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Abstract

We consider supersymmetric Wilson loops à la Zarembo in planar supersym-
metric Yang-Mills theories in diverse dimensions. Using perturbation theory we
show that these loops have trivial vacuum expectation values to second order
in the ’t Hooft coupling. We review the known superspace results which, for
specific dimensions, extend this triviality to all orders in the ’t Hooft coupling.
Using the gauge/gravity correspondence, we construct the explicit dual fun-
damental string solutions corresponding to these Wilson loops for the case of
circular geometry. We find that the regularized action of these string solutions
vanishes. We also generalize the framework of calibrated surfaces to prove the
vanishing of the regularized action for loops of general geometry. We propose
a possible string-side manifestation of the gauge theory generalized Konishi
anomaly in seven dimensions.
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1 Introduction

By now there is mounting evidence in favor of both the usefulness as well as the valid-
ity of the gauge/gravity duality between N = 4 SYM in four dimensions and string
theory on AdS5×S5. It is thus natural to ask if this duality can be tested and utilized
in the cases of gauge theories in dimensions other than four. Such investigations are
naturally motivated by the need to understand how the gauge/gravity duality may be
realized in non-conformal supersymmetric Yang-Mills theories. For the special cases
of sixteen supercharge SYM theories in diverse dimensions, the gravity duals were
proposed some time ago in [1]. While the feasibility of generic tests of gauge/gravity
duality is not very clear for sixteen supercharge SYM theories in dimensions greater
than four: the SYM theories are not renormalizable and the dual Dp-brane geometries
suffer from the non-decoupling of the alpha-prime corrections, it is worthwhile to ex-
ploit the duality between SYM theories in p+1 dimensions and Dp-branes and test it
in the case of protected operators whose vacuum expectation values are independent
of the coupling g2. A special class of Wilson loops, first proposed by Zarembo in the
case of N = 4 SYM [2] are particularly well suited to this purpose. In this paper we
generalize Zarembo’s construction to perform a non-trivial test of the duality between
Dp-brane theories and SYM in p+ 1 dimensions.

The Maldacena-Wilson loop [3, 4] has proven to be a very powerful probe of the
AdS/CFT correspondence. In four dimensional N = 4 supersymmetric Yang-Mills
theory it is given by

W =
1

N
TrP exp

∮
dτ

(
iẋµ(τ)Aµ + |ẋ(τ)|ΘI(τ)ΦI

)
, (1)

where N is the rank of the gauge group SU(N), ΦI are the six scalar fields of the
theory, and ΘIΘI = 1. The path of the Wilson loop is defined by xµ(τ), but there is
also the freedom to define a path on S5 parametrized by ΘI(τ). The specific coupling
to the scalar fields in (1) is chosen to ensure local supersymmetry; the amount of
global supersymmetry respected by W is intimately connected with the correlation
of the paths xµ(τ) and ΘI(τ). There is a “perfectly” correlated choice, found by
Zarembo [2]1

ΘI(τ) =
ẋµ

|ẋ|M
I
µ, M I

µM
I
ν = δµν , (2)

where M I
µ is a constant matrix, which assures that the vacuum expectation value of

the Wilson loop is trivial
〈W 〉Zarembo = 1. (3)

The amount of supersymmetry respected by the loop is found by requiring

δǫW ∼ ẋµ
(
iγµ +M I

µΓI

)
ǫ = 0. (4)

1These Wilson loops are closely related to a class constructed later in [5, 6, 7] whose contours lie
on a three-sphere.
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This gives one halving of the supersymmetry2 for each non-zero component of ẋµ, so
that, for example, a planar loop is 1/4 BPS. One can appreciate the result (3) from a
few different perspectives. The first is that (2) ensures that the combined gauge and
scalar field Feynman gauge propagator joining two points on the loop is zero

〈(
iẋµ(τ)Aµ + |ẋ(τ)|ΘI

x(τ)Φ
I
)(
iẏν(σ)Aν + |ẏ(σ)|ΘJ

y (σ)ΦJ
)〉

=
g2

4π2

−ẋ · ẏ + Θx · Θy|ẋ||ẏ|
(x− y)2

= 0,
(5)

which immediately precludes the contribution of ladder/rainbow diagrams. As shown
by Zarembo [2], all interacting diagrams up to two loops can also, without an inordi-
nate effort, be shown to vanish. A much stronger statement was made in [8], where
superspace techniques were exploited to prove (3) for Wilson loops whose contours
are contained in R

3. The loops of Zarembo are also naturally described in terms
of the twisting of N = 4 SYM to produce a topological theory; in this context the
triviality of the vacuum expectation value for loops in the full R

4 was proven in [9].
At strong coupling the vacuum expectation value of (1) is accessible via the dual

string theory. It is given by the partition function of a fundamental string, the saddle
points of which are minimal area embeddings in AdS5 × S5 [3, 10]. In the following
coordinates for AdS5 × S5

ds2 = U2dXµdXµ +
1

U2
dU IdU I , (6)

one requires the following boundary conditions for the string embedding Σ at the
boundary U = ∞

Xµ|∂Σ = xµ,
U I

|U |

∣∣∣∣
∂Σ

= ΘI . (7)

The action of the string is then found to contain a generic divergence owing to the
diverging area element of Anti-de Sitter space as the boundary is approached. This
divergence is proportional to the circumference of the loop

S =

√
λ

2π

∫
d2σ

√
det ∂aXM∂bXNGMN =

√
λ

2π

(
Umax.

∮
dτ |ẋ(τ)| + Areg.

)
, (8)

where X
M = (Xµ, U I), and may be removed via a Legendre transformation [10],

leaving the regularized action Sreg. =
√
λAreg./(2π). The result for the vacuum ex-

pectation value of (1) is then

〈W 〉λ→∞ = V exp (−Sreg.) , (9)

where V is a prefactor stemming from integration over zero modes in the partition
function. The disc partition function naturally involves three zero modes. If there
is no extra parametric freedom in embedding the string, then V ∼ λ−3/4, i.e. one

2The Poincaré and superconformal supersymmetries are halved independently of one another.
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factor of λ−1/4 for each zero mode. This is the case for the standard 1/2 BPS circle
which sits at a point on S5 [11]. The expectation therefore, for the string dual of the
Zarembo loops, is that V = 1, and Sreg. = 0. The first of these conditions has not been
shown explicitly, and for other than planar loops remains a mystery. For the case of
planar loops, it was argued in [2] that there are 3 compensating zero modes stemming
from parametric freedom in embedding the string in an S2 ⊂ S5. For loops other
than planar, it remains unclear how the contribution of the three basic zero modes
is cancelled [12]. We discuss this issue further in section 3.3. The second condition,
Sreg. = 0, was shown explicitly by Zarembo in [2] for the circular supersymmetric
Wilson loop in AdS5 × S5. There the string solution was found and the regularized
action calculated. The analogous string-side embodiment of the results of [8] were
realized3 in [12], where it was proven that Sreg. = 0 for the string dual of a generic
N = 4 SYM Zarembo Wilson loop. This used the method of calibrated surfaces
which we will review in section 3.2.

In the present work we will extend these results, to the degree it is possible,
to maximally supersymmetric Yang-Mills theories in general spacetime dimensions.
Indeed we may view (1) as arising from a toroidal compactification of the standard
Wilson loop in N = 1, d = 10 SYM, and in this sense we are free to compactify more
or less directions than 6, namely 9 − p where p ranges from 0 to 9,

1

N
TrP exp

∮
dτ iẋM (τ)AM

→ 1

N
TrP exp

∮
dτ

(
iẋµ(τ)Aµ + |ẋ(τ)|ΘI(τ)ΦI

)
,

(10)

where M = 1, . . . , 10, µ = 1, . . . , p + 1, I = 1, . . . , 9 − p. We then require the same
relations to hold relating the paths xµ and ΘI , i.e. (2). The supersymmetry relation
(4) also continues to hold after this dimensional reduction. For the various spacetime
dimensions d, we are restricted by (2) to curves xµ(τ) in various subspaces of R

d,
these are summarized in the table below.

d 1 2 3 4 5 6 7 8
Curves in R

1
R

2
R

3
R

4
R

4
R

3
R

2
R

1

We will concentrate on the dimensions 2 ≤ d ≤ 7, since the curves in R
1 are the

trivial 1/2 BPS straight lines.
On the gauge theory side, we perform our analyses using both perturbative and

(non-perturbative) superspace techniques. From the perturbative point of view, we
study the relevant gauge theories in a unified way, up to the next to leading order
(NLO), or two loop approximation. This analysis allows us to perform a straightfor-
ward extension of the results presented in [2]. At this order in perturbation theory
we find that the vacuum expectation value for the Zarembo loops in all dimensional
reductions of the d = 10, N = 1 SYM theories, down to d = 1, is identically ‘1’.
Clearly, the NLO results beg the question if some or all of the gauge theories preserve
the triviality of the Zarembo loops to higher or even all orders in perturbation theory.

3The issue of the zero mode prefactor V is still outstanding.
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On a related note, one may also worry about the reasonability of perturbative
methods in non-renormalizable gauge theories, which SYM in d ≥ 5 are expected to
be. Though we do not expect the perturbative results for generic gauge theory ob-
servables in these theories to be meaningful, we can use perturbation theory to gauge
the validity of results believed to be protected by non-renormalization theorems. The
non-renormalization theorems for the sixteen supercharge theories in question were
derived in [8]. In that paper, the d dimensional SYM theories were reformulated in
a d − 3 superspace language. This reformulation, which is briefly reviewed in the
next section, allows one to view the Wilson loops in question as elements of a chiral
ring. Furthermore, the (superspace) equations of motion were shown to imply shape
invariance of the loops embeddable in R

3. These two results were used to formally
establish the triviality of these Zarembo loops for all sixteen supercharge gauge theo-
ries in 7 > d ≥ 3. The appearance of a generalized Konishi anomaly in d = 7 [8] puts
an upper bound (in terms of dimensions) on the gauge theories for which the pertur-
bative results may be expected to hold to all loop orders. However, for gauge theories
in d < 3, the superspace methods are simply limited by the construction/requirement
of a d− 3 dimensional superspace, with at least one dynamical supercoordinate. We
can thus regard the perturbative results as a non-trivial verification of the predictions
of [8] at the NLO, and a hint toward the potential for generalization of the triviality
of the Zarembo loops to all loop orders for gauge theories in dimensions 3 > d ≥ 1.

On the gravity side, we use the string duals for the sixteen supercharge Yang-Mills
theories proposed in [1]. These Dp-brane geometries (where d = p + 1) contain an
S8−p, the d boundary theory coordinates, and a U direction, so that the boundary
is at U = ∞. We find the explicit fundamental string solutions corresponding to
circular Zarembo-type Wilson loops in these backgrounds4. They wrap part of an
S2 ⊂ S8−p and extend in the U -direction from the boundary circle. We find that
these solutions have the expected zero regularized area. This result is independent
of the cut-off Umax. where the boundary theory is defined; this is the string-side
manifestation of the protection of these operators in the gauge theories, despite the
issues of running couplings and non-renormalizability. In appendix A we analyze the
supersymmetry respected by the solutions and find that they are indeed 1/4 BPS,
as required. We also generalize the framework of calibrated surfaces given in [12] to
the Dp-brane geometries, thereby proving that the regularized action vanishes for any
Zarembo-type Wilson loop constructed in these theories, and as a check show that
our circular string solutions also satisfy the appropriate equations. Finally, in section
3.3 we discuss the potential string-side manifestation of the gauge theory generalized
Konishi anomaly for d = 7.

2 Gauge theory results

In this section we present the arguments in favor of the triviality of the vacuum
expectation values of supersymmetric Wilson loops in 16 supercharge super Yang-

4String duals of generic Wilson loops have also been considered in the Dp-brane geometries, see
[13].
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Mills theories, from the perspective of the relevant gauge theories. To this end, we
shall start with a perturbative point of view, and subsequently correlate the weak-
coupling results with all-loop predictions based on superspace techniques obtained in
[8].

We start with a sixteen supercharge SYM action in 10 > 2ω ≥ 1 dimensions given
by

S =
1

g2

∫
d2ωx Tr

(
1

2
F 2
µν + (DµΦ

i)2 − 1

2
[Φi,Φj ]2 + Ψ̄ΓµDµΨ + iΨ̄Γi[Φi,Ψ]

)
. (11)

It is understood that the Lorentz indices µ, ν = 1, . . . , 2ω while the number of scalars
i, j = 1, . . . , (10 − 2ω).

As was shown by Zarembo in [2], the triviality of the Wilson loop expectation value
at the leading order in perturbation theory is simply a consequence of the equality of
the gluon and scalar propagators in the Feynman gauge. Although the focus in [2]
was on four dimensional gauge theory, this leading order result readily generalizes to
all the dimensional reductions of the ten dimensional N = 1 gauge theory.

At the next-to-leading order, the diagrams that do not involve loop corrections to
propagators cancel due to the same reason as above. In other words, the following
cancelations between Feynman diagrams occur for all dimensional reductions of N =
1, d = 10 SYM theories, due to the same arguments put forward in the Feynman
gauge for the four dimensional theory in [2]:

+ = 0,

+ + = 0,

+ = 0.

For the triviality of the Wilson loop expectation value to hold at the next-to-leading
order, all that one needs to show is the equality between the one loop corrected gluon
and scalar propagators in the Feynman gauge, such that the following cancelation
takes place:

+ = 0.
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The one-loop gluon propagator in this gauge is given by

∆ab
µν = g2δab

1

p2

(
δµν − g2N

Γ(2 − ω)Γ(ω)Γ(ω − 1)

(4π)ωΓ(2ω)
fg(ω)

δµν − pµpν/p
2

p4−2ω

)
, (12)

where the function fg encodes the contributions to the propagator from the various
interaction vertices

fg = 2(3ω − 1) −Ns −Nf (ω − 1). (13)

The contribution of 2(3ω− 1) in fg is due to the combination of the gluon-gluon and
ghost-gluon scattering in 2ω dimensions. The factor of Ns arises from the Ns real
adjoint scalars running in loops, while the factor of Nf ; the number of real fermionic
degrees of freedom in the theory, is due to gluon-fermion scattering.

Using the same notation, we may write the one loop corrected scalar propagator
as

∆ab
mn = g2δab

1

p2

(
δmn − g2N

Γ(2 − ω)Γ(ω)Γ(ω − 1)

(4π)ωΓ(2ω)
fs(ω)

δmn
p4−2ω

)
, (14)

where

fs(ω) = 4(2ω − 1) − Nf

2
(2ω − 1). (15)

The contribution of 4(2ω − 1) comes about due to the scalar-vector intermediate
state, while the fermion loop contribution to the scalar propagator generates a factor
of

Nf
2

(2ω − 1) with the opposite sign.

A necessary and sufficient condition for the supersymmetric Wilson loops to have
unit vacuum expectation value at the one and two loop level is

fg = fs. (16)

It is easy to check that this is indeed satisfied when the number of real scalars Ns =
10 − 2ω and Nf = 16.

We have thus established the triviality of the Wilson loop expectation value at
the next to leading order for all dimensional reductions of the N = 1 ten dimensional
SYM.

The one loop corrected gluon and scalar propagators, as they have been expressed
above, are also valid for the dimensional reduction of the six and four dimensional
N = 1 SYM theories as well. The equality of the loop corrected propagators continues
to hold if we use either

Nf = 8, Ns = 6 − 2ω or (17)

Nf = 4, Ns = 4 − 2ω. (18)

This fact proves the triviality of Wilson loop expectation value for eight (four) super-
charge theories in dimensions less than or equal to five (three).

Thus, the following table summarizes the balance between the number of dimen-
sions and the number of supersymmetries necessary for Wilson loops to have trivial
expectation values at the next-to-leading order:
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Number of Supercharges Dimensions ≤
16 9
8 5
4 3

It is probably too optimistic to expect that all the gauge theories listed above retain
the triviality of the Zarembo loops to all orders in perturbation theory. However, for
the case of the sixteen supercharge theories, lower dimensional superspace techniques
were successfully employed in [8] to probe the all-loop behavior of many of the gauge
theories considered above. We shall briefly review these techniques and compare the
superspace results with the perturbative computations reported above.

For the four dimensional theory, the starting point was a rewriting of the action
in a N = 2, d = 1 superspace, coordinatized by t, θα, θ̄α, where α = 1, 2 is an SU(2)
index. The action for the four dimensional gauge theory was shown to be [8]5

S =
1

g2

∫
d3x dt

[
Tr

(
WαWαǫijk(Φi∂jΦk +

2i

3
ΦiΦjΦk) + cc

)

θθ

+ Tr
(
Ω̄ie

V Ωie
−V

)
θθθ̄θ̄

]
.

(19)

In the quantum mechanical superspace, the three chiral superfields Φi contain the
spatial components of the gauge potential Ai and three of the six real scalars6 Φi+3.
The bottom component of the chiral fields being given by Ai + iΦi+3. The temporal
component A0 as well as Φ7,8,9 are contained in the vector superfield V . The super-
fields are also implicitly labeled by the coordinates xi, which are treated simply as
auxiliary indices from the quantum mechanical point of view. Ω is given by

Ωi = Φi + e−V (i∂i − Φ̄i)e
V . (20)

One of the main observations in the paper was that the Wilson loops of the type
considered in this paper could be thought of as elements of a chiral ring from the
lower dimensional superspace point of view. In particular the equation of motion for
these loops took on the form

〈
Tr

(
W (C, x) ǫijkFjk(x)

)〉
θ=θ̄=0

= Ai, (21)

where,
Fjk = ∂jΦk − ∂kΦj + i[Φj ,Φk], (22)

and where W (C, x) is the untraced Wilson loop operator with a marked point x on
the loop, and Ai is a possible anomaly term. In the absence of the anomaly term, the
loop equation implied shape independence. In conjunction with the fact that the loop

5Wα = D̄D̄eV Dαe−V , see [8] for further details.
6At the risk of abuse of notation, we denote both the chiral superspace fields as well as the real

scalars by Φ. We hope that the difference will be clear from the context.
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is an element of the chiral ring, the shape independence yielded a trivial expectation
value of the loop. Note that this hinges upon the three-dimensional epsilon symbol
and for this reason is limited to curves in R

3.
Similar arguments were also applied to sixteen supercharge Yang-Mills theories

in dimensions 3 ≤ d ≤ 7. The key to the generalization was being able to write
the action for the relevant gauge theories in a four supercharge d − 3 dimensional
superspace. It was further shown that only in the case of the seven dimensional
gauge theory does one encounter a non-zero anomaly; this is the generalized Konishi
anomaly.

Conjoining these superspace arguments with the evidence presented from the weak
coupling perturbation theory, we conclude that sixteen supercharge SYM theories in
dimensions 6 ≥ d ≥ 3 possess supersymmetric Wilson loops with trivial vacuum
expectation values.

It is also worth noting that lower dimensional superspace methods were also em-
ployed to analyze Wilson loops in SYM theories with 8 supercharges, and Wilson
loops with trivial expectation values were found in 4 ≥ d ≥ 1 dimensions in [14].
These results are consistent with the perturbative results reported earlier for the
dimensional reductions of N = 1, d = 6 SYM. The case of the five dimensional
Yang-Mills theory, suffers from a non-vanishing anomaly, which was not seen in the
perturbative calculations we presented above.

In summary, the next to leading order perturbation theory and the superspace
arguments match up in the following cases:

Number of Supersymmetries Dimensions
16 3 ≤ d ≤ 6
8 1 ≤ d ≤ 4

In the case of sixteen supercharge theories, we also have a dual gravity description
available to us. In what follows, we reproduce and generalize the results for this case
using the dual gravity picture. As the table above indicates, apart from the usefulness
of the gravity computation as non-trivial test of the gauge gravity duality, can hope
to shed some light on the non-perturbative behavior of the Zarembo loops for the
gauge theories for which the lower dimensional superspace arguments do not exist,
e.g. the case of d = 2 SYM with sixteen supercharges.

3 String duals and strong coupling results

The string duals of the class of maximally supersymmetric Yang-Mills theories were
presented in [1]. The holographic dual of the d = p + 1 dimensional gauge theory is
given by the string frame metric

ds2 = α′

(
U (7−p)/2

Cp
dx2

q
+

Cp
U (7−p)/2

dU2 + Cp U
(p−3)/2 dΩ2

8−p

)
,

eφ = (2π)2−pg2

(
C2
p

U7−p

)(3−p)/4

, C2
p = g2N 27−2pπ(9−3p)/2 Γ

(
7 − p

2

)
,

(23)
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where g and N are the bare coupling and the number of colours of the dual Yang-
Mills theory. There is also a p-form gauge potential which depends only on the U
coordinate. These solutions are obtained from the field theory limit of Dp-brane
solutions

g2 = (2π)p−2 gs α
′(p−3)/2

= fixed, α′ → 0, (24)

where one can see that for p > 3, the string coupling gs → ∞ which indicates a
breakdown of the limit, in the sense that α′ corrections are not suppressed and the
decoupling of bulk modes is not guaranteed. This is a reflection of the fact that
the Yang-Mills theories with d = p + 1 > 4 are nonrenormalizable. As discussed in
the introduction, we are describing objects which are protected and therefore we can
trust our solutions in spite of this breakdown. Indeed we will find that the regularized
action of our string solutions vanishes independently of the choice of cut-off Umax. -
the coordinate dual to the boundary gauge theory energy scale.

3.1 Supersymmetric circular loops

We present here string solutions corresponding to circular supersymmetric Wilson
loops in the background (23). We have a natural lower bound of p = 1, in order that
the boundary has enough dimensions to accommodate the circle, namely two, and a
natural upper bound of p = 6, since, as we will see below, we will require an S2 to
accommodate the coupling of the Wilson loop to the scalars of the dual gauge theory.
We have analyzed the supersymmetry of these solutions in appendix A, where we
show that they are 1/4 BPS.

We begin with the action of the fundamental string in Euclidean conformal gauge,
in the background (23). We write

dx2
q

= dr2 + r2dψ2 + dx2
p−1,

dΩ8−p = dθ2 + cos2 θ dφ2 + sin2 θ dΩ2
6−p,

(25)

where dx2
p−1 is a p− 1 dimensional metric on R

1,p−2 or R
p−1 (in the case p = 1 we are

forced to take the Euclidean metric). Our solution ansatz is then

ψ = φ = τ, τ ∈ [0, 2π], r = r(U), θ = θ(U), dx2
p−1 = dΩ2

6−p = 0, (26)

with which we can write the string action as

S =
Cp
4π

∫ 2π

0

dτ

∫
dσ

[
U (7−p)/2

C2
p

(
r2 + r′

2
)

+
U ′2

U (7−p)/2
+U (p−3)/2

(
θ′

2
+ cos2 θ

)]
, (27)

where prime denotes differentiation w.r.t. σ. We must also satisfy the Virasoro
constraint

U (7−p)/2

C2
p

r′
2
+

U ′2

U (7−p)/2
+ U (p−3)/2θ′

2
= U (p−3)/2 cos2 θ +

U (7−p)/2

C2
p

r2. (28)
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The solution we find is

R2 − r(U)2 =

{
2C2

p

5−p
Up−5, p 6= 5

−2C2
5 logU, p = 5

,

sin θ =
Umin.

U
, r(Umin.) = 0,

(29)

where R is the asymptotic radius of the circle at U = ∞. Note that for p > 4,
r(∞) = ∞, R becomes imaginary, and so the solution doesn’t satisfy the usual
boundary condition. We will cut the geometry off at Umax. however, and so define the
radius of the circle in the boundary theory as r(Umax.). The solution wraps one half
of an S2 ⊂ S8−p; the string worldsheet’s boundary lies along the equator7. In order
to check that (29) is in fact a solution to the equations of motion we express r′ and
θ′ in terms of U ′ and plug them into the Virasoro constraint (28) and solve for U ′ in
terms of U . The result of this operation is

U ′ =

{√
2

5−p

(
U5−p/U5−p

min. − 1
)
(U2 − U2

min.), p 6= 5
√

2 log(U/Umin.) (U2 − U2
min.), p = 5.

(30)

With this expression we can also express U ′′ in terms of U , and through (29), we can
therefore also express r′′ and θ′′ in terms of U . The expression for U ′′ is

U ′′ =
Up−5

min.

5 − p

(
(5 − p)U4−p (U2 − U2

min.) + 2U(U5−p − U5−p
min.)

)
, p 6= 5,

U ′′ = U−1 (U2 − U2
min.) + 2U log(U/Umin.), p = 5.

(31)

It is then a straightforward, if somewhat tedious exercise to verify that the equations
of motion for U , r, and θ are satisfied through the chain of substitutions.

We have plotted U(r) in figure 3.1.
It remains to compute the action of the solutions. Using (28) we can express the

action as twice the “prime” terms, i.e. those involving derivatives by σ. We express
everything in terms of U and U ′, the latter we use to reexpress the integration over
σ by integration over U .

S = Cp

∫ Umax.

Umin.

dU

U (7−p)/2

2
5−p

U2
(
U5−p/U5−p

min. − 1
)

+ U2 − U2
min.√

2
5−p

(
U5−p/U5−p

min. − 1
)
(U2 − U2

min.)
, p 6= 5,

S = C5

∫ Umax.

Umin.

dU

U

2U2 log(U/Umin.) + U2 − U2
min.√

2 log(U/Umin.) (U2 − U2
min.)

, p = 5.

(32)

The integral is simple to evaluate. The result is

S = Umax.

√
1 − U2

min./U
2
max. r(Umax.). (33)

7More precisely, when Umax. is not strictly ∞, the boundary is shifted down towards the pole.

10



Figure 1: A plot of U vs. r for the solutions (29). We have set R = Cp = 1 (R = i
for p > 4). Note that for p > 4, r diverges toward U = ∞.

The prescription for removing the divergence from the action is to perform a Legendre
transformation [10], as follows

Sreg. = S −
∫
dτ dσ ∂σ

(
YI δS

δ∂σYI

)

= S −
∫
dτ YI δS

δ∂σYI

∣∣∣∣∣
∂Σ

,

(34)

where we are using the coordinates defined in (38). We then find, using (52) and (30),

δS

δ∂σYI
=
Cp
2π

U (p−7)/2
(
Uθ̂I

)
′

=
1

2π
r(U)

(
− sin τ, cos τ, 0, . . . , 0

)
, (35)

and so ∫
dτ YI δS

δ∂σYI

∣∣∣∣∣
∂Σ

= Umax.

√
1 − U2

min./U
2
max. r(Umax.). (36)

We therefore have that
Sreg. = 0, (37)

independent of Umax. and consistent with our expectations.
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3.2 Calibrated surfaces

In the paper [12] a method of calibrated surfaces was employed to prove that the
string duals of the supersymmetric Wilson loops of general shape in the p = 3 case
had the expected regularized action, namely zero. We now show that this machinery
applies equally well to the case of general p. As a check on our work, we also show
that it applies to the solutions (29).

In order to apply the technique we express the metric of S8−p together with the
dU2 term from (23) as follows

dU2

U2
+ dΩ2

8−p =
dYIdYI

Y2
, YI = Uθ̂I , θ̂I θ̂I = 1, I = 1, . . . , 9 − p. (38)

For convenience we will rescale the xµ
q

= CpX
µ. We then have

ds2 = α′Cp

(
Y (7−p)/2dXµdXµ + Y (p−7)/2dYIdYI

)
. (39)

Now we make a split in the YI coordinates

YI = (Y m, V i), m = 1, . . . , p+ 1, i = 1, . . . , 8 − 2p, (40)

so that Y m and Xµ have the same number of components. It is clear that this can
only be done for p ≤ 4. For p > 4 we can choose instead to split the Xµ = (X Ī , V i), so
that X Ī has the same number of components as YI , and what follows is equally true
(with the appropriate relabelling of indices). We use precisely the same definition for
an almost complex structure proposed in [12]

J = JAB dX
A ∧ dXB = δµm dX

µ ∧ dY m, (41)

where X
A = (Xµ, Y m, V i). We find that the following key relations used in [12] are

equally true for the metric (39), namely

JBA J
C
B = −δµA δCµ − δmA δ

C
m,

GMNJ
M
µ J

N
ν = Gµν , GMNJ

M
m J

N
n = Gmn, GMNJ

M
i J

N
j = 0.

(42)

That being the case everything follows as in [12]. We continue by reiterating the
results of [12] in the interest of readability. One defines

P ≡ 1

4

∫
d2σ

√
hhabGMN v

M
a v

N
b ,

vMa ≡ ∂aX
M − JMN

hacǫ
cb

√
h

∂bX
N ,

(43)

where hab is a positive definite metric on the worldsheet. Using (42) one can then
show that

P =
1

2

∫
d2σ

√
hhabGMN ∂aX

M∂bX
N −

∫

Σ

J − 1

4

∫
d2σ

√
hhabGij ∂aV

i∂bV
j , (44)
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where Σ is the string worldsheet. Now suppose that vMa = 0. As can be easily checked
in conformal gauge, this condition automatically implies that the string equations of
motion and Virasoro constraints are satisfied. Further, this implies that P = 0 and
that ∂aV

i = 0. We then have that

S =
Cp
2π

∫

Σ

J, (45)

that is, we have that the action of the string worldsheet is expressible as an integral
of the closed 2-form J over the string worldsheet. This will integrate to a surface
term ∫

Σ

J =

∫

Σ

δµm d(Y
mdXµ) = Umax.

∫

∂Σ

δµm θ̂
m dXµ. (46)

Now examining the equation vMa = 0 in conformal gauge one finds

Ẋµ = U (p−7)/2 Y ′m = U (p−7)/2
(
U (θ̂m)′ + θ̂m U ′

)
. (47)

If it is true that U (p−5)/2 (θ̂m)′ → 0 as the boundary is approached, one then has that

Ẋµ(Umax.) ≃ U (p−7)/2
max. (θ̂m U ′)|Umax.

, (48)

and so

θ̂m|∂Σ =
ẋµ

|ẋ| , (49)

where xµ = Xµ(Umax.) is the Wilson loop contour. This is precisely the contour of
the supersymmetric Wilson loop in the gauge theory (2), (7). Thus we have found a
solution to the string equations of motion which also satisfies the necessary boundary
conditions. Furthermore, in conformal gauge we have that

U (p−7)/2 Y ′m =
2π

Cp

δS

δ∂σY m
, (50)

and therefore (46) also gives

S =

∮
dτ Y m δS

δ∂σY m

∣∣∣∣∣
∂Σ

, (51)

which is nothing but the divergence removed from the action by the Legendre trans-
formation [10] to give Sreg.; thus we see that the regularized action vanishes for these
solutions. Again this result is independent of the choice of cut-off in the coordinate
U .

3.2.1 Checking the circular supersymmetric solutions

We can now verify that our solution (29) obeys the equations vMa = 0 and (48),
thereby confirming our result (33). We begin by writing our solution (29) in the

13



coordinates (39). We find (for example, for p 6= 5)8

X1 = r cosψ =

√
2

5 − p

(
Up−5

min. − Up−5
)
cos τ,

X2 = r sinψ =

√
2

5 − p

(
Up−5

min. − Up−5
)
sin τ,

Y 1 = −U cos θ sinφ = −
√
U2 − U2

min. sin τ,

Y 2 = U cos θ cosφ =
√
U2 − U2

min. cos τ,

Y 3 = U sin θ = Umin..

(52)

The equations vMa = 0 in conformal gauge then reduce to

X ′µ +
(
Y 2 + V 2

)(p−7)/4
Ẏ m=µ = 0,

Y ′m −
(
Y 2 + V 2

)(7−p)/4
Ẋµ=m = 0,

Ẋµ −
(
Y 2 + V 2

)(p−7)/4
Y ′m=µ

= 0,

Ẏ m +
(
Y 2 + V 2

)(7−p)/4
X ′µ=m

= 0,

(53)

which, through use of (30) may be shown to be satisfied. Finally we note that

U (p−5)/2 (θ̂m)′ =
U2

min.

U2
r(U)

(
− sin τ, cos τ, 0, . . . , 0

)
,

U (p−7)/2θ̂m U ′ =

(
1 − U2

min.

U2

)
r(U)

(
− sin τ, cos τ, 0, . . . , 0

)
,

(54)

and so (48) is also satisfied.

3.3 Zero modes and the generalized Konishi anomaly in d = 7

It seems a contradiction that in the gauge theory analysis discussed in section 2 there
is an anomaly in the case d = 7 precluding 〈W 〉 = 1 for this theory, whereas the
string solution seems to suffer no such issue. In fact, as discussed in the introduction,
there is more to the vacuum expectation value of the Wilson loop than the regularized
action; the prefactor V stemming from integration over zero modes in the partition
function also plays a role. The issue, as regards supersymmetric Wilson loops, was
first discussed in [2], for the case p = 3. Although there appears to be no paramet-
ric freedom for the minimal area embedding of a string in an AdS space with given
boundary conditions, Zarembo argued that the supersymmetric circle may be embed-
ded into the S5 with a freedom given by a vector n ∈ S3 which chooses which S2 the
worldsheet occupies. This gives a natural reason for the cancellation of the prefactor
in 〈W 〉, as these three zero modes could cancel the effect of the basic three coming
from the AdS embedding. This reasoning is limited to the case of planar curves, and

8The p = 5 case follows similarly.
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[12] noted the lack of resolution of this problem for general curves. Specifically, in
order for the R-symmetry of the Wilson loop defined in the gauge theory to match
the string solution, these zero modes must be integrated over.

In our case we note the fact that uniquely in the case of d = 7 (i.e. p = 6) do we
have that the spherical product space S8−p is an S2. In this case we are restricted to
curves in R

2, and we will concentrate on our explicit solution for the supersymmetric
circle, although we expect the following comments to be true for general closed, planar
curves. The fact that the spherical product space is an S2 precludes the existence
of zero modes on the spherical side of the geometry, and thus, assuming the absence
of any parametric freedom in the embedding on the analogue of the AdS side of
the geometry, precludes the possible cancellation of the three basic zero modes of the
string worldsheet. We would thus expect a non-zero prefactor V ∼ λ−3/4 and therefore
our prediction for the vacuum expectation value of the Wilson loop at strong coupling
is

〈W 〉d=7 ∼
(
λ

R3

)
−3/4

, (55)

where R is a scale setting the size of the Wilson loop. This seems to be the string-side
manifestation of the generalized Konishi anomaly in d = 7 discussed in section 2. It
would be very interesting to try to recover this result from gauge theory.

The situation is extremely reminiscent of the circular Wilson loop for N = d = 4
SYM obtained by a “large” conformal transformation of the straight line. In that case,
the Wilson loop expectation value is a non-trivial function of the ’t Hooft coupling.
However, the vacuum expectation value for the loop is entirely determined by an
anomaly; namely, the conformal anomaly [11]. For the seven dimensional gauge
theory, the generalized Konishi anomaly seems to play a similar role. It is tempting
to speculate that it might similarly be possible to recover the strong coupling result
mentioned above from the gauge theory end, by reducing the problem to a matrix
model computation9.

4 Summary and outlook

In this paper we have generalized the construction of supersymmetric Wilson loops
in N = 4, d = 4 SYM at weak and strong coupling to the general case of SYM
theories with 16 supercharges in d dimensions (and in the case of d ≤ 4 (d ≤ 3)
at weak coupling, with 8 (4) supercharges). We have given two-loop perturbative
evidence and reviewed the applicability of evidence from superspace techniques, that
these loops have trivial vacuum expectation values. Using the gauge/strings duality
we have also described the 16 supercharge theory supersymmetric Wilson loops at
strong coupling and also found strong evidence of trivial expectation values; the dual
string solutions have zero regularized action. We have found the explicit fundamental
string solutions for the case of circular supersymmetric loops in general d. In the

9To this end, it might be interesting to investigate if the methods of [15] can be adapted to the
analysis of the gauge theory in d = 7.
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case of d = 7 where superspace techniques indicate a non-zero expectation value on
the gauge theory side, we have found a strong candidate dual manifestation of this
phenomena at strong coupling, namely the disappearance of string worldsheet zero
modes. Based on this we have given a prediction for the strong coupling behavior of
the vacuum expectation value of supersymmetric Wilson loops in the d = 7 theory.

Looking beyond the issues addressed in this paper, it would doubtless be interest-
ing to try and extend the present results to more general Wilson loops and to other
instances of gauge/gravity dualities. For example, for the theories we considered with
d > 4, the various UV completions were discussed in [1] (see also [13]) and involve
lifting to M-theory (in the case of odd d), or the application of S-duality in the IIB
case. We expect these theories to retain the trivial Wilson loop operators we have
constructed here as a natural consequence of coupling independence. On a different
note, it was pointed out earlier in the paper, using both perturbative as well as su-
perspace methods, that eight supercharge SYM theories in 1 ≤ d ≤ 4 admit Zarembo
loops. Clearly, this fact can be used to carry out non-trivial tests for any candidate
gravity dual for these theories.

In the special case of three spacetime dimensions, the recent developments due
to Bagger, Lambert and Gustavsson (BLG) [16, 17, 18, 19] and Aharony, Bergman,
Jafferis and Maldacena (ABJM) [20] relate the sixteen supercharge SYM theory to
superconformal Chern-Simons (SCS) theories. The N = 8 SCS theory proposed by
BLG, which can also be recovered as a special case of the ABJM model, is believed
to be related to the IR limit of the sixteen supercharge SYM theory. It is interesting
to note that Wilson loops that preserve global supersymmetries have also been con-
structed for the ABJM model in [21, 22, 23, 24]. In the present paper, we have shown
that Zarembo loops exist in the SYM theory both at weak and at strong coupling. It
thus seems plausible that one can uncover a precise relationship between the Zarembo
loops of the SYM theory and the corresponding operators in the BLG model. Per-
haps, the formal relationship between the Lagrangians of the two theories, elucidated
in [25], can prove to be fruitful to uncover this aspect of the M2/D2 duality.

On a related note, it would be extremely interesting to explore connections be-
tween Wilson loops and scattering amplitudes. The relations between these two
classes of gauge theory observables, first studied in the context of N = 4 SYM in
d = 4 [26, 27, 28, 29, 30] can potentially exist for three dimensional Yang-Mills theo-
ries as well. The matrix structure of all 2 ↔ 2 scattering amplitudes for N ≥ 4 SCS
theories was recently explored in [31]. This study includes the BLG model, which
is expected to be the strong coupling dual of the sixteen supercharge SYM theory.
A further study of Wilson loops in the three dimensional gauge theory is obviously
needed to fill the missing connections between Wilson loops and scattering ampli-
tudes both in the SYM theory as well as its dual strong-coupling description as a
SCS theory.
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A Supersymmetry of string solutions

The supersymmetry analysis of the case p = 3 is given in [32], and is rather special
due to the constancy of the dilaton. Therefore here we will present the analysis for
the cases p 6= 3.

The Killing spinor equations for the geometries (23) are obtained by demanding
that the variation of the dilatino λ and gravitino ψM vanish on the supergravity
solution. We use the “democratic formalism”10 developed in [33] (see for example
[34], appendix B therein),

δψM = DM ǫ+
eφ

16
F̃(p+2) γM Pp ǫ = 0,

δλ = ∂̃φ ǫ+
eφ

8
(−1)p F̃(p+2) Pp ǫ = 0,

(56)

where we have used the fact that the p-brane solutions have only a dilaton φ and a
(p+ 2)-form field strength F(p+2) turned on. The Killing spinor is denoted by ǫ while
γM are the real 10-d curved space gamma matrices in Lorentzian mostly positive
signature. The covariant derivative DM = ∂M + 1

4
ωabMΓab where Γa denote tangent

space gamma matrices. The constant matrices Pp are given in [34] but won’t concern
us here. Finally we have adopted the notation

F̃(p+2) ≡ FM1...Mp+2
γM1...Mp+2, ∂̃φ ≡ γM∂Mφ. (57)

By acting with γM from the left on the second equation in (56) we may eliminate the
field strength term in the first equation and obtain

DM ǫ− 1

2

sM
(3 − p)

∂̃φ γM ǫ = 0, sM =

{
1 if M = 0, . . . , p

−1 otherwise
, (58)

where we have used the fact that on the solution (23) the dilaton φ depends only on
the coordinate U , while F(p+2) = F0...p U where 0, . . . , p denote the p + 1 coordinates
x

q
.
For convenience we scale the Cp and α′ dependence out of the metric, which is

equivalent to replacing α′, Cp → 1. We also specialize to those coordinates relevant

10In the democratic formalism the number of Ramond-Ramond potentials C(n) is doubled so that
n = 0, 2, . . . , 10 for IIB and n = 1, 3, . . . , 9 for IIA. The extra potentials, in the absence of fermionic
and NS-NS fields, are simply given by the action of Hodge duality upon the field strengths.
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to the string solution (26). We then employ the following basis of one-forms

eŪ = U (p−7)/4 dU, er̄ = U (7−p)/4 dr, eψ̄ = rU (7−p)/4 dψ,

eθ̄ = U (p−3)/4 dθ, eφ̄ = U (p−3)/4 cos θ dφ,
(59)

using which the relevant components of the spin-connection are

ωŪ r̄r =
p− 7

4
U (5−p)/2, ωŪψ̄ψ =

p− 7

4
r U (5−p)/2, ωr̄ψ̄ψ = −1,

ωŪ θ̄θ =
3 − p

4
, ωŪφ̄φ =

3 − p

4
cos θ, ωθ̄φ̄φ = sin θ.

(60)

The Killing spinor equations (58) are then given by

∂U ǫ+
p− 7

8U
ǫ = 0,

∂r ǫ = 0,

∂ψ ǫ−
1

2
Γr̄ψ̄ ǫ = 0,

∂θ ǫ−
1

2
ΓŪ θ̄ ǫ = 0,

∂φ ǫ+
1

2
sin θ Γθ̄φ̄ −

1

2
cos θ ΓŪ θ̄ ǫ = 0,

(61)

and solved by

ǫ = U (7−p)/8 e
θ
2
ΓŪθ̄ e

ψ

2
Γr̄ψ̄ e−

φ

2
Γφ̄Ū ǫ0. (62)

The supersymmetry projector for the fundamental string is given by

∂τX
M∂σX

N γMN ǫ =
√

− det ∂aXM∂bXNGMN P ǫ = LP ǫ , (63)

where

P =

{
Γ0 . . .Γ9, IIA, i.e. p even

KI, IIB, i.e. p odd
, (64)

where KI = −IK, K acts by complex conjugation upon spinors while I acts as −i,
see [35, 36, 37]. On our solution (29) we find

∂τX
M∂σX

N γMN = U ′ r Γψ̄Ū + U ′ U (p−5)/2 cos θ Γφ̄Ū

+r′ r U (7−p)/2 Γψ̄r̄ + r′U cos θ Γφ̄r̄

+θ′ U r Γψ̄θ̄ + θ′U (p−3)/2 cos θ Γφ̄θ̄.

(65)

The Killing spinor also simplifies to

ǫ = U (7−p)/8 e
θ
2
ΓŪθ̄ e

τ
2 (Γr̄ψ̄−Γφ̄Ū) ǫ0. (66)

In order to find solutions to the projector equation, we find that we must remove the
τ dependence from the Killing spinor by requiring

Γr̄ψ̄ ǫ0 = Γφ̄Ū ǫ0. (67)
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The projector equation is then

e−
θ
2
ΓŪθ̄

[
U ′ r Γψ̄Ū + U ′ U (p−5)/2 cos θ Γφ̄Ū + r′ r U (7−p)/2 Γψ̄r̄ + r′U cos θ Γφ̄r̄

+θ′ U r Γψ̄θ̄ + θ′U (p−3)/2 cos θ Γφ̄θ̄

]
e
θ
2
ΓŪθ̄ ǫ0 = LPǫ0.

(68)

Expanding out the LHS of this expression and using (67) one finds

−
(
sin θ r U ′ + cos θ θ′ r U

)
Γθ̄ψ̄ ǫ0 −

(
sin θ cos θ U ′ U (p−5)/2 + θ′ U (p−3)/2 cos2 θ

)
Γθ̄φ̄ ǫ0

+
(
U ′ U (p−5)/2 cos2 θ − r′ r U (7−p)/2 − θ′ sin θ cos θ U (p−3)/2

)
Γφ̄Ū ǫ0

+
(
U ′ r cos θ + r′ U cos θ − θ′ r U sin θ

)
Γψ̄Ū ǫ0.

(69)

One then finds that the first three bracketed expressions are zero on the solution (29),
while the last bracketed expression is equal to

√
det ∂aXM∂bXNGMN , which by the

Virasoro constraint (28) is the square-root of a perfect square. In addition to (67) we
therefore also have

Γψ̄Ū ǫ0 = iP ǫ0. (70)

The two conditions (67) and (70) each reduce the supersymmetry by half, thus the
solutions respect a quarter of the original 16 supersymmetries, i.e. they are 1/4 BPS.
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