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ABSTRACT 

 

Aspirin is often prescribed in patients with acute coronary syndromes together 

with an ADP-P2Y12 inhibitor such as clopidogrel or prasugrel, an established 

treatment protocol called dual antiplatelet therapy. Although short lived, these 

drugs act irreversibly upon their targets and so are used as once-a-day 

treatments. The daily platelet turnover in healthy humans is approximately ten 

to fifteen per cent but can be considerably increased in disease conditions such 

as diabetes or chronic kidney disease. This leads to the daily emergence of an 

uninhibited subpopulation among the larger population of inhibited platelets. 

The aim of this thesis was the investigation of the role and contribution of this 

minority of uninhibited platelets in platelet aggregation and thrombus formation. 

Investigations found a nonlinear increase in arachidonic acid (AA)-induced 

aggregation in PRP containing rising proportions of uninhibited platelets mixed 

with aspirin-treated platelets. In contrast, stimulation of PRP containing mixed 

proportions of prasugrel active metabolite (PAM)-treated and uninhibited 

platelets by ADP showed a linear relationship between aggregatory responses 

and proportions of uninhibited platelets. This indicated that only uninhibited 

platelets would contribute to aggregate formation. However, confocal images of 

prelabelled platelets allowing the differentiation between inhibited and 

uninhibited platelets, revealed clustering of uninhibited platelets in the centre of 

aggregates surrounded by PAM-inhibited platelets. In contrast confocal images 

of uninhibited platelets combined with aspirin-treated platelets showed random, 

intermingled platelet distribution when stimulated by AA. Further in depth 

analyses by confocal microscopy and flow cytometry found the recruitment of 

PAM-inhibited platelets to be an active αIIbβ3-mediated process, independent of 

thromboxane A2 release. Whereas clustering of uninhibited platelets was not 

detected under flow conditions, an increase of platelet deposition with rising 

proportions of aspirin and/or PAM-free platelets was observed. These 

experiments clearly demonstrate that a general population of platelets can 

contain subpopulations that respond differently to overall stimulation of the 

population.  
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1.1. The Cardiovascular System 

The cardiovascular system - consisting of heart, blood vessels and blood - is a 

complex system evolved to efficiently distribute oxygen, nutrients, proteins, 

hormones, blood cells and waste products to and from tissues. This process is 

facilitated by the heart circulating blood through arteries, veins and capillaries 

which connect organs such as intestines, lungs and kidneys. This highly 

evolved system, in this form present only in mammals (Semple, Italiano et al. 

2011), needs constant maintenance which is facilitated by cells including 

leukocytes and platelets. 

One of the key features in maintaining this system is haemostasis. It describes 

a complex network of mechanisms that upon vascular injury causes bleeding to 

stop and consequently keeps blood inside the vessels. While turning blood into 

a solid state at the bleeding site, it keeps the rest of the blood liquid and is 

therefore a lifesaving system. A recent analysis indicated that disorders of this 

system (ischemic heart disease and stroke) have been a major burden for the 

last decades, accounting for the two most common causes of mortality in the 

world. (Lozano, Naghavi et al. 2012) Central to many diseases of the 

cardiovascular system are platelets, which, when inappropriately activated, can 

cause complications such as myocardial infarction and stroke.  

This thesis will discuss the investigation of the pharmacology of antiplatelet 

drugs. However, I would like to start this work with an introduction to the 

complexity of the haemostatic response, followed by a brief summary of the 

versatile roles of platelets beyond their role as haemostatic effector cells.  

  



19 
 

1.2. Haemostasis 

The haemostatic system consists of three main parts that interact to deliver a 

fine tuned haemostatic response. Upon vessel injury, the underlying 

extracellular matrix, usually covered by the endothelium layer, gets exposed. 

This matrix contains a number of pro-haemostatic proteins such as collagen, 

tissue factor (TF) and von Willebrand factor (vWf). vWf’s coiled structure allows 

capture of platelets at high velocity, slows them down and facilitates contact to 

collagen and TF embedded in the matrix. (Clemetson 2012) This leads to 

platelet activation and thrombin generation, which in turn recruits further 

platelets into the site of injury and triggers the coagulation cascade and 

consequently the conversion of fibrinogen into a fibrin mesh. In addition to the 

formation of a platelet clot and a fibrin mesh which turns liquid blood into a jelly-

like state, blood vessels constrict due to platelet derived mediators such as 

thromboxane (Tx) A2 and serotonin, and other mechanisms. These events lead 

to local stasis and initiate the wound healing process. (Nurden 2011) 

Platelets are involved in all three processes: the vascular spasm, coagulation 

and thrombus formation. Thus they are central to many pathologies of the 

vascular system and are therefore the focus of many therapeutic strategies. 

However, platelets are not only involved in haemostatic responses, they play 

roles in many other body functions.  
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1.3. The platelet  

Platelets were described for the first time some 150 years ago. (Robb-Smith 

1967) A few years later the observations and subsequent drawings of Bizzozero 

substantially added to our knowledge about platelets. In particular, for the first 

time, he attributed platelets a role in haemostasis and thrombosis. (Brewer 

2006) From that time until today, our knowledge has increased substantially, 

covering many aspects of platelet biology, their formation, maturation and 

clearance as well as their contribution to many physiological processes, in 

particular haemostasis. 

1.3.1. Platelet formation, maturation and clearance from blood 

Although it has long been established that megakaryocytes, highly specialised 

haematopoietic cells, give rise to platelets, the underlying mechanism is not 

completely understood. It has been observed that so called proplatelets, which 

form as beaded filamentous protrusions of megakaryocytes, give rise to 

individual platelets by fragmentation. They are formed in the bone marrow, the 

blood stream and the lungs at a rate of approximately 3.5 x 1010 per litre blood 

per day. (Harker and Finch 1969) 

Soon after platelets are formed they start to exhibit markers for senescence and 

death. These include loss of ribonucleic acid (RNA), reduced response to 

collagen, (Hirsh, Glynn et al. 1968) shedding of receptors such as glycoprotein 

(GP) Ibα (Hartley, Savill et al. 2006) and GPVI, (Bergmeier, Rabie et al. 2004) 

reduced matrix metalloproteinase activity (Hartley, Savill et al. 2006) and loss of 

membrane integrity. (Bertolini, Porretti et al. 1993) 

The exact mechanisms involved in platelet clearance from the circulation are 

not fully understood but early studies of platelet survival and consumption 

identified two fundamental processes that result in distinctly different kinetics. In 

patients with high platelet turnover, the signal intensity of labelled platelets 

declines in an exponential manner, indicating that platelets involved in 

thrombotic events are randomly cleared from the circulation regardless of their 
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age. In contrast, in healthy subjects the signal diminishes in an almost linear 

fashion indicating a controlled mechanism of platelet clearance. (Dassin, 

Najean et al. 1978) Early studies proposed the “multiple-hit” model which is 

based on the assumption that platelets involved in thrombotic events get 

damaged (i.e. are hit). (Mustard, Rowsell et al. 1966) Platelets would be able to 

withstand a number of hits before the damage would be recognised and 

platelets would be cleared by the mononuclear phagocyte system. (Murphy, 

Robinson et al. 1967) This theory was supported by the observation of loss of 

platelet volume, membrane changes and reduction in haemostatic efficacy. 

(Rand, Greenberg et al. 1981) However, more recently, apoptosis, a clearance 

mechanism long thought exclusively present in aged or damaged nucleated 

cells, has been shown in anucleated cells including platelets. Via the intrinsic 

apoptosis pathway, platelet can undergo programmed cell death which provides 

a potential mechanism for the clearance of platelets from the circulation. 

(Mason, Carpinelli et al. 2007; Gyulkhandanyan, Mutlu et al. 2012) Another 

study provided an additional mechanism for the clearance of (at least) chilled 

platelets after transfusion. Following chilling, but also in sepsis, GPIb-IX 

complexes form clusters on the platelet membrane and expose β-N-

acetylglucosamine residues, linked to glycans on the GPIbα subunit. These are 

recognised by lectins on hepatocytes and Kupffer cells which eventually leads 

to the clearance of platelets from the blood stream. (Hoffmeister, Josefsson et 

al. 2003; Grozovsky, Hoffmeister et al. 2010) 

Studies from the 1960s and 1970s using Cr51-labelled platelets showed that the 

average platelet lifespan, from its formation to its clearance from the circulation 

is 9-11 days. (Aas and Gardner 1958; Baldini, Costea et al. 1960) Consequently 

the daily platelet turn over in healthy subjects is up to approximately 10 per cent 

and can be dramatically increased in disease conditions such as type-2 

diabetes mellitus, (Ferguson, Mackay et al. 1973; Dassin, Najean et al. 1978; 

Paton 1979) chronic kidney disease and hepatic failure. (Abrahamsen 1968) 
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1.3.2. Platelet morphology 

Platelets, discoid anucleated cell fragments derived from megakaryocytes, are 

the smallest cellular blood components being only approximately 2 µm in 

diameter. Two important features of platelets are their cytoskeleton, which upon 

activation by stimuli including collagen, thrombin and TxA2 undergoes 

reorganisation, leading to shape change from a smooth discoid shape to the 

formation of pseudopodia and subsequently to a spiky irregular shape that 

increases the platelet surface area. (Zucker and Nachmias 1985; George 2000) 

Platelet granules release their contents to facilitate a wide range of reactions 

important in haemostasis but also other processes including inflammation and 

angiogenesis. There are two types of secretory granules; alpha-granules 

containing proteins including fibrinogen, vWf, growth factors, P-selectin and 

chemokines, (Handagama, Rappolee et al. 1990; Harrison, Savidge et al. 1990) 

and dense granules containing ions such as Ca2+, the nucleotides adenosine 

diphosphate (ADP), adenosine triphosphate (ATP) and guanosine triphosphate 

(GTP), polyphosphates and serotonin and histamine. (Holmsen and Weiss 

1979; Fukami 1992; Smyth, McEver et al. 2009) 
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1.4. Platelet functions  

Platelets are intensively researched blood components, particularly in the 

context of haemostasis and thrombosis. However, particularly in recent years 

roles for platelets in physiology and pathology other than haemostasis and 

thrombosis have become increasingly apparent. Classically, these platelet 

functions have been viewed separately from their role in haemostasis. However, 

with progressing investigation of platelet biology, interactions between these 

functions are increasingly found. The following section will give a brief overview 

of platelet functions other than those involved in haemostasis and thrombosis, 

which will be discussed in detail later. 

1.4.1. Platelet functions other than haemostasis/thrombosis 

It has been shown that platelets play an important role in regulating the semi-

permeability of the endothelium lining the vessel wall. This observation has 

been made in induced thrombocytopenia, in which increased leakage of 

albumin out of lungs and ears of sheep and rabbits was reversed upon 

transfusion of platelets back into the animals. (Aursnes 1974; Lo, Burhop et al. 

1988) Studies have shown several mechanisms supporting the regulation of 

vessel permeability, which include mechanical occlusion of potential leaks by 

platelets lining the vessel wall. (Gimbrone, Aster et al. 1969; Kitchens and 

Weiss 1975) Furthermore, platelets contain a vast array of growth factors, and 

in total more than 300 proteins in their granules that can be secreted upon 

stimulation. (Coppinger, Cagney et al. 2004)  Secreted ADP (Paty, Sherman et 

al. 1992) and serotonin (Shepro, Welles et al. 1984) can stimulate proliferation 

of endothelial cells in vitro and angiopoietin-1 and S1P (Schaphorst, Chiang et 

al. 2003) can modulate permeability. Besides regulating endothelial 

permeability, platelets can promote wound healing, in particular via generation 

of thrombin which, upon formation of a blood clot to prevent blood loss, acts as 

chemo-attractant for macrophages, (Bar-Shavit, Kahn et al. 1986) stromal- 

(Maruyama, Hirano et al. 2000) and endothelial cells. (Gospodarowicz, Brown 

et al. 1978) Furthermore, growth factors released from their storage pools 

support angiogenesis. (Brill, Elinav et al. 2004; Rhee, Black et al. 2004) Via C-
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type lectin-like receptor 2 signalling platelets not only contribute to 

angiogenesis, but also the developmental separation between blood and lymph 

vessels as was shown in mice deficient in C-type lectin-like receptor 2 in which 

blood filled lymph nodes were found. (Bertozzi, Schmaier et al. 2010; Suzuki-

Inoue, Inoue et al. 2010; Osada, Inoue et al. 2012) 

Apart from maintaining vascular integrity and specifically the basal barrier 

function of the endothelium, platelets can also promote the reverse and 

increase endothelial permeability, causing oedema formation, which is one of 

the hallmarks of inflammation. (Cloutier, Pare et al. 2012) Indeed platelets have 

been found to have significant roles in inflammation and immunity. Whereas 

platelets do not adhere to the endothelium under normal conditions, they can 

adhere to the endothelium in inflammation. (Chen and Lopez 2005) Platelets 

activated by the inflamed endothelium and by soluble mediators, can express 

adhesion molecules on their surface and release mediators such as thrombin 

and serotonin that activate the endothelium, leading to increased expression of 

adhesion molecules such as vWf and P-selectin on the endothelium surface, 

thereby facilitating leukocyte and platelet adhesion. (Mayadas, Johnson et al. 

1993; Chen and Lopez 2005; Esmon, Xu et al. 2011) Furthermore, activated 

platelets directly interact with leukocytes, form leukocyte-platelet-endothelium 

aggregates and support leukocyte migration from the vessel lumen into the 

tissue. (Smyth, McEver et al. 2009; van Gils, Zwaginga et al. 2009) This might 

be particularly important under high shear conditions where adherent platelets 

on the endothelium have been shown to support neutrophil accumulation and 

migration. (Kuijper, Gallardo Torres et al. 1996) Besides supporting leukocyte 

extravasation, interaction between activated platelets and leukocytes can lead 

to up-regulation of monocytic TF expression thereby providing a trigger for the 

initiation of coagulation. (Esmon, Xu et al. 2011)  

Platelets not only support migration of leukocytes, but can recognise 

immunoglobulins themselves. (Thai le, Ashman et al. 2003; Kasirer-Friede, 

Kahn et al. 2007) In fact, it has been shown that platelets express six different 

classes of toll-like receptors (TLR) (1, 2, 4, 5, 6 and 9) which enable them to 

sense a broad range of lipopolysaccharides, RNAs and CpG-DNA. (Shiraki, 
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Inoue et al. 2004; Garraud and Cognasse 2010) Research on TLR4 has found 

two novel platelet mechanisms: platelet activation via TLR4 induces the 

formation of neutrophil extracellular traps which can capture and kill pathogens. 

(Brinkmann, Reichard et al. 2004; Clark, Ma et al. 2007) Furthermore, 

stimulation of TLR4 in platelets leads to signal dependent splicing of pre-

messenger RNA and subsequent synthesis of new proteins. (Brown and 

McIntyre 2011) Due to their broad range of interactions with pathogens and with 

effector cells of the immune system, platelets are becoming considered a bridge 

between haemostatic events, innate and adaptive immunity. Besides their 

haemostatic effector functions platelets alter endothelial permeability, recognise 

pathogenic patterns via their TLRs and can activate the complement system via 

P-selectin dependent pathways. (Peerschke, Yin et al. 2010) On the other hand, 

platelets express interleukin1-beta (Lindemann, Tolley et al. 2001) and release 

many cytokines and cluster of differentiation (CD) 40L, which are regulators of 

adaptive immunity. (Elzey, Sprague et al. 2005; Elzey, Ratliff et al. 2011) 

Furthermore, as mentioned above, by contributing to lymphoangiogenesis, 

platelets affect maturation of lymphocytes.  

Promotion of angiogenesis is a function also relevant for tumour growth. Due to 

their increased growth rates, tumours are in permanent need of high amounts of 

oxygen and nutrition. Platelets store a number of relevant proteins associated 

with angiogenesis, including platelet derived growth factor, vascular endothelial 

growth factor, fibroblast growth factor and insulin like growth factor which can 

be released upon stimulation. (Maynard, Heijnen et al. 2007) Studies 

investigating the role of vascular endothelial growth factor have identified its 

particularly important role in tumourigenesis. (Sharma, Sharma et al. 2011) 

One prerequisite for successful metastasis is sufficiently long survival of cells in 

the bloodstream combined with adhesion allowing migration into the tissue. 

(Gasic, Gasic et al. 1973) To achieve this, tumour cells exploit interaction 

mechanisms usually occurring between platelets and leukocytes - by interacting 

with platelets via a surrounding fibrin web similar to a thrombus. (Palumbo, 

Kombrinck et al. 2000; Palumbo and Degen 2007) This web allows the tumour 

cells to evade detection by the immune system. (Palumbo, Talmage et al. 2005) 
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Moreover, tumour cells bind platelets to cover themselves thereby preventing 

detection while exploiting the platelets’ adhesion to the endothelium to arrest 

and migrate. (Palumbo, Talmage et al. 2005)  

The above mentioned platelet functions highlight their versatility. Interestingly, 

the mechanisms from activation to the execution of their effector functions are 

always based on the same patterns, highlighting the platelet’s evolutionary 

origin as an immune cell that evolved into a highly specialised haemostatic 

effector cell. (Weyrich, Lindemann et al. 2003) Beyond these roles platelets 

have been attributed roles in neurological disorders such as depression, 

epilepsy, Alzheimer’s disease and schizophrenia. Similar to neurons they 

metabolise the neurotransmitters serotonin, dopamine and γ-aminobutyric acid. 

(Sherif 1994; Asor and Ben-Shachar 2012; Marazziti, Landi et al. 2013) 
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1.4.2. Haemostasis 

1.4.2.1. Vascular spasm 

Vessel wall injury is sensed by local nociceptors that immediately cause 

constriction of the damaged blood vessel to minimise the local blood volume 

and consequently reduce blood loss. Simultaneously this increases vascular 

resistance and therefore increases the local shear forces on platelets. Vascular 

spasm is not only triggered by nociceptors but also by mediators released from 

the endothelium and platelets, including TxA2, serotonin and ATP. All these 

stimuli promote an increase in intracellular Ca2+-levels causing constriction of 

smooth muscle cells. 

1.4.2.2. Primary haemostasis (Platelet aggregation) 

In flowing blood platelets are present as single inactive particles. Their inactive 

status is maintained by soluble factors including NO and prostaglandin (PG) I2 

released from healthy endothelium. (Jin, Voetsch et al. 2005) However, in the 

event of vessel wall damage platelets are exposed to the sub-endothelial matrix 

proteins, collagen, vWf and thrombin, formed from pro-thrombin following 

exposure of TF within the vessel wall. (Clemetson 2012) At sites of vascular 

injury fast flowing platelets are initially captured by vWf which effectively binds 

the platelet receptor GPIb under high shear conditions. (Bergmeier, Piffath et al. 

2006) An important property of vWf is its shear sensitive coiled structure that 

unwinds under elevated shear, enhancing its affinity to GPIb. (Auton, Zhu et al. 

2010) Captured platelets establish contact to collagen via the integrin α2β1 and 

the receptor GPVI. Upon platelet activation by collagen via GPVI but not α2β1, 

(Asselin, Gibbins et al. 1997) or thrombin via proteinase activated receptor 

(PAR)-1 and PAR-4, platelets synthesise TxA2, dependent upon 

cyclooxygenase (COX) activity, and release their granule content including ADP 

from internal stores. The secondary mediators TxA2 and ADP act on TP 

receptors or P2Y12 and P2Y1 receptors, respectively. (Clemetson 2012) 

Whereas activation of the TP or P2Y1 receptors results in elevation of 

intracellular calcium levels and consequent shape change, activation of the 

P2Y12 receptor causes inhibition of adenylyl cyclase and subsequent 
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suppression of cyclic adenosine monophosphate (cAMP)-formation. (Li, 

Delaney et al. 2010) These changes cause increased platelet responsiveness 

and activation. As a consequence integrin αIIbβ3, a key integrin facilitating tight 

sustained platelet-platelet contacts, undergoes conformational changes and 

clustering, thereby enhancing its affinity and avidity. (Hato, Pampori et al. 1998) 

These above mentioned mechanisms of platelet activation enable platelets to 

form and perpetuate stable aggregates, thereby supporting haemostasis in 

healthy blood vessels. 

1.4.2.3. Secondary haemostasis (Coagulation) 

Coagulation describes the complex network of processes that results in the 

conversion of soluble fibrinogen into a fibrin mesh thereby turning liquid blood 

into a jelly-like clot. 

Central to coagulation is the coagulation cascade, a series of enzymatic 

conversion of so-called coagulation factors (F). Two signal transduction 

branches, the extrinsic and the intrinsic pathways converge in the activation of 

FX (FXa), which in turn converts pro-thrombin into thrombin which leads to the 

formation of fibrin. (Johari and Loke 2012) Whereas the extrinsic pathway is 

initiated by the exposure of TF upon vessel wall damage, forming a complex 

with FVII, (Bachli 2000; Mackman, Tilley et al. 2007) the intrinsic pathway is 

started with the activation of FXII. (Renne, Schmaier et al. 2012) An overview 

over the coagulation cascade is shown in figure1.1. 
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Figure 1.1: The coagulation cascade and its interaction with platelets. 

The coagulation cascade consists of two pathways – the extrinsic and the intrinsic 
pathway – that converge into one common pathway. Whereas the extrinsic pathway 
is triggered by exposure of TF, the intrinsic pathway is triggered by the plasma 
contact system involving FXII. Both pathways lead to activation of FX, thereby 
forming FXa, which in turn facilitates the formation of thrombin from prothrombin and 
the subsequent formation of fibrin. Activated platelets provide a surface for 
coagulation complex formation which facilitates the enzymatic activation of down-
stream factors. Moreover, platelets store and release molecules involved in the 
coagulation cascade, such as FV and fibrinogen.  

 

Platelets play an important role in coagulation as they contain a number of pro-

coagulant molecules which are released upon activation such as FV and 

fibrinogen which are stored in and secreted from α-granules. (Kaplan, 

Broekman et al. 1979; Hayward, Furmaniak-Kazmierczak et al. 1995) Recently, 

polyphosphates, which can be released from platelets, (Ruiz, Lea et al. 2004) 

have attracted attention as it was found that they have a role in coagulation by 

contributing to activation of FXI and acceleration of thrombin generation. 

(Kornberg, Rao et al. 1999; Smith, Mutch et al. 2006) Furthermore, activated 
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platelets provide a pro-coagulant surface for coagulation factors on their 

membrane surface, thereby supporting the formation and function of 

coagulation complexes. (Hemker, van Rijn et al. 1983; Dale 2005)  

Depending on the local vascular “properties”, in particular shear rate, 

coagulation factors and platelet aggregation play different roles in normal 

haemostasis. In veins coagulation factors, thrombin and fibrinogen play an 

important role as they are not flushed away and can therefore accumulate. In 

contrast, in arterial settings these factors are easily diluted, but platelets are 

constantly transported to the site of injury at a high rate and subsequently 

activated (also by shear). (Hanson and Sakariassen 1998) 
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1.5. Thrombosis 

Thrombosis describes the formation of a blood clot, a thrombus, inside a blood 

vessel leading to obstruction of the blood flow. The same mechanisms 

facilitating haemostasis upon vessel wall damage are responsible for the 

development of a thrombus, a pathological “haemostatic response”, where 

platelets and/or coagulation factors are inappropriately activated. 

Depending on the site of thrombosis its characteristics – determined by vascular 

factors - are different. 

In the following section three different types of thrombosis will be discussed. In 

all three types - venous thrombosis, atrial fibrillation and atherothrombosis – 

platelets play particular roles. However, whereas venous and atrial thrombosis 

seems to be driven mainly by coagulation factors, atherothrombosis is largely 

dependent on platelet activation and aggregation. 

1.5.1. Venous thrombosis 

The causes of venous thrombosis – the formation of a blood clot inside a 

venous vessel – are poorly understood. In physiological haemostasis, platelet 

activation and exposure of TF triggers the coagulation cascade which leads to 

the activation of thrombin and consequent formation of a fibrin mesh. 

(Mackman, Tilley et al. 2007) Vessel wall damage and with it the exposure of 

pro-thrombotic proteins, such as collagen, vWF and TF, is the main trigger in 

arterial thrombosis; in contrast the stimuli in venous thrombosis are less clear. 

However, three main contributors seem to be inflammation and therefore 

expression of pro-thrombotic proteins on the endothelial cells and stasis, which 

leads to accumulation of soluble pro-thrombotic proteins such as thrombin 

which would otherwise be diluted by the blood flow. (Lopez, Kearon et al. 2004; 

Fox and Kahn 2005; Wakefield and Henke 2005)  

A common form of venous thrombosis is deep vein thrombosis, which is also 

linked with complications such as pulmonary embolism. Therefore, deep vein 

thrombosis and pulmonary embolism are collectively termed venous 
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thromboembolism. Venous thrombi are usually red in colour as they trap many 

red blood cells within the fibrin mesh.  

According to National Institute for Health and Care Excellence (NICE) 

guidelines (http://www.nice.org.uk/nicemedia/live/13767/59711/59711.pdf 2014) 

patients identified to be at risk of venous thromboembolism are usually 

prescribed mechanical prophylaxis (such as compression, mobilisation and anti-

embolism stockings) or pharmacological prophylaxis such as fondaparinux 

sodium or low molecular weight heparin. In addition to above mentioned 

anticoagulants, the oral anticoagulants apixaban, dabigatran etexilate, and 

rivaroxaban are recommended for the prophylaxis of venous thromboembolism 

after knee and hip replacement. In acute situations of venous thromboembolism 

low molecular heparin is used. If required this treatment can be extended by 

oral vitamin-K antagonists such as warfarin. 

Heparin has to be continued for at least 5 days. 

(http://www.medicinescomplete.com/mc/bnf/current/PHP1442-heparin.htm) 

1.5.2. Atrial fibrillation 

In atrial fibrillation cardiac electric impulses, normally generated by the sinuatrial 

node, are dysregulated by overwhelming spontaneous atrial electrical 

discharges. (Fuster, Ryden et al. 2001) Consequently, no coordinated, 

organised electrical conduction of the electrical signal to the myocardium, and 

no coordinated contraction of the myocardium are achieved, leading to 

inefficient blood transport. This may cause stasis or turbulent blood flow that 

allows the accumulation of pro-thrombotic factors. (Li, Lai et al. 1994; Goldman, 

Pearce et al. 1999) The mechanisms causing thrombosis and potentially 

embolisation (particularly in the brain) in atrial fibrillation seem to be very similar 

to those leading to venous thromboembolism. Treatment of atrial fibrillation 

includes electrical cardioversion, pacing and pharmacological intervention 

whereas prevention of thromboembolism in atrial fibrillation patients usually 

includes oral anticoagulation such as warfarin. (Fuster, Ryden et al. 2001; 

Mandzia and Hill 2013)  
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1.5.3. Atherothrombosis 

Unlike venous thromboembolism, which according to our current understanding 

can frequently occur unprovoked, atherothrombosis is usually a resulting 

complication of atherosclerosis. 

Atherosclerosis is a progressive inflammatory disease of the arterial vasculature 

and often takes years to develop. (Ross 1999) Its progression is influenced by a 

number of factors that can help to predict the extent and the likelihood of 

complications such as myocardial infarction, stroke, coronary artery disease, 

peripheral artery disease or chronic heart disease. Besides genetic 

predispositions, sex and age, smoking, lack of physical activity and abnormal 

cholesterol levels together with diabetes, obesity and high blood pressure are 

risk factors that have been identified to be connected with the development and 

progression of atherosclerosis. (Goff, Lloyd-Jones et al. 2013) In the search for 

new therapeutic targets, the cellular and molecular mechanisms underlying 

atherosclerosis have been studied intensively. Endothelium dysfunction in 

response to prolonged exposure to all risk factors but in particular to 

hypercholestolemia is thought to be the first step in its progression. (Deanfield, 

Halcox et al. 2007) However, observations that changing to a low cholesterol 

diet does not stop the progression of the disease, favours the theory that low-

density lipoprotein (LDL) alone does not initiate the disease although it may 

enhance its progression. (Shepherd, Cobbe et al. 1995) Shear patterns seem to 

play a central role in atherogenesis. In middle- to big-sized arterial vessels at 

sites of vessel branches, bifurcations or curvatures shear forces are lower and 

flow is turbulent rather than laminar, (Cunningham and Gotlieb 2005) leading to 

poorly aligned endothelial cells and upregulation of adhesion molecules such as 

vascular cell adhesion molecule 1, P-selectin, E-selectin and intercellular 

adhesion molecule 1 (Hahn and Schwartz 2009) This particular local 

environment encourages monocyte and lymphocyte adhesion and their 

subsequent migration into the intima of the vessel. (Weber and Noels 2011) The 

earliest form of atherosclerosis, fatty streaks, is already present in infants and 

children and are purely inflammatory lesions containing T-lymphocytes and 

monocytes only. (Grundtman and Wick 2011) Inside the intima monocytes 
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undergo maturation and become macrophages. LDL converted to oxidised LDL 

becomes a ligand for macrophage expressed scavenger receptor, which 

facilitates rapid uptake of oxidised LDL resulting in the formation of so called 

foam cells. (Kita, Kume et al. 2001) By secretion of chemokines, the continuous 

entry, survival and replication of monocytes and lymphocytes is maintained or at 

least supported.  Upon activation leukocytes inside the plaque release 

inflammatory markers that amplify the inflammatory response. These include 

stimuli causing apoptosis in macrophages contributing to the formation of a 

necrotic core. (Clinton, Underwood et al. 1992) The proliferative environment 

inside the plaque causes smooth muscle cell migration and proliferation into the 

lesion, the formation of an extracellular matrix and fibrous cap that can lead to 

expansion of the plaque into the lumen of the vessel. However, the highly 

inflamed fibrous cap can become unstable, particularly due to expression of 

matrix metalloproteinases and (changing) high blood pressure, leading to 

erosion of the cap and eventually plaque rupture. (Galis, Sukhova et al. 1994; 

Marfella, Siniscalchi et al. 2007) This releases a large amount of highly pro-

thrombotic contents into the vessel lumen where they can strongly and rapidly 

activate platelets.  

In atherosclerosis, or atherothrombosis, respectively, the same mechanisms 

that lead to platelet aggregation in haemostasis (discussed earlier) can cause 

inappropriate platelet activation at sites of plaque rupture, occluding the blood 

vessel and leading to complications such as myocardial infarction (MI) and 

stroke. 

In order to prevent the reoccurrence of atherothrombotic events in patients at 

risk, a number of antiplatelet drugs have been developed and tested in various 

patient groups. 
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1.6. Platelet inhibitors 

1.6.1. Aspirin 

Aspirin, or acetylsalicylic acid, is a synthetic compound that is derived from the 

naturally occurring substance salicylic acid. Salicylic acid is found in the bark of 

some trees such as the willow and has been used for therapeutic purposes for 

more than 2000 years. However, it wasn’t until the late 19th century that the 

highly irritant salicylic acid found its way into the laboratory where an acetylated 

- and therefore less toxic - form was synthesised to form acetylsalicylic acid. 

This was commercially produced by Bayer from 1899. (Sneader 2000) 

Since then aspirin has been used by millions of patients for its analgesic, 

antipyretic, anti-inflammatory and anti-thrombotic properties. All these effects 

are mediated through its blockade of prostanoid production. (Antman, DeMets 

et al. 2005) The formation of these prostanoids starts at the cell membrane 

where phospholipase A2 releases arachidonic acid (AA) from membrane 

phospholipids. Among other enzymes, PGH synthase (present in two isoforms 

COX-1 and COX-2) uses AA as substrate for its enzymatic activity. PGH 

synthase converts AA by its cyclooxygenase activity into an intermediate 

species PGG2, which is then further metabolised into PGH2 by PGH’s 

peroxidase activity. PGH2 serves as substrate for many specific isomerases in 

the formation of prostaglandins PGE2, PGD2, PGF2α, PGI2 and TxA2. (Smith 

1992) Formed TxA2, released from activated platelets can bind to the platelet 

TP-receptor thereby causing platelet activation. (Figure 1.2) 
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Figure 1.2: The formation of TxA2 and its inhibition by aspirin. 

AA is formed from membrane phospholipids by phospholipase A2. The conversion of 
AA into PGG2 is targeted by aspirin, which acetylates the catalysing enzyme COX 
thereby inhibiting the downstream formation of PG inclunding PGI2 and TxA2. In the 
absence of aspirin, formed TxA2 is released and subsequently binds the platelet TP 

receptor thereby activating platelets. 

 

The mechanism of action by which aspirin inhibits prostanoid production was 

discovered by Sir John Vane. (Vane 1971) It acts on COX to acetylate the 

serine 529 residue resulting in a conformational change of the active site of 

COX-1 and consequent inhibition of binding of AA. (Loll, Picot et al. 1995)  

Upon ingestion, aspirin is rapidly absorbed from the stomach and small intestine 

reaching a plasma peak after approximately one hour. (Patrono, Coller et al. 

2004) It is then rapidly metabolised by esterases in the gut, liver and blood and 

cleared from the circulation within 2 hours. (Rowland, Riegelman et al. 1967) 

However, as aspirin irreversibly acetylates and blocks the COX-1 enzyme in 

platelets, and as platelets have no nucleus and are therefore limited in their 

ability to generate new COX-1 enzyme, the inhibitory effects of aspirin on 

platelets last for their entire life span of 7-12 days. (Burch, Stanford et al. 1978) 
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So despite aspirin having a short pharmacokinetic half-life it has a permanent 

pharmacodynamic effect upon platelets. 

Although aspirin inhibits each platelet for its entire life span, its cardiovascular 

protection is limited as the human body turns over approximately ten percent of 

its platelets every day. As only a small proportion of uninhibited platelets are 

required for a normal haemostatic response, the actual anti-thrombotic effect of 

aspirin is short lived. (Di Minno, Silver et al. 1983) Thus it is important to adhere 

to drug dosing regimens. Usually aspirin is prescribed as a “once-a-day” drug.  

Nowadays aspirin is the first line antiplatelet medication for a number of 

cardiovascular complications such as MI and unstable angina. More than 20 

years ago aspirin was shown to reduce the 5-week mortality rate by 25% and 

the rate of non-fatal re-infarction and stroke by 50% without higher major 

bleeding rates post-MI, and reduced the risk of MI and mortality in unstable 

angina. (ISIS-2 Collaborative Group 1988; The RISC Group 1990; Wallentin 

1991) Many studies have subsequently investigated the effects of aspirin in the 

secondary prevention of cardiovascular events and reported mixed outcomes. 

However, the Antithrombotic Trialists’ Collaboration has performed a meta-

analysis of all trials producing a clinical data set of more than 135,000 patients. 

This analysis found a significant benefit of chronic aspirin therapy against the 

reoccurrence of cardiovascular events after MI, stable and unstable angina and 

percutaneous coronary intervention (PCI). Furthermore, a beneficial effect was 

observed for doses ranging from 75 mg to 150 mg daily but revealed there was 

a higher toxicity with higher aspirin doses without additional protection. 

(Antithrombotic Trialists' Collaboration 2002) On one hand, aspirin 

administration in secondary prevention of MI or stroke reduces cardiovascular 

events by 20%; on the other hand, it increases the frequency and severity of 

bleeding complications. However, in secondary prevention, the risk of these 

bleeding complications is 20 to 50-fold lower than the risk of thrombotic events 

and the use of aspirin is therefore justified. (Patrono 2013) 

The successful trials of aspirin in secondary prevention of cardiovascular events 

provoked the investigation of the use of aspirin in primary prevention. Trials in 
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low-risk populations demonstrated a benefit of aspirin in primary prevention with 

regards to thrombotic events but there were associated increases in bleeding 

and haemorrhagic strokes. (Steering Committee of the Physicians' Health Study 

Research Group 1989; Antiplatelet Trialists' Collaboration 1994; Hansson, 

Zanchetti et al. 1998) Meta-analysis of nine trials investigating aspirin in primary 

prevention found that whereas the benefits of aspirin in secondary prevention of 

thrombotic events outweigh the risk of adverse events, the situation in primary 

prevention in individuals without pre-existing vascular disease, in particular in 

people at low risk of experiencing atherothrombotic events, is still unclear. The 

risk of bleeding complications might equal or exceed the benefit provided by 

protection against thrombosis. Therefore, aspirin therapy in primary prevention 

can neither be advised nor rejected for routine use without establishing further 

long-term benefits of aspirin therapy. (Patrono 2013)  

In cardiovascular disease the beneficial effect of aspirin is mediated by 

inhibition of the formation of the secondary mediator TxA2 - which is otherwise 

released upon platelet activation – thereby blocking the amplification of pro-

thrombotic pathways and inducing vasoconstriction. The effects of TxA2 are 

counteracted by PGI2 which is released by endothelial cells. PGI2, acting 

through IP receptors, promotes vasodilation and keeps platelets in a resting 

state. Inhibition of PGI2 by aspirin potentially increases the thrombotic risk. 

However, in order to shift the TXA2-PGI2 balance towards an anti-thrombotic net 

effect, low doses of aspirin (below 100mg) are administered. While this dose is 

sufficient to inhibit platelet COX and therefore inhibits it for its entire life span, 

endothelial COX – required for PGI2 formation - is regenerated shortly after an 

aspirin dose. (Ritter, Cockcroft et al. 1989)  

The use of aspirin, in particular at higher doses (>100 mg) is associated with 

adverse events that range from nausea and gastric ulcers to bleeding 

complications. (Serebruany, Steinhubl et al. 2005) However, even 

administration of low dose aspirin is associated with an increased risk of 

bleeding, in particular gastrointestinal bleeds. (The SALT Collaborative Group 

1991) Furthermore, aspirin administration can cause renal toxicity and 

haemorrhagic stroke. 
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1.6.2. P2Y12 inhibitors 

The secondary mediator ADP, released from dense granules of activated 

platelets plays a crucial role in aggregation. It mediates its effects via two 

seven-transmembrane G-protein coupled receptors of the P2Y receptor class – 

P2Y1 and P2Y12. ADP signalling through the P2Y1 receptor - which is coupled to 

the G-protein Gq - leads to a quick and short lived platelet response, causing 

intracellular calcium mobilisation and shape change resulting in transient 

aggregation. (Gachet 2006) The importance of the P2Y12 pathway in platelet 

aggregation is highlighted by the therapeutic application of antiplatelet drugs 

targeting the P2Y12 receptor. Signalling through P2Y12 - which is coupled to the 

inhibitory Gi-protein - leads to inhibition of adenylyl cyclase, and consequent 

suppression of cAMP-levels. (Gachet 2006) It induces platelet aggregation and 

– most importantly - amplifies and sustains the aggregation response induced 

by any other agonist. (Hechler, Cattaneo et al. 2005) However, simultaneous 

signalling through both, P2Y1 and P2Y12 are required for normal platelet 

aggregation. (Jin and Kunapuli 1998)  

1.6.2.1. Ticlopidine 

Ticlopidine, an orally available inhibitor of the thienopyridine class, was the first 

available drug to inhibit the P2Y12 receptor. It is a pro-drug that requires a two-

step metabolism by hepatic P450 cytochromes to be converted into its active 

metabolite. (Farid, Kurihara et al. 2010) In clinical use it had the drawback of 

high toxicity resulting in frequent and severe side effects such as thrombotic 

thrombocytopenic purpura. (Steinhubl, Tan et al. 1999) Due to these side 

effects it was soon substituted by the more refined clopidogrel. 

1.6.2.2. Clopidogrel 

Clopdiogrel, similar to ticlopidine, is an irreversible P2Y12 inhibitor of the 

thienopyridine class of drugs. (Farid, Kurihara et al. 2010) Both aspirin and 

ticlopidine are associated with toxic effects. Whereas aspirin therapy can lead to 

increased rates of bleeding (in particular gastrointestinal bleeds) and 

haemorrhagic strokes, ticlopidine is associated with side effects such as 
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cytopenia or thrombotic thrombocytopenic purpura. In contrast, although 

clopidogrel is associated with side effects such as gastrointestinal-bleeds, it is 

generally better tolerated than ticlopidine. 

Therefore, when clopidogrel was introduced its efficacy and safety was tested 

against aspirin for the secondary prevention of cardiovascular events. The first 

major clinical trial called CAPRIE (Clopidogrel versus Aspirin in Patients at Risk 

of Ischaemic Events) enrolled more than 19000 patients with recent ischaemic 

stroke, recent MI, or symptomatic peripheral arterial disease. Clopidogrel-

therapy in comparison to aspirin treatment was better in terms of risk reduction 

of cardiovascular events (ischaemic stroke, myocardial infarction, or vascular 

death) and bleeding. (CAPRIE Steering Committee 1996) However, since 

clopidogrel at that stage was a considerably more expensive drug than aspirin, 

it never replaced aspirin as “default” drug for the prevention of cardiovascular 

events.  

Since then a number of clinical trials have been performed to optimise 

antiplatelet therapy in patients at risk of cardiovascular events. The CHARISMA 

and CURE (with its sub-study PCI-CURE) trials demonstrated the benefit of 

dual-antiplatelet therapy comprising aspirin plus clopidogrel in patients with 

increased risk of ischemic events (e.g. after PCI and stenting, MI and unstable 

angina). (Mehta, Yusuf et al. 2001; Yusuf, Zhao et al. 2001; Bhatt, Fox et al. 

2006) Moreover, most effective doses and duration of therapy with the least 

adverse events were established in trials such as CURRENT-OASIS 7 or 

CREDO. It was shown that high dose clopidogrel was superior to low dose 

clopidogrel in the prevention of ischemic events in contrast to high dose aspirin 

(>100 mg) which exhibited no clear benefit when administered alone and was 

harmful when co-administered with clopidogrel. (Mehta, Bassand et al. 2010) 

Furthermore, it was shown that prolonged dual-antiplatelet therapy after PCI 

reduced the combined risk of death, MI, or stroke in comparison to cessation 

after 30 days without significantly increasing the bleeding risk. (Steinhubl, 

Berger et al. 2002)  
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Therefore, today, P2Y12 receptor antagonists such as clopidogrel are usually 

prescribed in addition to aspirin for people with acute coronary syndrome 

(ACS), or increased risk of recurrent ischemic event after PCI, or sometimes 

after ischemic stroke. 

(http://www.medicinescomplete.com/mc/bnf/current/PHP1519-antiplatelet-

drugs.htm) This dual antiplatelet therapy is by now firmly established, and 

reduces the incidences of thrombotic events compared to aspirin ingestion 

alone. (Yusuf, Zhao et al. 2001; Bhatt 2008)  

In the course of the above-mentioned studies the limitations of clopidogrel 

became evident. Its pharmacological profile is characterised by a slow onset of 

action since it is a pro-drug that requires a complex two-step metabolic 

activation. The slow onset of action could partly be improved by the 

administration of high loading doses. (Hochholzer, Trenk et al. 2005) However, 

pharmacological studies have shown that the absorption of clopidogrel is easily 

saturated. (von Beckerath, Taubert et al. 2005) It is thought that the metabolism 

is dependent on hepatic cytochrome P450 enzymes. There is substantial 

evidence that cytochromes facilitate the conversion of the pro-drug into its 

active metabolite – most notably the subtype CYP2C19 which is strongly 

associated with high variability of P2Y12 inhibition. (Gurbel and Tantry 2012) 

However, this has recently been challenged by the idea that the enzyme 

paraoxonase-1 facilitates the formation of the active metabolite. (Bouman, 

Schomig et al. 2011) It should be noted that this central role for paraoxonase-1 

has not been confirmed by more recent studies. (Dansette, Rosi et al. 2011; 

Sibbing, Koch et al. 2011) Generally, relatively high proportions of patients have 

been found to be apparently resistant to clopidogrel therapy. Extensive studies 

have linked this resistance to reduced bioavailability following from mutations in 

the CYP2C19 gene – the gene encoding the cytochrome P450 subtype 2C19, 

on which the metabolism of clopidogrel heavily relies. Discovered mutations in 

this protein affect its metabolic activity resulting in either higher or lower plasma 

levels of clopidogrel active metabolite than in normal individuals. This leads to 

substantial inter-individual differences in efficacy and therefore differences in 

protection or resistance, respectively. (Lau, Gurbel et al. 2004; Gurbel and 

Tantry 2012; Zabalza, Subirana et al. 2012)  
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1.6.2.3. Prasugrel 

Recently, the third generation P2Y12 inhibitors prasugrel and ticagrelor entered 

the market. Prasugrel, like clopidogrel and ticlopidine is a pro-drug of the 

thienopyridine class, but in comparison to clopidogrel it depends on a simpler 

and less variable pathway of activation involving esterases and is less reliant on 

the CYP450 system. (Sugidachi, Ogawa et al. 2007) Thus, prasugel produces a 

more rapid onset of action and stronger and more consistent levels of P2Y12 

blockade. (Michelson, Frelinger et al. 2009) Approximately 15 minutes after 

administration of 15 mg prasugrel, the active metabolite can be detected in the 

plasma, peaking after approximately 30 to 60 minutes. The bioavailability of 

prasugrel is short as it is cleared from the circulation within 4 hours of 

administration. (Farid, McIntosh et al. 2007; Jakubowski, Winters et al. 2007) 

However, similar to clopidogrel, prasugrel binds the P2Y12 receptor irreversibly, 

resulting in a long-lasting pharmacodynamics effect. The TRITON-TIMI 38 trial 

found that prasugrel’s increased potency is associated with a reduced risk of 

ischemic events. However, this protective effect comes at a price as severe 

bleeds are more common in prasugrel managed patients compared to patients 

receiving clopidogrel. (Wiviott, Braunwald et al. 2007) Given the greater 

bleeding risk, its irreversible mode of action could cause serious complications. 

1.6.2.4. Ticagrelor 

Consequently, efforts into the development of an easily manageable reversible 

P2Y12 inhibitor have been made, of which ticagrelor is an example. Ticagrelor is 

the latest P2Y12 receptor antagonist, approved by the US Food and Drug 

Administration in 2011, and the first that is orally available and reversibly 

binding. Ticagrelor is the first drug of the new chemical class cyclopentyl-

triazolo-pyrimidines. (van Giezen and Humphries 2005) These drugs bind non-

competitively to the P2Y12 receptor, indicating an independent receptor binding 

site for ticagrelor on the P2Y12 receptor. (van Giezen, Nilsson et al. 2009) Since 

it is a directly acting drug, ticagrelor’s efficacy is not dependent upon metabolic 

conversion which results in more rapid onset and offset of effects as shown in 

the ONSET/OFFSET study, and little inter-individual variability in comparison to 

clopidogrel. (Husted, Emanuelsson et al. 2006; Gurbel, Bliden et al. 2009; 
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Husted and van Giezen 2009) However, whereas clopidogrel and prasugrel are 

once-a-day drugs in clinical use, ticagrelor, because of its short half-life of 

approximately 12 hours and reversible binding, needs to be administered twice 

daily. (Dib, Hanna et al. 2010) The PLATO trial demonstrated a benefit of 

ticagrelor in comparison to clopidogrel in terms of a reduction in ischemic 

events when used for secondary prevention in patients experiencing ACS. 

(Wallentin, Becker et al. 2009) 

1.6.2.5. Cangrelor 

Cangrelor, like ticagrelor, is a novel direct, reversibly acting P2Y12 inhibitor. In 

contrast to ticagrelor, however, it is an ATP analogue that binds the P2Y12 

receptor with high affinity. Unlike ticagrelor it is not available as an oral 

formulation but relies on intravenous infusion which leads to almost immediate 

and potent P2Y12 blockade. (Storey, Oldroyd et al. 2001) Due to its short half-

life of 3-6 minutes, platelet inhibition is rapidly reversed with platelet function 

being completely restored approximately 1 hour after cessation. (Storey, 

Oldroyd et al. 2001; Angiolillo, Schneider et al. 2012) Although cangrelor failed 

to show a clinical benefit in regards to the primary end-point (death by any 

cause, MI or ischemia driven revascularisation) in comparison to clopidogrel 

during PCI in two individual clinical trials, a benefit regarding the secondary 

endpoint (ischemic complications during PCI) was observed which was 

confirmed recently. (Bhatt, Lincoff et al. 2009; Harrington, Stone et al. 2009; 

Bhatt and Harrington 2013)  

1.6.2.6. Elinogrel 

Elinogrel is the first P2Y12 inhibitor designed for oral and intravenous 

application. (Muller and Geisler 2012) Similar to ticagrelor and cangrelor it acts 

directly and binds its target reversibly. (Cattaneo and Podda 2010) This leads to 

rapid onset of action as well as potent platelet inhibition compared to clopidogrel 

therapy without increased risk of bleeding. (Angiolillo, Welsh et al. 2012; Welsh, 

Rao et al. 2012) The oral formulation has a half-life of approximately 12 hours. 
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This drug is still under investigation and results from large scale phase III 

studies are not available yet. 

Elinogrel, cangrelor and ticagrelor, all reversible, direct antagonists, have 

proven to be beneficial in some settings compared to clopidogrel. However, 

they all share one interesting and previously unexpected side effect. All three 

compounds are associated with increased rates of dyspnea. The reasons for 

this side effect are still unclear. (Serebruany, Sibbing et al. 2014) 

To date, due to its low costs (as its patent protection has ceased),  

clopidogrel is still the P2Y12 inhbitor of choice. 

(http://www.medicinescomplete.com/mc/bnf/current/PHP1564-management-of-

unstable-angina-and-non-st-segment-elevation-myocardial-infarction-

nstemi.htm)  Prasugrel and ticagrelor are listed as alternatives, recommended 

by NICE-guidelines for certain patient groups including high-risk patients. 

(http://www.nice.org.uk/TA182 ; http://www.nice.org.uk/TA236) Despite this 

pattern of use, concerns continue that because of its variable metabolism 

certain patients may receive less than optimal anti-thrombotic protection from 

clopidogrel than from newer P2Y12 blockers. However, the first trials attempting 

to individualise clopidogrel therapy by the use of ex vivo platelet testing to guide 

drug dosing, failed to show any benefits of providing alternative therapeutics to 

patients with reduced clopidogrel efficacy. (Price, Berger et al. 2011) In many 

patients the observed high on treatment platelet reactivity, i.e. remaining platelet 

responses despite clopidogrel dosing, has been associated with a mutation in 

the CYP2C19 gene. This can be compensated for by the use of third generation 

P2Y12 inhibitors prasugrel or ticagrelor, leading to higher levels of platelet 

inhibition, although no evidence, as yet, for a clinical benefit.  

1.6.3. αIIbβ3 inhibitors 

Different platelet agonists can stimulate platelet activation via many different 

receptors triggering different pathways. However, ultimately all these different 

pathways converge in one point – the facilitation of platelet-platelet contacts that 

result in the formation of platelet aggregates. (Payrastre, Missy et al. 2000) 
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Platelet aggregation is dependent on the presence of fibrinogen which can be 

described as “mortar” between the platelets that holds the aggregate together, 

as platelets bind to fibrinogen via integrin αIIbβ3 (GPIIb/IIIa). (Savage, Cattaneo 

et al. 2001) Thus, functional αIIbβ3 is essential in platelet aggregation as is 

highlighted by the bleeding profiles of patients suffering from Glanzmann 

thrombasthenia, a condition in which, due to genetic mutations of αIIb or β3, 

αIIbβ3 is malfunctioning, resulting in severely reduced or absent platelet 

aggregation and spreading. (Kannan and Saxena 2009)  

αIIbβ3 is not only a bridging pylon but is actively involved in complex signalling 

cascades. αIIbβ3 of resting platelets has a conformation exhibiting low affinity for 

fibrinogen or vWF binding. Upon platelet activation by agonists such as 

collagen, thrombin or TxA2, intracellular signalling cascades lead to a 

conformational change of αIIbβ3 resulting in increased affinity for its ligands. 

(Hato, Pampori et al. 1998) The requirement for switching αIIbβ3 from an inactive 

into a high affinity conformation upon activation by other activators can be 

considered a safety mechanism to avoid spontaneous, inappropriate formation 

of platelet aggregates. This so called inside-out signalling is followed by 

outside-in signalling that occurs upon binding of fibrinogen to the integrin and a 

further conformational change causing signalling at its short intracellular domain 

leading to cytoskeletal reorganisation and secretion of alpha and dense granule 

contents. (Shattil and Newman 2004)  

Given its central role in aggregation, αIIbβ3 appeared to be the perfect target of 

antiplatelet drugs for the prevention or treatment of atherothrombotic events, 

particularly because Glanzmann thrombasthenia is rarely associated with 

severe bleeding complications. (Franchini, Favaloro et al. 2010) 

To date three αIIbβ3 antagonists – abciximab, eptifibatide and tirofiban - have 

been approved all of which are for intravenous administration.  

Abciximab was the first αIIbβ3 antagonist to be approved. It is a chimeric murine 

raised monoclonal antibody that contains human immunoglobulin to replace the 

fc-region for improved immunogenicity. (Topol, Byzova et al. 1999) The 
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monoclonal antibody targets the β3-chain of the integrin and therefore cross-

reacts with integrin αVβ3 affecting vitronectin binding. (Puzon-McLaughlin, 

Kamata et al. 2000) The half-life of abciximab in plasma is approximately 30 

minutes. However, when it is bound to its target, the antibody is not cleared 

resulting in long pharmacodynamics. (Scarborough, Kleiman et al. 1999)  

Clinical trials (EPIC, EPILOG) showed its benefit in high-risk patients 

undergoing PCI where a dosing regimen consisting of a bolus of abciximab 

followed by infusion for 12 hours in addition to (low dose) heparin and aspirin 

caused a relative risk reduction of up to 35%, or 56%, respectively, for the 

composite endpoint (death, MI and recurrent ischemic events) in comparison to 

patients receiving heparin or aspirin only. (The EPIC Investigation 1994; The 

EPILOG Investigators 1997) Whereas the benefits of abciximab in the EPIC trial 

were accompanied with increased severe and moderate bleeding rates 

(probably due to the relative high dose of heparin), (The EPIC Investigation 

1994) the reduction of ischemic events in the EPILOG trial (in which low dose 

heparin was administered) was achieved without significant increase in bleeding 

risk. (The EPILOG Investigators 1997) The EPISTENT trial designed to test the 

efficacy and safety of abciximab in patients scheduled to undergo elective or 

urgent percutaneous coronary revascularisation confirmed the beneficial effect 

of abciximab-treatment and showed that it was effective in patients undergoing 

coronary stenting. (EPISTENT Investigators 1998)  

In the medical management of ACS, abciximab proved to reduce the risk of 

death, MI and repeat revascularisation, compared to placebo at 30 days in 

patients with refractory angina undergoing PCI, as assessed in the CAPTURE 

trial. However, this benefit was lost by 6 months. (The CAPTURE Study 

Investigators 1997) 

Eptifibatide is a peptide related to the disintegrin barbourin which is found in 

snake venom. It contains a Lys-Gly-Asp (KGD) sequence that is an analogue to 

the Arg-Gly-Asp (RGD) sequence of fibrinogen. (Scarborough, Rose et al. 

1991) Thus eptifibatide acts as competitive inhibitor with affinity to the β3 chain 

of αIIbβ3. (Phillips and Scarborough 1997) 
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Its efficacy was demonstrated in two clinical trials (IMPACT II and ESPRIT) 

enrolling patients undergoing PCI. Whereas the reduction of the 30-day 

composite endpoint (death, MI, unplanned surgical or repeat percutaneous 

revascularisation or coronary stent implantation) in patients randomised to 135 

µg/kg bolus of eptifibatide followed by 0.5 µg/kg/min was only marginal in 

comparison to a bolus injection followed by infusion of placebo in IMPACT II 

(probably due to under-dosing) and could not be sustained at the 6-months 

follow up, (IMPACT-II Investigators 1997) the follow-up trial ESPRIT used a 

higher dosing regimen and demonstrated significant 37% relative risk reduction 

of the composite endpoint (death, MI, urgent revascularisation) after 48 hours 

(primary endpoint and a 35% relative risk reduction after 30 days (secondary 

endpoint). However, at the same time a statistically significant increase of major 

bleeds was also observed. (ESPRIT Investigators 2000) 

The PURSUIT trial investigated the benefit of eptifibatide compared to placebo 

in patients receiving aspirin and heparin in medically managed ACS. In contrast 

to abciximab-treatment, eptifibatide showed a relative risk reduction for the 

primary composite endpoint (death or MI at 30 days) over placebo-

administration that was maintained past the 6-month analysis. (The PURSUIT 

Trial Investigators 1998)  

Tirofiban, the third approved intravenous αIIbβ3 antagonist is a small molecule 

non-peptide inhibitor, derived from an RGD-motif-containing disintegrin. 

Modifications made to this disintegrin resulted in increased survival time in vivo. 

(Egbertson, Chang et al. 1994) The derived compound, tirofiban, showed high 

selectivity and affinity (Kd = 2.5 nM) for αIIbβ3. (Mousa, Bozarth et al. 1998) 

When the efficacy and safety of tirofiban were first assessed in the RESTORE 

trial, a trial enrolling patients undergoing PCI presenting with unstable angina or 

MI, a short lived benefit could be observed in comparison to placebo with a 

relative risk reduction of 27% at 7 days for the composite primary endpoint 

(death, MI, repeated PCI, or coronary artery bypass graft due to PCI failure) – 

with no increase in bleeding - that was reduced to 16% at 30 days and was 

completely lost after 6 months. (The RESTORE Investigators 1997) 
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Comparison of tirofiban to abciximab in patients undergoing coronary stenting, 

found higher risk for the composite endpoint (death, MI, revascularisation at 30 

days) in patients randomised to tirofiban with the exception of patients 

undergoing coronary stenting for reasons other than ACS. (Topol, Moliterno et 

al. 2001) 

Clinical trials assessing the safety and efficacy of tirofiban in medically 

managed non-ST-elevation MI patients revealed mixed results. The initial 

PRISM trial revealed a relative risk reduction of 32% with tirofiban in 

comparison to heparin for 48 hours for the primary endpoint death, MI or 

refractory ischemia at 48 hours. (Platelet Receptor Inhibition in Ischemic 

Syndrome Management (PRISM) Study Investigators 1998) However, the 

follow-up trial PRISM-PLUS (which had the primary endpoint at 7 days) 

including a third treatment arm of tirofiban plus heparin was stopped 

prematurely due to increased mortality with tirofiban only. (Platelet Receptor 

Inhibition in Ischemic Syndrome Management in Patients Limited by Unstable 

Signs and Symptoms (PRISM-PLUS) Study Investigators 1998) This was 

surprising as the same treatment showed a benefit in the PRISM trial. However, 

patients in the treatment arm randomised to tirofiban plus heparin had a lower 

relative risk than the heparin-only group, which was sustained at 30 days and 6 

months. (Platelet Receptor Inhibition in Ischemic Syndrome Management in 

Patients Limited by Unstable Signs and Symptoms (PRISM-PLUS) Study 

Investigators 1998) 

The success of intravenous αIIbβ3 inhibitors has led to the development of oral 

αIIbβ3 antagonists. However, none of the developed drugs lived up to its 

expectations in clinical trials when tested for the secondary prevention of 

ischemic events after ACS, PCI or in patients with vascular disease. The trials 

had to be abandoned due to a lack of efficacy in comparison to placebo or 

aspirin and a significant increase in risk of bleeding. Furthermore, the collected 

data linked administration of oral αIIbβ3 inhibitors to increased mortality due to 

thrombotic events. (Cannon, McCabe et al. 2000; O'Neill, Serruys et al. 2000; 

The SYMPHONY Investigators 2000; Chew, Bhatt et al. 2001; Second 

SYMPHONY Investigators 2001; Topol, Easton et al. 2003) 
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Today, the use of αIIbβ3 inhibitors has become marginalised. The main reason 

might be the emergence of safer, cheaper and more easily controllable 

antiplatelet drugs, in particular P2Y12 inhibitors such as clopidogrel, which 

reduce the net beneficial effect of additional αIIbβ3 inhibitors in patients 

undergoing PCI.  

Furthermore, the failure of oral αIIbβ3 inhibitors and the limited usefulness of 

intravenous αIIbβ3 antagonists have questioned the usefulness of αIIbβ3 as target 

for antiplatelet drugs. However, it is believed that the targeting strategy rather 

than the target itself was responsible for the restricted benefit, or increased 

mortality, respectively. Since current αIIbβ3 inhibitors mimic ligand binding, they 

could induce a conformational change, (Du, Plow et al. 1991; Hynes 2002) 

leading to outside-in signalling and therefore platelet activation and granule 

content release. (Xiao, Takagi et al. 2004) This in turn may lead to increased 

aggregation and thrombus formation and might offset the beneficial effect of 

integrin inhibition. RUC-1 is a novel small molecule non-peptide allosteric αIIbβ3 

inhibitor currently in preclinical testing might be a candidate for a future drug 

that does not trigger outside-in signalling. (Blue, Kowalska et al. 2009) 

1.6.4. Phosphodiesterase (PDE) inhibitors 

While P2Y12 antagonists block signalling by ADP thereby blocking inhibition of 

adenylyl cyclase leading to increased levels of cAMP, PDE inhibitors reduce the 

breakdown of cAMP and cGMP. It is known that elevated levels of cyclic 

nucleotides (i.e. cAMP and cGMP) inhibit the broad spectrum of platelet 

functions. These elevated levels of cyclic nucleotides can be achieved by 

stimulating adenylyl or guanylyl cyclase, preventing their inhibition, or by 

preventing the catabolism of cNMPs. (Beavo and Brunton 2002) 

Agents that stimulate adenylyl cyclase include PGI2, PGE1 and adenosine 

whereas agents that stimulate guanylyl cyclase include nitric oxide (NO). Cyclic 

nucleotides are degraded by cyclic nucleotide PDEs of which 11 isoforms are 

found in the human body. (Soderling and Beavo 2000) Different PDE isoforms 

have different specificities and affinities for their targets, cAMP and cGMP. 
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Human platelets have been reported to express PDE-2, PDE-3 and PDE-5. 

(Hidaka and Asano 1976) Whereas cilostazol selectively inhibits the cAMP-

specific PDE-3, dipyridamole inhibits PDE-3 and the cGMP-specific PDE-5. 

(Sudo, Tachibana et al. 2000) 

PDE inhibitors have been on the market for a long time with dipyridamole being 

available since the 1960s, although not for its antiplatelet effects. Since PDEs 

are not specific to platelets but have a wide expression in various tissues, PDE-

inhibitors affect numerous other cell types as well and therefore exert a wide 

spectrum of pharmacologic effects. (Soderling and Beavo 2000) 

Cilostazol mediates most of its effects by inhibition of PDE-3 and consequently 

increases cAMP levels. Both its vasodilating effects and inhibition of smooth 

muscle cell proliferation are understood to be a result of elevated cAMP levels 

in smooth muscle cells. (Tanaka, Ishikawa et al. 1988; Schror 2002) 

Furthermore, cilostazol affects lipid metabolism by increasing high-density 

lipoprotein and reducing plasma triglycerides. (Ikewaki, Mochizuki et al. 2002; 

Nakamura, Hamazaki et al. 2003) Most importantly in the context of this review 

are cilostazol’s antiplatelet effects, which depend upon its ability to increase 

intraplatelet cAMP levels. (Sudo, Tachibana et al. 2000) 

When introduced in the 1980s, cilostazol was compared to standard antiplatelet 

therapy (i.e. aspirin) and was found to inhibit, in contrast to aspirin, aggregation 

stimulated by a multitude of platelet agonists such as collagen, thrombin and 

the secondary mediators TxA2, ADP and epinephrine. Furthermore it inhibited 

shear induced platelet aggregation. (Minami, Suzuki et al. 1997) In clinical trials 

it was shown to be efficacious in the prevention of recurrence of thrombotic 

strokes without increasing the bleeding risk. (Gotoh, Tohgi et al. 2000) 

Furthermore, cilostazol markedly reduced the rate of restenosis after PCI in 

comparison to placebo when added to aspirin and clopidogrel. (Friedland, 

Eisenberg et al. 2012); (Jang, Jin et al. 2012) 

Unlike cilostazol, dipyridamole inhibits both PDE-5 and PDE-3 and therefore 

also increases cGMP levels. (Ahn, Crim et al. 1989) Additionally to increasing 
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cAMP levels by inhibiting the respective PDE isozyme, dipyridamole affects 

cAMP levels by inhibition of adenosine reuptake into the cell and its catabolism. 

(Klabunde 1983) This causes an increase in extracellular adenosine 

concentration and therefore upregulation of adenosine signalling via the A2a 

receptor, leading to stimulation of adenylyl cyclase and increased cAMP levels. 

(Chen, Eltzschig et al. 2013) This increase in intracellular cAMP levels is 

supported by dipyridamole preventing PGI2 synthase from inactivation by 

hydroperoxy fatty acids which causes an increase in PGI2 levels that further 

stimulate adenylyl cyclase. (Marnett, Siedlik et al. 1984) Furthermore, inhibition 

of PDE-5 by dipyridamole results in an increase in cGMP which potentiates the 

synergistic inhibitory effect of NO and PGI2 on platelet function. (Bult, Fret et al. 

1991) 

Through these (and other related pharmacologic) effects dipyridamole not only 

inhibits platelet function but also causes vasodilation (by increasing cAMP 

levels in smooth muscle cells), has anti-inflammatory effects and inhibits 

smooth muscle cell migration. (Chakrabarti and Freedman 2008) 

Despite its broad effects on platelets, a recent analysis including 27 clinical 

trials found that dipyridamole alone or in combination with other antiplatelet 

drugs in patients presenting with arterial vascular disease did not reduce the 

risk of vascular death. However, it reduced the risk of recurrent ischemic events 

which was greatest in patients with history of previous ischemic stroke. (De 

Schryver, Algra et al. 2006) 

In regards to stroke prevention, dipyridamole has often been tested in 

combination with aspirin (marketed as Aggrenox) rather than on its own. 

Several studies have shown a relative risk reduction following the use of 

dipyridamole in addition to aspirin in the prevention of stroke in comparison to 

the use of aspirin alone (ESPS2, ESPRIT). (Diener, Cunha et al. 1996; Halkes, 

van Gijn et al. 2006) In the non-inferiority PRoFESS study, the efficacy of 

dipyridamole in dual-antiplatelet therapy with aspirin for the prevention of 

recurrent stroke was tested. Patients with history of previous ischemic stroke 

were randomised to receive dipyridamole plus aspirin or clopidogrel. 
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Dipyridamole plus aspirin did not meet the predefined criteria for non-inferiority 

but showed similar results to clopidogrel. The primary endpoint, recurrence of 

stroke was reached in 9% in the dipyridamole plus aspirin group, compared to 

8.8% in the clopidogrel group. The secondary endpoint, a composite of stroke, 

MI, or death from vascular causes, was reached in 13.1% in each group. 

(Sacco, Diener et al. 2008) 

Thus, today dipyridamole is recommended for secondary prevention in patients 

with clopidogrel intolerance or contraindication or those with previous transient 

ischemic stroke. (http://www.nice.org.uk/TA210)  

1.6.5. Other inhibitors 

1.6.5.1. “Aspirin 2.0” 

Aspirin is the most widely used antiplatelet drug for the secondary prevention of 

atherothrombotic events underlining the utility of blocking the formation and 

release of TxA2 for the prevention of thrombus formation. However, the 

successful application of aspirin is limited by its side effects, most notably 

gastrointestinal bleeds provoked by the inhibition of mucosal PG production. 

(Lee, Cryer et al. 1994) Thus, attempts have been made to improve the existing 

targeting strategy and so eliminate the side effects that accompany the 

protection mediated by aspirin. 

Three different approaches have been taken to optimise the blockade of TxA2 

signalling: 

1.6.5.2. TP receptor antagonists 

As mentioned above, aspirin blocks the enzyme cyclooxygenase and so inhibits 

the conversion of AA into PGG2. As a consequence, aspirin not only blocks 

TxA2 formation but also the formation of various other PGs such as PGI2 and 

gastroprotective PGs thereby causing undesired off-target effects and side 

effects such as gastrointestinal bleeds. (Lee, Cryer et al. 1994) 
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To eliminate these problems, a more specific approach has been taken to block 

the TxA2 receptor. The best known TP receptor inhibitor is terutroban, an oral 

competitive inhibitor with a plasma half-life of 6 to 10 hours. (Gaussem, Reny et 

al. 2005) Preclinical and animal studies showed promising results with evidence 

of antiplatelet and antiatherosclerotic properties. (Chamorro 2009) However, 

unfortunately, these results did not translate into clinical outcomes as was 

assessed in the PERFORM-trial. (Bousser, Amarenco et al. 2011) The trial 

enrolled patients with history of previous ischemic stroke (within the last 3 

months) or transient ischemic attack (within the last 8 days) who were 

randomised to receive terutroban or aspirin. The primary endpoint, a composite 

of fatal or non-fatal ischaemic stroke, fatal or non-fatal MI, or other vascular 

death (excluding haemorrhagic death), occurred in 11% of patients in each 

group, whereas terutroban was associated with increased bleeding risk. 

Therefore, terutroban-treatment did not meet the predefined non-inferiority 

criteria. (Bousser, Amarenco et al. 2011) 

1.6.5.3. TxA2 synthase inhibitors 

A related strategy was the development of TxA2 synthase inhibitors. The 

rationale behind their development was that these inhibitors would, instead of 

blocking COX-1, specifically block the formation of prothrombotic TxA2 therefore 

not interfering with the production of beneficial prostaglandins. However, as the 

accumulating thromboxane precursor PGH2 is able to activate the TP receptor, 

(De Clerck, Beetens et al. 1989; De Clerck, Beetens et al. 1989) compounds 

were designed which inhibited both, TxA2 synthase and the TP receptor. 

Three compounds have been studied in detail; however two of these 

compounds did not show any benefits in comparison to aspirin or were 

associated with severe leg pain leading to cessation of the treatment. (The 

RAPT Investigators 1994; Langleben, Christman et al. 2002). 

The third compound, picotamide, was tested in patients suffering from 

peripheral artery disease and revealed a significant reduction of 

atherothrombotic events in diabetic patients in comparison to aspirin (Balsano 
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and Violi 1993) which was accompanied by a reduced bleeding rate. (Neri 

Serneri, Coccheri et al. 2004) This drug, although not yet approved, might be an 

interesting candidate, in particular in cases where aspirin has been shown to be 

ineffective or associated with side effects. (Hackam and Eikelboom 2007) 

However, these are now old trials and picotamide therapy requires further 

testing in the setting of current therapeutic approaches, e.g. it has not been 

compared to potent P2Y12 inhibitors. 

1.6.5.4. NO-releasing aspirin 

The biggest disadvantage of aspirin therapy is its side effects, most notably 

gastrointestinal bleeds caused by inhibition of gastric prostaglandins. By 

coupling aspirin with an NO-releasing compound, a novel drug was created 

which still exhibited the characteristics of aspirin (i.e. its antiplatelet effects 

mediated by inhibition of COX) but was extended by the additional anti-

inflammatory and gastroprotective effects of NO. Thus this drug exerts anti-

inflammatory and antiatherosclerotic properties, increases the antiplatelet effect 

of aspirin and, importantly, does not show any signs of gastointestinal-toxicity, 

probably due to the gastroprotective effect of NO. (Fiorucci, Santucci et al. 

2003) (As an aside, it is noted that in 2008 the lead author of these studies, 

Fiorucci, was confronted with charges for fraud and embezzlement 

(http://retractionwatch.com/2012/01/30/university-of-perugia-researcher-faces-

trial-for-embezzlement-and-fraud-following-13-retractions-and-expressions-of-

concern/) leading to retraction of a number of papers published in journals 

including Proceedings of the National Academy of Science and Journal of 

Pharmacology Experimental Therapeutics (Schekman 2008; 2009) 

1.6.5.5.  

 

 

1.6.5.6. PAR-1 antagonists 
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Human platelets possess two thrombin receptors, PAR-1 and PAR-4, which 

exhibit different affinities for thrombin and differentially trigger intracellular 

signalling cascades. Whereas signalling via PAR-1 causes strong platelet 

activation even at low thrombin concentrations, PAR-4 has an affinity for 

thrombin 150- to 300-fold lower and signals at high concentrations of thrombin 

for a prolonged time. (De Candia 2012) Therefore PAR-1’s high affinity for 

thrombin may well indicate it as an attractive target for antiplatelet therapy, by 

stopping thrombin-mediated platelet aggregation. 

Two PAR-1 antagonists have been developed and tested so far. Vorapaxar is 

an orally available reversible PAR-1 antagonist with high affinity for its target. Its 

safety and efficacy was investigated in two phase III clinical trials. The TRACER 

trial which enrolled patients that had non ST-elevated ACS on dual antiplatelet 

therapy consisting of aspirin and clopidogrel, showed an insignificant reduction 

in the primary endpoint for the vorapaxar arm compared to the placebo arm 

which came at the cost of a significant increase in major bleeding. (Tricoci, 

Huang et al. 2012) A similar trial, TRA 2°P TIMI 50, investigated vorapaxar in 

combination to dual antiplatelet therapy in patients with prior stroke, MI, or 

peripheral artery disease. It found a significant reduction of ischemic events and 

a significant increase in bleeding events. (Morrow, Braunwald et al. 2012) The 

test arm containing patients with previous stroke randomised to vorapaxar had 

to be stopped because of increased bleeding. Subgroup analyses of the 

TRA 2°P TIMI 50 trial suggest the use of vorapaxar may be beneficial in 

patients with previous MI without history of stroke. (Scirica, Bonaca et al. 2012) 

Atopaxar, the second orally available PAR-1 antagonist, has been tested in two 

phase II clinical trials - LANCELOT-ACS and LANCELOT-CAD. Results from 

these studies revealed increased platelet inhibition and less ischemia while the 

bleeding profile was similar between atopaxar treatment and placebo. 

(O'Donoghue, Bhatt et al. 2011; Wiviott, Flather et al. 2011) However, incidence 

rates were low and the scale of these trials was small and therefore, to be able 

to correctly interpret these results, further testing is required. Results from 

extensive phase III clinical trials are not available yet. 
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1.6.5.7. GPVI inhibitors 

The platelet GPVI receptor has previously been described as “the central 

receptor” in platelet aggregation. (Nieswandt and Watson 2003) Indeed, upon 

capture and adhesion, the initial stimulus is mediated primarily via GPVI which 

in turn causes shape change, Ca2+-mobilisation and granule release which in 

turn, further synergistically activates platelets. (Nieswandt and Watson 2003) 

Therefore, inhibition of platelet activation via GPVI is a plausible strategy for the 

(secondary) prevention of atherothrombotic events. Preclinical studies have 

shown that inhibition of GPVI signalling by revacept prevents collagen induced 

platelet activation without interfering with general haemostasis. (Ungerer, 

Rosport et al. 2011) Furthermore, revacept, a soluble dimeric GPVI-Fc fusion 

protein, that blocks vascular collagen, has been shown to reduce infarct size in 

stroke and MI in animal models while not affecting bleeding time. (Ungerer, Li et 

al. 2013); (Goebel, Li et al. 2013) Although this potential drug shows some 

promising results, extensive testing in a clinical setting has not been 

commenced yet. 

1.6.5.8. Anticoagulants 

Intravenous anticoagulants are commonly administered in patients with ACS. 

However, due to their route of administration, they are not useful for long-term 

secondary prevention. Therefore warfarin, the first orally available 

anticoagulant, has previously been used in secondary prevention of ischemic 

events and was shown to reduce the risk of ischemic events on its own or in 

combination with aspirin. (Hurlen, Abdelnoor et al. 2002) However, warfarin is 

associated with a number of limitations including many interactions with food 

and drugs, the need for regular monitoring and variable dose–response 

relationship. (Hirsh 1991) Moreover, when combined with aspirin, treatment with 

warfarin was associated with increased risk of major bleeding. (Andrade, Deyell 

et al. 2013) 

Recently introduced novel oral anticoagulants apixaban, rivaroxaban and 

dabigatran were hoped to be able to eliminate many of warfarin’s limitations and 

so improve clinical outcomes in patients experiencing atherothrombotic events. 
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All three agents have been investigated in phase III or phase II (dabigatran) 

clinical trials. The use of rivaroxaban in addition to aspirin (and clopidogrel) in 

patients with recent ACS for secondary prevention of atherothrombosis was 

studied in the ATLAS ACS 2-TIMI 51 trial. 2.5 mg rivaroxaban twice daily 

significantly reduced the event rates for the primary endpoint, a composite of 

death from cardiovascular causes, MI, or stroke. However, it also significantly 

increased the risk of major bleeding including intracranial bleeding. (Mega, 

Braunwald et al. 2012) In a similar trial, the APPRAISE-2 trial, apixaban was 

tested in patients with recent ACS and at least two additional risk factors for 

recurrent ischemic events for secondary prevention of atherothrombosis. 

However, this trial was terminated early as a significant increase in major 

bleeding was observed without relevant reduction in ischemic events. 

(Alexander, Lopes et al. 2011) Dabigatran was tested in the phase II RE-DEEM 

trial in patients with previous NSTEMI or STEMI but was associated with a 

concentration dependent increase in bleeding, albeit also associated with 

reduced events of ischemic events. (Oldgren, Budaj et al. 2011) All three tested 

anticoagulants were associated with an increase in bleeding but some managed 

to reduce ischemic events. However, due to the increased bleeding risk, none 

of these compounds has been approved for secondary prevention of 

atherothrombotic events. The promise to reduce ischemic events however, 

might lead to further testing of these and future anticoagulants in different 

combinations and doses to find a better treatment window. 

 

Apart from the above-mentioned inhibitors, many more are currently in 

preclinical development. These inhibitors target a broad spectrum of different 

proteins involved in thrombogenesis. This involves a number of GPIb inhibitors, 

vWF inhibitors, integrin α2β1 inhibitors and many other targets. However, 

detailed description of all these inhibitors would go beyond the scope of this 

overview. A detailed updated on novel antiplatelet therapies has been reviewed 

by Kolandaivelu and Bhatt. (Kolandaivelu and Bhatt 2013)   
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1.7. Platelet function testing 

Due to their central role in haemostasis and their association to both - various 

bleeding disorders and antithrombotic therapy - there has been more than a 

century of efforts to refine tests of platelet function.  These tests have been 

aimed at the definition of platelet function and dysfunction in physiology and 

disease and in particular more recently quantification of the effects of 

antiplatelet drugs. 

The first platelet function test was performed by Duke in 1910 who invented the 

bleeding time assay. (Duke 1910) This assay uses a (standardised) blade to 

cause reproducible incisions into the skin of patients. After improvements by 

others it soon became the “gold standard” in platelet function testing and 

remained so until the 1990s. The strengths of this test – it was cheap, did not 

require technical equipment and was easy to perform – were countered by its 

limitations, in particular its poor reproducibility and limited ability to supply 

information about the underlying causes of the test observations. 

Platelet function testing was revolutionised about 50 years after its introduction 

with the development of light transmission aggregometry by both Born and 

O’Brien in 1962. (Born 1962; O'Brien J 1962) This allowed more in-depth 

analysis of platelet function and increased our understanding of platelet biology 

including platelet activation and signalling pathways. Since then a multitude of 

different tests has been developed (Harrison, Frelinger et al. 2007; Harrison and 

Lordkipanidze 2013) – some of which will be outlined below. Since their 

development, platelet function tests have significantly contributed to a higher 

quality of life for millions of patients suffering from pathologies including 

cardiovascular diseases. Whereas the motivation of early scientists to pursue 

research of platelet function was purely driven by curiosity, nowadays 

improvements of clinical outcomes are the main driver. The application of 

platelet function tests has been extended into other areas and has led to the 

detection and identification of many platelet/bleeding disorders, research into 

platelet biology leading to the identification and evaluation of new drug targets 

and novel antiplatelet therapies, and the monitoring of antiplatelet therapy. 
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1.7.1. Light transmission aggregometry (LTA) 

LTA eventually replaced bleeding time assays as the “gold standard” in platelet 

function testing and may well remain so for the foreseeable future. Born and 

O’Brien independently described this method which allows measurement of 

platelet aggregation in vitro. (Born 1962; O'Brien J 1962) The instrument 

consists of a cuvette containing a stirred platelet suspension, for example 

platelet rich plasma, a light source and a detector. Its principle is based on the 

fact that platelet rich plasma or any platelet suspension (apart from whole 

blood), which is turbid, becomes more translucent upon platelet aggregation 

and thus, light absorption falls. The increase of light transmittance upon platelet 

aggregation is recorded (as percentage aggregation); thus the aggregation 

responses of platelets to exogenous agonists added to the platelet suspension 

can be measured.  

Bleeding time assays are considered to be physiological tests where platelets 

are affected by mediators and proteins released from or exposed on the 

vasculature; in contrast, platelets in the aggregometer lack these endogenous 

factors. Thus, platelet adhesion to the endothelium or the extracellular matrix, 

representing the preliminary event of platelet aggregation, does not occur. Also, 

inhibitors of platelet activation released by the endothelium, such as PGI2 and 

NO are missing in this system. LTA works with low circular shear which does 

not mimic the physiological high parallel shear occurring in arteries and 

arterioles. This high parallel shear however, is important to facilitate all aspects 

of platelet-vasculature interactions and activation, especially the interaction with 

vWf. (Rosen, Raymond et al. 2001) Platelet activation in LTA occurs in an 

enclosed environment resulting in a constant, relatively high concentration of 

agonists, while under physiological conditions these agonists are diluted and 

washed away by the flow. Under physiological conditions in vivo some of these 

agonists, such as ADP or TxA2, do not reflect primary stimuli upon vessel wall 

damage but occur later in thrombus propagation. (Kaplan and Jackson 2011) 

Despite commercial refinements in LTA over the years, intrinsic technical 

disadvantages to this technique persist, such as the large volume of blood 

required, relatively low throughput and the requirement for a skilled operator. 
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Furthermore, haemolysed or thrombocytopenic samples cannot be tested. As a 

result this assay is not well suited to routine clinical testing. 

Recently, our laboratory has taken the principles of traditional LTA further and 

developed an altered, 96-well plate based aggregometry assay which 

addressed and eliminated a few of the limitations mentioned above, including 

low throughput, the requirement of big blood volumes and the need for a skilled 

operator. (Chan, Armstrong et al. 2011; Chan and Warner 2012) This optical 

multichannel method (Optimul) shows good correlation to traditional LTA and 

reduces the overall volume of the sample required whilst increasing the 

potential number of samples analysed simultaneously, making it a potential 

screening tool. (Lordkipanidze, Lowe et al. 2014) Moreover, pre-coated 

lyophilised agonists in the individual wells decrease the skill required to conduct 

the test, making this method better suited for clinical platelet function studies.  

1.7.2. Lumi-aggregometry 

Another modified LTA assay is lumi-aggregometry. In addition to traditional light 

transmission these instruments can simultaneously measure luminescence 

caused by the release of ATP, which is a commonly used marker of dense 

granule secretion. (Cattaneo 2009) This can be achieved by adding firefly 

luciferase into the reaction cuvette.  This emits light in a chemical reaction with 

ATP and so the level of light emission is associated with the extent of granule 

release. This test is particularly useful for detecting bleeding disorders caused 

by platelet storage pool and release defects.  

1.7.3. Platelet adhesion 

As mentioned above, fundamental to haemostatic platelet function in vivo is the 

ability of platelets to adhere to sites of injury. Nowadays, this is modelled using 

flow chambers which faithfully recreate fluid dynamic factors, such as shear rate 

and shear stress, which are well known to strongly influence platelet reactivity 

and function. (Ruggeri 2009) The adhesion surface can be coated with either 

proteins (e.g. collagen, fibronectin) or cell monolayers (e.g. endothelial cells or 

smooth muscle cells). (Ruggeri 2009)  
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Flow assays may be conducted using platelet rich plasma, washed platelets 

reconstituted with washed erythrocytes, or anticoagulated whole blood to further 

model physiological conditions. In addition to single microcapillary tubes (e.g. 

VitroTubes™: Vitrocom), commercial systems (e.g. µ-slide series; IBIDI) have 

been developed with multiple chambers and tap connections to enable parallel 

experiments. The platelets or blood samples are allowed to flow through the 

chamber from a reservoir at required shear rates (commonly 50-1500 s-1) 

(Loncar, Zotz et al. 2007) and images of the chamber are captured during or 

after flow. Platelet adhesion can be quantified according to a variety of criteria 

such as aggregate size or mean fluorescent intensity (MFI) of labelled platelets 

(Topcic, Kim et al. 2011) The future challenge for these assays will be to more 

accurately mimic in vivo conditions. Whilst not truly reflective of the in vivo 

scenario, it still provides useful information on platelet function under defined 

conditions of flow. 

Besides above listed platelet function assays which have been applied in this 

thesis, a number of other assays have been developed. These include: 

1.7.4. Impedance Aggregometry 

Whole blood aggregometry incorporates two electrodes immersed in an 

anticoagulated blood sample, with an alternating current passing between them. 

Upon activation, platelets adhere to the electrodes which in turn increase the 

electrical impedance that is recorded. (Sibbing, Braun et al. 2008) With the 

invention of impedance aggregometry it became possible to assess platelet 

aggregation in whole blood, so reducing the need for sample preparation or 

manipulation. More importantly though, whole blood testing is multicellular and 

takes into account potential interactions between various cell types. (This 

advantage became obvious in the assessment of the antiplatelet effects of 

dipyridamole which was not detected in LTA but manifested in impedance 

aggregometry).  
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1.7.5. Platelet releasate analysis 

Alongside alpha granule release, platelets also readily synthesise and release 

hormones such as prostanoids and hydroxy-eicosatetraenoic acids. (Capra, 

Back et al. 2013) Analysis of the platelet ‘secretome’ can be undertaken, 

directly or indirectly, using approaches such as commercially available 

EIA/ELISA kits or mass spectrometry.  

For the analysis of storage pool and release defects in addition to lumi-

aggregometry another more versatile method has been developed. Detection of 

expressed surface proteins expressions, such as activated αIIbβ3 (Topcic, Kim et 

al. 2011) or P-selectin (Fox, May et al. 2009), is possible through flow cytometry 

technology. Other common detectable markers include size and reticulation for 

identification of newly formed platelets or dual detection of CD41 (platelet 

marker) and CD45 (leukocyte marker) for identification of leukocyte-platelet 

aggregates; a clinically relevant marker of vascular disease. (Sarma, Laan et al. 

2002)  

1.7.6. Point of care assays 

For clinical monitoring of the efficacy of antiplatelet therapy, simple and quick 

tests that provide clear results are required. To meet these requirements point-

of-care tests have been developed.  

Two commonly used assays are the Platelet Function Analyzer (PFA-100) and 

VerifyNow Platelet Function Rapid Analyzer. The PFA-100 test measures the 

time required to cause occlusion as citrated blood is drawn from a sample 

reservoir through a microscopic aperture cut into a membrane at high ‘arterial’ 

shear (5000-6000 s-1). This high shear together with exposure to the membrane 

coating, either collagen/epinephrine (CEPI) or collagen/ADP (CADP) - 

stimulates platelet activation and deposition. Consequent time to occlusion is 

measured. In comparison, the VerifyNow assay relies on agglutination of 

fibrinogen-coated beads in response to particular agonists. (Harrison, Frelinger 

et al. 2007) This aggregation causes an increase in light transmittance that is 

consequently measured. Three different cartridges are currently available: an 
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aspirin (AA), a P2Y12 (ADP) and a αIIbβ3 cartridge (iso-thrombin receptor-

activating peptide). (Harrison, Frelinger et al. 2007) This test might be useful to 

identify resistance to antiplatelet drugs in patients undergoing PCI, which has 

been associated with an increased risk of periprocedural myocardial infarction 

and adverse clinical outcomes. (Sambu and Curzen 2011) However, a recently 

published consensus document acknowledges that in randomized studies there 

is no evidence for platelet testing to be of any benefit in patient care, although 

there is a still a role for it in hypothesis generation. (Tantry, Bonello et al. 2013) 

It may be that the optimum test conditions and relevant clinical cut offs still 

require to be defined. This returns to issues regarding the different metabolic 

pathways and availabilities of P2Y12 receptor blockers referred to earlier in this 

review. 

1.7.7. In vivo techniques 

The role of platelets in haemostasis/thrombosis is classically tested using in 

vitro assays. However, these assays cannot accurately simulate the complex 

setting of the blood vessel, including the shear forces or the influence of the 

multitude of mediators such as NO and PGI2. In vivo models of platelet function 

are therefore of particular use especially considering the increasing availability 

of genetically modified mice. These mice allow both the further dissection of 

platelet function and generation of disease conditions. 

Intravital microscopy is a technique that allows real time observation of platelet 

function in thrombus formation inside blood vessels, and permits its recording 

for subsequent quantitative analysis. Although containing only microvessels, 

two vascular beds commonly used for such an approach are the cremaster 

muscle and mesenteric vasculature (Westrick, Winn et al. 2007) as both are 

easily accessible thin tissues that allow sufficient light penetration and can 

therefore be used for real time imaging.  

The carotid artery, due to its size and accessibility, is the vessel of choice for 

studying thrombus formation in larger arteries, and probably reflects clinically 

relevant scenarios more accurately. Due to its size and thickness, bright field 
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microscopy, and in turn intravital microscopy, cannot be used. Although more 

sophisticated epifluorescence (Kuijpers, Gilio et al. 2009) or ultrasound 

technologies have been shown to be successful (Wang, Hagemeyer et al. 

2012), thrombi in such vessels can be excised and imaged ex vivo (Wang, 

Hagemeyer et al. 2012) and (Doppler) flow probes can be alternatively 

employed to measure blood flow (Topcic, Kim et al. 2011), real time imaging of 

microvessels will remain popular until resolution is improved in larger relevant 

vessels.  

Vascular injury, causing subsequent platelet activation and aggregation, can be 

induced by either physical or chemical means. The most common chemical 

method, due to the ease and the low cost, is the use of ferric chloride solution. 

Topical application to the surface of the exposed vessel leads to endothelial cell 

denudation, accumulation of ferric filled red blood cells, and subsequent TF and 

vWf exposure. (Barr, Chauhan et al. 2013) The area of injury can be limited by 

using ferric chloride-soaked filter paper. Alternatively, intravenous injection of 

Rose Bengal solution leads to a quick accumulation of the photoactive dye in 

the endothelium. Subsequent excitation of an area of interest with light at 

540nm causes the formation of reactive oxygen species that damage the 

endothelium cells and thus, induces thrombus formation. (Angelillo-Scherrer, de 

Frutos et al. 2001)  

Physical injury methods, such as vessel compression and angioplasty guide 

wire use, result in denudation of the endothelium. (Lindner, Fingerle et al. 1993) 

However, these approaches are less consistent in the size of thrombus 

achieved. An increasingly popular approach for achieving endothelial damage - 

despite requiring expensive equipment - is the use of pulsed laser beams as 

this approach can provide very precise control of injury location. (Lindner, 

Fingerle et al. 1993) A focused, pulsed laser beam, adjustable for intensity and 

exposure time is used to damage the endothelium cell layer, producing effects 

from mild injury to denudation. (Rosen, Raymond et al. 2001) 
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1.8. Summary 

In summary this introduction highlights cardiovascular disease to be a major 

human burden with stroke and MI being the two most common single causes of 

death worldwide. 

All these ischaemic events have inappropriate platelet activation and 

consequent thrombus formation in common. Thus, it is a logical strategy to 

target platelet reactivity to compensate for the overwhelming stimuli arising from 

rupture of atherosclerotic lesions. Most commonly, patients at risk are 

prescribed aspirin, which has been shown to reduce the risk of atherothrombotic 

events. If required, the protection mediated by aspirin can be extended by other 

antiplatelet inhibitors, usually P2Y12 inhibitors such as clopidogrel or prasugrel.  

All three drugs have short pharmacokinetic properties but because of their 

irreversible binding produce long lasting pharmacodynamics effects. Indeed, all 

three drugs inhibit their targets for the entire lifespan of the platelet.  

However, the average life span of platelets lies between 9 to 11 days. 

Consequently, approximately 10% platelets are turned over every day. This 

means that 24 hours after administration of these once-a-day drugs at least 

10% may be uninhibited. However, this proportion can be increased in patients 

with conditions associated with increased platelet turnover such as type-2 

diabetes mellitus. 

Both aspirin and clopidogrel are no longer covered by patents and are 

consequentially very cheap. Thus, this well established dual antiplatelet therapy 

will remain the standard therapy for the foreseeable future. 

  



66 
 

1.9. Aims 

For reasons outlined above, the aim of the work reported in this thesis were to 

model the effects of platelet turnover and the associated emergence of an 

uninhibited platelet subpopulation on the inhibitory effects mediated by aspirin 

and/or irreversible P2Y12 inhibition, i.e. standard clinical care. 

In detail the aims of these studies were: 

- The characterisation of aggregatory responses of mixed populations of 

aspirin-treated and/or P2Y12-inhibited platelet populations and uninhibited 

platelets. 

- Investigation through advanced imaging techniques of the roles of 

uninhibited platelet subpopulations mixed with aspirin-treated and/or 

P2Y12-inhibited platelets in the formation of platelet aggregates in 

standard LTA testing. 

- Investigation of the interactions of inhibited and uninhibited platelets in 

the formation of platelet aggregates under physiologically relevant flow 

conditions. 
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The following reagents have been used for the methods outlined in sections 3.2 and 

4.2 of this thesis: 

2.1. Platelet inhibitors 

Reagent Source 

Abciximab (Reopro®) Eli Lilly 

Acetylsalecylic acid (aspirin) Sigma-Aldrich, UK 

Apyrase Sigma-Aldrich, UK 

Prasugrel active metabolite (PAM) Eli Lilly, Japan 

Prostagladin I2 (PGI2) Tocris, UK 

 

2.2. Platelet stimuli 

Reagent Source 

Adenosine diphosphate (ADP) Labmedics, UK 

Arachidonic acid (AA) Sigma-Aldrich, UK 

Collagen related peptide (CRP-XL) 
Gift from Prof Richard Farndale, 

University of Cambridge 

Epinephrine Labmedics, UK 

Horm collagen Nycomed, Austria 

Ristocetin Helena Bioscience, UK 

TRAP-6 amide Bachem, UK 

U46619 Enzo 
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2.3. Other reagents 

Reagent Source 

Bovine serum albumin (BSA) Sigma-Aldrich, UK 

CHRONO LUME reagent Labmedics, UK 

Coagulation reference Technoclone, Austria 

CountBright™ Absolute Counting Beads Invitrogen, UK 

Diluent C Sigma-Aldrich, UK 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, UK 

Disodium hydroxycarbonate (Na2 HCO3) Sigma-Aldrich, UK 

Ethanol VWR, UK 

Fibrinogen (human) Sigma-Aldrich, UK 

Glucose Sigma-Aldrich, UK 

HEPES Sigma-Aldrich, UK 

Magnesium chloride (MgCl) Sigma-Aldrich, UK 

Paraformaldehyde  VWR, UK 

Phoshate buffered saline (PBS) Sigma-Aldrich, UK 

Potassium chloride (KCl) Sigma-Aldrich, UK 

Saline Baxter, UK 

Sigmacote Sigma-Aldrich, UK 

Sodium chloride (NaCl) Sigma-Aldrich, UK 

Sodium dihydroxycarbonate (NaH2CO3) Sigma-Aldrich, UK 

Trisodium citrate Sigma-Aldrich, UK 

VECTASHIELD hardset mounting 

medium 
Vector Laboratories, UK 

 

A full list of methods can be found in sections 3.2 and 4.2 of the results chapters, giving 

details of instruments used in this thesis.  
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CHAPTER 3:  THE ROLE OF AN UNINHIBITED PLATELET 

SUBPOPULATION IN AGGREGATION ASSESSED IN LIGHT 

TRANSMISSION AGGREGOMETRY 
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3.1. Introduction 

Aspirin (acetylsalicylic acid) is an irreversible inhibitor of cyclooxygenase and is 

the first in line drug used to reduce thrombotic risk in patients at increased 

cardiovascular risk. To further extend the protection provided by aspirin, P2Y12 

receptor antagonists, the most widely used example of which is clopidogrel, are 

usually prescribed in addition to aspirin for people with increased thrombotic risk 

due to ACS or PCI, as well as sometimes after ischemic stroke. 

(http://www.medicinescomplete.com/mc/bnf/current/PHP1519-antiplatelet-

drugs.htm) This dual antiplatelet therapy is by now firmly established, and 

reduces the incidences of thrombotic events compared to aspirin ingestion 

alone. (Yusuf, Zhao et al. 2001; Bhatt 2009)  

The irreversible “once-a-day” drugs clopidogrel or prasugrel are characterised 

by short pharmacokinetics but long pharmacodynamics which results in low 

concentration of the active compound found in the plasma a short time after 

administration. (Shin and Yoo 2007; Takahashi, Pang et al. 2008; Reddy, Rao 

Divi et al. 2010) This can have some significant consequences on sustaining 

platelet inhibition throughout a day and therefore some implications for optimal 

drug dosing.  

Studies from the 1960s and 1970s using Cr51-labelled platelets showed that the 

average platelet lifespan, from its formation to its clearance from the circulation 

is nine to eleven days. (Aas and Gardner 1958; Baldini, Costea et al. 1960) 

Consequently the daily platelet turn over in healthy subjects is approximately 10 

per cent but can be dramatically increased in disease conditions such as type-2 

diabetes, (Ferguson, Mackay et al. 1973; Dassin, Najean et al. 1978; Paton 

1979)  chronic kidney disease or hepatic failure. (Abrahamsen 1968) 

The previously described pharmacological properties of the antiplatelet drugs 

aspirin, clopidogrel and prasugrel, namely their irreversibility and short 

bioavailability, paired with the daily platelet turnover could lead to inadequate 

therapeutic blockade and consequently thrombotic events. This could be 

particularly true in subjects suffering from above mentioned conditions, since 24 
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hours after administration of an antithrombotic drug ten to fifteen per cent of 

platelets, or more, may not be inhibited.  

Inhibition following aspirin ingestion is thought to be overcome by the presence 

of a small minority of uninhibited platelets. Indeed, it is often quoted that more 

than 95% of platelets are required to be inhibited by aspirin for full 

antithrombotic protection. (Di Minno, Silver et al. 1983; Reilly and FitzGerald 

1987) A possible explanation could be that this small minority might be sufficient 

to produce enough TxA2 to drive aggregation. In a study using healthy 

volunteers taking aspirin it was shown that TxA2, a measure for the entry of 

uninhibited platelets into the circulation could be detected as early as 4 hours 

after the last aspirin ingestion. Furthermore the TxA2 concentration after four 

hours was sufficient to significantly enhance aggregation triggered by other 

agonists. Patients with thrombocythemia taking aspirin show higher TXA2 levels 

than aspirin-treated healthy volunteers. The cause for elevated TxA2 levels 

might be explained by elevated COX-2 expression and faster renewal of 

unacetylated COX-1 caused by accelerated platelet regeneration. (Dragani, 

Pascale et al. 2010) Consequently it is not surprising that patients with elevated 

TxA2 levels, assessed by 11-dehydro-TxB2 production, have an increased risk 

of MI or cardiovascular death despite taking aspirin. (Eikelboom, Hirsh et al. 

2002) Increasing the dose of aspirin causes only partial reduction of serum 

TxB2 in patients with essential thrombocythemia. However, doubling the 

frequency of administration from once daily to twice daily reduces the TxB2 

production by 88%, indicating that increased platelet renewal and consequent 

renewal of unacetylated COX-1 is responsible for impaired platelet inhibition. 

(Pascale, Petrucci et al. 2012)  

Consistent with these findings, studies in type-2 diabtes patients showed 

improved platelet inhibition with twice daily, low dose aspirin administration 

compared to once daily administration in patients with coronary artery disease 

(Capodanno, Patel et al. 2011), and better platelet inhibition with twice daily, 

low-dose administration than once daily low or high dose aspirin administration 

in patients with micro- or macrovascular complications. (Spectre, Arnetz et al. 

2011) These studies clearly demonstrate associations between newly formed 
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platelets and changes in platelet reactivity in aspirin-treated patients and so 

challenge the reliability of existing aspirin dosing regimens in patients with high 

platelet turnover. 

However, the role of newly formed platelets in the circulation after ingestion of 

P2Y12 inhibitors (and aspirin) has not yet thoroughly been studied. Experiments 

examining the reversal of the antiplatelet effects of aspirin and clopidogrel found 

that clopidogrel, unlike aspirin, has to be discontinued for 10 days to achieve 

normal aggregation responses. (Li, Hirsh et al. 2012) This study however was 

performed in vitro with platelets from healthy volunteers potentially not 

adequately reflecting the conditions in patients suffering from type-2 diabtes or 

chronic kidney disease with high platelet turnover. Patients with chronic kidney 

disease show lower response to clopidogrel than patients with normal renal 

function. Although the reason for this effect is still unknown it was suggested 

that platelet turnover could be one of the underlying mechanisms for decreased 

antiplatelet drug efficacy. (Htun, Fateh-Moghadam et al. 2011)  

To investigate the role of an increasing uninhibited platelet subpopulation and 

therefore mimic the formation and entry of naïve platelets into the circulation 

(after daily drug administration), aggregation experiments on platelet samples 

containing different proportions of aspirin-, aspirin+PAM- or PAM-treated and 

untreated platelets were performed. 
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3.2. Methods 

3.2.1. Blood collection 

3.2.1.1. Ethics 

The experiments using human blood from healthy volunteers were approved by 

the St. Thomas’s Hospital Research Ethics committee. Healthy volunteers gave 

written consent and were subsequently screened. Screening included a medical 

questionnaire and a physical examination including measurement of blood 

pressure, heart rate, respiratory rate and body temperature. Exclusion criteria 

included age (>40 years old), smoking and medication that potentially affects 

platelet function. 

3.2.1.2. Venepuncture 

Up to 100 ml blood was taken from the median cubital vein using a 19 gauge 

butterfly needle. Blood was drawn into a syringe containing 3.2% trisodium 

citrate and mixed with the anticoagulant in a 10:1-ratio. The blood was 

immediately processed unless stated differently.  

3.2.2. Preparation of platelet rich plasma (PRP) and platelet poor plasma (PPP) 

Citrated whole blood was transferred from the syringe into 15ml falcon tubes 

and subsequently centrifuged at 175 x g for 15 minutes at room temperature. To 

prevent remixing of the PRP fraction with the subjacent red blood cell layer, 

centrifuge brakes were on “low”-mode. The PRP layer was carefully taken off 

and transferred into a new tube for further procedures. 

PPP was obtained by centrifugation of the red blood cell fraction at 1300 x g for 

2 minutes.  
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3.2.3. Treatment of whole blood with antiplatelet drugs  

For experiments performed in PRP containing mixed populations of inhibited 

and uninhibited platelets, whole blood was treated with aspirin and/or PAM or 

corresponding vehicle. Aspirin solution 100 mM was made in 100% ethanol and 

subsequently diluted to 3 mM in PBS. Aspirin solution 3 mM was diluted 1:100 

in whole blood to get a final concentration of 30 μM. PAM solution 10 mM (in 

DMSO) was diluted in PBS to a concentration of 600 µM. To achieve a final 

concentration of 3 µM, PAM solution was diluted 1:200 in whole blood. Whole 

blood containing antiplatelet drugs was then incubated for four hours at room 

temperature. 

3.2.4. Preparation of platelet agonist solutions 

ADP, TRAP-6, CRP-XL and U46619 were all prepared from 1mM stocks 

prepared in PBS. Horm collagen 1 mg/ml was diluted in an isotonic glucose 

buffer (supplied by manufacturer). Lyophilized ristocetin was reconstituted to 20 

mg/ml in dH2O. AA (100mM stock in 100 % ethanol) was diluted into 0.1 % 

ascorbic acid in PBS. All agonists were prepared at a concentration 10 times 

the required final concentration and added 1:10 to the platelet suspension in 

platelet assays unless stated otherwise. 

3.2.5. Preparation and treatment of washed platelets (WP) 

Apyrase 0.02 U/ml and 2 µg/ml PGI2 were added to PRP and platelets were 

pelleted by centrifugation for 10 minutes at 1000 x g at room temperature. 

Supernatant containing the plasma was discarded and pellet was resuspended 

in modified Tyrode’s buffer (134 mM NaCl, 20 mM HEPES, 2.9 mM KCl, 

0.34 mM Na2HPO4, 1 mM MgCl2, 12 mM NaHCO3) containing 0.35 % BSA, 

0.1 % glucose and 0.02 U/ml apyrase. For experiments performed in WP 

containing mixed populations of inhibited and uninhibited platelets, platelets 

were treated with aspirin, PAM, aspirin+PAM, PAM+Abciximab or 

corresponding vehicle. Aspirin solutions were prepared as above, whereas PAM 

solutions were prepared in DMSO instead of PBS. 2 mg/ml abciximab solution 

was diluted 1:200 in the platelet suspension to achieve a final concentration of 
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10 µg/ml.  Platelet suspension was incubated for 20 minutes at room 

temperature before washing was continued. 

Platelets were pelleted for a second time as described above and after second 

resuspension of the platelet pellet, platelet count was assessed using a Coulter 

particle counter Z1 (Beckman Coulter Inc., USA) and adjusted to 3 x 108 

platelets per millilitre for aggregation experiments.  

3.2.6. Platelet labelling 

Platelets were prepared as above for WP, but after the second pelleting step 

were resuspended in 500 µl isotonic protein-free solution (Diluent C). For 

labelling, 500 µl of the platelet suspension was mixed with equal volume of 

Diluent C containing 4 µM cell tracker dye PKH26 or 4 µM cell tracker dye 

PKH67. After 5 minutes incubation with occasional inversion, 4 ml modified 

Tyrode’s buffer containing BSA, glucose and apyrase and 2 µg/ml PGI2 were 

added to the platelet suspension and centrifuged for 10 minutes at 1000 x g. 

The pellet of labelled platelets was resuspended in modified Tyrode’s buffer 

containing 0.1 % glucose and 0.35 % BSA and platelet count was assessed 

using a Coulter particle counter Z1 followed by adjustment to 3 x 108 platelets 

per millilitre for aggregation experiments. 

3.2.7. Platelet aggregation 

Platelet aggregation was assessed by either 96-well plate based LTA or 

traditional LTA. 

3.2.7.1. 96-well plate assay 

10 µl of previously prepared platelet agonists or vehicles were added to each 

well of a transparent flat-bottomed 96-well plate at a 10 x final concentration. 

The top row typically contained four wells of PRP and four wells of previously 

prepared PPP without agonists (which correspond to 0 % or 100 % aggregation, 

respectively) which served as controls. 100 µl PRP was added on top of 

agonists and vehicles and the 96-well plate immediately transferred to a Tecan 
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Sunrise (Tecan Trading AG, Switzerland) absorbance plate reader. Absorbance 

was measured in 64 cycles over a period of 16 minutes at a wavelength of 

595nm, following shaking of the plate for 7 seconds at 12.3 Hz in each cycle. 

Per cent aggregation was calculated according to the formula:  

                     
                              

                            
  

3.2.7.2. Light transmission aggregometry  

Prior to measurement of aggregation responses, each channel of a PAP-8E 

light transmission aggregometer (Alpha Laboratories, UK), was blanked with a 

sample of 225 µl PPP plus 25 µl diluent (PBS or isotonic glucose). For 

measuring aggregation, 225 µl PRP was transferred into individual glass 

cuvettes containing a siliconised magnetic stirrer bar and incubated for 

2 minutes at 37°C under constant stirring at 1200 rpm. 25 µl agonist solution (at 

10 x final concentration) was added to the PRP sample and the aggregation 

response was measured for up to 20 minutes with continuous stirring at 1200 

rpm at 37°C using 340 nm-light. Values of final aggregation after 5 or 20 

minutes were used to create graphs unless stated otherwise. 

3.2.8. Lumi-aggregometry 

Experiments were performed using a Chronolog 560CA lumi-aggregometer 

(Chronolog, USA). Each channel was equipped with a blank sample containing 

225 µl PPP with 25 µl CHRONO LUME reagent in the ‘reference position’. Prior 

to each aggregation run a baseline reading corresponding to 100% aggregation 

was measured by reading a blank containing 225 µl PPP with 25 µl CHRONO 

LUME reagent. After a few seconds this sample was exchanged for a platelet 

sample containing 225 µl PRP and 25 µl CHRONO LUME reagent. This sample 

was incubated in reading position for 2 minutes at 37°C before aggregation was 

stimulated by 20 µM ADP or 1 mM AA, respectively. Aggregation and 

luminescence traces were followed and recorded for 5 minutes using Chart v4.2 

(ADInstruments, UK). After 5 minutes 4 nmoles ATP reference were injected to 

allow subsequent calculations of ATP concentrations.  
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3.2.9. Confocal microscopy of labelled platelet aggregates obtained by LTA 

3.2.9.1. Sample preparation 

Aggregates of labelled platelets obtained by traditional LTA were fixed by 

addition of 50 μl 10% paraformaldehyde to the cuvettes after the aggregation. A 

drop of platelet aggregates-containing solution was transferred to a microscope 

slide using a siliconised (Sigmacote) transfer pipette. One drop of 

VECTASHIELD hardset mounting medium was applied to each sample and 

covered with a coverslip. 

3.2.9.2. Capturing 3D-stacks of platelet aggregates  

PKH67 and/or PKH26 labelled platelet aggregates were analysed for differential 

distribution of aspirin- or PAM-inhibited and uninhibited platelets within platelet 

aggregates using a Zeiss LSM 5 PASCAL confocal laser-scanning microscope 

(Carl Zeiss AG, Germany) incorporating a 10 x Plan NEOFLUOR objective 

(numerical aperture 0.3), and a 63 x oil-dipping Plan-APOCHROMAT objective 

(numerical aperture 1.4 and resolution 0.28 µm). Z-stack images were captured 

using the multiple track scanning mode.  

3.2.10. Analysis of platelet distribution within platelet aggregates 

Z-stacks obtained by confocal microscopy were processed with IMARIS 

(Bitplane AG, Switzerland) by rendering surfaces around the “volume” of 

captured fluorescence. Images were presented as 3D-surfaces. Images were 

blinded and randomised and optically rated from one (random distribution of 

differently labelled platelets) to six (obvious accumulation and distinct 

distribution of one platelet species) by someone without previous knowledge of 

the images. Numbers obtained by rating were subsequently converted into 

percentage clustering. 
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3.2.11. Flow cytometry 

For quantification of micro-aggregates containing PKH67 and PKH26-positive 

platelets and post-aggregation platelet counts a cytometric assay was used. 

Pre-labelled platelets were stimulated for 5 minutes in a light transmission 

aggregometer, fixed with 1.5% paraformaldehyde. 10µl platelet solution were 

mixed with 10 µl Countbright fluorescent beads at a concentration of 1000 

beads per µl and 980 µl 1% paraformaldehyde in sterile 0.9% saline. Samples 

were acquired on a FACSCalibur (Becton, Dickinson and Company, USA) flow 

cytometer using CellQuest (Becton, Dickinson and Company, USA) acquisition 

software. FlowJo software (TreeStar Inc, USA) was used for post-acquisition 

analysis. 

3.2.12. Statistical Analysis 

All statistical analyses were conducted using GraphPad Prism v5 (GraphPad 

Software Inc, USA).  

Applied statistical tests are mentioned in the text.  
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3.3. Results 

3.3.1. The effect of antiplatelet drugs aspirin and PAM on platelet aggregation 

in pure platelet populations utilising 96-well plate and traditional light 

transmission aggregometry 

The initial step in assessing the role of an uninhibited platelet subpopulation in 

aggregate formation was to establish the validity of my system. The antiplatelet 

effects of both aspirin and PAM could be demonstrated to a range of agonists at 

various concentrations.  

In 96-well plate based light transmission aggregometry, aggregation stimulated 

by ADP (figure 3.1b) showed only weak aspirin sensitivity for all tested 

concentrations with a maximum reduction of 21%, whereas PAM or the 

combination of aspirin+PAM caused substantial inhibition (88%, 87%, 

respectively, p<0.05). A similar pattern was observed when aggregation was 

stimulated with either U46619 or TRAP-6. Aggregation stimulated by 0.3 µM 

U46619 (22±9%) was not sufficiently big for reliable measurement of inhibitory 

responses to either aspirin (7±2%) or PAM (4±1%). However, similar to ADP, 

aggregation stimulated by 1 µM or 10 µM U46619 was unaffected by aspirin 

whereas treatment with PAM or aspirin+PAM significantly reduced platelet 

aggregation (91%, 88%, respectively; p<0.001). In a similar fashion aggregation 

responses to TRAP-6 were inhibited by PAM or aspirin+PAM (3 µM: 71%, 79%, 

respectively; p<0.001) but not by aspirin alone.  

Stimulation of platelets with AA caused a concentration dependent aggregation 

ranging from 45±16% when stimulated with 0.3 mM AA to 89±3% when 

stimulated with 1mM AA. Aggregation was inhibited by aspirin regardless of the 

concentration of AA used. To a lesser extent, in particular at higher AA 

concentrations, aggregation was also inhibited by PAM. 

Collagen stimulated aggregation was aspirin-sensitive when stimulated with 

0.3 µg/ml and PAM-sensitive when stimulated with 0.3 µg/ml or 3 µg/ml. Above 

these concentrations of collagen the inhibitory effects of both of these drugs 
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were overcome. However, treatment with PAM on top of aspirin markedly 

inhibited platelet responses even with 30 µg/ml collagen.  

The GPVI-activating peptide CRP-XL caused aggregations of between 52±12% 

at 0.03 µg/ml and 78±2% at 0.3 µg/ml. CRP-XL-stimulated aggregation showed 

the same trend with regards to antiplatelet drug sensitivity as collagen however 

less pronounced. Aspirin could not inhibit platelet aggregation at any tested 

CRP-XL concentration and PAM inhibited platelet aggregation only at 0.03 

µg/ml and 0.1 µg/ml CRP-XL. Platelet aggregation in response to 0.3 µg/ml 

CRP-XL was not inhibited by aspirin, PAM or the combination of both. 
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Figure 3.1: Effect of antiplatelet drugs aspirin, PAM or aspirin+PAM on 
platelet aggregation utilising 96-well plate aggregometry.  

Aggregation stimulated by: 0.3 mM, 0.6 mM, or 1 mM AA (A); 3 µM, 10 µM, or 30 µM 
ADP (B); 0.3 µg/ml, 3 µg/ml, or 30 µg/ml collagen (C); 0.03 µg/ml, 0.1 µg/ml, or 0.3 
µg/ml CRP-XL (D); 1 µM, 3 µM, or 10 µM TRAP-6 (E); or 0.3 µM, 1 µM or 10 µM 
U46619 (F); utilising 96-well plate aggregometry. Data are mean±SEM of 4 to 6 
individuals. *** p<0.001, ** p<0.01 and * p<0.05 difference by 1way-ANOVA in 
aggregation from vehicle-treated platelets. 
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96-well plate light transmission aggregometry is a useful screening tool but 

poorly understood by the platelet community and not comparable to any historic 

data. Thus, to confirm the findings obtained by 96-well plate aggregometry, 

selected agonist concentrations were tested in traditional light transmission 

aggregometry. In addition to the agonists used above, ristocetin was introduced 

which was also used as optical control in later experiments.  

Endpoints (after 5 minutes aggregation) of each trace obtained from 4 to 6 

individual were collated and presented as bar charts: 

AA 1 mM caused an immediate and rapid aggregation response which was 

sustained throughout the 5 minutes aggregation period. In the presence of 3 µM 

PAM the slope of the trace was similar but aggregation was not maintained to 

the same extent resulting in lower aggregation after 5 min. In the presence of 

30 µM aspirin or aspirin+PAM, no aggregation occurred represented by a “flat 

line” as seen in figure 3.2A. Taking all 6 experiments together, stimulation with 

1 mM AA resulted in 73±3% aggregation. In the presence of PAM, aggregation 

was significantly reduced to 15±7% (p<0.001) and in the presence of aspirin or 

both antiplatelet drugs, aggregation was virtually abolished (1±1% p<0.001 or 

2±2% p<0.001, respectively) (figure 3.2B). 

ADP 20 µM caused a rapid and sustained aggregation that was slightly 

diminished in the presence of aspirin. In the presence of PAM however, an 

initial transient aggregation could be observed upon stimulation with ADP. This 

transient aggregation was not sustained and the aggregation trace returned to 

the baseline. The same effect was observed in the presence of aspirin together 

with PAM (figure 3.3A). The collated data representing final aggregation levels 

of 6 individuals showed a trend towards lower aggregation in the presence of 

aspirin (54±4% compared to 68±6 in the uninhibited control sample; p=0.0545). 

Treatment of the platelets with PAM or aspirin+PAM substantially reduced 

platelet aggregation to 4±3%; (p<0.001) or 3±2%; (p<0.001), respectively (figure 

3.3B) 



84 
 

Upon stimulation with 1 µg/ml collagen, aggregation was strong and sustained 

although proceeded by a short lag phase. In the presence of PAM, aggregation 

started after a short lag phase, increased steeply to reach a maximum but 

reversed slightly to result in a weaker final aggregation than the uninhibited 

platelet sample. Platelet inhibition by aspirin resulted in a much flattened 

aggregation trace which was even further flattened by the addition of PAM 

(figure 3.4A). The corresponding bar diagram shows aggregation of 71±2% 

following stimulation with 1 µg/ml collagen. This was markedly reduced to 

40±11% (p<0.05) in the presence of PAM and substantially reduced to 16±3% 

(p<0.001) in the presence of aspirin or 6±1% (p<0.001) in the presence of 

aspirin+PAM. Furthermore a significant reduction in platelet aggregation was 

observed following addition of aspirin to a PAM-treated sample (p<0.05) (figure 

3.4B). 

CRP-XL 0.1µg/ml (similar to 1 µg/ml collagen) caused sustained aggregation 

after a short lag phase. Addition of antiplatelet drugs resulted in lower 

aggregation which was described by flatter slopes reaching the plateau of 

maximum aggregation earlier than the control sample. Treatment with PAM had 

a stronger inhibitory effect than in collagen stimulated samples (figure 3.5A). 

Taking all individual curves together 0.1 µg/ml CRP-XL caused 60±3% 

aggregation. This was significantly reduced by aspirin, PAM or aspirin+PAM to 

24±4% (p<0.001), 23±4% (p<0.001) or 23±7% (p<0.001), respectively. 

Aggregation traces in response to 1 µM U46619 showed similar patterns to 

those stimulated by ADP. In the absence of platelet inhibitors the trace showed 

a rapid increase in aggregation (reaching a half maximal response after 39 

seconds) which was sustained throughout the test period. Aspirin had no effect 

on platelet aggregation stimulated by U46619. In the presence of PAM (or 

aspirin+PAM) U46619 stimulated an aggregation characterised by a similar 

rapid increase in light transmission which was not sustained and reversed 

gradually after reaching an early maximum (at approximately 1 minute). This led 

to significantly reduced platelet aggregation after 5 minutes (figure 3.6A). These 

observations are summarised in figure 3.6B which shows 67±4% aggregation of 

platelets to U46619 in control conditions. As mentioned, aspirin had no effect on 
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platelet aggregation, which was 68±6%. In contrast, treatment with PAM lead to 

a significant reduction in platelet aggregation (19±8% aggregation, p<0.001). 

Addition of aspirin to PAM had no further effect (18±5%, p<0.001) on platelet 

aggregation. 

Ristocetin 2mg/ml caused immediate rapid aggregation that was subsequently 

maintained and not sensitive to either aspirin or PAM, or aspirin+PAM. As seen 

in figure 3.7A, the resulting traces appeared much “spikier” reflecting bigger 

fluctuations in light transmittance. The bar diagram in figure 3.7B confirms the 

insensitivity of this stimulus to aspirin (aggregation 53±8%), PAM (aggregation 

59±6%) or aspirin+PAM (aggregation 65±4% compared to 63±5% for the 

control sample).  

  



86 
 

A 

 
B 

 

Figure 3.2: The effect of aspirin and/or PAM on AA-induced platelet 
aggregation in LTA.  

Representative aggregation time response traces of platelets to 1 mM AA in the 

presence of either 30 µM aspirin, 3 µM PAM, aspirin+PAM or corresponding vehicle 

(A). Bar charts showing final aggregation after 5 minutes exposure to 1 mM AA. Data 

are mean±SEM of 6 individuals. *** p<0.001difference by 1way-ANOVA in aggregation 

from vehicle-treated platelets. 
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Figure 3.3: The effect of aspirin and/or PAM on ADP-induced platelet 
aggregation in LTA.  

Representative aggregation time response traces of platelets to 20 µM ADP treated in 

the presence of either 30 µM aspirin, 3 µM PAM, aspirin+PAM or corresponding vehicle 

(A). Bar charts showing final aggregation after 5 minutes exposure to 20 µM ADP. Data 

are mean±SEM of 6 individuals. *** p<0.001, ### p<0.001 difference by 1way-ANOVA in 

aggregation from vehicle-treated platelets or aspirin-treated platelets, respectively. 
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Figure 3.4: The effect of aspirin and/or PAM on collagen-induced platelet 
aggregation in LTA.  

Representative aggregation time response traces of platelets to 1 µg/ml collagen in the 

presence of either 30 µM aspirin, 3 µM PAM, aspirin+PAM or corresponding vehicle 

(A). Bar charts showing final aggregation after 5 minutes exposure to 1 µg/ml collagen. 

Data are mean±SEM of 4 individuals. *** p<0.001, * p<0.05, or # p<0.05 difference by 

1way-ANOVA in aggregation from vehicle-treated platelets or aspirin-treated platelets, 

respectively. 
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Figure 3.5: The effect of aspirin and/or PAM on CRP-XL-induced platelet 
aggregation in LTA.  

Representative aggregation time response traces to 0.1 µg/ml CRP-XL of platelets 

treated with either 30 µM aspirin, 3 µM PAM, aspirin+PAM or corresponding vehicle 

(A). Bar charts showing final aggregation after 5 minutes exposure to 0.1 µg/ml CRP-

XL. Data are mean±SEM of 6 individuals. *** p<0.001 difference by 1way-ANOVA in 

aggregation from vehicle-treated platelets 
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Figure 3.6: The effect of aspirin and/or PAM on U46619-induced platelet 
aggregation in LTA.  

Representative aggregation time response traces to 1 µM U46619 of platelets treated 

with either 30 µM aspirin, 3 µM PAM, aspirin+PAM or corresponding vehicle (A). Bar 

charts showing final aggregation after 5 minutes exposure to 1 µM U46619. Data are 

mean±SEM of 6 individuals. *** p<0.001, or ### p<0.001 difference by 1way-ANOVA in 

aggregation from vehicle-treated platelets or aspirin-treated platelets, respectively. 
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Figure 3.7: The effect of aspirin and/or PAM on ristocetin-induced platelet 
aggregation in LTA.  

Representative aggregation time response traces to 2 mg/ml ristocetin of platelets 

treated with either 30 µM aspirin, 3 µM PAM, aspirin+PAM or corresponding vehicle 

(A). Bar charts showing final aggregation after 5 minutes incubation with 2 mg/ml 

ristocetin. Data are mean±SEM of 6 individuals.  
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3.3.2. Effects of antiplatelet drugs on aggregation in mixed platelet populations 

utilising 96-well plate- or traditional light transmission aggregometry 

In order to mix PRP samples treated with antiplatelet drugs with PRP containing 

uninhibited platelets, it had to be established that any free active metabolites in 

the treated samples would have been broken down prior to mixing, as free 

antiplatelet drug from the treated sample would potentially have had an effect 

on naïve platelets when mixed together. In order to test for remaining active 

drug, whole blood was either incubated with 10x concentration of PAM (which 

has a higher halflife in blood than aspirin) or corresponding vehicle. After four 

hours incubation at room temperature blood was spun to obtain platelet poor 

plasma which was subsequently added 1:10 to untreated PRP and stimulated 

with 5 or 20 µM ADP. As shown in figure 3.8 no differences between both 

treatment groups could be observed (p=0.8621; n=4).  

 
 

Figure 3.8: Effect of platelet poor plasma from PAM-treated whole 
blood on platelet aggregation after 4 hours incubation. 

Naïve PRP was mixed with 10% PPP obtained from whole blood incubated with 30 
µM PAM for 4 hours. Bars show final aggregation after 5 minutes incubation with 
either 5 or 20 µM ADP and represent mean±SEM of 4 individuals. 
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The experiments described in 3.3.1 proved the validity of the aggregometry 

assays and furthermore demonstrated the range of aggregation responses that 

could be expected when mixing inhibited with uninhibited platelets in various 

proportions. The sensitivity of various agonists to antiplatelet drugs has been 

established. The question addressed in this section deals with the nature of the 

interaction; what are the exact relationships between inhibited and uninhibited 

platelets and to which extend do they influence platelet aggregation (e.g. what 

is the effect of adding 20% uninhibited platelets to aspirin-treated platelets when 

stimulating platelet aggregation with AA)? 

Confirming the observations from section 3.3.1, platelet aggregation responses 

to ADP (figure 3.9B) as well as U46619 (figure 3.9F) and TRAP6-amide (figure 

3.9E) were only weakly sensitive to aspirin with 61±5% aggregation in aspirin-

treated platelets when stimulated with 3 µM ADP. Aggregation increased with 

rising proportion of aspirin-free platelets to reach a maximum aggregation of 

76±5% and became significant (p<0.05) when 100% platelets were aspirin-free. 

Aggregations in response to 10 µM and 30 µM ADP were insensitive to the 

effects of aspirin. A trend in increased platelet aggregation was observed with 

rising proportions of uninhibited platelets in response to either 0.3 µM U46619 

or 1 µM TRAP-6 (from 7±2% or 34±11%, respectively, when 100% platelets 

were aspirin-treated to 23±11% or 61±11%, respectively).  

No aggregation was observed when aspirin-treated platelets were stimulated 

with AA. Increasing the proportion of aspirin-free platelets caused a steep 

increase in aggregation which reached a plateau (69±15% aggregation, 1mM 

AA) when 20% of platelets were aspirin-free. Aggregation caused by 0.3mM AA 

increased in a linear fashion with rising proportions of aspirin-free platelets 

(figure 3.9A). Collagen-stimulated aggregation was sensitive to aspirin in 96-

well plate aggregometry, with a maximum inhibition of 60%. However, this 

inhibitory effect was achieved against weak stimulation only (reduction in 

aggregation from 52±9% to 21±2%) (figure 3.9C); CRP-XL-stimulated 

aggregation was aspirin-insensitive (control aggregation, 40±11%; aggregation 

of aspirin-treated platelets, 30±17%) (figure 3.9D).  
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Figure 3.9: Aggregation responses of mixed populations of aspirin- and 
vehicle treated platelets assessed by 96-well plate aggregometry. 

Aggregation stimulated with 0.3 mM, 0.6 mM, or 1 mM AA (A); 3 µM, 10 µM, or 30 µM 
ADP (B); 0.3 µg/ml, 3 µg/ml, or 30 µg/ml collagen (C); 0.03 µg/ml, 0.1 µg/ml, or 0.3 
µg/ml CRP-XL (D); 1 µM, 3 µM, or 10 µM TRAP-6 (E); or 0.3 µM, 1 µM or 10 µM 
U46619 (F) utilising 96-well plate aggregometry. Platelets were treated with either 30 
µM aspirin or vehicle prior to mixing of populations. Data points represent final 
aggregation after 16 minutes and show mean±SEM of 4 to 6 individuals. 

 

 

  



95 
 

Aggregations induced by ADP (figure 3.10B), TRAP-6 (figure 3.10E) and low 

concentrations of collagen (0.3µg/ml) (figure 3.10C) and CRP-XL (0.03µg/ml) 

(figure 3.10D) as well as high concentrations of AA (0.6mM and 1mM) (figure 

3.10A) were almost linearly related to the proportion of PAM-treated platelets. 

Stimulation of platelets with 3µg/ml collagen, 0.1µg/ml CRP-XL or 10µM 

U46619 (figure 3.10F) caused 46±6%, 21±10% or 36±7% respectively, 

aggregation, in the absence of PAM-free platelets. Increase in proportions of 

PAM-free platelets lead to a steep increase in aggregation plateauing at 74±4% 

(3µg/ml collagen), 56±10% (0.1µg/ml CRP-XL) or 82±1% (10uM U46619) 

respectively, when 40% platelets were PAM-free, producing a robust 

aggregation response with further increase in PAM-free platelets (maximum 

aggregation 86±4%, 3µg/ml collagen; 70±6%, 0.1µg/ml CRP-XL; or, 91±2%, 

10µM U46619, with 100% PAM-free platelets). 10µg/ml collagen and 0.3µg/ml 

CRP-XL caused aggregation insensitive to treatment with PAM. 

In clinical practice P2Y12 inhibitors such as prasugrel are usually administered in 

addition to aspirin, since aspirin is given as the default antiplatelet drug. Hence, 

prasugrel is usually not administered alone. To expand previous findings to a 

clinically more relevant framework, platelets were incubated with both aspirin 

and PAM. 

Results obtained by 96-well plate aggregometry using mixed populations of 

aspirin+PAM and uninhibited platelets were similar to those obtained from PAM-

only treated platelets mixed with uninhibited platelets. However, generally, 

aggregation showed a more linear relationship when aspirin was added in 

addition to PAM.  

Aggregations in response to ADP, TRAP6-amide, collagen and U46619 of 

platelets treated with aspirin+ PAM showed similar results to those of PAM-only 

treated platelets, consistent with these responses being only weakly sensitive to 

aspirin. In detail, ADP at all concentrations tested, 1µM U46619, 0.3µg/ml 

collagen and 3µM TRAP-6 displayed linear increases in aggregation responses 

with rising concentrations of aspirin+PAM-free platelets. High concentrations of 

collagen (30µg/ml), TRAP-6 (10µM) and U46619 (10µM) showed 56±5%, 
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41±6% or 22±4% aggregation respectively, when all platelets were treated with 

aspirin+PAM. With increasing proportions of inhibitor-free platelets aggregations 

increased until plateaus were reached (79±5%, 70±6% or 79±9% aggregation, 

respectively) when 40% platelets were uninhibited. Aggregations induced by 

1µM TRAP-6, 0.3µM U46619 and 0.03µg/ml CRP-XL did not increase with 

rising proportions of uninhibited platelets up to the point when 80% platelets 

were aspirin+PAM-free, from this point aggregations followed a steep increase 

until all platelets were uninhibited. AA 1mM did not cause aggregation up to the 

point when 40% platelets were aspirin+PAM-free followed by a steep increase 

as the uninhibited platelet population increased. Stimulation with 0.6mM AA 

caused a steep increase in aggregation when more than 60% platelets were 

aspirin and PAM-free and stimulation with 0.3mM AA showed no aggregation 

when up to 80% platelets were aspirin+PAM-free. Further increase in 

uninhibited platelets caused a steep increase in aggregation. 

  



97 
 

A 

 

B 

 
C 

 

D 

 
E 

 

F 

 

Figure 3.10: Aggregatory responses of mixed populations of PAM- and 
vehicle treated platelets assessed by 96-well plate aggregometry. 
Aggregation stimulated with 0.3 mM, 0.6 mM, or 1 mM AA (A); 3 µM, 10 µM, or 30 µM 
ADP (B); 0.3 µg/ml, 3 µg/ml, or 30 µg/ml collagen (C); 0.03 µg/ml, 0.1 µg/ml, or 
0.3 µg/ml CRP-XL (D); 1 µM, 3 µM, or 10 µM TRAP-6 (E); or 0.3 µM, 1 µM or 10 µM 
U46619 (F) utilising 96-well plate aggregometry. Platelets were treated with either 3 µM 
PAM or vehicle prior to mixing. Data points represent final aggregation after 16 minutes 
and show mean±SEM of 4 to 6 individuals. 
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Figure 3.11: Aggregatory responses of mixed populations of aspirin+PAM-
treated and vehicle-treated platelets assessed by 96-well plate 
aggregometry. 

Aggregation stimulated with 0.3 mM, 0.6 mM, or 1 mM AA (A), 3 µM, 10 µM, or 30 µM 

ADP (B), 0.3 µg/ml, 3 µg/ml, or 30 µg/ml collagen (C), 0.03 µg/ml, 0.1 µg/ml, or 

0.3 µg/ml CRP-XL (D), 1 µM, 3 µM, or 10 µM TRAP-6 (E) or 0.3 µM, 1 µM or 10 µM 

U46619 (F) utilising 96-well plate aggregometry. Platelets were treated with either 

30 µM aspirin + 3 µM PAM or vehicle prior to mixing. Data points represent final 

aggregation after 16 minutes and show mean±SEM of 4 to 6 individuals. 
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In traditional LTA, aspirin-treated platelets showed no aggregatory responses to 

AA (1±1% aggregation). Increasing the proportion of aspirin-free platelets 

caused a steep increase in aggregation which returned to a full aggregatory 

response when 30% aspirin-free platelets were present (65±4% aggregation) 

(figure 3.12A). In the presence of 100% PAM-treated platelets, aggregation was 

15±7% and increased in an almost linear fashion with rising proportions of 

uninhibited platelets (r2=0.937) to reach 67±4% when all platelets were 

uninhibited (figure 3.13A). Platelets treated with a combination of aspirin+PAM 

and mixed with uninhibited platelets showed a similar pattern of responses as 

seen in combinations of aspirin-only treated platelets, but with the response 

curve shifted to the right returning to a full response (73±4% aggregation) by the 

inclusion of 60% uninhibited platelets (figure 3.14A) 

Whereas aggregation stimulated with 20 µM ADP was only little affected by 

aspirin (figure 3.12B), it was completely inhibited by PAM (4±3% aggregation) 

or aspirin+PAM (3±2% aggregation). With rising proportions of uninhibited 

platelets, aggregation increased in a linear fashion (r2=0.996 or 0.994, 

respectively) to reach 66±7%, or 64±5%, respectively, when all platelets were 

uninhibited (figures 3.13B, 3.14B).  

Aggregation in response to 1 µg/ml collagen showed higher sensitivity to aspirin 

than to PAM, resulting in 16±4% aggregation which, similar to AA-induced 

aggregation, steeply increased to return to a full aggregatory response at 

46±10% when 40% platelets were aspirin-free (figure 3.12C). PAM alone 

partially inhibited aggregation induced by 1 µg/ml collagen (40±11%), which 

was returned to full responses by the addition of 40% uninhibited platelets 

(figure 3.13C). The combination of aspirin+PAM caused inhibition of collagen-

induced platelet aggregation to a level of 6±1%, which returned in a sigmoidal 

curve relationship with the addition of uninhibited platelets, reaching a complete 

return in the presence of 80% uninhibited platelets (aggregation of 69±4% 

compared to 73±3% in control conditions) (figure 3.14C). 

Responses to CRP-XL were inhibited by aspirin and PAM, as well as by 

aspirin+PAM. In the presence of aspirin or aspirin+PAM, responses returned to 
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control levels once a population of 60% uninhibited platelets was reached 

whereas 80% uninhibited platelets were required for a full aggregatory response 

in the presence of PAM-inhibited platelets: aspirin, aggregation of 44±8% 

compared to 61±6% in control conditions; PAM, aggregation of 48±6% 

compared to 61±4% in control conditions; aspirin+PAM, aggregation of 34±9% 

compared to 59±6% in control conditions (figures 3.12D, 3.13D, 3.14D). 

In contrast to 96-well plate aggregometry, for U46619 in LTA there were linear 

increases in aggregation that followed the addition of uninhibited platelets to 

inhibited platelets treated with either PAM or aspirin+PAM. For instance, in 

PAM-inhibited platelets addition of 20%, 40% and 80% uninhibited platelets 

increased the aggregation from control level of 19±8% to 28±9%, 38±11% and 

60±4%, respectively (figures 3.13F, 3.14F). Aspirin alone had little effect upon 

aggregation induced by U46619 and so responses of aspirin inhibited platelets 

were little affected by the addition of uninhibited platelets. For example, the 

response to U46619 in 100% aspirin-inhibited platelets, 66±9%, was not 

different to that in 100% uninhibited platelets, 61±5% (figure 3.12F).  

Aggregations induced by 2mg/ml ristocetin were not affected by the antiplatelet 

drugs (figure 3.12E, 3.13E, 3.14E). 
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Figure 3.12: Aggregation responses of mixed populations of aspirin-
treated and uninhibited platelets assessed by traditional LTA. 

Aggregation stimulated with 1 mM AA (A), 20 µM ADP (B), 1 µg/ml collagen (C), 0.1 
µg/ml, CRP-XL (D), 2 mg/ml ristocetin (E), or 1 µM U46619 (F) utilising traditional 
LTA. Platelets were treated with 30 µM aspirin or corresponding vehicle prior to 
mixing. Data points represent final aggregation after 5 minutes and show mean±SEM 
of 4 to 6 individuals. *** p<0.001, ** p<0.01 and * p<0.05 difference by paired ANOVA 
in aggregation from 100% aspirin-free platelets. 
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Figure 3.13: Aggregation responses of mixed populations of PAM-treated 
and uninhibited platelets assessed by traditional LTA. 

Aggregation stimulated with 1 mM AA (A), 20 µM ADP (B), 1 µg/ml collagen (C), 0.1 
µg/ml, CRP-XL (D), 2 mg/ml ristocetin (E), or 1 µM U46619 (F) utilising traditional LTA. 
Platelets were treated with 3 µM PAM or corresponding vehicle prior to mixing. Data 
points represent final aggregation after 5 minutes and show mean±SEM of 4 to 6 
individuals. *** p<0.001, ** p<0.01 and * p<0.05 difference by paired ANOVA in 
aggregation from 100% PAM-free platelets. 
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Figure 3.14: Aggregation responses of mixed populations of aspirin+ 
PAM-treated and uninhibited platelets assessed by traditional LTA. 

Aggregation stimulated with 1 mM AA (A), 20 µM ADP (B), 1 µg/ml collagen (C), 0.1 
µg/ml, CRP-XL (D), 2 mg/ml ristocetin (E), or 1 µM U46619 (F) utilising traditional LTA. 
Platelets were treated with 30 µM aspirin +3 µM PAM or corresponding vehicle prior to 
mixing. Data points represent final aggregation after 5 minutes and show mean±SEM 
of 4 to 6 individuals. *** p<0.001, ** p<0.01 and * p<0.05 difference by paired ANOVA 
in aggregation from 100% aspirin+PAM-free platelets. 
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3.3.3. Effects of antiplatelet drugs on aggregation in pure or mixed platelet 

populations after prolonged agonist exposure 

In traditional LTA experiments above, platelet responses were followed for 5 

minutes. However, consideration of the shape of some traces in section 3.3.1 

(e.g. aggregation stimulated by ADP in aspirin-treated platelets) suggests that 

the arbitrary time span of 5 minutes does not necessarily reveal the full 

aggregation process or effects of antiplatelet drugs. Thus, aggregatory 

responses observed in previous experiments may be the result of a temporary 

observation of transient aggregation at 5 minutes. Furthermore, observing 

aggregation responses over a longer time period such as 20 minutes may help 

explain observed differences between traditional LTA conducted for 5 minutes 

and 96-well plate aggregometry conducted for 16 minutes. 

Aggregation values in response to 1 mM AA showed no differences between 20 

minutes and 5 minutes stimulation when aspirin-treated platelets were mixed 

with uninhibited platelets. As seen in figure 3.15A aggregation increased rapidly 

to reach half maximum aggregation after between 98.5 s when 10% platelets 

were aspirin-free and 64 s when 100% platelets were aspirin-free after addition 

of 1 mM AA. Upon reaching maximum aggregation traces stayed at this level 

without any significant reversible aggregation for the entire test period. In tests 

conducted over 5 or 20 minutes a significant final response was noted when as 

few as 10% aspirin-free platelets were introduced (11±11% or 15±12% 

respectively) and a substantial response when 30% platelets were aspirin-free 

(65±4% or 64±1% respectively) (figure 3.15B). 

However, following stimulation of mixed proportions containing PAM- and 

vehicle-treated platelets with 1 mM AA, aggregation increased rapidly to reach 

maximum aggregation after between 53.5 s (0% PAM-free platelets) and 66.5 s 

(100% PAM-free platelets) (figure 3.15C) and showed a trend towards lower 

final aggregation after 20 minutes stimulation in comparison to 5 minutes (figure 

3.15.D).   
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Stimulation of platelet aggregation by 1 µg/ml collagen caused similar effects to 

aggregation stimulated by 1 mM AA. In populations consisting of aspirin-treated 

and uninhibited platelets, aggregation was stable throughout the test period 

resulting in similar final aggregation values after 5 minutes and 20 minutes 

stimulation (figure 3.16 A, B). Upon stimulation of populations containing 

PAM-treated and untreated platelets by 1 µg/ml collagen, aggregation increased 

rapidly after a short lag-phase to reach half maximum aggregation after 84.5 s 

(0% PAM-free platelets) or 86 s (100% PAM-free platelets), respectively. This 

aggregation rate was similar to samples containing aspirin-treated platelets 

(81.5 s for 0% aspirin-free platelets sample; 85 s for 100% aspirin-free platelets 

sample). Samples containing different proportions of PAM-treated platelets 

showed significant reduction of aggregation with time with a clear trend towards 

lower final aggregation after 20 minutes stimulation compared to 5 minutes 

stimulation (figure 3.16C, D). 
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In mixed populations of PAM-treated and untreated platelets, upon induction of 

aggregation by 20 µM ADP, light transmittance increased rapidly to reach half 

maximum aggregation after 31 s (when 0% platelets were PAM-free) or 44.5 s 

(when 100% platelets were PAM-free), respectively. Rapid aggregation was 

followed by strong reversal of aggregation particularly in the presence of 0% 

PAM-free platelets (figure 3.17C). Final aggregation was similar at 5 and 20 

minutes. In both cases addition of uninhibited platelets resulted in a linear 

increase in platelet aggregations (r2=0.996, or r2=0.968, respectively), ranging 

from 4±3% to 66±7% aggregation at 5 minutes or 9±1% to 68±12% aggregation 

at 20 minutes (figure 3.17D). 

However, when aspirin-treated platelets were mixed with uninhibited platelets a 

time-dependent effect could be observed: upon stimulation of aggregation 

stimulated by 20 µM ADP aggregation traces showed rapid increase in 

aggregation which showed similar aggregation values for all tested proportions 

after 5 minutes stimulation (figure 3.17A, red dotted line represents the 5 

minutes time point) prolonged stimulation led to disaggregation in particular in 

the sample containing 0% aspirin-free platelets. Stimulation for 20 minutes 

resulted in final aggregation of 39±6% when 0% platelets were aspirin-free. 

Introduction of 10% aspirin-free platelets caused a steep increase to 59±7% 

final aggregation which further increased to 76±3% with rising proportions of 

uninhibited platelets (p<0.001) (figure 3.17B). This initial steep increase was not 

present after 5 minutes as the antiaggregatory effect of aspirin was not that 

evident at that stage. (figure 3.17 A,B). 
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Aggregation responses to 1 µM U46619 were similar to those for ADP after both 

5 and 20 minutes, although less inhibited by either aspirin or PAM. PAM-treated 

platelets showed higher residual platelet aggregation to U46619 (20±9% after 5 

minutes stimulated in the presence of 0% PAM-free platelets or 19±8% after 20 

minutes stimulation, respectively) than to ADP, but increased likewise in a linear 

fashion with rising proportions of PAM-free platelets (r2=0.968 after 5 minutes 

aggregation, r2=0.964 after 20 minutes aggregation) (figure 3.18D) 

Similarly to aggregatory responses to ADP, there was a trend towards an 

inhibitory effect of aspirin against U46619-stimulated platelet aggregation (figure 

3.18B). In comparison to aggregation stimulated by ADP however, platelets did 

not disaggregate much in prolonged stimulation (after the 5 minutes time point) 

when stimulated by 1 µM U46619 (figure 3.18A). 

  



111 
 

 

  

F
ig

u
re

 3
.1

8
: 

A
g

g
re

g
a
ti

o
n

 i
n

 r
e

s
p

o
n

s
e

s
 t

o
 1

 µ
M

 U
4
6

6
1
9

 i
n

 m
ix

e
d

 p
o

p
u

la
ti

o
n

s
 o

f 
a

s
p

ir
in

- 
o

r 
P

A
M

- 
a

n
d

 v
e

h
ic

le
-

tr
e
a

te
d

 p
la

te
le

ts
 f

o
ll

o
w

e
d

 f
o

r 
5

 o
r 

2
0

 m
in

u
te

s
. 
 

A
g

g
re

g
a

ti
o
n

s
 s

ti
m

u
la

te
d
 w

it
h

 1
 µ

M
 U

4
6
6

1
9

. 
P

la
te

le
ts

 w
e

re
 t

re
a
te

d
 w

it
h

 e
it
h

e
r 

3
0
 µ

M
 a

s
p
ir
in

 (
A

, 
B

),
 3

 µ
M

 P
A

M
 (

C
, 

D
) 

o
r 

v
e

h
ic

le
 p

ri
o
r 

to
 m

ix
in

g
. 

P
a

n
e

ls
 A

 a
n

d
 C

 s
h

o
w

 r
e

p
re

s
e
n
ta

ti
v
e
 a

g
g
re

g
a

ti
o
n

 t
im

e
 r

e
s
p
o
n

s
e

 t
ra

c
e
s
 f

o
llo

w
e

d
 f

o
r 

2
0
 m

in
u
te

s
. 

R
e

d
 d

o
tt
e

d
 l
in

e
 r

e
p
re

s
e
n
ts

 

5
 m

in
u

te
s
 t

im
e
 p

o
in

t.
 F

in
a
l 
a

g
g

re
g

a
ti
o
n

 v
a

lu
e
s
 w

e
re

 t
ra

n
s
fe

rr
e

d
 i
n

to
 a

g
g
re

g
a

ti
o
n

 r
e

s
p
o

n
s
e
 c

u
rv

e
s
 (

B
, 

D
).

 D
a
ta

 p
o
in

ts
 r

e
p
re

s
e
n

t 
fi
n

a
l 

a
g
g

re
g

a
ti
o
n

 a
ft

e
r 

5
 o

r 
2

0
 m

in
u
te

s
 a

n
d
 s

h
o
w

 m
e

a
n
±
S

E
M

 o
f 

4
 t
o

 6
 i
n

d
iv

id
u
a

ls
. 

 

B
 

D
 

  

A
 

C
 

  



112 
 

3.3.4. Effects of antiplatelet drugs on aggregation in pure or mixed platelet 

populations using lumi-aggregometry 

Platelet aggregation is one of the most widely used markers for platelet 

reactivity. To backup results obtained by aggregation, platelet ATP release was 

also measured. 

Upon activation platelets start to aggregate. In order to sustain and progress 

aggregation, secondary mediators such as TxA2 and ADP (stored in dense 

granules) are released alongside other ions and proteins (which are stored in α-

granules). To assess ADP release, the amount of ATP which is proportionally 

released from dense granules is measured using a luciferase luminescence 

assay. 

Figure 3.19A shows maximum and final aggregation of rising proportions of 

uninhibited platelets mixed with aspirin-treated ones, in response to 1 mM AA. 

As expected from previous experiments, aggregation responses increased 

steeply until reaching a maximum when 30% of platelets were aspirin-free. 

Interestingly, the “released ATP” curve showed exactly the same pattern as the 

aggregation curve.  

Platelet activation by 20 µM ADP resulted in a linear increase in aggregation 

with rising proportions of PAM-free platelets. In figure 3.19B final and maximum 

aggregation are both plotted. It can be observed that in the presence of low 

proportions of uninhibited platelets the maximum aggregation clearly exceeds 

the final aggregation values, indicating partial disaggregation. Unlike ATP-

release in response to 1 mM AA in samples containing aspirin-treated and 

untreated platelets, ATP-release curves did not follow the final aggregation 

curve but the general trend to higher ATP/ADP-release with increasing 

proportions of uninhibited platelets. At lower proportions of PAM-free platelets 

(also characterised by substantial disaggregation), ATP-release values were 

below the aggregation curve. With greater proportions of PAM-free platelets, 

ATP-release increased rapidly to reach a plateau when 60% platelets were 

PAM-free. 
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Figure 3.19: Aggregation responses and ATP-release of mixed 
populations of inhibited- and uninhibited platelets assessed by lumi-
aggregometry. 

Platelet activation stimulated by 1 mM AA (A) or 20 µM ADP (B) utilising 
lumiaggregometry. Platelets were treated with either 30 µM aspirin (A), 3 µM PAM (B) 
or corresponding vehicle prior to mixing. Data points represent maximum or final 
aggregation or ATP-release in nmoles after 5 minutes stimulation and show 
mean±SEM of 4 individuals. 
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A 

 

B 

 

Figure 3.20: Correlation between aggregation responses and ATP-
release of mixed populations of inhibited and uninhibited platelets 
assessed by lumi-aggregometry. 

Platelet activation stimulated by 1 mM AA (A) or 20 µM ADP (B) utilising lumi-

aggregometry. Platelets were treated with either 30 µM aspirin (A), 3 µM PAM (B) 

or corresponding vehicle prior to mixing. Data points represent final aggregation 

and ATP-release in nmoles after 5 minutes stimulation at particular proportions of 

inhibitor-free platelets and show mean±SEM of 4 individuals. 
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Figure 3.20 shows the maximum ATP-release plotted against final platelet 

aggregation after 5 minutes stimulation to emphasise the correlation between 

both indicators of platelet activation. In samples stimulated by 1 mM AA, 7 out 

of 8 values lie inside the 95% confidence interval band, and in samples 

stimulated by 20 µM ADP, 6 out of 8 values are inside the 95% confidence 

interval band. The correlation between changes in light transmission referred to 

as ‘aggregation’ and ATP/ADP-release clearly demonstrates that observed 

effects are genuine platelet-derived effects rather than passive ones such as 

agglutination. 
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3.3.5. Distribution of platelet subpopulations in individual platelet aggregates 

The approach taken in the previous sections represents a method to investigate 

the roles of different platelet populations and gives information about changes in 

aggregation in different proportions of inhibited and uninhibited platelets. 

Complex relationships between proportions of uninhibited platelets mixed with 

inhibited platelets and their aggregation responses when stimulated with various 

agonists were revealed. It was found that whereas rising proportions of 

uninhibited platelets mixed with aspirin-treated platelets led to a steep increase 

in aggregation, particularly when stimulated with AA, ADP stimulation of mixed 

populations of uninhibited and PAM-treated platelets resulted in a linear 

increase in aggregation with rising proportions of uninhibited platelets. This 

observation led to the idea that only uninhibited platelets would participate in 

aggregation stimulated with ADP, i.e. PAM-inhibited platelets would not.  

However, results obtained in the previous sections do not provide information 

about the role of individual platelets in the formation of aggregates. In order to 

investigate this hypothesis and consequently the role of inhibited or uninhibited 

platelets, respectively, the role of individual platelets was analysed.  

As mentioned earlier, the daily platelet turnover in healthy volunteers is 

approximately 10-15%. This however can be elevated in conditions such as 

type-2 diabetes, hepatic failure or chronic kidney disease. In order to mimic high 

platelet turnover in these patient populations, a proportion of uninhibited 

platelets that can realistically accumulate within 24 hours in these patients was 

investigated: 20% uninhibited platelets mixed with 80% inhibited was chosen to 

further analyse the interplay between these two subpopulations.  

Platelets prelabelled with different cell tracker dyes (green or red, see Methods) 

in order to distinguish between received treatments were followed through 

aggregation responses induced by ADP, AA or ristocetin. Afterwards, 

aggregates formed during the aggregation responses were transferred onto a 

microscope slide for analysis by confocal microscopy (figure 3.21). 
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Figure 3.21: Schematic diagram of experimental setup for analysis of 
platelet aggregates by confocal microscopy. 

After 5 minutes stimulation with either 20 µM ADP, 1 mM AA or 2 mg/ml ristocetin, 

aggregates formed in the test tube, containing various proportions of uninhibited and 

inhibited platelets were fixed with 1.5% PFA. Aggregates were subsequently 

transferred onto a microscope slide and analysed by confocal microscopy. Acquired 

images were processed using Imaris software. 

 

As platelets had to be washed as part of the labelling process, agonist 

concentrations used for aggregation stimulated in PRP had to be checked and -

if necessary - changed to appropriate concentrations for the WP preparations. 

Platelets in PRP demonstrated strong aggregatory responses to 1 mM AA, but 

in WP 1 mM AA caused platelet lysis. Thus the aspirin sensitive range for AA-

induced platelet aggregation in WP had to be established. AA caused no 

aggregation in WP at concentrations up to 67.5 µM AA. Further increase in AA 

concentration led to strong COX-dependent aggregation as seen by 

aggregation in the uninhibited WP sample in contrast to the aspirin-treated WP 
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sample. 2way-ANOVA revealed differences in aggregation between aspirin-

treated and untreated platelets when samples were stimulated by 125 µM or 

250 µM AA. However, stimulation by AA concentrations above 250 µM caused 

COX-independent platelet aggregation and eventually lysis (1mM AA). Analysis 

of the aspirin-treated samples by 1way-ANOVA showed no differences between 

aggregation levels caused by stimulation by AA as low as 8.4 µM and up to 250 

µM. Thus 250 µM AA was chosen to be used to stimulate platelet aggregation 

in further experiments. 
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A 

 
B 

 

Figure 3.22: Concentration response curves of AA in WP treated with 
100 µM aspirin or corresponding vehicle.  

Platelet aggregation stimulated by a range of AA concentrations utilising traditional light 
transmission aggregometry. Platelets were treated with either 100 µM aspirin or 
vehicle. Analysis by 2way-ANOVA revealed aspirin-mediated differences at 250 µM 
(log -3.6) and 125 µM (log -3.9) AA; p<0.001 (A). Aspirin inhibited platelet aggregation 
stimulated by AA at concentrations as high as 250 µM. Further increase in AA 
concentration lead to a significant rise in platelet aggregation as tested by 1way-
ANOVA p<0.001 (B). Data points represent final aggregation after 5 minutes and show 
mean±SEM of 8 individuals. *** p<0.001 difference by 2way-ANOVA in aggregation 
from aspirin-treated platelets (A) *** p<0.001 difference by 1way-ANOVA in 
aggregation from 7.8 µM AA stimulated platelet aggregation (B). 
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Once platelet agonist concentrations had been established further experiments 

demonstrated that platelet function was not affected by the cell tracker dyes 

(figure 3.23). 

 

Figure 3.23: Comparison of aggregation responses between PKH67-, 
PKH26-labelled and unlabelled platelets. 

Aggregation stimulated by 20 µM ADP, 1 µg/ml collagen or 3 µM U46619 utilising 

traditional light transmission aggregometry. Platelets were labelled with either 2 µM 

PKH67, 2 µM PKH26 or were subjected to the labelling medium diluent C only. Data 

points represent final aggregation after 5 minutes and show mean±SEM of 4 individuals. 

Groups were compared by one-way ANOVA and found not to be different. 
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Platelet aggregates formed in LTA by combinations of 80% inhibited and 20% 

uninhibited platelets in response to 250 µM AA, 20µM ADP or 2mg/ml ristocetin 

were analysed by confocal microscopy. All aggregates, regardless of treatment 

or aggregatory agonist, demonstrated the presence of both uninhibited and 

inhibited (aspirin, or PAM-treated, respectively) platelets (figure 3.24).  

Aggregates containing uninhibited and aspirin-treated platelets showed even, 

random distribution of uninhibited platelets which was well-displayed when the 

signal of inhibited platelets was removed with Imaris software (figure 3.24 upper 

panel).  

However, aggregates containing uninhibited and PAM-treated platelets did not 

show random distribution of platelet subpopulations but a clear distribution 

pattern of platelets. Confocal images revealed strong and distinct clustering of 

uninhibited platelets in the centres of the aggregates which were surrounded by 

PAM-treated platelets (shown in red). This effect – the clustering of uninhibited 

platelets in the centre of aggregates - which was particularly clear when the 

signal of uninhibited platelets was removed by image analysis, could be 

observed not only in ADP-stimulated platelet aggregates but also in AA-

stimulated ones (figure 3.24 lower panel). Importantly this effect was not seen in 

aggregates formed in mixed platelet populations in response to ristocetin (figure 

3.24). These samples served as an experimental and optical control as 

ristocetin stimulated “aggregation” is driven by agglutination and therefore not 

sensitive to antiplatelet drugs (as seen in figures 3.7 and figures 3.12E, 3.13E 

and 3.14E). 
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Figure 3.24: Confocal images of aggregates containing uninhibited and 
inhibited platelets. 

Aggregates were obtained from combinations of 20% vehicle-treated (green) and 80% 
drug-treated (red) platelets (aspirin, upper panel; PAM, lower panel) after 5 minutes 
stimulation by either 250 µM AA, 20 µM ADP or 2mg/ml ristocetin. Images, showing 
either both channels (upper row of each panel) or uninhibited platelets only (lower row 
of each panel), were processed with Imaris software (scale bars indicate 20µm). 
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A series of confocal images of aggregates containing a minority of uninhibited 

platelets mixed with either aspirin- or PAM-treated platelets, stimulated with 

either AA, ADP or ristocetin, were randomly mixed and rated blindly by two 

people without previous knowledge of the images. Analysis of these optical 

ratings indicated strong clustering of uninhibited platelets mixed with PAM-

treated ones (figure 3.25). 

 

 
 

Figure 3.25: Analysis of blind, optical rating of aggregate images for 
clustering of uninhibited platelets in the core of aggregates. 

Images of aggregates containing combinations of 20% vehicle-treated and 80% drug-
treated platelets after stimulation by either AA, ADP or ristocetin were blinded and 
subsequently rated by two individuals. Each image received a value between 1 and 6. 
Random distribution was considered “level 1” clustering whereas strong clustering in 
the centre was considered “level 6” clustering. Data represents mean±SEM of 6 
images rated by two individuals. 

 

Experiments performed in a wide range of proportions showed that the 

observed clustering-effect of uninhibited platelets in the core of PAM-treated 

aggregates was not restricted to some ratios but was visible throughout all 

tested proportions. However, clustering appeared more obvious when only a 

small proportion of uninhibited platelets were mixed with a substantially bigger 

proportion of PAM-treated ones. With increasing proportions of uninhibited 
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platelets the uninhibited core became overwhelming while the number of 

inhibited platelets to be recruited into the aggregate was diminishing. This 

resulted in aggregates mainly consisting of uninhibited platelets with only a few 

inhibited on the outside when test samples contained 80% PAM-free platelets 

(figure 3.26 upper panel). 

As mentioned earlier, prasugrel is rarely administered on its own but together 

with aspirin. Thus, platelet distribution of uninhibited platelets mixed with 

aspirin+PAM-treated ones was imaged in a broad range of proportions. Indeed, 

the same effect – clustering of uninhibited platelets in the centre of aggregates 

– was observed when uninhibited platelets were mixed with aspirin+PAM-

treated ones. Similar to uninhibited platelets mixed with PAM-treated platelets, 

clustering of uninhibited platelets was most obvious in samples containing only 

small proportions of uninhibited platelets. These uninhibited clusters became 

overwhelming with higher proportions of uninhibited and lower proportions of 

aspirin+PAM-treated platelets (figure 3.26, lower panel). 
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3.3.6. Mechanism of recruitment of inhibited platelets into the uninhibited core 

Experiments using ristocetin to stimulate aggregation confirmed that the 

observed clustering of uninhibited platelets in the centre of aggregates upon 

stimulation by ADP but also AA was a result of the differences between 

uninhibited and P2Y12-inhibited platelets. However, these experiments did not 

reveal the process responsible for incorporating inhibited platelets into the 

periphery of the aggregates. 

To investigate the cause for the recruitment of these inhibited platelets it was 

first tested whether it was due to an active signalling process or rather an 

artefact caused by sample preparation (e.g. agglutination of platelets after 

transfer aggregates onto the microscope slide). To address this question 

uninhibited platelets were mixed with either PAM-treated or PAM+abciximab-

treated platelets. Abciximab, is an antibody that binds and thereby blocks 

integrin αIIbβ3, preventing platelets from binding to fibrinogen. They are therefore 

unable to form their main platelet-platelet contacts.  

Figure 3.27A shows representative images of platelet aggregates containing 

PAM+abciximab-treated platelets (left) or PAM-treated platelets (right). Analysis 

of these images by Imaris software showed that samples containing 

PAM+abciximab-treated platelets had less platelets sticking around the core 

than those treated with PAM only. This is shown by a lower ratio of inhibited to 

uninhibited platelets (0.48±0.1) in aggregates containing PAM+abciximab-

treated platelets than those treated with PAM only (1.7±0.19) (p=0.0013) (figure 

3.27B). 
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 drug-free platelets    inhibited platelets 

 20% Vehicle – 80% PAM + 
Abciximab 

20% Vehicle – 80% PAM 

B 

 

Figure 3.27: Effect of abciximab on the recruitment of inhibited platelets 
into the uninhibited platelet core. 

Representative images of aggregates containing 20% vehicle-treated platelets 
(shown in green) mixed with either 80% PAM+abciximab-treated (left) or 80% PAM-
treated platelets (right) (shown in red) stimulated by 20 µM ADP. Scale bar 
represents 10 µm (A). Ratios of platelet volume were calculated from aggregates 
containing inhibited and uninhibited platelets with Imaris software. Data represents 
mean±SEM of the average of 6 images from 4 experiments each. ** p<0.01 
difference by t-test in volume ratio. 
 

To further strengthen this finding, aggregates containing either PAM or 

PAM+abciximab were analysed by flow cytometry. Platelet suspensions 

containing combinations of labelled uninhibited platelets and labelled PAM- or 

PAM+abciximab-treated platelets were analysed after 5 minutes stimulation by 

ADP. 
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B 

 

Figure 3.28: Flow cytometry analysis on platelets derived from 5 minutes 
aggregation stimulated by 20 µM ADP containing rising proportions of 
uninhibited platelets mixed with PAM- or PAM+abciximab-treated 
platelets. 

Inhibited platelets were counted and presented in per cent relative to counts obtained 
from unstimulated sample containing PAM- or PAM+abciximab-treated platelets, 
respectively (A). Platelet samples containing rising proportions of uninhibited platelets 
mixed with either PAM- or PAM+abciximab-treated platelets were counted. Events 
containing both red and green signal, were identified as micro-aggregates (B). 
Samples were spiked with counting beads to establish absolute platelet count. Data 
points represent mean±SEM of 5 individuals. *** p<0.001, * p<0.05 difference by 
2way-ANOVA in number of microaggregates from samples containing 
PAM+abciximab treated platelets. 
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Flow cytometric analysis of platelet numbers after stimulation by 20 µM ADP 

revealed no difference in free platelets between samples containing PAM-

treated platelets and samples containing PAM+abciximab-treated platelets as 

tested using 2way-ANOVA (figure 3.28A). However, 2way-ANOVA and 

Bonferroni post-test showed samples containing PAM-treated platelets formed 

substantially more microaggregates incorporating uninhibited and inhibited 

platelets. This difference was biggest when 20% platelets were uninhibited 

(1.46x1007±1.75x1006 compared to 3.21X1006±8.37x1005, p<0.001) and 

decreases with increasing proportions of uninhibited platelets (figure 3.28B). 

These experiments demonstrate a participation of integrin αIIbβ3-mediated 

platelet interaction, indicating an underlying active recruitment process. 

Thus it was speculated that activated, uninhibited platelets in the core might 

release platelet agonists such as TxA2 which in turn activate P2Y12-inhibited 

platelets and consequently recruit them into the aggregate. Experiments in 

aspirin-treated platelets stimulated with ADP have shown a role of TxA2 in ADP-

stimulated platelets, albeit the effect of TxA2 had only minor consequences 

(figure 3.12B). To test this hypothesis, uninhibited aggregates (formed upon 

stimulation by 20 µM ADP) containing uninhibited platelets mixed with PAM-

treated ones, were analysed in the presence or absence of aspirin. Additionally, 

these samples were compared to aggregates containing uninhibited platelets 

mixed with aspirin+PAM-treated ones (figure 3.29A) 

Quantification of proportions of inhibited to uninhibited platelets revealed some 

scatter between individual experiments but no difference between any 

treatments (aspirin - aspirin+PAM: 1.02±0.15, vehicle - aspirin+PAM: 1.44±0.52, 

vehicle - PAM: 1.15±0.35) (figure 3.29B). 
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A 20% Vehicle  – 80% PAM  20% Aspirin – 80% Aspirin+PAM 

  

20% Vehicle – 80% Aspirin+PAM 

 

 
Vehicle/aspirin-treated platelets 

PAM/aspirin+PAM-treated platelets 
 

Figure 3.29: Effect of aspirin on the recruitment of inhibited platelets 
into the P2Y12-uninhibited platelet core. 

Representative images of aggregates containing 20% vehicle-treated platelets 
(shown in green) mixed with either 80% PAM (top left) or aspirin+PAM-treated 
platelets (bottom left) (shown in red) in the presence or absence of aspirin (top 
right) stimulated by 20 µM ADP. Scale bars represent 10µm (A). Six confocal 
images per experiment were analysed for ratios between red and green platelet 
volume. Volumes of platelet subpopulations were calculated by Imaris software and 
different treatments were compared by 1way-ANOVA and found not to be 
significantly different. Data represents mean±SEM of 4 experiments (B). 
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3.4. Discussion 

In this work the interplay between uninhibited and P2Y12-inhibited platelets in 

mixed population has been shown for the first time on the level of individual 

platelets. Strong clustering of uninhibited platelets was observed when mixed 

with PAM-treated ones. Surprisingly these clusters were covered with PAM-

treated platelets. In contrast, aggregates combining uninhibited and aspirin-

treated platelets did not follow any particular pattern but showed even, random 

distribution. This difference can be explained by the different action of the 

respective antiplatelet drugs. Aspirin targets the COX enzyme and therefore 

inhibits the production of TxA2 rather than its signalling; PAM targets the P2Y12 

receptor, a platelet surface receptor and consequently, upon inhibition, platelets 

are no longer able to respond to ADP through the P2Y12 receptor. (Loll, Picot et 

al. 1995; Gachet 2006) 

This concept is supported by experiments investigating the relationship between 

TxA2 levels and aggregatory responses. It has been shown - in a similar 

experimental setup as used in this study – that with increasing proportions of 

aspirin-free PRP, the “return” of formed TxA2 upon stimulation by AA (and 

collagen) was linearly related. (Armstrong, Truss et al. 2008) Therefore, the 

proportion of aspirin-free platelets can be used as a measure of active TxA2 

activating platelets in aggregation stimulated by AA. Consequently, the 

observed relationship between TxA2 formation and aggregation is nonlinear and 

indicates the existence of a TxA2 threshold level that is required to be 

surpassed to drive aggregation. As inhibition of platelets by aspirin has no direct 

effect on platelet reactivity but only on TxA2 production, even COX-inhibited 

platelets can become activated by TxA2 stimulation when the threshold 

concentration is surpassed. 

Experiments performed in this thesis show that this threshold level was reached 

when as little as approximately 20% platelets were aspirin-free as indicated by a 

steep increase in aggregation. With further addition of uninhibited platelets a 

plateau was reached when approximately 40% platelets were aspirin-free, 

reflecting a saturated state. This finding goes in line with earlier reports that 
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show that a minority of uninhibited platelets is sufficient to produce enough TxA2 

to drive a full aggregation response and that platelets in excess of 95% have to 

be inhibited to prevent platelet aggregation. (Reilly and FitzGerald 1987) 

Differences between proportions stated in previous publication and this work 

can be explained by the use of different aggregometres and agonist solutions, 

blood sampling protocols and similar, which may all affect platelet reactivity, 

reflected by per cent aggregation. Experiments using the TxA2 mimetic U46619 

support this finding as they show that (1) concentration response curves are 

very steep indicating the presence of an aggregation threshold (Leadbeater, 

Kirkby et al. 2011) and (2) that U46619 stimulated aggregation is not aspirin-

sensitive therefore not producing TxA2 which could play a role in a feedback 

loop.  

In summary these findings show that in the model applied in this work, 20% 

aspirin-free platelets formed sufficient TxA2 to drive (partial) aggregation equally 

affecting both platelet species – uninhibited and aspirin-treated platelets. This is 

reflected in the confocal images of mixed proportions of aspirin-treated and 

uninhibited platelets where no particular distribution of either platelet 

subpopulation could be observed. 

In contrast to the effects of aspirin on platelet reactivity, P2Y12-inhibited platelets 

do not signal any longer through the receptor, regardless of the concentration of 

exogenous ADP added to stimulate platelet activation and therefore platelet 

aggregation. As a consequence, rising proportions of PAM-free platelets and 

platelet aggregation were related in a linear fashion when stimulated by ADP 

which in turn strengthened the assumption that only PAM-free platelets would 

participate in ADP-stimulated aggregation. Analysis of confocal images found 

PAM-treated platelets to contribute to the formation of aggregates (covering the 

uninhibited platelet cluster) which was therefore surprising.  

In a first step it was ruled out that the observed effect in confocal microscopy 

images was an artefact caused during the transfer of platelet aggregates to 

microscope slides or an artefact caused by the fixation method. Moreover, by 

showing a role for αIIbβ3 in the recruitment process of PAM-inhibited platelets 
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into the uninhibited aggregates it could be demonstrated that this recruitment 

was an active process requiring activated platelets rather than an agglutination 

phenomenon. These findings were supported by flow cytometric experiments 

that showed a similar number of inhibited platelets in both PAM-treated and 

PAM+abciximab-treated samples but demonstrated a very different contribution 

of both platelet populations to aggregation. Whereas PAM+abciximab-treated 

platelets largely remained as single platelets, PAM-treated platelets were found 

in micro-aggregates to a substantial amount. 

In an attempt to elucidate the underlying mechanism for the recruitment process 

I tested for a role of TxA2 that potentially could have been formed by the 

uninhibited activated platelet sub-population. Previous experiments 

demonstrated a weak sensitivity of ADP-induced aggregation to aspirin. 

Therefore it was speculated that ADP-stimulation causes some TxA2 formation 

which might play a role in ADP-induced aggregation. Although TxA2 levels, 

upon ADP-mediated stimulation, have shown to be very low, (Armstrong, Truss 

et al. 2008) local concentrations could have been sufficient to activate and 

recruit PAM-inhibited platelets into the aggregates. However, experiments 

comparing aggregate images formed in the presence or absence of aspirin did 

not show any difference. The effect being expected to be a small one, it might 

be possible that the test was not sensitive enough. It is also possible that the full 

inhibitory potential of aspirin on ADP-induced aggregation becomes evident not 

after 5 minutes aggregation, as used for imaging experiments, but after a longer 

stimulation of approximately 20 minutes as shown in figure 3.17A. On the other 

hand, observed proportion-response curves in figures 3.10B and 3.11B as well 

the curves in figure 3.13B and figure 3.14B argue against a role of TxA2 in ADP-

induced aggregation as the curves were identical in the absence or presence of 

aspirin in addition to PAM. This is also reflected in confocal images comparing 

images showing aggregates containing vehicle-treated and PAM-treated 

platelets with aggregates containing vehicle-treated and aspirin+PAM-treated 

platelets, as the images in both conditions do not differ. However, even if TxA2 

plays a role in ADP-induced aggregation it is quite unlikely to have an effect on 

the recruitment of PAM-inhibited platelets, as U46619-stimulated aggregation 

itself was greatly inhibited by PAM in LTA (Figure 3.6). 
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Having ruled out TxA2 to be the key player in the recruitment of PAM-inhibited 

platelets into the uninhibited aggregates, attention was turned to a previously 

neglected but obvious candidate: the P2Y1 receptor. Upon inhibition of the 

P2Y12 receptor, the P2Y1 receptor remains active and retains its ability to signal. 

Moreover, the agonist chosen to stimulate P2Y12-inhibited samples was ADP, 

the physiological P2Y1 agonist. Experiments performed using rising proportions 

of PAM-free platelets, stimulated by ADP clearly show a role of P2Y1 in platelet 

aggregation. Figure 3.3 shows a transient platelet aggregation in PAM-treated 

platelets. This reversible aggregation is known to be mediated by P2Y1, causing 

calcium mobilisation and shape change. (Gachet 2006) However, in the 

absence of P2Y12 signalling, aggregation cannot be sustained and 

consequently results in disaggregation. (Hechler, Cattaneo et al. 2005) Blocking 

the P2Y1 receptor in a similar way as COX or the P2Y12 receptor would reveal 

whether this pathway causes platelet activation and αIIbβ3-dependent 

recruitment into uninhibited platelet aggregates. However, unfortunately an 

irreversible antagonist such as PAM for the P2Y12 receptor or aspirin for COX 

was not available for this work. Attempts with the reversible antagonist 

MRS2179 failed as it is a competitive inhibitor acting on both sub populations 

thereby inhibiting aggregation of both platelet species.  

Although this work failed to pinpoint the exact mechanism causing the 

recruitment of PAM-treated platelets, candidates could be ruled out and 

narrowed down to a hot prospect. Furthermore, most importantly it was shown 

that the observed effect was genuine. However, one limitation of this assay was 

the use of confined “reaction chambers”. LTA uses cuvettes in which platelet 

suspensions are activated and continuously stirred. Consequently, exogenous 

but also endogenous agonists are not diluted and thus accumulate in the tube. 

This probably does not accurately reflect physiological conditions and might 

have exaggerated some observed effects. To further investigate the formation 

of clusters of platelets and to be able to study this process in a time resolved 

manner and under incorporation of rheological factors (important properties 

which potentially lead to dilution of released agonists rather than their 

accumulation) further experiments under flow conditions are required. 
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In this chapter, two different light transmission aggregometry assays have been 

utilised to show the well described effect of the antiplatelet drugs aspirin and 

prasugrel, or its active metabolite, PAM, respectively. The first test was a 96-

well plate assay previously developed in our laboratory which allows 

simultaneous measurement of different treatments across a range of agonist 

concentrations. (Armstrong, Dhanji et al. 2009) Therefore, it was used in an 

initial phase for screening purposes to establish agonist concentrations ranges. 

However, although useful as a screening tool due to its high throughput, it 

comes with a few limitations. First, it is poorly understood by the platelet 

community and therefore often criticised for the lack of comparability with other 

literature. Moreover, although generally correlating well to LTA data, it 

differently estimates the inhibitory effect of antiplatelet drugs such as aspirin or 

PAM. (e.g. reduced sensitivity to aspirin upon CRP-XL stimulation (figure 3.1D 

and figure 3.5) The reason for differences of the efficacy of antiplatelet drugs 

between 96-well plate aggregometry and LTA are not entirely understood, but 

might be linked to the different mixing mechanisms. Whereas traditional light 

transmission aggregometers stir the platelet suspension inside the coated glass 

cuvette with a magnetic stir bar, in this case at a speed of 1200 rpm, the plate 

reader used in these experiments shook the plates at 12.3 Hz with 2.8mm linear 

travel. Previous work in our laboratory showed the impact of different stir 

speeds in LTA on the potency of PAM to inhibit aggregation, and revealed a 

greater inhibitory potential at lower stir speeds. (Armstrong, Leadbeater et al. 

2011) Lower stir speeds in traditional LTA might correspond with the shaking 

pattern in the plate reader, providing an explanation for greater P2Y12-mediated 

inhibition observed in 96-well plate aggregometry. However, since aggregation 

stimulated by ADP did not differ between these assays the potency of PAM 

itself is not an issue. On the contrary, differential inhibitory capabilities rather 

rely on different levels of TxA2 synthesis and release.  

The ability of PAM to block ADP–induced signalling could be observed in 

figures 3.1B and figure 3.3. In both assays PAM was able to inhibit aggregation. 

However, as mentioned above, different inhibition levels are highlighted in 

figures 3.1A and 3.2. Whereas AA-induced aggregation was abolished by 
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aspirin, AA concentration dependent aggregation in P2Y12-inhibited samples 

was observed (figure 3.1A). 

Similarly, aggregation stimulated by low concentrations of TRAP-6 was inhibited 

by PAM. However, addition of aspirin further increased the inhibitory effect. With 

increasing concentrations of TRAP-6, sensitivity to aspirin alone diminished 

whereas sensitivity to PAM remained. Notably, the combined effect of 

aspirin+PAM produced stronger inhibition than PAM alone. Stimulation of 

platelet aggregation with the highest concentration of TRAP-6 caused 

aggregation that exhibited – similar to collagen, or CRP-XL, respectively, 

stimulated aggregation – only weak sensitivity to the antiplatelet drugs aspirin 

and PAM and therefore overrode the inhibition mediated by aspirin and PAM. 

This indicated that collagen and TRAP-6 were not signalling exclusively through 

the above mentioned pathways but that other platelet activation pathways were 

involved at that stage. To a lesser extent these effects were also observed in 

aggregation stimulated by U46619. Whereas stimulation by U46619 (1µM) was 

insensitive to aspirin treatment, PAM was able to abolish aggregation. However, 

higher concentrations of U46619 could only be partially inhibited by PAM. 

Notably, collagen or CRP-XL, respectively, TRAP-6 and U46619 are known to 

cause (strong) platelet degranulation, particularly at high concentrations, 

thereby releasing a cocktail of stimuli and adhesion molecules that also act via 

pathways other than the COX- and P2Y12 pathway. 

CRP-XL is a peptide binding the collagen receptor GPVI with a higher potency 

than that of collagen. (Morton, Hargreaves et al. 1995) This peptide was used 

as physiological platelet activator instead of collagen in imaging experiments 

because platelets adhered to the long collagen fibrils in the process of 

aggregation, making the detection of particular platelet distributions impossible. 

Therefore, CRP-XL was used instead, having the same specificity for the GPVI 

receptor but without the complication of platelets adhering to fibrils. However, 

worth noting are some differences in their sensitivity to antiplatelet drugs. Figure 

3.9C shows collagen-stimulated aggregation with rising proportions of aspirin-

free platelets; figure 3.9D shows CRP-XL stimulated aggregation in the same 

setting. Whereas collagen exhibited some sensitivity to aspirin (in particular 
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lower concentrations (0.3 µg/ml and maybe at 3 µg/ml), this sensitivity was 

completely absent in CRP-XL-stimulated aggregation. In contrast, sensitivity to 

PAM was found in both, collagen and CRP-XL stimulated aggregation. 

However, the absence of aspirin sensitivity was a phenomenon specific to the 

96-well plate assay, as experiments performed in LTA demonstrated sensitivity 

to aspirin of both, collagen and CRP-XL. These results are another indication of 

the differential formation of TxA2 induced by different mixing characteristics. 

Interestingly, CRP-XL was the only agonist tested that produced almost 

identical proportion-response curves in all three test-setups (%aspirin-free, 

%PAM-free or %aspirin+PAM-free platelets). 

Experiments investigating the effect of aggregation stimulation over an 

extended time period of 20 minutes highlighted the importance of intact P2Y12 

signalling, shown by a more linear relationship between per cent aggregation 

and proportions of PAM-free platelets in comparison to experiments performed 

over 5 minutes. Furthermore, these experiments underline the differential roles 

of TxA2 and P2Y12 in aggregation. While aspirin-free samples reached a plateau 

at particular per cent aggregation and remained stable throughout the test 

period, PAM caused more or less disaggregation over time depending on the 

proportion of PAM-treated, disruptive platelets. This effect was best seen in 

figures 3.15A and 3.16A and seems to be agonist dependent.  

Interestingly, induction of aggregation for 20 minutes in the presence of different 

proportions of aspirin-free platelets not only emphasised the sensitivity of ADP-

stimulated aggregation to aspirin-treatment (figure 3.17A), but also indicated 

some sensitivity to aspirin-treatment in U46619-stimulated aggregation (figure 

3.18A). 
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CHAPTER 4:  THE ROLE OF AN UNINHIBITED PLATELET 

SUBPOPULATION IN THROMBUS FORMATION ASSESSED 

UNDER FLOW CONDITIONS 
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4.1. Introduction 

In LTA, freely spinning platelets are activated by the addition of agonists that 

trigger events leading to platelet aggregation. This aggregation takes place in 

the confined space of a test tube where the suspended platelets are stirred by a 

magnetic stir bar that produces poorly defined shear forces. Although light 

transmission aggregometry is considered the ‘gold standard’ in platelet function 

testing, and may well remain so for the foreseeable future, the importance of 

flow in platelet function has become increasingly well-appreciated over the last 

few decades.  

Under physiological conditions platelets are subjected to near laminar shear. 

The shear rate (γ; s-1) describes the discrepancy in velocity between two 

adjacent layers resulting in shear stress (τ; dyn/cm2) effecting particles in the 

space of these layers. The layer closest to the centre of the lumen exhibits the 

highest velocity whereas the layer closest to the vessel wall exhibits the lowest. 

However, the shear rate caused by different velocities of liquid layers is not 

constant throughout the vessel but is zero along the central axis and increases 

towards the vessel wall to its maximum. (Goldsmith and Turitto 1986) Two 

parameters define the wall shear rate in blood vessels: the blood velocity and 

the diameter of the vessel. Consequently the shear rate is lowest in large veins 

(<100 s-1), followed by the aorta and larger to smaller arteries (100 – 1000 s-1). 

In severely stenosed arteries shear rates can exceed physiological conditions 

and reach more than 30000 s-1. (Colace and Diamond 2013) 

Blood consists of a number of different cells and cell particles of various sizes 

and numbers. Red blood cells are the most abundant cell type in blood and are 

bigger than platelets. With increasing shear, red blood cells are drawn towards 

the centre of the vessel lumen where shear forces are lowest. As a 

consequence the smaller platelets are pushed towards the vessel wall. This 

leads to an inhomogeneous distribution of platelets with the highest 

concentration along the vessel wall where they can potentially interact with the 

endothelial cells or in case of vascular injury with the subendothelial matrix. 

(Aarts, van den Broek et al. 1988) 
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Shear rate and stress influence not only the relative distribution of platelets in 

blood vessels but also the nature of interactions with the vessel wall and matrix.  

Depending on the type of vessel with regards to blood velocity, haemostatic 

responses following damage to the blood vessel wall can differ. In vessels with 

high flow rates, platelets are abundant as they are quickly transported in the 

blood stream to the site of injury; however this means at the same time that 

released mediators are quickly diluted and transported from the site they were 

generated. In contrast, in vessels characterised by low flow rate, released 

mediators can accumulate and act on their effector cells while platelet numbers 

are limited. (Hanson and Sakariassen 1998) These effects result in different 

thrombus profiles. Moreover, this observation is in line with in vitro observations 

that aspirin-treatment loses its efficacy in models of pathologically high shear 

(Li, Hotaling et al. 2014) and with the APRICOT study that found that aspirin 

was more efficient in patients with less severe atherosclerotic lesions. (Veen, 

Meyer et al. 1993) Interestingly, low shear rates were also associated with 

reduced efficacy of aspirin, which was reported to be without benefit at shear 

rates below 650 s-1. (Roald, Orvim et al. 1994) In contrast this lack of efficacy 

was not observed in flow assays using clopidogrel-treated platelets where an 

antithrombotic effect was observed shear-independently up to 2600 s-1. (Roald, 

Barstad et al. 1994) The variation in effectiveness of some antiplatelet drugs 

along with variations in shear rate also indicates that different pathways 

contribute to thrombus formation depending on the rheological factors shear 

and flow rate. These findings highlight the importance to study platelet 

aggregation and thrombus formation of mixed platelet populations not only in 

aggregation assays, but also under flow conditions. However, in vitro flow 

assays have numerous limitations. In particular, they typically employ rigid 

plastic or glass slides which do not contract, and the mediators that under 

physiological conditions are released from the endothelium and modulate 

platelet function are absent (e.g NO, PGI2). Therefore, in vitro flow assays are 

best considered as a tool to help bridge aggregation data with more complex in 

vivo assays. 
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Here findings from the investigations reported in the previous chapter into the 

role of an increasing uninhibited platelet subpopulation - mimicking the 

formation and entry of naïve platelets into the circulation (after daily drug 

consumption) – obtained by aggregation experiments on platelet samples 

containing different proportions of PAM- and/or aspirin-treated and untreated 

platelets were extended under flow conditions. In particular, the responses were 

examined of mixed populations of uninhibited platelets combined with P2Y12-

inhibited and/or COX-inhibited platelets to two different shear rates (250 s-1 and 

1000 s-1) in a collagen-coated parallel plate shear chamber. 
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4.2. Methods 

4.2.1. Blood collection 

4.2.1.1. Ethics 

The experiments using human blood from healthy volunteers were approved by 

the St. Thomas’s Hospital Research Ethics committee. Healthy volunteers gave 

written consent and were subsequently screened. Screening included a medical 

questionnaire and a physical examination including measurement of blood 

pressure, heart rate, respiratory rate and body temperature. Exclusion criteria 

included age (>40 years old), smoking and medication that potentially affects 

platelet function. 

4.2.1.2. Venepuncture 

Up to 100 ml blood was taken from the median cubital vein using a 19 gauge 

butterfly needle. Blood was drawn into a syringe containing 3.2% trisodium 

citrate and mixed with the anticoagulant in a 10:1-ratio. The blood was 

immediately processed unless stated differently.  

4.2.2. Preparation of flow chambers 

Ibidi µ-slide VI0.1 flow chamber slides were coated with 100 µl collagen solution 

(100 µg/ml in PBS). Briefly, pre-warmed (37°C) collagen solution was injected 

into each flow channel of a pre-warmed slide using a 1 ml syringe. Control 

channels were injected with PBS only. Slides were tightly wrapped in Parafilm 

and incubated at 37°C over night. The next day, channels were inspected for 

collagen clumps and air bubbles and rinsed with 5 ml PBS to remove unbound 

collagen fibrils. Subsequently, all (including control) channels were filled with 

200 µl 4% BSA-solution using a 1 ml syringe and incubated for 2 hours at 37°C. 
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4.2.3. Treatment of whole blood with antiplatelet drugs  

For flow experiments performed in whole blood, blood was treated with aspirin 

and/or PAM, abciximab or corresponding vehicle. Aspirin solution, 100 mM, was 

made in 100% ethanol and subsequently diluted to 3 mM in PBS. Aspirin 

solution, 3 mM, was then diluted 1:100 in whole blood to get a final 

concentration of 30 μM. PAM solution, 10 mM (in DMSO), was diluted in PBS to 

a concentration of 600 µM. To achieve a final concentration of 3 µM, PAM 

solution was diluted 1:200 in whole blood. Abciximab, 2mg/ml, was diluted 

1:200 in whole blood to achieve a final concentration of 10 µg/ml. Whole blood 

containing antiplatelet drugs was incubated for 30 minutes at 37°C. 

4.2.4. Labelling of platelets in whole blood 

Platelets in whole blood were labelled using mepacrine, 10 µM. Blood 

containing mepacrine was incubated for 30 minutes in the dark prior to use. 

4.2.5. Preparation of reconstituted blood 

For experiments using mixed subpopulations of differently treated platelets, 

reconstituted blood was used. This facilitated the use of WP and therefore the 

removal of active compounds. Reconstituted blood consisted of 40% red blood 

cells, 2 x 108 platelets per ml reconstituted blood, 1 mg/ml fibrinogen and MTH-

buffer. Fibrinogen was dissolved in PBS to a concentration of 10 mg/ml. To 

achieve a final concentration of 1 mg/ml, fibrinogen solution was diluted 1:10 in 

reconstituted blood. Treated labelled WP and washed red blood cells were 

prepared as follows:  

4.2.5.1. Preparation and treatment of labelled WP 

Citrated whole blood was transferred from the syringe into 15ml falcon tubes 

and subsequently centrifuged at 175 x g for 15 minutes at room temperature. To 

prevent remixing of the PRP fraction with the subjacent red blood cell layer, 

centrifuge brakes were on “low” mode. The PRP layer was carefully taken off 

and transferred into a new tube for further procedures. 
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Apyrase, 0.02 U/ml, and 2 µg/ml PGI2 were added to PRP and platelets were 

pelleted by centrifugation for 10 minutes at 1000 x g at room temperature. 

Supernatant containing the plasma was discarded and pellet was resuspended 

in modified Tyrode’s buffer (134 mM NaCl, 20 mM HEPES, 2.9 mM KCl, 0.34 

mM Na2HPO4, 1 mM MgCl2, 12 mM NaHCO3) containing 0.35 % BSA, 0.1 % 

glucose and 0.02 U/ml apyrase. For experiments containing mixed populations 

of inhibited and uninhibited platelets, platelets were treated with aspirin and/or 

PAM, abciximab or corresponding vehicle. Aspirin solutions were prepared as 

above, whereas PAM solutions were prepared in DMSO instead of PBS. 2 

mg/ml abciximab solution was diluted 1:200 in the platelet suspension to 

achieve a final concentration of 10 µg/ml. Platelet suspension was incubated for 

20 minutes at room temperature before washing was continued. 

Platelets were pelleted for a second time as described above and resuspended 

in 500 µl isotonic protein-free solution (Diluent C, Sigma). For labelling, 500 µl 

of the platelet suspension was mixed with equal volume of Diluent C containing 

4 µM cell tracker dye PKH26 or 4 µM cell tracker dye PKH67. After 5 minutes 

incubation with occasional inversion, 4 ml modified Tyrode’s buffer containing 

BSA, glucose and apyrase and 2 µg/ml PGI2 were added to the platelet 

suspension and centrifuged for 10 minutes at 1000 x g. The pellet of labelled 

platelets was resuspended in modified Tyrode’s buffer containing 0.1 % glucose 

and 0.35 % BSA and platelet count was assessed using a Coulter particle 

counter Z1 (Beckman Coulter Inc., USA) followed by adjustment to 2 x 108 

platelets per millilitre for flow experiments. 

4.2.5.2. Preparation of washed red blood cells 

Citrated whole blood was transferred from the syringe into 15ml falcon tubes 

and subsequently centrifuged at 175 x g  for 15 minutes at room temperature. 

To prevent remixing of the PRP fraction with the subjacent red blood cell layer, 

centrifuge brakes were on “low” mode. The PRP layer was carefully removed 

for further procedures. The ‘buffy coat’ containing leukocytes was carefully 

removed and 4 ml of the red blood cells layer were transferred into clean 15 ml 

Falcon tubes and mixed with 11 ml saline. Samples were centrifuged at 950 x g 
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for 10 minutes (low brake), the supernatant and remaining ‘buffy coat’ were 

removed and the procedure was repeated. 

4.2.6. Flow assay 

Pre-coated, BSA-blocked Ibidi µ-slide VI0.1 flow chambers were taped to the 

stage of an inverted Nikon Eclipse TE-2000S fluorescent microscope. Tygon 

tubes connected a PBS reservoir with the inlet of the first chamber on one side 

and the outlet of the slide with a 20 ml syringe mounted on a Harvard syringe 

pump (Harvard Apparatus Ltd, UK). The microscope was connected to a RT 

slider CCD camera (Diagnostic Instruments Inc., USA) which was remotely 

controlled using spot advanced software (Diagnostic Instruments Inc., USA) 

which was also used for capturing images. 

For subsequent measuring of MFI, each slide contained channels coated with 

collagen and one without collagen that served as control. For subsequent 

measurement of mean aggregate size all channels were coated with collagen. 

One channel was perfused with blood treated with 10 µg/ml abciximab and 

served as control. 

Each channel was perfused with PBS at a shear rate of 1000 s-1 for 3 minutes 

to remove potential BSA clots and remaining loose collagen fibrils. In the 

meantime a new tube was filled with (reconstituted) blood. After 3 minutes 

perfusion, the PBS containing tube was clamped and removed, the channel’s 

reservoir was filled to the top with PBS (to prevent air bubble formation in the 

flow channel) and blood containing tube was connected. Blood was perfused at 

250 s-1 or 1000 s-1 for 5 minutes while 150 consecutive images were taken over 

the course of the perfusion period. For post-perfusion analysis, 12 images 

covering different areas of the slide were taken after 5 minutes perfusion was 

completed. 

4.2.7. Analysis of thrombi images using ImageJ 

Images were analysed in two ways. First, post-perfusion images of formed 

thrombi were stacked using ImageJ and stacks were measured for MFI and 
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corrected for the uncoated, BSA-blocked channel. MFI was presented in 

arbitrary units. Second, post-perfusion images and consecutive images taken 

over the 5 minutes perfusion period were analysed for platelet aggregate size. 

Image(s/sequences) were then stacked using ImageJ, converted to 8-bit 

greyscale images and a threshold equalling approx. 95% of the signal produced 

by the abciximab-treated blood sample was applied as shown in figure 4.1 

which describes the method for threshold application. Subsequently, the 

average size of platelet aggregates was determined.  

 

Figure 4.1: Schematic diagram of application of thresholds to images of 
platelet aggregates. 

When stimulated with excitation light, fluorescently labelled platelets emit back known 
amounts of light with a fluorescence intensity that is approximately the same for all 
platelets. In abciximab-treated blood, platelets are not able to form aggregates and 
therefore adhere and form a monolayer. Consequently, the light intensity emitted under 
these conditions corresponds to the amount of one platelet layer. In uninhibited 
samples, platelets can form aggregates of many layers of platelets. Thus the intensity 
of emitted light is increased and corresponds to the intensity of many platelets. The 
area in the flow chamber, occupied by aggregates of platelets produced by more than 
one layer can be visualised by subtraction of the signal gained from the signal of the 
abciximab-treated monolayer.  

 

Vehicle 

Abciximab 
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4.2.8. Confocal microscopy of labelled platelet aggregates obtained by LTA 

4.2.8.1. Sample preparation 

Flow channels containing formed thrombi of labelled platelets were rinsed at 

250 s-1 with PBS for 3 minutes to remove red blood cells and suspended 

platelets, followed by perfusion with 2% PFA for 3 minutes to fix formed platelet 

thrombi. Hard set mounting medium was added to the reservoirs of each 

channel and the flow slide was then covered with a lid and stored in the dark at 

4°C. 

4.2.8.2. Capturing 3D-stacks of platelet aggregates  

PKH67- and PKH26-labelled platelet thrombi were analysed for differential 

distribution of aspirin- or PAM-inhibited and uninhibited platelets within platelet 

thrombi using an inverted Zeiss LSM 510 PASCAL confocal laser-scanning 

microscope incorporating a 10 x Plan NEOFLUOR objective (numerical 

aperture 0.3), and a 63 x oil-dipping Plan-APOCHROMAT objective (numerical 

aperture 1.4 and resolution 0.28 µm). Z-stack images were captured using the 

multiple track scanning mode.  

4.2.9. Analysis of platelet distribution within platelet aggregates 

Z-stacks obtained by confocal microscopy were processed with IMARIS 

(Bitplane AG, Switzerland) by modelling surfaces around the “volume” of 

captured fluorescence or with ZEN 2009 (Carl Zeiss MicroImaging GmbH, 

Germany). Images were presented as 3D surfaces. Platelet volume was 

calculated and exported into Microsoft Excel. 

4.2.10. Statistical Analysis 

All statistical analyses were conducted using GraphPad Prism v5 (GraphPad 

Software Inc., CA, USA).  

Applied statistical tests are mentioned in the text.  
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4.3. Results 

4.3.1. The effect of antiplatelet agents on platelet deposition in whole blood 

The initial step in assessing the role of an uninhibited platelet subpopulation 

mixed with COX- and/or P2Y12-inhibited platelets in thrombus formation under 

flow conditions was to establish the validity of my system. Therefore, citrated 

whole blood treated with either 30 µM aspirin, 3 µM PAM, 30 µM aspirin + 3 µM 

PAM or corresponding vehicle and 10 µM mepacrine (to label the platelets) was 

perfused over a collagen coated flow chamber. Two different flow rates were 

used to assess the inhibitory effect of aspirin, PAM or aspirin+PAM on platelet 

adhesion and aggregation. Measurement of the MFI of labelled platelets 

showed 12±1 RLU when platelets were uninhibited, 11±1 RLU in the presence 

of aspirin, 12±1 RLU when blood was incubated with PAM or 10±1 when blood 

was incubated with both aspirin+PAM. Interestingly, application of 1way-

ANOVA detected no significant differences between any conditions when blood 

was perfused at 250 s-1 (figure 4.2A) although images taken from respective 

channels after 5 minutes perfusion revealed optical differences between 

uninhibited and inhibited samples (figure 4.2B). These differences became 

bigger when blood was perfused at 1000s-1 (vehicle: 20±3 RLU, aspirin: 15±2 

RLU, PAM: 10±1 RLU, aspirin+PAM: 10±1) but remained insignificant for aspirin 

treatment when tested using paired 1way-ANOVA (figure 4.3). 
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Figure 4.2: Fluorescence intensity of deposited platelets under flow 

conditions in whole blood at 250 s-1. 

Mepacrine labelled platelets in whole blood treated with either 30 µM aspirin, 3 
µM PAM 30 µM aspirin + 3 µM PAM or corresponding vehicle were drawn 
through a parallel plate shear chamber coated with 100 µg/ml collagen. 
Chambers were perfused at 250 s-1 for 5 minutes. 12 images were taken from 
each channel and measured using ImageJ software. Bars show MFI of 12 
images and are presented as mean±SEM of 4 individuals (A). Representative 
images of mepacrine labelled recorded after 5 minutes perfusion using x20 
objective (B). 
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Figure 4.3: Fluorescence intensity of deposited platelets under flow 

conditions in whole blood at 1000 s-1. 

Mepacrine labelled platelets in whole blood treated with either 30 µM aspirin, 3 µM 
PAM, 30 µM aspirin + 3 µM PAM or corresponding vehicle were drawn through a 
parallel plate shear chamber coated with 100 µg/ml collagen. Chambers were perfused 
at 1000 s-1 for 5 minutes. 12 images were taken from each channel and measured 
using ImageJ software. Bars show MFI of 12 images and are presented as mean±SEM 
of 4 individuals. ** p<0.01 difference by 1way-ANOVA in mean fluorescence intensity 
from uninhibited vehicle sample. 

 

In order to show the well-established antiplatelet properties of aspirin and PAM, 

a different approach to measure platelet deposition was sought. Hence, instead 

of measuring MFI, aggregate size was measured. This was achieved by 

converting images taken with a CCD camera into 8-bit greyscale and then 

binary images. To be able to differentiate between adhesion (the initial platelet 

monolayer) and the subsequent build-up of platelet aggregates on top of it, and 

in order to be able to remove background noise, a threshold was set that would 

remove the fluorescent signal produced by a monolayer of mepacrine-labelled 

platelets (see figure 4.1). 
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In order to produce a monolayer, an additional blood sample was incubated with 

10 µM abciximab, an αIIbβ3 inhibitor. Consequently, platelets could not facilitate 

the most important platelet-platelet interaction via αIIbβ3 and only form a platelet 

monolayer adherent to the collagen coated surface. 

Image analysis of platelet aggregates after 5 minutes perfusion at a flow rate of 

250 s-1 set to a threshold that equalled approx. 95% of the signal produced by 

abciximab-treated platelets revealed significant differences in aggregate size 

between uninhibited blood samples and aspirin, PAM or aspirin+PAM-treated 

blood samples (figure 4.4A). The uninhibited platelet sample produced 

aggregates of 24±2 p2 in comparison to 13±2 p2 when treated with 30 µM 

aspirin, 14±2 p2 when treated with 3 µM PAM or 6±1 p2 when treated with both 

aspirin+PAM. Moreover, the kinetics for aggregate formation were analysed 

from images sequentially taken every 2 seconds for 5 minutes. Uninhibited 

samples showed the highest aggregation rate that was significantly different 

from aspirin-, PAM- or aspirin+PAM-treated platelets (figure 4.4B). 

Perfusion of whole blood at 1000 s-1 and subsequent application of the before 

mentioned threshold revealed similar results. Images from uninhibited blood 

samples taken after 5 minutes perfusion showed significantly bigger aggregates 

(78±27 p2) in comparison to aspirin- (26±11 p2), PAM- (7±3 p2), or aspirin+PAM-

treated samples (3±0 p2) (figure 4.5A). Similar to perfusion at a low shear rate 

of 250 s-1, analysis of aggregation kinetics by time lapse analysis showed the 

highest aggregation rate for uninhibited samples that was significantly different 

from inhibited samples when perfusion at 1000 s-1 (figure 4.5B). 
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Figure 4.4: Aggregate size of deposited platelets under flow conditions in 
whole blood at 250 s-1.  

Mepacrine labelled platelets in whole blood treated with either 30 µM aspirin, 3 µM 
PAM 30 µM aspirin + 3 µM PAM, 10 µg/ml abciximab or corresponding vehicle drawn 
through a parallel plate shear chamber coated with 100 µg/ml collagen. Chambers 
were perfused at 250 s-1 for 5 minutes. After 5 minutes 12 images were taken from 
each channel and measured using ImageJ software. Bars show area of binary platelet 
aggregate images analysed as stated in chapter 4.2.7 of 12 images covering different 
areas of the chamber and are presented as mean±SEM from 4 individuals (A). Kinetic 
of platelet deposition during 5 minutes perfusion period. 150 consecutive images were 
taken every 2 s from one area. Images were analysed as described in chapter 4.2.7. 
Traces represent mean±SEM of 4 individuals (B). *** p<0.001 difference by 1way-
ANOVA in aggregate size from uninhibited vehicle sample (A) *** p<0.001, ** p<0.01 
difference by 2way-ANOVA in aggregate (B) 
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Figure 4.5: Aggregate size of deposited platelets under flow conditions in 
whole blood at 1000 s-1.  

Mepacrine labelled platelets in whole bloodtreated with either 30 µM aspirin, 3 µM PAM 
30 µM aspirin + 3 µM PAM, 10 µg/ml abciximab or corresponding vehicle drawn 
through a parallel plate shear chamber coated with 100 µg/ml collagen. Chambers 
were perfused at 1000 s-1 for 5 minutes. After 5 minutes 12 images were taken from 
each channel and measured using ImageJ software. Bars show area of binary platelet 
aggregate images analysed as stated in chapter 4.2.7 of 12 images covering different 
areas of the chamber and are presented as mean±SEM of 4 individuals (A). Kinetic of 
platelet deposition during 5 minutes perfusion period. 150 consecutive images were 
taken every 2 s from one area. Images were analysed as described in chapter 4.2.7. 
Traces represent mean±SEM of 4 individuals (B). ** p<0.01, * p<0.05 difference by 
1way-ANOVA in aggregate size from uninhibited vehicle sample (A) 
*** p<0.001difference by 2way-ANOVA in aggregate (B) 
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In order to perform experiments using mixed populations of uninhibited and 

inhibited platelets, drug-treated blood was incubated for 4 hours. However, flow-

experiments of incubated blood showed reduced and variable platelet 

deposition after 4 hours. As it was thought that this was due to platelet 

desensitisation, rescue of platelet reactivity was attempted. Therefore, rising 

concentrations of epinephrine (0.1 µM to 10 µM) were added to the blood 

sample prior to perfusion at 250 s-1. Aggregate sizes obtained from these 

samples were compared to those obtained from uninhibited blood before and 

after 4 hours incubation.  

 

Figure 4.6: Aggregate size of deposited platelets under flow conditions in 
whole blood at 250 s-1 before and after 4 hours incubation. 

Mepacrine labelled platelets in whole blood, perfused immediately after preparation or 
after 4 hours incubation. Incubated blood was treated with either 0.1 µM, 1 µM, 10 µM 
epinephrine or corresponding vehicle before drawn through a parallel plate shear 
chamber coated with 100 µg/ml collagen. Chambers were perfused at 250 s-1 for 5 
minutes. After 5 minutes 12 images were taken from each channel and measured 
using ImageJ software. Bars show area of binary platelet aggregate images analysed 
as stated in chapter 4.2.7 of 12 images covering different areas of the chamber and are 
presented as mean±SEM of 2 experiments. 
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Uninhibited platelets caused formation of aggregates sized 34±4 p2 before and 

23±11 p2 after 4 hours incubation. Unexpectedly, addition of epinephrine led to 

the formation smaller aggregates (0.1 µM: 8±2 p2, 1 µM: 6±1 p2 10 µM: 8±3 p2) 

than without epinephrine (figure 4.6). 

High variability of platelet deposition under flow conditions even in pure 

populations would not allow analysis of platelet responses in mixed populations 

containing inhibited platelets. Furthermore, the use of whole blood and with it 

the use of mepacrine for platelet labelling does not allow analysis of relative 

distribution of platelet subpopulations. Therefore a different approach including 

reconstituted blood with treated PKH-labelled WP was pursued.  
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4.3.2. The effect of antiplatelet agents on platelet deposition in reconstituted 

blood 

In order to mix differently treated platelet populations, the easiest - and in LTA 

experiments already established - method was to wash and label platelets prior 

to reconstitution with red blood cells. Thus, aggregate formation of reconstituted 

blood had to be validated in an initial step before investigating the 

characteristics of mixed platelet populations. 

Reconstituted blood, containing 40% washed RBC, fibrinogen, MTH-buffer and 

drug-treated, washed and labelled platelets, was allowed to flow through a 

collagen coated flow chamber for 5 minutes at a shear rate of 250 s-1. Images 

taken after 5 minutes perfusion period were normalised to the abciximab-treated 

sample as described above. 

After application of the threshold, aggregates formed from uninhibited platelets 

were 69±22 p2. These aggregates were significantly bigger than those formed 

from aspirin-treated (19±1 p2), PAM-treated (20±2 p2) or aspirin+PAM-treated 

platelets (17±1 p2) (figure 4.7A). Furthermore, analysis of the kinetics of 

aggregate formation showed similar results: uninhibited platelets had the 

highest aggregation rate (slope= 0.2744 ± 0.0065) that was substantially higher 

than the aggregation rates from aspirin- (slope= 0.097 ± 0.0021), PAM- (slope= 

0.0767 ± 0.0022) or aspirin+PAM-treated platelets (slope= 0.0475 ± 0.0011) 

when applying a linear regression (figure 4.7B). 
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Figure 4.7: Aggregate size of deposited platelets under flow conditions in 
reconstituted blood at 250 s-1.  

PKH labelled platelets, treated with 30 µM aspirin, 3 µM PAM, 30 µM aspirin + 3 µM 
PAM, 10 µg/ml abciximab or corresponding vehicle were reconstituted with RBC, MTH-
buffer and fibrinogen before being drawn through a parallel plate shear chamber 
coated with 100 µg/ml collagen. Chambers were perfused at 250 s-1 for 5 minutes. 
After 5 minutes 12 images were taken from each channel and measured using ImageJ 
software. Bars show area of binary platelet aggregate images analysed as stated in 
chapter 4.2.7 of 12 images covering different areas of the chamber and are presented 
as mean±SEM of 6 individuals (A). Kinetic of platelet deposition during 5 minutes 
perfusion period. 150 consecutive images were taken every 2 s from one area. Images 
were analysed as described in chapter 4.2.7. Traces represent mean±SEM of 5 
individuals (B). ** p<0.01 difference by 1way-ANOVA in aggregate size from 
uninhibited vehicle sample (A) 
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The aggregation rate of the sample treated with abciximab was almost zero as 

shown by its almost horizontal orientation (slope= 0.0122± 0.0007). This 

indicated that no platelets would deposit on top of each other on the plate and 

therefore the fluorescence intensity per area would remain constant. In contrast, 

the aggregation rate of the uninhibited vehicle sample indicated the opposite – a 

deposition of platelets on top of each other – as shown by the increase in 

fluorescence intensity per area over time. To test this hypothesis and to further 

strengthen the validity of this assay, confocal images of aggregates that had 

formed in flow channels, perfused with uninhibited or abciximab-treated blood, 

were taken after 5 minutes perfusion at 250s-1. As seen in figure 4.8A large 

aggregates formed in the channel perfused with uninhibited platelets for 5 

minutes. In comparison only a carpet-like platelet monolayer had formed in the 

channel perfused with blood containing abciximab-treated platelets (figure 

4.8B). 
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Figure 4.8:  Confocal images of platelets deposits formed under flow 
conditions in reconstituted blood after 5 minutes perfusion.  

PKH26 labelled platelets, pre-treated with 10 µg/ml abciximab (B) or corresponding 
vehicle (A) were reconstituted with RBC, MTH-buffer and fibrinogen before being 
drawn through a parallel plate shear chamber coated with 100 µg/ml collagen. 
Chambers were perfused at 250 s-1 for 5 minutes. After 5 minutes platelets channels 
were rinsed and platelets were fixed with 1.5% PFA. Images were taken by confocal 
microscopy and 3D-rendered by ZEN 2009 imaging software. 
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4.3.3.  Effects of antiplatelet agents on platelet deposition in mixed platelet 

populations under flow conditions 

Having shown the validity of this assay, the next step was the investigation of 

mixed populations containing inhibited and uninhibited platelets on platelet 

deposition under flow conditions. Therefore, platelets treated with aspirin-, 

PAM-, corresponding vehicle or abciximab were all labelled with the same dye 

before being combined in different proportions and reconstituted with RBC. 

Samples were allowed to flow through a collagen coated flow chamber at a 

shear rate of 250 s-1 before 12 images of different areas of each channel were 

taken. After threshold application, a proportion dependent increase in aggregate 

size could be observed with increasing numbers of uninhibited platelets in both, 

samples combined with aspirin-treated platelets (figure 4.9A) and samples 

containing PAM-treated platelets (figure 4.9B). Aggregate size increased 

gradually from 21±0 p2 when 0% platelets were aspirin-free to 50±14 p2 when 

100% platelets were aspirin-free. Similarly, aggregate size increased from 

21±1 p2 when 0% platelets were PAM-free to 49±10 p2 when 100% platelets 

were PAM-free. However, with increasing proportions of uninhibited platelets, 

variability of platelet deposition increased resulting in an insignificant increase in 

aggregation size in samples containing aspirin-treated platelets. In samples 

mixed with PAM-treated platelets this variability was less resulting in a 

significant difference between 0% PAM-free and 100%PAM-free samples as 

assessed by 1way-ANOVA. 
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Figure 4.9: Aggregate size of deposited mixed platelet populations under 

flow conditions in reconstituted blood at 250 s-1. 

PKH labelled platelets, treated with 30 µM aspirin, 3 µM PAM, 10 µg/ml abciximab or 
corresponding vehicle were reconstituted with RBC, MTH-buffer and fibrinogen before 
being drawn through a parallel plate shear chamber coated with 100 µg/ml collagen. 
Chambers were perfused at 250 s-1 for 5 minutes. After 5 minutes 12 images were 
taken from each channel and measured using ImageJ software. Symbols show the 
area of binary platelet aggregate images analysed as stated in chapter 4.2.7 of 12 
images covering different areas of the chamber and are presented as individual 
replicates and mean±SEM. of 3 to 4 experiments. ** p<0.01 difference by paired 
ANOVA in aggregate size from 0% PAM-free sample. 
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As mentioned earlier, in clinical practice P2Y12 inhibitors such as prasugrel are 

usually administered in addition to aspirin, since aspirin is given as the default 

antiplatelet drug. Hence, prasugrel is usually not administered alone. Similar to 

light transmission aggregometry experiments performed above (chapter 3.2), 

platelets were incubated with both aspirin and PAM to expand previous findings 

into a clinically more relevant framework. Moreover, experiments featuring dual-

inhibited platelets were performed at both, a low shear rate of 250 s-1 and a 

higher shear rate of 1000 s-1. 

Results obtained from experiments allowing blood containing rising proportions 

of aspirin+PAM-free platelets to flow at 250 s-1 for 5 minutes showed aggregate 

sizes of 27±5 p2 when 0% platelets were aspirin+PAM-free. This value 

increased significantly to 71±15 p2 when 50% platelets were aspirin+PAM-free. 

Further increase of the proportion of uninhibited platelets caused 92±11 p2 

when 100% platelets were aspirin+PAM-free (figure 4.10A). A similar trend was 

observed when flow chambers were perfused with reconstituted blood at a 

shear rate of 1000 s-1: Aggregate size increased from 29±3 p2 when 0% 

platelets were aspirin+PAM-free with increasing proportions of uninhibited 

platelets. This increase in aggregates size became significant when when 80% 

platelets were aspirin+PAM-free (115±28 p2) and increased further to 170±29 p2 

when 100% platelets were aspirin+PAM-free (figure 4.10B) However, platelets 

exposed to a higher shear rate of 1000 s-1 formed substantially bigger 

aggregates (max 92±11 p2 at 250 s-1 vs 170±29 p2 at 1000 s-1). 
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Figure 4.10: Aggregate size of deposited mixed platelet populations under 
flow conditions in reconstituted blood at 1000 s-1. 

PKH labelled platelets, treated with 30 µM aspirin + 3 µM PAM, 10 µg/ml abciximab or 
corresponding vehicle were reconstituted with RBC, MTH-buffer and fibrinogen before 
being drawn through a parallel plate shear chamber coated with 100 µg/ml collagen. 
Chambers were perfused at 1000 s-1 for 5 minutes. After 5 minutes 12 images were 
taken from each channel and measured using ImageJ software. Symbols show area of 
binary platelet aggregate images analysed as stated in chapter 4.2.7 of 12 images 
covering different areas of the chamber and are presented as individual replicates and 
mean±SEM of 6 experiments. *** p<0.001, ** p<0.01 difference by paired ANOVA in 
aggregate size from 0% aspirin+PAM-free sample. 
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4.3.4. Distribution of uninhibited platelets in mixed populations under flow 

conditions 

In the following experiments the distribution of uninhibited platelets in 

aggregates mixed with a larger inhibited subpopulation (aspirin-, PAM-, or 

aspirin+PAM-treated platelets) was examined. To this end, different platelet 

subpopulations were labelled with different PKH-dyes in order to be able to 

distinguish between received treatments. 20% uninhibited platelets (labelled 

with PKH67 (green)) were mixed with 80% inhibited (PKH26-labelled) platelets 

before reconstitution with blood. Blood samples containing different 

combinations of inhibited and uninhibited platelets were then flowed over a 

collagen-coated surface at a shear rate of 1000s-1 for 5 minutes. Formed 

platelet deposits were washed with PBS for 3 minutes and fixed by perfusion 

with 2% PFA for 3 minutes before being imaged by confocal microscopy. Three 

images of each channel obtained by confocal microscopy were analysed for the 

size of uninhibited platelet clusters. Using Imaris software, surfaces were 

modelled around the fluorescent signal. Representative images of each 

condition are shown in figure 4.11. On the left, images show surfaces of both 

platelet sub-populations (uninhibited and inhibited platelets), whereas on the 

right the signal obtained from inhibited platelets has been removed by the 

software to better show the distribution of uninhibited platelets. However, unlike 

results obtained from aggregation experiments - showing strong clustering of 

uninhibited platelets when mixed with PAM-treated but not with aspirin-treated 

ones - no differences in clustering could be observed between any tested 

conditions (20% uninhibited platelets mixed with 80% aspirin-treated, 80% 

PAM-treated or 80% aspirin+PAM-treated platelets) This observation was 

confirmed when cluster sizes were measured using Imaris software: Uninhibited 

platelets mixed with 80% aspirin-treated formed clusters with a mean size 

303±102 µm3 and a total volume of 65501±20924 µm3 which was similar to 

uninhibited platelets mixed with a PAM-treated (means cluster size 358±51 µm3; 

total volume 78939±8169 µm3) or aspirin+PAM (mean cluster size 273±91 µm3; 

total volume 71107±19142 µm3) subpopulation (figure 4.12). 
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Figure 4.11: Confocal images of platelet thrombi containing uninhibited  
and inhibited platelets. 

Aggregates were obtained from combinations of 20% vehicle-treated (red) and 80% 
drug-treated platelets (aspirin, top; PAM, middle panel; aspirin+PAM, bottom; green) 
after 5 minutes perfusion at 1000s-1 over a collagen coated surface (100 µg/ml). 
Images showing either both channels (left panel) or uninhibited platelets only (right 
panel), were processed with Imaris software (scale bars indicate 30µm). 
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Figure 4.12: Analysis of cluster volume of uninhibited platelets after 5 
minutes perfusion at 1000 s-1. 

Aggregates were obtained from combinations of 20% vehicle-treated and 80% drug-
treated platelets (aspirin, top; PAM, middle panel; aspirin+PAM, bottom) after 5 
minutes perfusion at 1000s-1 over a collagen coated surface (100 µg/ml). After 
perfusion 3 confocal images of each slide were taken using a Zeiss LSM pascal 510 
microscope incorporating a x40 achroplan objective. Volumes were calculated from 
surfaces fitted around fluorescent signal with Imaris software. Data represented as 
mean±SEM. 

 

Control experiments were performed in ‘pure’ populations of uninhibited, 

aspirin-, PAM- or aspirin+PAM-treated platelets that contained proportions of 

differently labelled platelets which had received the same drug treatment. These 

samples contained either 20% PKH26- and 80% PKH67-labelled platelets or 

20% PKH67- and 80% PKH26-labelled platelets. Flow experiments performed 

at a shear rate of 1000 s-1 for 5 minutes showed no differences between 

treatments (figure 4.13). Moreover analysis of the deposition ratios between 

PKH26- and PKH67-labelled platelets did not show the expected ratio of 4:1 

(figure 4.14). 
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Figure 4.13: Deposition of differently labelled platelets under flow 
conditions. 

Platelets treated with 30 µM aspirin, 3 µM PAM, 30 µM aspirin+3 µM PAM or 
corresponding vehicle labelled with PKH26 or PKH67 each and reconstituted 
with blood in a ratio of 20% PKH26 and 80% PKH67 or vice versa. Collagen 
coated flow chambers (100µg/ml) were perfused with reconstituted blood at a 
shear rate of 1000 s-1 for 5 min, followed by perfusion with PBS for 3 minutes 
and 2% PFA for 3 min. Fixed deposited platelets were imaged using a Zeiss 
LSM pascal 510 microscope incorporating a x40 achroplan objective (3 images 
per channel). Volumes of both PKH26- and PKH67-labelled platelets (A) or 
detailed analysis of ratios between PKH26- and PKH67-labelled platelets were 
calculated from surfaces fitted around fluorescent signal with Imaris software. 
Data represented as mean±SEM. 
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4.4. Discussion 

In this work I investigated platelet deposition characteristics of mixed platelet 

populations containing uninhibited and aspirin- and/or PAM-inhibited platelets. 

Data obtained by LTA and reported in chapter 3 showed a distinct difference in 

platelet distribution between populations comprising aspirin-treated platelets 

and populations comprising PAM-treated platelets; i.e. the observation that 

uninhibited platelets clustered in the centre of platelet aggregates in mixtures 

containing PAM- or aspirin+PAM-treated platelets. In contrast this clustering of 

uninhibited platelets in aggregates was not observed in mixtures of uninhibited- 

and aspirin-treated platelets. However, differences in platelet distribution, i.e. 

clustering of uninhibited mixed with PAM-treated platelets was not observed 

under flow conditions. 

On one hand it is possible that this effect was not observed because it does not 

translate into flow conditions and should be an effect limited to aggregometry; 

on the other hand it is possible that the applied assay failed to detect clusters of 

uninhibited platelets. 

With regards to the applied flow assay, two different methods to analyse platelet 

deposition at two different shear rates were applied.  

Analysis of platelet deposition under flow conditions by means of MFI showed 

no significant differences between uninhibited and inhibited samples at a low 

flow rate. However, antiplatelet effects of P2Y12 inhibitors have been reported 

for a broad range of flow rates, ranging from as low as 100 s-1 to 2600 s-1. 

(Roald, Barstad et al. 1994) Moreover, the well-established antiplatelet effect of 

aspirin at arterial shear rates was not observed. Thus a different method of 

analysis was applied. The rationale for this method was as follows. It was 

observed that platelet distribution patterns differ according to platelet treatment. 

So, for example, it was observed that uninhibited platelets formed islets of 

aggregates inside the flow chamber with spaces free of platelets in between. In 

contrast, inhibited platelets (e.g. by abciximab) demonstrated an even and 
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regular distribution on the collagen surface. This effect was also verified by 

confocal microscopy (Figure 4.8). While the exact cause of these differences is 

not entirely understood, it is believed to be associated with irregular fibrinogen 

deposition along which platelets preferably adhere and aggregate. (Stanford, 

Munoz et al. 1983) Other studies suggest activated platelets to be crawling 

towards each other via a αIIbβ3-mediated pathway, thereby reducing area 

coverage but increasing aggregate size. (Patel, Vaananen et al. 2003) This 

difference in platelet distribution might – under certain circumstances - obscure 

occurring platelet aggregation as the differences in fluorescence intensity 

between an evenly, densely covered surface by an adherent platelet monolayer 

and platelet aggregates with unoccupied spaces in between might be marginal. 

Therefore, in order to remove any fluorescent signal originating from adherent 

but not aggregated platelets, a threshold matching the fluorescent intensity of a 

platelet monolayer was applied to all samples. This enabled the detection of 

smaller differences in the extent of aggregation between uninhibited and 

inhibited platelet samples. 

In addition to the two methods of analysis, two different flow conditions were 

applied to study thrombus formation of mixed populations: a low shear system 

with a shear rate of 250 s-1, and a system mimicking arterial shear at 1000 s-1. 

Analyses of MFI showed no significant differences between uninhibited and 

inhibited (aspirin- and/or PAM-treated) platelets at 250 s-1 and no inhibitory 

effect of aspirin at 1000 s-1. However, after threshold application my work 

showed an antiplatelet effect of aspirin and PAM at both 250 s-1 and 1000 s-1. In 

contrast, others have reported the loss of aspirin’s antithrombotic properties at 

shear rates less than 650 s-1 in flow assays. (Roald, Orvim et al. 1994) These 

findings are in line with studies in a baboon model, which failed to detect 

benefits of aspirin in induced thrombosis at shear rates of 250 to 500 s-1. 

(Hanson and Harker 1987; Hanson, Pareti et al. 1988; Harker, Kelly et al. 1991) 

However, these studies, all performed by the same research group, are in 

conflict with recent publications showing the inhibitory effect of aspirin on 

platelet aggregation at shear rates of 200 s-1 and 500 s-1. (Li, Hotaling et al. 

2014; Li and Diamond 2014) Furthermore, they also failed to show a benefit of 

heparin in thrombus formation between 250 to 500 s-1 – shear rates considered 



170 
 

to resemble rather venous conditions. Moreover, although guidelines on the use 

of aspirin for the treatment of venous thrombosis are not consistent, studies 

investigating aspirin in the prevention of deep vein thrombosis (DVT)/venous 

thromboemobolism (VTE) suggest aspirin can be protective. (Prandoni, 

Noventa et al. 2013)  

Differences between, in particular the older reports which did not show an 

antiplatelet effect of aspirin at low shear rates and more recent publications as 

well as my findings might be explained by differences in imaging techniques 

and the use of commercially manufactured flow kits. Even in my studies 

different results were obtained from the same samples depending on imaging 

modalities. Whereas conventional fluorescence microscopy coupled with the 

application of a threshold showed differences between proportions of 

uninhibited platelets and platelet deposition, these differences were lost when 

analysed by confocal microscopy. The discrepancy between confocal analysis 

and the analysis using a threshold might be explained as the confocal 

microscopic analysis resembles MFI-analysis. In both assays, the fluorescent 

signal of all platelets, including those forming the initial monolayer but not 

contributing to aggregate formation, have been considered. A recent study 

investigating the hierarchical organisation of a thrombus showed the existence 

of a drug-insensitive core at the site of injury surrounded by an antiplatelet drug-

sensitive platelet ‘shell’. (Stalker, Traxler et al. 2013) Although unlikely, 

assuming that there was no difference between the differently treated samples 

in our tests, it might be possible that the formed aggregates were similar to the 

described inner core of antiplatelet drug insensitive platelet aggregates and that 

the outer drug-sensitive shell had not formed. Furthermore, it might be possible 

that this loosely connected shell was lost during preparation for confocal 

microscopic analysis.  

Although I believe that the above mentioned observations (i.e. antiplatelet effect 

of aspirin and PAM at low and high shear rates) are genuine and therefore that 

the assay including application of a threshold reported in this chapter is valid, it 

is worth considering that observations made in my earlier LTA experiments 

might not have translated into flow conditions because of low platelet quality. In 
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LTA, aggregatory responses take place in a confined space where stimuli 

(including released secondary mediators) tend to accumulate. This might be the 

reason why LTA is a robust assay, not affected by platelet storage at room 

temperature for 4 hours or by platelet labelling with PKH-dyes (and washing) 

(figure 3.21). In contrast, in flow assays, these released stimuli tend to be 

diluted and washed away. Consequently, platelet activation under flow 

conditions might be weaker and rely more on direct contact to the collagen 

coated surface. This seems to manifest in their higher sensitivity to measures 

such as prolonged incubation, washing and labelling, as indicated by the small 

and inconsistent aggregates formed after 4 hours incubation (figure 4.6). 

Moreover, comparison between aggregate sizes and their respective SEM in 

whole blood (24±2; 8.3% variability) and in reconstituted blood (69±22; 31% 

variability) show a much greater variability in reconstituted blood. However, 

platelet labelling with PKH-dyes might not account for 100% of the observed 

effect as plasma with all its contents had been removed from the samples and 

this would also affect platelet reactivity. Also, storage of whole blood for 4 hours 

(which allows the breakdown of active drugs) might cause desensitisation of 

various platelet receptors leading to variable platelet deposition. However, any 

attempts to rescue the platelet reactivity by addition of epinephrine failed, as 

shown by the much smaller aggregate sizes. Although the reason for the small 

aggregate size has not been investigated it is thought that platelets were 

preactivated and may have aggregated in the sample reservoir or the tubing 

leading to the flow chamber. Platelet deposition with rising proportions of PAM-

free platelets increased in a fairly linear fashion, similar to aggregatory 

responses upon stimulation by ADP in LTA. However, the non-linear increase in 

aggregation seen with rising proportions of aspirin-free platelets upon 

stimulation by AA or collagen did not translate into the flow conditions. Under 

flow, platelet deposition increased with rising proportions of aspirin-free platelets 

– similar to PAM-free platelet deposits – in a fairly linear fashion. These 

differences are another indication of the weaker platelet activation and higher 

mediator dilution seen under flow conditions.  In conclusion, while platelet 

handling in aggregation assays does not alter platelet reactivity, excessive 

platelet handling in flow assays might compromise platelet reactivity and might 
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therefore limit the ability of uninhibited platelets to form clusters and in particular 

the ability of complex assays to see these differences. 

Another explanation for failing to show any clusters of uninhibited platelets 

might lie in kinetic differences between LTA and flow assays. Under flow 

conditions, platelets become immobilised on the collagen coated surface. This 

arrest is mediated by capture of integrin α2β1 enabling collagen-GPVI interaction 

and consequent platelet activation. This leads to integrin (αIIbβ3) activation and 

cyctoskeletal reorganisation that allows shape change and granule secretion. 

Recently, activation of GPVI activated NADPH oxidase 1 has been shown to 

cause TxA2 release from activated platelets. (Walsh, Berndt et al. 2014) The 

release of TxA2 and ADP as well as the formation of thrombin, lead to activation 

and capture of more platelets leading to the formation of a stable thrombus. 

However, the role of secondary mediators seems to be limited to a certain 

range of shear rates. While, as mentioned earlier, some investigators claim that 

aspirin loses its efficacy at low shear rates, scientists agree on the loss of its 

efficacy at pathologically high shear rates. The mechanisms are not yet 

completely understood, but seem to involve vWf-mediated platelet activation. 

(Schmugge, Rand et al. 2003)  

Furthermore, blood flow and shear rates modulate the significance of various 

signalling pathways. For example it was shown that thrombin-mediated platelet 

activation is reduced in elevated pathological shear. (Lee, Sturgeon et al. 2012) 

In contrast, in LTA, platelets are spinning freely in suspension under poorly 

defined low shear conditions where their aggregation is dependent on the 

addition of a variety of exogenous agonists. Besides collagen, secondary 

mediators are frequently used to stimulate platelet aggregation. Consequently 

there is a significant difference in relative velocity between platelets forming 

aggregates in LTA and platelets forming aggregates under flow whereas 

primary platelet activation is omitted in LTA, these events are crucial under flow 

conditions.  
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CHAPTER 5:  GENERAL DISCUSSION 
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Cardiovascular diseases, especially atherosclerosis due to the thrombotic 

events that it triggers (e.g. MI and stroke), are the most common cause of death 

in the world. (Lozano, Naghavi et al. 2012) Of particular concern is the rise of 

major risk factors including obesity, hypertension and type-2 diabetes in 

younger populations in high-income countries. (Capewell, Ford et al. 2010) It is 

however not only, like previously considered, a problem in industrialised 

countries. The main concern lies in developing countries where approximately 

eighty per cent of the world’s deaths from atherothrombotic events occur, due to 

ongoing nutrition and epidemiological transitions and the rapid adoption of 

western dietary and lifestyle habits. (Jackson 2011; Odegaard 2013) Given the 

current mortality rates in atherosclerosis and related conditions, success in 

tackling this global problem is behind expectations despite all the effort that has 

been made into the discovery and optimisation of new drugs and therapies. A 

glance at the current dramatic rise in the prevalence of type-2 diabetes, which is 

characterised by accelerated atherosclerosis (Ferreiro and Angiolillo 2011) and 

low responsiveness to antiplatelet drugs, (Ang, Palakodeti et al. 2008; Bhatt 

2008) draws an even more disillusioning picture: in the US diabetes doubled 

within the last 30 years (Fox, Pencina et al. 2006) and in the UK it increased by 

two thirds between 1996 and 2005. (Gonzalez, Johansson et al. 2009) An 

outlook for 2030 indicates a prevalence of diabetes of 7.7% in the global adult 

population which equates to 439 million people. The predicted increase 

between 2010 and 2030 will be 20% in developed and 69% in developing 

countries. (Shaw, Sicree et al. 2010) The above stated ischemic events that 

accompany atherosclerotic disease have inappropriate platelet activation 

leading to thrombus formation in common. Thus, it is a logical strategy to target 

platelet reactivity to compensate for the overwhelming stimuli arising from 

rupture of atherosclerotic lesions. Figures stating the prevalence of 

cardiovascular disease and its risk factors – above all type-2 diabetes - highlight 

the importance of investigating the underlying molecular mechanisms in 

thrombosis. The discovery and characterisation of new pharmacological targets 

and agents as well as the optimisation of current therapies for the prevention of 

thrombotic events especially in association with diseases characterised by low 

responsiveness to conventionally used drugs in atherosclerosis, such as above 

mentioned type-2 diabetes, but also conditions such as obesity (Ang, Palakodeti 



175 
 

et al. 2008; Bhatt 2008) and chronic kidney disease, (Htun, Fateh-Moghadam et 

al. 2011; Morel, El Ghannudi et al. 2011) is a big challenge but also an 

important therapeutic opportunity.  

Most commonly, patients at risk of experiencing ischemic events are prescribed 

low-dose aspirin which has been shown to reduce the risk of atherothrombotic 

events in comparison to placebo. (ISIS-2 Collaborative Group 1988; The RISC 

Group 1990; Wallentin 1991) If required, the protection mediated by aspirin can 

be improved by the addition of other antiplatelet inhibitors, usually P2Y12 

inhibitors such as clopidogrel or the next generation P2Y12 inhibitor prasugrel.  

The irreversible “once-a-day” drugs aspirin, clopidogrel and prasugrel are 

characterised by short pharmacokinetics but - due to their irreversible binding of 

their targets - long lasting pharmacodynamic effects. Indeed, this 

pharmacological profile results in low concentration of the active compound 

found in the plasma a short time after ingestion while all three drugs inhibit their 

targets for the entire lifespan of the platelet.  

Taking into account that the average life span of platelets lies between 9 and 11 

days – which implies that approximately 10% platelets are turned over every 

day - 24 hours after administration of these “once-a-day” drugs at least 10% 

platelets are uninhibited. However, this proportion can be increased in patients 

with conditions associated with increased platelet turnover including type-2 

diabetes. This can have some significant consequences on sustaining platelet 

inhibition throughout the day and therefore some implications for optimal drug 

dosing. Since both aspirin and clopidogrel are not covered by patents anymore 

and are therefore very cheap, this well-established dual antiplatelet therapy will 

remain the standard therapy for the foreseeable future until novel antiplatelet 

drugs with better protection-bleeding profiles are discovered.  

Thus, I investigated the role of platelet turnover and the associated emergence 

of an uninhibited platelet subpopulation on the inhibitory effects of aspirin and/or 

irreversible P2Y12 inhibition – and examined these effects at the level of 

individual platelets.  
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Experiments performed in LTA – the “gold standard” in platelet function testing - 

showed that in in vitro tests of platelet reactivity a relatively small population of 

aspirin naïve platelets can support full platelet aggregation, subject to the 

stimulus being applied.  This observation is in line with previous reports; di 

Minno and colleagues demonstrated that in LTA with platelet rich plasma 

around 10% uninhibited platelets could support a full aggregation in response to 

collagen (1µg/ml) plus AA (1mM). (Di Minno, Silver et al. 1983) 

More recent studies have associated reduced effectiveness of aspirin in vivo to 

the proportion of circulating reticulated platelets which can be taken as a marker 

of increased platelet turnover. (Guthikonda, Lev et al. 2007) Similarly, patients 

with thrombocythemia show higher TXA2 levels compared to aspirin-treated 

healthy volunteers due to elevated COX-2 expression and faster renewal of 

unacetylated COX-1 caused by accelerated platelet regeneration. (Dragani, 

Pascale et al. 2010) Consequently, it is not surprising that patients with elevated 

TxA2 levels, assessed by 11-dehydro-TxB2 production, have an increased risk 

of MI or cardiovascular death despite taking aspirin. (Eikelboom, Hirsh et al. 

2002)  

Similar analyses have indicated that increased proportions of reticulated 

platelets are associated with a reduced effectiveness of clopidogrel in both rats 

(Kuijpers, Megens et al. 2011) and humans (Ibrahim, Nadipalli et al. 2012) and 

in humans receiving dual antiplatelet therapy. (Cesari, Marcucci et al. 2008; 

Guthikonda, Alviar et al. 2008) Similarly, a recent study found a strong 

correlation between proportions of reticulated platelets and effectiveness of 

prasugrel. (Perl, Lerman-Shivek et al. 2013) Studies of drug effects also 

indicate that the return of aggregatory responses is commensurate with the time 

for replenishment of circulating platelets which is consistent with my observation 

that there is a linear relationship between P2Y12-uninhibited proportions of 

platelets and aggregatory responses upon stimulation by ADP. (Gurbel, Bliden 

et al. 2009) My confocal analyses indicate that these responses are associated 

with particular patterns of platelet interactions that differ for inhibition of platelet 

cyclooxygenase by aspirin and blockade of platelet P2Y12 receptors by PAM. 

Thrombi resulting from addition of uninhibited platelets to populations of aspirin-

inhibited platelets were characterised by intermingled populations of inhibited 
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and uninhibited platelets.  Conversely, thrombi resulting from addition of 

uninhibited platelets to populations of PAM inhibited platelets were 

characterised by clustering of uninhibited platelets in the centre of platelet 

thrombi. This sheds light on the meaning of in vitro platelet testing to assess 

P2Y12 receptor blocker and aspirin effectiveness, also known as patient 

‘resistance’ (Patrono and Rocca 2007; Undas, Brummel-Ziedins et al. 2007; 

Pinto Slottow, Bonello et al. 2009; Bonello, Tantry et al. 2010; Tantry, Bonello et 

al. 2013) as well as the interaction of platelet populations in vivo.   

Aspirin and P2Y12 receptor blockers have different targets on the platelet and 

inhibit with different functional modalities.  Aspirin inhibits platelet COX-1, and 

so the ability of a platelet to produce TXA2.  This does not stop the platelet 

responding to TXA2 produced by another platelet, and so the idea has 

developed that a minority of uninhibited platelets is capable of supporting a full 

aggregatory response. (Reilly and FitzGerald 1987; Davi and Patrono 2007; 

Patrono 2013) This is reflected in our confocal analyses which demonstrated 

aspirin-inhibited and aspirin-uninhibited platelets intermingled, consistent with 

TXA2 generation being confined to a subset of platelets but TXA2 

responsiveness being present in all platelets. 

Prasugrel inhibits the ability of a platelet to respond via P2Y12 receptors to ADP 

that is released during the secondary amplification step of platelet activation.  

This is reflected in my confocal images demonstrating that the core of platelet 

aggregates, particularly those formed in response to exogenous ADP, are 

largely composed of P2Y12 receptor-uninhibited platelets.  This helps explain 

responses recorded in ex vivo LTA tests of P2Y12 effectiveness. (Guthikonda, 

Alviar et al. 2008; Gurbel, Bliden et al. 2009) The growth of the aggregates 

beyond the P2Y12-uninhibited core in these conditions does not appear to be 

dependent upon the formation of TXA2, as it was largely unaffected by aspirin.  

However, it does appear to be an active process, i.e. not an artefact of my 

experimental system, as the growth of aggregates was reduced by treatment of 

P2Y12 inhibited platelets with the αIIbβ3 blocker abciximab. Having excluded 

TxA2 release to be responsible for the recruitment of P2Y12-inhibited platelets 

into the aggregates, signalling via the ADP-P2Y1 receptor could be a possible 

mechanism considering the use of its ligand ADP for the stimulation of 
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aggregation. Signalling via P2Y1, which couples with Gq, causes calcium 

mobilisation and shape change resulting in transient platelet aggregation. 

(Hechler, Leon et al. 1998; Jin, Daniel et al. 1998) This transient platelet 

activation might be sufficient to induce a conformational change of αIIbβ3 and 

clustering leading to a high affinity and avidity state that enables fibrinogen, vWf 

and fibronectin binding. (Hato, Pampori et al. 1998) This brief activation might 

be sufficient for the formation of platelet-platelet contacts between uninhibited 

and P2Y12-inhibited platelets. However, subsequent integrin outside-in 

signalling might be inhibited by elevated cAMP-levels resulting from P2Y12 

blockade. This might prevent granule secretion, limit further aggregate growth 

and help explain why abciximab inhibits recruitment of PAM-treated platelets. 

P2Y1-mediated platelet aggregation – reflected by a transient increase in light 

transmittance in LTA in P2Y12-inhibited samples - is considered short lived. 

Therefore, future experiments should investigate the potentially differential 

recruitment of P2Y12-inhibited platelets into uninhibited aggregates after 

stimulation for 5 minutes or 20 minutes. However, it seems that P2Y1-mediated 

platelet activation cannot be the sole explanation for the observed effect. If 

P2Y1-signalling was sufficient to induce αIIbβ3 shape change that can be 

sustained for 5 minutes, the observation of aggregates consisting solely of 

P2Y12-inhibited platelets would be expected. However, this was not the case. In 

imaged samples, P2Y12-inhibited platelets were either associated with 

uninhibited platelet aggregates or present as single cells. Therefore an active 

role of the uninhibited aggregate core in the recruitment of inhibited platelets 

would be expected. P-selectin, stored in the membranes of α-granules and 

exteriorised upon platelet activation, binds to PSGL, also found on platelets. 

(Stenberg, McEver et al. 1985; Frenette, Denis et al. 2000) Increased P-selectin 

expression on activated platelets together with previously mentioned αIIbβ3  

activation might have been sufficient to sustain platelet-platelet contacts for the 

test period of 5 minutes. 

Investigations into the role of a subpopulation of uninhibited platelets mixed with 

either aspirin-treated or P2Y12-inhibited platelet under flow conditions were 

inconclusive. Potential reasons including the effect of flow dynamics and 

excessive platelet handling have been discussed in chapter 4.4. Future studies 
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utilising in vivo thrombosis models could give valuable information about the 

distribution of uninhibited and P2Y12-inhibited platelets and the role of 

uninhibited platelets in general. Previous in vivo thrombosis models have shown 

that P2Y12 inhibition does not inhibit thrombus formation per se, but limits 

thrombus stability, causing parts of the thrombus to constantly break off, 

thereby preventing vessel occlusion. (Stephens, He et al. 2012) It would be 

interesting to examine whether a certain proportion of uninhibited platelets is 

able to counteract this effect by stabilising the forming thrombus, thereby 

increasing the risk of vessel occlusion. This would be a possible explanation for 

the higher rate of ischemic incidences in patients with a higher proportion of 

reticulated platelets. (Cesari, Marcucci et al. 2013) 

In my studies I modelled the effects of single antiplatelet therapy with aspirin or 

prasugrel, and dual antiplatelet therapy with aspirin plus prasugrel.  Relatively 

few patients are treated therapeutically with single P2Y12 receptor blocker 

therapy, but I included these studies to allow better interpretation of responses 

to dual antiplatelet therapy.   

Experiments in patients with elevated platelet turnover showed that increasing 

the dose of aspirin causes only partial reduction of serum TxB2. However, 

doubling the frequency of administration from once daily to twice daily reduced 

the TxB2 production by 88%, indicating that increased platelet renewal and 

consequent renewal of unacetylated COX-1 was responsible for impaired 

platelet inhibition. (Pascale, Petrucci et al. 2012) 

This was consistent with studies in type-2 diabetes patients showing improved 

platelet inhibition with twice daily, low dose aspirin administration compared to 

once daily administration in patients with coronary artery disease, (Capodanno, 

Patel et al. 2011) and better platelet inhibition with twice daily, low-dose 

administration than once daily low or high-dose aspirin administration in patients 

with micro- or macrovascular complications. (Spectre, Arnetz et al. 2011) These 

studies clearly demonstrate associations between newly formed platelets and 

changes in platelet reactivity in aspirin-treated patients.  
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Similar to above mentioned experiments performed in patients receiving aspirin-

therapy, my findings – the recruitment of P2Y12-inhibited platelets into a core of 

uninhibited platelets – challenge the reliability of existing P2Y12 inhibitor dosing 

regimens in patients with high platelet turnover. Increasing the frequency of 

administration of P2Y12 inhibitors from once daily to twice daily could prevent 

the formation of an uninhibited platelet subpopulation and therefore the 

recruitment of inhibited platelets into the thrombus. Studying the effects 

mediated by ticagrelor, a novel reversible P2Y12 inhibitor, administered twice-

daily, would be highly compelling as it should prevent the formation of an 

uninhibited platelet subpopulation which would be particularly valuable in 

patients with high platelet turnover. 

 

Although a previous attempt of individualised antiplatelet therapy failed to 

translate into improved clinical outcomes, (Price, Berger et al. 2011) I believe 

that the strategy to tailor treatments to the patients’ specific requirements is the 

way forward and should therefore be pursued. Recently, many large scale 

clinical trials (mentioned throughout the introduction of this document) 

incorporating the “one-size-fits-all” approach failed to improve clinical outcomes, 

highlighting the need for new research strategies. On the other hand, numerous 

research documents including this thesis challenge current antiplatelet therapy 

strategies and a number of small trials have challenged current established 

antiplatelet dosing regimens and proposed how antiplatelet therapy in specific 

patient groups could be improved. (Addad, Chakroun et al. 2010; Barker, 

Murray et al. 2010; Capodanno, Patel et al. 2011; Spectre, Arnetz et al. 2011) 

In consideration of the alarming outlook regarding the global burden of 

atherosclerosis and the increasing prevalence of type-2 diabetes, as well as 

other conditions characterised by high platelet turnover, adequate (i.e. effective 

and safe) antiplatelet therapies are urgently needed that can check the constant 

rise in atherothrombotic events and improve the quality of life for millions of 

patients worldwide.  
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