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ABSTRACT 

The elevated expression of Heat shock proteins (HSPs) has been implicated 

in CRC prognosis and tumour cells may require the expression of HSPs and 

BCL2-associated athanogene (BAG1), the HSP co-chaperone, to survive. 

BAG1 is a regulator of amyloid precursor protein (APP); both are important 

in cellular proliferation and cancer. B-cell CLL/lymphoma 3 (BCL3) is an 

agonist in the tumour-associated NF-κB pathway. This study aims to 

establish the mutational status of TP53, KRAS and PIK3CA, and the 

activation status of AKT, in primary CRCs and then investigate the role of 

HSPs, BAG1, APP, and BCL3.  

Oncogene induced senescence (OIS) is a potential roadblock to CRC. 

Recent cell culture studies suggest that OIS mediated by PI3K/AKT 

activation can be circumvented by high expression of HSPs in the absence 

of TP53 mutation. While PI3K/AKT activation and KRAS mutations are 

independent inducers of OIS, PI3K/AKT activation can suppress KRAS-

induced OIS when both are present in cultured cells. KRAS mutations, 

PI3K/AKT activation and TP53 mutations are all common features of CRCs. 

For HSP to inhibit OIS in CRC may be dependent on the tumour’s mutation 

spectrum. CRCs with oncogenic activation of the AKT pathway were 

associated with increased HSP27 expression, which may represent an 

important mechanism in suppressing p53 dependent senescence. No 

association was found between HSP27 or HSP72 expression with TP53 

mutation status, but HSP27 expression was strongly associated with the co-

presence of wildtype KRAS and activated PI3K/AKT, indicating a possible 
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role of HSP27 in overcoming PI3K/AKT induced OIS in tumours. There was 

no correlation between BAG1 and APP co-expression in CRCs. BCL3 

expression was heterogeneous, and elevated at the invasive edge. The 

expression of HSPs, APP, BCL3 was not correlated with any CRC 

clinicopathological features. Our studies suggest a role for using archival 

tissues in validating hypotheses generated from cell culture based 

investigations. 
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CHAPTER 1 

Introduction 

1.1 Incidence of Colorectal Cancer 

Colorectal cancer (CRC) is the third most common cancer worldwide after 

lung and breast with 1.23 million people being diagnosed each year. It is the 

fourth most common cause of cancer related death accounting for 8% of all 

cancer deaths (608,000 deaths from CRC per annum). Almost 60% of CRC 

cases occur in developed countries with the lowest rates in Africa and Asia 

and the highest in Europe, North America and Australasia (Ferlay, Shin et al. 

2010). In the UK CRC is the third most common cause of cancer again after 

lung and breast, with approximately 38,000 new cases diagnosed each year, 

and the second most common cause of death from cancer in the UK 

(Cancer Research UK. 2010). 

1.2 Age, Sex and Site of Colorectal Cancer 

The development of CRC is strongly associated with age and is therefore 

considered a disease of old age with 84% of cases arising in people aged 60 

years or older (Cancer Research UK. 2010). The prevalence of adenomas, 

the precursor lesion to CRC (see Section 1.6), increases with age in the 

general population; with approximately 25% at age 50 and 50% by age 70 

having an adenoma (Rex, Lehman et al. 1993). Both men and women have 

similar rates for CRC until age 50 years when there are more male cases of 
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CRC until the age of 80 when there are more female cases due to the larger 

proportion of women in this elderly population. Incidence rates are 

substantially higher in men then in women (1.4:1) with the life-time risk of 

being diagnosed with CRC in the UK estimated to be 1 in 16 for men and 1 

in 20 for women. CRC is the third most common cancer in men after 

prostate and lung whilst in women it is the second most common after breast 

cancer. Two thirds of large CRC is in the colon and one third in the rectum 

with preponderance towards the left side of the bowel (Cancer Research UK. 

2010).  

1.3 Survival and Mortality 

In the UK there are approximately 16,000 deaths per year as a result of CRC 

(Cancer Research UK. 2010). The 5-year survival in patients diagnosed with 

CRC has shown a gradual improvement over the past 30 years with 

significant improvement over the last years particularly during the Nineties 

with male and female relative survival rising from approximately 22% to over 

52% (Morris, Sandin et al. 2011). These improvements are a result of public 

education, earlier diagnosis and better treatment. Patients presenting at a 

young age have a better prognosis compared to older patients (Rachet, 

Maringe et al. 2009). Also patients diagnosed at an early stage have a much 

better prognosis compared to those presenting at a later stage with more 

extensive disease (National Cancer Intelligence Network). There is a 

survival advantage of 15.5-20.5% in affluent patients with colonic or rectal 

cancer compared with the most deprived (Ellis, Coleman et al. 2012). The 

relative survival rate for patients at 10 years is only slightly lower than at 5 
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years suggesting that patients who survive 5 years are likely to have been 

cured (Rachet, Maringe et al. 2009).  

1.4 Risk Factors 

Most cases of CRC arise sporadically although both genetic and 

environmental influences contribute to the development of CRC. These we 

will consider below. 

1.4.1 Family History and Genetics  

Family history influences an individual’s life time risk of developing CRC. 

The lifetime risk of developing CRC with no family history of CRC is 2% and 

this increases to 6% in a person with one first degree relative with CRC, and 

to 10% if this relative was diagnosed before 45 years old. In an individual 

with two first degree relatives there is a 17% life time risk of developing CRC 

(Kim 2009). 

An estimated 30% of all CRC have a familial component. About 5% of these 

cases are associated with highly penetrant inherited mutations which have 

been well characterised clinically into hereditary syndromes and these 

discussed more fully below (see Section 1.11). The remaining 20-30% of 

inherited CRC is not completely understood and are likely to be caused by 

more frequent but less penetrant mutations effecting multiple CRC 

susceptibility loci that have a cumulative effect on risk (Houlston and 
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Tomlinson 2001; Penegar, Wood et al. 2007; Houlston, Cheadle et al. 2010; 

Jasperson, Tuohy et al. 2010).  

1.4.2 Diet and Obesity  

The continuous exposure of colorectal mucosa to intra-luminal contents 

allows dietary carcinogens to have potentially significant effects on epithelial 

cell growth and apoptosis. There has been an increase in the incidence of 

CRC in migrants moving from low risk to high-risk countries. In countries 

such as Japan where there has been an increase in Westernised diet there 

has also been a rapid rise in CRC (Marchand 1999; Zhang, Dhakal et al. 

2012). A wide range of dietary factors have all been linked with CRC, but 

none have been conclusively linked to CRC induction (Chan and 

Giovannucci 2010).  

A diet high in fibre and fruit and vegetables, has been associated with a 

reduced risk of CRC. The EPIC study, showed a 40% reduction of CRC 

cancer in individuals with a high intake of fibre (Gonzalez 2006). A high fibre 

diet could have a protective effect by diluting or absorbing faecal 

carcinogens, modulating colonic transit time, altering bile acid metabolism 

and lowering colonic pH. There is an increased risk of 20-30% in relation to 

the amount of red meat consumed as it is thought to stimulate endogenous 

insulin, which is a mitogen (Chan and Giovannucci 2010). There is a 30% 

reduction in risk if a higher intake of fish is consumed (Norat, Bingham et al. 

2005).  
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Increased body weight is a recognised risk factor for colorectal adenomas 

(Okabayashi, Ashrafian et al. 2012) and CRC (Harriss, Atkinson et al. 2009) 

with 10% of colon cancers in the UK occurring in overweight or obese 

individuals (Bergstrom, Pisani et al. 2001). The risk of colon cancer 

increases by an estimated 25% in overweight and 50% in obese men 

(Moghaddam, Woodward et al. 2007). In both sexes a larger waist size and 

waist-to-hip ratio has been associated with an increase in colon cancer risk 

(Larsson and Wolk 2007).  

1.5 Grading Colorectal Tumours 

CRC is graded by the degree of tubular differentiation within the tumour. 

Well-differentiated or low grade tumours are composed of regular tubules 

lined by columnar epithelium with uniform nuclei and are comparable to that 

of normal adenomatous epithelium. Moderately differentiated or average 

grade tumours are composed of slightly irregular tubules. High grade or 

poorly differentiated tumours are formed by highly irregular or even absent 

tubules, replaced by single cells, clumps or sheets of undifferentiated cells. 

Tumours are often heterogeneous with areas of different grades and 

therefore the grade of the tumour is assigned according to the area of 

poorest differentiation (Day 2003). 

1.6 Tumour Spread and Staging 

CRC spreads by local extension, invasion into the lymphatic, venous, 

nervous system and to a lesser extent through transcoelomic spread. The 
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prime targets for metastasising cancer cells are the local lymph nodes. Due 

to the few lymphatics in the muscularis mucosa tumours confined to this 

plane are unlikely to metastasis. However, once a tumour has invaded into 

the muscularis propria, lymphatic spread is more likely to lead to progression 

from node to node and eventual systemic involvement of the liver, lungs, 

bone and brain. Tumours may also achieve distant metastasis without lymph 

node involvement by directly invading the vascular system, or by extensive 

local invasion into the peritoneum cavity enabling transcoelomic spread (Day 

2003).  

Staging CRC provides a prognostic stratification of patients who have 

undergone surgery. CRC is classically staged by the Dukes’ classification 

(Jass and Morson 1987). Dukes described three stages as follows (Dukes 

1932): 

A. Tumour breaching the muscularis mucosae but not beyond the 

muscularis propria and no lymph node involvement 

B. Tumour invading through muscularis propria into pericolic or perirectal 

tissue but no lymph node involvement 

C. Tumour involving local lymph nodes. 

The Dukes’ classification was originally devised for rectal cancer and was 

based on the extent of disease determined by the degree of infiltration of the 

tumour through the bowel wall and lymph node involvement (Dukes and 
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Bussey 1958), but has undergone subsequent modifications with a stage C 

further subdivided into C1 if the highest lymph nodes are tumour free and C2 

if they are diseased and the addition of stage D for disease with distant 

metastasises. It remains a reliable predictor of CRC disease outcome. Over 

93% of patients with Dukes’ stage A survive five years compared with 7% of 

patients with Dukes’ D (Cancer Research UK. 2010). More recently the 

Tumour-Nodes-Metastasis (TNM) staging system has been adopted for 

CRC (Puppa, Sonzogni et al. 2010). The TNM system again relies on 

describing the anatomical extent of disease but fully stratified by bowel wall 

involvement (T1 to T4 according to the involved layers of intestinal wall), the 

number of lymph nodes involved (N1 to N2 according to the number of 

metastatic lymph nodes) and presence of metastasises (M1).  

Although many factors have been proposed as independent prognostic 

indicators, tumour stage plays a fundamental role in the management of 

patients and remains the most powerful and reliable predictor of prognosis, 

and basis for provision of appropriate therapeutic treatment (Zlobec and 

Lugli 2008).   

1.7 Pathology of Colorectal Tumours 

Adenomatous polyps or adenomas, which arise from the glandular 

epithelium, are the major precursor lesion to CRC (Bujanda, Cosme et al. 

2010).  



32 
 

The evidence of the development of carcinoma from adenoma comes from 

the following observations: 1) Adenomas are found in CRC specimens six 

times more frequently than in matched non-cancer specimens; 2) Additional 

adenomas are found in 75% of patients with adenocarcinoma; 3) Developing 

a metachronous cancer is twice as likely in patients with carcinoma and 

adenoma(s) found in the resected specimen compared with carcinoma 

alone; 4) Patients affected with multiple adenomas such as in hereditary 

syndromes, for example, familial adenomatous Polyposis (FAP), or with 

large, villous or severely dysplastic adenomas are likely to develop 

carcinoma; 5) Adenomas demonstrate all grades of dysplasia ranging from 

minor changes to severe dysplasia and carcinoma in situ; 6) Removing 

adenomas reduces the risk of developing CRC; 7) In vitro adenoma cells 

can transform into carcinoma cells; and 8) In adenomas a foci of carcinoma 

can often be detected and often residual adenomatous epithelium can be 

found in CRC specimens (Day 2003; Fearon 2010) 

CRC develops following a stepwise series of events beginning with the 

transformation of normal colonic epithelium to a benign adenomatous polyp 

which develops into an advanced adenoma with high grade dysplasia and 

then finally into an invasive cancer, this is the ‘adenoma-carcinoma’ 

sequence (Fearon and Vogelstein 1990) (Figure 1). 

1.8 Diagnosis of Colorectal Cancer 

CRC is diagnosed on the basis of tumour biopsy at colonoscopy or 

sigmoidscopy. Staging is completed by computer tomography (CT) of the 
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chest, abdomen and pelvis to ascertain the extent of the disease and to 

ascertain if there are any metastases. The extent of the rectal disease is 

measured by Magnetic resonance imaging (MRI), which assesses the 

spread of the tumour in the mesorectum. Patients with suspected liver 

metastases are further investigated with ultrasound, CT, MRI or Positron 

emission tomography (PET) scan of the liver (Cunningham, Atkin et al. 2010; 

Patel, Floyd et al. 2012). 

1.9 Screening for Colorectal Cancer in the General Population 

Three quarters of patients with CRC have no apparent risk factor other than 

old age. The survival rates of patients with CRC have improved substantially 

over the last few years as a result of public education, early diagnosis and 

improved treatment. The use of population screening will be vital in reducing 

mortality rates further. The aim of screening is to detect cancers at an early 

stage or even premalignant stage and therefore prevent the development of 

advanced cancers (Pawa, Arulampalam et al. 2011).  

Faecal occult blood (FOB) testing is the most widely used screening test in 

which two samples are collected from three consecutive stools before being 

analysed in the laboratory.  Offered every two years it has been shown to 

potentially reduce CRC mortality rates by 25% although it is the least 

sensitive screening tool. As two-thirds of CRCs and adenomas develop in 

the rectum and sigmoid colon an examination by flexible sigmoidscopy has 

been proven to be a safe and practical test. By using a one-off flexible 

sigmoidscopy between the ages of 55 and 64 years old mortality was 
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reduced by 43% (Atkin, Edwards et al. 2010; Littlejohn, Hilton et al. 2012) in 

the screened population. The major benefit of flexible sigmoidscopy 

compared to FOB testing is that it is both diagnostic and can be therapeutic 

as adenomas can be removed at the same time. However, flexible 

sigmoidscopy is limited examination as it can only access part of the large 

bowel, and the procedure also carries the risk of intestinal perforation.  

Alternatively, full colonoscopy assessing the whole large bowel, requires 48 

hours of bowel preparation, sedation during the procedure and is also 

associated with greater risks of higher complications (Young and 

Womeldorph 2013). However, it is not considered a viable screening tool in 

the UK because of cost, although high quality programmes are available in 

Germany and Poland, and in the USA (Pox, Schmiegel et al. 2007). CT 

colonography is as sensitive as colonoscopy for the detection of large 

adenomas and cancers, but it also requires a full bowel preparation and 

exposes the patient to radiation (Atkin, Dadswell et al. 2013). Furthermore, 

any lesions identified by this means would need a colonoscopy to confirm 

and remove them. However, colonography is useful in patients who may not 

be able to tolerate colonoscopy.  

Novel molecular DNA based blood or stool test have been developed that 

detect abnormalities in DNA extracted from epithelial cell found in faeces or 

blood. However, these tests are expensive and have yet to be optimised and 

validated and their reliability assessed fully (Cunningham, Atkin et al. 2010).   
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1.10  Treatment of Colorectal Cancer 

For CRC complete resection of the tumour remains the only curative 

treatment, although treatment strategy is guided by appropriate staging of 

the disease. Total resection (R0) is imperative for optimal prognostic 

outcome. Patients with residual disease, either microscopic (R1) or 

macroscopic (R2) fare poorly if treated with surgery alone. Hence, resection 

of the tumour needs to be done with adequate margins with a distal margin 

of at least 5cm and lymph node clearance of at least 12 lymph nodes 

otherwise histological assessment may result in a downstage of the tumour 

(Smith, Driman et al. 2010). Colectomy is carried out for colon cancer either 

open or laparoscopically. Laparoscopic surgery is technically more 

demanding, however it has the advantage of reduced pain and ileus, shorter 

recovery period and length of stay in hospital (Dalton, Ghosh et al. 2011). 

For rectal cancer the technique of Total Mesorectal Excision (TME) (Heald, 

Moran et al. 1998) is used. TME helps ensure adequate circumferential and 

distal margins, and mesenteric lymphadenectomy, thereby reducing the risk 

of disease reoccurrence when used in conjunction with neo or adjunct 

chemotherapy (Heald and Ryall 1986). Sphincter preserving surgery may be 

carried out in patients with mid and low rectal cancers. Otherwise 

abdominoperineal resection is carried out in those with very low rectal 

tumours.  

Although surgery is the foundation for cure, adjunct therapies such as 

chemotherapy and radiotherapy before or after surgery are used to 

counteract disease particularly in stage III (any T, N1 -2, and M0) and IV 
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disease (any T, any N and M1) (Cunningham, Atkin et al. 2010).  In the UK 

patients with stage III disease are routinely offered adjunct chemotherapy as 

treatment has been shown to reduce death by 30% or increase survival by 

10-15%. For patients with stage II disease, chemotherapy has been 

controversial due to the small gains versus treatment risks, high risk patients 

(T4 tumours, obstructing at presentation, poor differentiation, extramural 

venous spread or positive margins) are often offered treatment. The 

QUASAR study, treating stage II disease with fluorouracil did show a 

significant improvement in overall survival of 3.6% in both colon and rectal 

cancers (Gray, Barnwell et al. 2007).  

In patients with metastatic CRC and disease reoccurrence, new 

chemotherapy agents in addition to Fluorouracil such as Irinotecan, 

Oxaliplatin and targeted antibody-based drugs have increase survival from 

12 months to 2 years (Cunningham, Atkin et al. 2010).  
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1.11  Hereditary And Familial Colon Cancer Syndromes Predisposing 

to Colorectal Cancer 

Hereditary or familial colon cancer accounts for less than 6% of cases of 

CRC. Here, we outline two of the most common syndromes.  

1.11.1 Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) 

and Familial Adenomatous Polyposis   

Hereditary Nonpolyposis Colorectal Cancer (HNPCC) or Lynch Syndrome 

(LS) is the most common hereditary syndrome accounting for 2-4% or 

approximately one in 300 of all CRC cases (Jasperson, Tuohy et al. 2010) 

with a life time risk of CRC in these patients of about 50-80%. LS is caused 

by a germ line mutation in one of the genes of the DNA nucleotide mismatch 

repair system, most commonly human DNA mismatch repair (MMR) gene 

mutS homolog 2, colon cancer, nonpolyposis type 1 (MSH2) and mutL 

homolog 1, colon cancer, nonpolyposis type 2 (MLH1) accounting for 90% of 

LS, whilst less commonly MutS homolog 6 (MSH6), postmeiotic segregation 

increased 1 (PMS1) and postmeiotic segregation increased 2 (PMS2) 

(Rustgi 2007). However, a further subset has been described with a germ 

line deletion of epithelial cell adhesion molecule (EpCAM) with no MMR 

gene mutation but displaying LS phenotype (Kovacs, Papp et al. 2009). 

Therefore, almost all CRC associated with LS have microsatellite instability 

(MSI) a result of MMR loss (Pino, Mino-Kenudson et al. 2009) (see Section 

1.13.2). In these patients CRC and polyps arise at an earlier age and are 

more proximal in location compared to sporadic tumours. They are poorly 
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differentiated, mucinous and have a large number of tumour infiltrating 

lymphocytes. Other malignancies are associated with LS and include, in 

particular, endometrial cancer, which is associated with an increase lifetime 

risk of 40-60%, occurs in LS patients; the syndrome is responsible for 2% of 

all endometrial cancers (Watson, Vasen et al. 2008). Other LS-associated 

cancers include gastric, ovarian, biliary, urinary tract, small bowel, brain and 

pancreatic cancer (Jasperson, Tuohy et al. 2010). 

FAP is the second most frequent hereditary syndrome arising in 

approximately one in 7000 people affected by CRC. It is caused by a 

germline mutation in the Adenomatous Polyposis coli (APC) tumour 

suppressor gene. The inherited mutation results in the development of 

hundreds and thousands of bowel adenomas beginning in early adolescence 

with CRC inevitable in nearly all patients by age 50 unless the colon is 

removed (for further details see Section 1.14.1). 

1.11.2 Other Colorectal Cancer Syndromes  

MutY Homolog (MUTYH) adenamtous polyposis (MAP) is caused by 

homozygous mutation in the base excision repair pathway gene MUTYH 

resulting in an autosomal recessive adenomatous polyposis of the 

colorectum with an increased risk of CRC. MUTYH protects against 

transversions caused by oxidative DNA damage. Colonic polyposis usually 

occurs by the time an individual reaches their forties. MAP patients have a 

propensity for proximal colonic neoplasms. In addition, MUTYH mutations 

have also been found in early onset CRC with few or no polyps (Jasperson, 
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Tuohy et al. 2010; Nielsen, Morreau et al. 2011). 

Recently whole genome sequencing of germline DNA from patients with 

CRC and polyps has revealed mutations in two related DNA polymerase 

genes: POLE and POLD1 (Briggs and Tomlinson 2013). POLE is the 

catalytic subunit of polymerase ε (Pol ε) and POLD1 encodes the catalytic 

and proofreading subunit of polymerase δ (Pol δ); both are responsible for 

proof-reading repair during DNA replication. POLE or POLD1 germline 

mutation also predisposes in some individuals to multiple colorectal 

adenomas and carcinomas. This particular syndrome has been called 

Polymerase Proofreading-associated Polyposis (PPAP). Similarly other 

individuals with PPAP have been found to have large adenomas or early 

onset CRC, which is also seen in LS and MAP (Briggs and Tomlinson 2013; 

Palles, Cazier et al. 2013).   

1.12 Colorectal Cancer Genetics 

CRC develops as a consequence of a series of acquired genetic mutations, 

resulting in cell proliferation, reduced programmed cell death/apoptosis 

together with increased angiogenesis, cellular metabolism and stromal 

invasion. CRC is initiated following mutation in a single precursor cell 

conferring growth advantage – clonal selection, leading to clonal expansion 

and the acquisition of further mutations resulting in additional growth 

advantage (Fearon and Vogelstein 1990). 
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The mutations occur in two broad categories of genes: proto-oncogenes and 

tumour suppressor genes (TSGs). When proto-oncogenes are mutated to 

become oncogenes they are activated leading to a ‘gain in function’; 

oncogenes encode for growth factors or their receptors, molecular signalling, 

cell cycle regulators, proliferation and survival factors. In contrast, TSGs are 

inactivated when mutated leading to a ‘loss in function’ (Kim 2009).  As 

postulated by Knudson’s two-hit hypothesis this loss of function requires ‘two 

hits’ or two mutational events. Just a single event, loss of heterozygosity 

(LOH) or a point mutation will result in loss of function of only one gene, but 

when combined both gene copies in the normal diploid cell can be hit and no 

working gene left intact. TSGs restrain growth and proliferation, progression 

of cell cycle, mobility, and other functions related to stable differentiation. 

In colonic epithelium, a single sheet of columnar epithelial cells underlined 

by the connective tissue of the lamina propria form finger-like invaginations 

or crypts. The interstinal crypts are clonal populations formed at the base of 

the crypts by stem cells, proliferating in the mid-crypt zone, before 

differentiating, dying and sloughing off in the gut lumen. The stem cell niche 

at the base of the crypt is surrounded by mesenchymal myofibroblasts that 

produce WNT ligands that activate Frizzled receptors on the stem cells. A 

stem cell that acquires a mutation that provides a selective advantage can 

result in a clonal expansion as it migrates up the crypt and subsequent 

colonisation with the mutant stem cell leading to clonal conversion of the 

stem cell niche. Mutated intestinal crypts expand by a process of crypt 

fission spreading the mutation within the epithelium or field cancerisation 



41 
 

(reviewed Humphries and Wright 2008) 

Fearon and Vogelstein proposed that the adenoma-carcinoma sequence is 

determined by a stepwise accumulation of multiple mutations activating pro-

oncogene genes and inactivation of TSGs (Fearon and Vogelstein 1990). 

This model predicts that at least 7 distinct mutations are required and 

genome wide sequencing has so far identified up to 80 mutated genes per 

CRC with less than 15 considered to be true 'drivers' of tumourgenesis 

(Fearon 2010). Those genes that are mutated frequently are considered 

‘gene mountains’. Members of ‘gene mountains’ include oncogenes such as 

Kristen-Ras (KRAS) which promote cancer development when mutated and 

TSGs such as APC, the MMR genes and Tumour Protein 53 (TP53), which 

fail to inhibit cancer development when mutated.  However, amongst these 

are ‘gene hills’ which are genes mutated in less than 5% of tumours, 

although it has been suggested that it is the ‘gene hills’ that are more 

important as the majority of cancers do not have mutations in these gene 

mountains (Wood, Parsons et al. 2007). More recently the Cancer Genome 

Atlas project using whole-genome sequencing of CRC identified 32 recurrent 

somatic mutations. The study showed ubiquitous mutation in one or more 

members of the WNT signalling pathway and also identified novel and 

frequent mutations in WNT signalling genes ARIDIA, SOX9 and FAM123B. 

Although the predominate WNT signalling mutation occurred in APC the 

sequencing also demonstrated that in the non-hypermutated (mutation rate 

<8.24 per 106) CRCs APC and TP53 were significantly more frequently 

mutated compared to the hypermutated (mutation rate >12 per 106) group of 
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tumours. This suggested that these two groups progress through different 

sequences of genetic events (Cancer Genome Atlas Network 2012).  

The initial appearance of an adenoma from normal colonic mucosa follows 

early inactivation of APC; mutation in KRAS then results in growth of the 

adenoma and progression to adenomatous intermediates, LOH of 

chromosome 18q results in adenoma growth and progression and 

inactivation of TP53 occur concurrently with the transition from adenoma to 

carcinoma. Mutational activation of Phosphoinositide-3-kinase, catalytic, 

alpha (PIK3CA) occurs late in the adenoma-carcinoma sequence in only a 

small proportion of CRC (Figure 1). 
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Figure 1.  The ‘adenoma-carcinoma’ sequence model of carcinogenesis is a result of 

multiple stepwise genetic mutations. The formation of an aberrant crypt focus is the initial 

step in colorectal tumourgenesis. Activation of the Wnt signalling pathway occurs due to 

mutation in the APC gene or β-catenin. Progression from adenoma to carcinoma results from 

mutations in KRAS, TP53, LOH 18q, while mutation in PIK3CA is a late step in some CRC’s 

(Adapted from Takayama et al, 1998). 
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1.13 Chromosomal and Microsatellite Instability in CRC 

The frequency of naturally occurring baseline mutations is insufficient to 

account for the multiple mutations required for cancer to develop. A mutator 

phenotype must be acquired that increases the rate of new mutations, 

therefore providing an intrinsic genomic instability (Loeb, Loeb et al. 2003). It 

is considered that three distinct but not necessary mutually exclusive 

pathways: Chromosome Instability (CIN), Microsatellite Instability (MSI) and 

CpG island methylator phenotype (CIMP) (Issa 2004). Finally a fourth 

pathway has been suggested which has neither, the Microsatellite Stable 

and Chromosomal stable (MACS) CRC’s (Cai, Xu et al. 2008; Silver, 

Sengupta et al. 2012).  

1.13.1 Chromosome Instability  

CIN is the most common pathway, which has been observed in 65-70% of 

sporadic CRC (Al-Sohaily, Biankin et al. 2012). CIN describes the 

accelerated rate of allelic gain or loss of entire or part of chromosomes 

(Lengauer, Kinzler et al. 1998) resulting in an imbalance in chromosome 

number  (aneuploidy), genomic amplification and a high frequency of LOH 

(Pino and Chung 2010). CIN can be as a result of DNA replication stress 

and defective chromosome segregation (Burrell, McClelland et al. 2013); 

Telomere dysfunction; response to DNA damage and LOH (Lengauer, 

Kinzler et al. 1998; Wang, Cummins et al. 2004; Pino and Chung 2010). 

Therefore, this particular pathway is characterised by tumours with APC 

mutations following allelic loses on chromosome 5q, TP53 from 17p, KRAS 
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from 12p and losses on chromosome 18q resulting in SMAD4 mutation (Pino 

and Chung 2010). CIN tumours occur more frequently in the left and distal 

colon and are highly differentiated with no lymphocytic infiltration and are 

more sensitive to fluorouracil chemotherapy, although CIN tumours are 

associated with a poorer survival compared to MSI tumours (Soreide, 

Janssen et al. 2006). 

1.13.2 Microsatellite Instability  

MSI is characterised by a defective mismatch repair system that causes 

accumulation of errors in the DNA sequence. Microsatellites are simple 

sequence repeats of 1 to 6 nucleotides most commonly a dinucleotide 

repeat of cytosine and adenine (Thibodeau, Bren et al. 1993). Due to their 

repetitive nature microsatellites have a much higher mutation rate as DNA 

polymerases are prone to ‘stall or slip’ at these sequences resulting in a 

somatic change in sequence length and frameshift mutations through a gain 

or loss of repeat units (Boland and Goel 2010). Such mismatches are 

corrected by the mismatch repair pathway (MMR), however in MSI tumours 

there is a defect in the MMR pathway. In CRC arising in LS patients (see 

Section 1.11), MSI is caused by a germline mutation in a mismatch repair 

enzyme (e.g. MSH2). Whilst in approximately 15% of sporadic CRC, the MSI 

phenotype is due to epigenetic silencing of a mismatch repair gene most 

often  MLH1 (Hughes, Khalid-de Bakker et al. 2012). Epigenetic silencing is 

commonly associated with the CpG island methylator phenotype (CIMP) and 

about 70-80% of sporadic MSI are attributed to CIMP (Toyota, Ohe-Toyota 

et al. 2000; Issa 2004). MSI tumours commonly have frameshift mutations in 
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β-catenin, particularly in tumours from LS patients (Johnson, Volikos et al. 

2005), and transforming growth factor B receptor II (TGF-BRII) (Watanabe, 

Wu et al. 2001). MSI CRCs have a higher frequency of BRAF mutations, 

although have fewer mutations in KRAS, and TP53 (Samowitz, Holden et al. 

2001; Oliveira, Westra et al. 2004). MSI tumours frequently occur in the 

proximal and right colon, they are poorly differentiated with lymphocytic 

infiltration which may associate with their better survival compared to CIN 

tumours (Soreide, Janssen et al. 2006).  

1.13.3 CPG Island Methylator Phenotype  

CIMP is associated with a subset of CRCs that are thought to be etiologically 

and clinically distinct, and characterised by methylation of a panel of specific 

CpG loci. CIMP is closely associated with MSI in patients without germline 

mutations in MMR genes and with frequent BRAF mutation (Walther, 

Johnstone et al. 2009). CIMP tumours have distinctly different histology 

compared to tumours developed from the traditional adenoma-carcinoma 

pathway and instead are thought to arise via the serrated neoplastic 

pathway (Noffsinger 2009; Snover 2011); and clinically there is evidence to 

suggest that CIMP is associated with prognosis (Ogino, Nosho et al. 2009; 

Dahlin, Palmqvist et al. 2010). Promoter CpG island methylation of TSGs are 

a common feature of CIMP. These CpG islands are clusters of cytosine-

guanosine residues with gene promoters of nearly half the human genome 

embedded into them that can be methylated (Issa 2004). Methylation of the 

promoter region of a gene causes transcriptional repression and therefore 

silencing of the gene. An early event in CIMP tumours is the mutation of the 
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BRAF proto-oncogene, which inhibits normal apoptosis of colonic cells 

(Snover 2011), as well as methylation of the MMR gene MLH1, resulting in 

its transcriptional inactivation and causing MSI (Herman, Umar et al. 1998). 

Methylation of CIMP-related markers originally included MINT1, MINT2, 

MINT31, p16INK4α, p14ARF, and hMLH1, which are frequently used to 

identify tumours with this phenotype (Issa 2004). Other markers of this 

phenotype have since been added and the best choice of markers is in 

dispute. Weisenberger and colleagues introduced a panel of five genes 

including CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS, while Ogino 

and colleagues (2007) proposed that a panel of (at least) four markers 

including RUNX3, CACNA1G, IGF2, and MLH1 should constitute a sensitive 

and specific CIMP panel for the purpose of research and clinical use (Ogino, 

Kawasaki et al. 2007). At present, no set criteria for defining an ideal panel 

of CIMP markers exists (Hughes, Khalid-de Bakker et al. 2012). 

1.13.4  Microsatellite Stable and Chromosome Stable 

MACS are a subset of CRC that are both microsatellite stable and 

chromosome stable (MSI-CSI-/MIN-CIN-), that account for up to 30% of all 

sporadic CRCs with distinct molecular characteristics (Silver, Sengupta et al. 

2012; Sengupta, Yau et al. 2013). MACS have been reported to be present 

in CRCs arising in younger patients (Chan, Curtis et al. 2001) and located 

preferentially in the proximal colon with poor differentiation (Cai, Xu et al. 

2008). Our Laboratory has found that MACS are more likely to be left- than 

right-sided and that those patients with MACS cancers have a better survival 
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and lower hypermethylation status (see Section 1.21.3) compared with other 

CRC instability phenotypes (Silver, Sengupta et al. 2012).  

 

1.14 Adenomatous Polyposis Coli, B-Catenin and WNT Signalling 

Pathway 

 

1.14.1 Familial Adenomatous Polyposis Syndrome And The 

Adenomatous Polposis Coli Tumour Suppressor Gene 

FAP has a prevalence of 1 in 10,000 individuals; it results in the 

development of hundreds and thousands of bowel adenomas beginning in 

early adolescence. Colonic cancer is inevitable with nearly all patients being 

diagnosed with CRC by age 50, with the average age of diagnosis 39 years, 

although 7% will develop CRC by age 21 (Jasperson, Tuohy et al. 2010). 

Therefore, these patients at diagnosis are offered prophylactic colectomy 

usually towards the end of the second decade of life before cancer is likely 

to develop. A number of varying phenotypic FAP related syndromes have 

been proposed, including attenuated FAP a less-severe form of FAP 

developing fewer polyps (less than 100) at a later age with a lifetime risk of 

developing CRC 69% (Burt, Leppert et al. 2004). FAP is also characterised 

by extracolonic manifestations including epidermoid cysts, osteomas, 

desmoids tumours and dental anomalies and a characteristic retinal lesion 

called congenital hypertrophy of the retinal pigment epithelium (CHRPE) 

(Half, Bercovich et al. 2009). Turcot’s syndrome is FAP associated with brain 
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tumours including medulloblastoma and glioblastoma (Hamilton, Liu et al. 

1995).  

The gene responsible for these syndromes is the APC TSG. The gene 

encodes a 312 kDa cytoplasmic protein consisting of 2,843 amino acids with 

multiple functional domains, transcribed by 15 exons (Fearon 2010). The 

APC protein normally binds to β-catenin the downstream effector of the Wnt 

signalling pathway (see Section 1.13.2). APC regulates β-catenin and is vital 

in Wnt signalling, it regulates differentiation, adhesions, migration, 

development, apoptosis and chromosomal segregation. The largest exon, 

number 15 accounts for 75% of the coding sequence and is the most 

common site of somatic and germline mutation (Goss and Groden 2000). 

Most mutations almost always result in a truncated protein as a result of 

premature protein translation termination.  

Mutation of APC is the earliest step in colorectal tumourgenesis and 

therefore considered to be the ‘gatekeeper gene’. Mutations of APC are 

found in three quarters of sporadic CRCs with mutations also found in 5% of 

dysplastic aberrant crypt foci and 63% of large adenomas suggesting that 

functional loss of APC is an early carcinogenic event (Powell, Zilz et al. 

1992; Gupta and Schoen 2009). APC serves a vital role in the Wnt/β-catenin 

signalling pathway, which is crucial in regulating cell proliferation, 

differentiation and apoptosis (see Section 1.13.2). APC also regulates F-

actin and microtubules both cytoskeletal proteins involved in cell adhesion, 

migration and mitosis (Aoki and Taketo 2007). Therefore, loss of APC from 
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normal colonic tissue may lead to chromosomal instability (Alberici and 

Fodde 2006) (see Section 1.13.1). 

1.14.2 Β-Catenin and the WNT Signalling Pathway 

β-catenin is encoded by the catenin (cadherin-associated protein), beta 1 

(CTNNB1) gene. CTNNB1 is a transcription factor that activates genes 

involved in cell cycle progression. β-catenin activity is the important down-

stream effector of the Wnt signalling pathway (Segditsas and Tomlinson 

2006). The Wnt/β-catenin signalling pathway or the canonical Wnt pathway 

is essential for controlling intestinal epithelial cell proliferation, and therefore 

important in malignant transformation (Gavert and Ben-Ze'ev 2007; Chien, 

Conrad et al. 2009). Wnt is a secreted glycoprotein that interacts with two 

cell surface receptors, Frizzled (Fz) seven transmembrane molecules and 

low-density lipoprotein receptor related protein family 5 and 6 (LRP 5 and 

LRP6) (Fearon 2010; Saif and Chu 2010). In the absence of Wnt, β-catenin 

is sequestered in the cytoplasm in a ‘destruction complex’, which consists of 

a subcellular trimeric complex containing the APC protein, the scaffolding 

protein axin, and glycogen synthase kinase-3B, which is subject to 

degradation following phosphorylation via the ubiqutin-proteasome pathway. 

This regulates the amount of β-catenin and thereby controls entry into the 

cell division cycle. Binding of the Wnt ligand to its receptors recruits the 

cytoplasmic phosphoprotein Dishevelled (Dsh) and this inactivates the 

‘destruction complex’ leading to the inhibition of the Glycogen synthase 

kinase 3β (GSK3B) -mediated phosphorylation of β-catenin (Zeng, Tamai et 

al. 2005; Kimelman and Xu 2006). This allows β-catenin to escape 
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degradation and translocate to the nucleus. β-catenin enters the nucleus 

where it frees T-cell factor (TCF) from its repressors CtBP and Groucho, 

activating the transcription and expression of a variety of target genes 

responsible for cell cycle progression and proliferation, for example c-Myc 

and cyclin D. The binding of β-catenin and APC is necessary for APC to 

function as a TSG. With loss of APC function, β-catenin is able to 

accumulate and activate transcription genes which promote proliferation 

(White, Chien et al. 2012) (Figure 2).  
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Figure 2. Modulation of β-catenin in the presence and absence of a Wnt signal. A. In 

the absence of a WNT signal, free intracellular β-catenin is kept low by proteasomal 

degradation. Free cytoplasmic β-catenin is recruited to a 'destruction complex' containing 

APC, axin/conductin and glycogen synthase kinase 3β (GSK3β). However, β-catenin is 

phosphorylated by GSK3β, allowing it to be recognized by an SCF complex containing β-

TrCP, resulting in the addition of a polyubiquitin chain to β-catenin, and therefore making it 

recognizable for proteasome degradation. Hence, β-catenin cannot reach the nucleus, to 

co-activate TCF-responsive genes. B. In the presence of WNT, its receptor, Frizzled, in 

complex with LRP6, is activated. This leads to activation of GBP - an inhibitor of GSK3β. 

Consequently, β-catenin cannot be targeted for destruction and is free to diffuse into the 

nucleus, where it acts as a co-activator for TCF-responsive genes (Adapted Fodde et al, 

2001). 
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1.15 The RAS Proto Oncogene 

Mutations in the RAS family of proto-oncogenes are common and found in 

20% to 30% of all tumours (Lau and Haigis 2009). The RAS superfamily of 

proteins which also include Harvey-RAS (HRAS), neuroblastoma-RAS 

(NRAS) and Kristen-RAS (KRAS) are a group of small guanosine 

triphosphate (GTP) binding proteins located on the inner plasma membrane 

characterised by the presence of a catalytic guanosine domain (G-domain), 

through which they may be activated (GTP-bound) or inactivated (guanosine 

diphosphate-bound (GDP) by extracellular stimuli (i.e. growth factors, 

cytokines, adhesion signals) (Bos 1989; Marshall 1996).  

The RAS proteins are involved in intracellular signal transduction, and 

remain inactive until they bind to GTP. Once the GTP is bound to the RAS 

protein, this activates it leading to a conformational change in the RAS 

protein affecting its interactions with its downstream transducers, GTPase-

activating proteins (GAPs), which amplify the effect of the activated RAS 

protein. This in turn also has the effect of further reducing the intrinsic 

GTPase activity, stimulated by GAPs to convert GTP to GDP and down 

regulating the activity of the RAS protein (Ahearn, Haigis et al. 2012). 

Oncogenic mutations of RAS are located in the active, GTP-bound state 

activating their downstream effectors (Castellano and Downward 2011).  

RAS activates several pathways including the mitogen-activated protein 

(MAP) kinase cascade via the serine-threonine kinases of the RAF family, 

transmitting signals downstream resulting in the transcription of genes 
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involved in cell growth and division, as well as the PI3K/AKT pathway that 

inhibits apoptosis (Janssen, Abal et al. 2005; Castellano and Downward 

2011) (Figure 3). 
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Figure 3. RAS Signalling. Binding of growth factors to the receptor tyrosine kinases 

results in the displacement of GDP from inactive RAS. RAS is activated following the 

binding of GTP, which recruits and activates RAF via MAP kinase pathways, stimulating 

cell proliferation and PI3K/AKT pathways, suppressing apoptosis. Inactivation of RAS 

occurs when GAP proteins hydrolyse GTP back to GDP. Oncogenic mutation of K-RAS 

reduces intrinsic GTPase activity and therefore prevents the binding of GAP proteins, 

causing constitutive signalling (Castellano and Downward 2011). 
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1.16 Mutation of the Kirsten-RAS Gene in Cancer 

The most common mutation in the KRAS gene is a point mutation in exon 2 

at codons 12 or 13 or less commonly in codon 61 of exon 3. These 

mutations result in activation of a number of effector pathways, including 

RAF/MAPK, JNK and phosphatidylinositol 3-kinase (PI3K) signalling 

pathways leading to prevention of apoptosis and growth promotion 

(Janssen, Abal et al. 2005). KRAS mutations are found with the highest 

prevalence in pancreatic carcinomas (>80%), followed by colon carcinoma 

and lung carcinoma (30-50%), and in other cancers including biliary tract, 

endometrial, cervical, bladder, liver, myeloid and breast cancer (Jancik, 

Drabek et al. 2010). KRAS mutations are present in 40-50% of CRC, and in 

15-68% of colorectal adenomas (McLellan, Owen et al. 1993; Takayama, 

Ohi et al. 2001; Takayama, Miyanishi et al. 2006) of which only 10% of 

adenomas less than 1cm in diameter suggesting KRAS mutation is a 

relatively late event.  

1.17 The TP53 Tumour Suppressor Gene – ‘Guardian Of The Genome’ 

TP53 is a TSG located on the short arm of chromosome 17. TP53 encodes 

for a 393 amino acid protein consisting of four functional domains each 

responsible for its actions as a transcriptional regulator of genes that encode 

proteins involved in DNA repair, cell cycle regulation, cellular senescence 

and apoptosis (Levine and Oren 2009). TP53 has, therefore, been described 

as the ‘guardian of the genome’ (Lane 1992). 
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TP53 is activated following cellular stress: DNA damage, nucleoside 

depletion, and hypoxia and oncogene activation (Levine and Oren 2009). 

The regulation of TP53 protein is complex, involves multiple proteins (Figure 

4) and is negatively regulated by Mouse double minute 2 homolog (MDM2) a 

ubiqutin ligase (Momand, Zambetti et al. 1992). When protein kinases are 

activated (such as ATM, DNA-PK, or CHK2) they phosphorylate TP53 at one 

of three residues (Ser15, Thr18 or Ser20) disrupting MDM2 binding, 

resulting in a proportional increase in TP53 levels. MDM2 expression itself is 

activated by TP53 and, therefore the increase of TP53 also increases 

MDM2. However, this has no effect while TP53 is phosphorylated (Moll and 

Petrenko 2003).  Once the DNA damage is repaired, the protein kinases are 

no longer active.  Therefore TP53 is quickly dephosphorylated and 

destroyed by the accumulated MDM2 via the ubiquitin system. In addition, 

TP53 can also be modified by acetylation, methylation and sumoylation 

(Levine 1997). When DNA is damaged TP53 activates DNA repair proteins 

such as the ribonucleotide reductase p53R2 involved in DNA replication 

repair (Tanaka, Arakawa et al. 2000).  

Once TP53 is activated it initiates transcription of one of its downstream 

genes reflecting the nature of the stress, although the choice of which 

pathway is activated is not well understood. TP53 inhibits cell cycle transition 

at DNA damage checkpoints at G1/S and G2/M (Taylor and Stark 2001). 

The transcription of the cyclin-dependent kinase inhibitor p21 WAF1/CIP1 

mediates G1 arrest (el-Deiry, Tokino et al. 1993). While TP53 induced 

transcription of Growth Arrest and DNA Damage (GADD45), and 14-3-3s 
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inhibit the Cyclin B/CDC2 complex which is essential for G2/M phase 

(Hermeking, Lengauer et al. 1997). 

Apoptosis is initiated if DNA damage is irreparable and TP53 regulates 

apoptosis by inducing multiple apoptotic target genes acting at different 

levels of both the intrinsic and extrinsic death pathways. Within the intrinsic 

apoptosis pathway, TP53 induces the activation of Bc1-2 - BAX, NOXA and 

PUMA ‘activator’ genes which enhance secretion of cytochrome c from the 

mitochondria into the cytoplasm, leading to activation of caspases and 

subsequent apoptosis (Fridman and Lowe 2003). Within the extrinsic 

apoptosis pathway, TP53 induces the expression of Fas ligands (e.g. CD95) 

and killer Dr Receptors (e.g. TRAIL receptor 2) regulating apoptosis (Igney 

and Krammer 2002; Meulmeester and Jochemsen 2008).  

TP53 is also involved in cell senescence, although the exact mechanisms 

that regulate TP53-induced senescence are poorly understood. A wide 

spectrum of stimuli can trigger TP53-dependent senescence, including the 

abnormal activation of oncogenes e.g. RAS. TP53-induced senescence is 

primarily driven via the p53-p21 pathway (Zuckerman, Wolyniec et al. 2009). 

It is possible that TP53-induced senescence is regulated by tumour 

suppressors that are unregulated in cell senescence inhibiting MDM2 

negative feedback loop (e.g. ARF) or stabilizing TP53 through acetlylation 

(e.g. Promyleocytic leukaemia - PML) (Campisi 2001; Zuckerman, Wolyniec 

et al. 2009) (Figure 4). In cancer cells TP53-dependent senescence is 

activated once HSP72 is depleted in vivo (Yaglom, Gabai et al. 2007; Gabai, 

Yaglom et al. 2009) (see Section 1.21.1) 
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Figure 4. The role of TP53 in cellular response to stress. P53 is plays a vital role in the 

cellular response to stress and DNA strand breaks. Ultraviolet radiation, and oxidative 

stress all result in a rapid increase in TP53 concentration. This is normally tightly regulated 

by MDM2, a negative regulatory partner. MDM2 is an E3 ubiquitin ligase, which mediates 

both ubiquitination and proteasome dependent degradation of TP53. TP53 induction results 

in the transcription of numerous genes such as the Cyclin-dependent kinase (CDK) 

inhibitor protein p21WAF1, which mediates cellular senescence and G1/S growth arrest by 

blocking cyclin E-CDK 2 mediated phosphorylation of retinoblastoma protein (pRb). BAX 

involved in mitochondrial apoptosis; and Growth Arrest and DNA Damage (GADD45), 

which is involved in DNA repair (Adapted from Boland et al. 2005).  
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1.18 Mutation of the TP53 Tumour Suppressor Gene 

TP53 gene mutations are present in 50-55% of all cancers making it an 

almost universal hallmark of human tumours (Levine 1997). Most of the 

TP53 mutations occur in exons 5 to 8 and 85% of these are missense 

mutations that occur in 5 codon hotspots (codons 175, 245, 248, 273 and 

282) resulting in a stable protein that loses the ability to bind DNA and 

activate target genes (Vidaurreta, Maestro et al. 2008; Leroy, Fournier et al. 

2013).  

In 70% of CRC there is 17p LOH with TP53 thought to be the main target 

TSG. TP53 mutation is observed in 4-26% of adenomas, 50% of adenoma 

with invasive foci and in 50-70% of CRC defining its role in the transition 

from adenoma to carcinoma (Fearon 2010). 

 

1.19 The Phosphoinositide Kinases and the AKT Pathway 

Phosphoinositide kinases (PIKs) are lipid kinases categorised into three 

families: Phosphoinositide 3-kinases (PI3Ks), Phosphoinositide 4-kinases 

(PI4Ks) and Phosphoinositide 5-kinases (PI5Ks) (Samuels and Velculescu 

2004). These act as signal transducers through phosphorylation of 

phosphoinositides. PI3Ks are further subdivided into class I, II and III (Katso, 

Okkenhaug et al. 2001). The class I PI3Ks are heterodimers consisting of a 

catalytic subunit and regulatory subunit activated by growth factor receptor 

tyrosine kinases (Vivanco and Sawyers 2002). These have been found to 
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have cancer-associated mutations within their catalytic subunit p110α 

encoded by the PIK3CA gene (Karakas, Bachman et al. 2006). 

PIK3CA phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) 

forming Phosphatidylinositol-3,4,5-triphosphate (PIP3). PIP3 is an important 

second messenger involved in cell growth, proliferation and survival and 

migration through it activation of the AKT pathway and by serving as an 

anchor for the serine kinases AKT1. PIP3 is in turn tightly regulated by 

phosphatase and tensin homolog (PTEN) dephosphorylating PIP3 to PIP2 

(Chalhoub and Baker 2009). Somatic mutations of the PTEN TSG have 

been found in approximately 10% of CRCs (Wood, Parsons et al. 2007). 

Cowden syndrome is a rare hereditary autosomal dominant disorder 

associated with a germline mutation of PTEN in 80% of patients. 

Phenotypically the syndrome is characterised by multiple hamartomas, but 

not by an increased risk of CRC (Marsh, Dahia et al. 1998; Hobert and Eng 

2009).  

PIK3CA is mutated in 32% of CRCs (Samuels and Velculescu 2004) as well 

as 25% of gastric cancers, 36% hepatocellular carcinomas and 18-40% of 

breast cancers (Samuels, Wang et al. 2004). Mutation in PIK3CA leads to 

increase in PI3K activity resulting in an accumulation of PIP3 and activation 

of the AKT pathway. AKT activation is important in cancer as it regulates cell 

survival, proliferation and growth. Activation of AKT functions as an anti-

apoptotic pathway. AKT inhibits activity of pro-apoptotic proteins such as 

BAD, capase-9 and MDM2, the negative regulator of TP53, enhancing its 

degradation (see Section 1.16). AKT prevents the degradation of CDKs such 
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as cyclin D1 GSK3β (see Section 1.13.2), the expression of CDK inhibitors, 

and regulates protein synthesis by regulating mammalian target of 

rapamycin (mTOR) thereby enhancing proliferation and cell growth (Vivanco 

and Sawyers 2002; Liao and Hung 2010)  (Figure 5). 
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Figure 5. Phosphatidylinositol 3-kinase (PI3Ks) are activated by stimulation of 

receptor tyrosine kinases (RTKs). This triggers activation of PI3KCA and conversion by 

its catalytic domain of phosphatidylinositol (3,4)-bis-phosphate (PIP2) to 

phosphatidylinositol (3,4,5)-tris-phosphate (PIP3), PIP3 brings PDK1 and AKT to the 

membrane where PDK1 activates AKT phosphorylation. PIP3 is in turn tightly regulated by 

phosphatase and tensin homolog (PTEN) dephosphorylating PIP3 to PIP2. Similarly, the 

phosphatases in the PHLPP family directly dephosphorylate and therefore inactivate AKT. 

 

AKT mediates the activation and inhibition of several targets through phosphorylation, 

resulting in cell survival, proliferation and growth. AKT promotes survival by inhibiting pro-

apoptotic proteins such BAD, Caspase 9 and fork-head transcription factors (e.g. FKHER, 

FKHRL1 and AFX) inhibiting the transcription of pro-apoptotic genes. AKT phosphorylates 

inhibitors of kappa kinases (IKK), which indirectly increases the activity of nuclear factor 

kappa B (NF-κB) stimulating the transcription of pro-survival genes. Inhibition of GSK3β by 

AKT stimulates cell cycle progression by stabilizing cyclin D1 expression. AKT can directly 

phosphorylate and activate the mammalian target of rapamycin (mTOR), as well as cause 

indirect activation of mTOR by phosphorylating and inactivating (TSC2) tuberous sclerosis 

complex 2, which normally inhibits mTOR through the GTP-binding protein (Rheb) RAS 

homolog enriched in brain. When TSC2 is inactivated by phosphorylation, the Rheb is 

maintained in its GTP-bound state, allowing for increased activation of mTOR. mTOR 

signals to its downstream effectors S6 kinase/ribosomal protein S6 and 4EBP-1/eIF-4E to 

control protein translation. (Growth factors, GFs). (Adapted from Samuels and Ericson 

2006). 
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1.20  Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells 

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (Sen 

and Baltimore 1986) is a protein complex that controls transcription of a 

diverse array of genes involved in inflammatory response, regulating cell 

survival, proliferation, cell adhesion and the cellular microenviroment (Pahl 

1999; Karin 2006; Fan, Dutta et al. 2008; Iliopoulos, Hirsch et al. 2009). 

Therefore, aberrant NF-κB activation can result in the induction of anti-

apoptotic genes, cell proliferation via increased expression of proto-

ocogenes and cyclins; promotion of metastasis by regulating the expression 

of metalloproteinase and cell adhesion genes; and angiogenesis by 

regulating genes controlling growth of new blood vessels. Thus, aberrant 

NF-κB activation plays a pivotal role in the generation and maintenance of 

malignancies (Karin 2006; Kim, Hawke et al. 2006; Fan, Dutta et al. 2008).  

NF-κB can be activated by cellular stress, DNA damage, and by activation of 

various oncogeneic pathways (Perkins 2012) (Figure 6). 

The NF-κB transcription factor family is made up of five proteins which all 

share a conserved N-terminus domain called the REL homology domain 

(RHD) which is required for dimer formation, DNA binding and interaction 

with NF-κB inhibitor proteins. These consist of two subfamilies of proteins 

which form hetero or homodimer complexes: p65 (RelA), c-Rel, RelB, which 

are collectively referred to as the Rel subfamily each containing a 

transactivation domain for transcription; and the NF-κB subfamily NF-κB1 

(p100) and NF-κB2 (p105) (Perkins 2012). The NF-κB encode for precursor 

proteins that are further processed into their active DNA-binding forms p50 



65 
 

and p52 during translation or phosphorylation-induced partial proteolysis 

(Hayden and Ghosh 2008). These lack the transactivation domain but are 

able to induce transcription when bound to other co-activating proteins, for 

example BAG1 (Southern, Collard et al. 2012). 

NF-κB complexes are present in an inactive or pre-synthesized form not 

requiring any further protein synthesis as they are responsible for rapid 

cellular activation. Therefore, to maintain their inactive state NF-κB proteins 

are sequestered in the cytoplasm by the precursor proteins p100 and p105 

or one of three typical NF-κB inhibitor proteins (IKB) Iκ-Bά, Iκ-Bβ and Iκ-Bε. 

All IKB proteins are characterised by multiple ankyrin sequence repeats 

(Hayden and Ghosh 2008). They bind to NF-κB complexes inhibiting their 

DNA binding while keeping them in cytoplasmic form. Activation results in 

signal induced degradation of the IκB proteins via IκB kinase (IKK) which 

phosphorylates IκBs resulting in ubiquitylation and protesome-mediated 

degradation with subsequent NF-κB nuclear translocation (Kanarek, London 

et al. 2010) to activate its target genes (Figure 6). NF-κB response is 

regulated through a negative feedback loops with NF-κB turning on 

expression of its IKB proteins which then re-inhibits NF-κB forming an auto 

feedback loop (Brasier, Lu et al. 2001). There are also two atypical which 

function differently IκB proteins BCL3 (see Section 6.1) and Iκζ. 
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Figure 6. The diverse consequences of nuclear factor kappa B activation. A wide 

variety of pathways activate nuclear factor kappa B (NF-κB) and the inhibitor of NF-κB 

kinase (IKK). The NF-κB response is pleiotropic and its activation is context dependent. 

NF-κB activity is integrated with multiple tumour suppressor pathways. The tumour 

suppressor status of the cell is a key in determining the resulting action of NF-κB. The 

loss of tumour suppressors (e.g. TP53 or PTEN) leads to the tumour promoting 

functions of NF-κB activity, with increased proliferation and survival. While NF-κB 

activity can be pro-apoptotic, inhibiting proliferation and inducing cell senescence and 

DNA repair in the presence of tumour suppressors. (Adapted from Perkins 2012). 
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1.21 Loss of the Long Arm of Chromosome 18 in Colorectal Cancer 

Allelic deletion of the long arm (18q) of chromosome 18 has been observed 

in 10% of early stage adenomas, 50% of late stage adenomas and 70% of 

CRC (Fearon 2010). This mutation event is the second most common region 

of chromosome loss in CRC. (Fearon and Vogelstein 1990) There are five 

TSGs found on chromosome 18, known as SMAD family member 2 

(SMAD2), SMAD family member 4 (SMAD4), PIGN, MEX3C and ZNF516 

and mutations of these are associated with CRC. SMAD genes encode for 

intracellular mediators that respond to transforming growth factor B (TGFβ) 

signalling (Bellam and Pasche 2010). TGFβ is a cytokine that normally 

inhibits cell growth, induces differentiation and apoptosis in intestinal 

epithelial cells. Germline mutations of SMAD4 are associated with the rare 

inherited syndrome, Juvenile Polyposis (Bevan, Woodford-Richens et al. 

1999). While somatic mutations are found in 10-15% of CRCs and SMAD2 

mutations are found in 5% of CRCs (Fearon 2010). PIGN, MEX3C and 

ZNF516 are cancer chromosomal instability suppressor genes preventing 

DNA damage as a result of DNA replication stress (Burrell, McClelland et al. 

2013).  
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1.22 Molecular Chaperones and Co-Chaperones 

Molecular chaperones and co-chaperones are proteins that maintain the 

normal physiological function of proteins. However, in cancer they may act 

independently or in combination to aid tumourgenesis through their effect on 

cell proliferation, apoptotic and cellular senescence pathways.  

1.22.1 Heat Shock Proteins 

Heat shock proteins (HSPs) are a highly conserved group of molecular 

chaperones that are induced by heat shock and other chemical and physical 

stresses. HSPs have the common property of modifying the structures and 

interactions of other proteins and are classified according to their molecular 

weight: HSP100; HSP90; HSP70; HSP60 and small HSPs (15-30kDa) 

including HSP27 (Garrido, Brunet et al. 2006).  

Their transcription is regulated by transcription factors belonging to the heat 

shock factor (HSF) family; heat shock transcription factor-1 (HSF1) ensures 

transcriptional activation in stress. In tumourgenesis, mouse models have 

shown HSF1 to be important as HSF1 knockout in TP53 knock-in mice 

showed increased survival and delayed development of tumours (Dai, 

Whitesell et al. 2007). Similarly, in crossing TP53 knockout and HSF1 

knockout mice lymphoma development was prevented (Min, Huang et al. 

2007), indicating the importance of HSP in tumour development. The 

cytoprotective properties of HSPs reflect their primary function as molecular 

chaperones (Khalil, Kabapy et al. 2011; Ciocca, Arrigo et al. 2013). The 
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physiopathological features of the tumour microenvironment or a response 

elicited by oncoproteins during carcinogenesis could induce the expression 

of these HSPs.  

The HSPs serve a variety of biological functions including the regulation of 

synthesis, folding or refolding denatured proteins or mis-folded proteins, the 

formation of multi-protein complexes and protein transport across cellular 

membranes (Lanneau, de Thonel et al. 2007), assembly, and degradation of 

different proteins (Beckmann, Mizzen et al. 1990; Khalil, Kabapy et al. 2011). 

The oncogenic potential of cells is highly dependent on their ability to survive 

insult. Elevated expression of HSPs has been reported for nearly all tumour 

types (Ciocca and Calderwood 2005). HSPs are crucial for the stability and 

function of many oncogenic proteins required for tumour development 

including TK receptors, signal transduction proteins, cell cycle regulatory 

proteins, antiapoptotic proteins.  

HSP90 inhibitors are the only HSP inhibitors to have progressed into 

advanced stages of clinical development. HSP90 are ATPases that exert 

their chaperone role through a complex cycle regulated by ATP hydrolysis 

and co-chaperones such as HSP70 (Garcia-Carbonero et al. 2013). 

Inhibition of HSP90 causes client protein degradation via the ubiquitin-

proteasome pathway (Hatakeyama et al. 2004). HSP inhibitors have been 

shown to selectively induce mutant rather than wild-type protein degradation 

as well as having the greatest effect in tumours addicted to particular driver 

oncogene products that are sensitive HSP90 clients. The first HSP90 

inhibitor that was entered into clinical trials was Tanespimycin a 
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Geldanamycin analogue. Geldanamycin from Streptomyces higroscopicus 

var geldanus and Radicicol from the fungus Monosporium bonorden are 

both naturally occurring compounds that were found to inhibit HSP90 

(Whitesell et al. 1994; Jhaveri et al. 2012). Although structurally unrelated 

both bind to the N-terminal nucleotide-binding domain of HSP90 with higher 

affinity than ATP, therefore preventing ATP binding and hydrolysis and 

ubiquitin-mediated protesomal degradation of client proteins (Neckers et al. 

2012). As a result of poor solubility, stability or toxicity at therapeutic doses, 

a number of synthetic analogues have been further developed from these 

compounds. HSP90 inhibition results activation of HSF1 as well as 

upregulation of co-chaperones HSP70 and HSP27 which maybe 

counteractive (Garcia-Carbonero et al. 2013). Furthermore, both HSP70 and 

HSP27 inhibition was demonstrated to significantly increase the cytotoxicity 

of HSP90 inhibitors (Lee at al. 2012; Powers et al. 2008). Massey and 

colleagues (2010) found that inhibition of HSP70 induced degradation of 

HSP90 client proteins. Therefore HSP27 and HSP70 are considered to be 

critical co-chaperones for HSP90.  

HSP27 and HSP70 are the most strongly induced chaperones (Garrido, 

Brunet et al. 2006). HSP27 is ubiquitously expressed at low levels until 

induced by stress and acts in an ATP independent manner. Its main function 

is to prevent protein aggregation (Lanneau, de Thonel et al. 2007). The 

HSP70 family in contrast are ATP-dependent, consisting of four major 

members (Brocchieri, Conway de Macario et al. 2008): HSP70 or HSP72 

(72kDa) which is present at low levels in the absence of stress, until its 
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expression is induced by cellular stress; the generally ubiquitously 

expressed HSC70 (73 kDa); the glucose-regulated protein 78 (GRP78, 78 

kDa) located mainly in the endoplasmic reticulum; and HSP75 (75 kDa), or 

mortalin and mtHSP70, which is located in the mitochondrial (Liu, Daniels et 

al. 2012). The HSP70 family of chaperones also interact as large multi 

protein complexes with various other co-chaperones including Bcl-2 

associated athogene 1 (BAG1; see Section 1.22.2), Hsp70 interacting 

protein (Hip) or carboxy terminus of Hsc70 interacting protein (CHIP). 

HSP70 modulates chaperone function by increasing or decreasing affinity for 

substrates (McDonough and Patterson 2003; Sharp, Crabb et al. 2004; 

Garrido, Brunet et al. 2006; Shi, Zhang et al. 2007). 

HSP27 has anti-apoptotic properties, (Garrido, Brunet et al. 2006). In 

cancer, cells depleted of HSP27 leads to spontaneous apoptosis 

(Nylandsted, Rohde et al. 2000) as this HSP can interfere with all the main 

apoptotic pathways (Lanneau, de Thonel et al. 2007; Dudeja, Mujumdar et 

al. 2009). Similarly HSP27 blocks caspase-dependent apoptotic pathways 

and depletion of this protein leads to apoptosis (Rocchi, Jugpal et al. 2006). 

HSP72 also has been shown to inhibit apoptotic pathways. Therefore, 

overexpression of HPS72 can result tumour survival advantage, as HSP72 

is able to inhibit both intrinsic and extrinsic apoptosis pathways, by binding 

directly to the pro-apoptotic such as BAX preventing mitochondrial 

translocation (Stankiewicz et al. 2005) and to DR4 and DR5 preventing the 

assembly of the death inducing signalling complex (Guo et al. 2005).  
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HSP72 plays a major role in the regulation of the senescence program 

(Yaglom, Gabai et al. 2007). Cellular senescence is a complex programme 

with multiple end points that limits the number of division that a normal cell 

can undergo. Replicative senescence in normal cells results from telomere 

shortening and the accumulation of cell cycle inhibitors triggered following 

DNA damage. In cancer cells, unlike normal cells, the senescence program 

is also activated by certain active oncogenes (e.g. RAS or RAF), which 

trigger senescence via TP53-dependent and TP53-independent pathways 

(Braig and Schmitt 2006; Sherman, Gabai et al. 2007) (Figure 7). 

Senescence represents, therefore an important process for tumourgenesis 

as cancer cells proliferate without a limit and must acquire mechanisms to 

escape replicative senescence (Saretzki 2010). In cancer cells there is both 

inactivation of cell cycle inhibitors and reactivation of telomerase activity 

(Kim, Piatyszek et al. 1994). However, the senescence programme 

continues to remain functional in tumours, as activation of senescence is the 

mechanism of action of many anticancer drugs and therapies (Sherman 

2010). HSP72 suppresses the senescence signalling pathways regulated by 

activated oncogenes allowing cancer cells to escape senescence and 

proliferate. HSP72 selectively suppress in breast and CRC cells (MCF7 and 

HCT116) and there are TP53-dependent and TP53-independent 

mechanisms of triggering senescence (Gabai, Yaglom et al. 2009). Likewise, 

HSP27 regulates cellular senescence by modulating the TP53-pathway 

(O'Callaghan-Sunol, Gabai et al. 2007).  
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Therefore, cancer cells may need HSP expression to suppress the 

senescence programme in order to survive and to proliferate. In accord with 

this both HSP72 and HSP27 are highly expressed in breast, endometrial, 

lung, gastric, liver, prostate cancer and their expression has been correlated 

with increased cell proliferation, metastases, poor response to 

chemotherapy and poor survival (Sherman and Multhoff 2007). In CRC cells 

high expression of HSP72 has been associated with poor survival, 

metastasis and resistance to chemotherapy (Grivicich, Regner et al.), and 

has been correlated with poor outcome when used as a prognostic marker in 

CRC patients (Kocsis, Madaras et al. 2010). 
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Figure 7. Heat shock proteins can inhibit TP53-dependent senescence. A. Activation of 

oncogenes leads to activation of TP53-dependent senescence following the induction of p21 

causing inhibition of proliferation and senescence. B. Proliferating cells can acquire a 

mutation in the TP53 inhibitory pathway resulting in uncontrolled proliferation as in cancer. C. 

Oncogene activation of TP53-dependent senescence can be inhibited by Heat shock 

proteins (HSPs) allowing the cells to proliferate. (Adapted from Sherman et al, 2007).  
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1.22.2 BCL-2 Associated Athogene 1 

BAG1 was discovered in a search for Bcl-2 interacting proteins (Takayama, 

Sato et al. 1995) and was the first BAG gene from an evolutionary 

conserved family of genes to be found. There are six BAG family genes in 

humans all characterised by a 70 amino acid commonly conserved region 

near the C-terminus called the BAG domain. This contains 110-124 amino 

acids forming three anti parallel helices of 30-40 amino acids, the second 

and third of which interact with HSP70 (see Section 1.22.1) (Briknarova, 

Takayama et al. 2001). BAG1, BAG2, BAG3, BAG4, and BAG6 all share a 

single BAG domain with the exception of BAG5 that has four such domains, 

but which differ in their N-terminus regions (Sharp, Crabb et al. 2004). They 

modulate apoptosis, tumorigenesis, neuronal differentiation, stress response 

and the cell cycle (Kabbage and Dickman 2008). 

The BAG1 gene is located on chromosome 9p12 and comprises of seven 

exons. There are four functionally distinct BAG1 isoforms with differing 

actions all expressed by alternative translation initiation from a single mRNA. 

The most abundant is BAG1S (36 kDa), which is found in the cytoplasm, 

then nuclear BAG1L (50 kDa) and BAG1M (46 kDa) which is localised in the 

cytoplasm but translocates into the nucleus, and the finally the minor 

isoforms BAG1 (29 kDa).  

BAG1 acts as a co-chaperone due to its direct binding of the BAG domain to 

the ATPase domain of Hsc70/HSP72 which allows further peptide binding 

domain interactions with other proteins substrates thereby acting as a 
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scaffold molecule. Many of the functions of BAG1 are as a result of its ability 

to bind and modulate the activity of Hsc70/HSP70. 

HSPs direct refolding of denatured proteins (Takayama, Bimston et al. 

1997). BAG1 isoforms have been shown to regulate HSP70 both negatively 

and positively reflecting some of its anti-apoptotic properties (Sharp, Crabb 

et al. 2004). BAG1 also contains an ubiqutin like domain that maybe vital for 

some of its actions. Ubiqutin is a small protein that normally binds to target 

proteins for ATP-dependent degradation by a proteolytic complex. As BAG1 

is very stable this may be required to link proteosome activity with the 

chaperone molecules (Tang 2002; Townsend, Stephanou et al. 2005). BAG1 

also interacts with RAF1 a serine/threonine protein kinase important in cell 

growth signalling in competition with HSP70. Nuclear hormone receptors 

(NHR) are involved in cell survival and are themselves controlled by HSPs 

and, therefore, BAG1 may offer a common mechanism of modulation. BAG1 

also interacts with cell cycle control (anti-apoptotic Bcl-1 protein), translation 

regulators (GADD34), cell-surface receptors (PDGF and HGF) and growth 

factors (Sharp, Crabb et al. 2004). These binding interactions reflect BAG1 

multiple functions effecting cell growth, apoptosis, proliferation, transcription 

and metastasis (Figure 8). 

The ability of BAG1 to suppress apoptosis through its wide variety of 

interactions reflects the importance of BAG1 in cancer. BAG1 is minimally 

expressed in normal tissues but commonly expressed in tumours (Cutress, 

Townsend et al. 2002). Elevated levels of BAG1 are observed in pre-

invasive DCIS precluding to breast cancer and therefore BAG1 may be 
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important at an early stage of tumourgenesis (Sharp, Crabb et al. 2004). 

BAG1 expression has been positively associated with tumour cell 

proliferation, infiltration and metastasis (Bai, Yi et al. 2007). There is 

increased BAG1 expression seen in breast (Brimmell, Burns et al. 1999; 

Millar, Anderson et al. 2009), lung (Rorke, Murphy et al. 2001), laryngeal 

(Yamauchi, Adachi et al. 2001), thyroid (Ito, Yoshida et al. 2003), 

endometrial (Moriyama, Littell et al. 2004) and oral squamous carcinoma 

(Shindoh, Adachi et al. 2000; Wood, Lee et al. 2009) with expression 

possibly correlating with clinicopathological outcome. BAG1 has also been 

shown to be a putative target of amyloid precursor protein (APP) binding to 

its intracellular C-terminal, with BAG1M overexpression leading to the 

accumulation of APP (see section 1.21.3) (Elliott, Laufer et al. 2009).  In 

CRC nuclear BAG1 expression is a predictive factor for distant metastasis 

and poor prognosis (Kikuchi, Noguchi et al. 2002). Similarly, advanced Duke 

Stage, poor tumour differentiation and lymph node metastasis, distant 

metastasis, and malignant level, and poor prognosis is associated with 

increased total BAG1 expression. (Bai, Yi et al. 2007; Sun, Meng et al. 

2010). 
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Figure 8. BAG1 is involved in cell signalling, apoptosis, stress responses/protein 

degradation, proliferation and transcription. BAG1 has a wide variety of cellular 

functions that are mediated through its direct interactions as well as being mediated 

through its interaction with the molecular chaperone HSP72. (Adapted Townsend et al, 

2007). 
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1.23.3 Amyloid Precursor Protein 

APP is a large type I membrane protein that is ubiquitously expressed 

throughout the body (Mattson 1997). The APP gene is located on the long 

arm of chromosome 21 and contains at least 18 exons (Yoshikai, Sasaki et 

al. 1990). Several isoforms of APP are generated by alternative splicing 

ranging from 363-770 amino acids, the major of which are 695, 751 and 770 

amino acids long. The most common isoform APP695 is expressed in the 

central nervous system (Sisodia, Koo et al. 1993), while APP751 and 

APP770 isoforms are expressed in non-neuronal tissues, although the 

functional significance of this is not understood (Zheng and Koo 2006). 

APP is synthesised on membrane-bound ribosomes and is post-

translationally modified by N- and O-glycosylation, sulfation and 

phosphorylation. Immature APP is localised in the cis-Golgi and 

endoplasmic reticulum (ER), whilst mature APP localises in the trans-Golgi 

network and at the plasma membrane. Full length APP undergoes a process 

of ‘ectodomain shedding’ being sequentially cleaved by three proteinases. 

Firstly by α-secretase or β-secretase, resulting in secreted APP (sAPP) or 

sAPPα and sAPPβ, along with carboxy terminal fragments CTF83 or 

CTF99/CTF8. Following this γ-secretase cleavage of CTF83 produces p3, 

and of CTF99/CTF89, which results in amyloid β-peptide (βAPP) as well 

leaving the amino-terminal APP intracellular domains (AICDs) (Chow, 

Mattson et al. 2010) (Figure 9). 
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The various APP fragments have a number of functions and effects, 

although much of this remains to be elucidated particularly in non-neuronal 

cells. βAPP is the most well known isoform as excessive deposition is a 

pathological characteristic, along with the accumulation of neurofibrillary 

tangles and loss of neurons, observed in Alzheimer’s disease (AD) (Chow, 

Mattson et al. 2010). sAPPα has been shown to protect neurons from 

oxygen-glucose deprivation. While sAPPβ lacks the neuroprotective effect it 

is critical in the development of central and peripheral neurons (Furukawa, 

Barger et al. 1996; Nikolaev, McLaughlin et al. 2009). AICD’s may contribute 

to early pathophysiological mechanisms in AD. (Muller, Meyer et al. 2008) 

There is no established biological function for p3 (Chow, Mattson et al. 

2010).  

The role of APP remains poorly understood. APP and have been shown to 

be involved in cell growth, migration, neurite outgrowth and cell adhesion 

(Zheng and Koo 2006; Thinakaran and Koo 2008; Zheng and Koo 2011). 

APP and sAPP have been associated with the proliferation of a variety of 

cells and linked to the malignant progression of colorectal, pancreatic and 

melanoma cells lines (Meng, Kataoka et al. 2001; Hansel, Rahman et al. 

2003; Botelho, Wang et al. 2010; Venkataramani, Rossner et al. 2010). The 

constitutive shedding of APP by α-secretase, a metalloprotease of the A 

Disintegrin And Metalloprotease (ADAM) family in particular ADAM10 (Kuhn, 

Wang et al. 2010), has been shown to be overexpressed in numerous 

cancers (Saftig and Reiss 2010) including CRC (Gavert, Conacci-Sorrell et 
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al. 2005). APP and ADAM10 have been suggested as novel targets for 

inhibition in the treatment of cancer (Duffy, McKiernan et al. 2009). 

It has been suggested that AD is associated with a reduced risk of cancer 

and that cancer was associated with a reduced risk of AD (Roe, Fitzpatrick 

et al. 2010). Increased levels of APP have been associated with reduced 

survival and poor prognosis in prostate and oral squamous cell carcinoma 

(Ko, Lin et al. 2004; Takayama, Tsutsumi et al. 2009). APP has been shown 

to be selectively over expressed in colon and pancreatic carcinoma but not 

in normal tissues (Venkataramani, Rossner et al. 2010). Therefore, APP 

may have a vital role in tumour cells being involved in cell growth, 

differentiation and tumourgenesis, which require exploration. 
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Figure 9.  Amyloid precursor protein processing and cleavage products. Amyloid 

precursor protein is either initially cleaved by α- or β-secretase, the latter results in the 

Amyloid precursor protein (APP) processing pathway (left). Cleavage by α-secretase results 

in the generation of sAPPα (right). Following this cleavage by γ-secretase forms C-terminal 

fragments (CTF 88, p3 and AICD50). APP cleavage by β- and γ-secretase results in 

sAPPβ and then C-terminal fragments (CTF00 and CTF89) and β-amyloid (Adapted Chow 

et al, 2010).  
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1.24  Aims  

Investigations into the mutational pathways and associated changes in gene 

expression may lead to identification of novel targets for therapeutic 

interventions in CRC. These mechanisms may vary between CRC 

phenotypes referring distinct clinicopathological features, which may affect 

their response to treatment. 

In CRC there is elevated expression of HSPs. It has been proposed that 

CRC requires the expression of HSPs and BAG1, its co-chaperone, to 

survive. HSPs have been shown in vitro to suppress oncogenic activated 

cellular senescence, which maybe effected by different CRC mutational 

phenotype. Furthermore, BAG1 has been shown to be a possible regulator 

of APP. Although APP is more commonly associated with the pathogenesis 

of Alzheimer Disease, it has been suggested that APP is an important 

protein involved in both cellular proliferation and tumourgenesis, although 

this remains to be elucidated fully. Finally, BCL3 is an important IKB involved 

in the NF-κB pathway which has been shown to be important in CRC 

tumourgenesis.  

This study aimed to investigate the role of HSPs, APP, BCL3 and their co-

chaperones in CRC, in particular.  Each chapter presents the relevant 

hypotheses to be tested and the specific aims at the start of the chapter. The 

relevant overarching aims are given below:  
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To evaluate the role of HSP27 and HSP72, and their involvement in OIS 

depending on the genetic background of the tumour and the relationship with 

clinicopathological features (Chapter 3). 

To elucidate the role of APP in tumourgenesis and investigate a possible link 

to malignant progression and migration in CRC. Furthermore, to investigate 

any relationship with APP expression and clinicopathological features 

(Chapter 4). 

To investigate the relationship between NF-κB IKK BCL3 and the PI3K/AKT 

pathway as well as BAG1 in CRC with clinicopathological features (Chapter 

5). 
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CHAPTER 2 

Materials and methods 

2.1  Patients and Sample Collection  

The collection and use of tissue was approved by the local Research Ethics 

Committee (East London and City Research Ethics committee 1) in 

September 2006. The work contained within this thesis is covered by the 

following ethics committee reference: REC06/Q0603/65. Informed consent 

was obtained from patients before their operation. Tissue was collected from 

consecutive patients undergoing operations for CRC at the Royal London 

Hospital. The CRC specimens formed part of a historical cohort of clinically 

well-characterised tumour specimens, which have been previously 

investigated in other studies within the group (Appendix I; Silver, A., N. 

Sengupta, et al. 2012). A total sample size of 66 was calculated to give 80% 

power at p=0.05 to detect a difference in a given event occurring in 35% of 

positive against 65% negative cancers. 

Specimens were collected within 20 minutes of surgical resection. Tumour 

material was dissected, avoiding any grossly necrotic area, and normal 

mucosal tissue was taken at least 10 cm proximal to the cancer. The tissue 

was immediately snap-frozen in liquid nitrogen and stored at -80oC. The 

corresponding pathology block sections of formalin-fixed, paraffin wax-

embedded colorectal tumour samples were identified and retrieved from the 

Archive of Pathology at the Royal London Hospital. 
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2.2 Molecular Methods 

2.2.1  DNA Extraction from Tissue  

Genomic DNA was prepared from tumour and mucosal specimens using the 

QIAamp® DNA Mini kit (Qiagen, Hilden, Germany), according to the 

manufacturer’s protocol. Snap-frozen tissue (25 mg) was cut into small 

pieces and left in 180 l of genotyping buffer (ATL) overnight at 56oC for 

protein degradation. If there was inadequate digestion of the sample 

following this incubation a further 20 l of Proteinase K (Sigma, UK) was 

added to the sample and incubation continued for a further 2 hours.  AL 

buffer (200 l) was added to lyse the cells and mixed by vortexing before 

incubating for 10 minutes at 70oC to yield a homogenous solution. 100% 

ethanol (200 l) was then added to each sample and after mixing by 

vortexing, samples were added to the QIAmp® Mini spin column placed in a 

2ml collection microcentrifuge tube. The column, sample and tube were then 

centrifuged at 8000rpm for 1 minute. The filtrate was discarded and AW1 

wash buffer (500 l) added to the spin column, which was placed in a new 

collection tube before centrifuging at 8000rpm for 1 minute. The filtrate was 

discarded again and AW2 wash buffer (500 l) added to the spin column and 

placed in a new collection tube before centrifuging at 13,000rpm for 3 

minutes. This was then centrifuged again at 13,000rpm for 1 minute to 

ensure all traces of buffer are removed. The spin column was then placed 

into a new eppendorf tube and 100 l of buffer AE added to the column and 

incubated at room temperature for 1 minute before centrifuging at 8000 for 1 
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minute. The elute containing the purified DNA was collected in the 

eppendorf, which was then stored at -20oC for future use.   

2.2.2 Total RNA Extraction from Human Adenocarcinoma Cells 

Genomic RNA was prepared from cell lines once at 70-80% confluence 

using the QiagenRNeasy Mini kit (Qiagen, Crawley, UK), according to the 

manufacturer’s protocol. The culture media was drawn off the cells and cells 

washed in PBS twice. Then TRIzol (1ml) was added for homogenisation and 

cells returned to the cell incubator for 5-10 minutes (see Section 2.4). The 

homogenate was then drawn off and pipetted into a 2ml round-bottom 

microcentrifuge tube. Chloroform (200μl) was then added and the sample 

mixed vigorously for 15 seconds, before incubating at RT for 5 minutes. The 

sample was then centrifuged at 12,000 g for 15 minutes at 4oC. The 

aqueous upper phase of sample was then transferred into a 2ml 

microcentrifuge tube and Isopropanol (500 l) was added and then mixed. 

The mixture was incubated for 10 minutes at RT before centrifuging at 

12,000g for 15 minutes at 4oC. The supernatant was removed leaving the 

RNA pellet and washed with 75% ethanol (1ml). This was then centrifuged at 

7,500g for 5 minutes at 4oC and the RNA pellet air-dried. 

The RNA pellet was re-suspended in RNase-free water (100 l) and RLT 

buffer (350 l) and 100% ethanol (250 l) added, mixed well, and then 

pipetted into an RNeasy mini spin column placed in a 2ml collection tube. 

This was centrifuged at 8,000g for 15 seconds. The RNeasy spin column 
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was removed and placed into a new collection tube. RW1 buffer (350 l) was 

then added and this was centrifuged at 8,000g for 15 seconds. The flow 

through in the collection tube was discarded and 80 l of DNase I (10 l) plus 

RDD buffer (70 l) added and incubated for 15 minutes at RT to digest any 

remaining DNA. Following incubation RW1 buffer (350 l) was added to the 

RNeasy spin column and centrifuged at 8,000g for 15 seconds, discarding 

the flow through. RPE buffer (500 L) was then added to the spin column and 

centrifuged at 8,000g for 15 seconds and the flow through discarded. RPE 

buffer (500 l) was then added again to the spin column and centrifuged at 

8,000g for 2 minutes, discarding the collection tube and flow through. The 

RNeasy spin column was then placed in a new collection tube and 

centrifuged at 12,000g for 1 minute to ensure all traces of buffer are 

removed and once again the collection tube and flow through were 

discarded. The RNeasy column was then placed in a new collection tube 

and RNase-free water (50 l) added to the spin column and centrifuged for 1 

minute at 8,000g. The purified RNA present in the elute was captured in the 

collection tube. This was then nano dropped to establish concentration and 

the sample then stored at -80 for future use.  

2.2.2.1 RNA Product Examination 

3 l of 2x loading dye (ABgene, Surrey) was combined with 1 l aliquot of 

each sample of extracted RNA and compared against 5 l of DNA ladder 

(ABgene) on a 1% w/v agarose gel with ethidium bromide (0.5ug/ml) run for 

35 minutes in 1 x TBE buffer (89mM Tris base, 89 mM boric acid and 2mM 
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EDTA) at 140 volts. Gels were examined under UV light in a GelDoc imaging 

system (BIO-RAD, Hertfordshire). 

2.2.2.2 Complementary DNA synthesis 

Complementary DNA (cDNA) was synthesised using total RNA and used for 

real time PCR (see Section 2.2.5) using the High Capacity RNA-to- cDNA kit 

(Applied Biosystems, Carlsbad, California) according to the manufactured 

protocol. Each RNA to cDNA reaction consisted of: 2ng of template total 

RNA made up in 9μL RNase-free water, 10μL of 20X RT buffer, and 1μL 

20X RT enzyme mix into a single well of a 96 well plate (Applied 

Biosystems, Carlsbad, California). Then the samples were incubated at 370C 

for 60 minutes and 950C for 5 minutes in a MJ Research Tetrad Thermal 

Cycler. This was then nano dropped to establish concentration and stored at 

-20 for future use.  

2.2.3 Quantification of DNA and RNA 

DNA and RNA were quantified using NanoDrop® ND-1000 (Fisher Scientific, 

Loughborough, UK). 1μl of stock DNA or RNA was loaded onto the optical 

pedestal. For DNA the double stranded DNA quantification was selected and 

for RNA, the single-stranded DNA option was selected.  
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2.2.4 DNA amplification by polymerase chain reaction 

2.2.4.1  Oligonucleotide primer design 

Oligonucleotide primers for polymerase chain reaction (PCR) were designed 

by using the human sequences available on Biotools with the package 

Primer 3 (http://biotools.umassmed.edu/bioapps/primer3_www.cgi) (Rozen 

and Skaletsky 2000). Modifications made to the standard parameters in the 

package include a minimum 40% and maximum 64% primer GC content. All 

primers were obtained from Sigma-Aldrich (St. Louis, MO, USA). These 

were resuspended in distilled deionised water (dH20) to a concentration of 

100mM stock solution and diluted further to 10mM for the working stock 

solution.  

A full list of all oligonucleotides primers used along with specific PCR 

conditions are provided in Appendix I. 

PCR was performed on genomic tumour DNA in order to characterise 

activating mutations in the oncogenes TP53, KRAS and PIK3CA, 

concentrating on the known mutational hotspots in these genes. Mutation 

hot spots analysed were: TP53 exons 5, 6, 7 and 8 (Vidaurreta, Maestro et 

al. 2008); KRAS codon 12 and 13 (Andreyev, Norman et al. 2001); PIK3CA 

exons 9 and 20 (Samuels and Velculescu 2004) 
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2.2.4.2 PCR Protocol  

Each PCR mix consisted of: 1 l template DNA and 24 l master mix pipette 

into a single well on a 96-well plate (Applied Biosystems, Carlsbad, 

California). The master mix consisted of 0.2 l dNTP’s (0.05uL dATP, dCTP, 

dGTP, dTTP – 100mM each, ABgene, Surrey), 1 l of both forward and 

reverse primers (10mM), 19.175 l dH20, 0.125 l HotStarTaq DNA 

polymerase (Qiagen, UK), 2.5 l 10 x buffer (Qiagen, UK) A negative control 

was included in each reaction, containing 24 l master mix and 1 l dH2O. 

PCR reactions were carried out on a MJ Research Tetrad Thermal Cycler 

with the heated lid option selected to prevent evaporation of reaction 

products.  

Typically, the PCR conditions for all the PCRs using a heated lid, were: 

 

1 x cycle - denaturation/hotstart for 15 minutes at 95οC 

35 x cycles - denaturation for 30 seconds at 94οC 

  - annealing for 45 seconds at 55-60οC 

  - extension for 60 seconds at 72οC 

1 x cycle - final extension for 5 minutes at 72οC 

2.2.4.3 PCR Product Examination 

The PCR products were examined using 2-3% agarose gel electrophoresis 

to ensure that the anticipated DNA product was generated from the PCR. A 

2 l aliquot of each PCR product was combined to 3 l of 2x loading dye 
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(ABgene, Surrey) and compared against 5 l of 1KB DNA ladder (ABgene, 

Surrey) on a 4% w/v agarose gel with ethidium bromide (0.5ug/ml) run for 35 

minutes in 1 x TBE buffer (89mM Tris base, 89 mM boric acid and 2mM 

EDTA) at 140 volts. Gels were examined under UV light in a GelDoc imaging 

system (BIO-RAD, Hertfordshire). 

2.2.4.4 PCR Product Purification 

PCR products were then purified to remove residual reaction components 

such as Taq enzyme, nucleotides and primers. ExoSAP-IT® (USB 

Corporation, Cleveland Ohio) treats PCR products with no sample loss by 

removing primers and nucleotides. 5 l of post PCR reaction product was 

mixed with 2 l of ExoSAP-IT® for a combined 7 l reaction volume. This was 

incubated at 37oC for 15 minutes to degrade remaining primers and 

nucleotides and then incubated at 80oC for 15 minutes to inactivate 

ExoSAP-IT®, resulting in purified PCR product with which 15 l of dH2O was 

added. 

2.2.4.5 Sequencing Reaction 

Each sequencing reaction consisted of: 0.5 l primer (10mM), 3.5 l purified 

PCR product, 4 l of 2.5x sequencing buffer, 1 l dH20 water and 1 l  

BigDye® Terminator V3.1 (ABI PRISM, PE Applied Biosystems). 

Sequencing reactions were run in an MJ Research Tetrad Thermal Cycler, 
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with the following parameters: 950C denaturation for 10 seconds, 570C 

annealing for 5 seconds and a 600C extension for 3 minutes, for 25 cycles.  

 

Sequencing products were then purified with the DyeEx 96 well kit (Qiagen, 

UK) using a prehydrated gel-filtration resin that binds to Dye bound ddNTPs, 

but not to the sequencing reaction products. The DyeEx plate is placed upon 

a collection plate and centrifuged for 3 minutes at 2,000rpm. After discarding 

the flow-through, the plate is placed on a 96 well plate. 10 l of the 

sequencing product is applied to each well, and then this is centrifuged for 3 

minutes at 2,000 rpm. The resulting elute contained the purified sequencing 

reaction. 

2.2.4.6 Sequencing Product Analysis 

The ABO-Prism 3100 Genetic Analyser is calibrated using highly deionised 

(Hi Di) Formamide (Applied Biosystems, Carlsbad, California). Following 

DyeEx clean up, 1 l of sequencing product was added to 9 l of Hi Di 

Formamide, which was then denatured by heating at 95oC for 5 minutes in a 

MJ Research Tetrad Thermal Cycler. This was then placed immediately in 

an ABO-Prism 3100 Genetic Analyser.   

All templates were sequenced in their entirety on both forward and reverse 

strands and were edited and aligned using Sequencher 4.9 available on 

genocides (http://www.genecodes.com). 

http://www.genecodes.com/
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2.2.5 Real Time-PCR 

Real time PCR was carried out using the specific gene expression assay 

probes (Applied Biosystems, UK) for each gene of interest (Appendix II). 

Each RT-PCR reaction consisted of: 2 l cDNA (30ng/l) (see Section 2.2.3), 

10 l TaqMan Gene expression master mix, 1 l of the specific gene 

expression assay (Applied Biosystems, Carlsbad, California) and 7 l RNase-

free water. Four replicates of each sample were used. GAPDH was used as 

the endogenous control.  

RT-PCR reactions were carried out on cDNA from our chosen cell lines (see 

Section 2.4). 

2.2.6 Quantitative Real Time PCR  

PIK3CA copy number was investigated using the TaqMan® Copy number 

assay system (Applied Biosystems, Carlsbad, California). This is a duplex 

real-time polymerase chain reaction with both the target gene and reference 

gene probes in the same reaction. The copy number assay detects the 

target gene, and the reference assay detects a reference gene RNase P 

(Applied Biosystems, Carlsbad, California) that has two copies in a diploid 

genome. Therefore, the number of copies of the target gene in each sample 

is compared by relative quantification with the reference gene.  

Each copy number quantification reaction was carried out on a 96 well plate, 

which consisted of: 4 l of DNA (5ng/ l) and 16 l Master mix. Master mix 
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consisted of 10 l  2x TaqMan genotyping master mix, 1 l  TaqMan Copy 

number reference assay, 1 l  PIK3CA TaqMan copy number assay and 2 l  

dH20. Each sample was repeated 4 times and a negative control was 

included in each reaction, containing 16 l Master mix and 4 l dH20 

(Appendix II).   

Copy number expression reaction was carried out on Applied 

Biosystems7500 Real-time PCR system (Applied Biosystems, Carlsbad, 

California). Post-PCR data analysis of copy number quantification was 

carried out using the Applied Biosystems CopyCaller™ software (Applied 

Biosystems, Carlsbad, California). 

2.3 Histochemistry 

2.3.1 Immunohistochemistry 

Indirect immunohistochemical staining was performed using a kit-based 

(Vectastain Universal Elite ABC: Vector Laboratories, Burlingame, CA, USA) 

avidin-biotin-peroxidase complex method with commercially available 

antibodies (ABCAM, USA) for each protein of interest.  

The conditions used for each antibody are detailed in Appendix III. 
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2.3.1.1 Clinical Material and Control Tissue 

Block sections of formalin-fixed, paraffin wax-embedded (FFPE) colorectal 

samples were cut into 3 m sections before being collected on coated slides 

(VWR International, Leicestershire, UK) for immnunostaining.  

2.3.1.2 Antigen Retrieval and Unmasking 

Tissue sections were de-waxed in two changes of xylene for 2 minutes and 

dehydrated in two changes of industrial methylated spirit (IMS) for 2 minutes. 

After washing in running tap water for 5 minutes thermal antigen retrieval 

was carried out by microwaving or waterbathing sections in unmasking 

buffer. Antigen unmasking solutions and antigen retrival optimisation are 

described fully in Appendix III. 

2.3.1.3 Immunostaining 

Sections were allowed to cool for 5 minutes and washed again in running tap 

water for 5 minutes. Endogenous peroxidase activity was blocked by placing 

sections in endogenous peroxidise blocking solution (Hydrogen peroxide 6ml 

to 194ml dH2O) for 15 minutes. After further washing in running tap water for 

5 minutes and soaking in wash buffer (WB; Dako, Cambridge, UK) for 5 

minutes, sections were then incubated in normal blocking serum (normal 

horse serum) for 20 minutes at room temperature (RT). Excess blocking 

serum was tipped off and sections were incubated with the primary 

antibodies raised in its appropriate antibody diluent for 60 minutes at RT. 
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Sections incubated with antibody diluent only served as negative controls. 

Primary antibodies were washed off with WB and sections incubated with 

corresponding secondary anti-antibody diluted in WB, for 30 minutes at RT.  

Secondary antibody was washed off with WB and sections incubated in 

avidin complex solution (in kit) for 30 minutes at RT, washed again with WB 

and incubated in diaminobenzidine solution (Bio-Genex-Laboratories, San 

Ramon, CA, USA) for 5 minutes. After further washing in running tap water 

for 5 minutes, sections were counter-stained in Gill’s haematoxylin for 2 

minutes, washed in running tap water for 5 minutes, dehydrated twice in IMS 

for 2 minutes, cleared twice in xylene for 2 min and mounted in Canada 

balsam (VWR International, Leicestershire, UK).   

2.3.1.4 Light Microscopy and Qualitative Analysis 

Sections were analysed at magnifications of x10, x20 and x40 using a light 

microscope (LeitzDialux 20, Leica Microsystems UK Ltd., Milton Keynes, 

UK). The presence and distribution of immunostaining was noted (nuclear vs 

cytoplasmic) and scored by two independent observers. 
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2.3.2 Immunofluroscence 

2.3.2.1 Cell Preparation 

Cover slips pre-treated with Poly-lysine (Sigma, UK) were placed in a 24 well 

plate to which 500 l of media containing 20-30,000 cells were seeded. This 

was then incubated overnight (see Section 2.4).    

2.3.2.2 Fixation 

The following day the media was removed and the cells rinsed with PBS 

(0.01M Phosphate buffered saline). The cells were then fixed in 4% 

Paraformaldehyde (Sigma, UK) adding 300 l per well and leaving for 20 

minutes at RT. This was then taken off and washed off with PBS, three times 

for 5 minutes whilst being agitated on a plate shaker. 

2.3.2.3 Staining 

Blocking buffer was then added (5% FBS, PBS and 0.1%Triton X-100) and 

incubated for 60 minutes at RT. This was removed and 100 l of primary 

antibody, APP (1:500) (Millipore, Billerica, MA, USA) diluted in blocking 

buffer was added. This was left overnight at 4oC on the plate shaker. 

Primary antibody was washed off with PBS, three times for 5 minutes on the 

plate shaker at RT. The secondary antibody, 100 l anti-mouse 488 (1:1000) 

was then added and incubated for 60 minutes with the plate wrapped in foil 



99 
 

on the plate shaker for 60 minutes at RT. The secondary antibody was then 

washed off with PBS, three times for 5 minutes and finally left in ddH2O prior 

to mounting of the cover slips. The cover slips were mounted onto slides 

using 90% Glycerol with the DNA counter stain 4’,6-diamidino-2-

phenylindole (DAPI; ABCAM, USA). 

2.3.2.4 Light microscopy 

Slides were analysed at magnifications of x10, x20 and x40 using a light 

microscope (Leica DM5000B, Leica Microsystems UK Ltd, Milton Keynes, 

UK) (Table 1). The presence and distribution of immunofluroscent staining 

was noted (nuclear versus cytoplasmic).  

Table 1. Configuration of epifluroscence microscope. 

 

Flurophore 

 

Excitation λ (nm) 

 

Emission λ (nm) 

 

Filter (nm) 

 

FITC 

 

488 

 

520 

 

Band Pass 490nM +/- 20nM 
 

 

DAPI 

 

350 

 

470 

 

Band Pass 400nM +/- 20nM 
 

 

 
2.3.2.5 Confocal Microscopy and Nuclear Colocalisation 

Images were generated with a Zeiss LSM510 confocal laser-scanning 

microscope, using an oil immersion 40x/1.30 Numerical Aperture (N.A.) plan 

neofluar objective and the accompanying Zeiss software. Table 2. describes 

the settings of the confocal for each flourophore used. 
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Table 2. Configuration of confocal microscope filters. 

 

 

Flurophore Laser used 

 

Excitation λ 

(nm) 
 

 

Emission λ 

(nm) 

Filter (nm) 

FITC Argon 488 520 

 

Band Pass 505-550 

 

TRITC/ 

Rhodamine 
Helium/Neon 543 570/590 

 

Long Pass 560 

 

Cy5 Helium/Neon 650 670 

 

Long Pass 680 

 

Image files were collected as a matrix of 1024x1024 pixels that described 

the average of 8 frames scanned at 0.062Hz; these files were then exported 

into 16 bit.tif files, which were used for image analysis.  

Images were analysed using MetaMorph® (Molecular Devices, Downington, 

PA, USA) using the multi wavelength cell scoring application, a flexible 

segmentation tool for multiple stain wavelengths, which can be used in the 

analysis of nuclear stain and cytoplasmic staining of a particular protein of 

interest. Each image was converted into a 16 bit monochrome tiff. file from 

the stack images for each field. For each image a monochrome image was 

made for the nuclear staining using DAPI and for the stained protein of 

interest (e.g. APP antibody) staining both nucleus and cytoplasm.  An 

appropriate minimum and maximum width field was set by calibrating with 

one of the narrowest nuclei and one of the widest nuclei for nuclear staining 

and likewise for cytoplasmic and nuclei staining with one of the narrowest 

and one of the widest cells. Using the DAPI stain to identify the nucleus, the 
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results are overlaid to determine the cytoplasmic staining and nuclear 

staining of the protein stained (Figure 10). 
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Figure 10. Representation images from MetaMorph® showing a monochrome image 

of DAPI and monochrome image of Amyloid precursor protein. These are images 

overlaid and counted; DAPI is used to identify all the nuclei in the cells and another overlay 

image counting all the Amyloid precursor protein (APP) cell staining. These are then 

overlapped on each other. The localisation of APP can be measured by counting the 

staining overlapped on the DAPI nuclear stain and subtracting this from the total staining to 

provide a measurement of cytoplasmic APP staining.   
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2.4 Cell Culture 

Cell culture experiments were carried out on the following colorectal 

adenocarcinoma cell lines: HCT116, HT55, C80, C99, SW837 were obtained 

from Cancer Research UK Cell Services and LOVO, LS174T and HCT15 

cell lines were obtained from Ian Tomlinson (Wellcome Institute of Human 

Genetics, Oxford). These were chosen, as they were well-characterised 

colon and rectal adenocarcinoma cell lines for which we had detailed 

mutational data for verification purposes. The lines were cultured in 

Dulbeccos Modified Eagle medium (DNEM, PAA, UK) with 10% Foetal 

Bovine serum (PAA, UK) and 1% Penicillin-Streptomycin (PAA, UK). Cells 

were incubated at 37°C in 5% carbon dioxide and in 100% relative humidity, 

the growth media was changed approximately every two to three days. 

 

Cells were propagated until approximately 70-80% confluent and then 

subcultured by diluting (splitting) the cell population depending on 

approximate cell growth rates between 1:5 and 1:10. The culture medium 

was removed and adherent cells rinsed in sterile 1x Phosphate buffered 

saline (PBS) (Sigma, UK), washing off any dead cells and medium. Then 

10% Trypsin EDTA (PAA, UK) sufficient to cover the cells was added and 

incubated at 37°C for 5 minutes detaching the cells from the flask. The 

detached cells were then diluted accordingly and culture medium added. 
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2.4.1 Amyloid Precursor Protein Inhibition with Valproic Drug 

Treatment 

2.4.1.1 Cell Preparation 

Valproic acid (VPA) (Sigma, UK) drug treatment was carried out on cell lines 

that were 70-80% confluent. The culture media was drawn off the cells, then 

5ml 10% Trypsin EDTA (PAA, UK) was added to the flask to detach the 

cells. This was incubated for five minutes at 37°C, before 10ml of media was 

added to neutralize the Trypsin. The cell suspension was then counted using 

a haemocytometer, by drawing 10μl of cell elute into the cell counter 

compartment. 80,000 cells in 1ml were added to each well of a 24 well plate. 

2.4.1.2 Measurement of Cell Response to Valproic Acid 

After 48 hours of drug treatment. Cell viability was measured using a 

CellTitre-Blue® assay (Promega, UK) (see Section 2.4.4.1).  

2.4.2 Cell Transfection 

2.4.2.1 Transfection Optimisation 

The cell number and concentration of transfection agent Lipofectamine 2000 

(Invitrogen, Grand Island, USA) were optimised during test transfection 

using PLK-1 killing control (Qiagen, UK.) and scramble siRNA (AllStars 

Negative Control, Qiagen, UK). The siRNA targeting PLK-1 was used as a 
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transfection control ‘killing’ transfected cells with cell viability measured using 

Sulforhodamine B colorimetric assay (see Section 2.4.4.2). 

2.4.2.2 Cell Preparation 

Transfection was carried out on HCT116 at 70% confluency. The culture 

media was drawn off the cells, and then 5ml 10% Trypsin EDTA (PAA, UK) 

was added to the flask to detach the cells. This was incubated for five 

minutes at 37°C, before 10ml of media was added to neutralize the Trypsin. 

The cell suspension was then counted using a haemocytometer, by drawing 

10μl of cell elute into the cell counter compartment. 50,000 cells in 1ml were 

added to each well of a six well plate. 

2.4.2.3 Knockdown siRNA Transfection 

Transfection was carried out using 500μl DMEM (PAA, UK) mixed with 

Lipofectamine 3/4/5 μl (Qiagen, UK) per well. This mixture was left for five 

minutes before adding 45μl (1Mm) of siRNA of either a scrambled siRNA 

(AllStars Negative Control, Qiagen, UK), PLK-1 siRNA, or a knockout siRNA 

for the gene of interest (Qiagen, UK). A full list of all siRNA target sequences 

are provided in Appendix II. 

 

The siRNA mixture was left for 30 minutes to bind to the Lipofectamine 

complex before being added to the cells. Cell were incubated at 37 °C for 72 

hours, at 24 hours the media was replaced with complete cell culture media, 

thus removing the transfection agent that would be toxic to the cells following 



106 
 

prolonged exposure.  At 72 hours the cell were harvested for protein or RNA 

extraction.  

2.4.4 Cell Viability Assays 

Cell viability to assess cell growth was performed in two ways: 

2.4.4.1 CellTiter-Blue® Assay 

The CellTiter-Blue® Assay (Promega, UK) was used when cell were seeded 

on 96 well plates (VWR, UK). It relies on the ability of viable cells to convert 

a resazurin, a redox dye, into resorufin a fluorescent end product. Nonviable 

cells rapidly lose metabolic capacity, do not reduce the indicator dye, and 

thus do not generate a fluorescent signal. The media was removed and 

replaced with complete media and CellTitre-Blue® assay (Promega, UK). 

This was mixed for ten minutes on a plate shaker, before being incubated for 

a further three hours at 37°C. Finally, fluorescence was recorded on a plate 

reader at 560Ex/590Em (FluSTAR Optima, BMG Labtech, UK). 

2.4.4.2 Sulforhodamine B Colorimetric Assay 

The sulforhodamine B (SRB) assay (Skehan et al. 1990) was used to 

determine cell density following transfection (see Section 2.4.2) or drug 

treatment (see Section 2.4.1) in 6 well plates (VWR, UK). The SRB 

colorimetric assay relies on SRB a bright-pink aminoxanthene dye that binds 

to amino-acid residues to cell fixed with trichloroacetic acid (TCA). SRB 
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binds stoichiometrically to the protein components of cells and therefore the 

amount of dye extracted from stained cells is directly proportional to the cell 

mass. 

 

The culture media was carefully drawn off ensuring that the cell monolayer is 

not disrupted. Cold PBS was used to wash the cells 3 times. Then 700μl of 

cold 10% TCA added to each well, and the plate incubated at 4oC for 1 hour. 

The wells are then gently washed 3 times with cold ddH2O and the plate 

allowed to air-dry overnight fixing the cell monolayer. The fixed cell 

monolayer is then stained with 700μl of 0.057% SRB solution in each well. 

This is left to incubate at room temperature for 30 minutes before being 

washed with 1% acetic acid. The wells are washed 4 times removing any 

unbound dye.  Then 500μl of 10mM Tris base solution is added to each well 

and the plate is placed on a gyratory shaker for 5 minutes to solubilise the 

protein bound dye. Then 100μl of the soluble protein dye solution was 

pipetted as four replicates into a 96 well plate (VWR, UK). Finally, 

absorbance is recorded on a plate reader at 490Ex/530Em (FluSTAR Optima, 

BMG Labtech, UK). 

2.4.5 Cell Migration Study 

Cell migration was measured using the ThinCert™ (Greiner Bio-one, 

Germany), which involves cell culture inserts in a multiwall cell culture plate. 

This assay uses a two-compartment system where cells are induced to 

migrate from an upper compartment through a porous PET membrane into a 

lower compartment, following a chemoattractant gradient.  
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Cell migration was carried out on cell lines that were at 70-80% confluency 

following seeding in 6 well plates (VWR, UK). The culture media was drawn 

off the cells, then 500μl 10% Trypsin EDTA was added to the flask to detach 

the cells. This was incubated for five minutes at 37°Cand 5% CO2, before 

1.5ml of DNEM serum free media was added to neutralize the Trypsin. The 

cell suspension was then counted using a haemocytometer, by drawing 10μl 

of cell elute into the cell counter compartment. To compare the migration of 

different cells following APP siRNA knockdown (see Section 2.4.2), the 

same concentration of cells was used. This suspension was then centrifuged 

at 3,000rpm for five minutes. The supernatant was drawn off and the cell 

pellet re-suspended in 200μl of DNEM serum free media, which was then 

pipetted into the centre of the cell culture inserts forming the top 

compartment. The inserts are then placed into a 24 well plate forming the 

lower compartment with 500μl of media as the chemoattractant for the cells 

to migrate. One well is left empty and acts as the control to measure the 

amount of cells that migrate through the porous PET membrane. The plate is 

then left to incubate for 24 hours at 37 °C and 5% CO2for 24 hours. Cells 

seeded on the PET membrane in DNEM serum free media are induced to 

actively migrate through the PET membrane into the lower compartment with 

media containing media. After 24 hours the cell culture medium from each 

well of the cell culture is removed and replaced with DNEM serum free 

media with 8μM Calcein-AM (Sigma, UK), and incubated for 45 minutes in 

the cell culture incubator.  
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Calcein-AM is used to label the viable cells. The culture media is drawn off 

from the cell culture inserts and the inserts transferred to a new 24 well plate 

with 500μl of prewarmed Trypsin EDTA per well. This was incubated for ten 

minutes in the cell incubator to detach the cells. The cell culture inserts were 

then discarded and 200μl of the Trypsin EDTA solution containing the cells 

transferred into a well of a black bottom 96 well plate (VWR, UK). Finally, 

absorbance is recorded on a plate reader at 485Ex/520Em (FluSTAR Optima, 

BMG Labtech, UK). The fluorescence reading that quantified the number of 

migratory cells is then compared with that of scram and the APP siRNA 

knockdown cell lines.  

2.5 Protein Methods 

2.5.1 Protein Extraction 

Cell lines were harvested for protein once 70-80% confluent in T75 cell 

culture flasks (TWR, UK). The culture media was drawn off the cells washed 

in cold PBS 3 times. A cell scrapper was used to dislodge adherent cells 

from the flask and 2ml cold PBS added. This was transferred into a 15ml 

Falcon tube and centrifuged at 1,500rpm for 5 minutes at 4oC. The 

supernatant was drawn off and the cell pellet re-suspended in 2ml cold PBS, 

and centrifuged at 1,500rpm for 5 minutes at 4oC. The supernatant was 

again drawn off and the cell pellet was re-suspended in 100-200 l Cell lytic 

buffer (Sigma, UK) with Protein K inhibitor cocktail added (1:100; Sigma, UK) 

and left for 10 minutes for cell lysis to occur whilst keeping the mixture cold 

on ice. Following this the cell homogenate was further homogenised by 
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sonicating the sample for 15 seconds, 4 times on ice. Finally the sample was 

passed through a fine bore needle 3 times, and stored at -20 for future use. 

2.5.2 Western Blot 

2.5.2.1 Protein Quantification and Preparation 

Native protein samples were quantified so equal amounts were used thereby 

allowing the comparison of relative amounts of specific protein between 

samples. Standards were made using serial dilutions (1:2) from BSA 

10mg/ml (Promega, UK). Quadruplicates of each standard and sample were 

pipetted into a U-bottomed plate (VWR, UK) adding 5μl of native protein or 

protein standard to 95 l of Bradford reagent (Sigma, UK) and incubating for 

15 minutes.  This was then quantified using a 595nm absorption on the plate 

reader.  15ng of each sample were added to 15 l of 2x sample buffer 

(Sigma, UK) and made up to 30 l with dd. This was placed on a hot block at 

90 for 10 minutes to be denatured.   

 

Electrophoresis and transfer of proteins were carried out using the XCell 

Western Blot system (Invitrogen, UK). 

2.5.2.2 Electrophoresis 

A NuPAGE® Bis-Tris 4-10% gel (Invitrogen Life Sciences, Grand Island, NY, 

USA) was used for electrophoresis. The stack was assembled with MOPS 

running buffer (760ml dH20 and 40ml MOPS SDS Nupage buffer) added to it 
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ensuring the gel was fully immersed.5 l of protein marker (HiMark™ Pre-

stained Protein Standard; Invitrogen Life Sciences, Grand Island, NY, USA) 

was loaded into the gel and then 30 l of each prepared protein sample. The 

gel was run at 180V for 60 minutes. 

2.5.2.3 Transfer of Proteins 

A wet transfer was carried out. The transfer membrane was first activated in 

100% Methanol for 10 seconds, and filter paper and sponges soaked in 

transfer buffer (25ml NuPage transfer buffer (Invitrogen Life Technologies, 

Grand Island, NY, USA), 50ml Methanol and 425ml dH20). The gel was 

taken out of its case and placed in a stack formed by sandwiching sponge 

and filter papers (sponge/paper/gel/membrane/paper/sponge) before 

clamping this tightly together to ensures no air bubbles form between the gel 

and membrane. This was placed into the tank and topped up with transfer 

buffer, which was then placed into an ice bucket to run for 2 hours at 

175Amps. 

2.5.2.4 Staining and Detection 

Following transfer, the membrane was incubated in blocking buffer (5g milk 

powder in 20ml PBS and 0.1% Tween® (Sigma, UK)) for 1 hour under 

agitation. The membrane was rinsed with TBST after incubation before the 

primary antibody diluted in blocking buffer was added. This was left 

overnight at 4oC on the shaker.  A full list of primary antibodies used and 

conditions are provided in Appendix III. 
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Primary antibodies were washed off with TBST and the membrane 

incubated with the secondary (the appropriate anti-body) for 1 hour on the 

shaker at room temperature. The secondary antibody was washed off with 

TBST, three times for 10 minutes and finally PBS for 5 minutes whilst being 

agitated.  The membrane was placed on Clingfilm (protein side up) and 

1.5ml of detection buffer added. The membrane was then incubated for 5 

minutes at RT. Any excess was blotted off before the membrane was 

wrapped and viewed in the dark room after exposure to x-ray film. 

2.5.2.5 Western Blot Densitometry 

Western blot densitometry was carried out using image-processing 

tool ImageJ (http://rsb.info.nih.gov/ij/). 

2.6  Statistical Methods 

Statistical analyses were primarily performed using the statistical software 

program GraphPad Prism (GraphPad Software, CA, USA) and the statistical 

calculator VassarStats (http://www.vassarstats.net). A two-sided p value less 

than 0.05 was considered statistically significant.  

2.6.1  Summary Statistics 

Differences between the distribution of categorical variables (e.g. protein 

expression) were assessed by means of either the Chi-squared test or 
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Fishers exact test. Students T test was used for the comparison of 

continuous variables (e.g. Western blot densitometry).   

  

Survival was assessed by using Kaplan-Meier and survival curves were 

compared using the Log rank test. Death from cancer was defined as the 

end point; if the patient died of another cause or was lost to follow up they 

were censored. 
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CHAPTER 3 

Evaluating the role of Heat shock proteins and their 

co-chaperones in oncogene induced cell senescence 

in colorectal cancer  

3.1  Overview and Rationale 

Major inducible HSPs, such as HSP27 and HSP72 are upregulated in 

cancers cells, where they facilitate multiple cellular processes pertinent to 

tumourigenesis (Ciocca and Calderwood 2005; Ciocca, Arrigo et al. 2013). 

Due to their involvement in cancer development, the inhibition of HSPs has 

been proposed as a potential cancer treatment strategy (Evans, Chang et al. 

2010; Massey, Williamson et al. 2010). Clinically, expression of HSP27 and 

HSP72 has been associated with advanced CRC disease (Hwang, Han et 

al. 2003; Wang, Qiu et al. 2005; Milicevic, Petkovic et al. 2007), distant 

metastasis (Zhao, Liu et al. 2007; Pei, Ge et al. 2010) and poor survival 

(Lazaris, Theodoropoulos et al. 1995; Sun, Zhang et al. 1997; Kocsis, 

Madaras et al. 2010; Tweedle, Khattak et al. 2010; Yu, Zhi et al. 2010). 

However, a number of other studies have failed to show any association of 

HSP overexpression with clinical pathological characteristics (Kanazawa, 

Isomoto et al. 2003; Shotar 2005; Tuna, Sokmen et al. 2006; Zhang, Gao et 

al. 2009; Tweedle, Khattak et al. 2010). In cell culture based studies, HSPs 

have been shown to promote cancer development by increasing cellular 

migration (Rousseau, Houle et al. 2000), differentiation (Kindas-Mugge and 

Trautinger 1994), and drug resistance (Tsuruta, Nishibori et al. 2008). HSPs 
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have also been shown to promote cell survival through the inhibition of 

apoptosis (Charette, Lavoie et al. 2000) and cell senescence (Sherman 

2010). 

The constitutive activation of RAS signalling and its wide range of 

downstream effector pathways, including the PI3K/AKT pathway (Castellano 

and Downward 2011) is commonly seen in CRC with both of these genes 

shown to induce OIS. OIS is a major obstacle to cancer progression. As 

senescent cells are incapable of further proliferation, OIS has to be 

overcome for cancers to grow and progress.  One way of bypassing OIS is 

by acquiring mutations in genes involved in the response to senescence, 

such as the TP53 gene (Halazonetis, Gorgoulis et al. 2008). HSP27 and 

HSP72 have been proposed to assist in evasion of OIS in vitro 

(O'Callaghan-Sunol, Gabai et al. 2007; Yaglom, Gabai et al. 2007).  

To evaluate whether HSPs play different roles in OIS depending on the 

genetic background of the tumour and the relationship with 

clinicopathological features. A group of unselected primary CRCs with 

clinicopathological data were screened for TP53, KRAS, and PIK3CA 

mutations and the protein expression of HSP27, HSP72, and AKT 

determined in vivo. The potential role of HSPs in TP53 dependent OIS was 

examined by associating HSP expression with TP53 mutation status (Figure 

11A). The requirement for HSP expression is likely dependent on the 

combination of KRAS mutation and PI3K/AKT mutation status (Figure 11B). 

First, the clinicopathological features of the patients are detailed.  
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Premalignant 
Adenoma 

Proliferating 
Cancers 

A 
Background: In the absence of a TP53 mutation, OIS mediated by PI3K can be 
circumvented by high expression of HSP72 in breast cancer cell lines (Gabai et 
al., 2009).  
My hypothesis: In CRC, HSP expression will more likely be present in tumours 
with functional P53 pathways to help overcoming OIS (i). HSP expression will 
not be necessary in tumours with TP53 mutations (ii).  

B 
Background: it was reported that while PI3K/AKT activation alone acts as a 
moderate inducer of OIS, it could suppress senescence induced by an activated 
RAS oncogene to promote tumorigenesis (Kennedy et al., 2011). 
 
My hypothesis: In CRC, HSP expression will more likely to be present in 
tumours with KRAS (i) or PI3K/AKT activation (ii). HSP expression will not be 
necessary in tumours with both, as PI3K/AKT activation will help to suppress 
KRAS induced OIS (iii).  
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Figure 11. Background on findings from cell-cultured based studies and our 

hypotheses for testing them in CRC. (A) Association of HSP expression with TP53 

mutation status; (B) HSP expression dependence on a combination of KRAS mutation and 

PI3K/AKT mutation status. 
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3.2 Results 

3.2.1 Clinicopathological Features of Patient Cohort  

A total of 74 unselected primary CRC tumours (45 colon, 29 rectal) from 46 

males and 28 females were investigated (Table 3). The age at diagnosis for 

this group ranged from 35 – 89 years old, with a median age, 75.8. The 

majority (64%) were left sided tumours (47/74). The cohort contained, 10 

Duke’s stage A (14%), 26 stage B (34%), 32 stage C (44%) and 6 stage D 

(8%) CRCs. The median follow-up was 24.1 months (range 1- 55.2) and 26 

deaths from any cause were reported, of which 17 deaths were known to be 

due to CRC. 
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      Table 3. Summary of clinicopathological features of colorectal cancer cohort. 

 

 

Clinical parameter n (%) Clinical parameter 
 
n (%) 
 

 

Gender 
 

 

Depth of invasion 
 

Male 46 (62) T1 6   (8) 

Female 28 (38) T2 5   (7) 

Age  T3 46 (62) 

<70 years 26 (35) T4 17 (23) 

>70 years 48 (65) Nodal status  

Site  N0 41 (55) 

Left 47 (64) N1 16 (22) 

Right 27 (36) N2 17 (23) 

Resection margins  Metastasis status  

R0 60 (82) M0 64 (86) 

R1 7   (9) M1 10 (14) 

R2 7   (9) Duke’s stage  

Differentiation  A 10 (14) 

Well 4   (5) B 26 (34) 

Moderate 56 (76) C1 22 (30) 

Poor 14 (19) C2 10 (14) 

  D 6   (8) 
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3.2.2 No Association of HSP27 or HSP72 Expression with 

Clinicopathological Parameters and Patient Survival 

The expression pattern of HSP27 and HSP72 in our cohort of CRCs was 

determined by IHC (Figure 12 and 13; Table 4). No HSPs expression was 

observed in any normal tissues, but HSP27 staining was found in 74% of 

tumour samples (48/65) while HSP72 staining was present in 87% (60/69). 

The protein expression data was then examined in relation to a number of 

clinicopathological parameters: tumour differentiation; depth of invasion (T 

stage); nodal metastases (N stage) and distant metastases (M stage). No 

significant association was shown between either HSP27 or HSP72 and any 

of these features (Table 5). HSP27 or HSP72 was not associated with 

patient survival (Figure 14).  
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Figure 12. Representative examples of HSP27 Immunohistochemistry of colorectal 

tumour sample at x10 magnification. (A) HSP27 Breast carcinoma negative control; (B) 

HSP27 Breast carcinoma positive control; (C) HSP27, no expression detected; (D) HSP27, 

cytoplasmic positive; (E) HSP27, nuclear positive; (F) HSP27 positive. Samples were 

scored positive if there was nuclear/cytoplasmic staining in more than 20% of cells (Patel, 

Polanco-Echeverry et al. 2007). 
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Figure 13. Representative examples of HSP72 Immunohistochemistry of colorectal 

tumour sample at x10 magnification. (A) HSP72 Breast carcinoma negative control; (B) 

HSP72 Breast carcinoma positive control; (C) HSP72, no expression detected; (D) HSP72,  

positive. Samples were scored positive if there was nuclear/cytoplasmic staining in more 

than 20% of cells (Patel, Polanco-Echeverry et al. 2007). 
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Table 4. Summary of cytoplasmic and nuclear staining of HSP27 and HSP72. HSP27 

immunopositivity was seen in the majority of tumours (72%, 47/65) and most exhibited 

discrete cytoplasmic staining with no nuclear staining (58%, 38/65) while 26% (17/65) 

showed no immunostaining to HSP27. (E) Most CRCs (87%, 60/69) showed HSP72 

immunopositivity, with both cytoplasmic and nuclear staining (62%, 43/69). HSP72 did not 

show immunopositivity in 13% of tumour samples (9/69). 

 

 

HSP271 Nuclear + Nuclear - HSP722 Nuclear + Nuclear + 

Cytoplasmic + 9 38 Cytoplasmic + 43 16 

Cytoplasmic - 1 17 Cytoplasmic - 1 9 

 

 

1 
IHC on 74 tumour samples; however 9 tumour slides not be scored due to poor staining or 

lack of tumour. 

2
 IHC on 74 tumour samples, but 9 tumour slides could not be scored due to poor staining or 

lack of tumour. 
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Table 5. Expression of HSP27 and HSP72 in relation to clinicopathological features of 

colorectal cancers. 

 

 

Clinical 

parameter 

 

HSP27 -  

n (%) 

 

HSP27 + 

n (%) 

 

p 

value 

 

HSP72 - 

n (%) 

 

HSP72 + 

n (%) 

 

p 

value 

 

Resection margins  
     

R0  16 (21.6)  39 (52.7)  0.61  9 (12.2)  48 (64.9)  0.48  

R1  0  4 (5.4)   0  6 (8.1)   

R2  4 (5.4)  5 (6.8)   0  6 (8.1)   

Differentiation      

Well 0 3   (5) 0.75 0 3   (4) 0.79 

Moderate 14 (22) 38 (58)  8 (12) 45 (65)  

Poor 3   (5) 7   (11)  1 (1) 12 (17)  

Depth of invasion      

T1 1   (2) 4   (6) 0.79 0 5   (7) 0.18 

T2 1   (2) 4   (6)  1 (1) 4   (6)  

T3 13 (20) 29 (45)  8 (12) 35 (51)  

T4 2   (3) 11 (17)  0 16 (23)  

Nodal status      

N0 10 (15) 26 (40) 1 8 (12) 31 (45) 1 

N1 4   (6) 11 (17)  1 (1) 14 (20)  

N2 3   (5) 11 (17)  0 15 (22)  

Metastasis status      

M0 15 (23) 42 (65) 0.73 8 (12) 53 (77) 0.61 

M1 2   (3) 6   (9)  1 (1) 7   (10)  
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Figure 14. Kaplan-Meier plots correlating patient survival with protein expression of 

(A) HSP27 and (B) HSP72. There is no statistically significant difference (HSP27 p=0.28; 

HSP72 p=0.49) in survival between patients with tumour expressing the heat shock proteins 

and the patients with tumours negative for heat shock proteins expression by log rank test. 
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3.2.3  Stratification of CRCs According to TP53 and KRAS Mutation 

and PI3K/AKT Activation Status 

Known regions of high mutation frequency were sequenced to detect 

mutations in TP53 (exon 5-8), KRAS (codon 12 and 13) and PIK3CA genes 

(exon 9 and 20) (Table 3). Fifty one percent of the tumour samples 

contained TP53 mutations (36/70) and most mutations were in exon 8 

(18/36, 50%) whilst exon 5 had seven mutations (19%), exon 6 had six 

mutations (17%) and exon 7 had four mutations (11%) (Table 3). No 

sequence data was obtained for four samples. KRAS mutations were 

identified in 27% of samples (20/74) (Table 3), with codon 12 accounting for 

85% (17/20) of mutations.  Ten out of 74 CRCs harboured PIK3CA 

mutations (14%) and 80% of these mutations were found on exon 20 (8/10). 

KRAS and PIK3CA mutations were found together in 4 tumour samples 

(Table 6). The mutation rates of TP53, KRAS and PIK3CA are in line with 

data from the literature, confirming that this cohort is representative of a 

general, unselected group of CRCs (Levine 1997; Samuels and Velculescu 

2004; Velho, Oliveira et al. 2005; Abubaker, Bavi et al. 2008). 

To assess the activation status of PI3K/AKT pathway in our samples, IHC for 

phosphorylated AKT (pAKT) was performed (Patel, Polanco-Echeverry et al. 

2007). pAKT staining was detected in 80% of our tumour samples (57/71). 

All of these tumours exhibited cytoplasmic localisation and 32% showed 

additional nuclear staining (18/57) (Figure 15, Table 7). As expected, most 

tumours with KRAS or PIK3CA (21/24) mutations were positive for pAKT 

staining, confirming PI3K/AKT activation.  
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Table 6. Gene mutations identified in colorectal cancer cohort. Four tumours with co 

presence: KRAS C12D with PIK3CA mutation P539S, H1047R or C1049S; C12V with 

S1008P. Mutations shown are in accord those presented in the COSMIC database (Forbes, 

Bindal et al. 2011). 

 

 
Gene 

 
Exon Mutation and number of times observed 

  n=1 n=2 n=3 n=4 n=5 n=10 

 

TP53 5 A138V H179Y R175H    

  C141R      

 6 Q192K R213X     

  R196X      

  V218G      

  Y220L      

 7 Y234D R248Q     

  G245S      

  M246T      

 8 G266E R273C  C275Y   

  E271K R273H  D281N   

  R273L      

  R280K      

  R282W      

  R306X      

 

PIK3CA 9 P539S      

  E575K      

 20 E1012G S1008P H1047R    

   G1049S     

 

RAS 1  G12A G13D  G12V G12D 
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Figure 15. Representative examples of pAKT Immunohistochemistry of colorectal 

tumour sample at x10 magnification. (A) pAKT Breast carcinoma negative control; (B) 

pAKT Breast carcinoma positive control; (C) pAKT, nuclear positive; (D) pAKT, cytoplasmic 

positive. Samples were scored positive if there was nuclear/cytoplasmic staining in more 

than 20% of cells (Patel, Polanco-Echeverry et al. 2007). 
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Table 7. Summary of cytoplasmic and nuclear staining of pAKT. AKT immunopositivity 

was exhibited in 80% tumour samples (57/71) and all showed cytoplasmic immunostaining. 

 

 

AKT1 Nuclear + Nuclear - 

Cytoplasmic + 18 39 

Cytoplasmic - 0 14 

 

 

1 
IHC carried out on 74 CRCs, scored on 71 (96%), 3 samples not scored due to poor 

staining or lack of tumour.  
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PIK3CA copy number variation is common in CRC and QRT-PCR was 

carried out to analyse the PIK3CA copy number of each tumour sample. 

Two normal controls (samples 334N and 339N) were used on each plate 

(n=4) to permit inter-plate comparison and to control for any variation 

between plates. PIK3CA amplification was defined as a copy number 

increase greater than two. Overall, PIK3CA copy number change was 

measured successfully in 85% of cases (63/74) and amplification was seen 

in 67% (42/63) of the tumour samples (Table 8). 40% of tumours that had an 

amplification of PIK3CA had a copy number of three, whilst 6% had a copy 

number greater than four. 

PIK3CA amplification was seen in 67% (42/63) of the tumour samples and 

AKT protein expression was identified in just over half the cases (52%, 

33/63). However amplification of PIK3CA and AKT expression was not 

significantly association (p=0.3, Table 9). The analysis of PIK3CA mutations 

on exons 9 and 20 found an overall mutation rate of 14% (8/74). This was 

associated with AKT expression in the majority of tumour that were found to 

have a PIK3CA mutation (7/8, 88%). Therefore, in subsequent analyses 

PIK3CA oncogenic pathway activation was considered to have occurred 

when either PIK3CA was mutated or AKT expressed in a tumour. As already 

noted, almost all tumours with KRAS or PIK3CA (21/24) mutations were 

positive for pAKT staining, confirming PI3K/AKT activation. 
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Table 8. PIK3CA copy number frequency in a cohort of sporadic colorectal cancers. A 

total of 63 out of 74 tumours were analysed successfully using QPCR and amplification was 

seen in most CRCs. 

 

Copy 

Number 
1&2 3 4 5&6 

n=63 21 25 13 4 

% 33 40 21 6 

 

Table 9. PIK3CA Copy number amplification and AKT expression. 

 

 

 

 

  

Copy 

Number 
AKT -  AKT + p value 

≤ 2 3 17 0.3 

> 2 7 33  
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3.2.4  HSP27 Expression is Associated with Mutated TP53 

Studies of cancer cell lines have suggested that HSPs are selectively up-

regulated to suppress OIS in the absence of TP53 mutations, thereby 

allowing uncontrolled proliferation (Figure 11A) (Sherman 2010). To examine 

this phenomenon in vivo, the expression results for HSP27 and HSP72 in 

CRCs were compared with or without TP53 mutation. The expression of 

HSP27 was not significantly associated with the mutation status of TP53 (p = 

0.08), although there was a trend (Table 10A). Of the 34 tumours with a 

TP53 mutation, the majority of these (28/34, 82%) expressed HSP27 

indicating that selective upregulation of HSP27 does not occur preferentially 

in CRCs with wild type TP53 (Table 6A). Similarly, no positive association 

was found between HSP72 expression and TP53 (p = 0.29) (Table 10B). 
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Table 10. Association of HSP27 (A) and HSP72 (B) expression with TP53 mutation 

status in all PI3K/AKT activated colorectal cancers. P value calculated using Fisher’s 

exact test. 

 

A 

 

PI3K/AKT 

activated  

CRCs (n = 61) 
 

HSP27 - HSP27 + p value 

 

Mutated TP53  6 28 0.08 

WT TP53 

 

11 16  

 

B 

 

 

PI3K/AKT 

activated  

CRCs (n = 65) 
 

HSP72 - HSP72 + p value 

 

Mutated TP53  3 31 0.29 

WT TP53 

 

6 25  
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3.2.5 HSP27 Expression is Associated in PI3K/AKT Active Tumours 

with Wild Type KRAS, Independent of TP53 Mutation Status 

Recent in vitro evidence suggests that activation of the PI3K/AKT pathway 

can induce or inhibit OIS depending on the presence or absence of activated 

KRAS (Kennedy, Morton et al. 2011) (Figure 11B). Whether the presence of 

KRAS mutation in a tumour influenced the relationship between PI3K/AKT 

activation and HSP expression was investigated. The CRC samples were 

divided into three groups: PI3K/AKT active tumours with mutated KRAS; 

PI3K/AKT active tumours with wild type KRAS; and PI3K/AKT inactive 

tumours. HSP27 was highly associated with PI3K/AKT-active CRCs with 

wild type KRAS (p = 0.004, Table 11A). In fact, over 90% of the tumours in 

this group (32/35) show HSP27 expression. Increased HSP27 expression in 

PI3K/AKT active tumours with mutated KRAS, was not observed suggesting 

HSP27 may play a different and possibly less critical role in this group of 

tumours.  There was possibly a trend for higher expression of HSP72 in 

PI3K/AKT active CRCs with wild type KRAS, but the association was not 

statistically significant (p = 0.08, Table 11B). 
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Table 11. Association of HSP27 (A) and HSP72 (B) expression with KRAS mutation 

and PI3K/AKT activation status in the complete colorectal cancer cohort. There were 

no tumours expressing either HSP27 or HSP72 that had inactivated PI3K/AKT and mutant 

KRAS. (*Fisher’s exact test p<0.05). WT, wild type. 

 

A  

 
 

HSP27 – 
 

HSP27 + p value 

 
PI3K/AKT + & 
Mutated KRAS 
 

8 9 0.004* 

PI3K/AKT + & 
WT KRAS 
 

3 32  

PI3K/AKT – 
 & WT KRAS 
 

4 7  

 

B 

 
 

HSP72 – 
 

HSP72 + p value 

 
PI3K/AKT + & 
Mutated KRAS 
 

5 12 0.080 

PI3K/AKT + & 
WT KRAS 
 

3 36  

PI3K/AKT –  
& WT KRAS 
 

1 11  
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3.2.6  Protein Expression of Heat Shock Transcription Factor-1 is 

Common in Colorectal Cancer, but Does Not Associate with TP53 or 

KRAS Mutation  

HSF1 is a transcription factor that controls the cellular response to 

disturbances in protein homeostasis and protects the proteome from 

physiologic stress. HSF1 determines the production of the HSPs such as 

HSP27 and HSP72. Given the link between HSP27 expression and KRAS 

mutation and PI3K/AKT activation status, a possible role for HSF1 in this 

process was investigated. 

3.2.7  Colorectal Cancers are Mostly Positive for Heat Shock Factor-

1, But Expression is Not Associated with Clinicopathological Features 

The majority of the CRCs (73%) showed HSF1 immunopositivity (44/60). 

HSF1 exhibited strong staining in the nucleus with 44 tumours (73%, 44/60) 

and 23% (14/60) with cytoplasmic staining. The majority of tumours 

exhibited discrete nuclear staining and no cytoplasmic staining (35/60, 57%). 

In ten tumours (16.7%, 10/60) both cytoplasmic and nuclear staining was 

observed. Four tumours (1.7%) showed discrete cytoplasmic staining with 

no nuclear staining. About one fifth of CRC (20%, 12/60) did not show 

immunopositivity for HSF1 (Figure 16; Table 12). 
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Figure 16. Representative examples of HSF1 Immunohistochemistry of colorectal 

tumour sample at x10 magnification. (A) HSF1 Breast carcinoma negative control; (B) 

HSF1 Breast carcinoma positive control; (C) HSF1, no expression detected; (D) HSF1, 

cytoplasmic positive; (E) HSF1, nuclear positive; (F) HSF1 positive. Samples were scored 

positive if there was nuclear/cytoplasmic staining in more than 20% of cells (Patel, Polanco-

Echeverry et al. 2007). 
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Table 12. Summary of cytoplasmic and nuclear staining of HSF1. Most tumour samples 

showed discrete nuclear staining with no cytoplasmic staining.  

 

 

 

 

1
 IHC on 74 tumour samples, 14 slides could not be scored due to poor staining or lack of 

tumour. 

 

We then examined the protein expression data in relation to a number of 

clinicopathological parameters: tumour differentiation; Duke’s stage; depth of 

invasion (T stage); nodal metastases (N stage) and distant metastases (M 

stage).  No significant association was shown between HSF1 expression 

and any of these features (Table 13). 

 

  

HSF11 Nuclear +  Nuclear -  

Cytoplasmic +  10 4 

Cytoplasmic -  34 12 
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Table 13. Expression of HSF1 in relation to clinicopathological features of colorectal 

cancers. No significant association was shown between HSF1 expression and any 

clinicopathological features. 

 

 

 

  

Clinical parameter  

 

HSF1 -  

 

HSF1 + 

 

p value  

 
 

Resection margins  
   

R0  11 (14.9)  39 (52.7)  0.68  

R1  1 (1.4)  4 (5.4)   

R2  0  5 (6.8)   

Differentiation     

Well  0  3 (4.1)  0.32  

Moderate  12 (16.2)  37 (50)   

Poor  0  8 (10.8)   

Duke’s stage     

A  1 (1.4)  8 (10.8)  0.471  

B  7 (9.5)  16 (21.6)   

C1  3 (4.1)  15 (20.3)   

C2  1 (1.4)  6 (8.1)   

D  0  3 (4.1)   

Depth of invasion     

T1  1 (1.4)  4 (5.4)  0.26  

T2  0  5 (6.8)   

T3  10 (13.5)  26 (35.1)   

T4  1 (1.4)  13 (17.6)   

Nodal Status     

N0  9 (12.2)  25 (33.8)  0.34  

N1  1 (1.4)  12 (16.2)   

N2  2 (2.7)  11 (14.9)   

Metastasis Status     

MO  12 (16.2)  41 (55.4)  0.32  

M1  0  7 (9.5) 
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3.2.8  Heat Shock Transcription Factor-1 Expression is Not 

Associated with TP53 or KRAS Mutation 

HSF1 expression and TP53 mutation were characterised in 58 tumours, of 

which 55% (32/58) had a TP53 mutation. There was no significant 

association with TP53 and total HSF1 expression (Table 9). HSF1 

expression and KRAS mutation were characterised in 62 tumours, of which 

29% (29/62) had a KRAS mutation. There was no significant association 

with KRAS and total HSF1 expression (Table 14).  
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Table 14. Association of HSF1 expression with TP53 and KRAS mutation status.  

There was no significant association between total HSF1 with TP53 or KRAS mutation 

status (p value, Fisher’s Exact test). WT, wild type. 

 

TP53 status HSF1 - HSF1 + p value 

 
KRAS 
Status 
 

HSF1 - HSF1 + p value 

 

Mutated  

TP53  

6  25  0.74  

 

Mutated  

KRAS 

5 11 0.27 

WT 

TP53 
 

6  19   
WT 

KRAS 
7 37  

 

  



141 
 

3.2.9 BAG1 is Expressed in a Majority of Sporadic Colorectal 

Cancers and is Associated with TP53 Mutation 

BAG1 is an important co-chaperone to HSP72 and is expressed in CRC 

(Clemo, Collard et al. 2008; Sun, Meng et al. 2011). Accordingly we 

assessed BAG1 expression and the relationship to clinicopathological 

features, including survival, and TP53 and KRAS mutations status.  

3.2.10  BAG1 is Expressed in the Cytoplasm and Nucleus of a 

Significant Proportion of Colorectal Cancers 

A total of 60 tumour samples were stained and scored according to the 

strength of staining as published previously (Kikuchi, Noguchi et al. 2002; 

Sun, Meng et al. 2011). BAG1 immunopositivity was exhibited in nearly all 

the tumour samples (86%, 52/60), with only 8 tumour samples (13%) 

exhibiting no immunostaining (Figure 17). As expected most of the tumour 

samples had BAG1 staining of the cytoplasm (86%, 52/60), although 62% of 

tumours (37/60) were found to also show nuclear BAG1 immunopositivity. 

No tumours that showed nuclear staining without cytoplasmic 

immunostaining. The differences in strength of staining allowed for a scoring 

system to reflect this variation as noted by others (Kikuchi, Noguchi et al. 

2002; Sun, Meng et al. 2011). A significant proportion (51%, 19/37) of 

tumours with nuclear staining showed particularly strong staining for BAG1 

in the nucleus. There was no significant difference in the proportion of 

tumours showing strong or moderate nuclear or cytoplasmic immunostaining 
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(43%, 26/60, 43%), compared to those with weak or no nuclear or 

cytoplasmic staining (38%, 23/60) (Table 15).  
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Figure 17. Representative examples of BAG1 immunostaining of tumour samples at 

x10 magnification. (A) BAG1 Appendix negative control; (B) BAG1 Appendix positive 

control; (C) BAG1, no expression detected; (D) BAG1, cytoplasmic positive; (E) BAG1, 

nuclear positive; (F) BAG1 positive. Samples were scored positive if there was 

nuclear/cytoplasmic staining in more than 20% of cells (Patel, Polanco-Echeverry et al. 

2007). BAG1 showed easily differentiated staining and therefore was scored weakly positive 

to strongly positive in cytoplasmic and nuclear compartments. BAG1 was seen more 

strongly in the nuclear compartment of tumour samples.   
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Table 15. Summary of cytoplasmic and nuclear staining of BAG1. BAG1 was 

expressed in 86% of tumour samples (52/60) and the protein was seen in both nuclear and 

cytoplasmic staining in most samples (61.7%, 37/60). BAG1 is expressed in a large 

proportion of CRCs. 

 

 

BAG11 

 

Cytoplasmic 

+++  

 

Cytoplasmic 

++  

 

Cytoplasmic 

+  

 

Cytoplasmic 

-  

Nuclear 

+++  

7 8 4 0 

Nuclear ++  0 3 1 0 

Nuclear +  3 5 6 0 

Nuclear -  0 6 9 8 

 

 

1 Immunostaining was carried out on 74 samples, 14 samples not be scored due to poor 

staining or lack of tumour. 
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3.2.11 BAG1 Expression was Associated with Increase Depth of 

Tumour Invasion, But Not Patient Survival  

BAG1 expression was significantly associated with increased depth of 

invasion (p=0.02, Table 16). However, if an adjustment for multiple testing 

using Bonferroni correction is applied (r=6; lowers p from <0.05 to <0.008) 

then significance is lost. No other parameters were significant. 

Previously, BAG1 has been associated with prognostic outcome (Kikuchi, 

Noguchi et al. 2002). To explore this finding in our cohort survival data was 

plotted against the expression of BAG1, but no significant association was 

found (Figure 18, Appendix VI).  
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Table 16. Expression of BAG1 in relation to clinicopathological features of colorectal 

cancers. Expression was significantly associated with increased depth of invasion, but if an 

adjustment for multiple testing applied (Bonferroni correction: r=6; lowers p from <0.05 to 

<0.008) then significance is lost. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clinical parameter  BAG1 - BAG1 +  p value  

 

Resection margins     

R0  8 (10.8)  44 (59.5)  1  

R1  0  3 (4.1)  
 

R2  0  5 (6.8)  
 

Differentiation     

Well  0  3 (4.1)  0.73  

Moderate  8 (10.8)  41 (55.4)  
 

Poor  0  8 (10.8)  
 

Duke’s stage    

A  3 (4.1)  6 (8.1)  0.38  

B  2 (2.7  19 (25.7)  
 

C1  2 (2.7)  15 (20.3)  
 

C2  1 (1.4)  7 (9.5)  
 

D  0  5 (6.8)  
 

Depth of invasion     

T1  3 (4.1)  2 (2.7)  0.022*  

T2  0  5 (6.8)  
 

T3  3 (4.1)  36 (48.6)  
 

T4  2 (2.7)  9 (12.2)  
 

Nodal Status     

N0  5 (6.8)  29 (39.2)  1  

N1  2 (2.7)  12 (16.2)  
 

N2  1 (1.4)  11 (14.9)  
 

Metastasis Status     

MO  7 (9.5)  45 (60.8)  1  

M1  1 (1.4)  7 (9.5)  
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Figure 18. Kaplan-Meier plots correlating patient survival with protein expression of 

BAG1. There is no statistically significant difference (p=0.97) in survival between patients 

with tumour expressing BAG1 and the patients with tumours negative for BAG1 expression 

by log rank test. 
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3.2.12  Association of BAG1 Protein Expression with TP53 and KRAS 

Mutational Status  

There were 57 tumour samples that were scored for BAG1 immunopositivity 

and characterised for TP53 mutation status of these 56% (32/57) had a 

TP53 mutation. A significant association between TP53 mutation and those 

tumours that were BAG1 expression negative in cytoplasm (p=0.01), or 

BAG1 negative in either compartment (p=0.01) was found (Table 17). KRAS 

mutation status was known for 60 tumour samples that were scored for 

BAG1 immunopositivity, of these 88% (16/18) had a KRAS mutation. A 

similar proportion of WT KRAS (86%, 36/42), hence there was no significant 

association with KRAS and BAG1 expression. BAG1 immunopositivity was 

also scored in 60 tumour samples characterised for PI3/AKT activation. 

BAG1 was expressed in 79% (41/52) of tumour samples. However there 

was no significant association with PI3/AKT activation. 
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Table 17. Lack of BAG1 expression is associated with TP53 mutation status. There is 

a significant association between TP53 mutation and those tumours that were BAG1 

expression negative (p=0.01). There was no significant association with KRAS or PI3/AKT 

activation (p=1 and p=0.33 respectively). 

 

 

 

 

 

1 
Immunostaining was carried out on 70 samples characterised for TP53, 13 samples not be 

scored for BAG1 due to poor staining or lack of tumour. 

 

2
 Immunostaining was carried out on 74 samples characterised for KRAS, 14 samples not 

be scored for BAG1 due to poor staining or lack of tumour. 

 

3
 Immunostaining was carried out on 74 samples characterised for PI3K/AKT and KRAS, 14 

samples not be scored for BAG1 due to poor staining or lack of tumour. 

  

 
TP531 
Status 

 

BAG1 
- 

BAG1 
+ 

p value 
KRAS2 
status 

BAG1 
- 

BAG1 + 
p 

value 

 
WT 

TP53 

 
0 

 
25 

 
0.01* 

 
WT 

KRAS 

 
6 

 
36 

 
1 

 
Mutated 

TP53 
 

 
7 

 
25 

  
Mutated 
KRAS 

 

 
2 

 
16 

 

 
PI3K/AKT3 

Status 
 

BAG1 - BAG1 + p value 

 
PI3K/AKT - 

 
0 

 
11 

 
0.33 

 
PI3K/AKT + 

 

 
8 

 
41 
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3.3 Discussion  

3.3.1 Clinicopathological Features of Patient Cohort 

The study cohort used here consisted of more male then female patients 

(46:28), which is in keeping with the higher incidence of CRC in men and the 

greater lifetime risk of CRC in men (1:16) compared to women (1:20) 

(Cancer Research UK. 2010). The mean age of the patients in the study was 

73 years old and this reflects the strong age related occurrence of CRC, with 

84% of cases affecting people who are 60 years or older (Cancer Research 

UK, 2010). CRC predominantly affects the left side of bowel with over half of 

cases arising at this site compared to the right side of bowel; tumours occur 

most frequently in the sigmoid colon, rectosigmoid junction and rectum 

(Cancer Research UK, 2010). In my study cohort, most of the tumours were 

left sided rather than right sided and although there has been the suggestion 

that the distribution of CRC has shifted more proximally over time (Cucino, 

Buchner et al. 2002), this remains to be confirmed (Gomez, Dalal et al. 

2004). The distribution reported here is a likely consequence of the random 

reselection of patients and. the distribution in my cohort is not significantly 

different (p=0.058) from that reported previously (Cancer Research UK. 

2010), but does show a trend towards a higher frequency of right sided 

CRCs. Duke’s staging for the tumour samples reflected expected incidence 

(Cancer Research UK, 2010) with Duke’s stage B and C accounting for the 

majority of cases and pathological findings of vascular invasion and mucin 

were similarly in line with expectations.    
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3.3.2 No Association of HSP27 or HSP72 Expression with 

Clinicopathological Parameters and Patient Survival 

HSP27 expression has been associated with good prognosis in endometrial 

adenocarcinoma (Geisler, Geisler et al. 1999), oesophageal squamous cell 

carcinoma (Kawanishi, Shiozaki et al. 1999), malignant fibrous histiocytoma 

(Tetu, Lacasse et al. 1992) and pancreatic cancer (Schafer, Seeliger et al. 

2012). In contrast, to poor prognosis in osteosarcoma (Uozaki, Ishida et al. 

2000), hepatocellular carcinoma (King, Li et al. 2000) and prostate cancer 

(Cornford, Dodson et al. 2000). Although, HSP27 expression and prognosis 

remains inconclusive in oral squamous cell carcinoma (Ito, Kawabe et al. 

1998; Kapranos, Kominea et al. 2002; Lo Muzio, Campisi et al. 2006; Wang, 

Liu et al. 2009), gastric cancer (Kapranos, Kominea et al. 2002; Giaginis, 

Daskalopoulou et al. 2009) and ovarian cancer (Elpek, Karaveli et al. 2003; 

Elstrand, Kleinberg et al. 2009). HSP27 expression has also been reported 

to have no effect on prognosis in head and neck squamous cell carcinoma 

(Gandour-Edwards, Trock et al. 1998), bladder cancer (Storm, Mahvi et al. 

1993) or renal cell carcinoma (Erkizan, Kirkali et al. 2004). In contrast, 

HSP72 differential pattern of expression in nasopharyngeal carcinomas has 

been associated with survival (Cai, Wang et al. 2012). In oesophageal 

carcinoma the expression intensity of HSP72 is related to the differentiation 

(Wang, Liu et al. 2005) and correlated with depth of invasion, pathological 

stage and blood vessel invasion (Nakajima, Kato et al. 2009).  

In CRC, elevated expression of HSP27 has been associated with nodal 

status (Pei, Zhu et al. 2007), TMN staging (Yu, Zhi et al. 2010), poor 
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prognosis and survival (Garrido, Brunet et al. 2006; Yu, Zhi et al. 2010; 

Wang, Zhang et al. 2012). In contrast, Zhao et al. (2007) did not 

demonstrate any significant correlation between HSP27 expression and sex, 

age, site, histological grade, Duke’s stage, and lymph node metastasis. 

However, the largest study to date by Tweedle and colleagues (2010) found 

that increased HSP27 expression was associated with poor survival in rectal 

cancers, but not colon cancer. This is also in line with findings by Bauer and 

colleagues (2012) found a significant association between high expression 

of HSP27 and poor prognosis in the cohort of patients with left sided CRC. 

This is interesting as increased expression of HSP27 have been associated 

with 5-FU chemotherapy resistance in vivo (Tsuruta, Nishibori et al. 2008), 

which is an important factor in the neoadjunct treatment of rectal cancer. 

Furthermore, as seen in the recent study by Wang and colleagues (2012) 

they also demonstrated that the overall survival of patients who had 

undergone 5-FU-based chemotherapy which had elevated expression of 

HSP27 was significantly shorter than patients with decreased HSP27 

expression. 

HSP72 expression is elevated in CRC (Kanazawa, Isomoto et al. 2003) with 

an association of high HSP72 expression in vivo with aggressive tumour 

behaviour (Hwang, Han et al. 2003; Kanazawa, Isomoto et al. 2003). In a 

large study by Bauer and colleagues (2012), there was no correlation found 

between HSP72 expression and histological grade, Duke’s stage, and lymph 

node metastasis. However high HSP72 expression was associated with 

worse survival of the patients. Interestingly, Pfister and colleagues (2007) 
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using flow cytometry to show that in the subset of patients with colon 

carcinoma, HSP72 membrane expression correlated significantly with an 

improved overall survival; compared to a negative association with survival 

seen in lower rectal carcinoma. In another study, using ELISA high serum 

HSP72 levels were associated with poor clinical outcome of colon cancer 

patients (Kocsis, Madaras et al. 2010; Kocsis, Meszaros et al. 2011). 

In my study both HSPs were expressed in the majority of CRC samples, with 

no expression observed in any normal tissues. When expressed, HSP27 

was found to be located mainly in the cytoplasm and this corresponds with 

our findings, namely HSP27 was discretely expressed in the cytoplasm in 

58% of the tumour samples. HSP72 also exhibited staining in both the 

cytoplasm and nucleus, although staining was primarily cytoplasmic (62%) 

reflecting the proteins anti-apoptotic role and its effects on senescence 

(Sherman 2010). However, I did not demonstrate any association of HSP27 

or HSP72 expression with clinicopathological parameters and patient 

survival. 

3.3.3  Stratification of CRCs according to TP53 and KRAS mutation 

and PI3K/AKT activation status 

TP53 was mutated in 53% of the tumours, which was similar to previous 

studies (Levine 1997). Although, the frequency of mutations on each exon of 

TP53 in our study cohort marginally differed from a small study of 31 

patients, which was previously reported in the literature (Roa et al. 2000).   
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PIK3CA was found to be mutated in 16% of the tumour samples used here, 

which was lower than that reported (30%) previously by Samuels et al. 

(2004), but was similar to other reports of 13.6% (Velho, Oliveira et al. 2005) 

and 12% (Abubaker, Bavi et al. 2008). Overall, PIK3CA amplification was 

seen in 67% (42/63) of tumour samples and this was slightly higher 

compared to the frequency of PIK3CA amplification in 38% of CRC seen by 

Jehan and colleagues (2009) in their study of 448 CRC tumour samples, 

which used both Fluorescence in situ hybridization (FISH) and qRT-PCR for 

validation of copy number change. Similarly, I used qRT-PCR for the 

detection of gene copy number changes (Kubista, Andrade et al. 2006) as 

this technique allows for simultaneous amplification and detection of specific 

DNA sequences. Therefore, by measuring the accumulation of PCR product 

as it occurs (real time) and by knowing the number of amplification cycles, it 

is possible to quantify rapidly by extrapolation the number of DNA target 

molecules present in the initial sample. However, the efficiency and 

accuracy of real-time PCR is highly dependent on the primers and probes 

used. Here, the TaqMan Copy number assay measured a duplex real-time 

PCR reaction in which both the assay for the target gene and the reference 

assay are run simultaneously in the same reaction reducing the total amount 

of sample DNA used. The assay has the further advantage of using a pre-

designed and validated assay for the target gene, PIK3CA.  

AKT expression was seen in 96% of the tumour samples reflecting the 

activation of this important tumourgenesis pathway in CRC. However, just 

over half of the tumour samples with AKT expression were found to have 
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either PIK3CA mutation or a copy number amplification possibly suggesting 

a high false negative rate. The qRT-PCR in my study was performed on 

DNA extracted from fresh frozen tissue, which should provide DNA of good 

quality. However, it is possible that the quality of DNA maybe influenced by 

inadequate sample storage, preparation and hence there maybe variation in 

nucleic acid quality. This would results in variable results, particularly with an 

assay as challenging as copy number analysis. Furthermore, biological 

samples are complex and may contain inhibitory substances that can reduce 

the PCR efficiency (Kubista, Andrade et al. 2006); variable degrees of 

contamination by normal issue may interfere with estimation of copy number. 

However, the most likely explanation for any inherent inconsistency 

concerns the use of controls to limit interplate variability. I used two controls 

between the PCR plates for comparison, but unfortunately the use of both 

controls resulted in a wide variation of copy number causing a skewing 

result. As a consequence it was decided to use 339N only as the control for 

inter-plate comparison as this reduced apparent variation and corresponded 

move closer to activated AKT expression as would be expected. However, 

this may not have been an ideal compromise as D’haene and colleagues 

(2010) have suggested using as many controls as possible to improve the 

accuracy and precision of the calculated copy number. However, this needs 

to be closely monitored for inter-control variability. A more accurate means 

of determining copy number variations could be achieved by single 

nucleotide polymorphisms (SNP) analysis although this may be limited by 

cost (Sengupta, Yau et al. 2013).  
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3.3.4  HSP27 Expression was Associated with Mutated TP53 

Previous studies have shown that premalignant human adenomas display 

features of senescence, but these are lost upon progression to carcinoma 

(Collado and Serrano 2005) indicating that OIS could be an important aspect 

of tumour suppression in CRC in vivo. Gabai and colleagues (2009) 

demonstrated that in cancer cells, HSP72 selectively suppresses TP53-

dependent and TP53-independent mechanisms of triggering senescence. 

Likewise, HSP27 regulates cellular senescence by modulating the TP53 

pathway (O'Callaghan-Sunol, Gabai et al. 2007) and, therefore, cancer cells 

may need or become ‘addicted’ to HSP expression to suppress the 

senescence programme in order to survive and to proliferate (Gabai, Yaglom 

et al. 2009). Consequently, I hypothesised that in cancers with a functional 

TP53 pathway, cancer cells would be addicted to high levels of HSP 

expression, whereas in cancers with TP53 mutations, OIS can be 

circumvented and their proliferation or survival would not be dependent on 

HSP expression (Figure 11). 

When TP53 mutation status was compared with HSP27 and HSP72 

expression, no significant association was found. I could not confirm 

increased expression of HSP with wild type TP53 in primary tumours. In fact, 

HSP27 expression appears to be expressed more frequently in samples with 

TP53 mutations, although this observation did not reach statistical 

significance. As HSP expression is likely to be involved in multiple pathways 

associated with tumourgenesis these results may not be unexpected if HSPs 
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are expressed in the tumour environment as a consequence of genetic 

alterations other than TP53.               

3.3.5 HSP27 Expression was Associated in PI3K/AKT Active 

Tumours with Wild Type KRAS, Independent of TP53 Mutation Status 

In tumours with oncogenic activation of the AKT pathway there was an 

association with HSP27 expression, which may represent an important 

mechanism in suppressing TP53 dependent senescence allowing cell 

proliferation and tumourgenesis. In direct contrast, however, HSP72 

expression was not found to be associated with activation of the AKT 

pathway and this may be due to its complex interactions with BAG1 and 

other pathways that are independent of TP53.  

PI3K/AKT activation and KRAS mutations are two common oncogenic 

events in CRC (Barault, Veyrie et al. 2008). Recent evidence has shown that 

while both the PI3K/AKT pathway and KRAS act as moderate and strong 

inducers of OIS respectively in immortalised fibroblasts, the concurrent 

activation of these two signalling modules inhibits senescence and 

accelerates cancer progression in vitro (Kennedy, Morton et al. 2011). I 

proceeded therefore to examine the in vivo data on HSP expression in 

relation to KRAS mutation and PI3K/AKT activation. HSP27 expression was 

associated with PI3K/AKT active, KRAS wild type tumours (p = 0.004), with 

more than 90% of these cases showing positive staining. In contrast, only 

53% of the tumours with both KRAS mutations and PI3K/AKT activation 

showed HSP27 staining. A possible explanation for this phenomenon could 
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be that in these tumours, as opposed to cultured cells, PI3K/AKT activation 

may inhibit RAS induced OIS rendering other mechanisms such as 

expression of HSP27 redundant (Figure 11B). There is evidence from in vitro 

studies of functional interaction between HSP27 and AKT. For instance, 

HSP27 can be modified post-translationally through phosphorylation by AKT 

and other kinases (Kanagasabai, Karthikeyan et al. 2010). In addition, 

HSP27 chaperones AKT, prevents its dephosphorylation and degradation, 

hence promoting its stability and activation (Mearow, Dodge et al. 2002). 

However, the association between these genes and non-TP53 mediated OIS 

is unclear. Furthermore, HSP expression could not be related to wild type 

TP53 in any of our subgroups so it is unlikely that HSP circumvents TP53 

mediated OIS in these tumours.  

The results presented here show clearly that CRCs have different 

requirements for HSP expression depending on their KRAS mutation and 

the PI3K/AKT activation status.  

In preliminary experiments conducted by Dr J Adam at the Wellcome 

Institute for Human Genetics a pBabe-PURO SV40 large T construct 

(provided by P. Jat (UCL)) was used for retroviral infections of CRC cell lines 

carrying or not carrying the KRAS mutation. A Human G12V KRAS was 

amplified by PCR from template DNA and cloned into pWZL Hygro vector by 

restriction enzyme digestion (BamHI and SalI sites) and ligation. Colorectal 

cell lines, stably infected with KRAS, were generated using amphotropic 

helper-free phoenix cells that had been transfected with the G12V KRAS 

construct described above and then placed under Hygromycin selection. It 
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was consistently observed that cell lines infected successfully with KRAS 

showed altered, more spindle like morphology and cell doubling time was 

increased at least approximately two-fold, compared to control cells. 

Successful KRAS infection was confirmed by western blotting. These 

transfected CRC cell lines will provide in vitro cell culture models to 

investigate expression of HSP27 and HSP72 and assess the role of KRAS in 

modulating HSP expression relative to mutation status. These experiments 

are planned for the future (Appendix VII). 

3.3.6  Colorectal Cancers are Mostly Positive for Heat-Shock Factor 1, 

but Expression was not Associated with Clinicopathological Features 

HSF1 expression has been shown in vivo to be are elevated in number of 

cancer cell lines and tumour tissues, including prostate cancer cells (Hoang, 

Huang et al. 2000) and breast cancer (Khaleque, Bharti et al. 2008). HSF1 

expression was seen in the majority of the tumour samples mainly exhibiting 

strong staining in the nucleus. This is not unsurprising as, when activated by 

stressors HSF1 accumulates within the nucleus where it binds to DNA 

containing heat shock elements that induce HSPs (Collado and Serrano 

2005). In breast cancer HSF1 expression has been shown to increase and 

correlate with histological grade: HSF1 expression was highest in high grade 

breast cancer and advanced clinical stage; and HSF1 expression was 

associated with reduced survival (Santagata, Hu et al. 2011). In contrast, 

when the expression of HSF1 was examined in relation to: Duke’s stage; 

depth of invasion (T stage); nodal metastases (N stage) and distant 
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metastases (M stage), no significant association was shown between HSF1 

expression and any of these features. 

3.3.7  Heat Shock Transcription Factor 1 Expression was not 

Associated with TP53 or KRAS Mutation 

As HSPs are thought to be selectively up-regulated to suppress OIS in the 

absence of TP53 mutations, thereby allowing uncontrolled proliferation, a 

possible role for HSF1 in this process was investigated (Sherman 2010). 

Interestingly, in fibroblasts the activation of TP53 is mediated through a 

pathway that is regulated by HSF1 and that this results in the transportation 

of TP53 into the nucleus (Li, Feldman et al. 2008). Furthermore, following on 

from the correlation observed here between HSP27 expression and KRAS 

mutation and PI3K/AKT activation status, a possible role for HSF1 in this 

process was also investigated. There was no significant association 

observed between KRAS, TP53 mutation status and HSF1 expression. This 

may not be unexpected from studies suggesting a more complicated 

interplay between HSF1 and these oncogenic pathways. Min and colleagues 

(2007) in their study using TP53-/- mice that usually develop lymphomas 

found that loss of HSF1 altered the spectrum of tumours that arose in TP53-/- 

mice instead of prolonging expected tumour free survival. In HSF1-/-TP53-/- 

mice, other tumour types developed including testicular carcinomas and soft 

tissue sarcomas, although there was no significant effect either on overall 

tumour incidence or on tumour-free survival (Min et al., 2007). In contrast, 

Dai and colleagues (2007) using HSF1-/- mice carrying a mutant TP53 allele, 

found that tumour-free survival was prolonged dramatically.   
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3.3.8  BAG1 was Expressed in the Cytoplasm and Nucleus of a 

Significant Proportion of Colorectal Cancers 

Overexpression of BAG1 protects cells from various apoptotic stimuli, 

enhanced proliferation and metastasis, and modulated the transcriptional 

activity of a variety of nuclear hormone receptors (Cutress, Townsend et al. 

2002). The function of BAG1 in tumourgenesis has been attributed to its 

relationship with HSP72 as a co-chaperone and mediator of BAG1 functions 

(Townsend, Stephanou et al. 2005). BAG1 was expressed in 86% of tumour 

samples and this was also reflected by the expression of HSP72 (87%). The 

overall rate expression of BAG1 matched the expression seen in other IHC 

studies on CRC (Bai, Yi et al. 2007). Interestingly, all of the tumour samples 

that expressed BAG1 showed cytoplasmic staining with either strong or 

discrete cytoplasmic staining, but none showed exclusive nuclear staining. 

This was in contrast to the large study by Sun and colleagues (2011) which 

used a different antibody for BAG1 for their IHC finding that most of their 

tumours expressed BAG1 in the nucleus, and only a few expressed BAG1 

immunopositivity in the cytoplasm.  

A significantly higher expression of nuclear (62%) and cytoplasmic BAG1 

expression (86%) was observed here in comparison to Kikuchi and 

colleagues (2002). These workers had reported previously a BAG1 

expression of only 5% using a similar technique of standard avidin-biotin-

peroxidase complex IHC technique. However when they used a Catalyzed 

Signal Amplification system (DAKO Corp), nuclear BAG1 was seen in 24% 

and cytoplasmic BAG1 in 65.1% of tumour samples respectively.  
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3.3.9 BAG1 Expression was Associated with Increase Depth of 

Tumour Invasion, But Not Patient Survival  

Sun and colleagues (2011) in their study of 320 colon cancer samples 

demonstrated a significant association with increased BAG1 expression and 

pathologic grade, distant metastasis, Dukes stage, and prognosis, but 

expression was not correlated with the pathologic type, tumour diameter, 

depth of invasion, and lymph node metastasis. Bai and colleagues (2007) 

also found a significant association with degree of tumor differentiation, 

Dukes staging, metastasis and survival. Here, BAG1 expression was 

significantly associated with increased depth of invasion. However, if 

Bonferroni correction is applied (r=6; lowers p from <0.05 to <0.008) then 

significance is lost. No significant correlation with BAG1 expression and 

survival was found in the cohort of CRCs examined here.  Multivariate 

logistical regression to adjust for Duke’s stage might reveal an association 

as these two studies had randomly even proportions of samples at each 

stage compared to the study cohort used here, which had 70% Duke’s stage 

B or C. Nuclear BAG1 expression has been also demonstrated as a useful 

predictive factor for metastasis and poor prognosis of CRC (Kikuchi, 

Noguchi et al. 2002). When comparing the present groups of tumour 

samples with or without nuclear expression I did not find a significant 

association with survival. The increased frequency of nuclear and 

cytoplasmic BAG1 expression in my study might explain the differences that 

were found in survival between previous studies. 



163 
 

3.3.10  Lack of BAG1 Expression is Associated with TP53 Mutation 

Status  

It has been suggested that BAG1 overexpression may in fact be due to the 

up regulation of the BAG1 promoter by mutated TP53 (Yang, Pater et al. 

1999). Furthermore Wang and colleagues (2009) showed that BAG1 

inhibited the transcriptional activating functions of TP73, and to a lesser 

extent TP63 and TP53. Therefore, BAG1 may interfere with TP53 growth 

arrest and stress-induced apoptosis in tumourgenesis. However, TP53 

mutation was associated with negative expression of BAG1 in the study 

presented here. Therefore, in CRCs with WT TP53, BAG1 was most likely to 

be expressed, whilst in those cancers with TP53 mutations, BAG1 was not 

likely to be expressed.  

3.3.11 Summary  

In summary, our data suggests that HSP expression does not play a role in 

circumventing TP53 mediated OIS in CRC. CRCs may have different 

requirements for HSP expression that are dependent on KRAS mutation and 

PI3K/AKT activation status. Further in vivo investigations on a larger number 

of cancers will be necessary to complement investigations that have been 

conducted in vitro into oncogenic modulation of OIS. The work presented in 

the chapter pertinent to OIS has been published in Ghosh and colleagues 

(2012). 
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CHAPTER 4 

Evaluating the role of Amyloid Precursor Protein and 

BCL2-associated Athogene in colorectal cancer 

4.1  Overview and Rationale 

APP expression has been shown to be dysregulated in glioblastoma, 

melanoma, and in oral squamous cell carcinoma, thyroid, prostate, and 

pancreatic cancer (Hansel, Rahman et al. 2003; Ko, Lin et al. 2004; 

Takayama, Tsutsumi et al. 2009; Botelho, Wang et al. 2010; Yang, Fan et al. 

2012). Loss-of-function studies of these cancers have suggested an 

important role of APP in tumourgenesis through its involvement in cellular 

proliferation (Meng, Kataoka et al. 2001; Hansel, Rahman et al. 2003; Ko, 

Lin et al. 2004; Takayama, Tsutsumi et al. 2009; Botelho, Wang et al. 2010; 

Venkataramani, Rossner et al. 2010; Yang, Fan et al. 2012). Furthermore, 

APP expression has been correlated to melanoma and thyroid carcinoma 

tumour stage ((Botelho, Wang et al. 2010; Yang, Fan et al. 2012) and 

survival in oral squamous cell and prostate carcinoma. These studies 

highlight APP as a prognostic marker and potential therapeutic target (Ko, 

Lin et al. 2004; Takayama, Tsutsumi et al. 2009). 

Only two studies have investigated the role of APP in CRC. These have 

used a small number of CRC cell lines (SW480, LOVO, CaCo-2, T84 and 

SW837) to investigate the role of APP (Meng, Kataoka et al. 2001; 

Venkataramani, Rossner et al. 2010). All have suggested that APP has an 
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essential role in cellular proliferation and growth, but only SW837 has been 

used for APP inhibition with antisense clones to inhibit expression. This 

resulted in reduced proliferative potential and colony forming efficiency, 

which was rescued with the conditioned medium of parent cells or with 

purified sAPP (Meng, Kataoka et al. 2001). Furthermore, reduced tumour 

proliferation in vivo was exhibited in the antisense clones using nude mice 

(Meng, Kataoka et al. 2001). More recently, Venkatarami and colleagues 

(2010) using siRNA knockdown of APP on a single line, SW480, 

demonstrated reduced cell proliferation. Valproic acid (VPA, 2-

propylpentanoic acid), a histone deacetylase inhibitor known to down 

regulate APP and sAPP through its effects on APP maturation via its 

upregulation of GRP78, was used on SW480, LOVO, CaCo-2, T84 to 

demonstrate reduced cell proliferation when APP was inhibited by the drug 

(Venkataramani, Rossner et al. 2010). 

Interestingly, in the brain tissue of AD patients, APP is co-localised with 

BAG1, the tumour co-chaperone, (Elliott, Laufer et al. 2009). Furthermore, 

the over expression of BAG1 was associated with increased amount of 

intracellular APP suggesting both a strong physical and a functional 

relationship between BAG1 and APP (Elliott, Laufer et al. 2009). 

To date, only one study has used primary CRC samples to examine APP 

protein expression and IHC was reported for a very small sample size (n=3) 

(Venkataramani, Rossner et al. 2010). These workers reported strong 

expression of APP in colon carcinoma cells whereas no expression was 

seen in normal epithelial cells. However, the presented images showed very 
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high expression of APP that might be a consequence of overstaining caused 

by an overnight incubation (Venkataramani, Rossner et al. 2010). 

To elucidate the role of APP in tumourgenesis and investigate a possible link 

to malignant progression in CRC, a larger panel of previously unstudied 

colonic and rectal adenocarcinoma cell lines and primary CRC samples was 

investigated (Figure 19A). IF was used to determine the location of APP in 

CRC cells. The effect of APP knockdown was evaluated, along with 

inhibition by VPA, to investigate the potential use of this novel drug in colon 

cancer therapy. Furthermore as APP and its secreted forms have been 

shown to promote migration (Thinakaran and Koo 2008), the effect of APP 

on cell migration was also studied. In addition, the potential role of combined 

BAG1 and APP expression in tumourgenesis was examined. We 

hypothesised that BAG1 inhibition or overexpression will result in reduced 

expression or overexpression of APP (Figure 19 B and C). Finally, as has 

been suggested in other cancers, the relationship of APP expression and 

clinicopathological features and survival of CRC patients was evaluated. 

First, the expression of APP and BAG1 was determined at mRNA and 

protein level using QTRT PCR and Western Blot in a panel of colonic and 

rectal adenocarcinoma cell lines: C80; C99; HCT15; HCT116; HT55; LOVO; 

LS174T and SW837.  
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Figure 19. Background on Amyloid precursor protein findings from cell culture 

based studies and our hypothesis for testing in colorectal cancer. A: In CRC only two 

studies have shown that loss-of-function experiments of APP leads to reduced cell 

proliferation (Ventaramani et al. 2010; Meng et al. 2001). Our hypothesis: In a novel panel 

of CRC cell lines there will be a decrease in cell proliferation when APP expression is 

inhibited which will also correlate with findings for APP alterations in other cancers. B and 

C. Background: In AD in which there has been shown to be a physical relationship between 

BAG1 overexpression and APP expression, BAG1 expression has been shown to be 

correlated with APP expression (Elliott et al 2009). Our hypothesis: BAG1 inhibition or 

overexpression will result in reduced expression or overexpression of APP. 
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4.2  Results 

4.2.1 Expression of BCL2-associated Athanogene and Amyloid 

Precursor Protein Varies in Colorectal Cancer Cell Lines  

The expression of both BAG1 and APP was measured at mRNA level using 

QRT PCR with quadruplicate samples of each cell line (see Section 2.2.6). 

Data was analysed relative to LOVO because this cell line showed the 

lowest level of expression compared to the other cell lines. QRT PCR 

demonstrated a seven-fold increase in expression of BAG1 in C99 and 

nearly a five-fold change of C80 relative to the LOVO cell line. SW837, 

HCT116 and LS174T had approximately a two and a half-fold increase in 

expression, while there was only a small fold change difference in HT55 and 

HCT15 (Figure 20). Western Blot showed expression of all the isoforms of 

BAG1 with the cytoplasmic BAG1 isoforms (33kDa) the most abundant. The 

cytoplasmic/nuclear BAG1 isoform (46kDa) was expressed the least in all 

cell lines. In HT55 and C80 the nuclear BAG1 isoform (50kDa) was 

expressed at low levels. Western blot quantification was undertaken for 

overall BAG1 gene expression. This was plotted relative to LOVO to allow 

comparison with mRNA BAG1 expression. Western blot quantification found 

that HCT116 had the highest expression of BAG1, whilst HCT15 and HT55 

had the lowest expression of BAG1 relative to LOVO expression. C80 and 

C99 (0.8 relative expression to LOVO both respectively) had a lower 

expression of BAG1 at protein level compared to LOVO when compared to 

mRNA level (Figure 21). Overall, there was a difference in the level of 
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expression of BAG1 at mRNA and protein level, with BAG1 expressed with a 

greater variance at mRNA level than at protein level.  

QRT PCR for mRNA expression of APP was also characterised relative to 

LOVO because this cell line showed the lowest level of expression 

compared to the other cell line. APP was increased nearly four-fold in 

SW837 and had a threefold change in C99 and HCT15. The rest of the cell 

lines C80, HT55, HCT116 and LS174T had an approximately two-fold 

increase (Figure 22). Western Blot showed expression of both the immature 

and mature isoforms of APP (110kDa and 130kDa). Western blot 

quantification was calculated for overall APP gene expression. This again 

was plotted relative to LOVO to allow comparison with mRNA APP 

expression. Protein expression of APP was highest expressed in HT55, 

whilst LS174T and SW847 had the lowest expression of APP relative to 

LOVO expression. This was in contrast to mRNA expression in which 

SW837 had the highest relative expression of APP (Figure 23). 
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Figure 20. Variable expression of BAG1 in a panel of colorectal cancer cell lines. 

Expression assessed at mRNA level by QRT-PCR from mean of four experimental 

replicates. 
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Figure 21. Variable expression of BAG1 in a panel of colorectal cancer cell lines. 

Expression assessed at the protein level by Western Blot. QRT-PCR for BAG1 showed it 

to be expressed most highly in C80 and C99 with a fold change of 4.78 and 7 

respectively. Western Blot showed expression of all the isoforms of BAG1 with the 

cytoplasmic BAG1 isoforms (33kDa) the most abundant and the cytoplasmic/nuclear 

BAG1 isoform (46kDa) expressed the least in all cell lines. In HT55 and C80 the nuclear 

BAG1 isoform (50kDa) was expressed at low levels. Western blot quantification was for 

overall BAG1 gene expression. This again was plotted relative to LOVO to allow 

comparison with mRNA BAG1 expression. HCT116 had the highest expression of 

BAG1, whilst HCT15 had the lowest expression of BAG1 relative to LOVO expression. 

C80 and C99 had a lower expression of BAG1 at protein level compared to LOVO when 

compared to mRNA level. 
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Figure 22. Variable expression of Amyloid precursor protein in a panel of colorectal 

cancer cell lines. Expression assessed at mRNA level by QRT-PCR from mean of four 

experimental replicates. 
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Figure 23. Variable expression of Amyloid precursor protein in a panel of colorectal 

cancer cell lines. Expression assessed at mRNA level by QRT-PCR from mean of four 

experimental replicates (A) and at protein level by Western Blot (B). QRT PCR for APP 

showed it to be expressed most highly in SW837 with nearly a four-fold increase in 

expression in SW837 relative to LOVO. There was a threefold change in C99 and HCT15. 

The rest of the cell lines C80, HT55, HCT116 and LS174T had an approximately two-fold 

increase expression of APP relative to LOVO. Western Blot showed expression of both the 

immature and mature isoforms of APP. Western blot quantification (C) was for overall APP 

gene expression. This again was plotted relative to LOVO to allow comparison with mRNA 

APP expression. HT55 had the highest expression of APP, whilst LS174T and SW847 had 

the lowest expression of APP relative to LOVO expression. This was in contrast to mRNA 

expression in which SW837 had the highest relative expression of APP. Overall there was a 

difference in the level of expression of BAG-1 at mRNA and protein level, with APP 

expressed with a greater variation of expression at mRNA level than at protein level.  
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4.2.2 Expression and Location of Amyloid Precursor Protein in 

Colorectal Tumour Cells 

IF was performed on the cell lines to identify the location of different length 

APP strands in CRC cell lines. Understanding the location of a protein within 

the cell is a key part of determining its functional role. IF was carried out with 

the 22C11 antibody (Millipore, Billerica, MA, USA) which recognises amino 

acids 66-81 of the N-terminus of APP (Hilbich, Monning et al. 1993) and 

therefore full length APP plus all its N-terminal cleavage products. 22C11 

recognises all three isoforms of APP: immature ~110kDa, sAPP ~120kDa, 

and mature ~130kDa after O-glycosylation (Hoffmann, Twiesselmann et al. 

2000). By using the APP antibody (Millipore, Billerica, MA, USA) IF was 

expected to demonstrate a cytoplasmic distribution (Thinakaran and Koo 

2008). However, in HCT116, C80, C99 and HT55 some nuclear staining was 

observed (Figure 24 -31). 
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Figure 24. Representative example of fluorescent immunohistochemistry on HCT116 

at 20x magnification. (A) DAPI staining of the nucleus is shown in blue; (B) APP staining in 

green; (C) Merged. APP expression is observed in both cytoplasmic and nuclear 

compartments, although cytoplasmic staining is stronger. 

 

 

 

 

 

 

 

 

 

Figure 25. Representative example of fluorescent immunohistochemistry on HCT15 at 

20x magnification. (A) DAPI staining of the nucleus is shown in blue; (B) APP staining in 

green; (C) Merged. APP expression is cytoplasmic. 

 

 

 

 
Figure 26. Representative example of fluorescent immunohistochemistry on HT55 at 

20x magnification. (A) DAPI staining of the nucleus is shown in blue; (B) APP staining in 

green; (C) Merged. APP expression is observed in both cytoplasmic and nuclear 

compartments, although cytoplasmic staining is stronger. 
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Figure 27. Representative example of fluorescent immunohistochemistry on LOVO at 

20x magnification. (A) DAPI staining of the nucleus is shown in blue; (B) APP staining in 

green; (C) Merged. APP expression is cytoplasmic. 

 

 

 

 

 

Figure 28. Representative example of fluorescent immunohistochemistry on LS174T 

at 20x magnification. (A) DAPI staining of the nucleus is shown in blue; (B) APP staining in 

green; (C) Merged. APP expression is cytoplasmic. 

 

 

 
 

 
Figure 29. Representative example of fluorescent immunohistochemistry on SW837 

at 20x magnification. (A) DAPI staining of the nucleus is shown in blue; (B) APP staining in 

green; (C) Merged. APP expression is cytoplasmic. 
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Figure 30. Representative example of fluorescent immunohistochemistry on C99 at 

20x magnification. (A) DAPI staining of the nucleus is shown in blue; (B) APP staining in 

green; (C) Merged. APP expression is observed in both cytoplasmic and nuclear 

compartments, although cytoplasmic staining is stronger. 

 

 
 

Figure 31. Representative example of fluorescent immunohistochemistry on C80 at 

20x magnification. (A) DAPI staining of the nucleus is shown in blue; (B) APP staining in 

green; (C) Merged. APP expression is observed in both cytoplasmic and nuclear 

compartments, although cytoplasmic staining is stronger. 
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4.2.3 Nuclear and Cytoplasmic Expression of Amyloid Precursor 

Protein is Observed in Colorectal Cancer Cell Lines 

To further evaluate the precise distribution of full length APP and its N-

terminal cleavage products in CRC cell lines, confocal microscopy images 

for HCT116, C80, C99 and HT55 were analysed using MetaMorph® (see 

Section 2.3.2.4). APP expression was analysed from five different fields. 

This served to determine the expression of full length APP and N-terminal 

cleavage products in cytoplasmic or nuclear compartments of tumour cell 

lines. APP was expressed to a greater extent in the cytoplasmic 

compartment of all the cell lines. When comparing cytoplasmic with nuclear 

expression, full length APP was significantly expressed (all p values >0.01, 

Student’s t-test) in the cytoplasmic relative to the nuclear compartment for 

C80, C99 and HT55 had the greatest proportion of APP expressed in the 

cytoplasm compared to the nucleus, with mean of 89% of APP expressed in 

the cytoplasm (p=0.000007, Student’s t-test). HCT116 showed a trend 

towards significance for cytoplasmic expression of APP with 56% of APP 

expressed in the cytoplasm compared to the nucleus (Figure 32; p=0.09, 

Student’s t-test). Therefore, the full length APP and N-terminal cleavage 

products were cytoplasmic in distribution. 
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Figure 32. The distribution of full length Amyloid precursor protein in colorectal 

cancer cell lines. Data was obtained and analysed for five different fields images per line 

providing a mean and standard deviation between experiments The distribution of full length 

APP is mostly cytoplasmic in colorectal cancer cell lines, APP was seen to be more highly 

expressed in the cytoplasmic compartment of cells lines: HCT116; C80; C99 and HT55 (all 

p values >0.01, Student’s t-test). 
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4.2.4 Knockdown of Amyloid Precursor Protein Results in an 

Inhibition in Tumour Cell Proliferation 

To investigate the functional relevance of APP in CRC loss of function 

studies using siRNA knockdown was used. HCT116 was used as it 

proliferated rapidly, and was found to be easiest to transfect for loss-of-

function studies using siRNA knockdown (see Section 2.4.2). The 

optimisation of the cell transfection is crucial to the efficiency of the 

experiment. Therefore, the amount of Lipofectamine 2000 for transfection 

was optimised first, using a specific siRNA that targets PLK-1. This results in 

the ‘killing’ of cells when successfully transfected (Strebhardt and Ullrich 

2006) and can be used, therefore, as a marker of transfection efficiency. A 

volume of 5 μL of Lipofectamine resulted in significant cell death (70%) as 

quantified by the SRB cell proliferation assay and was used henceforth as 

the optimum condition for transfection (Figure 33). 

Next, HCT116 was transfected with 4 siRNA’s APP2, APP8, APP9 and 

APP10 (details of specific siRNAs given in Appendix II) to establish 

knockdown of APP expression. Western blot showed that transfection with 

siRNA’s APP2, APP9 and APP10 resulted in knockdown of APP expression 

when compared to those cells transfected with scrambled siRNA (Figure 34). 

However, the siRNA APP8 did not knockdown APP expression. Analysing 

the blot intensity relative to the scrambled siRNA (see Section 2.6.2.5) 

demonstrated a significant knockdown of APP by siRNA APP2, APP9 and 

APP10 (all p values>0.001, Student’s T test). siRNA APP10 resulted in the 

most significant knockdown of APP expression (92% knockdown). APP2 
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resulted in a 76% and APP9 85% knockdown of APP expression (Figure 

34). In contrast, the siRNA APP8 caused an unexpected significant increase 

in APP expression (p>0.005). The expression of APP was suppressed 

efficiently by treatment of HCT116 cells with siRNAs APP2, APP9 and 

APP10 (Figure 34). 

The effect of APP knockdown on cell proliferation was measured using SRB 

cell proliferation assay with each experiment carried out in triplicate (see 

Section 2.4.4.2). The transfection of HCT116 with siRNA’s APP 2, APP 9 

and APP 10 resulted in inhibition of cell proliferation. siRNA APP 10 resulted 

in the most significant inhibition in cell proliferation with tumour cell 

proliferation reduced by 75% compared to cell transfected with scrambled 

siRNA (p=0.0005, Student’s t-test). In contrast, siRNA APP 9 40% and APP 

2 caused 25% inhibition of tumour cell proliferation (p=0.001 and 0.01 

respectively, Student’s t-test) (Figure 35). 

Therefore, in the CRC cell line HCT116, siRNA knockdown leading to a loss 

of function of APP results in an inhibition of cell proliferation.  
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Figure 33. Transfection optimisation of HCT116 cells identifies the most appropriate 

Lipofectamine volume. Transfection of HCT116 cells with different concentrations of 

Lipofectamine was undertaken and cell death measured using SRB cell proliferation assay 

and compared to mock transfected cells.  Using 5 μL of Lipofectamine resulted in most 

significant cell death (70%) as quantified by the SRB cell proliferation assay and was used, 

thereafter, as the optimum condition for transfection. Three experimental replicates were 

undertaken and each SRB assay was carried out in quadruplicate. The graph shows the 

mean average survival relative to the mock transfection. The error bars showing the 

standard deviation between replicates. 
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Figure 34. Most siRNAs targeted against Amyloid precursor protein cause efficient 

knockdown of gene expression. Western Blot images (A) of HCT116 cell line 

transfections with scrambled (Scram) siRNA; knockout siRNA APP 2; APP 8; APP 9 and 

APP 10. This shows effective knockout of APP with siRNA APP 2, APP 9 and APP 10, but 

upregulation with APP 8 B. Western blot quantification was calculated relative to scram 

expression of APP. Average blot density from two replicates with error bar showing the 

standard deviation. This figure shows a significant knockdown of APP by siRNA APP 2, 

APP 9, APP 10 (p>0.001, Student t-test). siRNA APP 8 caused a significant increase in 

APP expression (p>0.005, Student’s t-test). 
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Figure 35. The effect of Amyloid precursor protein knockdown on cell proliferation. 

Using Sulforhodamine B Colorimetric cell proliferation assay with each experiment carried 

out in triplicate and a mean calculated for each siRNA with error bars showing the standard 

deviation. Knockdown of APP using siRNA resulted in a significant reduction in cell 

proliferation. HCT116 cell line transfected with: scrambled (scram) siRNA; knockout siRNA 

APP 2; APP 8; APP 9 and APP 10. Cell proliferation compared to scram using SRB cell 

proliferation assay after 72 hours post transfection. A significant reduction in cell 

proliferation as a result of APP knockdown for siRNA’s APP 2, APP 9 and APP 10 was 

found (p>0.01, Student’s t-test). The most significant reduction in cell proliferation was 

observed with siRNA APP 10 (p=0.00005, Student’s t-test). 
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4.2.5 Valproic Acid Reduces Cell Proliferation in Colorectal Cancer 

Cell Lines  

VPA is a histone deacetylase inhibitor which has been demonstrated to 

specifically inhibit APP maturation through its upregulation of an 

endoplasmic reticulum chaperone immunoglobulin-binding protein GRP79 

and thereby down-regulate APP and sAPPα (Venkataramani, Rossner et al. 

2010). It has been suggested as a novel drug for use in the treatment of 

CRC. Consequently, VPA was used to further investigate the effect of APP 

on cell proliferation and hence its effects on cellular tumourgenesis 

pathways in our full panel of colonic and rectal adenocarcinoma cell lines: 

C80; C99; HCT15; HCT116; HT55; LOVO; LS174T and SW837. 

VPA drug inhibition was carried out initially at the lower concentrations 

(0mM, 1mM, 2.5mM, 5mM and 10mM) used by Venkataramani et al. (2010) 

on the single colon cancer cell line SW480 and the pancreatic cell line 

BxPC3. VPA at these low concentrations demonstrated a down regulation of 

APP (Venkataramani, Rossner et al. 2010). Cell lines were treated for 48 

hours with VPA and the effect of VPA on cell proliferation was measured 

using Cell Titre Blue (see Section 2.4.4.1). When VPA exposed cell lines 

were compared with non treated controls one line, HCT116, demonstrated 

an overall significant inhibitory effect on cell proliferation, but only at the 

higher doses used (5mM and 10mM inhibited proliferation 27% and 42% 

compared to non treated cells, p=0.004 and p=0.003, respectively, 

Students’s t-test).  At the lower doses, there was no significant difference in 

cell proliferation between treated and non-treated HCT116 cells (1mM and 



186 
 

2.5mM VPA reduced cell proliferation 4% and 6%, respectively, p=0.765 and 

p=0.269, Student’s t-test).  The other cell lines showed variable effects at 

different concentrations of VPA, although none showed any significant 

difference when comparing non treated cells with drug treated cells (all p 

values >0.5) (Figure 36). Therefore, VPA did not demonstrate a stepwise 

inhibition in cell proliferation in this panel of CRC cell lines at these 

concentrations with the exception of HCT116, which showed inhibition at the 

highest two doses used. These results contradict the findings of 

Venkataramani and colleagues for the single cell line they used, SW480. 

Although the results presented above for a panel of CRC cell lines did not 

confirm Venkataramani et al. (2010) findings at doses between 1 and 10 

mM, these workers did also show a stepwise inhibition of cell proliferation 

when VPA was used at a ten-fold higher concentrations (12.5mM, 25mM, 

50mM and 100mM). At these higher concentrations of VPA there was a 

significant concentration-dependent inhibition of cell proliferation observed in 

all our CRC cell lines (p>0.000007, Student’s t-test). HCT116, LOVO and 

LS174T showed the most significant concentration-dependent effects on cell 

proliferation following treatment of VPA with more than 75% cell proliferation 

inhibition at 100mM. In contrast, C80 showed the least concentration-

dependent effect on cell proliferation, but still showed a 62% cell proliferation 

inhibition at the same VPA dose (Figure 37).  
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Figure 36. Valproic acid has a concentration-dependent influence on cell proliferation 

only in HCT116. Proliferation of treated cells was compared to non treated cells following 

48 hours of VPA treatment at 1.25mM, 2.5mM, 5mM and 10mM on cell lines: C80; C99, 

HCT15, HCT116, HT55, LOVO, LS174T and SW837. Results are the mean of three 

experiments and the error bars represent the standard deviation. A significant inhibition of 

cell proliferation in HCT116 was observed at the higher doses of 5 and 10 mM (p = 0.003, 

Student’s t-test). There was a variable effect on cell proliferation for the other cells lines, 

although this not significant. 
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Figure 37. Valproic acid has a significant concentration-dependent influence on cell 

proliferation at high doses. Results shown are the mean of three experiments with error 

bars representing the standard deviation. Concentration-dependent effect on cell 

proliferation was demonstrated following 48 hours of VPA treatment at 12.5mM, 25mM, 

50mM and 100mM on all cell lines (C80; C99, HCT15, HCT116, HT55, LOVO, LS174T and 

SW837). HCT116, LOVO and LS174T showed the most significant dose dependent effect 

(p>0.000007, Student’s t-test). 
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4.2.6 Valproic Acid Inhibits Expression of Amyloid Precursor 

Protein in Colorectal Cancer Cell Lines 

The effect of VPA on the expression of APP was therefore investigated in 

HCT116 as it was the most sensitive to VPA drug treatment and exhibited 

the most significant dose dependent effect (p = 1.0x10-12) when treated at 

the highest dose of VPA (100mM). HCT116 was treated with a range of VPA 

doses (12.5mM, 25mM, 50mM and 100 mM) for 48 hours and the 

expression of APP examined using Western blot. HCT116 treated at the 

lowest dose of VPA (12.5mM) showed a mean decrease in APP expression 

of 13% although this was not significant when compared with non-drug 

treated cells (p = 0.6, Student’s t-test). However, there was a significant 

decrease in APP expression following VPA drug treatment at the three 

higher doses (25mM, 50mM and 100mM, p = 0.04; 0.01 and 0.0004, 

respectively).  HCT116 cell treated with 25 mM VPA had a 14% decrease in 

APP expression, those treated with 50 mM VPA a 40% reduction and 

100mM a 72% decrease in APP expression. Therefore, VPA at high 

concentrations causes a stepwise inhibition of cell proliferation in this panel 

of CRC cell lines. Furthermore, in HCT116, which demonstrated the most 

significant dose dependent effect to VPA cell proliferation inhibition, the 

expression of APP was also reduced in similar dose dependent effect 

(Figure 38). 
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Figure 38. Valproic acid reduces Amyloid precursor protein expression in the HCT116 

colorectal cancer cell line. Western Blot images (A) of HCT116 cell line treated with VPA 

0mM, 12.5mM, 25mM, 50mM and 100 mM. B. Western Blot quantification of the 

concentration- dependent effect of 0mM, 12.5mM, 25mM, 50mM and 100 mM VPA on APP 

expression in HCT116. Densitometry analysis of two repeat blots provided a mean average 

and error bars indicate the standard deviation. This showed a significant decrease in 

expression of APP in HCT116 cells treated with VPA (25mM, 50mM and 100 mM VPA, p = 

0.04, 0.01 and 0.0004, respectively, Student’s t-test). 
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4.2.7 Amyloid Precursor Protein Expression is Not Significantly 

Altered by BAG1 Expression 

APP is more commonly associated with the pathogenesis of AD. The 

accumulation of amyloid beta peptides derived from APP is a major 

histopathological hallmark of the disease (Anand, Kaushal et al. 2012). 

BAG1 isoforms are increased in the brain of AD patients (Elliott, Tsvetkov et 

al. 2007; Elliott, Laufer et al. 2009) and, furthermore, BAG1 has been found 

to co-localise with APP. Overexpression of BAG1 also increases the amount 

of intracellular full length APP suggesting both a strong physical and 

functional relationship between BAG1 and APP in the brain of AD patients 

(Elliott, Laufer et al. 2009).  

In CRC BAG1 is an important co-chaperone involved in tumourgenesis and 

an increase in BAG1 expression could have a role in APP upregulation. To 

investigate the functional influence of BAG1 on APP expression and its 

possible role in tumourgenesis, a loss-of-function study of BAG1 using 

siRNA knockdown and BAG1 overexpression was performed and then APP 

expression determined. 

HCT116 cells were transfected with 4 siRNAs BAG 4, BAG 10, BAG 11 and 

BAG 12 (details of specific siRNAs are given in Appendix IV) to knockdown 

BAG1 expression. To confirm that the expression of BAG1 was efficiently 

suppressed by treatment of HCT116 with siRNA BAG 4, BAG 10, BAG 11 

and BAG 12, knockdown was also investigated at mRNA level in transfected 

cells using QRT-PCR (see Section 2.2.6). All the siRNA’s resulted in a 
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reduced expression of BAG1 (Figure 39). The most significant knockdown of 

BAG1 was caused by siRNA BAG 4 with a 94% knockdown of BAG1 

expression (p=0.003, Student’s t-test). BAG 11 AND BAG 12 caused a 92% 

and 85% knockdown in BAG1 expression (p=0.005 and 0.02 respectively, 

Student’s t- test).  

Then, Western blot was carried out on HCT116 cells transfected with 4 

siRNA’s BAG 4, BAG 10, BAG 11 and BAG 12 that had already been shown 

to knockdown BAG1 mRNA expression. Western blot showed that 

transfection with siRNA’s BAG 11 and BAG 12 resulted in knockdown of 

BAG1 protein expression when compared to those cells transfected 

scrambled siRNA (Figure 40). Analysing the blot intensity relative to the 

scrambled siRNA (see Section 2.6.2.5) demonstrated a significant 

knockdown of BAG1 by siRNA BAG 11 and BAG12. siRNA BAG 11 resulted 

in the most significant knockdown of BAG1 expression, 70% knockdown 

(p=0.01, Student’s t-test). BAG 12 resulted in a 45% knockdown, although 

this only approached significance (Figure 40. p=0.08, Student’s t-test).  

As BAG1 expression was knockdown effectively by siRNA transfection, its 

effect on APP expression was then investigated. The expression of APP 

from HCT116 cell protein lysate following BAG1 siRNA knockdown 

transfection was measured using western blot (Figure 41). Analysis of the 

gel density of the western blot shows that APP expression is not significantly 

altered by BAG1 knockdown (BAG 10; BAG 11, and BAG 12, all p values 

p>0.2, Student’s t-test,). Furthermore, when BAG1 was overexpressed in 

HCT116, the expression of APP from HCT116 cell protein lysate following 
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BAG1 overexpression transfection was measured using western blot (Figure 

42). This demonstrated that APP expression is not altered by BAG-1 

overexpression. 
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Figure 39. Efficient down regulation of mRNA BAG1 using siRNA. Expression of BAG1 

relative to Scram following siRNA BAG1 knockdown demonstrated by QRT-PCR. Graph 

shows the mean average with error bars showing the standard deviation from two 

experimental replicates. A significant knockdown in expression of BAG1 for siRNA’s BAG 4, 

BAG 10, BAG 11 and BAG 12 (all p values>0.05, Student’s t-test). The most significant 

knockdown of BAG1 was caused by siRNA BAG 4 (p=0.003, Student’s t-test). 

  

0 

20 

40 

60 

80 

100 

120 

Scram BAG4 BAG10 BAG11 BAG12 

m
R

N
A

 B
A

G
1
 e

x
p
re

s
s
io

n
 r

e
la

ti
v
e
 t

o
 

S
c
ra

m
 (

%
) 

 



195 
 

A 

 
 
 
 
 
 
 
 
 
 
B 

 
 

Figure 40. BAG1 protein expression is down regulated by targeted siRNAs. Western 

Blot images (A) of HCT116 cell line transfections with: scrambled (S) siRNA; knockout 

siRNA BAG 4; BAG 10; BAG 11 and BAG 1210. Densitometry results are the mean of two 

replicates and error bars represent standard deviation. Analysis of the gel density of the 

western blot shows that there is a knockdown of BAG1 expression by siRNA BAG 10, BAG 

11 and BAG 12. siRNA BAG 11 caused a significant knockdown of BAG1 expression (p = 

0.01, Student’s t-test). 
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Figure 41. Knockdown of BAG1 does not alter Amyloid precursor protein expression 

in HTC116 colorectal tumour cells. A. Western blot images of APP expression following 

siRNA knockdown of BAG1. B. Analysis of the gel density of the western blot shows that 

APP expression is not significantly altered (all p values >0.2, Student’s t-test). Data shown 

is the mean of two experimental replicates and error bars represent the standard deviation. 
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Figure 42. Overexpression of BAG1 does not alter Amyloid precursor protein 

expression in HCT116. Western blot images of APP expression following siRNA 

knockdown down and overexpression of BAG1 (BAG1 OE) are shown. The two exposures 

of APP and two different Tubulin blots used as a loading control. In stripping the BAG1 

antibody off to reprobe with Tubulin the high exposure of BAG1 in the overexpressed cell 

line takes some of the Tubulin protein off with it, hence the lower Tubulin expression. 

Hence, the blot was re-run and a fresh probe used.  
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4.2.8 Amyloid Precursor Protein Knockdown Does Not Effect Cell 

Migration  

As APP and its cleavage products have been shown to be involved in 

migration as well as cell proliferation (Meng, Kataoka et al. 2001; Hansel, 

Rahman et al. 2003; Ko, Lin et al. 2004; Takayama, Tsutsumi et al. 2009; 

Botelho, Wang et al. 2010; Venkataramani, Rossner et al. 2010; Jiang, Yu et 

al. 2012; Yang, Fan et al. 2012), the effect of APP knockdown on cell 

migration was measured using a migration assay (see Section 2.4.5). 

Transfection of HCT116 with siRNA’s APP 2, APP 9 and APP 10 resulted in 

significant APP knockdown and inhibition of tumour cell proliferation with 

siRNA APP 10 the most significant inhibition in terms of tumour cell 

proliferation (Figure 34). Therefore, HCT1116 cells transfected with siRNA 

APP 9 and APP 2 were used to investigate the effect of APP knockdown on 

cell migration as APP 10 inhibited cell proliferation so much that too few cells 

would be viable to assess the effect of APP knockdown on migration. 

Fluorescent labelling and quantification of the migratory cells did not 

demonstrate a significant difference in migration of cells compared to scram 

(both p values >0.1, Student’s t-test; Figure 43). 

Therefore, APP knockdown does not effect cell migration in HCTT16, 

although it has been demonstrated to inhibit cell proliferation. 
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Figure 43. Cell migration was not observed in HCT116 cells transfected with 

Amyloid precursor protein siRNAs previously shown to knockdown Amyloid 

precursor protein. Fluorescent quantification did not demonstrate any significant 

difference in cell migration compared to scram. Data shown is the mean average of three 

experimental replicates and error bars represent the standard deviation (APP 2, p=0.3; 

APP 9, p=0.1, Student’s T test). 
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4.2.9 Amyloid Precursor Protein Was Expressed in Both Nuclear and 

Cytoplasmic Compartments in the Majority of CRC Tumours 

Previously, the expression of APP in CRC in vivo was described 

(Venkatarami et al, 2010). A strong expression of APP in colon carcinoma 

cells was shown, whereas no expression of APP was found in normal 

epithelial cells of the colon. However, this investigation appears to have 

been done on a small sample size (n=3) and concern was expressed that 

there was evidence of very significant overstaining. Similarly, Venkatarami 

and colleagues described distinct expression of APP in pancreatic cancer 

cells, but not in normal pancreatic cells. Again overstaining was evident 

(Venkatarami et al, 2010). APP expression was associated with increased 

tumour stage of disease (Takayama, Tsutsumi et al. 2009; Venkataramani, 

Rossner et al. 2010) and survival (Ko, Lin et al. 2004), although the quality of 

APP staining could not be ascertained as no representative IHC sections 

were shown. This is a disappointing omission from these publications. 

Therefore, APP expression in our cohort of primary CRC tumours was 

determined and associations sought with clinicopathological parameters and 

patient survival.  

The expression of APP in our cohort of CRCs was determined by IHC 

(Figure 44; Table 18). APP was expressed only in the CRC cells, with no 

staining of normal colonic cells. Nearly half of the CRCs (49%, 29/59) 

showed some APP immunopositivity, with the majority exhibiting exclusive 

nuclear staining (76%, 22/29). The majority of these tumour samples were 

weakly positive had <5% of the tumour cells expressing APP (55%, 12/22), 
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with equal numbers showing moderate or strong expression ≥5 to <10% or 

≥10% of tumour cells expressing APP (23%, 5/22). There were only a few 

tumours showing some cytoplasmic staining <5% in 7 tumour samples (12%, 

7/59). There were no tumours that had both nuclear and cytoplasmic 

staining. Overall, APP was expressed, but at low levels, within the cohort of 

CRC samples with most CRC tumours that expressed APP only having <5% 

expression and a minority expressing >10% of tumour cells expressing APP. 
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Figure 44. Representative examples of Amyloid precursor protein immunostaining of 

tumour samples at x10 magnification. (A) APP Brain  negative control; (B) APP Brain 

positive control; (C) APP, no expression detected; (D) APP detected cytoplasmic positive 

and showing peritumoral lymphocyte staining of APP; (E) APP, nuclear positive. Samples 

were scored positive if there was nuclear/cytoplasmic staining in more than 10% of cells. 

Nearly half of the tumour samples exhibited APP nuclear staining.  
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Table 18. Immunohistochemitry on colorectal cancer tissue section tumour samples. 

15 tumour slides could not be scored due to poor or lack of differentiation of the 

immunostaining or lack of tumour on the slide. Nuclear staining of APP is a consistent 

feature in a cohort of colorectal cancer specimens. Summary of cytoplasmic and nuclear 

staining of APP in a cohort of sporadic CRC. +++ = strongly positive; ++ = moderately 

positive; + = weakly positive. 

 

 

 Nuclear +++  Nuclear ++  Nuclear +  Nuclear -  

Cytoplasm + 0 0 0 7 

Cytoplasm -  5 5 12 30 
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4.2.10 No Association of Amyloid Precursor Protein Expression with 

Clinicopathological Parameters and Patient Survival 

As tumour stage and survival had been associated with APP in various 

cancers (Ko, Lin et al. 2004; Botelho, Wang et al. 2010; Yang, Fan et al. 

2012), the protein expression of nuclear APP and total APP expression was 

then examined in relation to a number of clinicopathological parameters: 

tumour differentiation; Duke’s stage; depth of invasion (T stage); nodal 

metastases (N stage) and distant metastases (M stage).  

A total of 59 unselected primary CRC tumours from 21 males and 38 

females were investigated (Table 1). The age at diagnosis for this group 

ranged from 35 – 89 years old, with a median age, 78.8. The majority (64%) 

were left sided tumours (38/57). The cohort contained, 9 Duke’s stage A 

(15%), 23 stage B (39%), 24 stage C (41%) and 3 stage D (5%) CRCs. The 

median follow-up was 25.8 months (range 1- 55.2) and 21 deaths from any 

cause were reported, of which 13 deaths were known to be due to CRC 

(Table 19). 

Cytoplasmic APP was not examined as it was only expressed in a few 

tumour samples. No significant association was shown between APP and 

any of these features (Table 20). APP expression was not associated with 

patient survival (Figure 45, Appendix VIII).  
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Table 19. Summary of clinicopathological features of Amyloid precursor protein 

immunohistochemistry tumour cohort. 

 

  Clinical Parameter   n (%) Clinical Parameter     n (%) 

 

Gender  
 

Depth of invasion  

Male 21 (36) T1 5 (8) 

Female 38 (64) T2 5 (8) 

Age  T3 34 (58) 

<70 years 18 (31) T4 15 (26) 

>70 years 41 (69) Nodal status  

Site  N0 33 (56) 

Left 41 (70) N1 25 (42) 

Right 18 (30) N2 1 (2) 

Resection margins Metastasis status  

R0 47 (80) M0 52 (88) 

R1 6 (10) M1 7 (12) 

R2 6 (10) Duke’s stage  

Differentiation  A 9 (15) 

Well 3 (5) B 23 (39) 

Moderate 47 (80) C1 17 (29) 

Poor 9 (15) C2 7 (12) 

  D 3 (5) 
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Table 20. Expression of Amyloid precursor protein in relation to clinicopathological 

features of colorectal cancers. 

 

  

Clinical 

parameter  

APP 

N-  

APP 

N+  

P 

value  

APP 

-ve 

APP 

+ve 

p 

value  

Resection margins  

R0  27 (47.4) 18 (31.6) 1 24 (42.1) 21 (36.8) 0.45 

R1  4 (7) 2 (3.5)  2 (3.5) 4 (7)  

R2  4 (7)  2 (3.5)  2 (3.5) 4 (7)  

Differentiation  

Well  1 (1.8) 2 (3.5) 0.69 1 (1.8) 2 (3.5) 0.35 

Moderate  29 (50.9) 17 (29.8)  25 (43.9) 21 (36.8)  

Poor  5 (8.8) 3 (5.3)  2 (3.5) 6 (10.5)  

Duke’s stage 

A  2 (3.5) 4 (7) 0.34 2 (3.5) 4 (7) 0.79 

B  13 (22.8) 9 (15.8)  10 (17.5) 12 (21.1)  

C1  10 (17.5) 7 (12.3)  9 (15.8) 8 (14)  

C2  7 (12.3) 1 (1.8)  4 (7) 4 (7)  

D  3 (5.3) 1 (1.8)  3 (5.3) 1 (1.8)  

Depth of invasion  

T1  0 3 (5.3) 0.04* 0  3 (5.3) 0.3 

T2  2 (3.5) 2 (3.5)  2 (3.5) 2 (3.5)  

T3  20 (28.1) 14 (24.6)  16 (28.1) 18 (31.6)  

T4  13 (17.5) 3 (5.3)  10 (17.5) 6 (10.5)  

Nodal Status  

N0  17 (29.8) 15 (26.3) 0.19 14 (24.6) 18 (31.6) 0.59 

N1  6 (10.5) 4 (7)  5 (8.8) 5 (8.8)  

N2  12 (21.1) 3 (5.3)  9 (15.8) 6 (10.5)  

Metastasis Status  

MO  28 (49.1) 21(36.8) 0.14 22 (38.6) 27 (47.4) 0.14 

M1  7 (12.3) 1 (1.8)  6 (10.5) 2 (3.5)  
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Figure 45. Kaplan-Meier plots correlating patient survival with protein expression of 

Amyloid precursor protein. There is no statistically significant difference in survival 

between patients with tumour expressing APP and the patients with tumours negative for 

APP expression by log rank test (p = 0.61).  
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4.3  Discussion 

4.3.1 Differential Expression of Amyloid Precursor Protein and 

BAG1 in Cell Lines 

A novel panel of cell lines much larger than previous CRC studies was 

investigated and characterised for the expression of APP and BAG1. All the 

cell lines expressed APP and BAG1, although there was a differential 

expression observed between the different cells lines. This would be 

consistent with other studies in other cancers that demonstrate the up 

regulation of APP (Botelho et al. 2009; Ko et al. 2004; Yang et al. 2012; 

Takayama et al. 2009; Hansel et al. 2003) and BAG1 (Brimmell, Burns et al. 

1999; Shindoh, Adachi et al. 2000; Rorke, Murphy et al. 2001; Yamauchi, 

Adachi et al. 2001; Ito, Yoshida et al. 2003; Moriyama, Littell et al. 2004; 

Millar, Anderson et al. 2009). Interestingly, there was a difference in the level 

of expression of APP and BAG1 at mRNA compared to protein level 

expression. HCT15 was the only cell line that expressed mRNA APP and 

protein expression of APP at the same relative level of expression when 

comparison was made between the other cell lines. BAG1 mRNA and 

protein relative expression compared between the other cell lines was also 

the same for SW837. However comparing the relative abundance of APP or 

BAG1 relative between the different cell lines at mRNA and protein 

expression level does not necessarily provide accurate comparison and only 

provides a relative comparison (Vogel and Marcotte 2012).  RT-QPCR has 

been shown to be an accurate means of mRNA quantification although can it 

too be limited by the design of experiment (Cikos, Bukovska et al. 2007) and 
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in our study we used a relative quantification comparing the different cell 

lines rather than absolute quantification study. Western blot quantification by 

Western blot densitometry has also considerable limitations leading in 

inaccuracy, that can be minimised by reducing operator bias (Gassmann, 

Grenacher et al. 2009). A more accurate analysis of protein expression 

would have been determined if Mass Spectrometric Immunoassay (MSIA) 

(Wong, Chan et al. 2009) was used, although this is expensive, or tag-based 

quantifications of proteins, which is labour-intensive and the tag may 

interfere with the protein expression (Maier, Guell et al. 2009). Relatively 

little is known about the regulatory mechanisms controlling the complex 

patterns of protein abundance and post-translational modification in tumors. 

Most reports on mRNA and protein abundances find only a weak correlation 

between the respective abundances of these two classes of biological 

molecules (Vogel and Marcotte 2012). Several biological factors were 

identified which influence this correlation, but also methodological 

constraints play a role when comparing mRNA to protein levels (Celis, 

Kruhoffer et al. 2000; Maier, Guell et al. 2009) 

4.3.2 Amyloid Precursor Protein is Expressed in the Cytoplasmic 

Compartment of Cells Lines 

IF showed unexpected expression of APP in the nucleus in HCT116, C80, 

C99 and HT55. However, further confocal analysis of the nuclear and 

cytoplasmic distribution of APP confirmed the expected localisation of APP 

in the cytoplasm. This would be in keeping with the APP antibody we used, 
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which recognised amino acids 66-81 of the N-terminus on the pre-A4 

molecule (Hilbich, Monning et al. 1993). 

4.3.3 Knockdown of Amyloid Precursor Protein Results in an 

Inhibition in Tumour Cell Proliferation 

Meng and colleagues inhibited APP with antisense clones in SW837 and 

observed reduced proliferation and colony forming efficiency. Similarly, APP 

inhibition using siRNA knockdown of APP on SW480 demonstrated reduced 

cell proliferation (Venkatarami et al, 2010). Consistent with these two 

studies, the experiments detailed here showed that siRNA knockdown of 

APP on a third CRC cell line, HCT116, caused a decrease in cell 

proliferation. Inhibition of APP clearly reduces CRC cell proliferation in vitro.  

The mechanism by which APP promotes tumour growth remains to be fully 

elucidated. APP expression itself can be induced by the proinflammatory 

and oncogenic RAS-MAP kinase signalling pathway (Villa, Latasa et al. 

2001). APP is a proliferation factor in neural progenitor cells and 

mesenchymal stem cells, and is associated with ERK/MAP kinase signalling 

(Demars, Bartholomew et al. 2011). sAPPα has been shown to exhibit 

neurotrophic and proliferative properties in fibroblasts (Saitoh, Sundsmo et 

al. 1989), in thyroid epithelial cells inducing cell proliferation by acting as an 

autocrine growth factors downstream to TSH (Pietrzik, Hoffmann et al. 

1998). The highly charged surface of the N-terminal domain of APP 

(residues 28−123) possess a disulfide-bonded, -hairpin loops implicated in 

heparin sulfate proteoglycan binding (Corrigan, Pham et al. 2011). These 
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have structural similarities with cysteine-rich growth factors (such as 

epidermal growth factor, tumour necrosis factor and nerve growth factor) and 

therefore in vivo could function as a potential ligand for growth factor 

receptors with the growth-promoting activity of APP expressed after it is 

released from membranes through the action of secretases. (Rossjohn, 

Cappai et al. 1999). This complements other loss-of-function studies in other 

cancers, which have suggested an important role of APP in tumourgenesis 

through its role in cellular proliferation (Botelho et al. 2009; Ko et al. 2004; 

Yang et al. 2012; Takayama et al. 2009; Hansel et al. 2003). All these 

studies support a role for APP in the pathogenesis of cancer. 

4.3.4 Valproic Acid Reduces Cell Proliferation and Inhibits Amyloid 

Precursor Protein in Colorectal Cancer Cell Lines  

VPA has been shown to affect cell growth in different types of cancer in vitro 

and in vivo (Cinatl, Cinatl et al. 1997; Gottlicher, Minucci et al. 2001; Blaheta 

and Cinatl 2002; Xia, Sung et al. 2006; Stettner, Kaulfuss et al. 2007). 

Venkatarami and colleagues demonstrated it to be an effective and highly 

specific inhibitor of APP maturation and secretion, therefore suggesting it as 

a possible pharmacological agent with a useful therapeutic role in the 

treatment of cancer. We, therefore, evaluated further the role of VPA on cell 

proliferation and it effect on APP to understand the mechanism of action. 

Venkatarami and colleagues, in their study using the colorectal cell lines 

SW480, LOVO, CaCo-2, and T84. They showed that VPA ranging from 0 to 

100mM (0, 1, 2.5, 5, 7.5, 10, 25, 50, 75 and 100mM VPA) resulted in a dose-

dependent inhibition in proliferation in all their cell lines. These workers then 
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evaluated the effect of VPA on APP expression on a single line, SW480 

using the lower concentrations of VPA (0, 1, 2.5, 5, and 10mM VPA), which 

also showed that APP expression decreased at lower doses of VPA. In this 

study we used a larger panel of colorectal cell lines (C80; C99, HCT15, 

HCT116, HT55, LOVO, LS174T and SW837) not investigated for APP 

inhibition. Here, the effect of VPA was evaluated at the lower concentrations 

used by Venkatarami and colleagues first to show the VPA dose dependent 

effect on APP expression. However, at these lower concentrations HCT116 

demonstrated a dose dependent effect on cell proliferation at the two higher 

doses of 5 and 10 mM (p = 0.003, Student’s t-test). VPA at the lowest 

concentrations (1 and 2.5 mM) did not affect cell proliferation (C80; C99; 

LS174T and SW837), and had the unexpected effect of increasing cell 

growth in HCT15; HT55; and LOVO, although this effect was not dose 

dependent. However, the data shown here, in comparison with that of 

Venkatarami and colleagues, would suggest that SW480 is particularly 

sensitive to VPA relative to the other lines I tested. This highlights the need 

to use extensive panels of well documented and mutation profiled cell line 

when testing for drug response. 

The higher concentrations Venkatarami and colleagues used to demonstrate 

their dose dependent effect of VPA on cell proliferation did cause a dose 

dependent effect on our cell lines with HCT116, LOVO and LS174T showing 

the most significant VPA dose dependent effect (p>0.000007, Student’s t-

test). The effect of VPA on APP expression was further evaluated on 

HCT116, which showed that APP expression was also decreased in a dose 
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dependent manner. Therefore, the finding given here are mostly consistent 

with those of Venkatarami and colleagues namely that VPA at high 

concentrations has a dose dependent effect on cell proliferation. Combining 

this study with that of Venkatarami and colleagues clearly demonstrates the 

potential of VPA to inhibit CRC cell proliferation across a large panel of cell 

lines, albeit HCT116 was the only cell line to exhibit a dose dependent 

decrease in cell proliferation at the lowest concentrations of VPA and 

SW480 maybe particularly sensitive to he drug. Therefore, as the dose 

dependent effect of VPA was only observed consistently at higher 

concentrations of VPA, the other possibility of VPA cell toxicity should be 

considered. It is always possible that toxicity may be the consequence of 

VPA exposure that influences cellular proliferation rather than a direct effect 

of APP associated inhibition.  

4.3.5 Amyloid Precursor Protein Expression is Not Significantly 

Altered by BAG1 Expression 

In AD, there is a pathological accumulation of intraneuronal of Tau protein 

(Claeysen, Cochet et al. 2012) as a result of inhibited protein degradation. 

BAG1 associates with Tau protein in an HSP70 dependent manner with 

overexpression of BAG1 inducing an increase in Tau protein levels as a 

result of inhibition of Tau protein degradation (Elliott, Tsvetkov et al. 2007). 

In the study by Elliott et al. (2009) using immunoprecipitation experiments 

BAG1 was found to co-localise and bind to both tau tangles and intracellular 

APP further supporting the role of BAG1 in the pathogenesis of AD. In CRC, 

BAG1 has been shown to be over expressed and play an important role in 
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tumourgenesis (Sharp, Crabb et al. 2004). Therefore, as a result of this 

physical relationship it was hypothesised that BAG1 expression may 

similarly positively affect APP expression. BAG1 was knocked down 

successfully in HCT116, although there was no alteration in the expression 

of APP. Furthermore, overexpression of BAG1 in HCT116 did not result in 

an alteration in the expression of APP. Therefore, it can be concluded that 

BAG1 expression does not alter APP expression in HCT116.  

4.3.6 Amyloid precursor protein knockdown does not effect cell 

migration 

APP was effectively knocked down with siRNA’s APP 2, APP 9 and APP 10 

and this was associated with a significant inhibition of cell proliferation. In our 

migration study we used APP 2 and APP 9, as there were too few cells 

following inhibition of cell proliferation after APP knockdown with APP 10. 

There was no effect on cell migration in HCT116 siRNA APP knockdown cell 

lines. This was in contrast to the recent study by Jiang et al (2012) in acute 

myeloid leukemia where they found that siRNA knockdown of APP inhibited 

the migration of leukemic cell line Kasumi-1 when compared with controls 

(Jiang, Yu et al. 2012). This was also associated with a decrease in matrix 

metalloproteinase protein MMP 2; this protein has been linked with tumour 

metastasis (Gialeli, Theocharis et al. 2011). Gialeli and colleagues used a 

similar filter assay migration study method using Transwell© plates (Costar, 

Tewksbury, MA, USA) with Millipore membranes (Millipore, Billerica, MA, 

USA).  However, they did not demonstrate any inhibition in cell proliferation 

in siRNA/APP inhibited cell lines in contrast to the findings presented here, 
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and compared to other previous studies (Meng, Kataoka et al. 2001; Hansel, 

Rahman et al. 2003; Takayama, Tsutsumi et al. 2009; Botelho, Wang et al. 

2010; Venkataramani, Rossner et al. 2010).  

4.3.7 Amyloid Precursor Protein was Expressed in Both Nuclear 

and Cytoplasmic Compartments in the Majority of CRC Tumours 

The expression of APP in our cohort of CRCs was determined by IHC 

(Figure 32). Nearly half of the CRCs (49%, 29/59) showed some APP 

immunopositivity, with the majority exhibiting exclusive nuclear staining 

(76%, 22/29). The majority of these tumour samples were weakly positive 

had <5% of the tumour cells expressing APP (55%, 12/22), with equal 

numbers showing moderate or strong expression ≥5 to <10% or ≥10% of 

tumour cells expressing APP (23%, 5/22). There were only a few tumours 

showing some cytoplasmic staining <5% in 7 tumour samples (12%, 7/59). 

There were no tumours that had both nuclear and cytoplasmic staining. 

Overall, APP was expressed, but at low levels, within the cohort of CRC 

samples with most CRC tumours that expressed APP only having <5% 

expression and a minority expressing >10% of tumour cells expressing APP. 

4.3.8 No Association of Amyloid Precursor Protein Expression with 

Clinicopathological Parameters and Patient Survival 

APP was found to be expressed in nearly half of CRC tumour samples. The 

majority of these tumour samples were weakly positive had <5% of the 

tumour cells expressing APP (55%, 12/22), with equal numbers showing 
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moderate or strong expression ≥5 to <10% or ≥10% of tumour cells 

expressing APP (23%, 5/22). This is in contrast to the only study on CRC by 

Venkataramani and colleagues that showed a strong expression of APP, 

although in their study they only describe immunohistochemistry staining in 

three samples. Interestingly, we showed that nuclear staining of APP was a 

consistent feature in a cohort of CRC specimens. This was in contrast to our 

cell line characterisation and expected cytoplasmic staining of APP.  

We also found that there was no expression of APP in normal epithelial cell 

of the colon. APP also demonstrates differential expression in a number of 

other cancers. In normal pancreatic tissue APP is expressed in the both 

acinar and islet cells, in contrast to pancreatic cancer tissue in which APP is 

also highly expressed in the ductal epithelium. This is significant, as it is the 

ductal epithelium that is thought to undergo carcinogenic change to give rise 

to pancreatic adenocarcinoma (Hansel, Rahman et al. 2003; Venkataramani, 

Rossner et al. 2010). In papillary thyroid carcinoma immunohistochemistry of 

specimens showed that APP expression was significantly increased in 

papillary thyroid carcinoma samples compared with normal thyroid tissue 

(Yang, Fan et al. 2012). 

Expression of APP has been suggested to be a useful prognostic marker in 

a number of cancers. In melanoma there was a correlation with 

advancement of disease and APP expression with APP expression high in 

vertical growth phase melanomas, in visceral and subcutaneous 

metastases, and in melanoma-infiltrated lymph nodes, compared with 

melanoma in situ. These observations suggested that the progression from 
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melanoma in situ to advanced melanoma is accompanied by upregulation of 

APP (Botelho, Wang et al. 2010). This progression from early to advanced 

melanoma would also follow worsening prognosis and decreased patient 

survival (Wisco and Sober 2012). Similarly, in the study by Ko and 

colleagues (2004) in patients with oral squamous cell carcinoma these 

workers demonstrated an increase in APP mRNA expression correlated with 

worse prognosis and survival. This was correlated with protein expression of 

APP and also further validated with immunohistochemistry, which showed a 

significant increase of APP expression in oral squamous cell carcinoma 

tissue relative to non cancer matched pairs. Furthermore, in papillary thyroid 

carcinoma APP expression was also correlated with clinicopathological 

factors including tumour size, extracapsular invasion and lymph node 

metastasis (Yang, Fan et al. 2012). However, we did not demonstrate any 

significant association between APP expression and any clinicopathological 

features or patient survival, although the sample size used was small. 

4.3.9 Summary 

In summary, our data supports the role of APP in proliferation in CRC cell 

lines. In contrast to AD, the observation that BAG1 expression alters the 

express of APP was not demonstrated in CRC. APP clearly has a role in cell 

proliferation and VPA sensitivity varies markedly across cell lines highlighted 

the need to use substantial panels of well-characterised lines in testing drug 

response. The relatively small CRC tumour cohort used here did not 

demonstrate any association between APP expression with 

clinicopathological parameters or patient survival as has been previously 



218 
 

suggested. However, my study has raised concerns about the overstaining 

of APP in other studies, particularly where overnight incubation has been 

used. Further in vivo and in vitro investigations are required to further 

elucidate the role of APP in tumourgenesis. 
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CHAPTER 5 

Evaluating the Role of B-cell CLL/Lymphoma 3 in 

Colorectal Cancer 

5.1  Overview and Rationale 

B-cell CLL/lymphoma 3 (BCL3) was first identified as a gene in the recurring 

chromosomal translocation t (14;19) in patients with chronic lymphocytic 

leukemia (McKeithan 1987; Ohno, Takimoto et al. 1990; Bhatia, Huppi et al. 

1991). BCL3 is involved in regulating the NF-κB signal transduction pathway 

(Palmer and Chen 2008). NF-κB can be activated by cellular stress, DNA 

damage, and by activation of various oncogenic pathways, and it regulates 

inflammation, apoptosis and cell proliferation (Courtois and Gilmore 2006; 

Gilmore 2006). BCL3 activation results in up regulation of anti-apoptotic 

genes and is therefore an important component in the tumour promoting 

machinery playing a pivotal role in the generation and maintenance of 

malignancies (Courtois and Gilmore 2006; Perkins 2012).  

The primary regulation of the NF-κB pathway is through the association of 

NF-κB complexes with inhibitor of κB proteins (IKB) (Hayden and Ghosh 

2008). Aberrant activation of NF-κB has been reported in numerous solid 

tumours and cell lines (Baud and Karin 2009; Perkins 2012). In general, 

deregulation most often results from defects in the pathways regulating NF-

κB instead of mutations in the NF-κB genes. Deregulation may be 

advantageous for cancer as NF-κB is a major activator of anti-apoptotic 
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gene expression thus having a positive effect on cell survival. NF-κB can be 

activated by cellular stress, DNA damage, and by activation of various 

oncogenic pathways (Karin 2006; Kim, Hawke et al. 2006; Fan, Dutta et al. 

2008; Perkins 2012). 

BCL3 proto-oncogene is an atypical member of the IKB family of proteins 

(Wulczyn, Naumann et al. 1992; Palmer and Chen 2008). These proteins 

normally repress the activation of the NF-κB signaling cascade complexes in 

the cytoplasm by directly binding to these diametric transcription factors 

(Maldonado and Melendez-Zajgla 2011) (see Section 1.19). BCL3 is atypical 

as it is involved in nuclear activation and repression of NF-κB signaling 

mediated by the formation of heterocomplexes with NF-κB1 (p50) or NF-κB2 

(p52) homodimers converting them from transcriptional repressors into 

activators (Franzoso, Bours et al. 1993; Fujita, Nolan et al. 1993). Therefore, 

BCL3 could be important in the promotion of tumour cell survival, as it is an 

activator of the NF-κB pathway resulting in inhibition of apoptosis and 

increase in cell proliferation.  

BCL3 was initially thought to enhance NF-κB mediated transactivation by 

removing inhibitory p50 and p52 homodimers allowing the binding of active 

NF-κB dimers resulting in NF-κB transactivation (Franzoso, Bours et al. 

1992; Franzoso, Bours et al. 1993). However, BCL3 can also act as 

coactivator p50 or p52 without inhibiting their binding (Bours, Franzoso et al. 

1993; Fujita, Nolan et al. 1993) by associating with p50 and p52 dimers and 

by providing a transactivating domain to the NF-κB complex.  
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BCL3 has also been shown to interact with stably bound NF-κB homodimers 

thereby reducing DNA binding and allowing transcriptionally active NF-κB 

complexes to induce gene expression (Palmer and Chen 2008). In contrast, 

BCL3 can increase p50 binding to NF-κB occupancy without coactivation, 

therefore indirectly repressing NF-κB target gene transcription (Watanabe, 

Iwamura et al. 1997; Palmer and Chen 2008) by delaying degradation of the 

DNA-bound p50 homodimers (Carmody, Ruan et al. 2007).  

BCL3 is upregulated by several cytokines, including TNF alpha, IL4, IL1, IL6, 

IL10, adioponectin and IL-12 (Heissmeyer, Krappmann et al. 1999; Rebollo, 

Dumoutier et al. 2000; Kuwata, Watanabe et al. 2003; Hu, Nesic-Taylor et al. 

2005; Valenzuela, Hammerbeck et al. 2005; Brocke-Heidrich, Ge et al. 2006; 

Brenne, Fagerli et al. 2009; Folco, Rocha et al. 2009) and downregulated by 

TP53 (Rocha, Martin et al. 2003), whilst also being terminated by p50 in an 

autoregulatory loop (Brasier, Lu et al. 2001). Interestingly, DNA damage 

upregulates BCL3 inducing the expression of HDM2 and suppressing the 

TP53 TSG (Kashatus, Cogswell et al. 2006). BCL3 phosphorylation by 

GSK3 regulates BCL3 turnover and transcriptional activity by limiting the 

transcription of BCL3 target genes (Viatour, Dejardin et al. 2004). 

The exact role of BCL3 in oncogenesis remains to be fully elucidated. 

However, BCL3 has been shown to be involved in both oncogenic 

proliferation and apoptosis. Cellular proliferation can be increased by BCL3 

acting as a coactivator of p52 dimers inducing the expression of the cyclin 

D1 and increasing the transition at the G1/S phase of the cell cycle 

(Westerheide, Mayo et al. 2001). In contrast, TP53 represses BCL3 
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induction of cyclin D1 changing the p52/BCL3 complexes on the promoter to 

p52/HDAC complexes inhibiting cyclin expression (Rocha, Martin et al. 

2003). In breast cancer cells BCL3 has been correlated with CtBP1 

expression. BCL3 is thought to stabilise CtBP1 in breast cancer cells, 

inhibiting its degradation and therefore also inhibiting apoptosis through 

repression of pro-apoptotic gene expression (Choi, Lee et al. 2010). 

Furthermore, BCL3 can inhibit apoptosis, by the transactivation of the anti-

apoptotic gene BCL2 in MCF7AZ breast cancer cells (Viatour, Bentires-Alj et 

al. 2003). 

BCL3 deregulation is observed in a number of cancers. In haematological 

malignancies BCL3 deregulation is well established and the BCL3 locus has 

been found to be translocated in small lymphocytic lymphomas, Burkitt-like 

lymphoma, diffuse large cell lymphomas and in B-cell chronic leukemias; 

overexpressed was found in non-Hodgkin and Hodgkin lymphomas (Au, 

Horsman et al. 2002; Canoz, Rassidakis et al. 2004; Mathas, Johrens et al. 

2005; Schlette, Rassidakis et al. 2005).   

Although not widely studied in carcinomas, overexpression of BCL3 is 

observed with activated overexpression of BCL3 seen in breast (Cogswell, 

Guttridge et al. 2000), nasopharyngeal(Thornburg, Pathmanathan et al. 

2003), and endometrial cancer (Pallares, Martinez-Guitarte et al. 2004). 

Overexpression of BCL3 mRNA and protein occurred in breast tumours 

(Cogswell, Guttridge et al. 2000) and was shown to increase the growth of 

breast cancer xenografts (Pratt, Bishop et al. 2003). Furthermore, BCL3 is 

strongly overexpressed in a mouse model of skin carcinoma in late 
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papilloma and squamous cell carcinoma (Budunova, Perez et al. 1999). To 

date, the expression of BCL3 in CRC has only been has been described by 

a single study (Puvvada, Funkhouser et al. 2010) using a relatively small 

cohort of 20 tumour samples in which they found a trend towards an 

association (p= 0.07) between nuclear BCL3 expression and survival. 

Genome wide studies have failed to identify BCL3 as a susceptibility locus 

for CRC (Zanke, Greenwood et al. 2007; Tenesa, Farrington et al. 2008; 

Peters, Jiao et al. 2012).  

AKT is a central mediator of cellular survival that is activated by PI3K and is 

negatively regulated by the PTEN tumour suppressor (see Section 1.18). 

AKT has been shown to activate IKB and hence NF-κB in several settings 

(Ozes, Mayo et al. 1999; Factor, Oliver et al. 2001). Furthermore, NF-κB 

homodimeric binding protein BAG1 has been shown to be a key survival 

protein in colorectal tumour cells, modulating homodimeric activity of p50 

suggesting a potentially important role in CRC carcinogenesis by regulating 

key cell survival pathways (Southern, Collard et al. 2012). Therefore, BCL3 

could also be important in the promotion of tumour cell survival in CRC and 

might act in combination with BAG1. 

We therefore decided to investigate the relationship between BCL3 and the 

PI3K/AKT pathway as well as BAG1 in our cohort of primary CRCs with 

clinicopathological data (Figure 46). First, the clinicopathological features of 

the patients are detailed. 
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Figure 46. Background on BCL3 findings from cell culture based studies and our 

hypothesis for testing in colorectal cancer. AKT has been shown to activate IKB and 

hence NF-κB in several settings (Ozes, Mayo et al. 1999; Factor, Oliver et al. 2001) and 

BAG1 has been shown to be a key survival protein in colorectal tumour cells, modulating 

homodimeric activity of p50 suggesting a potentially important role in CRC 

carcinogenesis by regulating key cell survival pathways (Southern, Collard et al. 2012). 

Our hypothesis: In our cohort of primary colorectal cancer tumours (A) Increased 

expression of AKT will be positively associated with expression of BCL3 and BAG1; (B) 

Decreased expression of AKT will be negatively associated with BCL3 and BAG1 

expression. 
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5.2 Results 

5.2.1  BCL3 was Expressed in Both Nuclear and Cytoplasmic 

Compartments in the Majority of Colorectal Cancers 

BCL3 expression in our cohort of primary CRC tumours was determined 

using IHC and then correlated with clinicopathological parameters and 

patient survival. IHC was carried out for BCL3 on 50 tumour samples; 

however, 2 tumour slides (4%) could not be scored due to poor 

immunostaining or lack of tumour on the slide. Therefore, a total of 48 

tumour samples were scored with representative examples given in Figure 

47.  

Tumour samples were scored positive for BCL3 if there was 

nuclear/cytoplasmic staining in more than 10% of cells. BCL3 expression 

was found both in normal mucosa and carcinoma. The expression of BCL3 

was heterogenous in the carcinoma tissue, with higher expression of BCL3 

associated with the invasive edge of the tumour (Figure 48A and 48B). 

Interestingly, BCL3 antibody also incidentally specifically stained ‘tuft’ cells 

or enteroendocrine cells in adjacent normal tissue (Figure 48C and 48D). 

BCL3 staining of tuft cells has not been reported in the literature before. The 

majority of the CRCs (77%, 36/47) showed BCL3 immunopositivity with the 

majority of these exhibiting cytoplasmic staining (66%, 31/47). Mostly the 

cytoplasmic staining was moderate in intensity (10-30%; 43%, 20/47) with 

only 35% (11/31) of cytoplasmic staining showing strong intensity (<30%). 

While, the nuclear staining was observed in equal intensities in the tumours 
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(23%, 11/47 respectively), similar proportions of tumours exhibited discrete 

cytoplasmic staining or both cytoplasmic and nuclear staining (30%, 14/47 

and 36%, 17/47 respectively). In five tumours (11%, 5/47) discrete nuclear 

staining with no cytoplasmic staining was observed (Table 21). 
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Figure 47. Representative examples of BCL3 immunohistochemistry of colorectal 

sample at x10 magnification. (A) BCL3 Tonsil negative control; (B) BCL3 Tonsil positive 

control; (C) BCL3, no expression detected; (D) BCL3 detected cytoplasmic positive; (E) 

BCL3, nuclear positive; (F) BCL3 positive. Samples were scored positive if there was 

nuclear/cytoplasmic staining in more than 10% of cells. The majority of the tumour samples 

exhibited BCL3 staining, with most exhibiting cytoplasmic staining. 
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Figure 48. Representative examples of BCL3 immunohistochemistry of colorectal 

sample. Showing (A) Weak/absent nuclear and weak/moderate cytoplasmic staining of 

BCL3 strong at the invasion front of the carcinoma highlighted by arrows (x20 

magnification); (B) Invasive edge of carcinoma has strong cytoplasmic and nuclear BCL3 

staining highlighted by arrows (x20 magnification); (C) A normal region of mucosa 

showing weak/absent nuclear and weak/moderate cytoplasmic staining for BCL3 in crypt 

epithelium other than the tuft enteroendocrine cells highlighted by arrows (x10 

magnification); (D) Intensely positive cytoplasmic staining of putative tuft enteroendocrine 

cells highlighted by arrows (x50 magnification). 
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Table 21. Summary of cytoplasmic and nuclear staining of BCL3. 

Immunohistochemistry was performed on 50 tumour samples; however two tumour slides 

could not be scored due to poor or lack of differentiation of the immunostaining or lack of 

tumour on the slide.  

 

 

  

BCL3 Nuclear- Nuclear + Nuclear ++ 

Cytoplasm - 11 4 1 

Cytoplasm+ 11 3 6 

Cytoplasm ++ 3 4 4 
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5.2.2 No Association of BCL3 Expression with Clinicopathological 

Parameters and Patient Survival 

The protein expression of nuclear, cytoplasmic and total BCL3 expression 

was then examined in relation to a number of clinicopathological parameters: 

tumour differentiation; Duke’s stage; depth of invasion (T stage); nodal 

metastases (N stage) and distant metastases (M stage).  

A total of 47 unselected primary CRC tumours from 17 males and 30 

females were investigated. Although still relatively small, this cohort 

represents a  >2-fold increase in patients numbers in comparison to the only 

other study in the literature that found a trend towards an association 

between nuclear BCL3 expression and survival (Puvvada, Funkhouser et al. 

2010). The age at diagnosis for my group ranged from 35 – 89 years old, 

with a median age, 77.1. The majority (60%) were left sided tumours (28/47). 

The cohort contained, 5 Duke’s stage A (11%), 15 stage B (32%), 23 stage 

C (49%) and 4 stage D (9%) CRCs. The median follow-up was 16.3 months 

(range 1- 55.2) and 22 deaths from any cause were reported, of which 14 

deaths were known to be due to CRC (Table 22). 

No significant association was shown between BCL3 and any of these 

features (Tables 23). In particular, neither nuclear nor total BCL3 expression 

was associated with patient survival and no trend was observed (Figure 49. 

p=0.27 and p=0.62 respectively). Furthermore, when strong nuclear 

expression of BCL3 (<30%) was tested for a correlation with survival there 

was no association demonstrated with patient survival (Appendix VII). 



231 
 

Table 22. Summary of clinicopathological features of BCL3 immunohistochemistry 

tumour cohort. 

 

  

 

Clinical parameter 

 

n (%) 

 

    Clinical parameter 

 

     n (%) 

 

Gender 

  

Depth of invasion 

 

Male 17 (36) T1 1 (2) 

Female 30 (64) T2 4 (9) 

Age  T3 30 (64) 

<70 years 16 (34) T4 12 (26) 

>70 years 30 (66) Nodal status  

Site  N0 23 (49) 

Left 28 (60) N1 23 (49) 

Right 19 (40) N2 1 (2) 

Resection margins  Metastasis status  

R0 37 (79) M0 39 (83) 

R1 5 (11) M1 8 (17) 

R2 5 (11) Duke’s stage  

Differentiation  A 5 (11) 

Well 1 (2) B 15 (32) 

Moderate 39 (83) C1 16 (34) 

Poor 7 (15) C2 7 (15) 

  D 4 (9) 
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Figure 49. Kaplan-Meier plots correlating patient survival with protein expression of 

(A) BCL3 and (B) Nuclear BCL3. There is no statistically significant difference (BCL3 

p=0.61; Nuclear BCL3 p=0.21) in survival between patients with tumour expressing BCL3 

and the patients with tumours negative for BCL3 expression by log rank test. 



233 
 

Table 23. Expression of BCL3 in relation to clinicopathological features of colorectal cancers.

Clinical parameter  BCL3 

C-  

BCL3 

C+  

p value  BCL3 

N-  

BCL3 

N+  

P value  BCL3 

-ve 

BCL3 

+ve 

p value  

Resection margins           
R0  14 (29.8) 23 (48.9) 0.30 20 (42.6) 17 (36.2) 0.88 10 (21.3) 27 (57.4) 0.60 
R1  0 5 (10.6)  2 (4.3) 3 (6.2)  0 5 (10.6)  
R2  2 (4.3) 3 (6.4)  3 (6.4) 2 (4.3)  1 (2.1) 4 (8.5)  
Differentiation           
Well  0 1 (2.1) 0.79 0 1 (2.1) 0.15 0 1 (2.1) 1 
Moderate  13 (27.7) 26 (55.3)  23 (48.9) 16 (34)  10 (21.3) 29 (61.7)  
Poor  3 (6.4) 4 (8.5)  2 (4.3) 5 (10.6)  1 (2.1) 6 (12.8)  
Duke’s stage           
A  4 (8.5) 1(2.1) 0.24 2 (4.3) 3 (6.4) 0.91 2 (4.3) 3 (6.4) 0.38 
B  4 (8.5) 8 (23.4)  8 (17) 7 (14.9)  4 (8.5) 11 (23.4)  
C1  5 (10.6) 8 (23.4)  8 (17) 8 (17)  2 (4.3) 14 (29.8)  
C2  1 (2.1) 6 (12.8)  4 (8.5) 3 (6.4)  1 (2.1) 6 (12.8)  
D  2 (4.3) 2 (4.3)  3 (6.4) 1 (2.1)  2 (4.3) 2 (4.3)  
Depth of invasion           
T1  1 (2.1) 0 0.12 1 (2.1) 0 0.66 1 (2.1) 0 0.42 
T2  3 (6.4) 1 (2.1)  1 (2.1) 3(6.4)  1 (2.1) 3 (6.4)  
T3  9 (19.1) 21 (44.7)  16 (34) 14 (29.8)  7 (14.9) 23 (48.9)  
T4  3 (6.4) 9 (19.1)  7 (14.9) 5 (10.6)  2 (4.3) 10 (21.3)  
Nodal Status           
N0  10 (21.3) 13 (27.7) 0.09 12 (25.5) 11 (23.4) 1 7 (14.9) 16 (34) 0.07 
N1  5 (10.6) 18 (38.3)  12 (25.5) 11 (23.4)  3 (6.4) 20 (42.6)  
N2  1(2.1) 0  1 (2.1) 0  1 (2.1) 0  
Metastasis Status           
MO  13 (27.7) 26 (55.3) 0.56 20 (42.6) 19 (40.4) 0.43 8 (17) 31 (66) 0.27 
M1  3 (6.4) 5 (10.6)  5 (10.6) 3 (6.4)  3 (6.4) 5 (10.6)  
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5.2.3 BCL3 Expression is not Associated with AKT or BAG1 

Expression 

Over half the tumours expressed both AKT and BCL3 (57%, 27/47), with 

only two tumours expressing either AKT or BCL3 (2/47, 4%). However, AKT 

was expressed in similar proportions of tumours that either expressed BCL3 

or were negative for BCL3 expression and no significant difference was 

observed (Table 24).  

BAG1 was expressed in the majority of tumours that expressed BCL3 (94%, 

31/33).   However, there were a similar proportion of tumours that did not 

express BCL3 but expressed BAG1 (80%, 8/10).  Overall BCL3 expression 

was not significantly associated with BAG1 expression (p=0.22). There was 

no significant association seen between cytoplasmic or nuclear BCL3 

expression with BAG-1 (Table 25; p=0.61 and 1 respectively).  
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Table 24. No association of total BCL3 expression with AKT. There was no significant 

correlation found between AKT expression and BCL3 expression. P value calculated using 

Fisher’s exact test. 
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Table 25. Association of total BCL3 expression with BAG1. BAG1 

immunohistochemistry was carried out on all the tumour samples stained for BCL3. Four of 

47 could not be scored due to lack of tumour on the slide or poor staining. Expression of 

cytoplasmic, nuclear and total BCL3 was not significantly associated with BAG1 expression.  

P value calculated using Fisher’s exact test. 
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5.3 Discussion 

5.3.1 BCL3 was Expressed in Both Nuclear and Cytoplasmic 

Compartments in the Majority of Colorectal Cancers, Although 

Expression was not Associated with Clinicopathological Parameters 

and Patient Survival 

BCL3 was found in both normal mucosa and tumour tissue. This was similar 

to the only study on CRC and BCL3 by Puvvada and colleagues (2010) who 

also found that BCL3 was observed in both normal mucosa and in tumour 

tissue, although a greater proportion of their tumour samples exhibited BCL3 

(20/23, 87%) than reported here (77% and nuclear BCL3 23%). Puvvada 

and colleagues (2010) specifically scored for nuclear staining using a score 

multiplier with each sample scored in triplicate and the mean calculated from 

multiplier score based on the percentage of cell that were positive to any 

degree (0-3+, scoring 0-300); unfortunately, these workers do not describe 

clearly their intensity score. Here, a tumour sample was scored positive if 

BCL3 was seen in 10-30% of the tumour. Disappointingly, Puvvada and 

colleagues did not describe the pattern of BCL3 cytoplasmic staining. Here, 

the majority if the CRC tumour samples exhibited cytoplasmic staining with 

equal numbers of tumours exhibiting cytoplasmic or cytoplasmic and nuclear 

staining, and only five tumours were found to have only discrete nuclear 

staining. Interestingly, although the expression of BCL3 was heterogenous in 

the carcinoma tissue there was a higher expression observed at the invasive 

edge of the tumour. 
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BCL3 is an atypical IKB, which are usually cytoplasmic in activity, but which 

regulates nuclear NF-κB activity. BCL3 in the cytoplasm inhibits the nuclear 

translocation of the NF-κB p50 subunit (Naumann, Wulczyn et al. 1993; 

Watanabe, Iwamura et al. 1997). In the nucleus, BCL3 acts as 

transcriptional activator that promotes transcription of NF-κB target genes. 

Puvvada and colleagues (2010) found there to be a significant association 

between survival and nuclear BCL3 expression. This is unlikely to be correct 

given the expression distribution reported here and the known function of 

BCL3 in the cytoplasm. Puvvada and colleagues (2010) did not describe any 

correlation with other clinicopathological variables outlined in their study and 

which we also analysed, again identifying no associations.  

BCL3 also specifically stained cells that morphologically are suggestive of 

tuft cells. Tuft cells are characterised by long and blunt microvilli with 

prominent rootlets, and by a well developed tubulovesicular system in the 

supranuclear cytoplasm (Sato 2007). Tuft cells have been proposed to 

represent a distinct subset of enteroendocrine cells though originating from 

the same Lgr5+ stem cell as enterocytes, goblet, Paneth, and entero- 

endocrine cells (Formeister, Sionas et al. 2009; Kokrashvili, Rodriguez et al. 

2009). They have a unique marker signature and can be defined by the 

coexpression of SOX9, Cyclooxygenase-1 (COX1) and Cyclooxygenase-2 

(COX2), hematopoietic prostaglandin-D synthase (HPGDS), and 

doublecortin-like kinase 1 (DCLK1) and require different transcription factors 

for their differentiation (Gerbe, van Es et al. 2011). As tuft cells express 

HPGDS and are the only epithelial cells expressing the COX1 and COX2 
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enzymes in the healthy intestinal epithelium, this maybe important given the 

central role played by inflammation and tumorigenesis in the intestinal 

epithelium (Stenson 2008; Wang and Dubois 2010). In mouse studies the 

presence of tuft cell clusters in tumors from APC or KRAS mutated mice 

suggested a possible contribution of tuft cells during tumorigenesis. 

(Janssen, el-Marjou et al. 2002; Colnot, Niwa-Kawakita et al. 2004). 

However, in humans tuft cells are found in adenomas, but rarely in 

adenocarcinoma suggesting that the tuft cell differentiation is conserved in 

early tumour tissue, but not in their more malignant counterpart, raising the 

question of the potential roles played by tuft cells during tumorigenesis 

(Gerbe, van Es et al. 2011). The specific staining of BCL3 would require 

serial or dual labelling for tuft cell specific markers to confirm BCL3 tuft cell 

staining, before further investigation to elucidate the novel role of BCL3 in 

these cells.  

5.3.2 BCL3 Expression is not Associated with AKT or BAG1 

Expression  

AKT has been shown to activate IKB and hence NFK-B in several settings 

(Ozes, Mayo et al. 1999; Factor, Oliver et al. 2001) and activation of 

PI3K/AKT signaling pathway is known to inhibit BCL3 protein degradation 

(Viatour, Dejardin et al. 2004). Hence, it was hypothesised that AKT 

expression would be correlated with BCL3 expression. However, there was 

no significant correlation found between AKT expression and BCL3 

expression. This may not be unexpected as the PI3K/AKT pathway is 

activated by plethora of stimuli in the tumour microenvironment (Vivanco and 
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Sawyers 2002) and therefore a simple comparison of expression may not be 

suitable for such a complex pathway. A correlation between AKT expression 

and BCL3 expression may exist in specific areas in the tumour such as the 

invasive edge of the tumour in which BCL3 was most highly expressed 

(Figure 47 -B). Co-expression could be investigated using dual labelling to 

investigate the simultaneous expression of both proteins. 

BAG1 has been shown to promote tumour survival through regulation of NF-

κB activity (Clemo, Collard et al. 2008). Southern et al. (2011) demonstrated 

that BAG1 interacts with p50 and, furthermore, it has been suggested that 

the BAG1-p50-NF-κB complexes have an important role in the colorectal 

carcinogenesis (Southern, Collard et al. 2012). It is for this reason that the 

relationship between BAG1 expression and BCL3 was also investigated.  

Both BAG1 and BCL3 were not significantly associated with each other, 

although they were both highly expressed and their joint expression maybe 

as a result of the tumour microenvironment. Both BAG1 and BCL3 have 

important roles in tumourgenic pathways. BCL3 expression is increased by 

cytokines (Heissmeyer, Krappmann et al. 1999; Rebollo, Dumoutier et al. 

2000; Kuwata, Watanabe et al. 2003; Hu, Nesic-Taylor et al. 2005; 

Valenzuela, Hammerbeck et al. 2005; Brocke-Heidrich, Ge et al. 2006; 

Brenne, Fagerli et al. 2009; Folco, Rocha et al. 2009), although not by 

BAG1. Exactly, how these proteins interact remains to be elucidated, as 

neither BAG1 nor BCL3 are currently considered to regulate each other. 

Furthermore, it is difficult to explain this mechanistically based on current 

knowledge through a possible interaction with p50 homodimeric binding and 
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the suggested role of BAG1-p50-NF-κB complexes may be linked (Southern, 

Collard et al. 2012). Perhaps, BCL3 is more pro-proliferative (Westerheide, 

Mayo et al. 2001) whilst BAG1 can potentiate cell survival. BAG1 has been 

shown in vivo to possibly promote the pro-survival function of the p50-p50 

homodimeric NF-κB complexes in CRC cells (Southern, Collard et al. 2012), 

while paradoxically suppressing EGFR signaling which promotes cell 

survival through the KRAS and PI3K-AKT pathways (Berg and Soreide 

2012). However BCL3 has also pro-survival effects under these conditions 

(Kashatus, Cogswell et al. 2006; Choi, Lee et al. 2010), it might therefore be 

useful to investigate the effect of BAG1 and BCL3 on the cell cycle. 

5.3.3 Summary 

In summary, our data suggests that BCL3 is highly expressed in CRC, 

although the expression of BCL3 was heterogenous in the carcinoma tissue 

there was a higher expression observed at the invasive edge of the tumour. 

BCL3 appeared to stain tuft cells the reason for this is unclear and further 

specific immunostaining and investigation is required. 
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CHAPTER 6 

General Discussion 

6.1 Summary of Work 

The aim of the work reported in this thesis was to gain further insight into the 

role of HSP27, HSP72, BAG1, APP and BCL3 in CRC tumorigenesis. These 

proteins have important roles in CRC as a result of their involvement in 

apoptosis, cell senescence and proliferation, which have been demonstrated 

in vitro (Sharp, Crabb et al. 2004; Sherman and Multhoff 2007; Palmer and 

Chen 2008; Chow, Mattson et al. 2010). The studies reported here used a 

hypothesis driven and combinatorial approach that used both in vivo and in 

vitro based experimentation. Using a cohort of archived clinically well-

defined CRC tumours, the role of CRC-relevant genes was characterised 

using a number of methodologies including gene sequencing analyses and 

IHC. Also, in vitro cell culture studies further elucidated the role of these 

proteins in CRC growth, proliferation and migration using both loss of 

function, drug inhibition and overexpression experiments. 

 

A cohort of CRC tumours was used to evaluate whether HSP27 and HSP72 

play different roles in OIS depending on the genetic background of the 

tumour and the relationship with clinicopathological features. TP53, KRAS, 

and PIK3CA mutations and the expression of HSP27, HSP72, BAG1 and 

AKT was characterised and analysed. There was no association of HSP 

expression with clinicopathological parameters and patient survival. BAG1 
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was expressed in a majority of CRC and was associated with TP53 

mutation. BAG1 expression was associated with increased depth of tumour 

invasion, but not patient survival. The potential role of HSPs in TP53 

dependent OIS was examined by associating HSP expression with TP53 

mutation status, as well as HSP expression, when combined with KRAS 

mutation and PI3K/AKT mutation status. HSP27, but not HSP72 expression 

was found to be associated with mutated TP53. Furthermore, HSP27 

expression was found to be associated in PI3K/AKT pathway active tumours 

with wild type KRAS, although this was independent of TP53 mutation status 

(Ghosh, Lai et al. 2013). Collectively, these findings suggest that in vivo 

TP53 mediated OIS is not circumvented through the expression of HSP as 

has been observed in previous in vitro studies (O'Callaghan-Sunol, Gabai et 

al. 2007; Gabai, Yaglom et al. 2009). Furthermore, CRC cells in culture may 

have different requirements for HSP expression dependent on KRAS 

mutation and PI3K/AKT activation status (Ghosh, Lai et al. 2013).  

 

Previous loss-of-function studies of various cancers have suggested an 

important novel role of APP in tumourgenesis through its involvement in cell 

proliferation and migration (Meng, Kataoka et al. 2001; Hansel, Rahman et 

al. 2003; Ko, Lin et al. 2004; Takayama, Tsutsumi et al. 2009; Botelho, 

Wang et al. 2010; Venkataramani, Rossner et al. 2010; Yang, Fan et al. 

2012). Furthermore, as observed in AD, APP expression has been shown to 

be associated with the oncogenic protein BAG1 (Elliott, Laufer et al. 2009). 
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The novel role of APP in CRC tumourgenesis was evaluated in CRC cell 

lines and in our CRC tumour cohort. The knockdown or inhibition of APP 

demonstrated an inhibition in CRC cell proliferation. However, APP 

expression was significantly altered by BAG1 knockdown and 

overexpression cell culture studies. APP was expressed in both nuclear and 

cytoplasmic compartments in the majority of CRC tumours; however, there 

was no association of APP expression with clinicopathological parameters 

and patient survival. Therefore, although APP clearly has a role in cell 

proliferation, our in vitro investigation of our CRC tumour cohort does not 

demonstrate any significant association between APP expression with 

clinicopathological parameters or patient survival as has been previously 

suggested in other cancers. 

 

BCL3 an atypical IKK was found to be involved in both oncogenic 

proliferation and apoptosis. AKT has been shown to activate IKK and hence 

NF-κB in several settings (Ozes, Mayo et al. 1999; Factor, Oliver et al. 

2001). BCL3 expression was characterised to evaluate the relationship 

between BCL3 expression and clinicopathological features. The potential 

role of BCL3 and the PI3K/AKT pathway and BAG1 was investigated by 

associating BCL3 expression with AKT and BAG1 expression. BCL3 was 

heterogeneously expressed in both nuclear and cytoplasmic compartments 

in the majority of the cohort CRC tumours, with a higher expression 

observed at the invasive edge of the tumour. There was no association of 

HSP expression with clinicopathological parameters and patient survival. 
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Furthermore BCL3 expression was not associated with AKT or BAG1 

expression.  

 

6.2 Discussion of results and future work 

 

In contrast to other larger studies (Tweedle, Khattak et al. 2010; Bauer, 

Nitsche et al. 2012) (Sun, Meng et al. 2011), I found that HSP and BAG1 

expression was not associated with clinicopathological features or patient 

survival, which could be explained by differences in the numbers of left- or 

right-sided CRCs between my study and those of others. There was a left 

sided predominance of my CRC cohort. Interestingly, there are suggested 

differences in pathology and prognosis between right and left sided tumours 

possibly as a result of the different embryological development of the mid gut 

and hindgut from right and left side of the colon.  Yamauchi and colleagues 

(2012) in the largest study investigating anatomical variation of CRC 

molecular features found that the highest frequency of KRAS mutation was 

found in the caecum (52%), as well as a linear increase of MSI, CIMP and 

BRAF mutations moving from the rectum (<2.3%) to the ascending colon 

(36-40%). Furthermore, DNA mismatch mutations were seen predominately 

in cancers from the right side of the colon, whereas mutations were rare in 

cancers of the descending, sigmoid colon and rectum (Hutchins et al. 2011). 

Multiple studies have found that patients with MSI positive tumours have a 

better overall prognosis and that MSI status is an independent favourable 

predictor of survival (Hemminki et al. 2000). While KRAS mutation more 

common in cancers from the right colon is associated with a significantly 
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poorer prognosis (Phipps et al. 2013). Most studies found an overall poorer 

survival in right compared to left sided CRC (Hansen and Jess 2013). 

Although, patients with right-sided cancer were more likely to be older, to be 

women, of a more advanced stage at diagnosis than left-sided colon 

cancers, and have more poorly differentiated tumours (Hansen and Jess 

2013). With regard to metastases, Benedix and colleagues (2010) found that 

left sided CRC more frequently spread to the liver and pulmonary systems 

than RCC, whereas RCC more often spread to the peritoneum. Right-sided 

colon cancers are often in a more advanced stage at diagnosis than left-

sided colon cancers and have different molecular biological patterns. 

However, when analysis was adjusted for stage, comorbidity, and treatment 

variables, no overall difference in 5-year mortality was seen between right- 

and left-sided colon cancers. Therefore, I feel that the differences in tumour 

molecular biology of left and right CRC, particularly in regards to KRAS may 

effect the expression and role of HSP. Indeed, Pei and colleagues (2011) 

found that HSP27 expression was greater in right sided CRC compared to 

left sided CRC, although this is contrary to what our findings would expect as 

WT KRAS was associated with HSP27 expression. 

 

There are significant clinical and therapeutic consequences because of the 

heterogenous nature of CRC and the presence or absence of mutations to 

key oncogenic and tumour suppressor genes. This mandates a more 

targeted approach to the selection of therapies for an individual’s tumour 

than currently practiced, In this regard, I found that wildtype KRAS and 

activated PI3K/AKT, was significantly associated with HSP27 expression, 
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therefore indicating a possible role of HSP27 in overcoming PI3K/AKT 

induced OIS in tumours. Therefore, KRAS and PI3K/AKT characterisation 

should be undertaken as part of tailored medical therapy with possible HSP 

inhibitors. To develop in vitro cell culture-based drug screening models I 

collaborated to obtain stably infected colorectal cell lines with mutant KRAS. 

These transfected CRC cell lines will also permit further investigations into 

the expression of HSP27 and HSP72 and the role of KRAS plays in 

modulating HSP expression relative to mutation status. This will be important 

to further evaluate the in vitro findings concluded from this study. 

Furthermore, these results could be further extended to develop a clinical 

trial to evaluate HSP-specific inhibitors tailored on the basis of molecular 

genetic characterisation. Therefore using the frequency of KRAS mutation 

and PI3K/AKT activation from my study we can estimate that during an 

accrual period of 12 months, follow-up for outcome (survival) assessed at 24 

and 60 months and with power set at 80% and the false positive rate at 5% 

then the patient numbers required assuming a hazard ratio of 2.0 is 86 and 

for 1.2 the number is 1,231. This total number of patients also assumes that 

they are divided up in proportion to the ratios (mutation frequencies) 

obtained from my pilot data. 

 

As stated HSP have a definite role in the circumvention of OIS. As the 

biology of the tumour develops the role of HSP in tumourgenesis could alter 

with the changing tumour milieu.  In the early stages, HSP may act to 

overcome restraint on uncontrolled proliferation inhibiting OIS and then later 

on to aid in tumour survival preventing apoptosis and permit further growth 
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and metastasis. The action of many chemotherapy and radiation seems to 

involve the activation of the senescence program, with favourable outcome 

having been associated with senescent positive CRC tumours (Haugstetter 

et al. 2010). It is interesting that HSP72 and HPS27 have been associated 

with early stage I/II left sided CRC’s and prognosis (Bauer et al. 2012).  

Therefore, the relationship between HSP expressions might be dependent 

on the progress of the tumour with differential roles for HSP between 

expanding clones with KRAS mutation and those with the WT copy. It would 

be interesting to study the functional role of HSP with a larger patients cohort 

and consider tumour development from dysplastic polyps to early and then 

late stage CRC with tumour location as a variable as the role of HSP seems 

to be more complex than just the causal associations may demonstrate.  

 

I, and others, have shown a functional relationship between APP expression 

and proliferation that demonstrates the importance of APP in the 

pathogenesis of CRC (Meng, Kataoka et al. 2001; Venkataramani, Rossner 

et al. 2010). However, the precise mechanism underlying the tumour growth-

promoting effect of APP remains to be clarified. APP has been shown to 

function as a growth factor and as a docking molecule in the membrane 

proximal signaling events (Chow, Mattson et al. 2010). The N-terminal 

domain of APP contains cysteine-rich regions and heparin-binding sites that 

are similar to growth factors and APP can therefore be classified as a 

member of the cysteine-rich growth factor superfamily (Rossjohn, Cappai et 

al. 1999). The extracellular domain can interact with matrix proteins and 

heparan sulfate proteoglycans reflecting the role of APP in migration, 
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adhesion, and cell-matrix and cell-cell interactions (Saitoh, Sundsmo et al. 

1989; Ninomiya, Roch et al. 1993; Small, Clarris et al. 1999). My study is the 

largest to date investigating the expression of APP in CRC and the 

association with clinicopathological outcome. I showed that APP is 

expressed in only CRC tumour cells but not in normal cells, an observation 

that was in good agreement with albeit small study by Venkataramani and 

colleagues. In IHC studies by others on CRC (Venkataramani, Rossner et al. 

2010), prostate cancer (Takayama, Tsutsumi et al. 2009), and oral 

squamous cell carcinoma (Ko, Lin et al. 2004), and in brain tissue APP 

staining was mainly cytoplasmic. In contrast, my study found strong nuclear 

staining with some cytoplasmic staining. The APP antibody recognises 

amino acids 66-81 of the N-terminus, which would be expected to 

demonstrate a cytoplasmic pattern of staining. However, the APP IHC in this 

study is much more specific compared to Venkataramani and colleagues 

whose published images are that appeared overstained and non-specific on 

CRC tissue possibly due to prolonged incubation.  Recently, Okamoto and 

colleagues showed reactivity of N-terminal APP antibodies in the nucleus 

and nucleolus SK-N-SH human neuroblastoma cells suggesting that APP 

might translocate via nuclear shuttling proteins and remain in the nucleus or 

nucleolus (Okamoto 2012). However, using the same APP antibody 

(Milipore, Billerica, MA, USA) as used in my study cytoplasmic staining only 

was observed and this discrepancy might be the result of the ganglioside 

GM1 competing for the same APP antibody epitope (Zhang, Ding et al. 

2009). Hence, further studies using different APP antibodies under 

standardised conditions would be beneficial particularly as so very few 
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studies have been reported to date on whether specific nuclear expression 

of APP is reproducible.  APP expression was not shown to be associated 

with any clinicopathological features or patient survival, unlike that observed 

in various other cancers (Ko, Lin et al. 2004; Botelho, Wang et al. 2010; 

Yang, Fan et al. 2012), although a larger cohort would be more considered 

more robust. The numbers of patients required can be estimated from my 

data: 2,440 patients would be needed to demonstrate significance at p=0.05 

with power set at 80% and false discovery at 5%. The numbers assume an 

accrual period of 12 months and that outcome survival is assessed at 60 

months. That so many patients would be needed to show that APP 

expression has a significant associated with outcome (survival) suggests 

there is unlikely to be an association in CRC.  

 

As APP was observed from the IHC to be nuclear in expression, this 

suggests that APP could be acting as a transcription factor or co-factor. The 

use of DNA microarray initially overexpressing APP would be a useful first 

step in investigating the specific molecular pathways that APP effects to 

inhibit proliferation. Furthermore, immunoprecipitation with mass 

spectrometry or a protein microarray could provide interesting findings 

particularly concerning the protein-protein interaction of APP and its various 

cleavage products that may or all be involved in proliferation. Understanding 

the mechanism underlying the effect of APP on the growth of carcinoma 

cells would also shed light on the undetermined physiological function of this 

ubiquitous protein in non-neural cells and its potential role in tumourgenesis.  
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Furthermore, it would be interesting to investigate the role of the ADAM 

family of proteases which have a role in tumourgenesis and cell proliferation 

(Duffy, Mullooly et al. 2011), and their interaction with APP using inhibitors. 

In particular, ADAM 10 which have been shown physiologically relevant, and 

the constitutive α-secretase of APP (Kuhn, Wang et al. 2010). ADAM10 has 

been found to be upregulated in pancreatic cancer and shown to promote 

migration and invasion of cancer cells.  

 

The high expression of BCL3 in CRC, in particular the invasive edge of the 

tumour, does support the possibility of a potential role for BCL3 in CRC 

tumourgenesis. I did not find any association with BCL3 expression and 

clinicopathological features or patient survival, alhough the overall study 

cohort used was small, it was >2-fold larger than the only previous 

investigation into BCL3 and CRC ((Puvvada, Funkhouser et al. 20100 The 

analysis of more CRC tumours, particularly with regard to expression at the 

invasive tumour edge, might reveal an association between BCL3 and 

survival. In this regard, Puvvada and colleagues considered BCL3 activation 

prognostic in metastatic CRC. I did not demonstrate in vivo any association 

with BCL3 expression and AKT, but this might reflect the heterogeneous 

nature of the tumour.  Dual IHC labeling would provide a more exacting 

method to investigate this specific association. It would also be interesting to 

investigate BCL3 and AKT signalling pathway as well as the activation of 

BCL3 and NF-κB pathway using CRC cell lines and also use similar loss- 

and gain of function studies with siRNA knockdown and overexpression of 

BCL3 as I used for APP and BAG1.  
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6.3 Study Limitations  

 

Studies with tumour samples with well-defined molecular features and 

detailed and comprehensive clinicopathological data is a very necessary first 

step that permits important association to be identified. The next major 

limitation is sample size and the costs and time needed to put together 

extensive collections of tumours (particularly fresh frozen tissue) and their 

requisite datasets. My CRC cohort was extensively investigated for 

molecular features and had a linked comprehensive clinicopathological 

database. At the onset of the project power calculation suggested that we 

would have a sufficient cohort size using tumour samples for the HSP study 

and indeed significant associations were made. However, as the project 

progressed and further relevant proteins were investigated there was a 

decrease in the availability of archival FFPE blocks from molecular 

genotypes tissue. This served to reduced the cohort size of subsequent 

protein analysis, but valuable data was obtained that can direct the power 

calculations for future studies. This will be useful in case where published 

investigations were more limited in terms of cohort numbers. It is possible 

that expression of multiple proteins by IHC could have been more efficiency 

undertaken using a tissue microarray (TMA), although this facility was not 

available in the laboratory until the end of my PhD. However, tissue punches 

required for a TMA can poise issues if the tumour FFPE samples have come 

from patients who are currently being followed up. Sub group analysis to 

reduce cohort heterogeneity clearly requires larger cohorts and it is often 

useful to investigate particular CRC sub groups for association with protein 
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expression. Again, my work can be used to inform power calculation for the 

numbers required and identify from the p value instances where significance 

is very unlikely whatever the cohort size; a larger cohort would not have 

necessarily changed the overall outcome. In the instance of APP, you would 

need significant numbers of patients (estimated above at 2,440) to show that 

APP expression does have a significant associated with outcome (survival). 
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6.4 Conclusion 

 

The use of cancer cell lines allow manipulations that are essential for 

dissecting molecular mechanisms, but cancers are more genetically 

heterogeneous (Lee, Endesfelder et al. 2011) and studies using primary 

tumour specimens from patients are essential to provide a comprehensive 

view of cancer cell and molecular biology. The shortcomings of cell culture 

experimentation in terms of their direct relevance to resected tumours are 

often overlooked, and my view is that it is preferable to run in vivo and in 

vitro experimental protocols in parallel. In this thesis, I have highlighted a 

role for HSP27 in overcoming PI3K/AKT induced OIS in resected tumours 

through its co-presence of wildtype KRAS and activated PI3K/AKT. My work 

indicates that therapeutic inhibition of the cellular mechanisms that suppress 

OIS in tumours is an attractive proposition, but that the precise mechanism 

may be specific to tumours with particular genetic backgrounds. This needs 

to be taken into consideration, particularly when testing compounds on CRC 

cells grown in culture, and especially where only a very limited number of 

lines are being assessed for drug efficacy as is often the case. CRC lines 

need to reflect primary CRCs in terms of mutational profiles, which will be 

problematic, but researchers need to be aware of the problems when 

drawing inference from the results of drugs tested in cell lines. CRC is both 

heterogeneous and highly complex and hence there are likely to be multiple 

factors that are as yet unknown. Interestingly, parallels on the complexities 

of CRC can be drawn from the experiences gained from the manipulation 

EGFR, a transmembrane receptor tyrosine kinase. EGFR is overexpressed 
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in 25%–75% of CRCs (Goldstein and Armin 2001), but anti-EGFR 

chemotherapeutic agents such as Cetuximab have had limited success 

(Bardelli and Siena 2010). Importantly, KRAS mutational status has been 

shown to be a critical factor in determining response rates to anti-EGFR 

chemotherapeutic agents (Lievre, Bachet et al. 2006). Clinical trials such as 

OPUS and CRYSTAL, which examined the use of anti-EGFR agents with 

first line chemotherapy agents, did not show an improvement in response in 

patients with mutant KRAS, but instead found that these agents may be 

detrimental (Bokemeyer, Bondarenko et al. 2009; Van Cutsem, Kohne et al. 

2009; Bokemeyer, Bondarenko et al. 2011; Van Cutsem, Kohne et al. 2011) 

to patient outcome. Furthermore, other genetic alterations in oncoproteins 

modulating EGFR signalling (e.g. BRAF, PIK3CA and PTEN) and acquired 

EGFR mutation have been found to be determinants of resistance (Bardelli 

and Siena 2010; Montagut, Dalmases et al. 2012). Further in vivo 

investigations on a large numbers of primary cancers or more homogenous 

subgroups of CRC are necessary to complement investigations that have 

been conducted in vitro using cell lines. In particular, my findings emphasise 

a role for using archival tissues in validating hypotheses generated from cell 

culture based investigations.  
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APPENDIX I – Molecular characterisation of 
colorectal cancer cohort 
 

 

Microsatellite and chromosomal instability and BRAF mutation status 

in colorectal cancer cohort. This cohort of CRC’s has been previously 

been well characterised. This cohort therefore included a total of 74 were 

analysed for CSI and 67 for MSI. CRC patients was tested for MSI using two 

well-established mononucleotide markers, BAT25 and BAT26 CIN was 

determined by investigating the ploidy status by mechanically extracting 

nuclei from tumour tissue and corresponding normal tissues and then by 

establishing nuclear DNA content and ploidy status using flow cytometric 

analysis. Those cancers not categorised as CIN and/or MSI were recorded 

as MACS. BRAF mutation (V599E) was observed in 12% of patients, the 

majority of these were MSI+. Four tumours were found to be MSI+ and CSI+ 

(Silver, A., N. Sengupta, et al. 2012). 

 
 
 

MSI/CSI/MACS 

status 

n (%) BRAF mutation n 

(%) 

MSI+ 13 (19) 5 (7) 

CSI+ 31 (42) 2 (3) 

MACS 28 (42) 2 (3) 
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APPENDIX II - PCR Primers and Conditions 

PCR Primers (Chapter 3) 

 5’-3’ sequence 

TP53  

Exon 5F CACTTGTGCCCTGACTTTCA 

Exon 5R AACCAGCCCTGTCGTCTCT 

Exon 6F CAGGGCTGGTTGCCCA 

Exon 6R ACTGACAACCACCCTTAACCCC 

Exon 7F GAGCTTGCAGTGAGCTGAGA 

Exon 7R GGGTCAGAGGCAAGCAGA 

Exon 8F GGGACAGGTAGGACCTGATT 

Exon 8R GAGGCATAACTGCACCCTTG 

KRAS  

Codon 13F TTTGATAGTGTATTAACCTTATG 

Codon 13R TATTAAACAAGATTTACCTC 

PIK3CA  

Exon 9F GGGGAAAAATATGACAAAGAAA 

Exon 9R GAGAATCTCCATTTTAGCACTTAC 

Exon 20F 

 

CATTTGCTCCAAACTGACCA 

CTGGAATGCCAGAACTACAATC 

Exon 20R 

 

TGTGCATCATTCATTTGTTTCA 

TGTGGAATCCAGAGTGAGCTTTC 
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PCR Conditions for Tumour Sample Gene Mutation Characterisation 

(Chapter 3) 

 

 

  TP53 

  Exon 5 Exon 6 Exon 7 Exon 8 

Denaturation for 15 minutes  1 x cycle 950C 950C 950C 950C 

Denaturation for 30 seconds 
 
 

35 x cycle 

940C 940C 940C 940C 

Annealing for 45 seconds 560C 600C 630C 560C 

Extension for 30 seconds 720C 720C 720C 720C 

Final extension for 5 minutes 1 x cycle 720C 720C 720C 720C 

 

 

  KRAS PIK3CA 

  Codon 13 Exon 9 Exon 20 

Denaturation for 15 minutes  1 x cycle 950C 950C 950C 

Denaturation for 10 seconds 
 
 

37 x cycle 

950C 950C 950C 

Annealing for 30 seconds 500C 580C 580C 

Extension for 45 seconds 720C 720C 720C 

Final extension for 10 minutes 1 x cycle 720C 720C 720C 
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APPENDIX III – Real time PCR 

 

The TaqMan® Probe is an oligonucleotide that anneals to a specific sequence on the 

template between the forward and reverse primers (A). It has a high-energy Reporter dye at 

the 5’ end which when intact is suppressed by a low-energy Quencher dye on the 3’ end, as 

the close proximity of the dyes results in transfer of energy from high to low. During Real-

Time PCR the accumulation of amplicon is detected during the reaction. The detection 

amplicon product is dependent on the exo-nuclease activity of Taq polymerase that cleaves 

off the TaqMan® Probe which is subsequently detected to quantify the exponential phase of 

the PCR reaction (B). Following cleavage of the probe, the Quencher no longer is able to 

inhibit the fluorescent emissions of the Reporter. Therefore the reporter signal increase is 

proportional to the amount of product being produced for a given sample (C). 
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APPENDIX IV - Probes 

Probes 

 

Target Sequences for siRNA Knockdown Transfection (Chapter 4) 

 

 5’-3’ sequence 

APP  

APP 2 TTGGCCAACATGATTAGTGAA  

APP 8 AAGGATGACTACAGACATTAA 

APP 9 ACCCAATTAAGTCCTACTTTA 

APP 10 CTGGTCTTCAATTACCAAGAA  

BAG1  

BAG 4 CCGGGTCATGTTAATTGGGAA 

BAG 10 CACCGTTGTCAGCACTTGGAA 

BAG 11 CCCAAGGATTTGCAAGCTGAA 

BAG 12 CTGAGCGGCTGCAGTCTACAA 

 
 

TaqMan Gene Expression Probes (Chapter 3 and 4) 

 
  

PIK3CA 
 

 

TP53 
 

HSP72 
 

HSP27 
 

BAG1 

 
Supplier 

 

Applied 
Biosystems  
 

 

Applied 
Biosystems 

 

Applied 
Biosystems 

 

Applied 
Biosystems 

 

Applied 
Biosystems 

 

Supplier 
code 
 

 
Hs00503678 

 
Hs99999147 

 
Hs00359147 

 
Hs03044127 

 
Hs00185390 
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APPENDIX V - Immunohistochemistry and Western 

Blot 

Immunohistochemistry Antigen Unmasking Solutions  

 

Vector Antigen Unmasking Solution pH 6  

Vector Antigen Unmasking solution pH 6 (Vector Laboratories, Burlingame, 

CA, USA). This solution is prepared by mixing 15ml of the stock antigen 

unmasking solution with 1600ml of distilled water. 

Tris-EDTA-Citrate Unmasking Solution pH 8.1 

A 10x strength stock solution is prepared from a mixture of 

Ethylendiaminetetra acetic acid (EDTA) (BDH, Germany) 15g; Tris 

(hydroxmethyl) methylamine (Tris Base) (BDH, Germany) 7.5g; sodium 

citrate (BDH, Germany) 9.6g and distilled water 3000ml. Sodium Hydroxide 

(BDH, Germany) is then added to this to pH 8.1. 

Tris-EDTA Unmasking Solution pH 9.0 

A 10 x strength stock solution is prepared from a mixture of EDTA (BDH, 

Germany) 11.1g; Tris Base (BDH, Germany) and distilled water 3000ml. 

Sodium Hydroxide (BDH, Germany) is then added to this to pH 9.0. 

pH Meter Procedure 
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pH is measured using a Hanna pH 210 connected to an Expoxy Bodied 

Sealed Reference Combination electrode and Automatic temperature 

Compensation (ATC) probe. Firstly, the pH meter is calibrated. The probe is 

rinsed with distilled water and calibrated by placing it into a pH 7 buffer. To 

measure pH, the probe is placed into the solution to be measured allowing 

the pH reading to stabilise before adjusting the pH of the solution as 

required. 

Antigen Retrieval Optimisation  

Schematic of antigen retrieval combinations with microwave and water bath 

at 10 minutes and 40 minutes at pH 6.0, 8.1 and 9.0. 

Antigen retrieval was optimised for each antibody by carrying out the 

immunocytochemistry method as described on 12 control tissue sections 

using a combination of either microwave or waterbath for 10 minutes and 40 

minutes with antigen retrieval solutions at pH 6.0, 8.1 and 9.0 (figure).  

pH 

 

Microwave 

 

Waterbath 

 

10 mins 

 

35 mins 

 

10 mins 

 

40 mins 

 

6.0 

 

1 

 

2 

 

3 

 

4 

 

8.1 

 

5 

 

6 

 

7 

 

8 

 

9.0 

 

9 

 

10 

 

11 

 

12 
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Antibody Conditions for Immunohistochemistry (Chapter 3, 4 and 5) 

 
 

 HSF1  AKT  BAG1  HSP27  HSP72  APP  BCL3 

Supplier Abcam Abcam Abcam Abcam Abcam Millipore Abcam 

Supplier 

code 
ab52757 ab8932 ab32109 ab5579 ab31010 IHCR1002-6 ab49470 

Clonality 

Rabbit 

Monoclonal 

(EP1710Y)  

Rabbit 

Polyclonal  

Rabbit  

Monoclonal 

(Y166)  

Rabbit 

Polyclonal  

Rabbit 

Polyclonal  

Mouse  

Monoclonal 

Mouse 

Monoclonal 

Control 

Tissue  
Breast Ca  Breast Ca  

Appendix/ 

colon  
Breast Ca  Breast Ca   Brain   Tonsil 

Pre-

treatment  

Microwave 35 

minutes  

Water bath 40 

minutes  

Microwave 35 

minutes  

Microwave 35 

minutes  

Microwave 35 

minutes  

Microwave 

10 minutes 

Microwave 

35 minutes 

Buffer  pH 6.0  pH 6.0  pH 8.1  pH 6.0  pH 6.0  pH 9.0 pH 8.1 

Dilution  1:150  1:100  1:100  1:200  1:400  Prediluted 1:25 
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Antibody Conditions for Western Blot (Chapter 3 and 4) 

 
 

 BAG1 HSP27 HSP72 APP Β-catenin Β-actin 

Supplier  Abcam Abcam Abcam Millipore  Abcam Abcam 

Supplier 

code 
ab32109 ab5579 ab31010 MAB348 ab8226 ab8226 

Clonality 
Rabbit  

Monoclonal (Y166)  

Rabbit 

Polyclonal  
Rabbit Polyclonal  Mouse monoclonal  

Rabbit 

monoclonal 

Mouse 

monoclonal 

Dilution  1:250  1:1000 1:1000  1:250  1:1000 1:15000 
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APPENDIX VI - Supplementary Nuclear BAG1 

Survival Analysis 
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Kaplan-Meier plots correlating patient survival with protein expression of BAG1. 

There is no statistically significant difference (p=0.73) in survival between patients with 

tumour expressing nuclear BAG1 and the patients with tumours negative for nuclear BAG1 

expression by log rank test. 

  



310 
 

APPENDIX VII - Preliminary Characterisation of 

Colorectal Cells Lines 

 

 

 
 
 
 

 

 

 

Expression of HSP72 demonstrated by Western Blot and Real-time PCR. HSP72 gene 

expression was plotted relative to LOVO. HT55 had a similar expression of HSP70 to 

LOVO, while the rest of the cell lines had increase expression of HSP72 compared to 

LOVO. Western Blot determined HSP72 protein expression in all the cell lines. 
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Expression of HSP27 relative to the endogenous control GAPDH in cell lines 

compared to LOVO. In all cell lines compared to LOVO there was a significant fold 

increase in expression of HSP27. 

 

Expression of p53 relative to the endogenous control GAPDH in cell lines compared 

to LOVO. All cell lines except C80 had increased expression of p53 compared to LOVO.  
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APPENDIX VIII - Supplementary Amyloid Precursor 

Protein Survival Analysis 

 

Kaplan-Meier plots correlating patient survival with protein expression of nuclear 

APP. There is no statistically significant difference in survival between patients with tumour 

expressing nuclear APP and the patients with tumours negative for nuclear APP expression 

by log rank test (p = 0.87). 

 

 

Kaplan-Meier plots correlating patient survival with protein expression of cytoplasmic 

APP. There is no statistically significant difference in survival between patients with tumour 

expressing  cytoplasmic APP and the patients with tumours negative for cytoplasmic APP 

expression by log rank test (p = 0.61).  
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APPENDIX XI - Supplementary BCL3 Survival 

Analysis 
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Kaplan-Meier plots correlating patient survival with protein expression of strong 

nuclear expression of BCL3. There is no statistically significant difference (p=0.76) in 

survival between patients with tumour expressing BCL3 and the patients with tumours 

negative for BCL3 expression by log rank test.  

 


