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Abstract 

The dermal papillae of the hair follicle control its growth, differentiation and 

apoptosis via a range of growth factors. These secreted growth factors are known to 

differ between those of non-balding scalp and those of balding scalp and can even 

differ in response to a common stimuli – androgen. In balding scalp androgen 

stimulates the secretion of negative growth factors, while in non-balding scalp 

androgen is found to exert little or no effect. Dermal papilla cells (DPCs) can be 

cultured in vitro, however those from balding scalp have been found to undergo 

premature senescence compared to those from non-balding scalp. A major cause of 

premature senescence is oxidative stress – the gradual accumulation of reactive 

oxygen species within the cell causing deleterious loss of function. Reactive oxygen 

species are known to be mediated in response to androgens and growth factors and 

in turn may affect growth factor signalling within the cell. Using low oxygen cell 

culture as a means of reducing oxidative stress, balding and non-balding DPCs were 

grown and characterised. It was confirmed that low oxygen culture could increase 

proliferation, delay senescence and reduce reactive oxygen species with both DPC 

types and that balding DPCs showed a higher sensitivity to oxidative stress. It was 

also found that secretions of growth factors by the balding DPCs in response to 

different oxygen conditions differed greatly to that of the occipital DPCs. 

Androgen, but not TGF-β was found to modulate DPC production of catalase, an 

antioxidant, under low oxygen conditions and this caused a reduction in reactive 

oxygen species in the balding DPCs. Balding DPCs also demonstrated an 

upregulation of the antioxidant total glutathione, however had a reduced fraction of 

the active reduced form of the molecule. In addition, it was shown for the first time 
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that under cell culture conditions balding DPCs express TGF-β receptors and it was 

shown that proliferation and migration of the balding DPCs could be affected by 

addition of exogenous TGF-β, highlighting a potential role for TGF-β as an 

autocrine growth factor in the balding dermal papilla. 
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Chapter 1 

Introduction 

  



22 

 

1.1 The hair follicle 

During evolution, mammals have developed hair, which serves a number of 

functions. Fur coats aid thermoregulation; coat thickness in many mammals 

increases during colder months of the year to provide increased thermal insulation 

which can then be shed when the warmer season begins. Hair acts as a protective 

barrier against the harmful effects of solar radiation. Hair coverage and its colour can 

also aid camouflage in many mammals, which may have conferred  an evolutionary 

advantage (Stenn and Paus, 2001). Hairs have also evolved for specialised functions. 

For example, whisker (vibrissae) hairs aid rodents’ ability to sense their 

environment.  

Compared to our primate relatives, the bodies of modern humans have limited thick 

‘terminal’ hair coverage; however, the only external regions of human skin devoid of 

hair follicles are the palms of the hands and soles of the feet. Many regions, such as 

the forehead, only have very fine unpigmented ‘vellus’ hairs. The total number of 

hair follicles in the skin of an adult human is estimated at 5 million, with 1 million 

on the head of which 100,000 alone cover the scalp. The hair fibre is also one of the 

fastest growing structures in the human body, with a growth rate of human scalp 

hairs of approximately 0.35 mm per day (Myers and Hamilton, 1951).  

Hair patterning is of great importance to social and sexual communication. This is as 

true of humans as it is of other animals. Hair, especially that of the scalp, allows 

people to form judgements on other individuals’ virility, health, age and social 

standing. One of the most common hair follicle disorders is male pattern baldness, 

also known as androgenic alopecia (AGA). This involves the progressive 

replacement of the larger and pigmented terminal hairs with thinner and shorter 
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vellus ones, in a predictable pattern on the scalp (Hamilton, 1951, Randall et al., 

2001). This affects over 50% of males by the time they reach their fifties (Hamilton, 

1951). For this reason male androgenic alopecia has become a major focus of the 

cosmetics industry. The most widely sold treatment is minoxidil – a topically applied 

drug which is thought to improve blood flow to the balding scalp to allow regrowth 

of the hair. Another treatment is finasteride – a drug taken orally which inhibits the 

body’s metabolism of testosterone into dihydrotestosterone to reduce androgen 

driven hair loss (for explanation of androgenic control of the hair follicle see Section 

1.8). 

1.2 Histomorphology of the hair follicle 

The mammalian hair follicle is a complex, highly compartmentalised structure 

composed of both epithelial and dermal components: the germinative epithelium, 

matrix, inner root sheath (IRS) and outer root sheath (ORS); and dermal papilla (DP) 

and connective tissue sheath (CTS). As discussed in Section 1.3, the hair follicle 

undergoes cyclical remodelling which can be divided into three distinct stages: 

anagen, catagen and telogen (Dry, 1926). Approximately 90% of human hair 

follicles are in an active growth stage, anagen, during which the hair fibre is 

produced in the follicle (Paus, 1998). Figure 1.1 demonstrates  the basic structure of 

a late anagen hair follicle (Norlen et al., 1999).  
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Figure 1.1: Basic structure of a late anagen hair follicle. Schematic diagram 

showing the organisation of the key compartments of the hair follicle and associated 

sebaceous gland. (Taken from Bull, 2002). 

(Bull, 2002) 
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1.2.1 The follicle bulb 

Figure 1.1 demonstrates the location of the follicle bulb at the proximal tip of the 

follicle. It is composed of germinative and hair matrix epithelium, melanocytes, 

dermal papilla (DP) and connective tissue sheath (CTS) fibroblasts and endothelial 

cells which vascularise this highly metabolically active region (Norlen et al., 1999). 

1.2.2 Dermal papilla  

The DP is pear-shaped structure almost fully enclosed by the follicle bulb 

epithelium. The DP consists of specialised mesenchymal fibroblasts. As well as 

mesoderm-derived fibroblasts, neuronal and endothelial cells form nerve fibres and 

blood vessels respectively that penetrate the base of the hair capsule and invade into 

the DP area. There is a close correlation between the size of the DP and the size of 

the hair follicle (Elliott et al., 1999). The larger the DP, the larger the hair follicle 

and the thicker the hair fibre produced (Elliott et al., 1999, Van Scott and Ekel, 

1958). 

Signalling between the DP and follicle epithelium is vital for hair follicle functioning 

(reviewed in (Jahoda and Reynolds, 1996). As well as orchestrating hair follicle 

development, the DP possesses an instructive ability which governs the activities of 

the hair follicle. The importance of the DP was demonstrated by the work of Roy 

Oliver. He discovered that a) DP was essential for hair growth (Oliver, 1966), b) if 

the lower third of the hair follicle is removed the proximal CTS cells are capable of 

forming a new DP and inducing regeneration of a new follicle bulb (Oliver, 1966) 

and c) the DP is vital for inducing hair growth (Oliver, 1967, Oliver, 1971).  
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DP cells retain their embryonic hair follicle development inducing abilities, even 

after culturing in vitro (Jahoda et al., 1984). Implantation of DP cells below the 

epidermis of adult rat ear and footpad skin can recruit and transdifferentiate 

epidermal cells into forming a de novo hair follicle (Jahoda et al., 1984, Reynolds 

and Jahoda, 1992). Similarly, hair follicle neogenesis has been achieved by the 

implantation of CTS cells underneath adult human epidermis (Reynolds et al., 1999). 

In another key study, implantation of murine embryonic mesoderm-derived cells 

under rabbit corneal epithelium resulted in transdifferentiation of the epithelial cells, 

with ectopic hair follicle development and epidermal-type keratin expression. This is 

important as it demonstrates that a) the underlying mesenchyme controls epithelial 

cell fate, including skin appendage formation and b) the signalling pathways are 

conserved between species. 

1.2.3 Connective tissue sheath 

Surrounding the epithelial components of the hair follicle is the connective tissue 

sheath (CTS), also known as the dermal sheath. The CTS consists of mesenchymal 

cells, namely fibroblasts and endothelial cells (which form the perifollicular blood 

vessels), in a collagen rich extracellular matrix. The CTS provides structural 

reinforcement to the rest of the follicle. Epithelial-mesenchyme interactions between 

the ORS and CTS are thought to play an important role in hair follicle function. In 

the follicle bulb, the CTS is continuous with the DP and migration between the two 

compartments may occur (Tobin et al., 2003). When the proximal hair follicle is 

amputated, CTS cells can form a new DP, enabling the follicle bulb to regenerate 

(Oliver, 1966). Cultured human CTS cells allogenically grafted onto a into human 

skin activate hair follicle neogenesis wherein the new follicle maintains the donor’s 
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genetic profile (Reynolds et al., 1999). Notably, this paper also demonstrated that 

this process did not trigger graft versus host disease highlighting the hair follicle’s 

“immune privilege”. 

1.2.4 Hair follicle epithelial cells 

The hair fibre and IRS are produced by the follicle bulb epithelium, which almost 

completely enclose the DP. The germinative epithelium are highly proliferative cells 

(Weinstein, 1980), which give rise to a constant stream of hair matrix cells in 

concentric layers that move up away from the DP. The mitogenic stimuli for the 

proliferation of the germinative epithelium are growth factors secreted by the dermal 

papilla (see Section 1.4). The diffusion of growth factors from the dermal papilla 

also dictates the differentiation of the epithelial cells of the hair matrix into the 

concentric layers of the cortex, IRS and ORS keratinocytes.  

The cortex cells become gradually more keratinised as they move away from the 

proximal tip to make up the hair fibre. The IRS acts as rigid scaffold to the cortex, 

moulding and directing its growth. The IRS ends around the infundibulum area of 

the follicle (the section above the sebaceous gland) to allow the hair fibre greater 

flexibility. The ORS is continuous with the epithelium of the skin and encloses the 

IRS. Around the area below the sebaceous gland duct is a specialised region of ORS 

called the ‘bulge’ region. This bulge although not anatomical visible in the human 

follicle is thought to harbour the major stem cell reservoir for the hair follicle and 

surrounding skin (Cotsarelis et al., 1990). 
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1.3 The hair follicle growth cycle 

Hair fibre growth is not a continuous event. The hair follicle undergoes cycles of hair 

fibre growth, followed by regression and a phase of relative quiescence before 

regenerating and beginning hair fibre production again. The length of the hair fibre 

produced is therefore determined by the duration of the growth phase (anagen). By 

having a hair growth cycle the length of the hair fibre can be controlled – providing a 

‘biological haircut’ for the mammal (Stenn and Paus, 2001). 

Stages of the human hair growth cycle were characterised by Albert Kligman (1959). 

For a comprehensive review on the hair cycle, see Stenn and Paus, 2001. 

There are three distinct stages of the hair growth cycle: the active growth stage 

(anagen) during which the hair fibre is produced; a regressive stage (catagen) in 

which the follicle partially degenerates, followed by a relatively quiescent stage 

(telogen), in which the hair follicle waits for new signals to re-enter anagen (Dry, 

1926). More recently, a extra fourth stage has been proposed entitled exogen in 

which the hair fibre is shed (Milner et al., 2002). 

The hair follicle can be divided into two portions with respect to the hair growth 

cycle. The distal (upper) portion of the follicle, down to just below the bulge region, 

is said to be the ‘permanent’ region of the follicle, as it maintained throughout the 

hair growth cycle. The region proximal (lower) to this is described as the ‘cycling’ 

portion of the follicle, as it undergoes marked remodelling during the hair cycle. For 

an overview of the hair follicle growth cycle stages see Figure 1.2. 
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Figure 1.2: The hair follicle growth cycle. Hair follicles go through well-

established repeated cycles of development and growth (anagen), regression 

(catagen), and rest (telogen) to enable the replacement of hairs, often by another of 

differing colour or size. An additional phase, exogen, has been reported where the 

resting club hair is released. (Diagram taken from Randall, 2008) 

Figure 1Figure 1.2: (Randall, 2008)The hair follicle growth cycle. 
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1.3.1 Anagen 

At the start of anagen, previously quiescent epithelial cells in the proximal follicle 

adjacent to the DP (the ‘secondary hair germ’) and in the bulge are activated, by as 

yet uncharacterised signals, to proliferate. This results in enlargement and down-

growth of the hair germ. The DP enlarges and becomes partially enclosed by the 

proximal hair follicle epithelium, which reforms the bulb as follicle elongates. This 

regeneration phase of anagen is sometimes described as pro-anagen. As with hair 

follicle development, once a destined down-growth length has been reached, 

proximal epithelial cells neighbouring the DP reverse their growth direction and 

progress distally back towards the epidermis. It is these cells that then undergo 

lineage restricted terminal differentiation, forming the hair fibre and IRS. Once the 

cycling portion of follicle has fully reformed, the follicle is in late anagen, during 

which the time the hair fibre grows is continuous. The structure of the late anagen 

hair follicle is described in Section 1.2. Late anagen is a prolonged phase in large 

(terminal) human hair follicles, which can last for 1-6 years and account for over 80-

90% of all scalp follicles (Paus, 1998).  

1.3.2 Catagen 

Late anagen ceases and the follicle enters what is known as catagen. Cessation of 

germinative epithelium cell proliferation occurs and consequently hair fibre 

production stops. This coincides with many epithelial cells in the cycling portion of 

the follicle, particularly in the proximal follicle epithelium, undergoing programmed 

cell death, known as apoptosis (for a review on apoptosis, see (Hengartner, 2000). 

Selective loss of cells results in shrinkage of the follicle bulb, causing the proximal 

epithelium to disclose the DP and retreat up towards the bulge region as an epithelial 
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strand. This shrinkage causes the no-longer-growing hair fibre, known as the club 

hair, to be drawn upwards at the same time. Meanwhile, the DP becomes rounded 

and condenses, before trailing behind the regressing epithelial strand. Another clear 

histological sign of catagen is the marked thickening of the vitreous or glassy 

membrane of the CTS (Kligman, 1959). The DP, trailed by the CTS then retreats 

upward towards the bulge region. These changes in follicle morphology have long 

been characterised in detail by light microscopy (Kligman, 1959) and by electron 

microscopy (Parakkal, 1970). 

Catagen lasts two to three weeks in human hair follicles (Kligman, 1959). Catagen 

provides a mechanism whereby the hair follicle stops production of its hair fibre and 

moves it towards the skin surface for subsequent shedding. It is unclear how the 

apoptosis is orchestrated so that some epithelial cells of the follicle are selectively 

lost without causing a disintegration of the proximal follicle. Several factors are 

thought to control catagen, including the transforming growth factor beta (TGF-β) 

isoforms (Foitzik et al., 2000, Foitzik et al., 1999) and dickkopf-1 (DKK-1) (Kwack 

et al., 2012), although the factor or factors controlling the switch from anagen to 

catagen  have yet to be determined, there is thought to be an important role for 

CLOCK genes which regulate circadian rhythms (Geyfman and Andersen, 2010). 

1.3.3 Telogen 

Following catagen, the shrunken hair follicle goes into a more quiescent phase. The 

non-growing hair fibre (known as a club hair) left from anagen resides in the follicle, 

but is eventually shed. Around 10-20% of scalp follicles are in telogen at any given 

time. In human scalp hairs, telogen lasts for approximately 2 months before the 

follicle receives signals that induce a return to anagen and the cycle repeats itself 



32 

 

(Paus, 1998). As with the anagen to catagen switch, CLOCK genes regulating 

circadian rhythm are thought to regulate the duration for which the follicles remain 

in this quiescent state (Geyfman and Andersen, 2010). 

1.3.4 Exogen 

The club hair’s excision from the hair follicle is not, as was originally thought, a 

passive process, rather it is an active stage in of itself known as exogen (Van Neste 

et al., 2007). During this stage the club hair loses all anchorage from the surrounding 

CTS through the loss of the ORS layer. The loose club hair is then forced upwards 

by the newly formed secondary germ as it forms the next anagen follicle (Higgins et 

al., 2009). 

1.4 Growth factor signalling in the hair follicle 

Growth factors are secreted from the dermal papilla into the surrounding germinative 

epithelium and hair matrix keratinocytes and are responsible for a range of cell 

activities. Growth factors provide the mitogenic stimuli for the rapidly proliferating 

germinative epithelium during anagen. Growth factor diffusion is also responsible 

for stimulating differentiation of the hair matrix into their varying concentric layers. 

One such growth factor is IGF-1, which acts as both a mitogenic and a 

differentiation signal (see Section 1.7)(Philpott et al., 1994). Growth factors also 

stimulate the onset of apoptosis in the ORS which triggers the involution of the 

follicle during the regressive catagen stage of the growth cycle. Growth factors 

known to induce this response are the TGF-βs and DKK-1 (see Sections 1.5 and 

1.6)(Foitzik et al., 1999; Foitzik et al., 2000; Kwack et al., 2012).  
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Many other signalling pathways have been shown to play important roles in hair 

follicle development. These include epithelial growth factors, bone morphogenic 

proteins, epidermal growth factor, fibroblast growth factors and insulin-like growth 

factors (Danilenko et al., 1996, Philpott, 1998, Yamanishi, 1998, McElwee and 

Hoffmann, 2000).  

1.5 TGF-β 

TGF-β exists as three distinct isoforms TGF-β1 -β2 and -β3, which confer different 

roles depending on cell and tissue type. In fibroblasts, the TGFβs typically stimulate 

tissue remodelling during processes such as wound healing, wherein an altered 

combination and organisation of ECM components such as collagen and fibronectin 

(Keski-Oja et al., 1988, Raghow et al., 1987, Vayalil et al., 2005). They have also 

been found to modulate cellular functions such as proliferation in lung fibroblasts 

(Moses et al., 1987) or motility as well as being indicated in modulating cell 

migration in myofibroblasts (Brenmoehl et al., 2009) or lung fibroblasts 

(Postlethwaite et al., 1987). 

TGF-β1 has a growth inhibitory effect on human hair follicles (Philpott et al., 1990). 

Both TGF-β1 and TGF-β2 have been shown to be expressed in the human hair 

follicle, and are known to mediate the hair follicle’s initiation into catagen (Foitzik et 

al., 2000, Foitzik et al., 1999). TGF-β3, a mediator of embryonic wound healing 

(Cowin et al., 2001) is not known to be expressed in the adult cycling hair follicle. 
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1.5.1 TGFβ receptor 

The active TGF-β receptor is formed from two proteins – TGF-βRI and TGF-βRII 

(Figure 1.3). Together these form a heteromeric, membrane bound structure which 

binds all TGFβ isoforms as well as a number of other Activin-family molecules 

(including bone morphogenic protein - BMP).  Although a third TGF-β receptor 

exists (TGF-βRIII) it is not known to be expressed in the human hair follicle. TGF-

βRII is required for the initial binding of the TGF-β1, -β2 or -β3 ligands. TGF-β1 

and -β3 bind to the receptor with a higher affinity than TGF-β2. TGF-βRI is unable 

to bind TGF-β isoforms, instead it is phosphorylatively activated by TGF-βRII, 

causing TGF-βRI to undergo a conformational change (Wrana et al., 1994) 

activating its ability to carry out threonine/serine phosphorylation of its intracellular 

mediators (see Section 1.5.2). 
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Figure 1.3: TGFβ cell surface receptors and intracellular Smad signalling 

pathway. TGFβ ligands bind to TGFβRII (II) which undergoes conformational 

change to reveal phosphorylative activation sites (P) which have serine/threonine 

kinase activation of TGFβRI (I). TGFβRI in turn phosphorylates Smads 2 and/or 3 

which subsequently form a heteromeric complex with Smad 4. Smad 2/3/4 

heteromer subsequently translocates to the nucleus wherein to interact with specific 

DNA binding proteins (X) such as AP-1 and SP-1 instigating the transcription of 

target genes.(Nakao et al., 1997) 
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1.5.2 TGF-β intracellular mediators 

The canonical intracellular transduction pathway of TGF-β signalling occurs through 

the Smad proteins (Lutz and Knaus, 2002). TGF-βRI phosphorylates the C-terminus 

of the Smad2 or Smad3 protein which forms a heteromer with the Smad4 protein 

(Figure 1.3). This complex then translocates to the nucleus wherein it activates 

transcription of genes controlling a wide array of processes.  

TGF-β signal transduction has also been found to be mediated via the intracellular 

signalling occurs via the mitogen activated protein kinases (MAPKs) family of 

proteins (Yamashita et al., 2008, Shim et al., 2005). 

Two of the major promoter targets of Smad are the AP1 and SP1 transcription 

factors, which promote the transcription of genes controlling a wide range of cellular 

functions, including proliferation, apoptosis, migration, cellular redox as well as 

autoregulating components of the TGF-β signalling pathways itself (Vayalil et al., 

2007).  

1.5.3 TGF-β binding proteins (LTBPs) 

The rate-limiting step controlling the level of secretion of TGF-β isoforms is 

controlled via carrier proteins known as the latent TGF-β binding proteins (LTBPs) 

1-4. For TGF-β to be secreted into the extracellular space, it must be bound and 

chaperoned out of the cells by LTBP-1, -3 or -4 (Saharinen et al., 1999).  

The LTBPs are able to bind to ECM components such as fibronectin or fibrillin, thus 

they are able to target TGFβs to tissues with specific ECM (Hyytiainen and Keski-

Oja, 2003, Hyytiainen et al., 2004). LTBP-2 which does not contain a binding 

domain for TGF-β, is able to act as a competitive antagonist for these ECM binding 

sites, effectively blocking the targeting of TGF-β to tissues (Hirani et al., 2007). 



37 

 

TGFβ is released from the binding protein through enzymatic cleavage by plasmin, 

thrombin and MT1-MMP (Taipale et al., 1992, Tatti et al., 2008). A number of other 

factors, including the presence of reactive oxygen species, can increase the rate at 

which this cleavage occurs (Koli et al., 2001). 

1.6 DKK-1 

DKK-1 functions by disrupting Wnt signalling. Wnt signal is transduced via the 

transmembrane protein family the  Frizzleds, which co-localise in the membrane 

with LRP5 or LRP6 (Niehrs and Shen, 2010). DKK-1 is able to bind to LRP5/6 

when associated with the co-factor Kremen (Daoussis and Andonopoulos, 2011). 

This process does not trigger a signalling event directly, instead it cause the 

internalisation of the Kremen-LRP5/6 complex, thus reducing the total available 

LRP5/6 exposed to the extracellular domain for Wnt ligands (Daoussis and 

Andonopoulos, 2011).  

Wnt10b has been shown to stimulate epithelial differentiation and hair follicle 

growth (Ouji et al., 2007) therefore DKK-1 action in the hair follicle may be to 

disrupt this positive growth signal. It has been shown that mice over-expressing 

DKK-1 display an early onset of catagen or can fail to develop follicles altogether 

(Andl et al., 2002). In humans, DKK-1 has also been shown to be secreted by the DP 

which then induces the onset of catagen (Kwack et al., 2012). 

1.7 IGF-1 

Insulin-like growth factor (IGF) is a well established positive growth regulator of 

hair follicle growth in vitro with the IGF-1 isoform being approximately 10 times 

more potent than the IGF-1 isoform (Philpott et al., 1994). IGF-1 has been shown to 
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be secreted by the DP (Messenger, 1989)  and stimulates mitogenic growth of the 

follicle keratinocytes as well as inducing differentiation of the varying keratinocyte 

root sheaths (Rudman et al., 1997). 

IGF-1 signalling is transduced via the IGF-1 receptor which is expressed in the 

epidermal keratinocytes of the hair follicle (Hodak et al., 1996). IGF is able trigger a 

number of signalling cascades within the cell that induce survival or differentiation 

pathways, including the PI3K-AKT pathway and the ERK pathway (Lewis et al., 

2009). 

1.8 Androgens and hair growth 

Human hair growth is influenced by a number of hormones, including thyroid 

hormones and female sex hormones which are implicated largely during 

pregnancy. During this time, hair follicles remain in anagen, however postpartum 

when the maternal physiology returns to normal, these follicles move into catagen 

and telogen and are shed (Lynfield, 1960). 

The most obvious regulators of human hair follicles are the androgens. This was 

first established by the work of Hamilton (1942) in which he observed that male 

eunuchs failed to go bald. Further to this, it was observed that men who had 

begun to show signs of balding before castration did not demonstrate any further 

hair loss, although hair did not grow back either. In addition to this, 4 out of 12 

eunuchs treated with testosterone injections began showing signs of baldness and 

all 4 of these subjects came from families with a prevalence of AGA. 

 Androgens are mediators of terminal hair growth throughout the body (Figure 1.4). 

With sexual maturity, androgens cause enlargement of vellus hairs to form terminal 
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follicles in the axilla and pubis of both sexes, and on the face, trunk and extremities 

in men (Marshall, 1970). Paradoxically, in those who are genetically predisposed, 

androgen can trigger the development of male pattern baldness (also known as 

androgenic alopecia (AGA)) manifested as miniaturisation of scalp hair follicles in 

the frontal and crown regions of the scalp. Polymorphisms in the androgen receptor 

(AR) gene represent a major prerequisite in the mediation of early-onset AGA 

(Hillmer et al., 2005). The location of this gene on the X-chromosome emphasises 

the importance of the maternal line in the inheritance of this condition. 

The paradoxical effects of androgens on scalp and body hair are as yet not fully 

understood. However, androgen effects on hair growth at particular body areas are 

believed to be due, at least in part, to factors such as increased number of androgen 

receptors, increased local production of high-potency androgens, and/or reduced 

degradation of androgens (Randall et al., 2000).  

Hamilton (1951) first established the importance of androgens in human hair growth, 

when he found that castration of males before puberty prevented beard and auxiliary 

hair growth and after puberty reduced both (Hamilton, 1951, Hamilton et al., 

1958). However, the strongest evidence that androgens are involved in regulating 

human hair growth is provided by the changes seen at puberty when the 

appearance of pubic and axillary hair occurs in parallel with the rise in plasma 

androgens (Wilson, 1975). In addition, one of the primary methods of treatment for 

androgenic alopecia is the androgen antagonist, finasteride (Trueb, 2006) 
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Androgen non-responsive    Androgen responsive 

 

 

Figure 1.4: Schematic showing the differential effects of androgens on hair 

growth. Androgens have different effects on hair growth, depending on body 

location: On the beard, chest, pubis, axillae and extremities, where, beginning at 

puberty, hair follicles are stimulated to become terminal follicles; on the scalp, where 

follicles are inhibited in a patterned distribution in men with a hereditary 

predisposition to baldness.   
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1.8.1 Androgen metabolism  

The major circulating plasma androgens are testosterone in men and 

androstenedione in women; however the effects of androstenedione may be 

dependent on the enzymatic conversion to testosterone in peripheral tissues by 

the enzyme 17B-hydroxysteroid dehydrogenase. Androgens exist in circulation; 

70% bound to sex-hormone binding globulin, 19% bound to albumin and the rest 

circulates as free androgen. Androgen production can be both glandular and 

extraglandular. Androgen synthesis begins with cholesterol which is converted to 

pregnenolone (Hoffmann, 2002). Following -hydroxylation at the C17-position, 

the action of the enzyme C17-20 lysase cleaves distal carbon moieties, leaving a C-

19 carbon steroid with a C-17 ketone in the distal ring. These '17-ketosteroids' make 

up a group of relatively weak androgens, such as dehydroepiandrosterone (DHEA), 

defined by their relatively low affinity for the androgen receptor. Approximately 

75% of DHEA and 95% of dehydroepiandrosterone sulphate (DHEA-S) is derived 

from the adrenal gland (Hinson and Khan, 2004). These weak androgens can be 

enzymatically converted to more potent androgens such as testosterone, which is the 

major circulating androgen (Figure 1.5). In the hair follicle the principal pathways 

involved in the conversion of weak to more potent androgens are through activity of 

the enzymes 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD) and 17β-

hydroxysteroid dehydrogenase (17β-HSD). 

In most target organs, testosterone can be further metabolised to DHT via the action 

of 5α-reductase (5αR). The affinity of DHT to the androgen receptor is 

approximately five fold higher than that of testosterone. There are two distinct forms 

of 5αR, referred to as types 1 and 2, which differ in their tissue distribution (Silver et 
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al., 1994). Type 1 5αR is prominent in sebaceous glands, while type 2 5αR is 

prominent in the genitourinary tract and within hair follicles, in the outer root sheath 

and proximal part of the inner root sheath (Bayne et al., 1999). Other studies have 

suggested that type 2 5αR may also be the predominant form of this enzyme in 

dermal papillae (Eicheler et al., 1998). 

The pathway of steroid hormone metabolism studied most thoroughly in relation to 

hair growth is testosterone and conversion of testosterone to DHT (Siiteri and 

Wilson, 1970). Hair follicles of the balding scalp have been shown to express higher 

levels of 5αR2 compared to relatively low amounts in the occipital scalp, making the 

total levels of the more potent DHT much higher in the balding follicle (Hamada et 

al., 1996). 

  



 

 

 

 

Figure 1.5: Androgen metabolic pathways.

interconversion of DHEAS to more potent androgens (figure is taken from

(Hoffmann, 2002) 

. 

 

Figure 1.5: Androgen metabolic pathways. Schematic diagram showing 

version of DHEAS to more potent androgens (figure is taken from
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version of DHEAS to more potent androgens (figure is taken from 
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1.8.2 Androgen receptor 

The AR is an intracellular transcription factor that belongs to the steroid/nuclear 

receptor superfamily (Quigley et al., 1995). When the AR is ligand-activated by 

androgens, it translocates to the nucleus, and binds in dimerised form to specific 

genomic DNA sequences, which are called androgen response elements in the 

regulatory regions of androgen-dependent genes (see Figure 1.6). Binding of the 

androgen-AR complex activates or represses the expression of androgen-regulated 

proteins (Choong and Wilson, 1998). Thus, AR controls the transcription of 

androgen-dependent proteins from embryogenesis to adulthood. The AR gene is 

localised on the X chromosome at Xq11-12 (Brown et al., 1989), is encoded in eight 

exons (Lubahn et al., 1988) and has, like other members of the steroid receptor 

superfamily, three main functional domains: the transactivation domain (TAD), the 

DNA-binding domain and the ligand-binding domain (Mangelsdorf et al., 1995) 

All steroid hormones act by diffusing through the plasma membrane and binding to 

specific intracellular receptors; these hormone-receptor complexes undergo 

conformational changes, exposing DNA binding sites. The activated complexes then 

bind to specific hormone response elements in the DNA, promoting the expression 

of specific hormone-regulated genes. Variations in the levels of androgen receptor 

expression and testosterone 
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Figure 1.6: Mechanism of androgen action. Testosterone (T) enters the cell and is 

converted by 5α-reductase to 5α-dihydrotestosterone (DHT). DHT binds to the 

androgen receptor (AR) leading to a conformational change in the protein and the 

dissociation of several accessory proteins, including heat shock proteins (HSP). 

Binding of the AR to the androgen response element (ARE), along with other 

transcription factors (TF) regulates the transcription of mRNAs. (Itami, 1992). 
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metabolism are thought to explain the variability which exists in androgen 

responsiveness at different body sites and between individuals in terms of androgen 

mediated hair growth. Scalp hair follicle growth is thought not to be androgen 

dependent as a full head of terminal hair is achieved during childhood in the 

absence of high levels of circulating androgens. 

The mesenchyme derived dermal papilla plays an important regulatory role in the 

follicle, altering many parameters and determining the type of hair produced. As 

steroids act via mesenchyme in many developing steroid-dependent tissues including 

breast and prostate, androgens act on the other components of the follicle via the 

dermal papilla (Itami and Inui, 2005).  As shown in Figure 1.7, circulating androgen 

enters the dermal papilla via its blood capillaries where they bind to androgen 

receptor within the DP cells of androgen-dependent hair follicles. Whether or not 

androgens are first metabolised intracellularly to DHT would depend on the site of 

the follicle. There is evidence to suggest that some follicles require the reduction 

to DHT while others metabolise testosterone without this step. In male 

pseudohermaphrodites with 5α-reductase deficiency; normal scalp, pubic and 

auxiliary hair growth occurs but no beard growth or temporal recession is found. 

This occurs even though plasma testosterone concentrations are high (Imperato-

McGinley et al., 1986). This suggests that although pubic and auxiliary hair follicles 

are also dependent on androgens, the intracellular mechanism of androgen action 

differs from that of beard follicles. The 5α-reduction of testosterone appears to 

be necessary for the growth of beard hair but not for pubic and auxiliary hair 

growth. Itami et al. (1991) have shown using an assay for 5α-reductase activity 

that beard DP cells show increased levels of 5α-reductase activity compared to 

DP cells from the occipital scalp which would support this hypothesis, while 
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Hamada and co-workers (1996) have now shown using thin layer 

chromatography, that pubic and auxiliary PD cells utilise testosterone as the 

primary androgen, while very little DHT was utilised in these cells (Hamada et 

al., 1996). 

  



 

 

 

Figure 1.7: Model for the mode of androgen action in the hair follicle. 

Testosterone (T) is transported to the dermal papilla via the capillary network and 

diffuses into the DPCs. Once inside the DPCs testosterone is converted to analogues 

with higher affinity for the androgen receptor (T+). These androgens then cause the 

transcription and secretion of a range of unknown paracrine factors (?) which diffuse 

into the extracellular matrix to induce a range of cell functions including 

proliferation, differentia

(2000). 

 

Figure 1.7: Model for the mode of androgen action in the hair follicle. 

Testosterone (T) is transported to the dermal papilla via the capillary network and 

diffuses into the DPCs. Once inside the DPCs testosterone is converted to analogues 

nity for the androgen receptor (T+). These androgens then cause the 

transcription and secretion of a range of unknown paracrine factors (?) which diffuse 

into the extracellular matrix to induce a range of cell functions including 

proliferation, differentiation and apoptosis. Diagram taken from
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Figure 1.7: Model for the mode of androgen action in the hair follicle. 

Testosterone (T) is transported to the dermal papilla via the capillary network and 

diffuses into the DPCs. Once inside the DPCs testosterone is converted to analogues 

nity for the androgen receptor (T+). These androgens then cause the 

transcription and secretion of a range of unknown paracrine factors (?) which diffuse 

into the extracellular matrix to induce a range of cell functions including 

Diagram taken from from Randall, 
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1.8.3 Androgenetic alopecia (AGA) and androgens 

AGA that affects both men and women, is one of the main clinical conditions of hair 

growth involving androgens and occurs in genetically predisposed individuals 

(Hamilton, 1960, Birch and Messenger, 2001).  Although AGA is not a life-

threatening condition it causes great psychological distress, affecting the individual’s 

quality of life (Moerman, 1988, Wilson et al., 1991). AGA affects at least 50% of 

Caucasian men by the age of 50 years, and up to 70% of all males in later life 

(Norwood, 1975). There are marked racial variations in incidence, for example 

Caucasians are four times more likely to develop AGA than are males of African 

origin (Setty, 1970). The genetic basis of AGA is polygenic, with the patterning, age 

of onset and rate of progression being determined through the culmination of a large 

number of genes, reflecting the complex array of proteins involved in hair growth 

and patterning (Hoffmann, 2002). 

One of the major driving factors of AGA is expression of the X-linked AR gene 

(Hillmer et al., 2005). This fact leads to AGA occasionally being incorrectly referred 

to as an autosomal dominant condition (Bergfeld, 1995).  

The critical event of AGA is the shortening of the anagen (growth) phase leading to 

miniaturisation of the hair follicle (see Figure 1.8), eventually leading to the 

transformation of hair from long pigmented terminal to short fine vellus type hair 

(Paus and Cotsarelis, 1999). This slow transformation occurs in a precise, well 

defined pattern on the scalp in men where the frontal recession is initiated and is 

followed by balding on the crown and vertex (Hamilton, 1951, Norwood, 1975). The 

anagen phase in a normal adult scalp lasts from two to as long as seven years. 

However, in men with AGA,  this decreases from several years to months, or even 
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weeks, while the telogen phase remains the same or lengthens (Jackson, 2000) as the 

affected hairs cycle more quickly. This leads to a marked reduction in the anagen-to-

telogen ratio from a normal 6 to 8:1 ratio to an abnormal 0.1 to 3:1 ratio (Whiting, 

1993). Moreover, the lag period between the telogen and anagen phase becomes 

progressively longer, leading to a reduction in the number of hairs present on the 

scalp at any one time (Courtois et al., 1994). The miniaturised hair follicle ascends 

from the reticular dermis to the papillary dermis (Kligman, 1988). On histological 

examination of scalp biopsies, the miniaturisation of terminal hairs is often 

associated with perifollicular lymphocytic infiltration, and eventually fibrosis 

(Jaworsky et al., 1992). 

Androgen receptor expression in the hair follicle is seen only in those 

mesenchymal portions of the follicle, namely the dermal papilla and the connective 

tissue sheath; no expression was seen in the matrix cells of the follicle bulb or in 

the outer root sheath (Choudhry et al., 1992). The keratinocytes of the follicle do 

not express ARs, highlighting that it is only the mesenchymal cells of the follicle 

which act as an androgen target (Inui et al., 2000) 

Differences in androgen receptor expression have been observed by Randall et al., 

(Randall et al., 1992), who  showed by measuring synthetic androgen bound to 

endogenous androgen receptors on cultured dermal papillae from androgen-

dependent human hair follicles i.e. beard, pubis and scrotum and from relatively 

non-androgen dependent non-balding scalp follicles, that dermal papilla cultures 

from androgen dependent follicles express more androgen receptors than those 

from non-balding areas of the scalp (Hibberts et al., 1998).  
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Figure 1.8. Diagrammatic representation of the hair follicles in response to 

androgens. showing gradual changes which occur in A, in areas stimulated by 

androgens, e.g. beard and B, on the scalp of genetically disposed individuals. 

Figure 2Figure 1.8: Diagrammatic representation of the hair follicles in 

response to androgens. 

  

A 
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As steroids act via the mesenchyme in many steroid-dependent tissues, androgens 

have been proposed to act on epithelial component of the hair follicle indirectly via 

the dermal papilla (Figure 1.7) (Randall et al., 1991, Randall et al., 1994). The DP 

has been shown to contain androgen receptors (Randall et al., 1991) and it has been 

proposed that circulating androgens; e.g. testosterone, enter the DP via its blood 

capillaries and bind to androgen receptors within the DP and cells of androgen-

dependent hair follicle. 

Follicles from the frontal scalp region of the receding hairline which are neither full 

terminal nor completely miniaturised vellus follicles are described as intermediate 

follicles. These follicles when compared to terminal follicles from the occipital 

region are smaller, less bulbous towards the proximal tip, have a reduced 

pigmentation of the hair fibre and have a smaller, more rounded dermal papilla 

(Miranda et al., 2010).  

These follicles serve as an effective model for examining the pathogenesis of 

androgenic alopecia as cells cultured from them exhibit markedly different behaviour 

when cultured in vitro, most notably that they are show a higher sensitivity to altered 

growth factor secretion when stimulated with androgens (Bahta et al., 2008, Kwack 

et al., 2008, Inui et al., 2002). Once bound by the androgen receptors present within 

dermal papilla cells of androgen-sensitive follicles, androgens cause alterations in 

the production of paracrine regulatory factors. These paracrine factors then influence 

the activity of other follicular cells. In some follicles, depending on the site of the 

follicle, testosterone is metabolised to 5alpha-dihydrotestosterone (DHT) prior to 

binding the androgen receptor (Randall and Ebling 1982). In balding follicles it has 

been shown that androgens stimulate the production and secretion of inhibitory 
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growth factors such as TGF-β1 and DKK-1 (Kwack et al., 2012, Inui et al., 2002). 

However, in the androgen-sensitivehair follicles of regions such as the beard, axilla 

and pubis androgens have been shown to stimulate the production and secretion of 

the positive growth factor IGF-1 (Itami et al., 1995). 

1.9 Cellular senescence and ageing 

Normal diploid cells, enter a state of senescence after a limited number of population 

doublings, characterised by irreversible growth arrest, enlarged and flattened 

morphology, and a significantly different gene expression profile. Cellular 

senescence was first observed by Hayflick and Moorhead (Hayflick and Moorhead, 

1961) who characterised the process in normal human fibroblasts which entered a 

state of irreversible growth arrest after serial cultivation in vitro. 

In 2007, Itahana et al. found that senescent cells show activity of an abnormal β-

galactosidase enzyme which is termed senescence-associated β-galactosidase (SA β-

gal) activity (Itahana et al., 2007). β-galactosidase is a lysosomal hydrolase and is 

normally active at pH  4. But the SA β-gal correlated with senescent cells is active at 

pH 6. Both in vitro and in vivo, the percentage of cells positive for SA β-gal 

increases with respectively cumulative population doubling and age (Dimri et al. 

1995). In addition, it is possible to find association between the increase in SA β-gal 

and the appearance of the senescent morphotypes (Toussaint et al., 2000). 

Lysosomes are reported to increase in number and size in senescent cells (Robbins et 

al., 1970, Brunk et al., 1973). SA β-gal appears to be the result of increased 

lysosomal activity at a suboptimal pH, which becomes detectable in senescent cells 

due to an increase in lysosomal contents (Kurz et al., 2000). The results of similar 

studies  suggest that during in vitro ageing increased digestion of the cell's organelles 
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may be associated with an increase of lysosomal mass and SA β-gal (Gerland et al., 

2003). 

Senescence may contribute to ageing by two mechanisms, namely the net 

accumulation of senescent cells in tissues, and by limiting the regenerative potential 

of stem cell pools (Gutteridge 1992). Ageing is a genetic physiological process 

associated with morphological and functional changes in cellular and extracellular 

components, forced by throughout- life injury and resulting in a progressive 

imbalance of the control regulatory systems of the organism, which includes the 

hormonal, autocrine and neuroendocrine, and immune homeostatic mechanisms  (Yu 

and Yang 1996). Ageing has been characterised as a time-dependent functional 

decline, leading to the cell's inability to resist external and internal challenges. 

According to this description, ageing is, therefore, the result of two independent 

biological processes: the loss of functionality, and the loss of resistance to stress. The 

causal factors that underlie the time-dependent, deleterious processes of ageing have 

not yet been well defined, and no single adequate molecular explanation for ageing is 

currently available. The theory of biological ageing is observed as an organism's 

failure to maintain homeostasis (Gutteridge 1992). The ageing process’s contribution 

to functional changes are small early in life but rapidly increases with age due to the 

exponential nature of the process (Harman, 1991, Harman, 1992, Timiras, 1994). 

The free radical theory of ageing was proposed by Harman in 1954 which suggests 

that ageing results from imperfect protection against tissue damage caused by free 

radicals.  



55 

 

1.9.1 P16INK4a and pRB signalling 

There are various different stimuli that can induce a senescence response. However, 

they converge on one or two pathways that establish and maintain senescence growth 

arrest. These pathways are directed by the tumour suppressor proteins p53, P16INK4a 

and pRB (Bringold and Serrano, 2000, Campisi, 2001). These proteins are 

transcriptional regulators. Senescence that occurs after a predetermined number of 

cell divisions is commonly referred to as replicative senescence which occurs as the 

result of shortening and/or uncapping of telomeres and is mediated by p53 tumour 

suppressor protein and its downstream effector, p21Cip1(Serrano and Blasco, 2001, 

Ben-Porath and Weinberg, 2005). Alternatively, cells may senesce rapidly in a 

telomere-independent manner in response to inadequate culture conditions. This 

stress-induced premature activation of the senescence program is thought to be 

mediated by another CDK inhibitor, the P16INK4a protein (Jacobs and de Lange, 

2004).  

Senescent cells up-regulate P16INK4a; which also controls pRB activity (Hara et al., 

1996, Alcorta et al., 1996). pRB and P16INK4a function in a common pathway that is 

important in the growth arrest of cells after a finite number of population doubling. 

P16INK4a is a positive regulator of pRB and tumour suppressor in its own right 

(Sherr and McCormick, 2002). P16INK4a, acting through the pRB pathway, is thought 

to be important for the senescence response (Serrano, 1997, Stein et al., 1999, Ohtani 

et al., 2001, Jacobs and de Lange, 2004). P16INK4a is induced by certain oncogenes 

(Zhu et al., 1998) and other damage or stress signals (Robles and Adami, 1998, 

Chen, 2000, Ramirez et al., 2001), and is required for the telomere independent 

senescence of some cells (Kiyono et al., 1998, Rheinwald et al., 2002). Cell 
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proliferation may be limited by P16INK4a by a mechanism distinct from that utilised 

by p53, since some human epithelial cells senesce with relatively long telomeres and 

high P16INK4a expression (Kiyono et al. 1998; Ramirez et al. 2001). Moreover, 

ectopic expression of telomerase does not protect such cells from replicative 

senescence, suggesting that P16INK4a expression and function are independent of 

telomere status (Kiyono et al. 1998; Ramirez et al. 2001). Phosphorylation regulates 

pRB function by inducing E2F release and following the expression of E2F-

dependent proteins, such as cdc2 and cyclin A. These genes are not expressed in 

senescent fibroblasts dependable with a block in pRB phosphorylation at senescence 

(Cristofalo et al., 1992). Additionally, pRB is found in a hypophosphorylated state in 

senescent fibroblasts (Stein et al. 1999). Overcoming this senescence block is 

possible by fusion with cells containing the viral oncogene E7, which binds 

unphosphorylated pRB (Stein et al., 1999). P16INK4a blocks pRB phosphorylation by 

binding Cyclin dependent kinases 4 and 6 (cdk4, cdk6) and inhibiting their 

association with cyclin D (Serrano et al., 1993). This results in a inhibtion of pRB 

phosphorylation and E2F release and concludes in G1 cell cycle arrest. It has been 

shown in several studies that P16INK4a levels increase in human and rodent 

fibroblasts as cells are passed to terminal senescence (Hara et al., 1996, Alcorta et 

al., 1996). The cell cycle arrest induced by the introduction of P16INK4a occurs only 

in cells that retain functional pRB (Lukas et al., 1995) 

(Lukas et al., 1995). The importance of P16INK4a as a tumour suppressor is 

highlighted by its regular inactivation in different types of human malignancies 

(Ruas and Peters, 1998).  

The P16INK4a and presumably the pRB pathway activate a barrier to cell 

proliferation, which cannot be overcome by loss of p53 function. Once the pRB 
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pathway is engaged, particularly by P16INK4a, the senescence growth arrest cannot be 

reversed by subsequent inactivation of p53, silencing of P16INK4a, or inactivation of 

pRB (Beausejour et al., 2003). Thus, once pRB establishes repressive chromatin at 

E2F target genes and possibly other loci, maintenance of the heterochromatic 

domains no longer requires P16INK4a or pRB activity, which explains the remarkable 

stability of the senescence growth arrest. Thus, the P16INK4a /pRB pathway appears 

to be particularly important for ensuring that the senescence growth arrest is 

essentially irreversible and refractory to subsequent inactivation of p53, pRB, or both 

(Itahana et al., 2001). The p53, P16INK4a and pRB pathways are significant for 

establishing the replicative senescence of human cells that lead to a growth arrest 

that cannot be reversed by known physiological signals. However, in the absence of 

P16INK4a expression, the senescence arrest can be reversed by inactivation of p53.The 

replicative senescence of human cells, therefore, is not necessarily irreversible once 

established and P16INK4a plays a critical role in preventing its reversal by p53 

inactivation. 

P16INK4a and p19ARF (p14ARF in humans) tumour suppressor proteins are encoded in 

the INK4a locus and the INK4a locus is a critical target of BMI-1. BMI-1 is a 

transcriptional repressor belonging to the polycomb group gene family (van der Lugt 

et al., 1994). Polycomb group proteins, and the counteracting trithorax group 

proteins, are important for maintaining proper gene expression patterns during 

development (Pirrotta, 1998). BMI-1 was identified as a c-myc-cooperating 

oncogene in murine B- and T-cell lymphomagenesis (van Lohuizen et al., 1991, 

Haupt et al., 1991). BMI-1 has a RING finger at the amino-terminus and a central 

helix-turn-helix domain. It is reported that in WI-38 human foetal lung fibroblasts, 

BMI-1 is downregulated when the cells undergo replicative senescence. In the 
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absence of BMI-1, both the P16INK4a and the p19Arf genes from the Ink4a locus are 

expressed (Quelle et al., 1995). BMI-1 extends replicative lifespan but does not 

induce immortalisation when overexpressed (Itahana et al., 2003). Lifespan 

extension by BMI-1 is mediated in part by suppression of the p16Ink4a dependent 

senescence pathway and requires an intact pRB pathway, but not the p53 tumour-

suppressor protein. Furthermore, deletion of RING finger mutant acted as a 

dominant negative, inducing p16 Ink4a and premature senescence (Itahana et al. 2003).  

1.9.2 The “oxygen paradox” 

Most cells are well insulated from environmental oxygen exposure. Within the 

dermal layers of the skin the concentration of oxygen is 1-5% (Wang, 2005). By 

taking cells outside our body and exposing them to air, the cells experience the much 

higher oxygen tension of around 21%. Normally, cell culture conditions include 21% 

oxygen, which was initially used by Hayflick and Moorhead and most subsequent 

studies thereafter. Oxygen molecules can be converted into free radicals through 

chemical and biological reactions. By reducing oxygen tension, we can reduce the 

level of free radicals. When human dermal fibroblasts are cultured closer to 

physiological conditions at 3% O2, they attain a further 20 population doublings 

(Chen et al., 1995). In contrast, different types of human cells cultured above 21% 

oxygen exhibit a reduced growth rate and undergo fewer population doublings (von 

Zglinicki et al., 1995). Similarly, some human cells fail to immortalise even after 

expressing telomerase, unless grown in low-oxygen environments (Forsyth et al., 

2003), demonstrating that the growth arrest of these cells in atmospheric oxygen was 

not due to telomere-based replicative senescence, but rather stress induced 

senescence.  
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Therefore, despite the fact that higher eukaryotic aerobic organisms cannot exist 

without oxygen, oxygen itself is deleterious to their development an unregulated 

high concentrations, causing the formation of ROS (see Section 1.9.3) which can be 

deleterious to the cell at high levels. This phenomena is known as the “oxygen 

paradox” (Davies, 1995). 

1.9.3 Reactive oxygen species 

Oxygen metabolism produces reactive oxygen species (ROS) that are highly toxic to 

the cell. ROS are primarily produced in the mitochondria as a by-product of the 

electron transport chain (ETC). Complex I and complex III of the ETC generate 

oxygen. Other sources of ROS comprises: the endoplasmic reticulum (through 

cytochrome P450); the plasma membrane (through the activity of NADPH 

oxidases); the cytosol (CuZn-SOD); and the Krebs’ cycle (aketoglutarate 

dehydrogenase) (Starkov et al., 2004, Tretter and Adam-Vizi, 2004).  

For organisms living in an aerobic environment, exposure to ROS is continuous and 

unavoidable. These ROS include both free radicals (containing highly reactive 

unpaired electrons) such as the superoxide anion (O2
-) hydroxyl radicals (OH-), nitric 

oxide (NO-), and non-radical molecules such as hydrogen peroxide (H2O2) and 

peroxynitrite (ONOO-) (Thannickal and Fanburg 2000). ROS are also from 

exogenous sources, either being taken up directly by cells from the extracellular 

surroundings, or produced as a result of the cell’s exposure to some environmental 

stress. Transient variations in ROS serve important regulatory functions, but when 

present at high and/or sustained levels ROS can cause severe damage to DNA, 

protein, and lipids. Such deleterious events can then trigger the upregulation of 

stress-induced senescence cascades such as the P16INK4a/pRB pathway. 
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In addition to this ROS are able to act as cellular signalling molecules in their own 

right (Thannickal and Fanburg, 2000). Many intracellular signalling molecules 

contain redox sensitive peptide regions which allow ROS to trigger conformational 

alterations to their protein structure, conferring the proteins altered binding or 

transportation properties. 

It has been proposed that the pathogenesis of balding may be a ROS-induced 

process, fitting with the “free-radical theory of ageing” (Trueb, 2009). Greying of the 

hair follicle has been shown to be at least in part down to a loss of catalase activity 

(Kauser et al., 2010) (for further reading on catalase see Section 1.9.4). Previous 

work by our group has shown that balding DPCs had a heightened sensitivity to 

oxidative stress as seen via an upregulation of a number of cellular stress response 

elements and antioxidants (Bahta et al., 2008). 

There are a number of defence systems developed to fight the accumulation of ROS. 

These include various non-enzymatic molecules (e.g., glutathione, vitamins A, C, 

and E, and flavenoids) as well as enzymatic scavengers of ROS (e.g. superoxide 

dismutases (SOD), catalase, and glutathione peroxide). However, these defence 

mechanisms are not always adequate to counteract the production of ROS, resulting 

in what is termed a state of oxidative stress (Alaluf et al., 2000, Bai and Cederbaum, 

2001, Gutteridge and Quinlan, 1992, Yu and Yang, 1996).  

ROS production is also believed to be induced by TGF-β1 and in epithelial cells 

such as foetal rat hepatocytes or lung fibroblasts of human origin; TGF-β1 induces 

the production of ROS and a decrease of the antioxidant enzymes early in the 

apoptotic process (Thannickal and Fanburg, 1995, Herrera et al., 2001). TGF-β1 

induces ROS production through NADPH oxidases in foetal rat hepatocytes and 
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partially via complex I of the mitochondrial respiratory chain. Moreover, it was 

observed that after exposure to TGF-β1, there was a reduction in the expression of 

antioxidant enzymes, primarily catalase and Mn-SOD, and treatment with an 

analogue of Mn-SOD protects against TGF-β1 induced apoptosis. Thus, the early 

TGF-β1-induced production of ROS has two different mechanisms to mediate, the 

first of which is the involvement of extra mitochondrial NADPH oxidase-like 

production of ROS and the second is the rapid down-regulation of antioxidant genes 

(Herrera et al., 2004a). 

1.9.4 Catalase 

Catalase is the heme containing tetrameric enzyme found in living organisms, 

usually located in a cellular organelle called the peroxisome (Chance and Oshino, 

1971). Peroxisomes are essential for proper functioning of human cells and they 

efficiently compartmentalise enzymes responsible for a number of metabolic 

processes, including the essential β-oxidation of specific fatty acid chains (Chance 

and Oshino, 1971. These and other oxidative reactions produce hydrogen peroxide, 

which, in most cases is immediately processed to water and oxygen and the 

responsible peroxidase: catalase. But, in some circumstances, the tightly regulated 

balance of hydrogen peroxide producing and degrading activities in peroxisomes is 

disturbed, leading to the net production and accumulation of hydrogen peroxide 

(H2O2) and downstream reactive oxygen species (ROS). H2O2 is a harmful by-

product of many normal metabolic processes and must be quickly converted into 

other, less dangerous substances so as to prevent damage. Catalase is frequently used 

by cells to rapidly catalyse the decomposition of H2O2 into less reactive gaseous 

oxygen and water molecules (Gaetani et al., 1996). Catalase is disorganised in 
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ageing, missing or present at reduced levels in certain disease states, and inactivated 

in response to exposure to specific xenobiotics. H2O2 and ROS initiate a negative 

twist of molecular events resulting in oxidative damage to cellular constituency.. It 

has been shown that non-toxic concentrations of H2O2 drove early passage cells to a 

senescent-like state which can be demonstrated as a direct connection between 

accumulation of ROS and ageing (Chen and Ames, 1994). Cell morphology, growth, 

and function were all affected. Intracellular localisation of catalase and another 

peroxisomal marker enzyme, alpha-hydroxy acid oxidase (HAOX), in the livers of 

guinea pig was studied using immunoelectron microscopy and catalase were found 

in not only in peroxisomes but also in the cytoplasm and the nuclear matrix 

(Yamamoto et al., 1988). 

1.9.5 Glutathione 

GSH consists of three amino acids: L-glutamic acid, L-cysteine, and glycine and is 

formed in a two-step process. Firstly, L-glutamic acid and L-cysteine are covalently 

bonded via the enzyme glutamate-cysteine ligase (which consists of an essential 

catalytic subunit - GCL-C - and a rate-limiting modifier subunit – GCL-M); 

Secondly, the glycine residue is added via glutathione synthetase - GSS. 

The L-cysteine residue contains a thiol group.  This group may also be termed as a 

sulfhydryl or -SH group, hence the shorthand GSH.  

GSH in its reduced form is able to form a disulphide bond with another molecule of 

GSH to be oxidised into glutathione disulphide (GSSG). The disulphide bond can be 

broken by accepting the spare electron from a ROS molecule, thereby neutralising 

the ROS’s reactive potential. Two molecules of reduced GSH can then be reclaimed 

from the oxidised GSSG via the enzyme glutathione reductase - GSR. Therefore, the 
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higher the concentration of GSH within the cell, the greater the cells ability to reduce 

ROS levels (Maher, 2005). 

GSH, but not GSSG, is also able to modulate cellular signalling, via intervention in 

transcription factor signalling (Vayalil et al., 2007). GSH disrupts the binding of 

both AP-1 and SP-1 to their promoter binding sequences in the DNA thus altering 

gene transcription as a result. This represents another indirect pathway by which 

ROS may alter intracellular activity. 
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1.10 Working Hypothesis 

Androgen activity is associated with hair loss (Randall, 2008). Androgens 

have been found to stimulate a number of growth factors including TGF-β in 

the DPCs of balding follicles (Inui et al., 2002). TGF-β and androgens have 

both been linked to oxidative stress (Herrera et al., 2004b, Thannickal and 

Fanburg, 1995, Pathak et al., 2008). Previous work by our group has shown 

that balding DPCs senesce prematurely under cell culture conditions and this 

effect is associated with increased expression of oxidative stress response 

proteins (Bahta et al., 2008). There is therefore the possibility that either 

androgen or TGF-β may be indicated in producing this stress response in the 

balding dermal papilla. 

Alternatively, oxidative stress may induce functional changes within cells to 

cause TGF-β secretion, directly via ROS acting as a signalling molecule 

(Thannickal and Fanburg, 2000), through crosstalk between antioxidants and 

TGF-β upstream regulators (Vayalil et al., 2007) or indirectly through 

downstream senescence mediators which themselves can alter cellular 

function (Frippiat et al., 2001). Characterisation of the cause-effect 

relationship between oxidative stress and the androgen-growth factor 

signalling is a primary aim for this investigation.  

In addition it has been found that balding DPCs secrete negative autocrine 

growth factors whose identity is unknown (Hamada and Randall, 2006). 

TGF-β is known to be involved in autocrine regulation in other tissues 

(Geiser et al., 1993). Therefore a secondary aim for this investigation is to 

assess TGF-β potential role as an autocrine regulator of the DPCs.    
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Chapter 2 

Materials and methods 
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2.1 Primary cell culture 

All experiments described in this study were carried out on primary cells taken from 

balding male patients. In all cases patient matched samples were taken from the 

frontal balding region or occipital non-balding region to allow direct comparison of 

the pathology of balding versus normal hair follicle cell physiology.  

All cell culture was performed in a laminar flow hood under aseptic conditions in 

accordance with standard tissue culture technique. All sterile disposable tissue 

culture flasks, plates and dishes were purchased from Nunc (Roskilde, Denmark). 

For tissue culture all centrifuge steps were using an IEC Centra-3C Centrifuge 

(International Equipment company, Dunstable, U.K.), for sample analysis a SciQuip 

1 – 15 K (Sigma-Aldrich, Poole, U.K.) centrifuge was used unless otherwise stated. 

2.1.1 Hair follicle acquisition 

Hair follicles were donated with patients’ consent prior to the patient undertaking 

elective cosmetic surgery. Hair follicles of the occipital region were acquired as 

excess redundant tissue from the surgical process. Hair follicles from the frontal 

balding region were acquired as a 2mm punch biopsy. Follicles were then transferred 

to transportation media: Williams Media E (Sigma, Poole, U.K.); 100 units/ml 

Penicillin (PAA, Consett, U.K.); 100mg/ml Streptomycin (PAA, Consett, U.K.); 2 

mM L-Glutamine (PAA, Consett, U.K.); 10µg/ml Insulin (Sigma, Poole, U.K.); 100 

ng/ml Hydrocortisone (PAA, Consett, U.K.).                                 

2.1.2 Dermal papilla isolation and explant culture 

Hair follicle samples were individually transferred to a 30 mm Petri dish containing 

RPMI cell culture media (PAA Laboratories, Consett, U.K.) mixed (1:1) with 
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Dulbecco's phosphate buffered saline (DPBS) (PAA Laboratories). All steps were 

carried out under a stereo dissecting microscope (Nikon, Richmond, U.K.). Using a 

scalpel (Fisher-Scientific, Leicestershire, U.K.) and watchmakers forceps (Fisher-

Scientific, Leicestershire, U.K.) the fibrous dermal tissue and subcutaneous fat were 

removed. Next, the proximal end of the follicle was transversely dissected just above 

the distal tip of the DP. 

Using 2x microlance-3 needles 25g x 5/8" (Becton Dickinson, Cowley, U.K.) the DP 

was manipulated from the surrounding connective tissue sheath to expose the 

connecting stalk between the DP and CTS. The stalk was then dissected from the DP 

side using needle in a shearing motion. 

Three to five DP were dissected in this way and transferred to a T25 cm2 flask. One 

ml  of DPC media (Williams Media E (Sigma, Poole, UK); 15% (v/v) FBS (Biosera, 

Ringmer, UK); 100 units/ml Penicillin (PAA, Consett, UK); 100 mg/ml 

Streptomycin (PAA, Consett, UK); 2 mM L-Glutamine (PAA, Consett, UK); 10 

µg/ml Insulin (Sigma, Poole, UK); 100 ng/ml Hydrocortisone (PAA, Consett, UK)) 

was pipetted into the flask and DPs were left overnight in a Sci-tive stem cell 

incubator (Ruskinn Technologies, Bridgend, U.K.) to allow DPs to adhere to the 

flask surface.  After ~16 h a further 9 mL of DPC media was added and DPs were 

left for 2-3 weeks to allow them to explant. 

The Sci-tive stem cell incubator (Ruskinn Technologies, Bridgend, U.K.) is an 

airlocked cell culture chamber, which allows for cells to be cultured, passaged and 

assayed under controlled oxygen conditions. For the purposes of this investigation 

DPCs were cultured at 2% oxygen and 5% carbon dioxide, i.e.:- within their normal 

1-6 % physiological oxygen levels. After 2 passages cells were then split. Half were 
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maintained at 2% oxygen while the other half were transferred to a normal cell 

culture incubator (21% (atmospheric) oxygen and 5% carbon dioxide). For certain 

experiments DPCs were switched from one oxygen condition to another after a later 

passage (P4). 

Dermal papilla cells (DPCs) were then coded thus: alphabetically according to which 

patient they had been acquired from and designated as either O (Occipital) or B 

(Balding), A (grown at atmospheric oxygen levels*) or L (grown at low oxygen 

levels*) and a number indicating what passage the cells were currently at. (e.g.:- 

“KoL4”, would indicate the flask contained cells from patient K, from the occipital 

region, grown under low (2%) oxygen at passage 4.) 

2.1.3 Passaging DPCs 

DPCs were passaged when they were 70% confluent by washing once in 5 ml DPBS, 

once in 5 ml Trypsin/EDTA and incubating for approximately 5 min until all the 

cells had detached. The trypsinisation process was monitored under a Leica DMIRB 

light microscope and stopped by adding 5 ml culture medium containing 10% (v/v) 

FBS. The cells were centrifuged at 1,000 G, for 5 min at room temperature. The 

supernatant was aspirated, the cell pellet resuspended in 10 ml culture medium and 

the cells counted using a haemocytometer (see Section 2.2.1). Cells were then 

seeded for experiments, propagated at 10-20% of their original density or 

cryopreserved.  

2.1.4 Cryopreservation 

Trypsinised cells were centrifuged at 1,000 G at room temperature and resuspended 

in freezing medium (10% (v/v) diethyl sulphoxide (DMSO) (Fisher-Scientific, 
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Leicestershire, U.K.), 90% (v/v) complete culture medium containing serum) to a 

concentration of 2 x 106 cells per ml. DMSO was included in the freezing medium to 

prevent the formation of crystals during the freezing process that would otherwise 

lyse the cells. 

The cell suspension (1 ml) was transferred into each cryovial and frozen to –80°C. 

After 1 – 3 days, the cell vials were transferred and stored in liquid nitrogen until 

required. 

When cryopresereved cells were required, the vial was removed from liquid nitrogen 

storage and thawed rapidly at 37°C in a waterbath. As soon as the cell aliquot had 

thawed, the cells were transferred to a 50 ml centrifuge tube containing 10 ml 

complete culture medium (relevant to the cell type) and centrifuged at 1,000 G for 5 

min. The supernatant DMSO was aspirated and the cell pellet was resuspended in 

complete culture medium and DPCs were seeded in T75 cm2 flasks at 2 million cells 

per flask. 

2.1.5 Immortalised cell lines 

In addition to primary cell cultures, Swiss 3T3 fibroblast cells were purchased from 

ATCC (Manassas, VA, U.S.A.). This cell line was established from Swiss 3T3 cells 

that were originally isolated from disaggregated embryos of Swiss mouse and 

deposited by G. Todaro and H. Green in 1962. The cells were cultured in T75 or 

T175 cm2 polystyrene culture flasks with Dulbecco’s Modified Eagle’s medium 

(DMEM) (PAA laboratories GmbH, Pasching, Austria) with 10% (v/v) FBS (ATCC, 

Manassas, VA, U.S.A.), 2 mM L-glutamine (PAA Laboratories GmbH, Pasching, 

Austria) and 1x penicillin/streptomycin (PAA Laboratories GmbH, Pasching, 

Austria) at 37°C in an humidified chamber at 5% CO2/95% atmospheric air. The 
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culture medium was changed every two to three days and the cells were passaged 

(Section 2.1.3) before reaching 70% confluency to prevent transformation. 

2.2 Cell counting  

Two methods were used for cell counting, depending on the level of accuracy 

required. 

2.2.1 Trypan Blue method 

After trypsinisation, cells (10µl of cell suspension) were counted using a 

haemocytometer (Weber Scientific International Ltd, Middlesex, U.K.). To count 

live cells, a 10 µl aliquot of cells was diluted 1:2 with trypan blue (Sigma-Aldrich, 

Poole, U.K.) and 10 µl of this solution was deposited on the haemocytometer. The 

haemocytometer grid arrangement had four primary squares, each containing sixteen 

squares. The cells in one of the major squares were counted, those that lay inside the 

square or touched the top or left boundary were included; those that lay outside the 

square, or touched the lower or right boundary were excluded. Cells in another major 

grid were counted and an average of the two counts was taken. The average count 

was then multiplied by 1x104 to give the value of cells per ml. An average count was 

multiplied by two to allow for the 1:1 trypan blue to cell dilution factor. 

2.2.2 Nucleocassette® method 

Where multiple cell cultures required fast quantification and reseeding, 

Nucleocassettes® (Chemometec, Allerød, Denmark) were used. The 

Nucleocassettes® contain propidium iodide (PI) which intercalates with the DNA of 

the cells allowing them to be quickly and accurately be quantified by placing the 

cassette into the Chemometec 200® - a spectrophotometer. 
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To prepare samples a 100 µl of trypsinised cells was aliquotted prior to 

centrifugation and mixed with 100 µl lysis reagent (Chemometec, Allerød, 

Denmark), briefly vortexed, mixed with 100 µl of neutralisation reagent 

(Chemometec, Allerød, Denmark) and briefly vortexed again. Lysed samples were 

then aspirated into the cassette and placed in the spectrophotometer. Readings were 

given as cells per ml and were multiplied by a factor of 3 (1:2 sample to reagent 

dilution). Population doublings were calculated as the log2(cell count at end of 

passage ÷ cell count at seeding). 

2.3 Immunofluorescence cytochemistry 

Immunofluorescence cytochemistry is a technique using a fluorescent secondary 

antibody to detect a primary antibody bound to an antigen (i.e. protein of interest) 

within a tissue or cell sample. This identifies the expression pattern of a specific 

protein within the sample. 

All primary and secondary antibodies were diluted in 1% (w/v) BSA TBS-T (50 mM 

Tris base, 140 mM NaCl, 0.1% (v/v) Tween-20, pH 7.6) and all incubations were 

carried out in a humidified chamber at room temperature. For primary antibodies 

used see Table 2.1. DPCs were seeded (1 x 104) onto sterile 15 mm diameter circular 

coverslips (VWR, Leicestershire, U.K.) in a 12 well plate and allowed to adhere 

overnight. DPCs were then washed twice in DPBS and fixed and permeabilised in 

ice-cold methanol:acetone (1:1 (v/v); (Sigma-Aldrich, Abingdon, U.K) for 2 min. 

Cells were washed three times in TBS-T for 5 min per wash before incubating in 

blocking solution, 1% (w/v) BSA (Sigma-Aldrich, Poole, U.K.) TBS-T for 30 min. 

Coverslips were then removed and inverted on top of 20 µl of blacking solution 

containing primary antibody (see Table 2.1) and were incubated at RT°C for 1 h.  
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Cells were washed three times for 5 min per wash in TBS-T in a 12 well plate and 

then inverted onto 20 µl Alexa Fluor® Secondary IgG (H+L) antibodies (2 µg/ml) 

(Molecular Probes, Invitrogen, Paisley, U.K.) raised against the corresponding 

species (see Table 2.1). Coverslips were incubated in the dark, to prevent photo-

bleaching, for 1 h. 

Where double staining was required, primary and secondary antibody steps were 

carried out in parallel, with antibodies combined in the blocking solution/TBS-T. 
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Protein Ab raised 

in 

Supplier 

(Product 

Code) 

Dilution 

 

P16INK4a 

 

Mouse 

Santa Cruz 

Sc-468 

 

1:100 

 

pRB 

 

Mouse 

Millipore 

ABC 132 

 

1:100 

 

BMI-1 

 

Mouse 

Millipore 

05-637 

 

1:100 

Table 2.1: Antibodies and conditions for immunofluorescence. All antibodies 

were suspended in Serum from animal which secondary Ab had been raised in (4%) 

TBS-T (v/v). 

Table 1Table 2.1: Antibodies and conditions for immunofluorescence. 
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Cells were washed once in TBS-T and then once in TBS  for 5 min per wash. 

Samples were then washed in TBS containing 2 µg/ml 4’,6-diamidion-2-

phenylindole dihydrochloride (DAPI) (Sigma-Aldrich, Poole, U.K.). 

The coverslips were inverted and mounted with a drop of fluorescent mounting 

medium (DakoCytomation, Glostrup, Denmark) onto Superfrost® Plus microscope 

slides (Knittel Glaser, Germany) and allowed to set overnight in the dark at 4°C. The 

fluorescent signal was observed using a Carl Zeiss Laser Scanning Microscope LSM 

510 META (Carl Zeiss Ltd., Hertfordshire, U.K.) and analysed using Zeiss LSM 

Image Browser software (Carl Zeiss Ltd., Hertfordshire, U.K.). 

2.4 Protein analysis 

Protein was isolated from DPCs to be used for western blot analysis. Two methods, 

one using a RIPA buffer and the other a urea buffer, were used to isolate protein as 

outlined below. Samples were then analysed using the western blot method. 

2.4.1 Total protein isolation 

DPCs seeded in 6 well plates were washed twice in ice-cold 1 ml DPBS (PAA 

laboratories GmbH, Pasching, Austria) and then incubated in ice-cold 300 µl RIPA 

buffer (Tris 50 mM, pH 7.3, NaCl 150 mM, SDS 0.1% (w/v), NP-40 0.1% (v/v) (all 

from Sigma-Aldrich, Poole, U.K.) and 1X Complete Protease Cocktail Inhibitor 

(Roche Diagnostics GmbH, Mannheim, Germany) for 20 min. The protein was 

harvested in 1.5 ml microfuge tubes and pulse sonicated twice for 3 sec (Vibra Cell, 

Sonic and Material Incs, Danbury, CT, USA). The samples were then centrifuged for 

5 min, 4°C, 10,000 x g to remove cell debris. The protein concentration of the 
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supernatant was determined using a Bradford assay (Section 2.4.2) and samples 

were stored at –80°C. 

As an alternative, protein isolation method 8 M urea buffer was used. Cells were 

seeded in 6 well plates were washed twice in ice-cold 1 ml DPBS and then incubated 

in 300 µl of 8 M urea buffer (8 M urea, 1 M thiourea, 0.5% (w/v) 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 50 mM 

dithiothreitol (DTT), 24 mM spermine) for 5 min at room temperature. This is a 

strong buffer which rapidly lyses the cells and denatures all protein. The sample 

suspension was harvested in 1.5 ml microfuge tubes and centrifuged at 10,000 x g 

for 5 min at 4°C. The supernatant (containing protein isolate) was transferred to 

fresh microfuge tubes and protein concentration was determined by Bradford assay 

(Section 2.4.2) and, if not assayed immediately, samples were stored at -80°C. 

2.4.2 Total protein quantification – Bradford assay 

The concentration of isolated protein was estimated using the DC Bio-Rad protein 

assay kit (Bio-Rad Laboratories, Hertfordshire, U.K.) based on the Bradford assay 

(Bradford, 1976). A protein standard curve was generated using 0.2 to 1.5 mg/ml 

BSA that had been reconstituted in the same buffer (RIPA or 8M urea) as the 

samples to be analysed. Protein standard or sample (5 µl) was pipetted in triplicate 

into well of a clear, flat bottomed 96-well plate (Fisher-Scientific, Leicestershire, 

U.K.). To this, 25 µl of reagent A1 was added (a 50:1 mix of reagent A and reagent 

S) into each well. Following this, 200 µl of reagent B was added to each well and 

mixed thoroughly. The intensity of the solution colour in each well, which was 

proportional to the amount of protein, was measured using a spectrophotometer plate 

reader measuring absorbance at 600 nm (Victor 1420 Multi-Label Counter, Wallac, 
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PerkinElmer, MA, USA). A standard curve was plotted (intersecting the y-axis at 0 

since the value of the blank was subtracted from all readings) and the protein 

concentration of each sample was calculated according the equation of the straight 

line from the standard graph. From these readings protein concentrations in the 

samples were normalised and re-analysed to ensure equal total protein counts in each 

sample. 

2.4.3 Protein analysis 

Western blotting can be used to estimate the expression of a specific protein in cell 

lysates. Protein isolated from the cell is first denatured and then separated according 

to size by sodium dodecyl sulphate (SDS) gel electrophoresis. SDS applies a 

negative charge to any positive ion on the protein, thus allowing the protein to be 

transferred to a nitrocellulose membrane by electrophoresis. A specific protein is 

then detected on the membrane using a primary antibody, which a secondary 

antibody that is coupled to horseradish peroxidase (HRP) binds to.  The bound 

secondary antibody can be detected by luminescence due to a chemical reaction with 

HRP upon the addition of ECL plus (GE Healthcare, Buckinghamshire, U.K.). The 

resulting light emission is detected using an autoradiography film. 

2.4.4 Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-

PAGE) 

Protein samples were adjusted to 1 mg/ml protein according to the outcome of the 

Bradford assay. Protein was reduced and denatured by adding 1:4 Laemmli buffer 

(Invitrogen Ltd, Paisley, U.K.), 2% (v/v) β-mercaptoethanol (VWR, Leicestershire, 

U.K.) and heating for 5 min at 95°C. A NuPAGE 10% (w/v) Bis-Tris gel 

(Invitrogen, Paisley, U.K.) was assembled into a Novex Mini-cell gel electrophoresis 
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tank (Invitrogen, Paisley, U.K.) according to manufacturers instructions and the tank 

was filled with 1X MOPS Running buffer (Invitrogen, Paisley, U.K.). Equal protein 

concentration and volume of each sample was loaded into the wells of the gel. In 

addition,10 µl of SeeBlue Plus Two protein standard molecular weight marker 

(Inivtrogen, Paisley, U.K.) was loaded into one well of the gel. The proteins were 

separated at 200 V for 50 min until the dye front reached the base of the gel. 

2.4.5 Western blotting 

Proteins were transferred from the polyacrylamide gel to a 45 micron Hybond C 

Extra nitrocellulose membrane (GE Healthcare, Buckinghamshire, U.K.) in 1X 

NuPAGE transfer buffer (Invitrogen, Paisley, U.K.) including 10% (v/v) methanol 

(Fisher-Scientific, Leicestershire, U.K.) at 150 V, 250 mA for 90 min at 4°C. The 

membrane was removed and immediately immersed in blocking solution and 

incubated according to Table 2.2. The success of the transfer was estimated by 

checking the protein marker was present on the membrane. The membrane was then 

incubated in 10 ml of primary antibody (see Table 2.2 for the conditions of each 

antibody) on a rocking platform. 

The membrane was washed three times for 5 min in TBS-T and then transferred into 

10 ml 0.05 mM swine anti-rabbit HRP secondary antibody (DakoCytomation, 

Glostrup, Denmark) (Table 2.2). All secondary antibodies were diluted 1:1000 in the 

same buffer as the primary antibody and incubated on a rocking platform for 1 h at 

room temperature. After 1 h the membrane was washed three times for 5 min in 

TBS-T. 

The protein of interest was detected by covering the membrane in 1 ml ECL-Plus 

chemiluminesence solution (GE Healthcare, Buckinghamshire, U.K.). The blot was 



78 

 

wrapped in cling-film. The resulting luminescence was observed by exposing the 

blot to light-sensitive Hyperfilm (GE Healthcare, Buckinghamshire, U.K.) for 1 – 30 

min, depending on signal intensity, in a dark room and the film was developed using 

a Hyperprocessor automatic Autoradiography Film Processor (GE Healthcare, 

Buckinghamshire, U.K.). 

2.4.7 Semi-quantitative densitometry analysis 

Western blots were semi-quantitatively analysed via densitometry analysis using 

Image-J software (Public domain, NIH). Measurements were taken as arbitrary units 

(A.U.) from 3 individual western blots and averaged. Units were normalised against 

measurements taken from protein loading controls (β-actin or β-tubulin). 

2.4.8 Western blot membrane stripping and reprobing 

In order to re-use blot membranes, a stripping step was carried out before probing 

with different antibodies. Thus a housekeeping gene, such as β-actin, can be detected 

to check equal loading between samples. Membranes were stripped by incubation 

with stripping buffer (62.5 mM Tris pH 6.8, 2% (w/v) SDS, 100 mM β-

mercaptoethanol, all from Sigma-Aldrich, Poole, U.K.) for 30 min at 60°C in an 

oven on a rocking platform. The blot was then washed three times in TBS-T for 5 

min at room temperature and then blocked and re-probed with primary and 

secondary antibody according to Section 2.4.5 and Table 2.2. 
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Protein Ab raised in Supplier 

(Product Code) 

Dilution Expected 

Band 

(kDa) 

TGF-βRI Rat R&D 

MAB5871 

1:1000 53 

TGF-βRII Mouse Abcam 

 

ab61213 

 

1:1000 63 

P16INK4a Mouse Santa Cruz 

sc-468 

1:500 16 

pRB Mouse Millipore 

ABC132 

1:500 110 

Catalase Rabbit Abcam 

ab1877 

1:1000 65 

pSmad3 Rabbit Cell Signaling 

#9513 

1:500 52 

β-actin Goat Abcam 

Ab8229 

1:500 42 

Β-tubulin Mouse Millipore 

05-611 

1:5000 50 

Table 2.2: Antibodies and conditions for western blotting. All antibodies were 

suspended in milk protein (3%) TBS-T (v/v). 

Table 2Table 2.2: Antibodies and conditions for western blotting.  
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2.5 Reverse transcriptase - polymerase chain reaction  

Reverse transcriptase-polymerase chain reaction (RT-PCR) is a method to detect 

genes that are transcribed into RNA in cells or tissue. Extracted RNA is transcribed 

into cDNA by reverse transcriptase. The presence of a specific DNA sequence is 

then targeted and amplified by PCR with the aid of oligonucleotide primers that are 

complementary to the flanking DNA regions of interest. The PCR product is 

separated by size by running the sample on an ethidium bromide-agarose gel that can 

be visualised with ultra violet (U.V.) light. If the size of the PCR product correlates 

with the expected size, the product can be extracted and authenticated with DNA 

sequencing. 

2.5.1 Total RNA extraction from cultured cells 

Cells were trypsinised as described in Section 2.1.3 and centrifuged for 5 min at 

1,000 G at room temperature. The cells were then washed twice in ice-cold DPBS 

and centrifuged for 5 min at 1,000 G. The work surface and pipettes were prepared 

with RNase Zap (Ambion, Cambridgeshire, U.K.) to remove enzymes that digest 

RNA. RNA extraction was carried out using an RNeasy Mini Kit (Qiagen, West 

Sussex, U.K.). All centrifugation steps were at 13,000 G for 15 sec at room 

temperature unless stated otherwise. All flow-throughs were also discarded unless 

stated otherwise. The supernatant was aspirated and the cell pellet was resuspended 

in 600 µl RLT buffer. The RLT buffer acts to lyse the cells and contains guanidine 

isothiocyanate, which deactivates RNase enzymes. The cell lysate was transferred 

and passed through a QIAshredder Mini Spin column by centrifugation at 13,000 G 

for 2 min. The flow through solution was retained and mixed with 600 µl of 70% 

(v/v) ethanol. The sample was then transferred into an RNeasy Mini Spin column 
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and RNA (and DNA) within the sample was adhered to the column by 

centrifugation. RW1 wash buffer (350 µl) was added and the column was 

centrifuged. Genomic DNA was digested by adding 80 µl 1:5 (v/v) DNase: RDD 

buffer (RNase Free DNase Set, Qiagen, Crawley, West Sussex, U.K.) to the column 

and incubating for 15 min at room temperature. The digested DNA was washed from 

the column with 350 µl RW1 following centrifugation. The column was then washed 

with 700 µl RPE buffer (part of RNeasy Mini kit) and centrifuged. The column was 

washed again with 500 µl RPE buffer and centrifuged for 2 min at 13,000 G. Finally, 

the column was transferred to a fresh RNase-free microfuge tube and the RNA was 

eluted by addition of 30 µl RNase free water to the column followed by 

centrifugation at 10,000 G for 1 min. The RNA was stored at -80°C until required. 

2.5.2 RNA quantification 

Isolated RNA was quantified using a NanoDrop ND-1000 Spectrophotometer 

(Labtech International Ltd, East Sussex, U.K.). The instrument was blanked against 

1.5 µl diethyl-pyrocarbonate (DEPC)-treated water (Sigma-Aldrich, Dorset, U.K.). 

The sample RNA content and quality was estimated from a 1.5 µl aliquot on the 

spectrophotometer measured at 260 to 280 nm. 

2.5.3 Reverse transcriptase complementary cDNA synthesis 

Reverse transcriptase is an enzyme that transcribes single-stranded RNA into 

doublestranded complimentary DNA (cDNA). Complimentary DNA synthesis from 

the RNA sample was achieved using SuperScript III First-Strand Synthesis 

SuperMix (Invitrogen, Paisley, U.K.). Firstly, the following reagents (10 µl 2x RT 

Reaction Mix, 2 µl RT Enzyme Mix, DEPC-treated water (all from Invitrogen, 

Paisley, U.K.) and 1 µg of sample RNA (final volume 20 µl) were mixed together 
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and incubated for 10 min at 25°C. The tube was then incubated for 30 min at 50°C. 

The cDNA synthesis reaction was terminated by heating the sample to 85°C for 5 

min, followed by chilling on ice. Finally, 1 µl (2 units) of E. coli RNase H was added 

to the mix and incubated for 20 min at 37°C to remove the RNA template. The 

cDNA sample was stored at –20°C until required. To generate two negative controls 

for PCR, the reverse transcriptase reaction was carried out as described above but 

with the omission of (a) sample RNA or (b) RT Enzyme Mix. 

2.5.4 Primer selection and sequences 

Sense and anti-sense oligonucleotide primer sequences for PCR analysis were 

designed using. Primer 3 using gene sequences from the ensembl database 

(http://www.ensembl.org/index.html). All primers were checked for non-specific 

binding using NCBI genebank BLAST analysis 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Primer pairs shown in Table 2.3. 

2.5.5 Polymerase chain reaction 

Polymerase chain reaction (PCR) was conducted by combining 2 µl of cDNA with 

0.5 µl of sense primer, 0.5 µl of anti-sense primer, 44 µl 1.1X ReddyMix PCR 

Master Mix (ABgene, Epsom, Surrey, U.K.) and 3 µl DEPC-treated water in a PCR 

tube and subjecting the sample to thermal cycling conditions as described in Table 

2.4. The 1.1x ReddyMix PCR Master Mix contained 1.25 units of Taq DNA 

polymerase, mM Tris HCl (pH 8.8 at 25°C), 20 mM ammonium sulphate 

((NH4)2SO4), 1.5 mM magnesium chloride (MgCl2). 0.01% Tween 20, 0.2 mM 

deoxyadenosine 5’-triphosphate (dATP), 0.2 mM deoxycytosine 5’-triphosphate 

(dCTP), 0.2 mM deoxyguanine 5’-triphosphate (dGTP), 0.2 mM deoxythymine 5’-

triphosphate (dTTP), an inert red dye and gel loading precipitant. The 1.1x 
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ReddyMix was a simple one-step master mix for PCR and also allowed the PCR 

product to be loaded directly onto an agarose gel without further addition of a 

loading dye. 

Two negative controls (RNA-free and reverse transcriptase enzyme-free) generated 

from the reverse transcriptase reaction (see Section 2.5.3) were concurrently 

subjected to the PCR. cDNA from mouse 3T3s, an immortalised mouse fibroblast 

cell line, was used as a positive control for TGF-βRI, TGF-βRII, LTBP1 and LTBP2. 

Equal loading was confirmed by β-actin. 

  



84 

 

 

 

 

Target Forward primer Reverse Primer Amplicon 

(b.p.) 

TGF-βRI AGACGAAGCACACTGGT

CCAGC 

CGTTACAGTGTTTCTGCCAC

CT 

301 

TGF-

βRII 

AATATCCTCGTGAAGAA

CGA 

CAGTCAACGTCTCACACACC 400 

LTBP1 ACCTGCGATTGCTTTGAT

GG 

TCAAGGCGGTATTCAACGGA 207 

LTBP2 CCCATCCTTGAGTCTCCT

TTGC 

GAGGCCATTTCCAGGTAGTA

GTTGC 

399 

Β-actin ATATCGCTGCGCTGGTC

GTC 

AGGATGGCGTGAGGGAGAG

C 

516 

Table 2.3 PCR Primer pairs. Forward and reverse primers used for RT-PCR 

analysis with expected amplicon base pair (b.p.) sizes.  

 

Table 3Table 2.2: Antibodies and conditions for western blotting. 
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Step Function Temp (°C) Duration (sec) No. Of Cycles 

1 Denaturation 95 60 1 

2 

 

Denaturation 95 15 30 

Annealing 58-62 30 

Extension 72 30 

3 Extension 72 300 1 

4 Hold 4 ∞ ∞ 

Table 2.4: Conditions used during thermal cycling for PCR. PCR cycles 

conducted according to standard procedure. Cycle number and annealing 

temperature were optimised according to each primer pair.  

Table 4Table 2.4: Conditions used during thermal cycling for PCR. 
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2.5.6 Agarose gel electrophoresis 

PCR products (10 µl) were loaded on to a 1% (w/v) agarose-tris-acetate 

ethylediaminetetra-borate acid (TBE) gel containing 1 mg/ml ethidium bromide 

(Sigma-Aldrich, Poole, U.K.) in a gel tank with TAE running buffer. Ethidium 

bromide intercalates with DNA, the intercalation causes the ethidium bromide 

molecule to strongly fluoresce when exposed to U.V. light. This allows for the 

location of DNA to be visualised on the gel under U.V. light. The samples were run 

against 10 µl Trackit 1 kB DNA ladder (Invitrogen, Paisley, U.K.), to estimate the 

product size, and separated by electrophoresis for 30 min at 120 V. Finally the PCR 

products were visualised by U.V. light and the gel was photographed using a Multi 

Image Light Cabinet (Alpha Innotech Corporation, San Leandro, CA, U.S.A.). 

2.6 Cell senescence 

A key difference previously observed in balding DPCs was their greater tendency to 

senesce at an earlier passage than occipital DPCs (Bahta et al., 2008). While this 

effect can be easily observed from the flattened morphology and the reduced 

proliferation rate, two methods (described in Sections 2.6.1 and 2.6.2) were used to 

quantify and compare the level of senescence between the two cell types. 

2.6.1 Senescence: X-Gal method 

Senescence of cells can be indicated using the pH specific colorimetric dye 5-

Bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-Gal) used at pH 6 (Dimri et al., 

1995). At this pH only senescent and quiescent cells have active β-galactosidase. 

Cells were fixed in 2% (v/v) gluteraldehyde (Sigma-Aldrich, Poole, U.K.) in DPBS 

(PAA Laboratories) and then incubated in X-Gal staining solution (10mg/mL X-gal, 
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40 mM citrate, 40 mM sodium phosphate, 2 mM MgCl2, 5 mM potassium 

ferrocyanide, 5 mM potassium ferricyanide) for 16-24 h. 

Photo images of the cells were then taken at x10000 magnification using a 

brightfield microscope (Leica). Positive cells could be identified as those exhibiting 

blue staining. 

2.6.2 Senescence: 4-MU-Gal method 

Senescence was quantified according to the 4-MU-Gal assay first described by Gary 

and Kindell (2005). DPCs were either grown at 2% or 21% oxygen for the entire 

duration of their cell culture (7 passages), or switched from one condition to the 

other at passage 4. DPCs were grown to 80-90% confluence in 12-well plates, for 

each condition in triplicate. Cells were then lysed in 450 µL of buffer (40 mM 

citrate, 40 mM sodium phosphate,  5 mM 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and protease 

inhibitor cocktail (Roche, Lewes, U.K.); buffer adjusted to pH 6.0) and removed 

from flask into a 1.5 mL polypropylene tubes using a cell scraper. 

 Lysates were centrifuged for 5min at 12,000 G, the pellet was discarded and the 

supernatant was mixed with an equal measurement of 2x reaction buffer (40 mM 

citrate, 40 mM sodium phosphate, 300 mM NaCl, 4 mM MgCl2, 10 mM β-

mercaptoethanol and 1.7 mM of 4-MU-Gal (dissolved at 20x concentration in 

DMSO); buffer adjusted to pH 6.0). 

 Reaction mix was then incubated at 37°C in a water bath for 1h, after which time 50 

µL aliquots were taken and mixed with 400 mM sodium bicarbonate solution to raise 

the pH from 6.0 to 11.0, thus halting the senescent specific β-galactosidase activity. 
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 Three aliqots (150 µL) of the halted reaction mix were then pipetted into each well 

of a 96 well plate and measured at excitation/emission wavelengths of 360/465nm. 

2.7 ROS quantification 

ROS levels were quantified using 5-(and-6)-carboxy-2´,7´-

dichlorodihydrofluorescein diacetate (H2DCFDA) a fluorophore which fluoresces 

after having its two acetate groups cleaved by intracellular esterases and is 

subsequently oxidised by ROS (Royall, 1993). 

Cells were seeded at 2 x 103 into each well of a 96 well plate in DPC media, made up 

with Red-Phenol-Free William’s Media E. Cells were treated with TGF-β1 or BSA 

control for 1-3h before analysis. After treatment, media was replaced with 100 µL 

DPC media containing 10 µM of H2DCFDA, and then incubated wrapped in foil, to 

prevent photo-bleaching, for 30 min under regular DPC culture conditions. 

After incubation H2DCFDA-containing DPC media was removed, cells were washed 

3 times with DPBS and 100 µL of fresh red phenol-free media was added. Cells 

were measured for fluorescence immediately using a 96 well plate reader set at a 

temperature of 37°C and an excitation/emission wavelengths of 485/527nm. A 

kinetic measurement of fluorescence was conducted wherein readings were taken 

every 5 min for 30 min to give a linear plot of relative fluorescence. 

2.8 Total/reduced glutathione assay 

Total and reduced glutathione were measured simultaneously using a multiwell kit 

(Cayman Scientific, Michigan, U.S.A.). Reagents were made up according to the 

protocol provided. 
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DPCs were cultured to 70-80% confluence in 6 well plates. Media was removed and 

cells were washed three times with ice cold DPBS (10 mL). After the third wash 

DPBS was left on cultures.  Using a cell scraper cells were removed from the flask 

and transferred to a 15 mL centrifuge tube. 

The tubes were spun down for at 1,000 G for 5 min at 4°C. DPBS was removed and 

the pellet was resuspended in 1 mL of ice cold DPBS. Cells were then centrifuged at 

10,000 G for 5 min at 4°C. The supernatant was removed and 500 µL of MES buffer 

was added. Pellets were lysed using a sonicator. Lysed samples were then 

centrifuged at 18,000 G for 15 min at 4°C. Supernatants were transferred to fresh 

polypropylene tubes and the pellets were discarded. 

An aliquot (50 µL) was taken from the supernatant for protein quantification. The 

remainder of the supernatant was deproteinated by adding an equal volume of 1 M 

metaphosphoric acid (MPA)(Sigma-Aldrich, Poole, U.K.) and left to stand for 5 min 

at RT°C. 

Deproteinated samples were centrifuged at 2,000 G for 5 min, 800 µL of supernatant 

was mixed with 40 µL 4M triethanolamine (TEAM)(Sigma-Aldrich, Poole, U.K.) in 

a clean polypropylene tube. 

To measure only the reduced form of GSH samples divided and half were derivitised 

using 2-vinylpyridine (Sigma-Aldrich, Poole, U.K.). 1 µL of 1M 2-vinylpyridine was 

added to 100 µL of each sample. Samples were vortexed and left to stand at RT°C 

for 1 h. 

The cocktail was added to each well using a multiwell pipette set to 150 µL, the plate 

was then covered, wrapped in foil and placed on an orbital shaker for 5min. 
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 Plate was then put in a Synergy HT fluorescent microplate reader (Biotek, Vermont, 

U.S.A.) set to measure absorbance at 405nm at 5min intervals for 30min. 

2.9 Catalase assay 

Samples were prepared for the catalase assay by first growing cells to 70-80% 

confluence in a 6 well plate under atmospheric or low oxygen conditions. Plates 

were then washed in ice cold DPBS before having the DPCs removed using a cell 

scraper (Fisher-Scientific, Leicestershire, U.K.) in 0.5 ml ice-cold DPBS. DPCs were 

then pelleted at for 5min @ 12,000 G in a refrigerated centrifuge (4°C) and the pellet 

was sonicated for 3 x 3 seconds (Vibra Cell, Sonic and Material Inc., Danbury, CT, 

U.S.A.).  Sonicated samples were then re-pelleted and the supernatant was removed 

for protein quantification and subsequent catalase functional analysis. 

The catalase assay was carried out using the Molecular Probes: Amplex Red® 

catalase assay kit (Invitrogen, Paisley, U.K.) according to the protocol provided. 

Sample, standard or negative controls (25 µL) were pipetted into each well of a 96 

well-plate, a further 25 µL of µM H₂O₂ solution was then added to all wells. Plates 

were then incubated at room temperature for 30 minutes. Following incubation, 

50 µL of Amplex Red® reagent containing 1.6 Units/L HRP, 2.6  µg/mL Amplex 

Red® in DMSO was added to each well and plates were incubated for a further 30 

minutes at 37°C while protected from light to prevent photobleaching of the 

fluorescent reagents. After the incubation period had elapsed, plates were read using 

a Synergy HT fluorescent microplate reader (Biotek, Vermont, U.S.A.)  set at an 

emission/excitation range of 530/560 nm. 
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2.10 Growth factor ELISAs 

Samples were prepared for the ELISA assay by seeding DPCs at 2 x 103 into each 

well of a 96 well plate and were allowed to adhere overnight. Cells were then treated 

with 0, 1 or 100 nM of DHT and incubated at either low (2%) O₂ or atmospheric 

(21%) O₂ for 24 h and then media supernates were collected for ELISA 

quantification. 

Growth factor secretions were quantified using Quantikine® assay kits (R&D, 

Abingdon, U.K.) according to the protocol provided. Some steps vary between kits, 

for further details of differing steps see Table 2.5. Assay diluent was added to the 

microplate provided, followed by 50 µl of supernate sample, standard curve control 

(31.25, 62.5, 125, 250, 500 and 1000 pg/ml for TGF-β1, - β2 and DKK-1 and 0.094, 

0.188, 0.375, 0.750, 1.5, 3 and 6 ng/ml for IGF-1) or media blank. Plates were then 

incubated on an orbital microplate shaker then washed 4 times using the wash buffer 

provided. Growth factor antibody conjugate was then added to each well and plates 

were incubated on an orbital microplate shaker then washed 4 times using the wash 

buffer provided. Finally, the substrate solution was added incubated in the dark for a 

period of time before terminating the reaction with the stop solution. 

Plates were then read using a Synergy HT fluorescent microplate reader (Biotek, 

Vermont, U.S.A.) measuring absorbance at 450 nm with wavelength correction set to 

540 nm to account for the absorbance of the microplate plastic. 

Samples being tested for TGF-β had an additional activation step before pipetting the 

supernatants onto the plate. Both TGF-β1 and - β2 exist as a inactive bound form 

carried by the latent TGF-β binding protein (LTBP) when secreted from the cells, 

which is undetectable by the Quantikine® kit’s antibodies. To release the active 
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growth factor samples must first be acidified by adding 1 N HCl to the supernate 

(1:5), incubating for 15 min followed by neutralisation with 1.2 N Sodium hydroxide 

(NaOH) (1:5). 
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Assay Diluent Sample

, 

Standa

rd or 

Blank 

Incubati

on 

Time A 

Growth 

Factor 

Conjug

ate 

Incubati

on Time 

B 

Substr

ate 

Solutio

n 

Stop 

Soluti

on 

TGF-β1 RD1-21 

50 µl 

50 µl 2 h 100 µl 2 h 100 µl 

30 min 

100 µl 

TGF-β2 RD1-17 

100 µl 

100 µl 2 h 200 µl 2 h 200 µl 

20 min 

50 µl 

DKK-1 RD1W 

100 µl 

100 µl 2 h 200 µl 2 h 200 µl 

30 min 

50 µl 

IGF-1 RD1-53 

150 µl 

50 µl 2 h 

2-8°C 

200 µl 1 h 

2-8°C 

200 µl 

30 min 

50 µl 

Table 2.5: Varying steps for Quantikine® ELISA kits. Assays were conducted 

according to the manufacturer’s protocol. 

Table 5Table 2.5: Varying steps for Quantikine® ELISA kits.  
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2.11 Cell Motility Assay 

DPCs were seeded at 1 x 104 into 6 well plates. Plate was placed on a robotically 

controlled platform on an inverted light microscope (Nikon, Richmond, U.K.) inside 

a thermostatically controlled (37°C) chamber maintained at atmospheric oxygen 

(74% N₂, 5% CO2, 21% O2) conditions. DPCs were treated with 10 ng/ml of TGF-

β1 or 3% BSA vehicle control at the start of each experiment. 

Ten randomly selected points were chosen from each well and photographed using 

Metamorph software (Molecular Devices Ltd., Wokingham, U.K.). The software 

then recorded images at these chosen points every 10 minutes moving between them 

using the robotically controlled platform for 100 cycles. 

The resultant images were then sequenced into a time-lapse video, and image 

analysis was carried out using Metamorph software to assess the velocity of 

individual cells’ movements. 
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2.12 Statistical Analyses 

Statistical analysis was determined using an unpaired Student’s t test, one-way 

analysis of variance (ANOVA) followed by a Tukey post-hoc test or two-way 

ANOVA with Bonferroni post-hoc test depending on the number of variables being 

between test samples, i.e.:- one, two or three, respectively. All statistical evaluations 

were performed using GraphPad Prism 4.0 software (San Diego, CA, U.S.A.). 

Significance was assessed in all experiments as a probability value of *P < 0.05, **P 

< 0.01, ***P < 0.001 or non significant (NS) P > 0.05. All statistical analyses were 

carried out using Graphpad Prism 5 Software. 
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Chapter 3 

Effect of oxygen on dermal papilla proliferation 

and senescence 
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3.1 Introduction 

Recent studies into the pathology of ageing of the hair follicle have begun to focus 

on the role of oxidative stress. Known instigators of oxidative stress, such as 

smoking or U.V. radiation have been associated with hair follicle greying (Van Neste 

and Tobin, 2004) (Arck et al., 2006, Kauser et al., 2010). It has been hypothesised 

that the pathophysiology of the balding follicle may also be related to the “free-

radical” theory of ageing (Trueb, 2009), but as yet there have been no studies carried 

out investigating the role of oxidative stress in androgenic (AGA). 

Previously, our group reported that cultured DPCs taken from balding frontal scalp 

hair follicles senesced much quicker in vitro than DPCs from non-balding occipital 

scalp follicles (Bahta et al 2008). Moreover, this senescence was associated with 

elevated expression of p16INK4a, known to mediate cell cycle arrest in response to 

environmental stress. Balding DP also expressed higher levels of stress-response 

proteins such as heat shock protein 27 (HSP27), super oxide dismutase 1 (SOD1) 

and catalase. It was therefore proposed that balding DPCs may be more sensitive to 

environmental stress including oxidative stress and that this may play a role in AGA 

(Bahta et al 2008). 

Under standard laboratory cell culture conditions cells are grown in an atmosphere of 

CO2 and air (Freshney, 2005). Under such conditions the oxygen concentration 21%. 

However, despite its integral role in the physiology of higher eukaryotes, oxygen is 

in fact toxic to cells at too high a concentration producing an array of harmful 

reactive oxygen species (ROS). This phenomenon is known as the “oxygen paradox” 

(Davies, 1995). In the dermal layer of the skin Wang et al. (2003) have shown that 

oxygen is present at around 1-5%, dependent on the proximity to the blood supply of 
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the capillary network of the sub-papillary plexus and the highly vascularise hair 

follicles (Wang et al., 2003, Wang et al., 2005). Therefore, culturing cells at low (1-

5%) oxygen reduces the toxic effects of oxygen and its production of ROS. As an 

example of this, growing human fibroblasts under low (3%) oxygen reduces cell 

stress (as determined by DNA damage), decreases the number of senescent cells and 

results in a quicker rate of proliferation (Chen et al., 1995). To date, there have been 

no published reports investigating the effects of low oxygen culture on DPCs. 

The primary aim of this chapter was to investigate the effects of oxygen on the 

growth and senescence of human DPCs from balding and non-balding scalp. To 

carry out these experiments matched balding and non-balding biopsies were obtained 

from hair transplant surgery. DPCs were cultured under low oxygen at 2% and 

atmospheric oxygen at 21% as described in the materials and methods (Chapter 2). 

The effects of oxygen on DPC viability and cell proliferation were studied using an 

Alamar Blue cell viability assay and population doublings based on counting cell 

numbers. Senescence was characterised by cell morphology, senescence associated 

β-galactosidase (SA-β-Gal) activity and by western blotting for stress-induced 

senescence markers p16, pRB and BMI-1.  

DHT induces different effects within different follicles in a paradoxical manner 

(Randall, 2007). In the hair follicles of the beard DHT is able to induce the secretion 

of IGF-1 from the dermal papilla (Itami et al., 1995). IGF-1 is known to stimulate 

proliferation of the ORS keratinocytes (Itami et al., 1995, Batch et al., 1996). 

However, in the hair follicles of the balding scalp, DHT has been shown to induce 

the secretion of TGF-β1 (Inui et al., 2002, Inui et al., 2003, Hibino and Nishiyama, 

2004) and DKK-1 (Kwack et al., 2012, Kwack et al., 2008), which induce apoptosis 

in the ORS keratinocytes, triggering the onset of catagen.  
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3.2 Aim 

To investigate the effect of oxygen on the growth and senescence of human DPCs 

from balding and occipital (non-balding) scalp. 
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3.3 Results 

3.3.1 Effects of oxygen culture conditions on DPC proliferation – Alamar Blue 

The effects of oxygen conditions on human DPC proliferation were investigated by 

culturing cells from balding and non balding scalp in response to both 2% and 21% 

oxygen conditions. DPCs were explanted from patient matched balding and non-

balding occipital DPCs at 21% oxygen for between 14-21 days and were then 

passaged and expanded under conditions of 21% oxygen for a further passage as 

described in Chapter 2 – Materials and Methods. DPCs were then split between 

21% oxygen and 2% oxygen at passage 2 and used for the experiments described 

below. Alamar Blue was used as a surrogate marker of proliferation. 

Figure 3.1 demonstrates that over the course of 10 days occipital DPCs grown at 2% 

oxygen showed a 16.11 ± 1.42 fold increase in Alamar blue metabolism, while those 

grown at 21% oxygen underwent 10.18 ± 0.47 fold increase in metabolism. Balding 

DPCs grown at 2% oxygen showed a 5.63 ± 0.55 fold increase in Alamar blue 

metabolism, while those grown at 21% oxygen showed a 4.12 ± 0.08 fold increase. 

Statistical analyses using one-way ANOVA with Tukey post-hoc test showed that at 

2% oxygen there was a significant increase in both occipital and balding DPCs’ 

proliferation when compared to those grown at 21% oxygen (P < 0.001).  

These data also confirm previous reports that occipital DPCs proliferate at a 

consistently higher rate than balding DPCs. Occipital DPCs demonstrated over a 

threefold increase in proliferation rate compared to balding DPCs at 21% oxygen (P 

< 0.001). In addition, it was found that this effect was also seen at 2% oxygen, with 

occipital DPCs proliferating at over twofold the rate of balding DPCs (P < 0.001). 
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Figure 3.1: Effect of oxygen on DPC proliferation measured by Alamar Blue. 

Occipital and balding DPCs grown at 2% and 21% oxygen. Proliferation measured 

as fold increase in metabolism of Alamar blue substrate. DPCs were seeded on day -

1. Alamar Blue metabolism was first measured on day 0 and subsequently on day 10. 

Alamar Blue metabolism was then normalised against the day 0 reading to calculate 

fold increase in DPCs’ growth. Statistical analyses carried out using one-way 

ANOVA with Tukey post-hoc test. ***P < 0.001. Results presented as the mean ± 

S.E.M. for n = 5 (matched DPC samples from 5 different patients). 

Figure 3Figure 3.1: Effect of oxygen on DPC proliferation measured by Alamar 

Blue. 
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3.3.2 Effects of oxygen on DPC proliferation as measured by population 

doubling 

In order to further clarify the effects of 2% and 21% oxygen on the DPCs’ 

proliferation an alternative method was used wherein cell counts were taken at each 

passage. Cell counter Nucleocassettes were used to measure DPC populations at 

each passage over a total of 7 passages. Graphing this data gave an effective 

visualisation of the point at which proliferation rate plateaued indicating loss of 

proliferative capacity. 

Figure 3.2A shows overall proliferation rate of occipital DPCs occurred at a quicker 

rate and underwent a higher number of population doubling as compared to the 

balding DPCs (Figure 3.2B). For both occipital and balding DPCs, 2% oxygen was 

shown to maintain a greater proliferation rate compared to 21% oxygen with 

occipital DPCs undergoing 16.1 ± 0.8 populations doublings at 2% oxygen 

compared to just 8.2 ± 0.4 population doublings at 21% oxygen. Similarly, balding 

DPCs cultured at 2% oxygen underwent 12.2 ± 0.4 population doublings compared 

to only 4.9 ± 0.3 at 21% oxygen.  

These data also demonstrate that occipital DPCs undergo a higher number of 

population doublings under identical conditions compared to balding DPC. Occipital 

DPCs cultured at 2% oxygen underwent 16.1 ± 0.8 population doublings compared 

to balding DPCs which underwent 12.2 ± 0.4. Occipital DPCs cultured at 21% 

oxygen underwent 8.2 ± 0.4 population doublings compared to 4.9 ± 0.3 for balding 

DPC.  

In addition Figure 3.2 also shows the effects on population doubling of moving cells 

from 2% to 21% oxygen and from 21% to 2% oxygen. Figure 3.2A shows that 
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occipital DPCs that are initially cultured at 21% oxygen and then switched to 2% are 

able to recover and begin to undergo a quicker rate of population doubling. 

However, population doublings were decreased when occipital DPCs were initially 

grown at 2% oxygen and switched to 21% indicated in a fall in population doublings 

from 16.1 ± 0.8 when maintained at 2% to 13.5 ± 0.3 when switched to 21% oxygen. 

Occipital DPCs which were switched from 21% to 2% were able to achieve 9.5 ± 0.4 

population doublings compared to 8.2 ± 0.4 of those maintained under 21% 

throughout their culture. 

A similar finding was also observed for balding DPCs (Figure 3.2B) switched from 

2% oxygen to 21%, where the number of population doublings fell from 12.2 ± 0.4 

when maintained at 2% to 9.5 ± 0.04 when switched to 21% oxygen. Balding DPCs 

which were switched from 21% to 2% underwent 8.2 ± 0.4 population doublings 

compared to just 4.9 ± 0.3 of those maintained under 21% throughout their culture. 

These data confirm that oxygen has an important effect on the proliferation of DPCs 

in vitro with much higher growth rates being observed at 2% oxygen compared to 

21%. Moreover, they show that DPCs from occipital scalp consistently proliferate 

faster than those from balding scalp under identical oxygen conditions. 
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Figure 3.2: Growth of DPCs under different oxygen conditions. Population 

doublings of occipital (A) and balding (B) DPCs grown at varying oxygen 

conditions over time. Proliferation was calculated counting the number of cells after 

each passage. DPCs’ proliferation was measured from their initial explantation 

through to their eventual senescence. DPCs were initially grown at 21% oxygen 

before being equally split between 2% and 21% oxygen incubators at passage 2. 

Cultures were then maintained for a further two passages before being split again, 

this time being either kept under the same oxygen conditions or switched to the 

opposite oxygen condition. Results are presented as the mean ± S.E.M. for n = 3 

(matched DPC samples from 3 different patients).     Figure 4Figure 3.2: Growth of DPCs under different oxygen conditions. 
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3.3.3 Effects of oxygen culture conditions on DPC morphology 

Morphological differences between balding and occipital DPCs grown under the 

both oxygen conditions were also apparent at passage 3. Balding DPCs grew in a 

dispersed, disorganised fashion (Figure 3.3A and 3.3B), with those grown at 21% 

oxygen demonstrating a flattened “fried egg” morphology (arrow ‘a’) characteristic 

of senescent cells (Figure 3.3A). Balding DPCs cultured at 2% oxygen maintained a 

spindly morphology (arrow ‘b’) typical of healthily proliferating fibroblasts.  

The occipital phenotype DPCs grew in a more organised, clustered formation 

(Figure 3.3C and 3.3D).  Figure 3.3C shows occipital DPCs cultured at 21% 

oxygen had a flattened morphology, although they notably were not yet 

demonstrating the “fried egg” senescent appearance, but still clustered in an 

organised fashion (arrow ‘c’). Figure 3.3D shows occipital DPCs grown at 2% 

oxygen arranged to form spindle-like cells, in a clustered pattern with clearly defined 

pseudopapillae (arrow ‘d’). 
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Figure 3.3: Demonstrative morphology and arrangement of DPCs. Balding 

DPCs at 21% oxygen (A); Balding DPCs at 2% oxygen (B); Occipital DPCs at 21% 

oxygen (C); Occipital DPCs at 2% oxygen (D). Arrow ‘a’ – Senescent, ‘fried egg’, 

unclustered balding DPC; Arrow ‘b’ – Spindle-like, unclustered balding DPC; 

Arrow ‘c’ – Senescent, ‘fried egg’, clustered occipital DPCs; Arrow ‘d’ – raised 

pseudopapilla formed from spindle-like occipital DPCs. Figures representative of 

generalised trend of cell morphology. 

Figure 5Figure 3.3: Demonstrative morphology and arrangement of DPCs. 
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3.3.4 Effects of oxygen culture conditions on DPC senescence 

As shown in Section 3.3.3, oxygen had a marked effect on the proliferation of 

occipital and balding DPCs as determined by total population doublings. In addition, 

balding DPCs had a much slower growth rate compared to occipital DPCs. To 

characterise this further, the DPCs analysed for population doublings in Figure 3.2 

were also investigated for cell senescence.  

In order to quantify the levels of senescence for both occipital and balding DPCs 

cultured at both 2% and 21% oxygen conditions senescence associated β-

galactosidase (SA-β-Gal) activity at pH 6.0 using 4-MU-Gal was quantified (see 

Chapter 2 for description of method).  

The data from these experiments has been analysed in two ways. In Figure 3.4A and 

3.4B the data have been presented to show DPCs whose early passage (P1-4) began 

at either 2% (Figure 3.4A) or 21% (Figure 3.4B) oxygen. This allowed statistical 

comparison of the differences between occipital (O) and balding (B) DPCs cultured 

under the culture conditions described above.  

In Figure 3.4C and 3.4D the data have been presented to show occipital (Figure 

3.4C) and balding (Figure 3.4D) DPCs. This allowed statistical comparison of the 

effect of altering the oxygen environment of the DPCs. 

From Figure 3.4A it can be seen that both occipital and balding DPCs maintained 

across 6 passages at 2% oxygen had low levels of senescence as shown by the 

R.F.U. for SA-β-Gal activity of 0.18 ± 0.006 for both occipital and balding DPC. In 

contrast when balding and occipital DPCs were maintained at 2% oxygen for 

passage 1-4 and then transferred to 21% oxygen for passage 5 and 6 a marked 
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increase in DPCs’ senescence was observed. From Figure 3.4A it can be seen 

however, that there was a significantly higher (P < 0.05) level of senescence in 

balding DPCs (1.17 ± 0.19 R.F.U.) compared to occipital DPCs (0.68 ± 0.06 R.F.U.). 

In Figure 3.4B it can be seen that both balding and occipital DPCs maintained at 

21% oxygen for passage 1-4 and then switched to 2% oxygen for passage 5 and 6 

showed low levels of senesce (0.18 ± 0.006  R.F.U.) that were comparable to cells 

maintained for all 6 passages at 2% oxygen (Figure 3.4A). In contrast, when either 

balding or occipital DPCs were maintained for all 6 passages at 21% oxygen there 

was a much higher level of cell senescence (0.8 ± 0.003 R.F.U. and 0.66 ± 0.02 

R.F.U., respectively). However, as seen for cells initially maintained at 2% oxygen 

and then moved to 21% (Figure 3.4A) significantly higher levels of senescence (P < 

0.05) were seen in balding DPCs compared to occipital. From these data it can be 

concluded that lower levels of senescence are observed in both balding and occipital 

DPCs when grown at 2% oxygen compared to 21% oxygen. 

In Figure 3.4C it can be seen that occipital DPCs grown at 2% oxygen for all 6 

passages demonstrates significantly lower levels of senescence compared to those 

grown at 21% oxygen for all 6 passages (P < 0.001).  Moreover, occipital DPCs 

which were grown at 2% oxygen during early passage and switched to 21% oxygen 

during late passage also showed significantly higher levels of senescence (0.68 ± 

0.06 R.F.U.) compared to occipital DPCs cultured at 2% oxygen for all 6 passages 

(0.18 ± 0.007 R.F.U.) (P < 0.001). Furthermore, occipital DPCs which were initially 

cultured at 21% oxygen during early passage and subsequently switched to 2% 

oxygen at late passage showed significantly lower levels of senescence (0.18 ± 0.009 

R.F.U.) as compared to those grown at 21% oxygen for all 6 passages (0.66 ± 0.02 

R.F.U.) (P < 0.001).   
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In Figure 3.4D it can be seen that balding DPCs grown at 2% oxygen for all 6 

passages demonstrates significantly lower levels of senescence compared to those 

grown at 21% oxygen for all 6 passages (P < 0.001).  Moreover, balding DPCs 

which were grown at 2% oxygen during early passage and switched to 21% oxygen 

during late passage also showed significantly higher levels of senescence (1.17 ± 

0.19 R.F.U.) compared to occipital DPCs cultured at 2% oxygen for all 6 passages 

(0.19 ± 0.011 R.F.U.) (P < 0.001). Furthermore, occipital DPCs which were initially 

cultured at 21% oxygen during early passage and subsequently switched to 2% 

oxygen at late passage showed significantly lower levels of senescence (0.18 ± 0.004 

R.F.U.) as compared to those grown at 21% oxygen for all 6 passages (0.66 ± 0.015 

R.F.U.) (P < 0.001). Surprisingly, balding DPCs which were initially cultured at 2% 

oxygen during early passage and then switched to 21% oxygen during late passage 

showed higher levels of senescence (1.17 ± 0.19 R.F.U.) than balding DPCs grown 

at 21% oxygen for all 6 passages (0.8 ± 0.003 R.F.U.) (P < 0.01). 

  



110 

 

 
Figure 3.4: Relative levels of senescence in DPCs with varied combinations of 

oxygen over early (P1-4) and late (P5-6) passage.  Senescence quantified using 4-

MU-Gal at the end of passage 6 non-balding and balding DPCs first cultured at 2% 

oxygen (A) or 21% oxygen (B). Data are presented alternately in terms of occipital 

DPCs (C) and balding DPCs (D) to allow statistical comparison of varying oxygen 

conditions. Statistical analyses were carried out using one-way ANOVA with 

Tukey’s post-hoc test * P < 0.05; ** P < 0.01; *** P < 0.001; Results presented as 

the mean ± S.E.M. for n = 3 (matched DPC samples from 3 different patients. 
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Figure 6Figure 3.4: Relative levels of senescence in DPCs with varied combinations of oxygen over early (P1-4) and late (P5-6) passage. 

3.3.5 Expression of senescence associated proteins 

In order to further establish the intracellular mechanism by which senescence was 

occurring immunocytochemistry and western blot analysis was conducted to confirm 

the role of stress-induced senescent markers in DPCs under both oxygen conditions. 

Figures 3.5A, 3.5C and 3.5E show balding DPCs cultured at 2% oxygen exhibited 

minimal levels of P16INK4a and pRB protein, but a higher expression of BMI-1. 

Conversely, Figures 3.5B, 3.5D and 3.5F show balding DPCs cultured at 21% 

oxygen expressed both P16INK4a and pRB protein, with a reduced expression of BMI-

1. 

Densitometry analysis of the western blots in Figure 3.6 demonstrates that balding 

DPCs cultured at 2% oxygen express lower levels of P16INK4a (0.6 A.U.) and pRB 

(0.4 A.U.) compared to those cultured at 21% oxygen (1.4 and 0.7 A.U., 

respectively) at early passage (P2). Similarly, the same figure also shows that 

occipital DPCs expressed lower levels of P16INK4a (0.3 A.U.) and pRB (0.1 A.U.) at 

2% oxygen compared to those cultured at 21% oxygen (0.7 and 1.1 A.U., 

respectively) at early passage (P2). Occipital DPCs also expressed lower levels of 

P16INK4a and pRB protein when compared to balding DPCs. However, by P4 

P16INK4a and pRB protein expression appeared to plateau in both cell types and both 

conditions, apart from occipital DPCs cultured at 2% oxygen, which had a lower 

expression of P16INK4a (0.8 compared to 1.0-1.4 A.U.). 

Figure 3.7 shows simultaneous immunofluorescence staining for P16INK4a and BMI-

1. Occipital DPCs expressed little to no P16INK4a with higher expression of BMI-1 

observed in those grown at 2% oxygen. The balding DPCs expressed P16INK4a under 
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both oxygen conditions, though BMI-1 was still markedly expressed in those grown 

at 2% oxygen, reflecting that seen with DAB staining. These data confirm that the 

senescence quantified in Section 3.3.4 is associated with upregulation of P16INK4a. 
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Figure 3.5: DAB Immunocytochemistry staining for P16INK4A, pRB, and 

BMI-1 in balding DPCs cultured at 2% and 21% oxygen. DPCs were cultured for 

3 days prior to fixation and immunostaining. Images are representative of three 

separate experiments. Scale bar = 50 µm. 

 

Figure 7Figure 3.5: DAB Immunocytochemistry staining for P16INK4A, pRB, 

and BMI-1 in balding DPCs cultured at 2% and 21% oxygen. 

 

 

pRB 



114 

 

 

   

Figure 3.6: Western blot analysis of P16INK4a and pRB protein expression in 

occipital and balding DPCs cultured at 2% oxygen and 21% oxygen at passages 

2 and 4. Protein was isolated from occipital and balding DPCs cultured for 3 days at 

2% or 21% oxygen. DPCs were lysed using RIPA buffer, normalised according to 

total protein concentration and 20 µg of each lysate was run on a Sigma Nu-page 

electrophoresis gel. β-Actin was used to determine equal protein loading. Blots 

representative of n = 3 patients. Densitometry values calculated using Image-J 

software for mean of all 3 blots expressed as a fraction of β-actin control presented 

below each lane. 

  

Figure 8Figure 3.6: Western blot analysis of P 16INK4a and pRB protein expression in occipital  

l and balding DPCs c ultured at 2% oxygen and 21% oxygen at passages 2 and 4. 
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Figure 3.7: Immunofluorescence staining for p16INK4a and BMI-1 in occipital 

and balding DPCs grown at 2% oxygen and 21% oxygen. DPCs were cultured 

for 3 days prior to fixation and immunofluorescence staining. Images are 

representative of three separate experiments. Scale bar = 50 µm. 

Figure 9Figure 3.7: Immunofluorescence staining for p16INK4a and BMI-1 in 

occipital and balding DPCs grown at 2% oxygen and 21% oxygen. 
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3.3.6 Effects of oxygen on TGF-β isoform secretion in balding and occipital 

DPCs 

The previous data showed that oxygen conditions can have a profound effect on 

proliferation and senescence of the DPCs. Therefore oxygen conditions may also 

have an effect on the dermal papilla’s key function – the secretion of growth factors. 

ELISA kits were used to quantify secretions into the DPC culture media in order to 

determine the effects of oxygen on secretion of TGF-β isoforms. 

Previous studies (Inui et al., 2002) have shown that balding but not occipital DPCs 

secrete TGF-β in response to DHT stimulation. Therefore, the experiments carried 

out in this section were done in either the absence or presence of DHT (1 or 100 

nM). 

Figure 3.8 shows the effects of 2% and 21% oxygen on secretion of TGF-β1 and 

TGF-β2 isoforms by both occipital and balding DPCs in the presence and absence of 

DHT. Balding DPCs cultured at 21% oxygen showed a significant stimulation of 

TGF-β1 secretion when treated with 100nM DHT (P < 0.01) although 1 nM DHT 

had no significant effect (P > 0.05)(Figure 3.8A). Interestingly, occipital DPCs at 

21% oxygen also showed a significant increase in TGF-β1 secretion with 100nM 

DHT (P < 0.01) however 1 nM DHT caused a significant decrease in TGF-β1 

secretion (P < 0.01). Perhaps more striking was the observation that at 2% oxygen 

DHT had the opposite effect on balding DPCs at 2% oxygen demonstrating a 

significant dose-dependent decrease (P < 0.001) in TGF-β1 secretion. Similar results 

were also observed for occipital DPCs with a significant decrease in TGF-β1 

secretion at 1 nM (P < 0.01) and 100nM DHT (P < 0.05). 
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Figure 3.8B shows that for balding and occipital DPCs cultured at 21% oxygen 

DHT at 100nM significantly stimulated secretion of TGF-β2 (P < 0.01) but at 1nM 

had no significant effect. However, in contrast to the data seen for TGF-β1 DPCs 

cultured at 2% oxygen showed no significant stimulation of TGF-β2 in response to 

either 1nM or 100nM DHT. These data show that oxygen has a significant effect on 

TGF-β1 and TGF-β2 secretion by both balding and occipital DPCs and suggests that 

TGF-β secretion may occur in response to conditions of oxidative stress, but only in 

the presence of 100nM DHT. 
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Figure 3.8: ELISAs for TGF-β1 (A) and TGF-β2 (B) secretion by balding and 

occipital DPCs cultured at 2% and 21% oxygen. DPCs (2x103 per well) were 

cultured for 24 h at 2% or 21% oxygen conditions. Cells were treated with 0, 1 or 

100 nM of DHT.The culture media were then analysed by R&D Quantikine ELISA 

kits. Experiments were carried out in duplicate on DPCs from 3 separate patients. 

Statistical analysis was carried out using one-way ANOVA; * P < 0.05; ** P < 0.01; 

*** P < 0.001; Results presented as the mean ± S.E.M. for n = 4 (matched DPC 

samples from 4 different patients).Figure 10Figure 3.8: ELISAs for TGF-β1 (A) and TGF-β2 (B) secretion by balding and occipital DPCs cultured at 2% and 21% oxygen. 
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3.3.7 Effect of oxygen on DKK-1 secretion by cultured DPCs 

DKK-1 is another growth factor used as a marker of catagen, therefore the effect of 

different oxygen conditions on DKK-1 secretion was measured using an ELISA. 

Figure 3.9 shows that with 2% oxygen conditions there was no significant difference 

in DKK-1 secretions between balding and occipital DPCs. However, at 21% oxygen 

DKK-1 secretions were significantly higher in balding DPCs (323 pg/ml) compared 

to occipital DPCs (217 pg/ml)(P < 0.05). Notably there was not a significant change 

in DKK-1 secretion by either balding or occipital DPCs when comparing between 

oxygen states, but rather a trend towards a raise in secretion in the balding and a 

reduction in secretion by the occipital which resulted in the significant difference 

overall at 21% oxygen. 

  



120 

 

 

 

2%
 o

xy
ge

n

21
%

 o
xy

ge
n

0

100

200

300

400

Occ
Bald

D
K

K
-1

 s
ec

re
tio

ns
 n

g/
m

l

 

Figure 3.9: ELISA for DKK-1 secretion by balding and occipital DPCs cultured 

at 2% and 21% oxygen. DPCs (2x103 per well) were cultured for 24 h at 2% or 

21% oxygen. The culture media were then analysed for DKK-1 secretion by ELISA. 

Measurements were carried out in duplicate in 3 separate patients. Statistical analysis 

was carried out using one-way ANOVA; * P < 0.05, NS P > 0.05; Results presented 

as the mean ± S.E.M. for n = 3 (matched DPC samples from 3 different patients). 

Figure 11Figure 3.9: ELISA for DKK-1 secretion by balding and occipital 

DPCs cultured at 2% and 21% oxygen. 
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3.3.8 Effect of oxygen on IGF-1 secretion by cultured DPCs 

IGF-1 is a growth factor associated with the initiation of the anagen growth phase, 

stimulating the proliferation of the follicular epithelial cells, therefore the effect of 

different oxygen conditions on DKK-1 secretion was measured using an ELISA. 

Figure 3.10 shows that at 2% oxygen conditions occipital DPCs secreted a higher 

concentration of IGF-1 (347 pg/ml) compared to those cultured at 21% (187 

pg/ml)(P < 0.01). Figure 3.10 also there was a significant, though not as pronounced 

increase in IGF-1 in the balding DPCs cultured at 2% oxygen (257 pg/ml) compared 

to those cultured at 21% oxygen (172 pg/ml) (P < 0.05). Overall the occipital DPCs 

were shown to secrete a significantly higher concentration of IGF-1 than balding 

DPCs at 2% oxygen (P < 0.05), but no significant difference was observed at 21% 

oxygen. 
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Figure 3.10: ELISA for IGF-1 secretion by balding and occipital DPCs cultured 

at 2% and 21% oxygen. DPCs (2x103 per well) were cultured for 24 h at 2% or 

21% oxygen. The culture media were then analysed for IGF-1 secretion by ELISA. 

Measurements were carried out in duplicate in 3 separate patients. Statistical analysis 

was carried out using one-way ANOVA; * P < 0.05, ** P < 0.01, NS P > 0.05; 

Results presented as the mean ± S.E.M. for n = 3 (matched DPC samples from 3 

different patients). 

Figure 12Figure 3.10: ELISA for IGF-1 secretion by balding and occipital 

DPCs cultured at 2% and 21% oxygen. 
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3.4 Discussion 

The findings reported in this chapter highlight two major differences in DPCs with 

regards to proliferation and senescence. Firstly; as previously reported by our group, 

balding DPCs proliferate at a slower rate and senesce after fewer passages compared 

to occipital DPCs (Bahta et al., 2008). Secondly; it was found that low oxygen 

culture was able to increase proliferation rate of both balding and occipital DPCs as 

well as delay their senescence. This finding supports previous reports showing that 

low oxygen culture was able to delay the onset of senescence in human diploid 

fibroblasts (Chen et al., 1995, Chen et al., 2000, Chen, 2000). 

Though many steps may be taken to replicate the in vivo hair follicle 

microenvironment in an in vitro model, there are numerous shortcomings which 

impede the overall health of the DPCs. One such limitation is the cells’ exposure to 

oxygen which is harmful to cells at atmospheric (21%) levels (Davies, 1995). In the 

case of the cells of the dermal papilla’s microenvironment the normal physiological 

partial pressure of oxygen ranges somewhere between 1-6% (Wang, 2003), while 

standard cell culture takes place at normal atmospheric levels of 21% oxygen. 

Carbon dioxide levels were identical in both incubators (5%), while nitrogen 

effectively accounts for the total remaining air in both. For this study, this affords us 

an effective model – wherein the normal cell culture conditions at 21% acts as an 

oxidative stress condition compared to the more physiologically comparable 

environment of 2% oxygen. This method also allows us to investigate and 

characterise the use of 2% oxygen for DPCs culture – a method which is yet to be 

tested for research or clinical use. 
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One major observation with regards to differences between balding vs. occipital and 

21% vs 2% oxygen is ability of cultures to form pseudopapillae. Balding DPCs grow 

in a disorganised pattern, while the occipital DPCs arrange into clusters. Of the 

occipital DPCs, it is only those grown at 2% oxygen, which form raised 

pseudopapillary structures indicative of the maintenance of the DPC’s in vivo 

properties (Almond-Roesler et al., 1997).  

With regards to the cellular morphology and arrangement of the DPCs, 

pseudopapillae formation is indicative of the in vitro DPCs resemblance of their in 

vivo morphology via their maintenance of cell surface to extracellular matrix (ECM) 

interaction proteins integrins beta 1, alpha 1, and alpha 5 (Almond-Roesler et al., 

1997). Expression of these integrins appears to be imperative to the DPCs’ function, 

as dermal fibroblasts (DF) from the skin lack expression and fail to form 

pseudopapillae as a result. Furthermore, it has been shown that pseudopapilla 

formation is associated with expression of alkaline phosphatase (Almond-Roesler et 

al., 1997), Alkaline phosphatase is an established marker for cell viability as well as 

a vital component for de novo follicle induction by in vitro DPCs (McElwee et al., 

2003). These findings further support the hypothesis that 2% oxygen helps maintain 

viability of the DPCs and that occipital DPCs have a functional advantage over 

balding DPCs under cell culture conditions. 

Loss of proliferative capacity and a flattened morphology are both indicators of 

cellular senescence. Therefore, senescence in the DPCs was measured using the 4-

MU-Gal assay (Gary and Kindell, 2005). This assay showed that either balding or 

occipital DPCs taken at passage 6 from 2% oxygen (whether maintained there for the 

whole span of their cell culture or merely transferring them during their late passage) 

would exhibit a low level (0.18 R.F.U. ± 0.006) of SA-β-Gal activity. This suggests 



125 

 

that 2% oxygen can both prevent as well as rescue DPCs from senescence during 

later passage.  

Occipital DPCs exhibited higher levels of SA-β-Gal activity (0.66 R.F.U. ± 0.06), 

though there was no significant difference between those which were either cultured 

constantly at 21% oxygen or transferred to 21% oxygen at later passage. 

Interestingly, balding DPCs which were cultured at 2% oxygen during early passage 

but were then transferred to 21% oxygen exhibited a higher level of SA-β-Gal 

activity (1.17 R.F.U. ± 0.19) compared to balding DPCs grown at 21% oxygen for 

the entire duration of their cell culture (0.8 R.F.U. ± 0.003). It has been previously 

reported that although cells grown under low oxygen have a lower accumulation of 

oxidative damage, they are in fact more sensitised to acute changes in oxygen, either 

via alteration of their oxygen environment or through treatment with hydrogen 

peroxide (H₂O₂) (Davies, 1999). In turn cells grown at 21% oxygen, adapt 

accordingly via upregulation of antioxidants which protect them from entering 

premature senescence. The data presented here would suggest that the occipital 

DPCs are more adaptive than the balding DPCs to a change in from 2% to 21%. 

To compliment these findings the protein modulators of stress induced senescence 

were examined. Using immunocytology, it was found that expression of p16INK4a and 

pRB – established markers of stress-induced senescence (Chen, 2000) – was higher 

in balding DPCs cultured at 21% oxygen conditions compared with passage-matched 

samples grown at 2% oxygen conditions. This showed an inverse correlation with 

expression of BMI-1 – a polycomb transcriptional regulator of p16INK4a, whose 

expression was maintained for longer in balding DPCs cultured at 2% oxygen 

conditions.  
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Conversely, balding DPCs grown at 21% oxygen exhibited strong positive staining 

for both P16INK4A and pRB and showed loss of BMI-1 expression. Furthermore, 

BMI-1 staining was shown to be maintained at high levels in occipital DPCs under 

both oxygen conditons. 

These findings correlate with the quantitative analysis of senescence levels as 

measured using the 4-MU-Gal supporting to our group’s previous finding of the 

senescence in balding DPCs being a stress-induced, P16INK4a associated phenomenon 

(Bahta et al., 2008). Furthermore, these findings are indicative of the fact that 

P16INK4A and pRB are exaserbated by oxidative stress, with the balding DPCs 

demonstrated a higher sensitivity. 

An important consideration for these findings is that the dermal papilla in vivo is not 

a notably proliferative sub-cellular compartment. Indeed when compared to the 

epithelial keratinocytes whose cell number fluctuates as the result of rapid 

proliferation during anagen (Stenn and Paus, 2001) and apoptosis during catagen 

(Lindner et al., 1997) the number of cells within the DP is relatively stable during 

the hair follicle growth cycle and the majority of fluctuations in cell number is 

thought to be accounted for by migration fibroblasts to and from the peripheral CTS 

(Tobin et al., 2003).  

Despite this, the dermal papilla still undergoes marked morphological transformation 

during the hair cycle (Tobin et al., 2003). Furthermore, the morphology of the 

balding dermal papilla (small, rounded) in vivo is easily distinguished from that of its 

healthy occipital counterpart (large, “pear”-shaped) (Miranda et al., 2010). 
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The key changes that occur in the remodelling of the dermal papillae occur as the 

result of altered an altered extracellular matrix (Messenger et al., 1991b) and 

migration of the DPCs to and from the adjacent CTS (Tobin et al., 2003). 

However, under in vitro conditions the DPCs can be rapidly explanted and expanded 

(Jahoda and Oliver, 1981) at proliferation rates different to their behaviour in vivo. 

This divergence is largely overlooked and in fact it is widely held fact that high 

proliferation rates equate to healthy, viable cells.  

As well as demonstrating the cause of balding DPCs senescence, the up-regulation of 

P16INK4a and pRB is also of functional importance. pRB has been shown to be a 

crucial regulator of growth factor secretion in human fibroblasts (Frippiat et al., 

2001). Hence, there is a concomitant induction of senescence with an alteration in 

the cells’ growth factor secretions.  

A key function of DPCs which is seen in both in vivo and in vitro conditions is the 

secretion of growth factors. The induction of catagen thought to occur via the 

secretion of TGF-β isoforms (Foitzik et al., 2000). Studies using the treatment of 

androgen analogue R-1881 on balding DPCs caused an increase in both TGF-β1 

(Inui et al., 2003) and TGF-β2 (Hibino and Nishiyama, 2004) secretions. The major 

endogenous androgen responsible for mediating function in the dermal papilla is 

DHT. For these experiments, when quantifying TGF-β secretions, DPCs were tested 

in the presence and absence of 1 or 100 nM of DHT. 

It was demonstrated that, through modifying the DPCs’ oxygen environment, it is 

possible to regulate TGF-β1 and -β2 when stimulated with DHT (1, 100 nM). 

Balding DPCs secrete increased TGF-β1 and -β2 when stimulated with 100 nM at 

21% oxygen conditions, concurring with previous findings by other groups (Inui et 
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al., 2003, Hibino and Nishiyama, 2004). Culturing the balding DPCs at 2% oxygen 

was able to negate any increase in DHT-stimulated TGF-β2 secretion (no significant 

difference between vehicle control and DHT treated cells). Even more notably, 

balding DPCs cultured at 2% oxygen exhibited a reduced secretion of TGF-β1 as 

compared to the vehicle control, with the higher dose of DHT (100 nM) conferring a 

greater decrease in secretion. 

Occipital DPCs secrete also demonstrated an increase in TGF-β1 and TGF-β2 when 

stimulated with 100 nM at 21% oxygen conditions. Conversely, the lower dosage of 

DHT (1 nM) conferred a decrease in TGF-β1 secretion. Culturing the occipital DPCs 

at 2% oxygen was able to negate any increase in DHT-stimulated TGF-β2 secretion 

(no significant difference between vehicle control and DHT treated cells).  A 1 nM 

dose of DHT caused a decrease in TGF-β1 secretion regardless of the oxygen 

environment, however with the 100 nM dosage of DHT occipital DPCs at 21% 

oxygen saw an increase in TGF-β1 secretion while at 2% oxygen TGF-β1 secretion 

decreased. 

Taken together these findings suggest that DHT-stimulated TGF-β secretion can be 

viewed as a form of stress-response when DPCs are under the oxidative-stress 

inducing environment of 21% oxygen. Simultaneously, 2% oxygen is able to negate 

or even reduce TGF-β secretion in an isoform specific manner in the presence of 

DHT. TGF-β is secreted as a stress-response to oxidative stress in a number of other 

pathophysiological mechanisms, such as pulmonary fibrosis  (Cui et al., 2011) heart 

disease (Yeh et al., 2011) or photo-ageing of the skin (Debacq-Chainiaux et al., 

2005). 
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DKK-1 is also instrumental in regulating catagen (Kwack et al., 2012). For both 

occipital and balding DPCs changing the oxygen conditions exerted no significant 

change in DKK-1 secretion. Moreover, at 2% oxygen, there was no significant 

difference in DKK-1 secretion. However, at 21% oxygen balding DPCs secreted 

significantly higher levels of DKK-1 compared to occipital DPCs. This demonstrates 

occipital DPCs lower proclivity towards DKK-1 expression and secretion under a 

cell stress state, giving further evidence of catagen-inducing growth factors being 

secreted as a form of stress response. 

IGF-1 is an established stimulus for ORS keratinocyte growth (Batch et al., 1996). In 

this chapter it was shown that at 2% oxygen, IGF-1 expression is higher in both 

occipital and balding DPCs, with a significantly higher secretion in the occipital 

DPCs. This demonstrates that occipital DPCs are conferred a greater advantage when 

under physiological conditions as IGF-1 helps to maintain the hair follicle in its 

anagen growth phase.  

These findings may go some way towards elucidating the paradoxical effects of the 

androgens on the DPCs wherein different growth factors are secreted by the dermal 

papilla in response to androgens depending on the hair follicle type (Randall, 2007). 

It is conceivable that in vivo the dermal papilla’s growth factor secretion is regulated 

according to the conditions of the tissue microenvironment. This model of balding as 

an oxidative-stress induced condition of senescence can be compared to the model of 

oxidative-stress induced ageing of the skin wherein the DF senesce, alter growth 

factor secretion and alter their surrounding ECM as a result of increased oxidative 

stress over time (Reed et al., 1994) (Debacq-Chainiaux et al., 2005). 
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There is also a potential molecular link between oxidative-stress induced senescence 

and growth factor secretion. Two possible pathways for pRB-mediated TGF-β 

upregulation have been shown. pRB is known to regulate the Sp-1 transcription 

factor (Udvadia et al., 1993) which is a TGF-β1 promoter (Geiser et al., 1993). pRB 

also mediates the E2F transcription factor which is both responsible for inducing 

cellular senescence mechanism as well as binding to the TGF-β1 promoter region 

(Thatikunta et al., 1997). It has been previously shown that H₂O₂-induced oxidative 

stress of fibroblasts causes a sustained overexpression of TGF-β1 via a pRB 

regulated pathway (Frippiat et al., 2001). Notably, these cells also senesce, in a pRB-

dependent manner as the result of the induced oxidative stress.  

In this chapter and in previous work by this group (Bahta et al., 2008) it has been 

demonstrated that balding cells secrete TGF-β1 and -β2 as well as expressing 

elevated pRB compared to occipital DPCs. Furthermore, it was demonstrated that 

culturing both occipital and balding DPCs at low oxygen reduced pRB expression 

and could either negate or reduce TGF-β1 or -β2 secretion. There is therefore 

evidence of a concomitant induction of senescence with an upregulation of TGF-β 

isoforms in the DPCs, however further work must be carried out to confirm whether 

pRB confers the mediation of TGF-β promoters. 

In summary, we confirm the previous finding that balding DPCs proliferate slower 

and senesce more rapidly than occipital DPCs. Furthermore it was found that low 

oxygen was able to increase proliferation and delay senescence in both balding and 

occipital DPCs. Switching cells to 21% oxygen caused senescence after just two 

passages in both balding and occipital DPCs, with a more pronounced effect seen in 

the balding DPCs, indicating a higher sensitivity to oxidative stress. Low oxygen 

caused cells to form in clustered formations and in the case of occipital DPCs, form 
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pseudopapilla. Levels of senescence correlated with pRB and P16INK4a expression 

at the protein level as well as in cytochemical analysis. This expression demonstrated 

an inverse expression pattern to BMI-1 expression. Oxygen conditions were also 

shown to modulate growth factor secretions with low oxygen, negating or lowering 

DHT-stimulated TGF-β1 and -β2 secretions. Low  oxygen also induced an increase 

in IGF-1 secretion in both balding and occipital DPCs.  
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Chapter 4 

Effect of oxygen on dermal papilla ROS levels 

and antioxidant response 
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4.1 Introduction 

Oxidative stress can cause deleterious effects to cells, causing protein misfolding, 

altering cellular signal transduction and causing DNA double strand breaks (Finkel 

and Holbrook, 2000). The mitochondria are a major source of oxidative stress 

(Turrens, 1997). Reactive oxygen species (ROS) are formed as a bi-product of the 

oxidisation reactions which occur in the electron transport chain (ETC) of the 

mitochondria. Inefficient activity in the ETC leads to “leakage” of electrons either 

via cytochrome bc1 or nicotinamide adenine dinucleotide dehydrogenase (Turrens, 

1997) which react with oxygen molecules to form superoxide. Superoxides cause a 

chain reaction of highly volatile molecules containing one or more unpaired 

electrons. The altered charge on the molecules can then result in malformed protein 

conformations, with a resultant loss of function.  

In vivo, multicellular organisms are able to respond to elevated levels of ROS 

through upregulated expression of antioxidant proteins and peptides, however this 

response is gradually lost as a result of the ageing process (reviewed in(Wei et al., 

2001).  Our group has previously shown that balding DPC exhibit a higher 

expression of stress-response proteins including heat shock protein 27 (HSP27), 

super oxide dismutase 1 (SOD1) and catalase (Bahta et al., 2008). 

Catalase and glutathione are two critical components in which protect cells from the 

deleterious effects of ROS production. Catalase is responsible for the enzymatic 

conversion of H₂O₂ into H₂O and O₂ and as such is critical for the reduction of 

superoxides from the cell (Lin et al., 1995). Active glutathione (GSH) is a reduced 

sulfhydryl-containing peptide, which can be oxidised to form a homo-dimer – 

reduced glutathione disulphide (GSSG). This oxidation process requires a free 
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electron, which it may accept from the unpaired, free-radical electron from a ROS 

(Maher, 2005). GSSH can be recycled to form two new GSH molecules via the 

enzyme glutathione reductase. Therefore the most important factor in glutathione 

metabolism is the active fraction of GSH. 

The previous chapter demonstrated that balding DPCs enter senescence more rapidly 

compared to occipital DPCs, and alter their growth factor secretory function when 

cultured at 21% oxygen compared to 2% oxygen. 

As discussed in Chapter 3, the dermal layer of the skin which surrounds the 

proximal tip of the hair follicle is typically exposed to lower concentrations of 

oxygen (1-6%) (Wang, 2005) as compared to the normoxic levels of oxygen (20%) 

used in DPC cell culture (Messenger, 1984).  

As discussed in chapter 3, the DHT-TGF-β axis has been proposed as a possible 

mechanism in the pathology of AGA (Inui et al., 2002). Both DHT (Pathak et al., 

2008, Lee et al., 2008) and TGF-β (Senturk et al., 2010, Rhyu et al., 2005) are well 

established mediators of cellular redox homeostasis. To date no reports have been 

published examining the relative ROS levels within the balding and occipital DPCs 

or the effects of DHT and TGF-β on ROS and antioxidants in DPCs. 
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4.2 Aim 

To investigate the levels of ROS and the antioxidants catalase and glutathione in 

human DPCs from balding and occipital (non-balding) scalp in response to oxygen 

environment and in response to exogenous DHT and TGF-β. 
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4.3 Results 

4.3.1 Effect of H₂₂₂₂O₂₂₂₂ on ROS levels in cultured DPCs 

In order to test the effectiveness of the dichlorodihydrofluorescein diacetate 

(H₂DCFDA) assay and to determine whether oxidative stress could be induced in 

balding DPCs. DPCs were treated with acute dosages (0, 10, 100 and 1000 µM) of 

hydrogen peroxide (H₂O₂) for 30 min. Figure 4.1 shows the relative levels of ROS 

in balding DPCs. A low concentration of H₂O₂ (10 µM) exerted no change in ROS 

levels above the basal level measured with a DPBS vehicle control. At 100 µM 

H₂O₂ was able to induce a 4.14 fold increase in ROS levels (P < 0.05). A higher 

concentration of 1000 µM H₂O₂ was also tested, but this concentration caused cells 

to lose adherence from the well plate, therefore this dosage was deemed too toxic for 

DPCs. Therefore, the H₂DCFDA assay was established as being an effective means 

of measuring ROS production under oxidative stress conditions. 
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Figure 4.1: H₂₂₂₂DCFDA assay measuring levels of intracellular ROS in balding 

DPC in response to H₂₂₂₂O₂₂₂₂.  DPCs were treated with an acute dose of H₂O₂ for 30 

minutes prior to the ROS assay prior to incubating the H₂DCFDA dye 1 h. 

H₂DCFDA fluorescence was quantified on a heated (37°C) multiwell plate reader 

with relative fluorescent units (R.F.U.) being measured at 5 minute intervals over 30 

minutes. Figures show data expressed as R.F.U./min. Statistical analysis was carried 

out using Student’s t test; * P < 0.05; results presented as the mean ± S.E.M. for n = 

3 (matched DPC samples from 3 different patients). 

  

Figure 13Figure 4.1: H₂DCFDA assay measuring levels of intracellular ROS in 

balding DPC in response to H₂O₂. 

* 
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4.3.2 Effect of oxygen and passaging on ROS levels in the balding and occipital 

DPCs 

In order to determine the basal levels of ROS within the balding and occipital DPCs, 

the H₂DCFDA assay was conducted in DPCs cultured at both 2% and 21% oxygen. 

Measurements were also taken over progressive passages in order to confirm 

whether oxidative stress had a cumulative effect over the lifespan of the DPC 

cultures. DPCs were assayed from passage 3 onwards as the volume of cells required 

for the assay could not be met by cells at passage 2. 

 Figure 4.2 shows that at early passage there was no statistically significant 

difference between balding and occipital DPCs cultured at either 2% or 21% oxygen 

(P3). There was however a 1.98 fold increase (0.276 to 0.449 R.F.U./min) in the 

level of ROS in the balding DPCs grown at 21% oxygen (P < 0.01) as well as a 2.21 

fold increase (0.245 to 0.517 R.F.U./min) in the level of ROS in the occipital DPCs 

grown at 21% oxygen (P < 0.01). 

At late passage (P4) there was a 3.25 fold increase (0.088 to 0.263 R.F.U./min) in the 

levels of ROS in balding DPCs compared with occipital DPCs cultured at 2% 

oxygen (P < 0.001) as well as a 0.27 fold increase (0.592 to 0.793 R.F.U./min) in the 

levels of ROS in balding DPCs compared with occipital DPCs cultured at 21% 

oxygen (P < 0.01). There was also a 3.12  fold increase (0.263 to 0.793 R.F.U./min) 

in the level of ROS in the balding DPCs grown at 21% oxygen compared to those 

cultured at 2% oxygen (P < 0.001) as well as a 7.63 fold increase (0.88 to 0.592 

R.F.U./min) in the level of ROS in the occipital DPCs grown at 21% oxygen 

compared to those cultured at 2% oxygen (P < 0.0001). 
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At late passage (P5) there was a 0.33 fold increase (0.9 to 1.194 R.F.U./min) in the 

levels of ROS in balding DPCs compared with occipital DPCs cultured at 21% 

oxygen (P < 0.01). There was no significant difference in ROS levels between 

balding and occipital DPCs cultured at 2% oxygen. There was also a 0.64  fold 

increase (0.687 to 1.194 R.F.U./min) in the level of ROS in the balding DPCs grown 

at 21% oxygen compared to those cultured at 2% oxygen (P < 0.01) as well as a 0.37 

fold increase (0.635 to 0.9) in the level of ROS in the occipital DPCs grown at 21% 

oxygen compared to those cultured at 2% oxygen (P < 0.01). 

The results of these experiments show that oxygen stimulates an increase in ROS in 

both balding and occipital DPCs. However, with the exception of early passage (P3) 

cells the increase in ROS is much higher in balding than occipital DPCs. 

These data also show a marked effect of cell passage on levels of ROS in both 

balding  and occipital DPCs. At 2% oxygen the increase in ROS is similar with 

increasing passage between balding and occipital DPCs. However, at 21% oxygen 

the difference in ROS levels is more marked between balding and occipital DPC at 

the later passages (P4, P5) with significantly higher levels of ROS in the balding 

DPC (P < 0.001). 

These data therefore show that balding DPC are more sensitive to oxygen than 

occipital DPC with regard to ROS production. 
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Figure 4.2: Levels of intracellular ROS in balding and occipital DPC over 

passage at 2% or 21% oxygen over passage 3, 4 and 5. ROS levels, as quantified 

using the H₂DCFDA assay, were conducted in balding and occipital DPCs cultured 

at 2% and 21% oxygen. Measurements were taken at each passage from P3 to P5. 

DPCs were incubated with media containing H₂DCFDA in the dark for 1 h. After 1 

h the cells were imaged on a heated (37°C) multiwell plate reader with fluorescence 

readings (R.F.U.) being taken at 5 minute intervals over 30 minutes. Figures show 

data expressed as R.F.U./min. Statistical analysis was carried out using Two-way 

ANOVA with Bonferroni post-test; ** P < 0.01, NS indicates P > 0.05; Results 

presented as the mean ± S.E.M. for n = 3 (matched DPC samples from 3 different 

patients). 

NS NS ** ** NS ** 

* * * Difference between 2% and 21% oxygen 

Difference between balding and occipital DPC 
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Figure 14Figure 4.2: Levels of intracellular ROS in balding and occipital DPC 

over passage at 2% or 21% oxygen over passage 3, 4 and 5. 

4.3.3 Effect of TGF-β1 on ROS levels in the balding and non-balding DPCs. 

TGF-β1 is an established mediator of catagen in the hair follicle (Foitzik et al., 

2000). It has also been indicated in the modulation of ROS in a range of different 

cell types (Senturk et al., 2010, Rhyu et al., 2005). Therefore intracellular ROS 

production in response to a supraphysiological dose of TGF-β1 (10ng/ml) was 

measured in balding and occipital DPCs. The findings are presented in Figure 4.3. 

Using two-way ANOVA analysis with Bonferroni post-test there was no significant 

change in ROS production in response to TGF-β1 compared to DPBS vehicle control 

in balding or occipital DPCs at either 2% or 21% oxygen. These data indicate that 

the modulatory effect of TGF-β1 on ROS production observed in other cell types is 

not applicable in DPCs. 

Two-way ANOVA analysis with Bonferroni post-hoc test indicated a significantly 

higher (P < 0.001) level of ROS in DPCs grown at 21% oxygen compared to those 

grown at 2% oxygen. Moreover, it was found that balding DPCs produced 

significantly higher levels of ROS compared to occipital DPCs at 21% (P < 0.05), 

but not 2% oxygen (P > 0.05). These data concur with that presented in Figure 4.2 

supporting the findings and acting as a positive control for the H₂DCFDA assay’s 

effectiveness. The two-way ANOVA indicated a non-significant (P > 0.05) 

interaction effect between the variables of oxygen condition and TGF-β1 treatment. 

  



142 

 

 

 

                 

Figure 4.3: ROS levels of in balding and occipital DPC in response to TGF-β1 at 

2% and 21% oxygen conditions. Using the H₂DCFDA assay, ROS-levels were 

measured in passage 3 balding and occipital DPCs in the presence or absence of 10 

ng/ml TGF-β1 at 2% (A) or 21% (B) oxygen. DPCs were incubated with TGF-β1 for 

1 h, following which H₂DCFDA dye was added to the media and cells were 

incubated at 37°C in the dark for 1 h. Cells were subsequently imaged on a heated 

(37°C) multiwell plate reader with fluorescence readings (R.F.U.) being taken at 5 

minute intervals over 30 minutes. Figures show data expressed as R.F.U./min. 

Measurements carried out in duplicate in samples from 3 different patients. 

Statistical analyses were carried out using two-way ANOVA between cell type with 

Bonferroni post-test; NS indicates no significant difference; Results presented as the 

mean ± S.E.M. for n = 3 (matched DPC samples from 3 different patients). 

Figure 15Figure 4.3: ROS levels of in balding and occipital DPC in response to 

TGF-β1 at 2% and 21% oxygen conditions. 
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4.3.4 Effect of DHT on ROS levels in the balding and non-balding DPCs 

DHT plays a critical role in the pathogenesis of AGA and is also an established 

modulator of ROS in androgen sensitive tissues such as mouse embryonic stem cells 

(Pathak et al., 2008, Lee et al., 2008). To date there have been no published reports 

investigating the effect of DHT on ROS levels in DPCs. To establish whether DHT 

also affected ROS production in DPCs balding and occipital DPCs were incubated 

with DHT (1, 100 nM) for 1 h and then internal ROS production was measured using 

H₂DCFDA. 

Using the two-way ANOVA with Bonferroni post-test Figure 4.4 shows that DHT 

caused no significant increase in ROS levels in occipital DPCs cultured at 2% 

oxygen, however DHT was able to induce a dose responsive decrease in ROS levels 

in balding DPCs cultured at 2% oxygen at 1 and 100 nM (P < 0.01 and P < 0.001, 

respectively). Figure 4.4 also shows that DHT did not induce an effect on ROS 

levels in either balding or occipital DPCs cultured at 21% oxygen. There was, 

however, a significant difference in ROS between balding and occipital DPCs and 

between cells grown at 2% or 21% oxygen.  

The two-way ANOVA indicated a significant difference (P  <  0.001) in the 

expression of ROS between both cell types when cultured at 2% or 21% oxygen, 

thus concurring with the data presented in Figure 3.2 showing oxygen conditions 

affected intracellular ROS levels. This finding also acts as a positive control for the 

H₂DCFDA assay’s effectiveness.  
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Figure 4.4: ROS levels of in balding and occipital DPC in response to DHT 

cultured at 2% and 21% oxygen. Using the H₂DCFDA assay, ROS-levels were 

measured in passage 3 balding and occipital DPCs with a treatment of 0, 1 or 100 

nM of DHT cultured at 2% (A) or 21% (B) oxygen. Measurements were taken at 

passage 3. DPCs were incubated with DHT for 1 h, following which H₂DCFDA dye 

was added to the media and cells were incubated at 37°C in the dark for 1 h. Cells 

were subsequently imaged on a heated (37°C) multiwell plate reader with 

fluorescence readings (R.F.U.) being taken at 5 minute intervals over 30 minutes. 

Figures show data expressed as R.F.U./min. Measurements were conducted in 

duplicate in samples from 4 different patients. Statistical analyses were carried out 

using two-way ANOVA with Bonferroni t-test between cell type; ** P < 0.01, *** P 

< 0.001; NS indicates no significant difference. Results presented as the mean ± 

S.E.M. for n = 4 (matched DPC samples from 4 different patients). 

Figu16Figure 4.4: ROS levels of in balding and occipital DPC in response to DHT cultured at 2% and 21% oxygen. 
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4.3.5 Catalase expression in balding and occipital DPCs cultured at 2% and 

21% oxygen   

Catalase is responsible for the enzymatic conversion of H₂O₂ into H₂O and O₂ and 

as such is critical for the reduction of superoxides from the cell (Lin et al., 1995).  

Densitometry analysis of the western blot in Figure 4.5 demonstrates that balding 

DPCs cultured at 2% oxygen express lower levels of catalase (0.4 A.U.) compared to 

those cultured at 21% oxygen (1.1 A.U) at early passage (P2). Similarly, the same 

figure also shows that occipital DPCs expressed only trace levels of catalase at 2% 

oxygen (< 0.1 A.U.) compared to those cultured at 21% oxygen (0.9 A.U). Occipital 

DPCs also expressed lower levels of catalase when compared to balding DPCs. From 

Figure 4.5 it can also be seen that catalase expression appears to plateau by late 

passage (P4), in both cell types, under both conditions (1.1-1.2 A.U.). 

These findings correlate with the data shown in Figure 4.2 demonstrating that higher 

catalase expression was observed in those cells which had a higher level of ROS 

i.e.:- balding DPCs or DPCs cultured at 21% oxygen. This suggests a homeostatic 

response of catalase to help regulate ROS; however it is important to note that 

despite catalase expression it appears to be unable to maintain ROS levels at those 

seen in the occipital DPCs. 

 

 

 

 



146 

 

 

 

 

Figure 4.5: Western blot analysis of catalase expression in occipital and balding 

DPCs cultured at 2% or 21% oxygen at passages 2 and 4. Protein was isolated 

from occipital and balding DPCs cultured for 3 days at 2% or 21% oxygen. DPCs 

were lysed using RIPA buffer, normalised according to total protein count via the 

Bradford assay and 20 µg of each lysate was run on a Sigma Nu-page 

electrophoresis gel. β-actin was used to confirm  equal protein loading. Densitometry 

values calculated using Image-J software for mean of all 3 blots expressed as a 

fraction of β-actin control presented below each lane. 

 

Figure 17Figure 4.5: Western blot analysis of catalase expression in occipital 

and balding DPCs cultured at 2% or 21% oxygen at passages 2 and 4. 

Catalase 

β-actin 

0.8 0.8 0.8 0.9 

1.0 1.0 1.0 1.0 

< 0.1 0.4 0.9 1.1 

1.1 1.1 1.1 1.2 
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4.3.6 Functional analysis of catalase in balding and occipital DPCs 

A functional catalase assay was used to further establish the difference in catalase 

expression in balding and occipital DPCs cultured at both oxygen conditions. In 

addition to this, based on the findings detailed in Figure 4.4 catalase activity in 

response to DHT (100 nM) was tested. Assays were conducted on early passage (P2) 

DPCs before the plateau effect observed in Figure 4.5 in order to detect the most 

biologically significant differences. 

Figure 4.6 shows catalase activity in was higher in balding DPCs (40.8 nM/min) 

compared to occipital DPCs (25.8 nM/min) cultured at 2% oxygen (P < 0.01). 

Catalase activity was also higher in balding DPCs (71.7 nM/min) compared to 

occipital DPCs (47.3 nM/min) cultured at 21% oxygen (P < 0.01). Overall catalase 

activity was higher in both balding and occipital DPCs when cultured at 21% oxygen 

compared to 2% oxygen (P < 0.01 for both cell types). These data concur with the 

western blot analysis shown in Figure 4.5 confirming that increased catalase 

expression directly correlates with its increased activity. 

DPCs were treated with DHT (100 nM) at either 2% or 21% oxygen. Figure 4.6 

shows that DHT was able to increase catalase activity in DPCs grown at 2% oxygen. 

Balding DPCs saw an increase in catalase activity from 40.8 nM/min in control 

treated cells to 61.9 nM/min when treated with DHT (100 nM) (P < 0.01). Similarly, 

occipital DPCs saw an increase in catalase activity from 25.8 nM/min in control 

treated cells to 38.5 nM/min when treated with DHT (100 nM) (P < 0.01). DHT (100 

nM) exerted no significant effect (P > 0.05) on balding or occipital DPCs when 

cultured at 21% oxygen.  
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These data taken with the findings in Figure 4.4, wherein it was shown that DHT 

could reduce ROS production in balding DPCs cultured at 2% oxygen, indicate DHT 

as having a role in protecting the balding DPCs from oxidative stress via modulating 

catalase and its resultant antioxidative function. 
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Figure 4.6: Activity of catalase in balding and occipital DPC cultured at 2% 

and 21% oxygen in response to DHT (100 nM).  

Balding and occipital DPCs cultured at 2% or 21% oxygen were pre-treated with 

0.001% (v/v) ethanol vehicle control or DHT for 1 h. Cells were subsequently lysed 

and normalised by Bradford total protein assay and measured for catalase activity 

using Amplex Red assay. Experiments were carried out in duplicate on DPCs from 3 

separate patients. Statistical analyses was carried out using two-way ANOVA with 

Bonferroni post-test; * P < 0.05, ** P < 0.01; Results presented as the mean ± 

S.E.M. for n = 3 (matched DPC samples from 3 different patients). 

Figure 18Figure 4.6: Activity of catalase in balding and occipital DPC cultured 

at 2% and 21% oxygen in response to DHT (100 nM). 

 

** * NS NS 

** ** Difference between balding and occipital DPC 

Difference between control and DHT-treated 
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4.3.7 Functional analysis of glutathione in balding and occipital DPCs at 2% 

and 21% oxygen 

Glutathione plays a critical role in the elimination of ROS within all cell types 

(Maher, 2005). Using the 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB) reaction assay 

(see Chapter 2) total glutathione, and its respective fractions of its reduced and 

oxidised forms (GSH + GSSG), was quantified in balding and occipital DPCs 

cultured at 2% and 21% oxygen. Figure 4.7 shows the reduced and oxidised 

glutathione concentrations in balding and occipital DPCs cultured at 2% oxygen 

were not significantly different (P > 0.05). Balding DPCs cultured at 21% saw a 

significantly increased expression of total glutathione (3.413 µM) compared to 

occipital DPCs (2.72 µM) (P < 0.001). However, the fraction of total glutathione 

which was in its active reduced form (GSH) was significantly lower in balding DPCs 

(0.743 µM) compared to occipital DPCs (0.914 µM) (P < 0.05).  

The overall trend in these data can be best analysed by observing the relative fraction 

of active glutathione (GSH) as presented in Table 4.1. Although culture at 2% 

oxygen confers a lower expression of total glutathione (2.304 µM in both occipital 

and balding DPCs) the overall fraction of active GSH to oxidised GSSG remains 

relatively high for occipital (41.1%) and balding (36.7%) DPCs. Comparatively, 

GSH to GSSG fractions are much lower when DPCs are cultured at 21% oxygen, 

with occipital DPCs exhibiting 33.5% GSH and balding DPCs exhibiting an even 

lower 21.8% GSH.  
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Figure 4.7: Total glutathione concentration showing reduced (GSH) and 

oxidised (GSSG) fractions in balding and occipital DPC cultured at 2% and 

21% oxygen.  

Balding and occipital DPCs cultured at 2% or 21% oxygen were lysed and 

normalised by Bradford total protein assay and measured for total glutathione 

concentration using the DTNB assay. Experiments were carried out in duplicate on 

DPCs from 3 separate patients. Statistical analyses was carried out using Student’s t 

test; * P < 0.05, *** P < 0.001, NS P > 0.05; Results presented as the mean ± S.E.M. 

for n = 3 (matched DPC samples from 3 different patients). 

 

Figure 19Figure 4.7: Total glutathione concentration showing reduced (GSH) 

and oxidised (GSSG) fractions in balding and occipital DPC cultured at 2% and 

21% oxygen. 
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Total Glutathione 

GSH+GSSG 

(µM) 

 

Reduced 

Glutathione 

GSH 

(µM) 

 

Oxidised 

Glutathione 

GSSG 

(µM) 

 

Active 

Glutathione 

Fraction 

GSH:Total 

Occ 2% 2.304 ± 0.12 0.948 ± 0.14 1.356 ± 0.03 41.1% 

Bald 2% 2.304 ± 0.09 0.846 ± 0.11 1.458 ± 0.04 36.7% 

Occ 21% 2.727 ± 0.12 0.914 ± 0.19 1.813 ± 0.01 33.5% 

Bald 21% 3.413 ± 0.2 0.743 ± 0.25 2.67 ± 0.35 27.7% 

Table 4.1: Relative fractions of reduced/oxidised glutathione in balding and 

occipital DPCs at 2% and 21% oxygen. Data from Figure 4.7 presented in table 

form to highlight the relative ratios of active glutathione between balding and 

occipital DPCs at 2% and 21% oxygen. 

Table 6Table 4.1: Relative fractions of reduced/oxidised glutathione in balding 

and occipital DPCs at 2% and 21% oxygen. 
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4.4 Discussion 

Standard laboratory cell culture conditions grow cells in an atmosphere of 5%-10% 

CO2 and air. Under such conditions the oxygen concentration is 21%. However, in 

the dermal layer of the skin, where the dermal papilla is located, the oxygen 

concentration is between 1 and 5%, dependent on the proximity to the blood supply 

of the capillary network of the sub-papillary plexus and the highly vascularise hair 

follicles (Wang et al., 2003, Wang et al., 2005). Therefore, under standard laboratory 

conditions, DPCs are not cultured at their physiological oxygen concentration and 

this could promote a stress phenotype (Davies, 1995). 

The data in this chapter show that 21% oxygen and progressive passaging both 

significantly increase the levels of ROS in DPCs. Most importantly, the data 

demonstrate that balding DPCs produce more ROS under both oxygen conditions 

compared to occipital DPCs, with a more pronounced effect seen at 21% oxygen. 

Oxidative stress is the most probable cause of the increased stress-related senescence 

seen in the balding DPCs at 21% oxygen conditions, as demonstrated in the Chapter 

3. Other groups have demonstrated the link between oxidative stress and senescence 

in other types of fibroblast cells. Under atmospheric cell culture, IMR-90 fibroblasts 

have been shown to senesce after fewer passages than those grown under low 

oxygen (Chen et al., 1995). In addition, hyperoxia (40% oxygen) induced rapid 

senescence in lung fibroblasts (von Zglinicki et al., 1995) similar to the senescence 

inducing effect seen with an acute concentration of H₂O₂ (Frippiat et al., 2002).  

Our group has previously shown that the increased sensitivity to oxidative stress in 

balding DPCs was associated with higher expression of stress response proteins 

including catalase (Bahta et al., 2008). Catalase is involved in the mitigation of 
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oxidative stress, conferring a cell protective effect against oxidative stress (Bai et al., 

1999). The data in this chapter further confirm these findings, showing catalase 

expression and activity is higher in balding DPCs compared to occipital DPCs, and 

that its expression and activity is reduced at 2% oxygen relative to 21% oxygen in 

both balding and occipital DPCs. This reduced catalase activity occurs in 

conjunction with the reduced ROS levels seen at 2% oxygen and in occipital DPCs 

demonstrating catalase as an important stress-response protein in the DPCs.  

Catalase has been found to play an important role in hair follicle ageing within the 

melanocytes (Kauser et al., 2010). For example greying hair follicles have a lower 

expression of catalase compared to healthy, pigmented follicles (Wood et al., 2009). 

These data contrast with the findings shown in this chapter, where the catalase 

expression is higher in the balding DPCs. This potentially highlights a fundamental 

difference between the relative pathogeneses of graying and balding. In balding 

follicles the stress response is active, but may not be able to cope with the higher 

levels of ROS being produced. In greyness this stress response is already lost. 

TGF-β1 is known to be important in hair follicle growth cycling (Foitzik et al., 

2000). TGF-β isoforms are also known regulators of ROS production in various cell 

types, such as hepatocyte carcinoma (Senturk et al., 2010) lung fibroblasts (Cui et 

al., 2011) or renal epithelial cells (Rhyu et al., 2005). It has also been found that 

DPC secreted growth factors were able to act upon the DPC itself in autocrine 

regulatory manner (Hamada and Randall, 2006). Therefore TGF-β1 was 

exogenously applied to DPCs cultured at 2% and 21% oxygen to determine whether 

they affected ROS production. The data presented here show that TGF-β1 does not 

induce an effect on ROS production in the DPCs. It is important to note that DPCs 
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were only exposed to TGF-β1 for 1 hour and a longer exposure may be required to 

observe an effect. 

DHT is an established agonist of the dermal papilla cells (Inui et al., 2002). 

Androgen receptors are found in balding and occipital DPCs, with balding cells 

expressing a higher number of receptors (Hibberts et al., 1998). DHT’s action as an 

inhibitor of ROS production has been demonstrated in murine embryonic stem cells 

(Pathak et al., 2008, Lee et al., 2008). The data in this chapter indicate a novel role 

for DHT in the DPC wherein ROS production was reduced in a dose-response 

manner in the balding DPCs. This function was also associated with an upregulation 

of the antioxidant enzyme catalase in response to DHT in both balding and occipital 

DPCs. This effect was only observed when cells were cultured at 2% oxygen and not 

21% oxygen. All previous studies of DHT on DPCs in vitro have been conducted at 

21% oxygen suggesting this effect is prevented under high levels of oxygen.  

One potentially important observation in this chapter is that normal cell culture 

conditions of 21% oxygen may mask the beneficial effects of DHT reducing ROS in 

balding DPCs. A similar action with regards to DHT inhibiting ROS has also been 

observed in murine embryonic stem cells ((Pathak et al., 2008, Lee et al., 2008). In 

Chapter 3 it was demonstrated how different oxygen conditions could significantly 

modulate the secretory output in balding and occipital DPCs. Here we see another 

example of altered function within the DPCs under low oxygen whereby low oxygen 

enables DHT to stimulate upregulation of catalase potentially resulting in a further 

reduction of ROS levels. This highlights a potential positive feedback loop wherein 

DPCs whose microenvironment confers a reduction in ROS levels can maintain 

these low levels through further DHT stimulation. This effect would then be lost in 
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cells whose microenvironment conferred a higher ROS build up, for example the 

DPCs of the poorly vascularised balding scalp. 

DHT also promoted catalase activity in occipital DPCs cultured at 2% oxygen, 

however unlike balding DPCs this was not associated with a reduction of ROS 

levels. The next step to elucidating DHT’s role in ROS regulation would be to 

analyse androgen sensitive follicles from the beard, pubis or axillary to determine 

whether catalase and ROS are regulated via the same DHT-dependent mechanism. 

Regulating ROS within the cell is a tightly controlled homeostatic equilibrium that 

plays a major role in intracellular signalling (Ray et al., 2012). For example ROS can 

cause the upregulation of HSP27 and ATM both of which, as well as acting to 

mitigate cell damage by protein misfolding, as in the case of HSP27 (Mymrikov et 

al., 2011), or DNA double-strand breaks, in the case of ATM (Hawkins et al., 2011), 

concomitantly act as intracellular signalling modulators themselves.  

In this chapter it has been demonstrated that glutathione, is also regulated by oxygen 

conditions along with different levels of expression between balding and occipital 

DPCs. Glutathione can also act as an intracellular signalling molecule, affecting 

transcription via a number of mechanism (Maher, 2005). 

Glutathione is upregulated at 21% oxygen compared to 2% oxygen conditions, in a 

similar manner to catalase, and a significantly higher expression is seen in balding 

DPCs compared to occipital DPCs at 21% oxygen. However, the fraction of 

glutathione which remains in its active, reduced form (GSH) is significantly lower in 

balding DPCs compared to occipital DPCs cultured at 21% oxygen. The oxidised 

form of glutathione (GSSG) can be recycled to GSH via the enzyme glutathione 

reductase (Maher, 2005). Therefore glutathione reductase is the critical rate-
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determing step dictating the levels of GSH in the cells and is a more accurate 

indicator of the cells’ ability to regulate ROS (Maher, 2005). 

Active GSH also regulates intracellular signalling by blocking the promoter binding 

sites of AP-1 and SP-1 (Vayalil et al., 2007). SP-1 is a known target of the androgen 

receptor and binding between them can be blocked with glutathione (Curtin et al., 

2001). GSSG does not affect the same pathways as GSH therefore the relative 

balance between these two oxidative states may confer in glutathione the ability to 

act as a ROS sensitive signal modulator. There is therefore scope for further 

examination of the role of GSH signalling and whether it is able to modulate DHT 

signalling. Notably, TGF-β can auto-induce the transcription of itself via the AP-1 

and SP-1 promoters via the intracellular Smad signalling (Geiser et al., 1993, Van 

Obberghen-Schilling et al., 1988), the potential relevance of which is explored 

further in Chapter 5. 

In summary, at low oxygen the levels of ROS in both balding and occipital DPCs are 

reduced. Balding DPCs exhibit a consistently higher level of ROS compared to 

occipital DPCs, however they also appear to be more responsive to DHT induced 

catalase upregulation which is associated with a reduction in ROS levels, an effect 

that is only observed at 2% oxygen. Balding DPCs also express higher levels of total 

glutathione, but the active GSH fraction is lower compared to occipital DPCs. 
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Chapter 5 

Expression of TGF-β receptors and effects of 

TGF-β on occipital and balding DPCs 
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5.1 Introduction 

The primary function of the dermal papilla is thought to be the control of hair follicle 

cycling by secreting growth factors that regulate growth, differentiation and 

apoptosis of the surrounding hair follicle epithelium (Stenn and Paus, 2001). During 

the growth cycle, the hair follicle undergoes complex tissue remodelling which 

changes the size and shape of the dermal papilla via migration and alteration of the 

hair follicle extra cellular matrix (Tobin et al., 2003, Messenger et al., 1991a, Elliott 

et al., 1999). In contrast to occipital DP, the macrophysiology of balding DP is 

smaller, rounder and do not penetrate as deeply into the hair matrix (Miranda et al., 

2010).  

The possibility of autocrine regulation in the dermal papilla has been explored in a 

report by Hamada and Randall (2006), in which media taken from balding DPCs 

inhibited the growth of occipital DPCs, but the specific growth factors responsible 

for this autocrine regulation were not elucidated. TGF-β isoforms can inhibit 

proliferation and act an autocrine fashion in lung fibroblasts (Moses et al., 1987). 

TGF-β1 and -β2 signalling have been reported as playing an important role in 

signalling within the hair follicle, although these studies have concentrated on their 

effects on inducing apoptosis in the ORS at the onset of catagen  (Foitzik et al., 

2000, Foitzik et al., 1999). 

TGF-β signalling occurs via the TGF-β receptors. The TGF-β receptor exists as three 

different serine/threonine kinase subunits TGF-βRI (also referred to as Alk5), TGF-

βRII and TGF-βRIII (Wrana et al., 1992). Within the pilo-sebacious unit only the 

TGF-βRI and TGF-βRII subunits are expressed (Paus et al., 1997). The TGF-βRI 

and -βRII subunits combine to form a functional heterodimer.  TGF-βRII receptor 
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first can bind either of the TGF-β ligands within the extracellular space, the ligand-

bound TGF-βRII subunit then activates TGF-βRI via phosphorylation (Wrana et al., 

1992). Phosphorylated TGF-βRI then initiates cytoplasmic signalling by 

phosphorylating Smads 1, 2, 3 or 5, which subsequently translocate to the nucleus to 

regulate the transcription of target genes (Miyazono et al., 2000). TGF-β signalling 

can be blocked by using the inhibitor SB-431542, a compound which specifically 

blocks the action of the TGF-βRI subunit (Inman et al., 2002) 

TGF-β must be bound by latent TGF-β binding proteins (LTBPs) 1, 3 or 4 in order 

for the protein to be secreted to the extracellular domain (Saharinen et al., 1999). 

The LTBPs are able to bind to ECM components such as fibronectin or fibrillin, 

whereupon they release the active TGF-β ligand (Hyytiainen and Keski-Oja, 2003, 

Hyytiainen et al., 2004). This mechanism allows the TGF-β ligands to be targeted to 

tissues with specific ECM. Unlike LTBP1, 3 and 4, LTBP2 is unable to bind TGF-β 

but acts as a competitive antagonist to isoforms 1, 3 and 4 for the fibronectin and 

fibrillin binding sites (Hirani et al., 2007). TGF-β is released from the LTBPs 

through enzymatic cleavage by plasmin, thrombin and MT1-MMP (Taipale et al., 

1992, Tatti et al., 2008). A number of other factors, including pH and the presence of 

reactive oxygen species, can increase the rate at which this cleavage occurs (Koli et 

al., 2001). The overall activity of TGF-β is therefore controlled by the rate at which 

it can be secreted with and subsequently released from the LTBPs. 

Based on the previous data (Chapter 3) demonstrating TGF-β1 and -β2 are secreted 

from both balding and occipital DPCs this chapter explores the potential role for 

TGF-β isoforms as autocrine regulators in the dermal papilla. 
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5.2 Aim 

To investigate the potential role of TGF-β1 and β2 as autocrine growth regulators of 

the dermal papilla. 
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5.3 Results 

5.3.1 Expression analysis of TGF-β receptors in DPCs 

In order to establish whether TGF-β signalling could be transduced by DPCs, mRNA 

of TGF-β signalling components were analysed by PCR. Figure 5.1 shows balding 

DPCs expressed higher levels of TGF-βRI mRNA relative to occipital DPCs. 

Balding DPCs also expressed TGF-βRII mRNA while the occipital DPCs only 

expressed only trace levels. 

LTBP1 activates, whereas LTBP2 inhibits TGF-β ligand binding activity, therefore 

LTBP isoforms were also analysed by PCR. The data show higher levels of LTBP1 

mRNA in the balding DPCs compared to occipital DPCs. Conversely, the occipital 

DPCs expressed higher levels of LTBP2 mRNA compared to balding DPCs. Thus 

the LTBP mRNA profile would facilitate TGF-β signalling in balding DPCs but 

inhibit the TGF-β pathway in occipital DPCs. 

 

 

 

 

 

 

 

 



 

 

 

Figure 5.1: PCR for TGF

β receptors I and II and binding proteins LTBP1 and LTBP2 in occipital and balding 

DPCs cultured at 21% oxygen. 

matching the predicted product siz

LTBP1 (207 b.p.), LTBP2 (399 b.p.) or 

representative of three separate experiments. 

 

Figure 20Figure 5.1: PCR for TGF

 

 

 

 

PCR for TGF-β signalling components in DPCs. Expression of TGF

 receptors I and II and binding proteins LTBP1 and LTBP2 in occipital and balding 

DPCs cultured at 21% oxygen. A single PCR product was detected in each lane 

matching the predicted product size for TGF-βRI (301 b.p.), TGF-

LTBP1 (207 b.p.), LTBP2 (399 b.p.) or β-actin (516 b.p.) The figure is a 

representative of three separate experiments.  

Figure 5.1: PCR for TGF-β signalling components in DPC
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 receptors I and II and binding proteins LTBP1 and LTBP2 in occipital and balding 

A single PCR product was detected in each lane 

-βRII (400 b.p.), 

actin (516 b.p.) The figure is a 

 signalling components in DPCs. 
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The protein expression profiles of TGF-β receptors in DPCs were also analysed. 

Figure 5.2 shows that both TGF-βRI and TGF-βRII were expressed in the DPCs. 

Densitometry analysis showed expression in the balding DPCs was higher for both 

receptor subunits (TGF-βRI = 1.2 A.U.; TGF-βRII = 1.4 A.U.) compared to occipital 

DPCs (TGF-βRI = 0.4 A.U.; TGF-βRII = 0.3 A.U.) correlating with the mRNA 

given in Figure 5.1. Notably the trace levels of TGF-βRII mRNA seen in the 

occipital did transcribe signal as expression of the subunit could be observed at the 

protein level. 

  



 

 

 

 

Figure 5.2: Western blot analysis of TGF

in occipital and balding DPCs at passage 2.

and balding DPCs cultured for 3 days at 21% oxygen. DPCs were lysed using RIPA 

buffer, normalised according to total protein count and 20 µg of
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5.3.2 Smad3 phosphorylation in DPCs 

TGF-β signalling affects cellular function by activating Smad transcription factors 

though phosphorylation. Therefore, to assess TGF-β receptor activity, levels of  

phosphorylated Smad3 (pSmad3) was analysed by immunoblotting in the presence 

or absence of recombinant TGF-β1. 

Densitometry analysis of the western blots in Figure 5.3 shows that TGF-β1 induced 

phosphorylation of Smad3 in both occipital (0.3 A.U.) and balding DPCs (0.6 A.U.), 

while no phosphorylation of Smad3 was seen in either balding or occipital DPCs in 

the absence of TGF-β1. Balding DPCs exhibited a higher degree of phosphorylation 

compared to the occipital DPCs. 

These data demonstrate that DPCs express functionally active TGF-β receptors that 

are able to phosphorylate Smad3. Balding DPCs would have the requisite 

components for autocrine TGF-β signalling, via higher expression of TGF-β 

receptors and through the ability to secrete more TGF-β with higher expression of 

LTBP1 and lower expression of the inhibitory LTBP2. 
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5.3.3 The effect of TGF-β on DPC proliferation 

In order to ascertain whether TGF-β could induce a functional effect on the DPCs by 

inhibiting cell growth, an Alamar Blue assay was conducted on balding and occipital 

DPCs treated with TGF-β1, -β2 or BSA vehicle control over a period of seven days.  

Alamar blue analysis showed balding and occipital DPC proliferation rates were 

inhibited by both isoforms of TGF-β (Figure 5.4). However, balding DPC 

proliferation was more severely compromised than occipital DPC proliferation by 

TGF-β1 and 2. Occipital DPCs underwent 87.3% ± 2.8 (P < 0.05) proliferation, 

whereas balding DPCs underwent 61.2% ± 12.6 (P < 0.01) proliferation when treated 

with TGF-β1. Occipital DPCs proliferation rate reduced to 90.4% ± 3.5 (P < 0.05) 

were as balding DPCs proliferation was significantly reduced to 63.1% ±7.6 (P < 

0.001) when treated with TGF-β2.  There was no significant difference in inhibition 

of growth in either balding or occipital DPCs between the TGF-β1 and -β2 isoforms. 

These data appear to correlate with the previous findings demonstrating that balding 

DPCs express TGF-β receptors to a higher degree, as can be seen via the increased 

inhibitory effect on the cell function of proliferation.  
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Figure 5.4: Effect of TGF-β1 and -β2 on the proliferation of balding and 

occipital DPCs. Alamar Blue metabolism was measured at day 0 and day 7, R.F.U. 

Balding and occipital DPCs were treated with BSA control or 10 ng/ml TGF-β1 or -

β2. Measurements for TGF-β1 or -β2 treated DPCs were normalised against BSA 

treated controls for each cell type. Statistical analysis was carried out using one-way 

ANOVA; * P < 0.05, ** P < 0.01, *** P < 0.001; results presented as the mean ± 

S.E.M. for n = 3 (matched DPC samples from 3 different patients). 

 

Figure 23Figure 5.4: Effect of TGF-β1 and -β2 on the proliferation of balding 

and occipital DPCs. 
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5.3.4 The effect of TGF-β1 on DPC migration 

Migration of the DPCs is thought to play an important role in the cell-cycle 

remodelling of the dermal papilla’s morphology. Analysis was carried out to 

determine whether TGF-β could affect DPC migration. Figure 5.5 shows the 

average motility velocities of balding and occipital DPCs in the presence and 

absence of 10 ng/ml TGF-β1.  

There was no significant difference in motility between occipital and balding DPCs 

in the absence of TGF-β1 (Figure 5.5). TGF-β1 did not significantly inhibit occipital 

DPCs’ motility (P > 0.05), however TGF-β1 significantly reduced cell motility in 

balding DPCs, falling from a velocity of 0.76 µm/min under control conditions to 

0.50 µm/min (P < 0.05) when treated with TGF-β1. These data correlate with the 

findings detailed in the previous sections showing TGF-β isoforms as having a 

greater effect on balding DPCs. 
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Figure 5.5: Motility of balding and occipital DPCs with TGF-β1 treatment. DPC 

motility was measured using timelapse photography (every 10 min for 24 h) at 21% 

oxygen. Balding and occipital DPCs were treated with BSA control or 10 ng/ml 

TGF-β1. Statistical analysis was carried out using Student’s t test; * P < 0.05, NS > 

0.05; results presented as the mean ± S.E.M. for n = 3 (matched DPC samples from 3 

different patients). 

 

Figure 24Figure 5.5: Motility of balding and occipital DPCs with TGF-β1 

treatment. 
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In conclusion, the data presented here show the expression and functional activity of 

TGF-β receptors in DPCs in vitro. Furthermore, TGF-β1 is able to reduce cell 

motility in balding DPCs. The components required for TGF-β signalling – binding 

proteins and receptors) are expressed at higher levels in the balding DPCs compared 

to the occipital DPCs and this translates to balding DPCs having a markedly higher 

sensitivity to TGF-β1 with regards to the cell functions of proliferation and motility. 

This data taken with the previous observation that DPCs secrete TGF-β isoforms 

suggests that TGF-β isoforms may act as growth inhibitory autocrine factors in a 

manner hypothesised by Hamada et. al (2004), although importantly it must be noted 

that these findings only prove TGF-β’s effect as an exogenous treatment. 
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5.4 Discussion 

The majority of studies examining growth factor signalling within the hair follicle 

concentrate on the paracrine secretions of the dermal papilla and the effect these 

factors induce in the surrounding epithelial keratinocytes of the germinative 

epithelium, hair matrix and outer root sheath (Stenn and Paus, 2001). However, little 

is known about what growth factors affect the remodelling of the dermal papilla 

itself. 

Such growth factors may be systemic, possible candidates include glucocorticoids 

(Thornton et al., 2006), adenosine (Hwang et al., 2012), and androgens (Elliott et al., 

1999). The possibility of localised control by growth factors secreted by the dermal 

papilla itself has been hypothesised and proven in principal (Thornton et al., 1998, 

Hamada and Randall, 2006). 

The data presented in this chapter show TGF-β1 and -β2 as potential candidates for 

such autocrine growth regulation through confirmation of expression of functional 

TGF-β receptor heterodimer, phosphorylation of intacellular Smad3 and functional 

assays. A critical question is then whether this proven in vitro mechanism can be 

applied to the in vivo hair follicle.  

Expression of TGF-β receptors within the human hair follicle is predominantly 

localised to the epithelial cells, however a near-constant expression of TGF-βRI is 

maintained in the dermal papilla throughout the hair cycle in mice while TGF-βRII is 

expressed almost exclusively during catagen (Paus et al., 1997). TGF-β receptors 

expression at all stages of the human hair cycle has not been conducted therefore 

their expression in the dermal papilla cannot be ruled out. Both receptor subunits 

must be expressed in order to form a fully functional heterodimer, therefore 
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presenting a difference in the expression pattern of the receptors between in vivo and 

in vitro DPCs. The two possible explanations for this are that: a) TGF-β receptor 

expression in the human dermal papilla differs to that of the mouse, or b) that 

expression of the TGF-β receptor is an artefact of in vitro cell culture. 

There is the possibility that TGF-β receptors are only expressed in vitro. Cells 

undergo changes in protein expression during the process of dedifferentiation which 

occurs during cell culture. It has been reported that human dermal fibroblasts which 

express TGF-β receptors when cultured in monolayer downregulate TGF-β receptor 

expression when cultured in 3D collagen spheroid matrices (Kunz-Schughart et al., 

2003). Such findings demonstrate the dynamic nature of growth factor signalling and 

its inextricable link to cellular remodelling.  

Nonetheless the findings reported in this chapter give new evidence that support the 

theory of autocrine regulatory pathway in cell cultured DPCs (Hamada and Randall, 

2006) and go further to highlight TGF-β1 and -β2 as key components of this 

pathway.  

The Alamar Blue proliferation assay was carried out to confirm and extend the 

findings of Hamada et al. (2006). However, as discussed in Chapter 3, the dermal 

papilla does not proliferate or apoptose to a substanitial degree in vivo, instead 

relying on alteration in ECM composition and cell migration during tissue 

remodelling (Elliott et al., 1999, Tobin et al.). For this reason, the migration assay is 

a more suitable indicator of DPC function than proliferation.  

The timelapse method was chosen to quantify migration instead of the more 

commonly used “scratch assay” due to the nature of fibroblast movement. Compared 

to epithelial cells, which move as a unified migratory front in a scratch assay 
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(Fitsialos et al., 2007), fibroblasts movements are more individual and varied, thus 

net movement into a scratch is not an effective assay. Using the timelapse allowed 

data to be collected on a large number of individual cells. 

Another key functional effect of TGF-β is the ability to modulate ECM protein 

expression. TGF-β isoforms have been shown to initiate secretion of tissue 

remodelling enzymes such as plasmin activator inhibitor-1 (PAI-1) in fibroblasts  

collagen  and fibronectin (Keski-Oja et al., 1988, Raghow et al., 1987, Vayalil et al., 

2005) as well as being indicated in modulating cell migration (Brenmoehl et al., 

2009) (Postlethwaite et al., 1987). In turn TGF-β is targeted to specific tissues based 

on their ECM composition. LTBPs 1, 3 and 4, that regulate TGF-β release to target 

tissue, bind to fibronectin and fibrillin before releasing TGF-β (Saharinen et al., 

1999). In addition LTBP2, shown in this chapter to be expressed by balding DPCs, 

but not by occipital DPCs, acts as a competitive antagonist for the LTBP binding 

sites, inhibiting the targeting of TGF-β isoforms to the ECM and therefore inhibiting 

TGF-β release (Hyytiainen and Keski-Oja, 2003) (Hirani et al., 2007). Notably, the 

rate of release of TGF-β from the LTBP in the extracellular domain is also increased 

in the presence of ROS, (Koli et al., 2001) which as shown in the previous chapter 

are produced at higher levels in the balding DPCs which may therefore lead to an 

increase rate of TGF-β signalling. 

ROS have also been shown to regulate TGF-β signalling in the intracellular domain 

as well as the extracellular domain. Data in the previous chapter showed that TGF-

β1 was unable to affect ROS production in either balding or occipital DPCs, 

therefore suggesting that the regulation of TGF-β signalling is downstream to ROS 

activity. One potential mechanism for this downstream regulation is via ROS’ affect 
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on reduced glutathione levels within the cell. Previous studies in mouse 3T3 

fibroblasts have shown that TGF-β mediated alteration of ECM formation is a 

process which is controlled by intracellular glutathione levels (Vayalil et al., 2007, 

Vayalil et al., 2005). The latter study showed that this mechanism occurred via the 

SP-1 promoter (TGF-β signalling target), which also autoregulates the transcription 

TGF-βRI (Periyasamy et al., 2000) and TGF-βRII (Ammanamanchi et al., 1998). 

TGF-β is also known to regulate its own expression by positive feedback (Van 

Obberghen-Schilling et al., 1988). Therefore TGF-β’s self-regulatory behaviour 

along with its susceptibility to ROS and glutathione levels within cells may account 

for the higher expression of TGF-β receptors in the balding DPCs.  

In summary, these data show that balding DPCs express greater levels of TGF-βRI 

and -βRII in vitro, which was translated to a functional affect of TGF-β1 and -β2 

being able to suppress balding DPC proliferation and migration. Increased TGF-β 

signalling could therefore reduce the ability of the dermal papilla cells to migrate and 

from the connective tissue sheath.  This would result in the smaller, rounder and poor 

remodelling ability that is observed in the balding follicle’s dermal papilla. Since 

higher levels of TGF-β are secreted by balding DPCs (Inui et al., 2002) the increased 

TGF-βR signalling capabilities observed in this chapter could explain the marked 

difference in the macrophysiology of the dermal papilla between follicle types. 
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Chapter 6 

Role of oxidative stress in the balding dermal 

papilla  
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6.1 Discussion 

The research presented in this thesis demonstrates novel mechanisms of DPC action 

in androgenic alopecia. The primary finding was that stress induced senescence is 

associated with oxidative stress and that ROS can affect the DHT-TGF-β signalling 

axis within balding and non-balding DPCs. Furthermore, it was found that balding 

DPCs showed a greater sensitivity to oxidative-stress induced senescence caused by 

transferring cells from 2% oxygen to 21% oxygen. The findings develop previously 

published research that showed that cultured balding DPCs senesced after fewer 

passages and had an upregulated expression of oxidative stress and senescence 

markers (Bahta et al. 2008).  

The findings of this thesis demonstrate that balding DPCs express higher levels of 

ROS than occipital DPCs in a similar manner to the higher levels of ROS produced 

in ageing dermal fibroblasts (Poljsak and Dahmane, 2012, Trueb, 2009). Recent 

work in mice in vivo has shown that elevating ROS levels in the skin, through the 

knockdown of the ubiquitous antioxidant Sod2, caused elevated levels of DNA 

damage inducing cellular senescence and a resultant aged appearance of the skin 

(Velarde et al., 2012).  

Interestingly, it was found that balding DPCs expressed higher levels of catalase and 

glutathione when compared to occipital DPCs. This is in contrast to the theory of 

free-radical ageing, in which levels of ROS increase within organisms as their 

antioxidant functionality diminishes (Poljsak and Dahmane, 2012).  In addition, in 

hair follicles it has been shown that greying hair follicles have a lower expression of 

catalase compared to healthy, pigmented follicles (Wood et al., 2009).   
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Therefore, although greying and balding may share a common molecular mediator in 

the form of catalase, the mechanisms by which the pathogenesis of these conditions 

occur is likely to occur in a different manner, with regards to time frame over which 

the process occurs. Although the shedding of hair in male-pattern baldness may 

appear to be a gradual process, this is merely the net appearance of tens of thousands 

of acute events within each individual follicle. The follicle’s terminal-to-vellus 

switch is thought to occur as an “abrupt change” over just a few, or perhaps even a 

single hair cycle (Whiting, 2001). The balding follicles used for these experiments 

are miniaturised but not yet full vellus hairs, therefore the finding that DPCs from 

these follicles express a higher level of catalase would support the theory of an 

“abrupt” terminal-to-vellus switch, in which the dermal papilla is mounting a 

reactionary response to an acute stress event. To date no studies have compared the 

levels of ROS between greying and pigmented follicles, and it remains to be 

elucidated as to which stress mechanisms lead to loss of pigmentation within the 

follicle.  

It should also be noted that while catalase expression is higher in the balding DPCs, 

ROS levels are also higher demonstrating that the balding DPCs despite mounting an 

elevated response to increased ROS are unable to reduce them to a substantial 

degree. Evidence for this was also shown via the measurement of total and reduced 

glutathione, wherein despite total glutathione levels being higher in the balding 

DPCs the equilibrium of reduced to oxidised glutathione is weighed more towards 

the oxidised fraction when compared to occipital DPCs. 

On a functional level, it was found that oxygen environment could affect the growth 

factor secretion of the DPCs, with 2% oxygen able to negate the DHT-induced TGF-

β1 secretion observed at 21% oxygen in previous studies (Inui et al., 2002, Inui et 
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al., 2003). It was found that culturing DPCs at low oxygen caused a marked increase 

in IGF-1 secretion, with a greater increase seen in occipital DPCs, IGF-1 being one 

of the key epithelial mitogenic stimuli required for hair follicle growth.  

Previous work has shown that balding but not occipital DPCs respond to synthetic 

androgen R-1881 by producing TGF-β1 (Inui et al., 2002). Conversely our study 

demonstrated that occipital DPCs could also secrete TGF-β1 and -β2 in response to 

DHT. In addition it was found that DHT was able to increase expression of catalase 

in both balding and occipital DPCs, resulting in a decrease in ROS levels in the 

balding DPCs. Occipital DPCs are classically described as androgen-insensitive, 

however their insensitivity stems from a lack of 5α-reductase which converts 

testosterone from the blood into DHT, rather than from a lack of androgen receptors 

(AR). To support this, it has been previously demonstrated that occipital DPCs do 

express AR, but at lower expression levels that the balding DPCs (Hibberts et al., 

1998). The addition of exogenous DHT in culture systems therefore bypasses the 

crucial step of DHT synthesis via 5α-reductase testosterone metabolism. The fact 

that similar effects can be induced in balding and occipital DPCs with DHT supports 

the theory that androgen sensitivity in the dermal papilla is predominantly controlled 

by 5α-reductase (Kaufman, 1996). 

The role of ROS in the causation of baldness is a paradigm shift in the way in which 

we think of the pathophysiology of androgenic alopecia. Androgenic alopecia is well 

established as a polygenic condition whose onset and patterning is influenced by a 

large number of different genes (Hoffmann, 2002). The follicles of the balding scalp 

are genetically predisposed to undergo transformation into the smaller, unpigmented 

vellus follicles (Paus and Cotsarelis, 1999). The factors affecting an individual’s 
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propensity towards free-radical induced ageing are also likely to be influenced by 

hereditary factors – such as reduced expression of antioxidants or increased 

expression of factors within the stress-induced senescence pathways. The differences 

between the frontal and occipital follicles may be due to developmental differences. 

The frontal parietal regions of the scalp develop in the embryo from the neural crest 

cells, while the occipital scalp forms from the mesoderm (Van Neste D, 1996) 

resulting in dermal papillae which are phenotypically dissimilar and express a 

different array of proteins. Equally, consideration must also be given the overall 

effect on the follicles by environmental factors, be they diet, alcohol, drug or tobacco 

consumption, physical or emotional stress or UV-exposure (Trueb, 2009). The work 

in this thesis helps to draw a link between these intrinsic (different antioxidant 

expression) and extrinsic (different oxygen environments) factors. Low oxygen was 

able to delay senescence of both occipital and balding DPCs and this effect was 

associated with a reduction in ROS production. In addition it was discovered that 

culturing DPCs at low oxygen could alter their secretions of the growth factors TGF-

β1 –β2, DKK1 and IGF-I. 

One theory which may unite intrinsic and extrinsic factors in vivo is that the 

patterning of androgenic alopecia is based on the anabolic effects of DHT on bone 

formation in the skull (Taylor, 2009). The continued growth of the skull in adult 

males forces a remodelling of the skin with a net reduction in the vascularisation. 

This theory is supported by the fact that balding follicles are poorly vascularised 

compared to occipital follicles (Miranda et al., 2010). Reduced vascularisation is a 

well established cause of skin ageing (Chung and Eun, 2007). Moreover, one of the 

most effective known treatments for male pattern baldness is through the use of 

minoxidil which stimulates cutaneous blood flow when applied directly to balding 
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scalp (Wester et al., 1984). It achieves this via activation of the ATP-sensitive 

potassium channels of the arterial smooth muscle cells, hyperpolarising the 

membrane to prevent calcium influx via the voltage gated calcium channels. This 

causes a drop in cytosolic calcium which is required to activate contraction of the 

arterial smooth muscle. The relaxed resistance arteries then allow a greater volume 

of blood to the scalp (Cohn et al., 2011). 

Unlike the in vitro model, wherein lower oxygen concentration leads to a reduction 

in ROS through the reduction in oxygen exposure (Davies, 1995) it has been 

reported that in vivo that hypoxia may in fact lead to an increase in ROS (Turrens, 

1997). The proposed mechanism for this is that under hypoxic, vasoconstricted 

conditions where oxygen levels to the tissues are greatly reduced, transfer of 

electrons in the Kreb’s cycle is switched at ubi-semiquinone step to create H₂O₂ 

leading to the generation of ROS. Therefore, in the context of the balding scalp, 

reduced vascularisation resulting in hypoxia of the localised tissue causing the 

necessary switch in the Kreb’s cycle to cause an increase in ROS. Work to study the 

effects of low oxygen on the growth of whole follicles using the “Philpott model” 

may also lead towards a greater understanding of the different effects of hypoxia 

between the in vivo and in vitro models of hair growth. 

The tissue microenvironment of the balding hair follicles, particularly with regards to 

vasculature and the resultant levels of oxygen diffusion may play a critical role in 

pathogenesis of the balding phenotype. Interestingly, hair follicles which are 

transplanted from the occipital region to balding frontal scalp become well 

established and grow healthily just as they would within the occipital regions 

(Hwang et al., 2009). This suggests occipital follicles contain an intrinsic ability to 

alter the peripheral tissue microenvironment possibly through the processes of ECM 
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remodelling or angiogenesis. TGF-β1 is known to modulate the components of the 

ECM (Vayalil et al., 2005), therefore follicles with DPs which secrete reduced TGF-

β1 (such as those of the occipital scalp) could result in an altered ECM of the balding 

scalp they are transplanted to. Further work to establish the tissue remodelling of 

balding scalp region before and after hair transplantation, as well as analysis of the 

levels of ROS within this region would help to further understand the observations 

seen by Hwang et al. (2009). 

Despite the fact that higher eukaryotic aerobic organisms cannot exist 

without oxygen, oxygen itself is inherently dangerous to their existence, causing the 

formation of ROS which can be deleterious to the cell at high levels. This 

phenomena is known as the “oxygen paradox” (Davies, 1995). Low oxygen culture 

is able to mitigate this effect by reducing the cells’ exposure to oxygen, thus 

reducing their production of ROS. The tissue culture incubator effectively mimics 

the physiological microenviroment of the DPCs. In this respect low (2%) oxygen 

incubator is analogous to well-vascularised healthy occipital scalp, while the normal 

atmospheric (21%) oxygen incubator is analogous to the poorly vascularised skin of 

the frontal balding scalp. The findings detailed in this thesis demonstrating the 

alteration of the growth factor secretion profile of both the occipital and balding 

DPCs grown at different oxygen conditions would support this analogy and go some 

way towards explaining the scalp-site-specific differences in dermal papilla function. 

In addition to this low oxygen culture of DPCs has wide implications for the fields of 

research, hair-transplantation and industry.  

DPCs in vitro culture systems attempt to model conditions that closely resemble 

physiological conditions. For example, DPCs are cultured in media that has been 

optimised for their specific nutrient requirements (Messenger, 1984). One of the best 



184 

 

established methods for in vitro hair follicle study is the “Philpott model” in which 

whole follicles may be grown in media, thus maintaining the DPCs and surrounding 

tissues in their normal physiological arrangement (Philpott et al., 1990). More 

recently, it has been found that DPC culture can be optimised through the use of 

collagen spheroid matrices which act as a more suitable model of the papilla 

structure and allow DPCs to maintain their in vivo properties for longer (Higgins et 

al., 2010).  

The use of low oxygen culture would serve as a valuable addition to the list of 

parameters for optimised DPC culture. Low oxygen would provide a more 

physiologically relevant model for growing DPCs as well as prolonging the number 

of passages for which cells remain viable for experimentation.  

Another important application of low oxygen culture would be in the field of de novo 

follicle synthesis, wherein new whole follicles may be formed using implanted DPCs 

taken from an existing hair follicle (Reynolds and Jahoda, 1992). Current hair 

transplantation methods rely on transplantation of whole follicular units from the 

occipital to the balding regions of the scalp (Barrera, 2003). There are a finite 

number of available follicles which can be used for this process and the operation 

itself requires highly invasive removal of the scalp. The potential to take a relatively 

less invasive biopsy from a single follicular unit which may then have its DPCs 

expanded under cell culture conditions to form the necessary tissue for new follicles 

has obvious benefits for both patients and surgeons. 

Low oxygen culture of biopsied cells would grant numerous benefits for this process. 

The maximum yield of cells which could be expanded would be greatly increased as 

shown by the higher replicative capacity of DPCs grown under low oxygen. A 
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quicker rate of proliferation would also mean faster turnaround times for surgeons to 

treat patients. In addition low oxygen culture potentially maintains the DPCs 

inductive capacity, as DPCs grown under low oxygen maintain their ability to form 

pseudopapilla, a marker of the cells’ maintenance of dermal papilla specific function.  

The role of ROS and antioxidants in mediating the balding DPC phenotype 

represents a pathway that could potentially be targeted to prevent the balding hair 

follicle phenotype. The majority of established mediators of hair follicle cycling 

secreted by the DP are growth factors such as TGF-β, DKK-1 and IGF-1, all of 

which represent contentious drug targets due to the range of effects they may induce 

in cells. Intervention of the growth factor signalling pathways is likely to affect 

downstream pathways in the follicle and surrounding skin and would be logistically 

difficult to localise to the dermal papilla alone. Antioxidants may therefore represent 

a more viable, less side-effect prone target for prophylactic therapy of baldness.  

The findings of this thesis also showed that TGF-β receptors were expressed in 

DPCs in vitro at 21% oxygen and that these allowed for TGF-β1 and -β2 to inhibit 

the proliferation and migration of cells , moreover this effect was more marked in 

balding DPCs.  This is in contrast to a previous report that showed mouse dermal 

papilla has not been reported to express full TGF-β receptors in mice in vivo (Paus et 

al., 1997).  There is a possibility that TGF-β receptor expression is an artefact of cell 

culture, perhaps related to oxidative stress as well. To elucidate this there is a need to 

confirm expression of the TGF-β receptors within human follicles in vivo and to 

repeat the TGF-β functional assays at 2% oxygen conditions. 

In summary, oxidative stress appears to play a major role in the mediation of 

proliferation, senescence, migration and growth factor secretion in the dermal papilla 



186 

 

with the balding DPCs demonstrating a markedly higher sensitivity to the build up of 

ROS within the cell, as seen by an elevated stress-response of elevated antioxidants. 

Cross-talk between these antioxidants, ROS, cell senescence mediators and the 

growth factor pathways may go some way towards explaining the different 

behaviour seen in the balding follicles’ dermal papillae when compared to those of 

the occipital hair follicle. 
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6.2 Study Overview  

An overview of the major findings of this and the thesis and how they fit with the 

currently established model of DHT-stimulated TGF-β secretion in the balding DPCs 

can be viewed below (Figure 6.1).  
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Figure 6.1: Model of DHT-TGF-β-axis in the DPC incorporating ROS, 
senescence and autocrine pathways. 1) Experiments carried out using DHT, unlike 
the synthetic androgen R-1881, was able to induce a response in both balding and 
occipital DPCs. 2) DHT was found to stimulate catalase expression with an 
associated decrease in ROS levels in balding DPCs, but only at 2% oxygen. The 
transcription factors mediating this process were not investigated and it was not 
established what other antioxidants were affected by DHT stimulation. 3) Further 
work is required to establish the factors controlling the production of ROS within the 
mitochondria, predominantly the NADPH isoforms. 4) There are established 
differences in the levels of total and active glutathione between balding and occipital 
DPCs, further work is required to understand the effect this may have on nuclear 
transcription. 5) The senescence mediator RB acts as a transcription factor for a 
number of growth factors, including the TGF-βs. Further work is required to 
establish whether this pathway is relevant in senescent DPCs. 6) Autocrine TGF-β 
signalling within the DPCs has been shown to function in principal at 21% oxygen. 
Further work is required to confirm whether this mechanism is an oxidative stress 
mediated effect and whether it is functional within the dermal papilla in vivo. 7) 
Further work is required to ascertain whether growth factor secretions from the 
dermal papilla are able to affect the perifollicular skin. 
 

Figure 25Figure 6.1: Model of DHT-TGF-β-axis in the DPC incorporating R OS,  senescence and autocrine pathways.  
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6.3 Future work 

This study highlighted several areas for potential future work: 

Explore the effects of DHT on antioxidants 

While this study showed that DHT was able to increase the activity of catalase in the 

DPCs at 2% oxygen, this only led to a marked decrease in ROS in the balding DPCs. 

Therefore, it would be of interest to deliberate which other, if any, antioxidants are 

upregulated downstream of DHT. Moreover, as the beneficial reduction in ROS was 

only seen in the more androgen sensitive balding DPCs, the next step for this line of 

investigation would be to see whether androgen sensitive DPCs from the beard, 

axilla or pubis also upregulated antioxidant production with an associated reduction 

in ROS. 

Investigate the factors controlling initial ROS production 

While this study showed that balding DPCs had an elevated antioxidant response 

compared to occipital DPCs, it was shown that the balding DPCs still exhibited a 

higher level of intracellular ROS. Therefore further work elucidating the factors 

which control initial ROS production may help to gain a greater understanding of the 

redox equilibrium within the DPCs. The NADPH molecules of the mitochondria 

would be the most logical starting point for this line of investigation. 

Investigate the role of the SP-1 transcription factor 

SP-1 represents a common downstream target for TGF-β, glutathione, and pRB as 

well as acting as a transcription control upstream of TGF-β. The possibility that this 

transcription factor may represent a key focal-point to the control of the DPC 

function warrants further investigation. 



190 

 

Confirmation of TGF- β as an autocrine growth inhibitor of the dermal papilla 

The work shown in this thesis demonstrated that TGF-β was able to act upon DPCs 

when applied exogenously, however further steps are required to confirm this as true 

autocrine regulation. This could be conducted by stimulating TGF-β secretion using 

DHT, as previously shown then transferring media to serum free cultured cells in the 

presence or absence of a TGF-β inhibitor such as SB431542. A suitable functional 

measurement for this assay would be the motility assay described in the previous 

chapter. Further to this expression of the TGF-β receptor within the DPCs must be 

further investigated. It would be of interest to ascertain whether the TGF-β receptor 

was expressed in DPCs cultured at 2% oxygen. In addition, histological analysis of 

balding and occipital dermal papillae in vivo would be key to gauging the importance 

of TGF-β as an autocrine regulator of the DP. 
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