Before explaining

how the method works, a little more machinery is required.

Let R be an r × n grid (r ≤ n) with the property that each cell of R contains

exactly one element from the symbol set S = {1,2, ...,n}. We say R is a Latin

rectangle if every symbol occurs in each row, and each column, at most once.

Let S = {S1,S2, ...,Sn} be a finite collection of finite sets. A system of distinct

representatives, or SDR, of S is a set

x1 ∈ S1,x2 ∈ S2, ...,xn ∈ Sn

such that xi , xj whenever i , j.

Theorem 2 (Hall’s Marriage Theorem). Let S = {S1,S2, ...,Sn} be a finite collection

of finite sets. There exists a system of distinct representatives of S if and only if the

following condition holds for any T ⊆ S:

∣∣∣⋃
s∈T

s
∣∣∣ ≥ |T |

From this we get the following well known result:

Corollary 3. Any r×n Latin rectangle (r < n) can be completed to an (r+1)×n Latin

rectangle.

To find a LS(n) using the hillclimbing technique, first write down row 1

as 1,2, ...,n in order. Now look for suitable candidates for the next row – any

derangement (that is, a permutation of 1,2, ...,n with no fixed points) will do for

the second row. Now fill in the rest of the square row by row, by choosing from

the set of suitable SDRs until the whole square is complete. We know from

corollary 3 that we do not get stuck and therefore obtain a LS(n).

18

The hill climbing method does generate random Latin squares relatively

efficiently, but the sampling is not uniform, as the number of SDRs available

is dependent on your choice of second row. For example, suppose we start hill

climbing a LS(4) with first row 1,2,3,4. There are now 9 possible second row

choices.

1. Suppose we choose 2,1,4,3 for row two. Now there are four possible

completions to a Latin square, they are:

A=

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

B=

1 2 3 4

2 1 4 3

4 3 1 2

3 4 2 1

C=

1 2 3 4

2 1 4 3

3 4 2 1

4 3 1 2

D=

1 2 3 4

2 1 4 3

4 3 2 1

3 4 1 2

2. Suppose we choose 2,3,4,1 for row two.

Now there are only two possible completions to a Latin square, they are:

E=

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

F=

1 2 3 4

2 3 4 1

4 1 2 3

3 4 1 2

So when hill climbing, squares E and F are twice as likely to appear as any of

A, B, C or D and therefore this method does not uniformly sample the space. As

n gets large, it is conjectured that the ratio of number of completions tends to 1

[7].

19

Ruthless Hillclimbing

Another, more ruthless method, is a modification of hill climbing. This time,

do not worry about finding SDRs, merely look at all possible permutations

and select one uniformly at random to add as the next row. If, in doing so,

you violate the rules of being a Latin square, restart the entire process. This

method terminates with probability 1 and does achieve the uniform distribution.

However, if L(n) is the total number of LS(n), the expected number of restarts is

n!n−1/L(n) = en
2(1+o(1)); an unacceptable price to pay for uniformity [29].

Cycle Swapping

A cycle swap is an iterative procedure that can be performed on a pair of rows,

columns or symbols and may result in a different Latin square. We will discuss

a row switch, but column and symbol switches are analogous. This important

concept will be referenced in many places further through the text.

We use the convention that {r, c, s} is a block of a Latin square if the symbol s

is located in cell (r, c). Further, we denote the set of all blocks by B.

To begin a cycle switch on rows we first nominate two rows, r and r ′, and

construct the row-pair graph (also found in the literature as cycle or neighbourhood

graphs), G, which has a vertex for every column and symbol of the square. Add

a red edge between two vertices c and s if {r, c, s} ∈ B. Similarly, add a blue

edge between two vertices c′ and s′ if {r ′ , c′ , s′} ∈ B. This graph is therefore a

union of disjoint cycles of even length. The construction for switching columns

or symbols is analogous.

The DesignMC package may be used to display pair graphs

using the CreatePairGraph function.

20

If G consisted of just one cycle and we were to interchange the colour of the

edges, this would correspond to swapping the position of the two rows of the

original square, leaving us with an isomorphic square. In general, if G consists

of k ≥ 2 cycles and we switch at most k−1 of them, then we will produce a square

which is not isomorphic to the original.

For example, consider the cyclic square of order 6

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3

5 6 1 2 3 4

6 1 2 3 4 5

We shall construct the row-pair graph by nominating rows 1 and 2.

12

3

4 5

6

c1

c2

c3

c4

c5

c6

Interchanging the edge colours of this graph corresponds to swapping the

position of the rows. If we had chosen rows 1 and 3, we would have resulted in

the following graph:

Cycle 1

2

4

6

c2

c4

c6 Cycle 21

3

5

c1

c3

c5

21

If we only interchange the edges of “cycle 2”, this would correspond to the

following square which is not isomorphic to the original.

3 2 5 4 1 6

2 3 4 5 6 1

1 4 3 6 5 2

4 5 6 1 2 3

5 6 1 2 3 4

6 1 2 3 4 5

The smallest possible cycle has length four and corresponds to an intercalate,

that is, a 2 × 2 subsquare of a Latin square. In the literature, interchanging

the symbols in an intercalate is called “intercalate switching”, “turning an

intercalate” or “intercalate reversal”. Intercalate switching was employed in [36]

by Norton as a means of discovering Latin squares of order 7. He began with a

small population of squares and, where possible, performed intercalate switches

to find as many other squares as he could; he found 146 of the 147 squares in

this way.

Intercalate switching does not provide the means to discover all Latin squares

of a given order starting from just one Latin square [38]. Furthermore, using

larger cycle switches still cannot yield every square [29]. For a more thorough

treatment of cycle switching in Latin squares, see [44]. In section 3.3.1 we will

revisit the concept of these cycles for more general combinatorial objects.

Later we will see how Jacobson and Matthews addressed this issue by using

a Markov chain, but before going into detail about how they proceeded, it will

be necessary to take a short diversion through the underlying theory.

3.2 Markov Chains

Let Xi be the number of times a six has appeared in the first i rolls of a die.

The sequence X = (X0,X1,X2,X3, . . .) is Markov chain because it has each of the

22

following:

• A state space: Usually denoted as Ω, the state space contains all of the

possible values Xi may take. Although the state space may be finite or

infinite, continuous or discrete, we will always consider finite, discrete

state spaces. In our example above, the state space Ω = N0 = {0,1,2,3, . . .}.

• A starting state: The Markov chain moves from state to state using some

algorithm autonomously. However, we must set our starting state X0. For

the die example, X0 = 0 because we have seen zero sixes after zero rolls.

• It is memoryless: We move from state to state according to some function

f : Ω → Ω. All previous states are irrelevant; only the current state is

considered. If on the tth roll we saw a 6, f (Xt) = Xt−1 + 1, otherwise

f (Xt) = Xt−1.

• A concept of time: This dictates how often we move from the current state.

In this thesis, we shall always work in discrete-time.

Formally, a Markov chain is a sequence of random variables, called states,

(X0,X1,X2,X3, . . .) with the Markov property, which means that given the present

state, the past and future states are independent. That is,

Pr(Xn+1 = x | X1 = x1,X2 = x2, . . . ,Xn = xn) = Pr(Xn+1 = x | Xn = xn).

In an effort to animate the rest of the theory in this section, and as an

introduction to Jacobson and Matthews’ method, we will now look at another

basic Markov chain.

23

3.2.1 Example: Random Walk

Suppose G is a finite, connected graph with no loops or multiple edges with

vertex set V (G) = {v1,v2,v3, . . . , vn}. We will construct a random walk on G, that

is, a randomly created alternating sequence of vertices and edges starting and

ending on a vertex.

Let the initial state X0 = v1 and, for some positive integer t, let Xt+1 be a

randomly chosen vertex from the neighbour set of Xt, defined by N (Xt) = {v ∈

V (G) : Xt and v are connected by an edge}.

After n iterations, (X0,X1,X2,X3, . . . ,Xn) could be any of the possible walks

in G starting at x of length n. Note that the knowledge of where the walk has

been yields no information to where the walk will move to at time n+ 1; it only

depends on the current vertex.

v1

v2

v3

v4

v5

v6
v7

v8

v9

v10

v11

v12v13

Figure 3.3: A random walk on a graph G. The walk began at v1 and finished at
v10, as depicted here by the red edges; the grey edges were not used in the walk.

We shall now take a brief tour through some of the properties that Markov

chains can exhibit. Given any pair of states i, j, if there exist a sequence of

states that begins in state i and ends in state j, we say that the Markov chain is

irreducible. Note that for a graph this means a random walk is irreducible if and

only if the graph is connected. If we were hoping to use a random walk to select

a vertex uniformly at random, the random walk would have to be irreducible

otherwise some vertices have no chance of being chosen.

24

If a Markov chain has the property that the probability of moving from state

i to state j, denoted Pij , is equal to the probability of moving from state j to state

i, then we say the Markov chain is reversible. Unless G is regular, the probability

of moving from vertex vi to vj needn’t be the same as moving from state vj to

vi . Sampling uniformly at random is easily thwarted by an irregular graph (see

figure 3.4). Also note that if the edges were directed, the situation can be even

more complicated.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v13

v12

v15

v14

Figure 3.4: Although a random walk on this tree is irreducible, the non-
reversibility prevents uniform sampling because, for example, v1 is less likely
to be discovered because when you are at any of v2, . . . , v7, you are more likely to
move to the right.

A state i has a period k if any revisit to state i must occur in multiples of k time

steps. If k = 1∀i, then the Markov chain is aperiodic. The canonical example of

a random walk that is not aperoiodic is a bipartite graph; every state has period

2. Generally, any random walk on an undirected graph that contains an odd

cycle (including loops) is aperiodic. In other words a Markov chain on a graph is

aperiodic if and only if the graph is non-bipartite.

Moreover, if a Markov chain is aperiodic and reversible, it is ergodic.

Ergodicity is usually summed up in the pithy statement “time averages equal

space averages”. For our purposes, it is sufficient to understand that if a Markov

25

chain is ergodic, then after sufficient time has passed, the systems “forgets”

where it started. In other words, no matter what your choice of X0, the sampling

distribution of chain will converge; we call this distribution the unique stationary

distribution.

A random walk on a finite, connected, undirected, non-bipartite, regular

graph G is ergodic with the uniform stationary distribution. The amount of

time required before the Markov chain exhibits this property is called the mixing

time. Even though a chain converges to the uniform distribution, it might take

too long. We will discuss mixing time in more detail in chapter 6. As a teaser,

we admit that the mixing time for Jacobson and Matthews’ Markov chain is

currently unknown.

The investment we have made in this section will hold us in good stead for

what follows where we will study how Jacobson and Matthews used a Markov

chain to generate uniformly distributed random Latin squares. We have only

touched upon the very basics of the fascinating world of Markov chains. They

are hugely powerful and I urge the interested reader to see [48] for a broader and

deeper coverage.

3.3 Jacobson and Matthews’ Technique

In the previous section, we took a detour through some basic Markov chain

theory and saw that a random walk on a finite, non-bipartite, regular,

undirected, connected graph is ergodic with the uniform stationary distribution.

Returning to the main focus of this thesis, we shall now see how, in 1991,

Jacobson and Matthews used a random walk to generate (approximately)

uniformly distributed random Latin squares.

Consider a graph whose vertex set contains a representative for every Latin

square of order n exactly once. Let M be some operation on Latin squares.

We add an edge between two vertices v1,v2 of our graph if M(v1) = v2 and

26

M(v2) = v1. If the edges that M creates form a connected, finite, non-bipartite,

regular, and undirected graph, then we may take a random walk upon it to

generate an approximately uniformly distributed random Latin square. Recall

from section 3.1 how cycle switching can be used to move from one square to

the another. The move consisted of forcing some symbol s′ into some cell (r, c, s),

which then caused a chain reaction of changes to the square. When M is the

operation of cycle switching, clearly the graph is finite as the there are only

finitely many LS(n). Consider the cyclic square on p symbols where p is prime.

Any cycle swap attempted will result in an isomorphic square, and therefore the

graph has at least two components. This means that cycle switching is not a good

candidate for generating uniformly distributed random Latin squares.

Jacobson and Matthews introduced a more general variant of the cycle

switching operation that fulfils all of the conditions needed. Their first major

insight is that their graph not only contains a vertex representing each Latin

square, but it also contains some vertices for “improper” Latin squares. An

improper LS(n) is a LS(n) with the added condition that some cell can contain

a symbol −1 times. Suppose the symbol s occurs −1 times in row r, column c;

in block design notation, we denote this as −(r, c, s). To comply with the rules

of Latin squares, s must occur in row r and column c twice more so that in net

it occurs exactly once in each. Further, as each cell must contain exactly one

symbol, the cell found at the intersection of row r and column c must contain

two further (proper) symbols. For example, the smallest improper Latin square

(which is unique up to permuting rows, columns, symbols, or the roles of rows,

columns and symbols) is:

2,3,−1 1 1

1 3 2

1 2 3

27

Which, in block notation may be written as:

B = {−(r1, c1,1), (r1, c1,2), (r1, c1,3), (r1, c2,1), (r1, c3,1), (r2, c1,1),

(r2, c2,3), (r2, c3,2), (r3, c1,1), (r3, c2,2), (r3, c3,3)}

Analogously to Latin squares, two improper Latin squares I, I ′ are isotopic if

there exists a permutation of the rows, columns and symbols that transforms I

in to I ′. Further, I and I ′ are conjugate if there exists a permutation of the roles

rows, columns and symbols that transforms one into the other. Finally, if I is

isotopic to a conjugate of I ′, then the two squares are isomorphic.

Their second major insight is how to move from one (proper or improper)

square to another. For proper squares, we begin in a similar fashion to cycle

switching. We randomly pick a cell, say (d,e, f), and some symbol, say f ′. We

will add f ′ to our chosen cell and remove f . This now means that f ′ occurs in

row d and column e twice. To fix this, find the row d′ such that (d′ , e, f ′) exists and

swap it for (d′ , e, f). Similarly, do the same for the column e′ such that (d,e′ , f ′)

exists. This means that row d and column e now contain the correct number of

occurrences of f and f ′. However, row d′ and column e′ contain f twice and f ′

doesn’t occur at all. The final part of the move occurs in the cell that completes

the subsquare, that is, (d′ , e′ ,x) for some symbol x. If x = f , we swap it for f ′ and

we end with a Latin square. If x , f , then we still add an f ′ and introduce a −f

into that cell, resulting in an improper square.

The move beginning from an improper square is similar, except instead of

picking a random cell at the start, you must use the improper cell and add in the

symbol that occurs −1 times. By doing this, we ensure that we only ever have

at most one improper cell at any one time. Note that there are eight possible

conclusions to the move because there are two proper symbols in the improper

cell, and two occurrences of the improper symbol in that row and column.

We can formalise this move in the following algorithm:

28

±1-move [Jacobson and Matthews, 1991]

1. If the current state is proper, pick any admissible cell (d,e, f). If the current

design is improper, let d, e and f be the row, column and negative symbol

contained in the improper cell.

2. Find d′ , e′ , f ′ such that (d′ , e, f), (d,e′ , f), (d,e, f ′) exist.

3. Now we perform the following “trades”:

(a) Add the following blocks: (d,e, f), (d,e′ , f ′), (d′ , e, f ′), (d′ , e′ , f).

(b) Remove the following blocks: (d,e, f ′), (d,e′ , f), (d′ , e, f). If you can,

also remove (d′ , e′ , f ′). If you cannot remove (d′ , e′ , f ′) (because it

doesn’t exist in the block set), then we develop an improper block

−(d′ , e′ , f ′) and are left with an improper design. Note that this means

we can never have more than 1 improper block.

Moves will often be represented in table notation. This is a table with two

columns and four rows; each row in the first column contains a block that should

be added to the block set and each row in the second column contains a block

that should be removed from the block set. We will omit the brackets from each

block in the table for a cleaner presentation. For example: in table notation, step

three in the ±1-move above would be represented like this:

+ −

d e f d′ e′ f ′

d e′ f ′ d e f ′

d′ e f ′ d e′ f

d′ e′ f d′ e f

29

Given a square (or any other generalised 2-design with

block size 3), the DesignMC package can move around the

underlying graph of this Markov chain by using the Hopper ,

OneStep , ManyStepsProper and ManyStepsImproper

functions.

An example of Jacobson and Matthews’ technique

To illuminate the theory, we shall now see an example of how we can move from

one square to another by using improper squares as stepping stones. There are

(up to isomorphism) only two Latin squares of order five. Suppose that we

begin with the cyclic square and would like to find the other. We shall now

demonstrate how Jacobson and Matthews’ technique can succeed where simple

cycle switching cannot.

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

Step One The technique requires a starting

point, the so-called X0. We shall begin with the

cyclic square on 5 symbols. As this is a proper

square, step 1 in the algorithm expects us to

choose any row, column and symbol with which

to form a block. We shall choose (r1, c4,5).

30

1 2 3 5 4

2 3 4 4 1, -4, 5

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

Step Two In row 1, column 4, we already have

the symbol 4. We are going to remove it and

add the symbol 5 in its place. Highlighted in

orange are the places where 5 already occurred;

we replace each 5 by a 4. Now, in both row

r1 and column c4 the number of occurrences of

symbol 4 is correct. However, we now have too

many 4’s and no 5’s in column c5 and row r2.

To complete the move, we add a 5 and remove

a 4 from the cell found at row r2, column c5,

highlighted in blue.

1 2 3 5 4

2 3 4 1 5

3 4 5 1 2

4 5 1 2 3

5 1 2 3, -1, 4 1

Step Three As we have an improper square,

we are forced to add (r2, c5,4) back. However,

we may choose whether to remove a 1 or a 5

from this cell – we shall remove a 1. We must

remove a 4 from both row r2 and column c5,

and we have two choices in each case. The

choices that were made have been highlighted

in orange. We complete the move by adding a 4

and subtracting a 1 from the cell found at row

r5, column c4.

31

1 2 3 5 4

2 3 4 1 5

3 1 5 4 2

4 5 1 2 3

5 4 2 3 1

Step Four We can concisely describe the

move made by carefully choosing a block that

we have added and a block that we have re-

moved. For example, we can return to proper-

ness by performing the unique move that cor-

responds to adding (r5, c1,2) and removing

(r1, c2,1). Finally, we have used the ±1-move to

find the non-cyclic square of order 5.

In the remainder of this section, we shall give an overview of how Jacobson

and Matthews proved connectedness of the underlying graph, which ultimately

climaxes in the following theorem:

Theorem 4 ([29], theorem 4). Let X∗0 be an arbitrarily distributed order-n Latin

square that starts a Markov chain of (proper and improper) squares: to each square,

apply a move chosen uniformly at random from the permissible ±1-moves [n2(n − 1)

from a proper square, 8 from an improper square]. Let X∗ ≡ (X1,X2,X3, . . .) be

the subsequence of proper squares we encounter; then X∗ is a Markov chain with a

(unique) stationary distribution that is uniform over the set of order-n Latin squares.

If n ≥ 3, the chain is ergodic.

3.3.1 Pair Graphs

In section 3.1 we learned how to construct a pair graph from two rows, columns

or symbols of some Latin square L. We shall now expand this definition to

include improper Latin squares. From now on, we will denote a pair graph as

D = DL(a,b), where a,b are the two nominated rows, columns or symbols and L

is a proper or improper square. As before, the vertex set contains one element

for each point that is not the same type as a and b. For example, if a and b were

32

columns and we were creating the column-pair graph DL(a,b), then D would

contain exactly one vertex for each row and symbol of our square, but no vertices

representing columns. To form edges, we connect two vertices x,y with a red

edge if (a,x,y) exists. Similarly, we connect two vertices x,y with a blue edge

if (b,x,y) exists. We allow a to be one of the points contained in the improper

block, but never b; this is purely to aid our discussion.

For any proper square, the vertices of the pair graph are all incident with

the same number of blue edges as red edges. For example, consider a row-pair

graph DL(r, r ′). Each column-representing vertex has a red edge for each of the

incidences that it has with row r – for proper Latin squares, this is always exactly

1. Similarly, the column only appears in exactly one block with r ′, so this vertex

has exactly 1 blue edge.

If L is an improper square, then we have some improper block −{j,k, l}. If

a ∈ {j,k, l}, without loss of generality suppose a = j, then D will contain exactly

two special vertices k, l – they are special because the number of red edges

incident with them is exactly one more than the number of blue edges incident

with them. This is because j and k must occur together precisely once, and as the

improper block contributes −1 to this value, there must be an extra incidence to

compensate (similar for j and l). Also, there is no red edge connecting the special

vertices. As the definition of the pair graph forbids b from being a member of

the negative block, we may unambiguously refer to “the red component of the

pair graph containing the special vertices”.

In what follows, we are going to work exclusively with row-pair graphs. This

distinction is to ease discussion and the reader should be aware that permuting

the words “row”, “column” and “symbol” would yield the same results.

Jacobson and Matthews classified the five different types of row-pair graph.

We shall quickly recall them here. To aid us, we will use the following improper

Latin square of order 7 to illustrate each type.

33

1 5 4 2 6 7 3

2, -3, 4 1 3 6 5 3 7

5 3 2 4 7 1 6

3 6 7 5 1 2 4

3 2 5 7 4 6 1

7 4 6 1 3 5 2

6 7 1 3 2 4 5

Type 1: This graph is a union of even cycles, each of length at least 4. As

well as having the property that the edges alternate, we also have the property

that the vertices alternate between representing columns and symbols. These

are actually the same graphs as we constructed in section 3.1. If our square has

−(r, c, s), then we may form a type 1 graph by forming the row-pair graph with

any pair of proper rows that do not contain a column conflict. For example, in

figure 3.5 we show DL(1,3).

12

2113

15

8

19

9 17

14

20

11

18
10

16

Figure 3.5: A type 1 row-pair graph constructed from rows that do not contain
the improper cell.

Type 2: Still not using the improper row, a type 2 graph is similar to a type 1

graph except that we have a column conflict in the rows we choose. In general,

34

suppose we have −(r, c, s), then there must exist rows r ′ , r ′′ such that (r ′ , c, s) and

(r ′′ , c, s) exist. If we form the row-pair graph DL(r ′ , r ′′), then we will obtain a

type 2 graph. The identifying factors of a type 2 graph are that every vertex has

degree 2 and there exists a 2-cycle. In figure 3.6, we use rows 4 and 5 of L where

the symbol 3 appears in column 1 of both rows.

13

20
9

16
14

15
12

18
11

21
10

19

17

8

Figure 3.6: A type 2 row-pair graph constructed from DL(4,5).

Type 3A: Suppose we have −(r, c, s), then a type 3A graph is constructed by

using rows r and r ′, such that (r ′ , c, s) exists. Type 3A graphs may be thought

of as a collection of Type 1 graphs with an additional component that contains

both special vertices, which are connected by a blue edge. Continuing use of the

above square as an example, we may create a type 3A row-pair graph with rows

2 and 4, or 2 and 5 see 3.7. Remember that as a matter of notation, we are only

going to let the improper row label red edges. Also, we represent the improper

edge with a dashed line.

Type 3B/C: Given that we have −(r, c, s), both of these graphs are formed

by using rows r and r ′ such that (r ′ , c, s) does not exist. In the graph DL(r, r ′),

locate one of the special vertices and trace out an alternating path by moving

away along a blue edge. When you arrive at a special vertex, stop. Depending

on the structure of the square, either you will find the other special vertex, in

which case the graph is of type 3B. Alternatively, you will return to where you

started before without finding the other special vertex, in which case we classify

35

17

8

18

14

21

10 15

12

19
11

20

9

13

16

Figure 3.7: A type 3A row-pair graph involving the improper row (row 2) and
the proper row 4, that is, DL(2,4).

the graph as type 3C. Type 3B graphs are similar to type 3A, except that instead

of having a edge connecting the special vertices, there is an alternating path of

length at least 3 (see figure 3.8). Type 3C graphs are characterised by having two

disjoint alternating cycles of even length which each contain a special vertex.

There is an alternating path connecting these cycles starting and ending at the

special vertices. There may optionally be some other type 1 graphs (see figure

3.9).

14

19

1216
8

20

11

17
10 15

9

21

18

13

Figure 3.8: A type 3B row-pair graph involving the improper cell DL(2,7).

Pair graphs are a very useful tool for proving connectedness of Jacobson and

Matthews’ Markov chain, as well as generalisations of it that will follow later.

36

8

159

19

12

20 11

16

13

17

14

21

1018

Figure 3.9: A type 3C row-pair graph involving the improper cell DL(1,2).

As mentioned earlier, the DesignMC package can be used to

display pair graphs (with the aid of Mathematica) using the

CreatePairGraph function.

The following two lemmas were used without formal proof in the original

paper. Not only will we detail the proofs here, but we’ll generalise the statements

because we shall get more use from them later.

Lemma 5 (Closed Alternating Trail Switching). Using Jacobson and Matthews’ ±1-

move, we may interchange the edge-colours of a closed alternating trail, T , in some

pair graph without altering any edges outside of this trail.

Proof. We create a modified version of our alternating trail T by splitting all of

the vertices with degree d > 2 into d/2 child vertices in such a way that we form

an alternating cycle; we can clearly do this by following the alternating trail

and splitting off new vertices as we need to. Let the vertices be labelled with

1,2, ...,2m and call this new graph H . To interchange the edge colours of H , we

perform m moves, where move i is defined to be:

37

hi =

+ −

i 2m− i + 1 ci i + 1 2m− i ci+1

i 2m− i ci+1 i 2m− i + 1 ci+1

i + 1 2m− i + 1 ci+1 i 2m− i ci

i + 1 2m− i ci i + 1 2m− i + 1 ci

where

ck =

 red if k is odd

blue if k is even

1 2

2m 2m− 1

h1

1 2

2m 2m− 1

If we now replace each vertex label by its parent’s label in each hi , we create

a set of Markov chain moves that will interchange the colours of our original

alternating trail T . Note that although you may now be making moves on a graph

with loops or multiple edges, each move works on the same edges as before and

is apathetic that vertices may now intersect.

Corollary 6. The edge labels of a type 1 graph may be interchanged.

Lemma 7 (Return to Properness). Suppose L is an improper square with −(a,v1,v2).

Let D = DL(a,b) be a pair graph. Given a closed alternating trail (on red and blue

edges) including a blue edge connecting the two special vertices v1,v2 in the pair

graph, DL, one may return to properness using the ±1-move without altering any

edges outside of this trail.

Proof. We focus attention on the interesting part of the pair graph, which looks

like this (the dashed red line between v1,v2 represents the improper block):

38

v′1

v1

v′2

v2

Begin with a move to add a red edge between v1 and v2. Now we must remove

a red edge incident with v1 (choose {v1,v
′
1}) and v2 (choose {v2,v

′
2}). Also, we

must remove a blue edge and add a red edge between {v′1,v
′
2}. If such a blue edge

existed, then we are now proper. However, if there was no blue edge between

{v′1,v
′
2}, then we have been left with an improper design with a shorter closed

alternating trail between two special vertices v′1,v
′
2. Repeat the move to shorten

the trail until you have a trail with only four edges in it, the next time you

perform the move you will return to properness.

Corollary 8. Any type 3A pair graph may be converted to a type 1 graph.

In keeping with the original paper, the process described in the previous

proof may be referred to as “sliding the chord”.

3.3.2 Proving Connectedness

Of all the conditions required for this Markov chain to be ergodic with uniform

stationary distribution, connectedness requires the most attention. In fact, in

the upcoming generalisations, only connectedness needs to be proved as all of

the other features are covered by the original work.

Jacobson and Matthews presented their connectedness theorem with the aid

of two lemmas. The first of these lemmas shows that it is possible to make small

changes in a row causing damage in at most two other rows. The proof consists

of three cases where the first two are much smaller than the third. For our

39

purposes, it will be instructive to give the proof of the first two cases separately

from the third. For future generalisations, it will only be necessary to generalise

case 3. If the reader is interested in viewing the unadulterated proof, see [29],

lemma 2.

The second lemma shows that we can use the first to transform some square

into any given square by working one row at a time.

Lemma 9. Suppose that for some proper row t we have (t, c, s) and (t, c′ , s′), with the

additional condition that, if the square is improper, we have −(r, c, s) (for some r , t).

Further, suppose we have (r, c′ , s). Then there is a sequence of ±1-moves that leaves a

working square having (t, c, s′) and (t, c′ , s) but, apart from making this swap in row t,

changes incidences in only row r; additionally, if the new working square is improper,

it has −(r, c, s′).

Proof. Case 1: If the square is proper, we can prove the result by performing the

following move:

+ −

t c s′ r c′ s

t c′ s t c s

r c s t c′ s′

r c′ s′ r c s′

As you can see we now have the blocks (t, c, s′) and (t, c′ , s) whilst minimising

damage to only row r.

Case 2: If the square is improper, then we may prove the result by

performing two moves. Note that because the square has an improper cell, we

are forced to add it.

40

+ −

r c s t x s′

r x s′ r c s′

t c s′ r x s

t x s t c s

This move has gained us ‘half’ of our requirements in that we now have

(t, c, s′). Unfortunately, we have damaged column x, whatever that may be. We

shall fix this damage, and gain the other required cell in the following move

(note that whether or not we are proper or not is irrelevant as we are going to

add the potential negative block back anyway).

+ −

t x s′ r c′ s

t c′ s t x s

r x s t c′ s′

r c′ s′ r x s′

As you can see, this not only returns column x to its initial state, but it also

provides us with the second required block.

The proof of the previous lemma was quite straightforward, but does not

cover circumstances where the square is improper and (r, c′ , s) does not exist.

The next lemma addresses this issue.

Lemma 10. Suppose that for some proper row t we have (t, c, s) and (t, c′ , s′). Also,

the square is improper with −(r, c, s) (for some r , t). Further, suppose we have

(r ′ , c′ , s), for some r , r ′. Then there is a sequence of ±1-moves that leaves a working

square having (t, c, s′) and (t, c′ , s) but, apart from making this swap in row t, changes

incidences in only rows r and r ′; additionally, if the new working square is improper,

it has −(r, c, s′) or −(r ′ , c, s′).

41

Proof. The goal of this proof is transform the square so that lemma 9 (case 2)

applies. To do this, we need to either exchange (r, c, s) for (r ′ , c, s) or exchange

(r ′ , c′ , s) for (r, c′ , s) – but not both.

To begin, we must study the discrepancy graph DL(r, r ′). This graph is either

type 3B or type 3C and therefore there must exist an alternating path between c

and s starting and ending on a red edge.

Suppose this alternating path has the form c, r, s∗, . . . , c∗, r, s, that is, (r, c∗, s)

and (r, c, s∗) both exist. Also note that there exists some row u < {r, r ′ , t} such that

(u,c, s) exists (this is because c and s occur together in a block twice due to them

both appearing in the improper block. One of these occurrences is in a block

with t, the other cannot be with r as we have −(r, c, s) and the other cannot be

with r ′ because we know that (r ′ , c′ , s) exists and r ′ and s cannot occur in another

block together). Perform the following move, called “move u”:

+ −

r c s u c∗ s∗

r c∗ s∗ r c s∗

u c s∗ r c∗ s

u c∗ s u c s

Depending on whether the graph was type 3B or type 3C, the row-pair graph

will be transformed into either two or three components respectively (see figure

3.10 for an example where the graph is type 3B; type 3C is analogous).

This altered graph now contains an even length, alternating cycle, denoted

H . If the square is in a proper state, we may use lemma 5 to interchange the edge

labels of this cycle and reverse move u which leaves us with −(r ′ , c, s) and (r ′ , c′ , s),

and therefore we may complete the proof by returning to lemma 9, invoking case

2.

If, after performing move u the square is improper, then before we are

allowed to interchange the colours of the cycle, we must return to properness.

42

Step 1: Begin with DL(r, r ′)

c

s1

s∗
c4 s4

s2

s

c1

c∗

c′

Step 2: Apply move U

c

s1

s∗

c4 s4

s2

s

c1

c∗

c′

Step 3: Interchange edge colours on
cycle containing c∗ and s∗

c

s1

s∗

c4 s4

s2

s

c1

c∗

c′

Step 4: Undo move U

c

s1

s∗
c4 s4

s2

s

c1

c∗

c′

Figure 3.10: If the row-pair graph DL(r, r,′) is of type 3B, then it will have a
similar form to this graph. Its defining characteristic is that it is 2-connected.
In step 2 we perform “move U” to isolate the edges that we wish to interchange.
This is important because we do not want to disrupt (r ′ , c′ , s). In step 3 we assume
we have managed to get back to a proper square without disrupting any cell in
rows r or r ′. We Interchange the edge labels on exactly one of the components
and then in step 4 reverse “move U”.

43

If the alternating path that we found had length three, that is (r ′ , c∗, s∗) exists,

then after performing move u, the resulting graph is type 2 and we have a 2-

cycle. We can immediately reverse move u, but instead of choosing row r, choose

row r ′, that is, perform the following move:

+ −

u c∗ s∗ r ′ c s

r ′ c s∗ r ′ c∗ s∗

r ′ c∗ s u c s∗

u c s u c∗ s

Now, as already mentioned, we continue as in lemma 9, case 2.

If the alternating path had size greater than 3, we find v < {r, r ′ ,u} such that

(v,c∗, s∗) exits. We can always find such a v because if (u,c∗, s∗) existed, we would

not be in this case. Similarly, for (r ′ , c∗, s∗). Also, as r occurs with c∗ in (r, c∗, s), it

could not also occur with c∗ and s∗.

Construct the type 3A row-pair graph with v and u. We use lemma 7 and

return to properness without damaging rows r and r ′. Interchange the edge

colours on the cycle H before immediately undoing the damage we caused to

rows v and u. Finally, reverse move u to return to case 2 of lemma 9.

In the next few chapters we shall be generalising the previous proof to show

how the ±1-move can be used to find other combinatorial structures. For now,

let’s continue to see how lemmas 9 and 10 are used to move from any given

square to any other given square.

Given some proper square W that we wish to transform into some other

proper square T , focus on some row r and define a discrepancy cycle to be the

graph whose vertices are labelled with each symbol and each column. There is a

T -coloured edge between a symbol vertex s and column vertex c if (r, c, s) exists in

T (similar for W -coloured edges). The discrepancy cycles are a union of disjoint

44

even length cycles. Any 2-cycle is called trivial because they indicate that there

is no work to be done.

The DesignMC package’s CreatePairGraph function can be

used to display these discrepancy graphs.

For example, suppose that in square W we have the following entries in row

r:

1 2 3 4 5 6

and in square T row r looks like this:

3 5 1 2 4 6

then the discrepancy graph would look like this:

1

c1 3

c3 2

c2 5 c5

4c4 6

c6

The next lemma states that we can use lemmas 9 and 10 to break a

discrepancy graph down into 2-cycles, and thus converting any given square

into any other given square.

Lemma 11 ([29], lemma 3). Given proper working and target squares, select a non-

trivial discrepancy cycle in (target) row t. Let R be (the indices of) the minimal set of

other working-square rows that must be altered in order to correct this cycle. (That is,

45

each T -edge {c, s} in the discrepancy cycle indicates a column-symbol incidence that

must move to row t from another (working-square) row r ′; R comprises all such r ′.)

Then there is a sequence of ±1-moves that corrects the discrepancies along the cycle,

producing a proper square, without changing other incidences in row t or incidences

in rows that do not belong to R.

Proof. Omitted. See [29], lemma 3

Armed with these new tools, we are finally able to prove that the underlying

graph of the ±1-move is connected.

Theorem 12 ([29], theorem 1). Given two (proper or improper) order-n squares,

there exists a sequence of ±1-moves that transforms one square into the other. An

upper bound on the length of the shortest such sequence is 2(n− 1)3(n ≥ 2).

Proof. Omitted. See [29], theorem 1

46

Chapter 4

Generalised Latin squares

4.1 Definition

So far we have looked exclusively at the theory of Latin squares. In the

introduction to this thesis we said that our primary aim is to address a conjecture

that marries other combinatorial structures with the ±1-move. The reader may

wonder, therefore, why so much emphasis has been placed on Latin squares.

The reason for this is that the path through the theory of the other designs is

very similar. Where differences occur, the route through Latin squares is often

clearer. Hopefully being exposed to Latin squares first makes the upcoming

theory easier to follow.

Let’s begin the journey into these other combinatorial structures by

considering a first generalisation of Latin squares. The definiton of a Latin

square required an n × n grid to contain each of the symbols from {1,2, . . . ,n}

exactly once in each row and column. What happens if, instead of once, we

want each symbol to occur exactly twice, with each cell containing exactly two

symbols? It is trivial to see that such structures exist because repeating the

symbol contained in each cell of a LS(n) satisfies this new definiton. Similarly,

47

1 1 2 2
2 2 1 1

1 2 1 2
1 2 1 2

Figure 4.1: These are the only (up to isomorphism) LS(2,2).

1 1 3 3 2 2
3 3 2 2 1 1
2 2 1 1 3 3

1 1 3 3 2 2
2 3 1 2 1 3
2 3 1 2 1 3

1 1 2 3 2 3
2 3 1 3 1 2
2 3 1 2 1 3

1 3 1 2 2 3
1 2 2 3 1 3
2 3 1 3 1 2

Figure 4.2: These are the only (up to isomorphism) LS(3,2).

replacing “twice” with “λ ∈N number of times” is equally trivial to prove.

Formally, this generalised Latin square on n symbols, which contains each of

the n symbols in each row and column exactly λ times, is denoted by LS(n,λ).

For example, up to isomorphism, there are 2 different LS(2,2) (figure 4.1)

and 4 different LS(3,2) (figure 4.2).

We obtain these squares using the DesignMC package’s

EnumerateSquares function.

Up to isomorphism, there are 44 LS(4,2) and 48568 LS(5,2) but the

computation to discover anything more, such as the number of LS(6,2) (up

to isomorphism), is beyond the computing power of a modern home desktop

machine.

This demonstrates that for an even smaller symbol set than Latin squares, we

soon reach the combinatorial explosion. Given n and λ, how could we select a

square uniformly at random for λ ≥ 2, and n at least, say, 8? Enumeration, hill

climbing and cycle switching all fail for the same reasons as before. Jacobson

48

and Matthews’ ±1-move was not built to withstand anything but LS(n,1) – could

it perhaps be extended to work with these new designs?

Even more generally, suppose that the number of columns, number of rows

and number of symbols may all be different values. This leads us to the most

general definition of the Latin square that will shall consider:

4.1.1 Generalised Squares

Let R = {ρ1, . . . ,ρr}, C = {γ1, . . . ,γc} and S = {σ1, . . . ,σs}, and let λ = (λRC ,λRS ,λCS)

be a triple of positive integers. We call the elements of R,C and S rows, columns

and symbols respectively. A generalised Latin square (or “square”, for brevity), is

an r×c grid, in which each cell contains λRC symbols in such a way that every row

contains each symbol exactly λRS times and each column contains each symbol

exactly λCS times. We shall denote these squares as LS((r, c, s), (λRC ,λRS ,λCS)).

If r = c = s then we may represent the triple by s. Similarly, if λRC = λRS = λCS ,

then we say the square has constant λ and represent the triple by a single value.

For example, an LS(s,1) is the well-studied, and previously defined, Latin square

of order s.

Those familiar with the notation of Cameron’s generalised t-designs, which

we discussed in chapter 2, will recognise the generalised Latin squares as 2-

((r, c, s), (1,1,1), (λ(1,1,0),λ(1,0,1),λ(0,1,1))) designs.

An improper square contains some symbol x exactly −1 times in row u column

v, denoted −(u,v,x). We refer to this block as the improper block or negative

block. A square that contains −(u,v,x) must have the symbol x occurring in row

u exactly λRS times. This means that there should be λRS + 1 proper occurrences

of x so that in net there are λRS in total. Similarly, the proper symbol x should

occur λCS + 1 times in column v and there should be λRC + 1 proper symbols in

the improper cell.

To exemplify the use of these objects, we turn to the field of experiment

49

1 2 3 4 5 6
3 4 5 6 1 2
5 6 1 2 3 4

Figure 4.3: a LS((3,3,6), (λRC = 2,λRS = 1,λCS = 1)) and also a (3 × 3)/2 semi-
Latin square. There are only two (up to isomorphism) such designs with these
parameters.

design. An (n × n)/k semi-Latin square is an n × n square on nk symbols such

that each cell contains n symbols and each symbol occurs in each row and each

column exactly once. The square shown in figure 4.3 is a LS((3,3,6), (λRC =

2,λRS = 1,λCS = 1)) and also a (3× 3)/2 semi-Latin square.

The ProduceSquare function from the DesignMC package can

find such designs. For example, if we wanted to find both of the

LS((3,3,9), (λRC = 3,λRS = 1,λCS = 1)) designs, we can use

gap> ProduceSquare(rec(v:=[3, 3, 9], lambdas:=[3, 1, 1],

isoLevel:=2));

The isoLevel parameter, defined in the DESIGN package,

can be set to either 0, 1 or 2. Setting isoLevel:=0 will

return exactly 1 design (if any exist). Setting the isoLevel:=1

guarantees to find a representative from every isomorphism

class (but perhaps multiple representatives from a class will

appear). Setting isoLevel:=2 will return exactly one

representative from each isomorphism class.

For more information on the theory, uses, constructions and optimality of

semi-Latin squares, see [1].

Below is a table displaying the number of squares (both proper and

improper) for small values. Information about squares with non-constant λ are

50

found in the shaded rows of the table.

The DesignMC’s EnumerateSquares function was used to

calculate each of the values in the table shown below.

Proper designs

r c s λRC λRS λCS Total squares

2 2 2 2 2 2 2

3 3 3 2 2 2 4

4 4 4 2 2 2 44

5 5 5 2 2 2 48568

3 3 6 2 1 1 2

3 3 9 3 1 1 2

3 3 3 3 3 3 9

4 4 4 3 3 3 2424

Improper designs

r c s λRC λRS λCS Total squares

3 3 3 2 2 2 2

4 4 4 2 2 2 142

3 3 3 3 3 3 9

Lemma 13. The size of the row, column and symbol sets are all equal, that is, r = c = s,

if and only if the design has constant λ, that is, λRC = λRS = λCS .

Proof. Let the number of symbols in row/column j be denoted by #(j). For any

row ρ or column γ we have

#(ρ) = cλRC and #(γ) = rλRC (4.1)

51

On the other hand,

#(ρ) = sλRS and #(γ) = sλCS (4.2)

If r = c = s, then by (4.1) we have #(ρ) = #(γ), and thus by (4.1) and (4.2) we

get rλRC = sλRS = sλCS , which implies λRC = λRS = λCS .

Conversely, if λRC = λRS = λCS then by (4.2) we have #(ρ) = #(γ), and thus by

(4.1) and (4.2) we get rλRC = cλRC = sλCS , which implies r = c = s.

Lemma 14. An LS(s,m) exists for all s ≥ 2,m ≥ 1.

Proof. To obtain an LS(s,m), repeat m times the blocks of an LS(s,1).

4.2 Pair Graphs

In section 3.3 we saw how pair graphs behaved for Latin squares. Now we

are working with generalised Latin squares, and as a result they have different

properties. Let L be a proper generalised Latin square on n symbols, and a,b be

rows of L. Recall that the row-pair graph D = DL(a,b) is a graph with vertex set

V (D) = C ∪ S. We join two vertices x, y with a red edge if (a,x,y) is a block of L.

Similarly, we join x and y with a blue edge if (b,x,y) is a block of L.

Pair graphs for proper Latin squares were a disjoint union of even length

cycles such that the edge labels alternated as well as the type of vertex (that is,

whether the vertex represented a symbol or a column). The graph for generalised

Latin squares is slightly more complicated. Firstly, as every cell contains λRC

symbols, the red and blue degree of a column-representing vertex is exactly λRC ,

making the degree 2λRC overall. Similarly, as every symbol occurs in each row

λRS times, the symbol-representing vertices have degree 2λRS . Note that row-

pair graphs for these generalised designs need not be regular and are certainly

not cycles.

To demonstrate the complexity of the pair graph of a generalised square, we

can see an example of a square, L, defined to be an

52

2, 3, 7, 8 1, 2, 3, 6 1, 5, 5, 7 4, 4, 6, 8
1, 3, 4, 8 1, 2, 4, 7 2, 3, 6, 6 5, 5, 7, 8
4, 5, 6, 6 3, 5, 7, 8 2, 4, 7, 8 1, 1, 2, 3
1, 2, 5, 7 4, 5, 6, 8 1, 3, 4, 8 2, 3, 6, 7

Figure 4.4: a generalised Latin square L = LS((4,4,8), (λRC = 4,λRS = 2,λCS = 2))
and the row-pair graph DL(1,4).

LS((4,4,8), (λRC = 4,λRS = 2,λCS = 2))

and the row-pair graph DL(1,4) in figure 4.4.

Although we have only discussed row-pair graphs, and will continue in this

way, the reader should observe that the analysis for column- and symbol-pair

graphs is analogous.

4.2.1 Square Row-Pair Graph Analysis

Throughout this section, let L be an improper square with the improper block

−(a,c, s) and D =DL(a,b) be any row-pair graph, for some row b(, a).

The component of the row-pair graph D containing the special vertices c, s is

called the core of D, denoted core(D); if D is connected, then core(D) = D. If we

delete some blue edge incident with c, say {c,x}, from D, we are left with a near-

core of D, denoted near-core(D). For every core(D), there are λRC near-core(D)s.

53

Note that the deleted blue edge is always incident with the column vertex c.

We are interested in a particular type of alternating trail between two vertices

q,r ∈ V (D), starting and ending on a red edge. For brevity, we call this type of

alternating a trail an RBR. An RBR that starts at q and ends at r is denoted as an

RBR(q,r).

To find an RBR between two vertices in a pair graph, use the

DesignMC package’s FindAlternatingTrail function using

the isPathEvenLength attribute to indicate that the path

should have odd length. You can specify a list of vertices that

the path must include, as well as a list of forbidden vertices.

Lemma 15. An RBR(c, s) exists in any connected near-core(D).

Proof. For now, we set G = core(D).

Firstly, note that an RBR(c,c) cannot exist in the bipartite graph G, this is

because such a trail would necessarily contain an even number of vertices, but an

odd number of edges (as the number of red edges is one more than the number of

blue edges). However, an odd length cycle must have an odd number of vertices,

and thus this trail cannot exist. Similarly, we cannot create an alternating trail

that starts on a red edge at c and ends at s along a blue edge.

We are going to create the desired trail by deleting edges from the graph G

and keeping track of edges we have deleted. To begin, pick and delete a red

edge at c, say, {c,w1}. Now w1 is incident with exactly one less red edge than

blue edges and c now has even valency. As w1 and s are the only two vertices

with odd degree, they lie in the same connected component. Pick and delete

some blue edge at w1, say, {w1,w2}. Now w2 and s are the only vertices with

odd degree, so they must lie in the same connected component. Continue in this

fashion until the first instance of either reaching s via a red edge (in which case

54

the deleted edges form RBR(c, s)), or returning to c via a blue edge. If you are

in the latter case, you have a new graph G1 which you constructed from D by

removing an edge-alternating trail starting with a red edge at c and ending with

a blue edge at c. As c now has odd valency again, it is connected to s; you may

now repeat the process again. As there are more red edges than blue edges at c,

eventually you will begin an edge-alternating trail that cannot return to c, hence

you must reach s along a red edge.

Note that this forms an RBR(c, s) that is guaranteed not to use a blue edge

incident with c, so any near-core(D) also contains an RBR(c, s).

The analysis of row-pair graphs for improper generalised Latin squares is not

as satisfying as it was for the traditional improper LS(s,1). This need not hinder

our progress and in fact, we can still say quite a lot about them. For example,

we know they are semi-Eulerian (as they only have two vertices of odd degree).

If the graph contains more than 1 component, then each component (except the

core(D)) is Eulerian. Also, as a corollary of lemma 15, we know that we can find

an edge-alternating Eulerian trail from c to s, starting and ending on a red edge.

Furthermore, due to the general nature in which we stated and proved lemma 5,

we can use the ±1-move to interchange the edge colours of any closed alternating

trail.

We are now ready to address the question: can Jacobson and Matthews’

technique be extended to generate uniformly distributed random generalised

Latin squares?

4.3 Generating Squares Uniformly at Random

We have already discussed that a random walk on a finite, connected, non-

bipartite, regular, undirected graph is ergodic with a uniform stationary

distribution. The theory supporting Jacobson and Matthews’ ±1-move (which we

55

described in section 3.3) handles everything except the finite and connectedness

conditions. Clearly the graph we are working on is finite because there only

a finite number of squares (both isomorphic and non-isomorphic) with given

parameters. The only unknown is connectedness, which we shall deal with now.

As in section 3.3, we split the lemma in to two parts. The first part contains

the relatively easily proved first two cases. The third case, which requires some

knowledge of pair graphs is reserved for the lemma that follows afterwards.

Lemma 16. Suppose that we have a square in which the target row t is proper with

(t, c, s) and (t, c′ , s′), with the additional condition that, if the square is improper, we

have −(r, c, s) (for some r , t). Also, we have (r, c′ , s). There is a sequence of ±1-moves

that leaves a working square having (t, c, s′) and (t, c′ , s) but, apart from making this

swap in row t, changes incidences in only row r; additionally, if the new working

square is improper, it has −(r, c, s′).

Before we start the proof, which is of a similar flavour to the proof of 9, we are

going to assume that λCS ≥ λRC ,λRS . This assumption makes the proof a little

neater, but should not be seen as deviating from generality as “rows”, “columns”

and “symbols” are just arbitrary labels that we can permute.

Proof. Case 1: If the square is proper, we can prove the result by performing the

following move:

+ −

t c s′ r c′ s

t c′ s t c s

r c s t c′ s′

r c′ s′ r c s′

As you can see we now have the blocks (t, c, s′) and (t, c′ , s) whilst minimising

damage to only row r, which was unwanted anyway.

56

Case 2: If the square is improper, then we may prove the result by

performing two moves. Note that because the square has an improper cell, we

are forced to add it.

+ −

r c s t x s′

r x s′ r c s′

t c s′ r x s

t x s t c s

This move has gained us ‘half’ of our requirements in that we now have

(t, c, s′). Unfortunately, we have damaged column x, whatever that may be. We

shall fix this damage, and gain the other required cell in the following move

(note that whether or not we are proper or not is irrelevant as we are going to

add the potential negative block back anyway).

+ −

t x s′ r c′ s

t c′ s t x s

r x s t c′ s′

r c′ s′ r x s′

As you can see, this not only returns column x to its initial state, but it also

provides us with the second required block.

Lemma 17. Suppose that we have a square in which the target row t is proper with

(t, c, s) and (t, c′ , s′), with −(r, c, s) (for some r , t) (r ′ , c′ , s), for some r ′ , r. Then there

is a sequence of ±1-moves that leaves a working square having (t, c, s′) and (t, c′ , s)

but, apart from making this swap in row t, changes incidences in only rows r and r ′;

additionally, if the new working square is improper, it has either −(r, c, s′) or −(r ′ , c, s′).

Proof. In the original proof, the technique used involved finding an RBR(c, s) of

the form

57

c, red, s∗,blue, . . . ,blue,c∗, red, s

By lemma 15, we know that such a path exists. Call the shortest such path P

and then perform the following move, called “move u”:

+ −

r c s u c∗ s∗

r c∗ s∗ r c s∗

u c s∗ r c∗ s

u c∗ s u c s

If this new design is improper, we will use lemma 5 to interchange the edge

colours of the cycle we just created and return to case 2.

If it is not, we must first return to properness before we can proceed.

If we are improper and P has length 3, then we must have (r ′ , c∗, s∗), in which

case we return to case 2 by performing the following move:

+ −

u c∗ s∗ r ′ c s

r ′ c s∗ r ′ c∗ s∗

r ′ c∗ s u c s∗

u c s u c∗ s

If we are improper and P has length greater than 3, then we must find some

row-representing vertex v < {r, r ′ ,u} such that (v,c∗, s∗) exists. To show that such

a v exists, we consider each of the cases separately. Clearly (u,c∗, s∗) does not

exist because we have −(u,c∗, s∗). Also, if we had (r ′ , c∗, s∗), then P would have

had length 3, so that cannot be true. Finally, observe that c∗ and s∗ may occur

together λCS + 1 as they are both in the improper triple. However, r, s∗ may only

occur λRS and r, c∗ may only occur λRC . By assumption, λCS + 1 > λRC ,λRS .

58

Therefore there is at least one triple containing c∗ and s∗ not containing r and

hence v exists.

Examine the row-pair graph generated by u and v. We know that (v,c∗, s∗)

exists, and by lemma 15, we know there exists an RBR(c∗, s∗). Hence, there exists

a closed, alternating trail that we can use with lemma 7 to return to properness

without damaging any other rows except u and v. Now we have a proper square

we interchange the cycle that we made earlier in rows r and r ′ before undoing

the damage we just made to rows u and v. Finally, we reverse move u to return

us to case two, completing the proof.

Using the previous lemma as well as lemma 11 we get the following theorem.

Theorem 18 (D. 2012 [14]). Given two (proper or improper) LS((r, c, s),

(λRC ,λRS ,λCS)), there exists a sequence of ±1-moves that transforms one square into

the other for any admissible parameter values.

Having shown connectedness of this graph, we can now generate generalised

Latin squares uniformly at random.

The next obvious question is to ask about the efficiency of the method.

Like the original case, only heuristic information about this is known, and it

is presented in our conclusion in chapter 8.

59

60

Chapter 5

Generalised Factorisations

5.1 Definition

Having completely solved the square case, we move on to consider the second

type of design in Cameron’s conjecture: factorisations.

A 1-factor (or perfect matching) of a graphG is a set of pairwise disjoint edges

of G that are collectively incident with every vertex of G (note that this requires

G to have an even number of vertices). We often illustrate a 1-factor of a graph

by colouring the associated edges. By doing this, we can describe a 1-factor in

block design notation as a set of n
2 blocks of the form (v1,v2,κ) where v1,v2 are

vertex labels of G and c is the colour given to the 1-factor.

A 1-factorisation of a graph G is a set of disjoint 1-factors whose union

contains every edge. To differentiate between the 1-factors, we give each a unique

colour.

The complete graph is a simple, undirected, graph in which every pair of

vertices is joined by an edge. If the graph has n vertices, the degree of each

vertex is n− 1, and there are
(n

2
)

edges. We denote this graph by Kn.

61

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Figure 5.1: (left) A 1-factor of K6. The 1-factor (or perfect matching) is
indicated by the red edges. (right) A 1-factorisation of K6 where each 1-factor is
represented by a different edge colouring.

Theorem 19 (Harary, [26]). Any complete graph with an even number of vertices

admits a 1-factorisation.

5.1.1 Counting 1-factorisations

When Are Two 1-Factorisations Different?

We say two (proper or improper) factorisations are isotopic if there exists a

permutation of the vertices and colours that transforms one into the other. The

points of a Latin square had three roles (rows, columns and symbols) whereas the

points the factorisations only have two roles (vertices and colours). Unlike Latin

squares, the roles of the points of factorisations are not interchangeable. That is,

two factorisations are non-isomorphic if and only if they are not isotopic.

Exact Results

As with Latin squares, picking from an enumerated list is infeasible because the

combinatorial explosion hits very early (figure 5.2). For example, it is currently

unknown how many 1-factorisations of K16 there are.

For a survey on the known theory of 1-factorisations of Kn, see [9]. We are

now going to consider generalisations of this design in the same way that we

62

n Number of non-isomorphic
1-factorisations of Kn

References

4 1
6 1
8 6
10 396
12 526915620 J. Dinitz, D. Garnick and B.

McKay, 1994 [10]
14 1132835421602062300 P. Kaski and P. Östergård,

2009 [31]

Figure 5.2: A table showing the number of non-isomorphic 1-factorisations for
small orders.

handled Latin squares.

5.1.2 Generalised Factorisations

A λ-factor of a graph G is a regular subgraph of degree λ with the property that

every vertex is incident with an edge of the subgraph. A λ-factorisation of a graph

G is a set of disjoint λ-factors whose union contains every edge. The λ-complete

graph is an undirected, regular graph in which every pair of vertices is joined

by λ edges. We are interested in discovering if it is possible to generate these

designs uniformly at random, but as with Latin squares, Cameron’s generalised

t-design notation can takes us further to get:

5.1.3 Generalised λNC-factorisation of λNNKn

LetN = {ν1, . . . ,νn} and C = {κ1, . . . ,κc} and let λ = (λNN ,λNC) be a pair of positive

integers. We call the elements of N and C nodes and colours respectively.

A generalised λNC-factorisation of λNNKn (or “factorisation”, for brevity) is

a graph on n nodes with λNN edges between every pair of nodes. The edges

are coloured with elements of C in such a way that every node is incident

with exactly λNC edges of each colour. We denote these factorisations by

F((n,c), (λNN ,λNC)). If λNN = λNC , then we say the factorisation has constant

63

λ and represent the pair by a single value. For example, F((2n,2n − 1),1) is the

familiar 1-factorisation of K2n.

For any factorisation F, we define the point set as P = P (F) =N∪C and if there

is an edge between ν1 and ν2 coloured κ, then we say that the block {ν1,ν2,κ}

exists (note that we may have multiple copies of a block). The set of all blocks

of F is called the block set, B = B(F). As with squares, factorisations may also

contain exactly one improper block.

Lemma 20. If an F((n,c), (λNN ,λNC)) exists, then nλNC ≡ 0 (mod 2) and

c =
(n− 1)λNN

λNC
.

Proof. To show nλNC ≡ 0 (mod 2), count the number of edges coloured κ,

denoted #eκ. Using the handshaking lemma, #eκ = 1
2 (nλNC). This quantity must

be an integer, so the numerator must be even and the equality follows.

To show the second equality, we count the number of edges in the graph

(denoted #e) in two different ways. Firstly, pick two vertices and look at how

many edges there are between them to get #e = 1
2n(n − 1)λNN . Secondly, pick a

vertex and a colour and then look at how many edges of that colour are incident

with that vertex, giving #e = 1
2ncλNC . The result follows.

Lemma 21. An F((n,n− 1),m) exists for all n ≥ 2,m ≥ 1 such that nm ≡ 0 (mod 2).

Proof. For n even: To obtain an F((n,n − 1),m), repeat m times the blocks of an

F((n,n− 1),1).

For n odd: By lemma 20, we know that m must be even. To obtain an

F((n,n− 1),m), repeat m times the blocks of an F((n,n− 1),2).

The ±1-move for Factorisations

The algorithm for the ±1-move as stated in section 3.3 was written in general

enough terms to still be correct for factorisations. The only subtlety is that now

64

an “admissible” cell is one that contains two vertices and a colour.

Jacobson and Matthews’ method does require a factorisation from which it

begins randomly walking.

Using the DesignMC package, we can attempt to find a design

with given parameters. For example, suppose we would like

to find a random LF((5,8), (4,2)) design (if any exist). We can

use the DesignMC package to look for such a design with the

following commands:

gap> input:=rec(v:=[5,8], lambdas:=[4,2]);;

gap> design:=ProduceFactorisation(input);;

Once we have found one (there are actually 63 such designs),

we can use the following command to iterate the ±1-move until

we find the nth proper design.

gap> ManyStepsProper(design[1], n);;

Of course, we have not yet investigated whether it is worthwhile traversing

the graph in this way – if the graph is disconnected, then we have no hope of

finding a uniform sample. In the next section we shall inspect the behaviour of

the pair graph for factorisations.

5.2 Pair Graphs

Throughout this section, let F be an improper factorisation with the improper

block −{a,v1,v2}. When we dealt with generalised Latin squares, we observed

that we could create a row- column- or symbol-pair graph. We stuck with

row-pair graphs for consistency, but it was remarked that this was for no real

reason and, if columns or symbols were preferred, the reader may choose to use

them instead. However, the situation with factorisations is more delicate. For

65

example, if we form a pair graph using two vertices, for example v3,v4, and

follow an edge-alternating path in this graph, it might be something like:

κ1

v5
κ2

Notice that the vertices alternate between colour and node. Recall in the

proof of lemma 10 we needed to return to a proper square without damaging

any rows other than r and r ′. We were able to achieve this because we could

find a row-pair graph DL(u,v) (in which the only rows that appear are u and v –

the vertices are labelled with columns and symbols) and “slide the chord” back

to properness. If we attempted such an act with a node-pair graph, we would

damage arbitrary nodes! If we chose to make a pair graph from two colours,

then this is not the case. As two colours cannot occur in the same block and

all of the edges are labelled with colours, the vertices must all represent nodes.

Sliding the chord through such a graph would damage only the two colours that

were used to create the graph. It is important in what follows that our pair graph,

D =DF(a,b), be a colour-pair graph where a,b are colours and b , a.

Chorded VS. Bridged

Unfortunately, this is not a perfect solution either. Let’s take another look at the

row-pair graph DL(r, r ′) for some improper square L with −(r, c, s) and rows r, r ′.

The only place edges make any appearance is on the edge labels. The vertices

are all labelled with symbols or columns. Further, an edge cannot connect two

vertices of the same type. This has important implications for the graph as a

whole. In particular, we will never find an RBR(c,c). This is easy to see –

an RBR that starts and ends at c must have an odd number of edges (because

the number of red edges is one more than the number of blue edges) but an

even number of vertices (because we alternate between column and symbol

representing vertices), which is impossible.

66

If removing some blue edge from a special vertex prohibits the existence of

an RBR between the special vertices of a pair graph then we say the graph is

bridged. Otherwise, we say the graph is chorded. All pair graphs for squares are

chorded.

Given an improper generalised 2-design with block size 3,

the DesignMC package can quickly determine whether an

associated pair graph is chorded by using the IsChordedDG

function.

Returning to the world of factorisations, a node-pair graph DF(n,n′), for

some improper factorisation F with −(n,m,c) for nodes n,n′ ,m and colour c,

has alternating vertices, and therefore has the property that a RBR(m,m) cannot

exist. This means that there exists an RBR starting from m and finishing at c.

Hence, all node-pair graphs are chorded because removing a blue edge from m

cannot disconnect the graph.

Chorded graphs have nice properties. For example, using lemma 7 we can

transform an improper design to a proper design if we have a chorded pair

graph. This is not true of bridged pair graphs. Given a bridged pair graph,

sliding the chord can accomplish interchanging edge colours, but cannot return

a graph to properness. We can picture what happens by supposing we have

two disjoint odd-length cycles each containing one of the special vertices. Now

imagine a bridge connecting the two special vertices. Sliding the chord will

rotate the cycles, and change the colour of the bridge.

Unfortunately, colour-pair graphs may be bridged. The inability to return to

properness derails our method of proving connectedness. However, all is not lost

because we may thwart this quandary by considering what happens for different

values of λNC . As we shall see, in lemma 23, if λNC is even, all colour-pair graphs

67

are chorded.

Lemma 22. The special vertices of D lie in the same component.

Proof. The special vertices v1 and v2 are the only vertices with odd degree,

therefore they must lie in the same connected component.

Lemma 23. If λNC ≡ 0 (mod 2), then any near-core(D) is connected

Proof. Suppose this is not the case, that is, the edge {v1,x} was a bridge of the

core(D). Originally, x and v1 had an even number of blue edges incident with

them (because λNC ≡ 0 (mod 2)). Having deleted {v1,x}, they now each have odd

degree. In fact, they are the only vertices in their respective components with an

odd blue degree, which is impossible. Therefore, {v1,x} cannot be a bridge and

as the core(D) was connected, so is any near-core(D).

The following picture shows the core of some improper pair graph. The

dotted blue edge represents the edge we delete to form a near-core; this proves

that the λ ≡ 0 (mod 2) condition in lemma 23 is required.

v1 v2

Lemma 24. If a near-core(D) is connected, it contains an RBR(v1,v2).

Proof. For brevity, let E = near-core(D) and recall that we constructed the near-

core by deleting some blue edge {v1,x} from the core(D).

Case A: x , v2 Starting at v1 along a red edge, try to construct an RBR(v1,v2).

As you construct the trail, direct the edges in the direction of travel. One of three

things may happen:

Case A1: You complete the RBR(v1,v2)

68

Case A2: You get stuck at x

If you get stuck at x it is because you arrived on a red edge having previously

used all of the other available edges. If we had not deleted the blue edge

{v1,x}, then you could have continued your trail which would have ultimately

been successful. With this in mind, temporarily reinstate the deleted edge and

complete the RBR(v1,v2); your trail has the form:

v1, red, . . . , red,x,blue,v1, red, . . . , red,v2

To construct a valid RBR(v1,v2) of the near-core(D), simply forget everything

in your trail up to, and including, the use of the forbidden blue edge.

Case A3: You get stuck at v1

Let T be the directed trail that you created; it is an RBR(v1,v1). Note that

traversing T in reverse will also yield an RBR(v1,v1). Further, we can arrive at

any vertex y ∈ T \{v1} on either coloured edge by reversing the direction of T .

If v2 ∈ T , then reversing the direction of the trail must form an RBR(v1,v2),

because the original trail had the form:

v1, red, . . . ,blue,v2, red, . . . , red,v1

and reversing it yields

v1, red, . . . , red,v2,blue, . . . , red,v1

which contains an RBR(v1,v2).

We now suppose that v2 < T . Consider the subgraph, H , formed by removing

the edges of T from E. Note that there is no reason, a priori, to assume that H

is connected, so will consider the component H1 which contains the only two

vertices of odd degree (x and v2). There exists some vertex w inH1, with positive

degree, that also lies in T . If this were not true, then T would contain every

69

vertex, (which it does not as v2 < T) or H1 would be disconnected (which we

assumed it was not).

As the colours present at each vertex are distributed as fairly as possible H1

is semi-Eulerian; we can form an RBR(x,v2), directing the edges as we go. Now,

starting with a red edge at v2, move through the trail backwards until you reach

w. Suppose you find w along a red (blue) edge, we know that w has had at least

one edge of each colour removed (that is, T did not terminate at w) so (possibly

by reversing the direction of T), we find a trail from v1 along a red edge, ending

on a blue (red) edge at w; join this trail with the trail you created from v2 to w to

complete the RBR(v1,v2).

Case B: x = v2

Case B1: You complete the RBR(v1,v2)

Case B2: You get stuck at v1

The reason that this case differs from case A3 is that having deleted a blue

edge incident with both v1 and v2, all of the vertices have even degree. Also,

the colours do not split as fairly as possible in this graph because v1 and v2 have

exactly two more red edges than blue edges so this graph is not (semi-)Eulerian.

However, we can still find an RBR(v1,v2) in the following way. Having

attempted to create this trail and getting stuck at v1, you form an RBR(v1,v1),

call this trail T1. If T1 contains v2, we can complete the desired trail easily by

reversing T1 as before. So suppose that v2 < T1, then there exists some vertex

w1 ∈ T1 with positive degree in the subgraph E′ formed by removing the edges

of T1 from E. We now turn our attention to forming an alternating trail starting

from v2 on a red edge, to w1 in the graph E′; call it T2. If we find such a trail,

then we set the direction of T1 in such a way that will allow us to hop from T1 to

T2 at w1, completing an RBR(v1,v2). However, it could be the case that you get

stuck at v2 before findingw1 creating an RBR(v2,v2). Now consider the subgraph

formed by removing the edges of T2 from E′ – call this E′′; every vertex has even

70

degree, with the blue degree and red degree equal for all vertices – this graph is

Eulerian. Let w2 ∈ T2 be a vertex with positive degree in E′′.

If E′′ is connected, then form an Eulerian trail; this will result in forming a

directed trail between w1 and w2; denote this trail W . Now orient T1 and T2 so

that we may move from v1 to w1 along T1, w1 to w2 along W and finally w2 to v2

along T2, completing the RBR(v1,v2)

Before considering if E′′ is disconnected, note that if E′ is disconnected, each

component must intersect T1. Consider the component containing v2 from which

we removed the edges of T2 to form E′′. Now, if E′′ is disconnected, T2 must

intersect each part of it. This means that there is at least one component through

which both T1 and T2 pass; this component, S, is Eulerian so we may form an

alternating trail W , from w1 ∈ T1 ∩ S to w2 ∈ T2 ∩ S. Now orient T1 and T2 so

that we may move from v1 to w1 along T1, w1 to w2 along W and finally w2 to v2

along T2, completing the RBR(v1,v2), and the proof.

5.3 Generating Factorisations Uniformly at Random

In the following we enforce that α,β,γ,δ and σ represent colours and require

λNN ≥ λNC and λNC ≡ 0 (mod 2). In the proof, we will use the notation λγh to

mean “the λ value which determines how many times points of the same type as

γ may occur with points of the same type as h”.

The next lemma (which is a generalisation of Lemma 2 in [29]) shows that if

we have two blocks such as {γ,v1,v2} and {γ,v3,v4}, we can perform an operation

to exchange them for {γ,v1,v4} and {γ,v2,v3} limiting all other damage to blocks

containing two other points.

The first two cases of the proof are essentially the same as those contained in

both lemma 9 and lemma 16 so we omit the details here.

Lemma 25. Let J be either any square, or any factorisation satisfying the above

conditions. Suppose that the proper blocks {γ,v1,v2} and {γ,v3,v4} exist in B(J). For

71

some β , γ there exists {β,v1,v4} and if we are improper, then we have −{α,v1,v2}.

Then there exists a sequence of Markov chain moves which results in {γ,v1,v4} and

{γ,v2,v3}, but apart from this swap in γ , the only other triples affected are coloured β

or α.

Proof. Case 1: J is proper.

(omitted)

Case 2: J is improper and α = β

(omitted)

Case 3: J is improper and α , β

In this situation we have the blocks {γ,v1,v2},{γ,v3,v4},−{α,v1,v2}, and

{β,v1,v4}. We proceed by exchanging −{α,v1,v2} for −{β,v1,v2}, which allows

us to return to the comfort of case 2.

To begin, consider the pair graph D = DF(α,β). We want to construct

an RBR(v1,v2) in near-core(D) created by deleting the blue edge {v1,v4} from

core(D). We know that the near-core is connected (by lemma 23) and therefore

lemma 24 ensures the existence of the desired trail. Let the RBR(v1,v2) we

created be denoted by T ; it has the form:

T = v1,α,g,β, . . . ,β,h,α,v2

If we perform the following move, for some σ < {α,β} such that {σ,v1,v2}

exists, we make an alternating, closed, trail Y in the DF(α,β) graph, not

containing {β,v1,v4}.

+ −

α v1 v2 σ h g

α h g α v1 g

σ v1 g α h v2

σ h v2 σ v1 v2

72

If we can interchange the edge labels on Y (using lemma 5) and then reverse

the previous move, we will result in {β,v1,v4} and −{β,v1,v2}, and therefore we

are in case 2. However, we cannot necessarily proceed with the interchange

because we may have an improper triple −{σ,h,g} that forces our hand with

regard to the next move we must make. If {β,h,g} exists, then simply perform

the following move (∗) to return to case 2:

+ −

σ h g β v1 v2

σ v1 v2 σ h v2

β h v2 σ v1 g

β v1 g β h g

If it does not exist and we are improper, then we first move back to

properness in the following way. Find some δ < {α,β,σ } such that {δ,h,g} exists.

(We can do this: obviously {β,h,g} does not exist, otherwise we would have been

returned to case 2 already. Also, {σ,h,g} does not exist, otherwise we would not

have −{σ,h,g} and would already be proper and could make the interchange of

Y easily. So the only case to consider is that every block containing both g and

h contains α. We consider each of the two designs separately to show that this

is not possible. The number of times g and h can occur together is λNN + 1 and

the number of times α and g can occur together is λNC times, which is at most

λNN , by assumption. Hence there must be some triple containing g and h not

containing α.)

We would like to return to properness by “sliding the chord” through the

pair graph DJ (δ,σ). To do this, find an RBR(g,h) in the near-core(D) created

by deleting {δ,g,h} (using either lemma 15 or 24). Using this alternating trail

together with {δ,g,h} forms a closed, alternating trail in the original pair graph

which we use (along with lemma 7) to return to properness; call this “move X”

and note that it does not affect any block incident with α or β. As we now have a

73

proper design, use lemma 5 to interchange the colours on Y .

Finally, reverse move X and perform move (∗) to return to case 2.

By using the same reasoning found in [29], we get the following result to

prove that the underlying graph of the Markov chain is connected.

Theorem 26. Given two (proper or improper) factorisations with the same

parameters and λNN ≥ λNC and λNC ≡ 0 (mod 2), there exists a sequence of Markov

chain moves that transforms one into the other.

Finally, we are able to address part of the second third of Cameron’s

Conjecture with the following:

Theorem 27 (D. 2012 [14]). The Jacobson and Matthews Markov chain is able

to generate admissible generalised factorisations with λNN ≥ λNC and λNC ≡ 0

(mod 2) uniformly at random.

5.4 Experimental Results

Unfortunately, we have not been able to prove the general result for 1-

factorisations of Kn. However, using the DesignMC package, we have verified

that the ±1-move is able to generate these designs uniformly at random for

n ∈ {4,6,8,10}. Below is a complete list of parameter values that have been tested.

A question mark appearing in the “Connected?” column indicates that the test

was inconclusive due large number of designs.

Proper designs

74

n c λNN λNC Total factorisations Connected?

4 3 1 1 1 4

6 5 1 1 1 4

8 7 1 1 6 4

10 9 1 1 396 4

12 11 1 1 526915620 ?

14 13 1 1 1132835421602062300 ?

4 3 3 3 5 4

Improper designs

n c λNN λNC Total factorisations Connected?

6 5 1 1 1 4

8 7 1 1 22 4

75

76

Chapter 6

Generalised Triple Systems

6.1 Definition

The final type of design that we shall work with is a generalisation of the Steiner

triple systems. A Steiner triple system of order v (abbreviated to STS(v)) consists

of a point set P of size v, and a block set B. The elements of B, called blocks,

are 3-subsets (hence “triple”) of P with the property that any distinct pair of

points occurs in exactly 1 block. If we want to change the property that every

pair of points occurs in exactly one block to something more general like “every

pair of points occurs in exactly λ blocks” then we just use the more generic term

λ-triple system of order v (abbreviated to TS(v,λ)). It is worth noting that unlike

squares or factorisations that we saw in earlier chapters, triple systems have just

one type of point. This lack of discrimination amongst the points will become

more important later.

As a titbit for readers interested in t-design terminology, we note that it is

appropriate to use classical t-design language to describe a TS(v,λ) because the

generalised t-design version is actually the same design. That is, the generalised

2-((v), (3), (λt)) is the classical 2-(v,3,λ) design.

77

The earliest recorded work on triple systems was contributed by Kirkman in

1847. Working with Steiner triple systems (the case where λ = 1), he proved the

following:

Theorem 28. A TS(v,1) exists if and only if v ≡ 1,3 (mod 6).

More generally, the following is also well known:

Theorem 29. A TS(v,λ) design exists only if:

• v ≡ 1,3 (mod 6) (for any value of λ);

• v ≡ 0,4 (mod 6) and λ is even;

• v ≡ 2 (mod 6) and λ ≡ 0 (mod 6);

• v ≡ 5 (mod 6) and λ ≡ 0 (mod 3);

These designs are attributed to the more famous Jacob Steiner who

unwittingly rediscovered them in 1853 [42]. Kirkman was not completely

unacknowledged and he does have a very special class of Steiner triple systems

named after him. A Kirkman triple system is a Steiner triple system with the

added property that the blocks may be partitioned so that the union of the blocks

in each part contains each point exactly once. We call a design with this property

resolvable. This may be thought of as the analogue of a transversal decomposition

in a Latin square.

Two triple systems are isomorphic if and only if there exists some permutation

that transforms one into the other. The smallest Steiner triple system (with a

non-empty point set) has just 1 block containing 3 points. The next smallest is

also unique (up to isomorphism) and has 7 points and 7 blocks. The TS(7, 1) is

often referred to as the Fano plane, which is a graphical representation of this

system (see the discussion in chapter 2).

The final definition we need is that of an improper triple system, which is

triple system with a benevolent disrespect of the rules. An improper triple

78

system may contain some block b ∈ B that occurs −1 times; we call this block

the negative block and put a minus sign in front of it to differentiate it from the

other “positive” blocks. Suppose that we have a TS with −(1,2,3). As every pair

of points must occur amongst the block set exactly λ times, there must be λ+ 1

other blocks that contain the points (1, 2), (1, 3) and (2, 3).

6.1.1 Counting Triple Systems

As with the other designs we have studied in this thesis, counting the number of

triple systems is not an easy task. As the table below indicates, the combinatorial

explosion occurs very early on. With just one type of point, two systems are

isomorphic, that is, “different”, if and only if there exists some permutation that

transforms the point set of one into the other.

The DESIGN and DesignMC packages allow us to calculate the

number of proper or improper systems (up to isomorphism)

for small values with the ProduceTripleSystem function. For

example, if we want to know how many proper STS(15) there

are (up to isomorphism), we would type

gap> designs:=ProduceTripleSystem(rec(v:=[15], lambdas:=[1],

isoLevel:=2));;

gap> Size(designs);

80

The ProduceTripleSystem accepts an improper:=true

parameter to be passed in, but some of the DESIGN package

functions are currently unable to handle any designs that are

not binary, that is, designs that allow a point to occur more than

once in a block. Therefore, users should not use this feature for

λ > 1 until a future release of the DESIGN package.

79

The reader may like to verify that there is no improper Steiner triple system

on less than 9 points. The smallest improper system, (which is unique up to

isomorphism) has 9 points.

Here is a table that shows the number of TS(v,λ) (up to isomorphism) for

v ≥ 7. Apart from T (8,6), T (19,1), these numbers were calculated using the

DesignMC and DESIGN packages.

Proper designs

v λ Total triple systems

7 1 1

7 2 4

7 3 10

7 4 35

7 5 109

7 6 418

8 6 3077244

9 1 1

9 2 36

9 3 22521

10 2 960

13 1 2

15 1 80

19 1 11084874829

Improper designs

80

v λ Total triple systems

9 1 1

13 1 50

15 1 21004

6.2 Pair Graphs

In section 5.2 we introduced the concept of bridged and chorded discrepancy

graphs. Consider a pair graph for an improper triple system. Firstly, we notice

that in creating a pair graph, we do not have to worry about which “type” of

points we use; triple systems only have one type. This simplification, which

at first glance appears to make things easier, is devastating. For example,

having just one type of point means that the core of any pair graph might

be bridged, making an analogue of lemmas 7 and 15 impossible. This alone

does not necessarily prevent us from proving that we can generate triple system

uniformly at random using Jacobson and Matthews’ ±1-move. For if we manage

to find a path between every pair of triple systems without encountering, or

circumventing, pair graphs that not bridged we could proceed.

In part of the proof of lemma 10, it was necessary to return to properness

without damaging certain points. The goal was to interchange the edge labels

of a cycle before undoing the damage caused by returning to properness. The

net result is exactly the same as what we started with, except for the cycle whose

edges colours we interchanged. We were able to do this by “protecting” the row

labels as we returned to properness. For example, if we want to protect two rows

r, r ′, then we simple create some other row-pair graph with p,p′ which never

contains any other row labels. This would be impossible to enforce with triple

systems because we have no method of protecting points. This means that even

if we were able to find the necessary RBRs and return to properness because we

circumvented the bridged graph problem, we still could not proceed with the

81

proof unless we never needed to return to properness without arbitrary damage

to the system (this could actually happen if we always found an RBR of length

3).

All of this suggests that a significantly different method of proof would be

required to show that the ±1-move could succeed. In the next section, we will

see evidence in favour of the existence of such a proof.

6.3 Evidence Supporting the ±1-move

Although we do not know for sure whether or not the ±1-move connects the

space of Steiner triple systems, there is mounting evidence to suggest that it

probably does. In this section we shall present this evidence.

Isomorphic Systems Are Connected

Two triple systems S1,S2 are isomorphic if and only if there exists some

permutation π that, when applied to the point set of S1 results in S2.

Theorem 30 ([15]). If S1,S2 are isomorphic TS(v,1), then there exists a sequence of

±1-moves that converts S1 in to S2.

Proof. Consider the permutation π that transforms S1 into S2. Any

permutation may be expressed as a product of transpositions and therefore

π = (a,b)(c,d) · · · (y,z).

Consider the first transposition (a,b) and form the pair graph DS1
(a,b). If we

were able to interchange all of the edge labels of this graph, then we would have

effectively applied the permutation (a,b) to S1. Further, we know that we can

perform this action because the pair graph is Eulerian, and therefore we can use

lemma 5.

Continue to apply each transposition until you have applied the whole

permutation and have obtained S2.

82

Note that in the proof we didn’t actually require a TS(v,1); any generalised

2-design with block size 3 would have worked due to the generality of lemma 5.

Interchanging the edge-labels of a single cycle using lemma 5 is known as

cycle trading. In the previous proof we traded every cycle in the pair graph. If,

instead, we only trade some of the cycles then in general we find non-isomorphic

systems. Note that if λ = 1, then each cycle is its own component, but if λ > 1,

then we can alter a cycle in some component, leaving other cycles fixed.

Connectivity Results for Small Parameter Values

As isomorphic systems are now known to be connected, we can easily verify that

the for v ≤ 13 the ±1-move connects the space of TS(v,1). Further, thanks to the

joint efforts of [21] and [24], we can also report that by just using cycle trades,

the graph of all 80 TS(15,1) are connected by ±1-moves. In practise, it would

be preferable to simply enumerate all 80 systems and pick one at random and

then apply a random permutation to it. However, it is important encouragement

to know that these systems are so easily connected. Finally, thanks to the

remarkable efforts of [30], we also know that the TS(19,1) are also connected

just by using cycle trades! There are over 11 billion different systems and we are

now at the limit of what can be enumerated. The proof used a computer search,

so there is little hope of improving this result for v ≥ 21, even with a few more

years of computing power.

Unfortunately, all Steiner triple systems of order v cannot be connected by

cycle trades alone due to the existence of so-called perfect systems. A Steiner

triple system is perfect if all its pair graphs consist of only 1 cycle. Perfect triples

are rare and in fact, only a finite number of perfect systems are known [23], [18].

Clearly any cycle trading with such a system leads to an isomorphic system. The

smallest non-trivial perfect system exists when v = 25. In [15], it is shown that

this system can easily be transformed into a non-perfect system by using ±1-

83

moves.

Trades

Let T1 and T2 be sets of n blocks of some triple system. Furthermore, suppose

that if x,y are points incident in λ blocks of T1, then x,y are also incident

in λ blocks of T2 and vice versa. A trade T = {T1,T2} is an operation that

we may apply to a block set to remove all of the blocks contained in T1 and

insert all of the blocks contained in T2, leaving another triple system. The

set of points that a trade covers is known as the foundation of the trade, and

the number of blocks a trade affects is called the volume of the trade. The

smallest configuration that can be traded is known as the Pasch configuration,

or quadrilateral, which has foundation 6 and volume 6 (figure 6.1). If we set

T1 = {(a,b,c), (x,y,c), (x,b,z), (a,y,z)} and T2 = {(x,y,z), (x,b,c), (a,y,c), (a,b,z)}, then

T = {T1,T2} is a trade.

Figure 6.1: A Pasch configuration. Each line represents a block. If a vertex is
incident with a line, then that point is in the block.

It has been shown that by only Pasch switching from a given STS, one cannot

discover every other STS on the same number of points because there exist

systems which do not contain a Pasch configuration; these are known as anti-

Pasch systems [22]. However, there are many other tradable configurations that

could be used instead. Forbes has a list of over 100 trades with volume at most

10 [17] which Grannel and Griggs proved all but one could be affected by the

±1-move! Clearly this result puts pressure on the graph to be connected. The

84

trade that could not be affected (number 68 in Forbes’ list) was indicative of a

broader problem.

A partial triple system consists of a set of v points which lie in 3-subsets,

called blocks, such that for each pair of points there exists at most 1 block

containing them. One may easily create partial triple systems by deleting blocks

from a triple system, however not every partial triple system has this form.

That is, some partial triple systems cannot be completed to a triple system.

Given a block (a,b,c), the orbit on the point set Zv is the set < a,b,c >v =

{(a+ i,b + i, c + i) : i = 0 . . .v − 1} (where addition is modulo v). An orbit is suitable

if a,b,c are distinct and no pair of points is repeated amongst the distinct blocks

of the orbit.

Lemma 31. ([15], lemma 3.1) Suppose that T1 =< 0, a,b >v is a suitable orbit of v

distinct blocks and that T2 =< 0,b − a,b >v , so that {T1,T2} is a trade pair. Suppose

also that none of the following relationships hold in Zv :

3a = 0,3b = 0,b = −2a,b = 3a,a = −2b,a = 3b,2b = 3a,2a = 3b,3a = 3b (6.1)

Then there does not exist a sequence of ±1-moves that transforms the partial triple

system T1 into T2.

This lemma is by no means a deal breaker – given a triple system whose

only differences are that one contains < 0, a,b >v , and another that contains

T1 =< 0,b − a,b >v , we still might be able to find a sequence of ±1-moves that

connects them, it will just require temporary damage to blocks outside of the

configuration. In any case, we shall offer further methods to attack this issue in

the next chapter.

85

A Failed Attempt

It may be instructive to hear of a failed attempt that the author has investigated.

Because we cannot distinguish between the points, an attempt was made to see

if it was possible to convert one system into another by fixing the smallest “bad”

point first. That is, given two Steiner triple system S1,S2 on the points {1,2, . . . , v},

we can always apply some permutation to enforce that the blocks of S1 and

S2 containing a 1 coincide. We can use the isomorphism result to enact this

manoeuvre. Now look at the lowest point k such that the blocks of S1 and S2

containing this point do not coincide. Suppose there is some block b = (h, j,k)

which is in S1 but not S2. If we add b to S2 and result in a proper triple system,

then we can continue by adding another block. If we result in an improper

system, then we want to return to properness as soon as possible. The first issue

can occur if λ is odd because we can get bridged pair graphs that cannot be

returned to properness. For this reason, let us enforce that λ is even. Now all

pair graphs may be returned to properness, but with a complete lack of respect

for other points. For example, suppose we have fixed all the points less than, say,

10. When returning to properness, we might damage any number of these points

and it seems difficult to coerce the movement to be non-damaging. Increasing λ

to higher values seems likely to work because (for a “typical” system) we create

many more closed alternating trails that we could use that might not contain a

fixed point.

86

Chapter 7

Decomposing Latin Rectangles

A diagonal of a LS(n) is a set of n cells, no two of which share a column or a

row. A transversal is a diagonal with the added property that the union of the

cells contain no symbol twice. The cyclic squares of even order never contain

a transversal [45], whereas the number of transversals in cyclic squares of odd

order have been shown to be at least exponential in n [8].

Transversals are the source of many open problems, the most famous of

which is the following revised conjecture of Ryser.

Conjecture 32 (Ryser). Every Latin square of odd order contains a transversal.

Ryser originally conjectured that the number of transversals in a LS(n)

was congruent to n (mod 2). For the even case, this was shown to be true

by Balasubramanian [3]. However, for the odd case there are many counter

examples, and therefore the conjecture was weakened.

As some squares do not contain any transversals, one may instead consider a

partial transversal of size s ≤ n, which is a collection of s cells, no two in the same

row or column, and no two containing the same symbol. However, even proving

that a partial transversal of size n − 1 exists in all Latin squares is a difficult

87

3 2 9 6 5 7 8 4 1
7 4 5 8 3 1 2 9 6
6 1 8 2 4 9 3 7 5
1 9 3 4 6 8 5 2 7
2 7 6 1 9 5 4 8 3
8 5 4 3 7 2 6 1 9
4 3 2 7 1 6 9 5 8
5 8 7 9 2 3 1 6 4
9 6 1 5 8 4 7 3 2

3 2 9 6 5 7 8 4 1
7 4 5 8 3 1 2 9 6
6 1 8 2 4 9 3 7 5
1 9 3 4 6 8 5 2 7
2 7 6 1 9 5 4 8 3
8 5 4 3 7 2 6 1 9
4 3 2 7 1 6 9 5 8
5 8 7 9 2 3 1 6 4
9 6 1 5 8 4 7 3 2

Figure 7.1: On the left, we see a LS(9) with a diagonal highlighted. It is not a
transversal because some symbols in it occur more than once. On the right, we
see another diagonal that doesn’t contain any symbol twice, therefore it is also a
transversal.

task; the following conjecture, which is true for cyclic Latin squares, has been

unresolved in general for over 30 years ([28], page 103).

Conjecture 33 (Brualdi). Every LS(n) has a partial transversal of size n− 1.

On the other hand, some LS(n) have the special property that not only do

they have a transversal, they have n mutually disjoint transversals, which we

call a transversal decomposition.

Given a transversal decomposition, suppose we colour each cell with a

unique colour depending on the transversal in which it appears. By construction,

each symbol occurs with each colour exactly once. As cells in a transversal

cannot occur in the same row or column, the reader may notice that the colours

themselves form a second Latin square (see figure 7.2); we call these two Latin

squares mutually orthogonal as every symbol occurs with every colour exactly

once.

After failing to produce two mutually orthogonal Latin squares (MOLS) of

order 6, Euler famously conjectured in 1782 that for n ≡ 2 (mod 4), there cannot

exist two MOLS. Although he was proven correct in 1901 for n = 6 [43], the

conjecture is was ultimately shown to be false for n ≥ 10 by Bose, Shrikhande

and Parker [5].

88

(a)

1 5 3 4 2
4 1 2 3 5
3 4 5 2 1
2 3 1 5 4
5 2 4 1 3

(b) (c)

1 5 3 4 2
4 1 2 3 5
3 4 5 2 1
2 3 1 5 4
5 2 4 1 3

Figure 7.2: (a) and (b) are mutually orthogonal Latin squares (MOLS) of order
5; in square (b) we have represented the symbols as colours, rather than the
conventional {1,2, · · · ,n}. Square (c) is a superposition of (a) and (b) exhibiting a
transversal decomposition.

7.1 Decomposing Latin Rectangles

Let R be a k × n grid with the property that each cell of R contains exactly one

element from the symbol set S = {1,2, ...,n}. R is a Latin rectangle if every symbol

occurs in each row exactly once, and at most once in each column.

At the 13th British Combinatorics Conference, Hilton posed the following

interesting problem that marries the topics of Latin rectangles and partial

transversal decomposition.

Question 34 (Hilton [27]). Let R be an n × 2n Latin rectangle on 2n symbols. Is it

true that R can be expressed as the union of 2n partial transversals of size n?

A positive resolution of this problem would also resolve the following

question of Wanless.

Question 35 (Wanless [46]). Let L be an LS(2n). Is it true that Lmay be decomposed

into 4n partial transversals of length n.

For large n, Häggkvist and A. Johansson have shown that for any ε > 0, every

(n−εn)×n Latin rectangle can indeed be decomposed into partial transversals of

length n [25].

In the rest of this section, we shall prove the following theorem:

Theorem 36. If R is an n
3 × n Latin rectangle on n symbols with n < 15, then R may

be decomposed into n partial transversals of length n
3 .

89

Although the result is relatively modest, the method of proof is new and may

perhaps be extended to resolve further cases. The first tool we need is the poach

move. A cell that is currently not associated with (or covered by) any transversal,

may poach a transversal association from some other cell in the same row that is

covered.

Lemma 37. Let R be an k × n Latin rectangle on n symbols with an incomplete

decomposition into partial transversals of length k. Any uncovered cell in row r may

poach a transversal association from at least n− 2k + 2 cells row r.

Proof. Suppose u = (r, c, s) is the uncovered cell that we would like to cover.

The cell u cannot poach from a cell covered by a transversal that occurs in

column c; if it did, that transversal would occur in column c twice.

Similarly, u cannot poach from a cell that is covered by a transversal that

already contains the symbol s; if it did, s would occur twice in this transversal.

Therefore, there are at least n− (k −1)− (k −1) = n−2k + 2 cells in row r from

which u can poach.

Corollary 38. Any cell may be poached by at least n− 2k + 2 other cells in the same

row.

Proof. Suppose u = (r, c, s) is the covered cell that we would like to uncover.

The cell u cannot be poached by a cell whose column contains the transversal

with which u is associated; if it did, the transversal would occur twice in that

column.

Similarly, u cannot be poached by a cell that is covered by its transversal

already; if it did, that symbol would occur twice in the transversal.

Therefore, there are at least n − (k − 1) − (k − 1) = n − 2k + 2 cells in row r to

which can poach from u.

Using poaching, we are able to quickly prove the following result:

90

Theorem 39. Let R be a k × n Latin rectangle on n symbols with some

mutually disjoint partial transversals identified. We can redistribute the transversal

associations in R to find an uncovered diagonal if k < n+2
3 .

Proof. Let A be a set containing one (arbitrarily selected) uncovered cell from

each row. Assuming that there are no uncovered diagonals, there exists cells

a1 = (r, c, s), a2 = (r ′ , c′ , s′) ∈ A such that c = c′ or s = s′, that is, a pair of cells share

a column or symbol.

We identify some cell in row r that does not share a column with any cell in

A (note that this is always possible as there are n choices in total, at most k − 1

columns could be unsuitable, leaving at least n − k + 1 suitable cells). We know

that a1 may poach from n−2k+2 cells (by lemma 37). If (n−k+1)+(n−2k+2) > n,

that is, k < n+2
3 , then we are guaranteed to find a suitable cell to uncover in this

row.

Repeat the procedure as required in each row until a diagonal is exposed.

By considering the case when k = n
4 , we shall now verify the result of

Häggkvist and A. Johansson with the poach move as a warm up for proving

theorem 36.

Theorem 40. If R is an n
4×n Latin rectangle on n symbols, then Rmay be decomposed

into n partial transversals of length n
4 .

Proof. Begin by greedily finding as many partial transversal as you can. Suppose

you found 0 ≤ i ≤ n partial transversals of length n
4 . Let A be a set containing

one (arbitrarily selected) uncovered cell from each row. As there were no partial

transversals left, there exists cells a1 = (r, c, s), a2 = (r ′ , c′ , s′) ∈ A such that c = c′ or

s = s′, that is, two cells that share a column or symbol.

We identify some cell in row r that does not share a column or symbol with

any cell in A (note that this is always possible as there are n choices in total, at

most n
4 − 1 columns could be unsuitable as could at most n

4 − 1 symbols, leaving

91

at least n
2 + 2 suitable cells). Let ρ be one of these suitable cells. Now, if a1 can

directly poach from ρ, we are done.

If not, then find the cell α such that α can poach from ρ, and a1 can poach

from α – note that α exists because there are n
2 + 2 cells that may poach from ρ

(by lemma 37) and a1 can poach from n
2 + 2 cells (by lemma 37).

If A now contains a partial transversal, we are done, otherwise, repeat this

process with another pair of cells for each row until A does contain a transversal.

Once A contains a transversal, we cover those cells and if we still have not

decomposed the rectangle, iterate the whole process again with a new selection

of uncovered cells for A.

The proof of theorem 36 is only slightly more complicated, and just requires

a little more insight given in the following lemma.

Lemma 41. Let R be an n
3 × n Latin rectangle on n symbols with some mutually

disjoint partial transversals identified. Also suppose that a1 and a2 are uncovered and

share the same symbol. Let U be a set of size n
3 + 2 of covered cells in the same row as

a1. If a1 cannot poach from any cell in U , then:

1. There exist at least 3 cells in U whose transversals do not occur in the same

column as a1;

2. There exist at least 4 cells in U whose transversals do not contain the same

symbol as a1.

Proof. At most n
3 − 1 of the cells in U may be members of transversals that pass

through the column containing a1; as |U | = n
3 + 2, at least 3 cells may not.

At most n3−2 of the cells inU may be members of transversals that containing

the same symbol as a1 (remember that a2 is also uncovered and shares the same

symbol as a1); as |U | = n
3 + 2, at least 4 cells may not.

We are now ready to prove theorem 36.

92

Proof of theorem 36. Begin by greedily finding as many partial transversal as you

can. Suppose you found 0 ≤ i ≤ n partial transversals of length n
3 . We use

theorem 39 to find a diagonal; let A be this diagonal. As there were no partial

transversals left, there exists cells a1 ∈ A in row r, and a2 ∈ A in row r ′ that share

the same symbol.

We identify the set U consisting of all cells in row r that do not share a

column or symbol with any cell in A – note that U is non-empty as there are

n choices in total, at most n
3 − 1 columns could be unsuitable as could at most

n
3 − 1 symbols, leaving at least n

3 + 2 suitable cells. As n < 15, we have n
3 + 2 < 7,

and therefore by lemma 41, there must exist some cell u in U whose transversal

neither passes through the same column, nor contains the same symbol as a1.

Therefore a1 may poach the transversal association from u.

Repeat for each row as needed until A is a transversal.

Corollary 42. Any 3n × 3n Latin square may be decomposed into 9n partial

transversals of length n.

We conclude this topic with the following conjecture:

Conjecture 43. Using the poach move repeatedly, it is possible to find a partial

transversal decomposition of any n
3 ×n Latin rectangle.

The stumbling block with proving the conjecture is that for n ≥ 15, it is

possible that in row r, there is no sequence of poach moves that can uncover a

suitable cell. However, given that you do not already have a transversal, and we

do have a diagonal, there must be another uncovered cell in row r ′ that shares the

same symbol - perhaps this row will have more success. If not, we can move to

another cell (still maintaining a diagonal) – the cell that we have moved to must

contain a symbol that is already in our diagonal, can this cell uncover a suitable

symbol? Given the wealth of available options, it seems overwhelmingly likely

that this conjecture is true.

93

94

Chapter 8

Conclusion

The primary goal of this thesis was to solve the conjecture posed by Cameron in

[6]. We have seen numerous generalisations of Jacobson and Matthews’ method

and, perhaps, taken it to the limit.

One big topic that we have not covered is that of mixing time. The mixing

time of a Markov chain is the number of iterations that must be completed before

the distribution may be satisfactorily close to the stationary distribution. The

current mixing time of the the Jacobson and Matthews Markov chain is currently

unknown, despite many (unpublished) attempts to rectify the problem. There

are two main methods of attacking a problem like this. The first is to find a

canonical path between two vertices of the underlying graph and showing that

no bottleneck occurs. The second method, known as coupling involves taking a

walk on the graph from two arbitrarily chosen vertices. The walk is conducted

using an algorithm to dictate the next move so that once the two paths collide,

they stay together forever. The time it takes for the two paths to collide suggests

information about the mixing time. The difficulty in this approach is finding an

algorithm that pressurises the two systems to coincide.

95

We summarise what we have discovered in the following table:

Design Jacobson and Matthews’ technique works?

LS((r, c, s), (λRC ,λRS ,λCS)) Yes, for all admissible parameters

LF((n,c), (λNN ,λNC)) Yes, if λNN ≥ λNC ,λNC even. Also, true when

λNC = λNN = 1 with n < 12. Otherwise,

unknown.

TS(v,λ) Yes, for λ = 1 with v ≤ 19. Otherwise,

unknown.

From the table we may infer that triple systems are “harder” to reconcile

than factorisations, which in turn are “harder” than the resolution of squares.

As we moved up in difficulty, we lost a type of point, and having the ability to

“protect” points as we proved connectedness was of vital importance in the core

of Jacobson and Matthews’ technique. It is my belief that to resolve the final

cases, we need to discover a technique that takes advantage of having only 1

type of point. As we saw in the previous chapter, cycle trades are a promising

concept, but alone they are not up to the task. Perhaps the right answer involves

a mixture of cycle trades with a simple, predictable, sequence of ±1-moves.

There is another option available to us, which is to investigate what happens

if we allow more than 1 negative triple to occur. In the previous chapter we saw

that trade 68 in Forbes’ list could not be mimicked by ±1-moves. This is not

the case if we allow two negative triples [15]. Allowing more negative triples

allows us to simplify the connectedness proof because we do not need to return

to a proper system before interchanging the edges of a cycle. For factorisations,

this also allows us to ignore the condition that λNC ≥ λNN because that was only

important in returning to properness. For the triple systems, we still have the

issue of bridged graphs to overcome, but this is not an issue if λ is even. The

question remains: is this Markov chain ergodic? At what price do these results

come? The exact answer is unknown, but it certainly does increase the size of the

96

graph, meaning the amount of time we should traverse the graph will increase,

perhaps damaging the mixing time.

97

98

Appendix A

DesignMC User Guide

DesignMC is a GAP [20] package for generating uniformly distributed random

generalised 2-designs with block size 3.

A.1 Background

From the early stages of this research, it became apparent that it would benefit

from having software to perform experiments. For example, we were able to

prove connectivity of the Markov chain (for some small values) by simulating

a random walk and logging each of the non-isomorphic systems that we

discovered.

This software has been open-sourced so users may continue this research, or

simply use it to generate generalised 2-designs of block size 3. This appendix

contains the user guide for the software.

A.1.1 Licence

GNU General Public License v3

99

http://www.gap-system.org

A.1.2 Requirements

GAP v4.5.5 [20]

Required GAP Packages:

• DESIGN Package [39]

• JSONGAP Package [12]

A.1.3 Installation

To initialise the DesignMC Package, put the root folder in the pkg directory of

your GAP root and in GAP type:

gap> LoadPackage("DesignMC");

Alternatively, you can download the source to any/folder/you/like/DesignMC

and then run GAP with

gap -l ’path/to/your/GAP4r5r5/bin/;any/folder/you/like/;’

A.1.4 Function Reference

Generating Generalised 2-designs

These functions are wrappers for Soicher’s DESIGN Package. They handle the

boiler plate code that is required to generate the particular designs in which we

are interested.

100

http://www.gap-system.org
http://designtheory.org/software/gap_design/
https://github.com/andydrizen/JSONGAP/
http://designtheory.org/software/gap_design/

QuickLatinSquare

Required Parameters:

• n Positive integer

Returns: Record

Description: Returns the cyclic Latin square of order n.

Usage:

gap> square:=QuickLatinSquare(4);

ProduceSquare

Required Parameters:

• input Record

• input.v List A tuple of positive integers

Optional Parameters:

• input.lambdas List A tuple of positive integers for the lambda values RC,

RS and CS (in that order).

• isoLevel 0, 1, 2: See DESIGN Documentation.

• requiredAutSubgroup Group: See DESIGN Documentation.

• isoGroup Group See DESIGN Documentation.

• show_output Boolean Set to true for verbose mode.

• improper Boolean Set to true if you only want improper designs.

101

http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm

Returns: List

Description: Returns a square with the specified parameters. This function

wraps the DESIGN Package.

Usage:

gap> input:=rec(v:=[4,4,4], lambdas:=[2,2,2], isoLevel:=0,

improper:=true);;

gap> ProduceSquare(input);

ProduceLamdaFactorisation

Required Parameters:

• input Record

• input.v List A tuple of positive integers

Optional Parameters:

• input.lambdas List A tuple of positive integers for the lambda values NC,

NN (in that order).

• isoLevel 0, 1, 2: See DESIGN Documentation.

• requiredAutSubgroup Group: See DESIGN Documentation.

• isoGroup Group See DESIGN Documentation.

• show_output Boolean Set to true for verbose mode.

• improper Boolean Set to true if you only want improper designs.

Returns: List

Description: Returns a lambda factorisation with the specified parameters.

This function wraps the DESIGN Package.

102

http://designtheory.org/software/gap_design/
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://designtheory.org/software/gap_design/

Usage:

gap> ProduceLamdaFactorisation(rec(v:=[6,5]));

ProduceTripleSystem

Required Parameters:

• input Record

• input.v List A tuple of positive integers

Optional Parameters:

• input.lambdas List A tuple of positive integers for the lambda values RC,

RS and CS (in that order).

• isoLevel 0, 1, 2: See DESIGN Documentation.

• requiredAutSubgroup Group: See DESIGN Documentation.

• isoGroup Group See DESIGN Documentation.

• show_output Boolean Set to true for verbose mode.

• improper Boolean Set to true if you only want improper designs.

Returns: List

Description: Returns a triple system with the specified parameters. This

function wraps the DESIGN Package.

Usage:

gap> ProduceTripleSystem(rec(v:=[7]));

103

http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://designtheory.org/software/gap_design/

Make2Design

Required Parameters:

• input Record

• input.v List A tuple of positive integers

• input.k List A tuple of positive integers

Optional Parameters:

• input.lambdas List A tuple of positive integers for the lambda values RC,

RS and CS (in that order).

• isoLevel 0, 1, 2: See DESIGN Documentation.

• requiredAutSubgroup Group: See DESIGN Documentation.

• isoGroup Group See DESIGN Documentation.

• show_output Boolean Set to true for verbose mode.

• improper Boolean Set to true if you only want improper designs.

Returns: List

Description: Returns a 2-design with the specified parameters. This

function wraps each of ProduceSquare , ProduceFactorisation and

ProduceTripleSystem . It uses input.k to determine which function to call.

Usage:

gap> Make2Design(rec(v:=[3,3,3], k:=[1,1,1]));

104

http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm

MakeSquare

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

Returns: Record

Description: Returns a square of order n with for lambda = lambdaInt .

This function wraps ProduceSquare .

Usage:

gap> MakeSquare(3,2);

MakeImproperSquare

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

Returns: Record

Description: Returns an improper square of order n with for lambda =

lambdaInt . This function wraps ProduceSquare .

Usage:

105

gap> MakeImproperSquare(7,1);

MakeLambdaFactorisation

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

Returns: Record

Description: Returns a lambda factorisation on n vertices and n - 1

colours, with for lambda = lambdaInt . This function simply wraps

ProduceFactorisation .

Usage:

gap> MakeLambdaFactorisation(6,1);

MakeImproperLambdaFactorisation

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

Returns: Record

106

Description: Returns an improper lambda factorisation on n vertices and

n - 1 colours, with for lambda = lambdaInt . This function simply wraps

ProduceFactorisation .

Usage:

gap> MakeImproperLambdaFactorisation(6,1);

MakeTripleSystem

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

Returns: Record

Description: Returns a triple system on n points, with for lambda =

lambdaInt . This function wraps ProduceTripleSystem .

Usage:

gap> MakeTripleSystem(7,1);

MakeImproperTripleSystem

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

107

Returns: Record

Description: Returns an improper triple system on n points, with for lambda

= lambdaInt . This function wraps ProduceTripleSystem .

Usage:

gap> MakeTripleSystem(9,1);

Enumerating Generalised 2-designs

EnumerateSquares

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

• isoLevel 0, 1, 2 See DESIGN Documentation

Returns: List

Description: Returns a list of squares on n points, with for lambda =

lambdaInt . Setting the isoLevel to 2 will find the exact number of designs

(up to isomorphism) matching your parameters. This function simply wraps

Make2Design .

Usage:

gap> EnumerateSquares(5,1,2);

108

http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm

EnumerateImproperSquares

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

• isoLevel 0, 1, 2 See DESIGN Documentation

Returns: List

Description: Returns a list of improper squares on n points, with for lambda

= lambdaInt . Setting the isoLevel to 2 will find the exact number of

designs (up to isomorphism) matching your parameters. This function wraps

Make2Design .

Usage:

gap> EnumerateImproperSquares(5,1,2);

EnumerateLambdaFactorisations

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

• isoLevel 0, 1, 2 See DESIGN Documentation

Returns: List

Description: Returns a list of lambda factorisations on n vertices and

n - 1 colours, with for lambda = lambdaInt . Setting the isoLevel to

109

http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm

2 will find the exact number of designs (up to isomorphism) matching your

parameters. This function wraps Make2Design .

Usage:

gap> EnumerateLambdaFactorisations(6,2,2);

EnumerateImproperLambdaFactorisations

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

• isoLevel 0, 1, 2 See DESIGN Documentation

Returns: List

Description: Returns a list of improper lambda factorisations on n vertices

and n - 1 colours, with for lambda = lambdaInt . Setting the isoLevel

to 2 will find the exact number of designs (up to isomorphism) matching your

parameters. This function wraps Make2Design .

Usage:

gap> EnumerateImproperLambdaFactorisations(6,2,2);

EnumerateTripleSystems

Required Parameters:

110

http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm

• n Integer A positive integer

• lambdaInt Integer A positive integer

• isoLevel 0, 1, 2 See DESIGN Documentation

Returns: List

Description: Returns a list of triple systems on n points, with for lambda =

lambdaInt . Setting the isoLevel to 2 will find the exact number of designs (up

to isomorphism) matching your parameters. This function wraps Make2Design .

Usage:

gap> EnumerateTripleSystems(6,2,2);

EnumerateImproperTripleSystems

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

• isoLevel 0, 1, 2 See DESIGN Documentation

Returns: List

Description: Returns a list of improper triple systems on n points, with for

lambda = lambdaInt . Setting the isoLevel to 2 will find the exact number

of designs (up to isomorphism) matching your parameters. This function wraps

Make2Design .

Usage:

111

http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm
http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm

gap> EnumerateTripleSystems(9,1,2);

Moving Around the Markov Chain

GeneratePivot

Required Parameters:

• n Integer A positive integer

• lambdaInt Integer A positive integer

• isoLevel 0, 1, 2 See DESIGN Documentation

Returns: List

Description: Returns a list of improper triple systems on n points, with for

lambda = lambdaInt . Setting the isoLevel to 2 will find the exact number

of designs (up to isomorphism) matching your parameters. This function wraps

Make2Design .

Usage:

gap> square:=MakeSquare(5,1);

gap> GeneratePivot(square);

RemovableBlocks

Required Parameters:

• D BlockDesign The block design that you are going to modify.

112

http://www.maths.qmul.ac.uk/~leonard/design/manual/CHAP007.htm

• pivot List A block that you would like to add into the design D .

Returns: List

Description: Returns a list of blocks of D . One of these blocks will be the

improper block, if any exists, after adding pivot .

Usage:

gap> square:=MakeSquare(5,1);

gap> pivot:=GeneratePivot(square);

gap> RemovableBlocks(square, pivot);

Hopper

Required Parameters:

• D BlockDesign A block design.

• add List A block that you would like to add into the design D .

• remove List A block that you would like to remove from the design D

(must be an element of RemovableBlocks(D, add)). Alternatively, pass the

empty list and a suitable block will be removed at random.

Returns: BlockDesign

Description: Performs one iteration in the Markov chain starting from D .

The block add will be added in, and the block remove will be removed. If

the resulting block design is improper, then the improper block is remove .

Usage:

gap> square:=MakeSquare(5,1);

gap> pivot:=GeneratePivot(square);

gap> newSquare:=Hopper(square, pivot, []);

113

OneStep

Required Parameters:

• D BlockDesign A block design.

Returns: BlockDesign

Description: Performs a set of iterations in the Markov chain starting from

D and returning the first proper design encountered, whilst moving around at

random.

Usage:

gap> square:=MakeSquare(5,1);

gap> newSquare:=OneStep(square);

ManyStepsProper

Required Parameters:

• D BlockDesign A block design.

• i Integer Number of proper designs to ignore.

Returns: BlockDesign

Description: Performs a set of iterations in the Markov chain starting from

D and returning the ith proper design encountered, whilst moving around at

random.

Usage:

114

gap> square:=MakeSquare(5,1);

gap> newSquare:=ManyStepsProper(square, 10);

ManyStepsImproper

Required Parameters:

• D BlockDesign A block design.

• i Integer Number of designs to ignore.

Returns: BlockDesign

Description: Performs a set of iterations in the Markov chain starting from

D and returning the ith improper design encountered, whilst moving around

at random.

Usage:

gap> square:=MakeSquare(5,1);

gap> newSquare:=ManyStepsImproper(square, 10);

RandomWalkOnMarkovChain

Required Parameters:

• D BlockDesign A block design.

• improper Boolean Should look for improper designs.

Description: Performs a set of iterations in the Markov chain starting from D ,

making a log of the number of designs (both isomorphic, and non-isomorphic)

115

that it finds. If improper = true then it only looks for improper designs. This

function is useful when deciding if the Markov chain is connected.

Usage:

gap> square:=MakeSquare(5,1);

gap> newSquare:=RandomWalkOnMarkovChain(square, false);

Pair Graphs

CreatePairGraph

Required Parameters:

• D1 BlockDesign A block design.

• p1_red Integer A point to assign to the red edges.

• D2 BlockDesign A block design.

• p2_blue Integer A point to assign to the blue edges.

Description: Creates a pair graph using all the blocks in D1 containing

p1_red , and all the blocks in D2 containing p1_blue .

The graph is created using Mathematica, and saved to “ /Desktop/file”. The

graph is constructed by starting choosing any block in D1 that contains

p1_red , for example, [1, 2, p1_red] ; form an edge [1,2] coloured p1_red .

Next, look in D2 for a block that contains both 1 and p2_blue , for

example, [1, a, p2_blue] ; now form an edge [1, a] coloured p2_blue .

Continue in this way until you return to your starting point and start the process

again for the next component of the graph. Once you have no more components

to make, the graph is complete.

116

Usage:

gap> square:=MakeSquare(5,2);;

gap> CreatePairGraph(square, 1, square, 2);;

FindAlternatingTrail

Required Parameters:

• D BlockDesign An improper block design.

• starting_vertex Integer The vertex that the path should start from.

• finishing_vertex Integer The vertex that the path should finish on.

• isPathEvenLength 0,1 Indicate whether the path should have even length.

• edgeColour1 List A label to assign to the red edges.

• edgeColour2 List A label to assign to the blue edges.

• include_edge_lists List Blocks that must be included in the path.

• forbidden_edge_list List Blocks that must not be included in the path.

Description: Finds an alternating path with the specified parameters.

Returns: List (vertices describing the path).

Usage:

gap> improperSquare:=MakeImproperSquare(5,2);;

gap> FindAlternatingTrail(improperSquare, 1, 5,0,12,15,[],[]);;

117

FindAlternatingTrailWithoutGivenBlueEdge

Required Parameters:

• D BlockDesign An improper lambda factorisation.

Description: Wraps FindAlternatingTrail . Finds an alternating trail in the

pair graph of an improper lambda factorisation that does not include a blue edge

adjacent to one of the special vertices of the pair graph.

Usage:

gap> improperFact:=MakeImproperLambdaFactorisation(6,1);;

gap> FindAlternatingTrailWithoutGivenBlueEdge(improperFact);

IsChordedDG

Required Parameters:

• D BlockDesign A block design.

• pointsList List The two points that will be used to make the pair graph.

Description: Use this to detect if a pair graph is chorded or bridged.

Returns: Boolean

Usage:

gap> IsChordedDG(improperFactorisation, [9,10]);

118

Appendix B

Latin Squares App

The final piece of software that I created on this topic is a universal iOS

application called “Latin Squares”. This software is aimed at a mathematically-

interested, but not university-educated audience. It is freely available on the

App Store and has been downloaded thousands of times since it appeared in

May 2011.

In this section we shall tour the features of the application and show

screenshots of each section.

If you would like to see the app yourself, and have an iOS device running

iOS 3.0 or above, you may download it by searching the iOS App Store for “Latin

Squares” or see [13].

The application is open-source on Github, and may be viewed at: http:

//www.github.com/andydrizen/LatinSquares

B.1 Detailed Tour

119

http://www.github.com/andydrizen/LatinSquares
http://www.github.com/andydrizen/LatinSquares

Landing Screen

Figure B.1: The landing screen of the Latin Squares App.

120

Theory

Theory
This section contains the basic theory of
Latin squares. Currently there are only
four articles here that cover the very
basics of the field. More articles can be
added and automatically added to this
list. Each article is marked up using
HTML and some pre-defined CSS.

Transversals
This article on transversals demon-
strates the type of articles that the app
can display. Each article is marked up
using HTML and some predefined CSS.
As these are just webpages, the arti-
cles may also include any interactive
items that iOS will display (for example,
Javascript (not Flash or Java)).

121

Articles

Articles List
The app contains an of-
fline list of recent articles
regarding Latin squares.
This list is updated manu-
ally, and may be updated
remotely. Every time the
app is launched or man-
ually updated, this list is
updated.

Article Detail
For each article, we dis-
play the title, abstract, and
a link the to DOI or PDF (if
available).

Article PDF
Tapping on the “down-
load pdf” link takes you
straight to the article (if
available) or alternatively,
to the journal page for the
article.

122

Books

Books List
The app contains an offline list of
the best books regarding Latin squares.
This list is updated manually, and may
be updated remotely. Every time the
app is launched or manually updated,
this list is updated.

Book Detail
For each book, we display the title,
summary, and a link the to publishers
page or PDF (if available).

123

Open Problems

Problems List
We keep a list of the problems that I
found most interesting. Also, there are
links to the open problem garden and
Wikipedia.

Problems on Wikipedia
Tapping on the Wikipedia item shows
the list of open problems on on
Wikipedia, without leaving the app.

124

Random Squares

Random Squares
The user is able to generate a uniformly
distributed random Latin square using
Jacobson and Matthews’ Markov chain.
The square is presented in the more
aesthetically pleasing grid format.

Toolbox
The toolbox allows the user to find
transversals, generate new squares and
set a colour for cell highlighting. Fur-
ther, squares can be saved, emailed (as
JSON) and loaded later (either into the
app or into the DesignMC package).

125

Notable Squares

Notable Squares
Notable squares can be listed in this
section. Any squares that have been
exported from the DesignMC package
(in JSON format) are easily added to this
section.

Extra Info
A brief description of the square may
also be given In this case, we describe
the Cyclic Latin square.

126

Bibliography

[1] R. A. Bailey. Semi-latin squares. http://www.maths.qmul.ac.uk/~rab/

sls.html. [Online; accessed 01-July-2012].

[2] R. A. Bailey and P. J. Cameron. Latin squares: Equivalents and equivalence.

The Encyclopaedia of Design Theory, 2003. [Online; accessed 01-July-2012].

[3] K. Balasubramanian. On transversals in latin squares. Linear Algebra Appl.,

131:125 – 129, 1990.

[4] S. Bammel and J. Rothstein. The number of 9 × 9 latin squares, discrete

math.11. J. Comb, (93), 1975.

[5] R. C. Bose, S. S. Shrikhande, and E. T. Parker. Further results on the

construction of mutually orthogonal latin squares and the falsity of Euler’s

conjecture. Canad. J. Math., 12:189 – 203, 1960.

[6] P. J. Cameron. A generalisation of t-designs. Discrete Math., 309(14):4835 –

4842, 2009.

[7] N. J. Cavenagh, C. Greenhill, and I. M. Wanless. The cycle structure of

two rows in a random latin square. Random Structures and Algorithms,

33(3):286–309, 2008.

[8] N. J. Cavenagh and I. M. Wanless. On the number of transversals in cayley

tables of cyclic groups. Discrete Appl. Math., 158(2):136 – 146, 2010.

127

http://www.maths.qmul.ac.uk/~rab/sls.html
http://www.maths.qmul.ac.uk/~rab/sls.html

[9] C. J. Colbourn and J. H. Dinitz, editors. Handbook of Combinatorial Designs.

CRC Press, 2006.

[10] J. Dinitz, D. Garnick, and B. McKay. There are 526,915,620 nonisomorphic

one-factorizations of K12. Journal of Combinatorial Designs, 2(4):273–285,

1994.

[11] A. L. Drizen. The DesignMC package for GAP, version 1.0. http://

www.maths.qmul.ac.uk/~ald/DesignMC, 2011. [Online; accessed 01-July-

2012].

[12] A. L. Drizen. The JSONGAP package for GAP, version 1.0. https://

github.com/andydrizen/JSONGAP, 2011. [Online; accessed 01-July-2012].

[13] A. L. Drizen. Latin Squares - A Universal iOS App. http://itunes.apple.

com/gb/app/latin-squares/id441478641?mt=8, 2011. [Online; accessed

01-July-2012].

[14] A. L. Drizen. Generating uniformly distributed random 2-designs with

block size 3. Journal of Combinatorial Designs, 20(8):368–380, 2012.

[15] A. L. Drizen, M. J. Grannell, and T. S. Griggs. Pasch trades with a negative

block. Discrete Math., 311(21):2411 – 2416, 2011.

[16] L. Euler. Rescherches sur une nouvelle espece des quarres magiques.

Verh.Genootsch. der Wet.Vlissingen, (9):1782.

[17] A.D. Forbes. Configurations and colouring problems in block designs. PhD

thesis, The Open University, 2006.

[18] A.D. Forbes, M.J. Grannell, and T.S. Griggs. On 6-sparse steiner triple

systems. J. Combin. Theory Ser. A, 114:235–252, 2007.

[19] M. Frolov. Sur les permutations carrés. J. de Math. spéc., IV, pages 25–30,

1890.

128

http://www.maths.qmul.ac.uk/~ald/DesignMC
http://www.maths.qmul.ac.uk/~ald/DesignMC
https://github.com/andydrizen/JSONGAP
https://github.com/andydrizen/JSONGAP
http://itunes.apple.com/gb/app/latin-squares/id441478641?mt=8
http://itunes.apple.com/gb/app/latin-squares/id441478641?mt=8

[20] The GAP Group. GAP – Groups, Algorithms, and Programming, Version

4.4.12, 2008. [Online; accessed 01-July-2012].

[21] P.B. Gibbons. Computing techniques for the construction and analysis

of block designs. Department of Computer Science, University of Toronto,

Technical Report, 92/76, 1976.

[22] M. J. Grannell, T. S. Griggs, and C. A. Whitehead. The resolution of the

anti-pasch conjecture. J. Combin. Des., 8(4):300 – 309, 2000.

[23] M.J. Grannell, T.S. Griggs, and J.P. Murphy. Some new perfect steiner triple

systems. J. Combin. Des., 7:327–330, 1999.

[24] M.J. Grannell, T.S. Griggs, and J.P. Murphy. Switching cycles in steiner

triple systems. Util. Math, 56:3–21, 1999.

[25] R. Häggkvist and A. Johansson. Orthogonal latin rectangles. Combinatorics,

Probability and Computing, 17:519 – 536, 2008.

[26] F. Harary. Graph Theory, chapter 9. Addison-Wesley, 1969.

[27] A. J. W. Hilton. Problem bcc 13.20. [Online; accessed 01-July-2012], 1991.

[28] A. D. Keedwell J. Dénes. Latin Squares and their Applications. Academic

Press, New York-London, 1974.

[29] M. T. Jacobson and P. Matthews. Generating uniformly distributed random

latin squares. J. Combin. Des., 4:405 – 437, 1996.

[30] P. Kaski, V. Mäkinen, and P. R. J. Östergård. The cycle switching graph of

the steiner triple systems of order 19 is connected. Graphs Combin., 27:539

– 546, July 2011.

[31] P. Kaski and P. Östergård. There are 1,132,835,421,602,062,347

nonisomorphic one-factorizations of K14. Journal of Combinatorial Designs,

17(2):147–159, 2009.

129

[32] W. J. Martin. Mixed block designs. J. Combin. Des., 6:151–163, 1998.

[33] B. McKay and E. Rogoyski. Latin squares of order 10. Electron. J. Combin,

2, 1995.

[34] B. D. McKay. nauty user’s guide (version 1.5), technical report tr-cs-90-02.

http://cs.anu.edu.au/people/bdm/nauty/. [Online; accessed 01-July-

2012].

[35] B.D. McKay and I.M. Wanless. On the number of latin squares. Ann. Comb.,

9:335 – 344, 2005.

[36] H. W. Norton. The 7 × 7 squares. Annals of Human Genetics, 9(3):269 – 307,

1939.

[37] A. Sade. Enumération des carrés latins. application au 7 ème ordre.

conjectures pour les ordres supérieurs, privately published, 1948.

[38] A. Sade. An omission in norton’s list of 7 × 7 squares. Ann. Math. Statist.,

22(2):306 – 307, 1951.

[39] L. H. Soicher. The DESIGN package for GAP, version 1.6. http://

designtheory.org/software/gap_design, 2011. [Online; accessed 01-

July-2012].

[40] L. H. Soicher. The GRAPE package for GAP, version 4.6.1. http://

www.maths.qmul.ac.uk/~leonard/grape, 2012. [Online; accessed 01-July-

2012].

[41] L.H. Soicher. On generalised t-designs and their parameters. Discrete Math.,

311:1136–1141, 2011.

[42] J. Steiner. Combinatorische aufgabe. Journal für die Reine und Angewandte

Mathematik, 45:181 – 182, 1853.

130

http://cs.anu.edu.au/people/bdm/nauty/
http://designtheory.org/software/gap_design
http://designtheory.org/software/gap_design
http://www.maths.qmul.ac.uk/~leonard/grape
http://www.maths.qmul.ac.uk/~leonard/grape

[43] G. Tarry. Le probléme de 36 officiers. Compte Rendu de l’Association

FranÃğaise pour l’Avancement de Science Naturel (Secrétariat de l’Association),

2:170 – 203, 1901.

[44] I. M. Wanless. Cycle switches in latin squares. Graphs Combin., 20:545 –

570, 2004. 10.1007/s00373-004-0567-7.

[45] I. M. Wanless. Diagonally cyclic latin squares. Eur. J. Combin., 25(3):393 –

413, 2004.

[46] I. M. Wanless. Discussion of hitlon’s bcc13.20 problem. Personal

communication, 2011.

[47] M. Wells. The number of latin squares of order eight. J. Combin. Theory,

(3):98–99, 1967.

[48] R. D. Yates and D. J. Goodman. Probability and Stochastic Processes: A

Friendly Introduction for Electrical and Computer Engineers, chapter 11.4.

John Wiley and Sons inc., 1999.

131

Index

(n×n)/k semi-Latin square, 50

λ-complete graph, 63

λ-factor, 63

λ-factorisation, 63

λ-triple system of order v, 77

V-height, 11

t-design, 9

t − (v,k,λ) design, 9

1-factor, 61

1-factorisation, 61

anti-Pasch systems, 84

aperiodic, 25

binary, 79

block, 64

block design, 9

block set, 64

blocks, 9

bridged, 67

canonical path, 95

chorded, 67

colours, 63

columns, 49

complete graph, 61

conjugate, 28

Conjugate:, 16

constant λ, 49, 63

core, 53

coupling, 95

cycle, 20

cycle trading, 83

cyclic Latin square, 16

derangement, 18

designs, 13

diagonal, 87

discrepancy cycle, 44

ergodic, 25

Fano Plane, 10

foundation, 84

generalised λNC-factorisation of λNNKn,

63

generalised t-design, 12

generalised Latin square, 49

hill climbing, 18

132

improper, 27, 78

improper block, 49

improper square, 49

intercalate, 22

irreducible, 24

isomorphic, 17, 28, 78, 79

isotopic, 28

Isotopic:, 16

Kirkman triple system, 78

Latin rectangle, 18, 89

Latin square of order n, 11, 15

Main class isotopic:, 16

Markov chain, 23

Markov property, 23

memoryless, 23

mixed block designs, 14

mixing time, 26, 95

mutually orthogonal, 88

near-core, 53

negative block, 49, 79

neighbour set, 24

neighbourhood, 20

nodes, 63

non-isomorphic, 17

orbit, 85

pair graph, 32

partial transversal, 87

partial triple system, 85

Pasch configuration, 84

perfect, 83

period, 25

poach move, 90

point set, 64

points, 9

quadrilateral, 84

RBR, 54

resolvable, 78

reversible, 25

row-pair graph, 20

rows, 49

semi-Eulerian, 55

special, 33

states, 23

Steiner triple system of order v, 77

Steiner triple systems on v points, 9

suitable, 85

symbols, 49

system of distinct representatives, 18

table notation, 29

trade, 84

transversal, 87

transversal decomposition, 88

unique stationary distribution, 26

133

volume, 84

134

	Introduction
	An Overview
	Software Used
	Original Content

	Generalised t-designs
	Generating Latin Squares Uniformly at Random
	Latin Squares
	Counting Latin Squares
	Generating Latin Squares

	Markov Chains
	Example: Random Walk

	Jacobson and Matthews' Technique
	Pair Graphs
	Proving Connectedness

	Generalised Latin squares
	Definition
	Generalised Squares

	Pair Graphs
	Square Row-Pair Graph Analysis

	Generating Squares Uniformly at Random

	Generalised Factorisations
	Definition
	Counting 1-factorisations
	Generalised Factorisations
	Generalised NC-factorisation of NN Kn

	Pair Graphs
	Generating Factorisations Uniformly at Random
	Experimental Results

	Generalised Triple Systems
	Definition
	Counting Triple Systems

	Pair Graphs
	Evidence Supporting the 1-move

	Decomposing Latin Rectangles
	Decomposing Latin Rectangles

	Conclusion
	Appendix DesignMC User Guide
	Background
	Licence
	Requirements
	Installation
	Function Reference

	Appendix Latin Squares App
	Detailed Tour

	Bibliography
	Index

