
Raphtory: Modelling, Maintenance and Analysis of

Distributed Temporal Graphs

Benjamin Alexander Steer

PhD Thesis

Submitted in partial fulfilment of the

requirements of the Degree of Doctor of Philosophy

School of Electronic Engineering and Computer Science

Queen Mary University of London

2020

Statement of Originality

I, Benjamin Alexander Steer, confirm that the research included within this thesis is my own

work or that where it has been carried out in collaboration with, or supported by others, that

this is duly acknowledged below and my contribution indicated. Previously published material

is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and does not

to the best of my knowledge break any UK law, infringe any third party’s copyright or other

Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check the electronic

version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree by this or

any other university.

The copyright of this thesis rests with the author and no quotation from it or information derived

from it may be published without the prior written consent of the author.

Signature: Benjamin Alexander Steer

Date:23/10/2020

Details of collaboration and publications: The full list of publications in relation to this thesis is

discussed in Section . Of these:

� The work presented in Section 6.6 (GraphTides[1]) was completed as a joint effort between

researchers from Queen Mary University of London, Imperial College London and The

Institute of Distributed Systems at Ulm University.

� The work presented in Section 6.4.2, currently under review at The International Con-

ference on Web and Social Media (ICWSM), was completed as a joint effort between re-

searchers at Queen Mary University of London and Universidad Politécnica de Madrid.

1

Abstract

Temporal graphs capture the development of relationships within data throughout time. This

model fits naturally within a streaming architecture, where new events can be inserted directly

into the graph upon arrival from a data source and be compared to related entities or historical

state. However, the majority of graph processing systems only consider traditional graph analysis

on static data, whilst those which do expand past this often only support batched updating and

delta analysis across graph snapshots. In this work we define a temporal property graph model

and the semantics for updating it in both a distributed and non-distributed context. We have

built Raphtory, a distributed temporal graph analytics platform which maintains the full graph

history in memory, leveraging the defined update semantics to insert streamed events directly into

the model without batching or centralised ordering. In parallel with the ingestion, traditional

and time-aware analytics may be performed on the most up-to-date version of the graph, as

well as any point throughout its history. The depth of history viewed from the perspective of

a time point may also be varied to explore both short and long term patterns within the data.

Through this we extract novel insights over a variety of use cases, including phenomena never

seen before in social networks. Finally, we demonstrate Raphtory’s ability to scale both vertically

and horizontally, handling consistent throughput in excess of 100,000 updates a second alongside

the ingestion and maintenance of graphs built from billions of events.

Acknowledgements

I would like to thank everybody who has helped me during the completion of this thesis. First and

foremost, thanks to my primary and secondary supervisors Félix Cuadrado and Richard Clegg.

Throughout my time at Queen Mary they have always been fully supportive of my endeavours

and fostered a wonderful exploitative environment. Their guidance and feedback has been truly

invaluable to my research and I feel deeply lucky to have been able to work alongside them. I

would also like to thank my tertiary supervisor, Steve Uhlig, for ensuring my research journey

progressed successfully.

Thanks also goes to my wonderful colleagues in the QMUL Networks Research Group, es-

pecially Naomi Arnold, Timm Böttger, Dami Ibosiola and, most recently, Imane Hafnaoui who

have helped me with innumerable issues and made my time at Queen Mary a joy. In addition

I would like to thank my many collaborators, notably Gábor Szárnyas, Jack Waudby, Alhamza

Alnami and Haaroon Yousaf who have helped tremendously with both my main research threads

and fruitful side ventures.

Finally, a special thanks to my family and friends for their unwavering support and encour-

agement, particularly my mum, Jacki Steer, who has always been my editor-in-chief, much to

her dismay. To everyone else not mentioned here, I express my heartfelt appreciation to you all.

3

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Research Hypothesis and Problem . 12

1.3 Aim . 12

1.4 Research Contributions . 13

1.5 Thesis Structure . 15

1.6 Associated Publications . 16

2 Background 17

2.1 Introduction . 17

2.1.1 Chapter Roadmap . 18

2.2 Graph Models and Representations . 18

2.2.1 Dynamic Graphs . 20

2.2.2 Temporal Graph Models . 21

2.3 Graph Analysis Categorisation . 23

2.3.1 Temporal Graph Analytics . 23

2.4 Big Data Processing Systems . 24

2.4.1 Batched Systems . 25

2.4.2 Streaming Systems . 26

2.5 Graph Processing Systems . 30

2.5.1 Graph Databases . 31

2.5.2 Linear Algebra Based Graph Analytical Platforms 32

2.5.3 Vertex and Edge Centric Analytical Platforms 33

2.5.4 Streaming Graph Analytics . 36

2.5.5 Temporal Graph Analytics . 40

2.6 Summary . 43

3 Temporal Graph Model 44

3.1 Introduction . 44

3.1.1 Chapter Roadmap . 45

4

3.2 Undistributed Model . 45

3.2.1 Example Temporal Graph . 46

3.3 Undistributed Update Semantics . 47

3.3.1 Entity Addition . 48

3.3.2 Entity Removal . 49

3.3.3 Entity Properties and Updates . 49

3.4 Flattening the Temporal Graph . 50

3.5 Challenges of Distribution and Implementation 52

3.6 Distributed Temporal Graph Model . 53

3.7 Distributed Update Semantics . 54

3.7.1 Example Distributed Temporal Graph and Update Streams 55

3.7.2 Entity Addition . 56

3.7.3 Entity Removal . 57

3.7.4 Entity Updates . 58

3.8 Summary . 59

4 Raphtory Ingestion, Modelling and Maintenance 60

4.1 Introduction . 60

4.1.1 Chapter Roadmap . 61

4.2 Raphtory Overview . 62

4.2.1 Implementing the Distributed Temporal Graph Model 62

4.2.2 Performing Analysis on the Temporal Graph 63

4.2.3 Underlying Frameworks and Deployment 64

4.3 Ingesting Data - Raphtory Spout . 65

4.3.1 Spout API . 66

4.4 Graph Modelling and Partitioning - Graph Router 67

4.4.1 Partitioning Strategy and Routing . 69

4.4.2 Graph Router API . 70

4.4.3 Modelling Data as a Graph . 71

4.5 Graph Partition Manager . 72

4.5.1 Entity Modelling and Partition Storage 73

4.6 Partition Writer . 76

4.6.1 Adding and Updating Vertices . 77

4.6.2 Adding and Updating Edges . 79

4.6.3 Removing Edges . 84

4.6.4 Removing Vertices . 86

4.7 Watermarking . 87

4.7.1 Update Tracking and Synchronisation Acknowledgement 89

4.7.2 Router Worker Vector Clocks and Live Graph Time Extraction 90

4.7.3 Router Time Sync and Partition Catch-up 92

5

4.8 Partition Archivist . 93

4.8.1 Graph Persistence . 93

4.8.2 Archiving History . 95

4.8.3 History Retrieval . 95

4.8.4 Scheduling and Thresholds . 96

4.8.5 Future Exploration . 97

4.9 Summary . 98

5 Raphtory Analysis 99

5.1 Introduction . 99

5.1.1 Chapter Roadmap . 100

5.2 Temporal Graph Algorithms . 100

5.2.1 Structural Scope of Algorithms: From Queries to Analytics 100

5.2.2 Temporal Scope of Algorithms . 101

5.2.3 Time Ranges, Window Batches and Live Analysis 106

5.2.4 Wrap-Up: Available Analysis Within Raphtory 109

5.3 The Raphtory Graph Analysis Model . 110

5.3.1 Analysis Model Overview . 110

5.3.2 Analyser . 112

5.3.3 Graph Lenses . 114

5.3.4 Entity Visitors . 115

5.4 Underlying Implementation of Analysis in Raphtory 119

5.4.1 Partition Reader . 119

5.4.2 Reader Worker Superstep Execution and Flattening Generation 120

5.4.3 Isolation of Analytical State and Vertex Messages 122

5.4.4 Analysis Task Workflow . 125

5.5 Submitting Queries - Analysis Manager . 128

5.5.1 REST endpoints and Query API . 128

5.5.2 Handling New Analysers at Run-time . 130

5.6 Summary . 131

6 Evaluation 132

6.1 Introduction . 132

6.1.1 Chapter Roadmap . 133

6.2 Evaluation Methodology . 134

6.2.1 Raphtory Evaluation Testbed . 134

6.2.2 Recorded Metrics . 135

6.3 Raphtory Ingestion Evaluation . 137

6.3.1 Test 1 - Initial Component Comparison 137

6.3.2 Test 2 - Scale Up Ingestion Throughput 141

6

6.3.3 Test 3 - Deletion Workloads . 143

6.3.4 Test 4 - Scale out . 144

6.4 Raphtory Analysis Evaluation . 146

6.4.1 Social Network Window Analysis - Gab.ai 146

6.4.2 Cryptocurrency Taint Tracking - Ethereum Network 149

6.5 Comparison To Other Graph Analytics Platforms 152

6.5.1 Test Plan . 152

6.5.2 Spark Code . 152

6.5.3 Raphtory Implementation . 153

6.5.4 Results . 153

6.6 GraphTides: A Framework for Evaluating Stream-based Graph Processing Plat-

forms . 155

6.7 Summary . 156

7 Conclusions and Future Work 158

7.1 Summary of Contributions . 158

7.2 Future Work . 161

7.2.1 Partitioning . 162

7.2.2 Archiving . 163

7.2.3 Analytics Improvements . 164

7.2.4 Future Use Cases . 166

Appendices 168

A Example Spouts 169

A.1 Postgres Spout . 169

A.2 Ethereum Node Spout . 171

B Example Routers 173

B.1 Ethereum Router . 173

C Example Analysers 175

C.1 Connected Components . 175

C.2 Degree Ranking . 177

C.3 Temporal Triangle Count . 179

C.4 PageRank . 181

C.5 Temporal Contagion (Ethereum) . 183

D Code For Spark Comparison 186

D.1 Windowed Connected Components Across Time in Spark 186

D.2 Router For Generating Gab User Graph . 188

7

List of Figures

3.1 Example Undistributed Temporal Graph . 47

3.2 Example Undistributed Event Stream . 49

3.3 Example windowed flattening derived from temporal graph model 51

3.4 Example Distributed Temporal Graph . 55

3.5 Example handling of out of order updates . 58

4.1 Raphtory Architecture Overview. 62

4.2 The structural and temporal scope of algorithms within Raphtory 63

4.3 The internal management of the components which make up a Raphtory deployment. 64

4.4 The Raphtory pipeline from data source through to Partition Manager. 65

4.5 The internal structure of Graph Routers . 68

4.6 Different graph models extracted from the Gab.ai social network 72

4.7 The internal structure of an entity within Raphtory. 74

4.8 The internal storage of a Partition Manager . 75

4.9 Entity Storages within an example Raphtory cluster 76

4.10 Flowcharts for entity addition in Raphtory . 77

4.11 Flowcharts for property updates . 78

4.12 Flowcharts for full edge addition . 80

4.13 Flowcharts for edge add synchronisation . 80

4.14 Flowcharts for entity deletion . 82

4.15 Flowcharts for full edge deletion . 83

4.16 Flowcharts for edge deletion synchronisation . 83

4.17 Example update stream and equivalent temporal graph 86

4.18 An overview of the watermarking process. 88

4.19 Example watermarking queues . 90

4.20 Watermark vector clocks extracting safe time for execution 91

4.21 Example of different archiving processes . 94

4.22 Process for retrieving a flattening of the graph at a time which has been archived 96

5.1 The structural scope of graph algorithms . 101

8

5.2 Example graph flattenings and what updates they include 102

5.3 Example Ethereum transactions . 103

5.4 Context added to edges via temporal information 104

5.5 Example temporal contagion algorithm . 104

5.6 Example temporal shortest path . 105

5.7 Introduction of time ranges and batches of windows 107

5.8 Types of Analysis Task available within Raphtory 109

5.9 The workflow of the Raphtory analysis model . 110

5.10 The three main components of Raphtory’s analysis API 111

5.11 An overview of analyser functions . 112

5.12 An overview of the Graph Lens API . 114

5.13 Entity visitor state getters and setters . 115

5.14 Visitor functions for edge access . 116

5.15 Visitor functions for analytical state . 117

5.16 Visitor functions for vertex messaging . 118

5.17 The internal storage of a Partition Manager . 119

5.18 Flowchart for graph lens filtering, with example entity 120

5.19 The superstep cycle from the perspective of a Reader Worker 122

5.20 An overview of the contents of a vertex visitor 123

5.21 Vertex Mailbox Example . 124

5.22 The workflow of an analyser split between Reader Worker and Analysis Task . . 125

5.23 The different REST endpoints available from the Analysis Manager. 129

6.1 Raphtory deployment overview . 134

6.2 An overview of the metrics recorded during all test runs of Raphtory. 136

6.3 The results and system metrics of a minimum viable Raphtory deployment . . . 139

6.4 The results and system metrics of a Raphtory deployment with four Routers . . 140

6.5 Maximum updates processed/s by Partition Managers of increasing size 142

6.6 Throughput of Partition Managers with increasing percentage of deletions ingested 144

6.7 Total graph size possible when scaling out Partition Managers 145

6.8 CCDF for proportion of time a user spends ranked in the top 20. 147

6.9 Exploration of the largest connected component in Gab 148

6.10 Trace of Ethereum stolen during the UpBit hack 151

6.11 Comparison between Raphtory and Spark GraphX 154

6.12 Overview of the GraphTides framework and test harness 155

7.1 Time decay and complex filters example . 164

9

List of Tables

3.1 Table of events for an update at time tn+1. 48

4.1 Update supported by the Graph Router, based on those defined in Table 3.1. . . 70

6.1 Amazon Web Service Machines Utilised . 135

10

Chapter 1

Introduction

1.1 Motivation

Graphs are a powerful abstraction which can represent complex interconnectivity between enti-

ties within data, as well as model a variety of theoretical and practical problems. Graphs have

applications within a multitude of domains, notably finance, epidemiology, telecommunications

and social network analysis. By superseding the base graph model with that of a temporal

graph[2], we may additionally capture the evolving interconnectivity of entities within the un-

derlying dataset over time. This unlocks a breadth of analytical possibilities by expanding on

standard graph algorithms, such as providing congestion aware GPS navigation via a temporal

shortest path algorithm[3]. Furthermore, this model fits naturally within a streaming architec-

ture, where new events may be inserted into the graph upon arrival and compared to related

entities or historical state. For instance, the e-commerce site Alibaba ingests all new sales into

a graph of the previous week’s transactions to monitor for fraud in real-time[4].

With this in mind, there are a number of challenges which must be overcome as graph

processing systems mature[5], many of which focus around the manner in which the user interacts

with the system. These range from reducing the complexity of deployments and improving the

manner in which raw data may be ingested and modelled, to providing intuitive analytical

APIs and descriptive visualisations of results. However, scalability is the main barrier faced by

graph practitioners and researchers[6], as graph algorithms are very intensive in memory and

computation resources. There has, therefore, been substantial development in distributed graph

processing systems which can scale both vertically and horizontally in order to enable large-scale

graph analytics.

Across these systems there has been an historic focus primarily on the analysis of static

graphs built from bounded datasets (e.g Pregel[7], GraphLab[8] & PowerGraph[9]). This is a

batch oriented style of processing where bulk data is read in, a graph is created, transformed in

some manner and an output garnered. This works well for use cases requiring a large collection

11

of data to be ingested only once and where there is little time constraint. However, in many

business sectors (such as the examples above) new information is always arriving, meaning graph

snapshots soon lose relevance. This, therefore, requires continuous generation of fresh snapshots,

including all updates, alongside timely processing to obtain relevant results.

In response, newer systems have begun to buck this trend, ingesting streams of data whilst

maintaining an in-memory graph model (e.g. Kineograph [10] and Weaver [11]). These, however,

only focus on the most up-to-date version of the data, and fail to realise the potential insights

they are losing be overwriting older property values and not maintaining the order of how the

graph came to be. Finally, the temporal graph processing systems which attempt to tackle

this issue often come with their own caveats. Many execute on static pre-prepared data (e.g.

ImmortalGraph[12] and Version Traveller[13]) where new information cannot be inserted. Whilst

others which are online often only perform delta-based analysis across coarse snapshots, losing

temporal resolution between these (e.g. LLAMA [14]), or natively do not support ‘time-aware’

graph algorithms where the history/update order is included (e.g. Chronograph[15]).

1.2 Research Hypothesis and Problem

Taking this all into consideration, it is felt that online temporal graph analytics have been largely

overlooked by the systems community and as such its application within most use cases is labori-

ous, requiring graph system experts and bespoke software solutions. It is, therefore, hypothesised

that if a platform were created which enabled the inclusion of a graph’s history within analysis

in an intuitive and scalable manner this would empower the wider data science community to

explore and adopt the area, deriving novel insights within their established datasets.

This is, however, a non-trivial task which comes with a host of problems which must be over-

come. Firstly, the definitions of temporal graphs vary widely and there are no clear semantics for

updating and distribution. Secondly, as stated above, graph processing systems often lack intu-

itive API’s for ingestion and analysis and are data intensive applications. All of these elements

are magnified with the addition of time. For ingestion it must be established how to extract

graph entities from raw data alongside how/when they change. For analysis this information

must be explorable, both in terms of running an algorithm at any point in the history as well

as providing access to the history within algorithms. Finally, this historical information must

also be stored and indexed for quick modification and query, opening several questions on best

practices for partitioning, caching and memory management.

1.3 Aim

The overall aim of this thesis is, therefore, to design and build a system which provides online

temporal graph processing which can scale alongside the increasing demands of modern datasets,

provide intuitive ingestion/analysis APIs and innovative time-aware analytical functionality. To

12

this end there are derived requirements which the platform must fulfil. Firstly, the system should

be online, ingesting new data into the graph, and be distributable across multiple machines,

allowing it to deal with high throughput and large data volumes. Secondly, new updates streamed

into the system should be able to be inserted without batching or a centralised ordering oracle,

eliminating loss of temporal resolution and centralised bottlenecks. Finally, the developed system

should be able to encompass all previously discussed processing models, alongside introducing

novel analytical paradigms. This means facilitating traditional and temporal graph analysis on

the most recent instance of the graph, as well as at any point back through its history.

1.4 Research Contributions

There have been four major areas of research contribution towards obtaining this goal. The

first of these is the definition of a distributed temporal property graph model, which includes

the semantics for ingesting events from a stream and updating the graph across partitions. This

allows events to be delayed and arrive out of order, leveraging the history of entities to ensure the

correct graph is always created. This additionally includes the definition of ‘graph flattenings’

which are a way of viewing the equivalent static graph built from a range of updates in the

stream, extracted from the temporal graph model.

The second contribution comes via the first implementation of this model, Raphtory, a system

which maintains temporal graphs over a distributed set of partitions. Raphtory is built to ingest

and convert streams of events into graph updates, inserting these in real-time into an in-memory

temporal graph. The full structural and property history of each vertex and edge is then fully

curated, ensuring all changes are correctly ordered across partitions, based on the established

semantics. Furthermore, Raphtory decouples the ingestion and transformation of data to permit

the same sources to be modelled in a variety of ways, as well as simplifying the ingestion of data

separated across silos. All elements of ingestion and modelling, as well as the partitions which

maintain the graph, may additionally be scaled independently depending on the use case at hand.

Finally, Raphtory implements a novel form of watermarking and memory management, ensuring

the user is always executing on a complete set of data up to a given time and the in-memory

graph is kept within the limitations of the machines housing it.

Complementary to this is the third area of contribution, Raphtory’s analytical engine. This

operates in parallel with ingestion, executing on extracted graph flattenings. Within this ab-

straction, edges and vertices are given access to their full structural and property histories. By

exposing the graph in this manner, users may develop both traditional and time-aware graph

algorithms and apply them easily at any point within the history of the graph. To exploit this

further, APIs are provided to allow ranges of flattenings to be executed over periods of interest,

as well as applying windows with varying temporal depth, to explore both short and long term

patterns. Lastly, these algorithms may be set to execute continuously on the most recent version

of the graph, periodically returning the newest result.

13

Raphtory was shown to scale well both vertically and horizontally, maintaining high through-

put over very large graphs. Additionally, across analysis of various datasets, Raphtory was able

to extract many surprising insights. Notably within this was the continual collapse and reforma-

tion of a giant connected component in the social network Gab, a phenomena never seen before

in this domain. Performing this analysis in Raphtory was shown to be 300x faster than when

conducted in Spark GraphX, a popular choice for large scale graph analytics. Finally, during

the evaluation of Raphtory, it was discovered that a standardised manner for benchmarking

streaming graph processing systems was yet to be established, leading to the development of

GraphTides. This combined elements of stream processing with graph workloads and included

the creation of a testbed and methodology for fair system comparison.

14

1.5 Thesis Structure

Chapter 2: Background The first chapter following the introduction provides an overview of

the related literature. This initially dives into the different types of graph model, how they

are materialised and what graph analysis, both traditional and time-aware, consists of.

Following this, there is a look at general use big data platforms and why graph processing

systems tend to be more bespoke, and finally there is a full exploration of the graph

ecosystem.

Chapter 3: Temporal Graph Model Once the surrounding literature is understood and

the problem contextualised, Chapter 3 defines a temporal graph model upon which the

developed system may be based, expanding on those explored in Chapter 2. The challenges

of distributing such a model are then discussed, and the stream semantics for updating the

graph are defined for both a distributed and non-distributed context.

Chapter 4: Raphtory Ingestion, Modelling and Maintenance The fourth chapter intro-

duces Raphtory, the developed temporal graph analytics platform, initially summarising

how ingestion and analysis ties together. Following the overview, this chapter discusses

how the defined model is brought to life within Raphtory. This includes how data is in-

gested into the system, how a user may model this stream of events as graph updates and

how the updates are processed across partitions to build and maintain the graph. Finally

Raphtory’s watermarking model is introduced, tracking where in the graph’s history is safe

to analyse.

Chapter 5: Raphtory Analysis The sixth chapter initially provides an overview of the types

of analysis possible within Raphtory. This presents the two level API established, one

level for the development of new algorithms by the user, interacting with the graph, and a

second higher level for selecting time points or ranges upon which to execute. This chapter

also discusses how the developed algorithms may execute safely in parallel with update

ingestion.

Chapter 6: Evaluation With Raphtory having been fully described, this chapter covers the

evaluation of both the ingestion and analytical components. This includes the scale up and

out testing of Raphtory’s throughput, the exploration of two datasets - the social network

Gab and the Ethereum blockchain - a comparison with Spark GraphX and the definition

of a streaming graph system benchmark, GraphTides.

Chapter 7: Conclusions and Future Work The final chapter of this thesis concludes with

a summary of the contributions brought forward in prior chapters and discusses a number

of research directions in which Raphtory will be taken in the future.

15

1.6 Associated Publications

Segments of the work detailed in this thesis have been presented in the following international

scholarly publications (journal publications highlighted in bold):

� An initial version of the work on distributed stream ingestion and graph modelling from

Chapter 4 was presented at the International Conference on Distributed and Event-based

Systems (DEBS)[16], being awarded best poster[17]. A later version was presented at

Advances in Mining Large-Scale Time Dependent Graphs (TD-LSG); a VLDB Workshop

[18].

� The final publicised versions of Chapters 3, 4.2, 4, and an early version of 5, were accepted

for publication in the journal Future Generation Computer Systems[19].

� The work presented in the first section of Chapter 6, establishing a benchmark for streaming

graph systems, was presented at the Joint International Workshop on Graph Data Man-

agement Experiences & Systems and Network Data Analytics (GRADES-NDA)[1]. This

work was additionally integrated into standard graph benchmarks, under the banner of the

Linked Data Benchmark Council; similarly published at GRADES-NDA[20].

� Finally, the analysis of the social network Gab, utilising Raphtory, is currently under review

at The International Conference on Web and Social Media (ICWSM), but is available to

view on archive[21].

16

Chapter 2

Background

2.1 Introduction

The overall goal of this work is to provide scalable online analytics for temporal graphs, unlock-

ing the insights they provide whilst handling the continuously increasing demands of modern

datasets. However, even this succinct summary provides many terms and concepts which may

be foreign to the reader. Therefore, this chapter contextualises these concepts by introducing

and exploring the surrounding areas of literature. The first of these areas focuses on defining

what a graph is, building up from basic elements to more complex models, and how these are

often materialised within real systems. These ‘static’ graph models are then expanded upon, dis-

cussing how they may mutate as the underlying dataset changes with time, resulting in dynamic

or time-evolving graphs. Finally, temporal graphs are disambiguated from their time-evolving

counterparts, exploring models in this space which may be expanded upon in this work.

The second area of focus is the types of algorithm which may be applied to graphs, categorising

these based upon their structural scope, i.e. how many of the entities within the data are involved

in the analysis. Algorithms across the range of structural scopes are then discussed in relation

to what new insights they may extract when provided with the history of the graph entities

involved; made available via temporal graphs. The goal here is not to focus on one specific area

or manner in which an algorithm has been implemented, but to broadly understand what is

possible.

In a similar vein to this, the third area is a broad coverage of general big data tools developed

to handle the distribution and analysis of enormous datasets. Within this a distinction is made

between batched-based systems and streaming systems, or those which handle bounded and

unbounded datasets. As the goal of this work is directed more to the latter, key components of

streaming systems which will be important in later chapters are discussed, namely windowing

and watermarking. Finally, the ability of general big data platforms to perform graph analytics is

discussed, noting where the major flaws lie and why bespoke solutions have been more successful

17

in this regard.

Following this the forth and final area focuses upon these aforementioned graph-specific sys-

tems. Again a high level distinction is drawn here, this time between graph databases and graph

analytical platforms, due to the differing workloads they prioritise. The latter of these is explored

in detail, as this work focuses on analytics, looking at systems which work with static, dynamic

and temporal graphs in both a batched and streaming nature. Through this exploration, clear

areas of improvement are noted and taken forward within the subsequent chapters.

2.1.1 Chapter Roadmap

Section 2.2: Graph Models and Representations Here we discuss the different types of

graph model and their characteristics, providing our definition for dynamic and temporal

graphs as well as how these may be materialised.

Section 2.3: Graph Analysis Categorisation This section then explores the different types

of algorithms which may be applied to a graph, categorising them based on the portion of

the graph they touch and whether they are temporal in nature.

Section 2.4: Big Data Processing Systems Before touching graph-specific processing sys-

tems we take a brief look at general big data processing systems, how they work, and how

they have been applied to graph problems.

Section 2.5: Graph Processing Systems We then take a deep dive into a range of graph

processing systems, focusing on those with distributed, dynamic and temporal features

which may be taken forward.

2.2 Graph Models and Representations

When exploring the concept of graph models, we may first consider the simplest form in which

a graph G = (V,E) consists of a set of vertices V and edges E. Vertices constitute the entities

within the represented network, whilst edges denote the relationships between these entities.

There are, however, many variations of this model with distinct use cases and applications. A

graph may be directed or undirected, referring to whether the edges between vertices have an

associated direction. If this is the case one of the vertices will consider the edge outbound and be

the ‘source’ of the relationship, whilst the other vertex involved will consider the edge inbound

and be the ‘destination’. In an undirected graph, the edge has no defined start or end and is

considered equally within both vertices. For example, in a social network, if two people are friends

this is a reciprocal relationship and may be modelled as an undirected edge. Alternatively, if one

person subscribes/follows a second to see their content, this may not be reciprocated and would,

therefore, be modelled as a directed edge[22]. In addition to direction, a graph may be weighted

in which vertices or edges have an associated numerical value, or more generally, labelled to

18

denote some attribute. Continuing with the social network example, edges may be weighted

between users to show how many interactions they have with each other, or perhaps denote

some ‘friendship score’. Labels could be used in the same instance to give context to the graph,

for example labelling vertices with their names. Finally, the graph model may be generalised

further into a hypergraph[23], in which an edge may involve any number of vertices, all of which

may be labelled and/or weighted. Note graphs are defined more thoroughly in Chapter 3.

Two notable models which encompass many of the above features are the Labelled Property

Graph (LPG) model[24] and the Resource Description Framework (RDF) model[25]. The La-

belled Property Graph model consists of a directed graph within which all vertices and edges

have a set of associated labels, referred to as properties or attributes. These properties consist of

key value pairs allowing them to be referenced individually. Property graphs often additionally

divide their vertices and edges by ‘type’, with graph components of the same type sharing a

similar set of properties; possibly managed by a graph schema[26]. These are, therefore, popular

within graph databases[27] where they are used to represent and query complex datasets. The

RDF model on the other hand consists of a set of 〈subject, predicate, object〉 triples, which are

used to represent both the directed relations in the underlying data and entity labels. Subjects

are vertices denoted by a Uniform Resource Identifier (URI), giving them a unique reference

across all data. Predicates are the relationship or attribute label name, also denoted by a URI.

Objects are then either a destination vertex, if the predicate is an edge, or literal (attribute

value) if not. RDF models have been popular in the creation of knowledge graphs[28] and the se-

mantic web[29], providing structure across loosely connected datasets which contain intersecting

references to real world entities.

Materialisation

An abstract graph model may be materialised (i.e. established in computer memory) in a number

of ways, depending on the modelled content and goal of the analysis to be executed on top[30].

Fundamental representations include the adjacency matrix, adjacency list, edge list and adja-

cency array (also known as Compressed Sparse Row or CSR format)[31]. An adjacency matrix

representation consists of a matrix Mn,n where n = |V | i.e. the number of vertices within the

graph. The coordinates within the matrix then reference all possible edges between vertices, with

0 denoting an absence and 1 (or any number for a weighted graph) denoting an edge presence,

i.e. Mv,u > 0 ↔ (v, u) ∈ E. As this may be sparse, the adjacency list representation contains

the set of vertices instead, providing each with a list of their outgoing neighbours (vertices with

whom they share an edge, where they are the source). For example, for a vertex v ∈ V and its

associated adjacency list Lv, u ∈ Lv ↔ (v, u) ∈ E. This removes all 0’s stored, but increases the

lookup time when seeing if two vertices share an edge. Edge lists are similar to this, but provide

each vertex with a reference to its incoming and outgoing edges. Finally the CSR format stores

all the edges in a contiguous array, with a vertex array containing pointers to where the edges

of each vertex begin within the data. This provides very good locality for outgoing edges when

19

scanning across the full data during analysis[32].

For more complex graph models such as the LPG and RDF, the basic graph representations

may be used in conjunction with auxiliary data structures storing the vertex/edge attributes.

Alternatively the two may be combined, such as in RDF triple stores[33] or in object oriented

graph implementations such as Neo4j [34].

2.2.1 Dynamic Graphs

No matter the choice of graph model, it is important to note that in almost all real world use

cases the underlying dataset which is being mapped to a graph will change as time progresses.

Graph mutations come in the form of topological changes, adding/removing vertices and edges,

and attribute changes, modifying labels/weights, if included within the model[35]. Continuing

the social media example prior, we can imagine vertex mutations as new users joining the net-

work, or existing users leaving. Likewise edge mutations may consist of new friendships being

established or users unfollowing each other. Attribute changes follow similarly where the number

of interactions between two users increase over time, reflected in the weighting, or users may up-

date their username, requiring the labels to be modified. The model itself must, therefore, have

some way of managing this, transferring from a static graph to a dynamic graph[36]. Dynamic

(or time-evolving[37]) graph models will consider the affect of mutation both in terms of how it

may be completed and how it will impact analysis running on top.

Depending on the underlying data structure mutations may occur in-place, updating the

established graph representation, or require creating new data structures to store the new version.

For example, an edge may be added or removed from the adjacency matrix by changing the value

within a coordinate, but a CSR may require recreation of the contiguous edge array to make

space. The complexity of each mutation type will also vary across data structures. For example,

an adjacency matrix edge mutation is O(1) as above, but vertex mutations are O(n) as a whole

row and column of the matrix must be created/deleted. An edge list will fare much better

here as it may look up which vertices share edges, deleting these references from their list and

removing the vertex itself; O(m) for a given vertex v where m = |Lv| and m << n. The choice of

representation may, therefore, be varied not just based upon access patterns, as with the static

graphs, but also upon what sort of mutation workload will be applied on top. This has lead to

the creation of hybrid models such as ‘Packed CSRs’[38] which leave space between elements in

the edge array, allowing much quicker insertions and deletions, but at the expense of traversal

speed.

Mutations may be considered to occur at either discrete or continuous points in time. Discrete

changes may be established via multi-versioning, with either a sequence of full ‘snapshots’ or

‘snapshot deltas’[39]. In the former, the state of the graph is presented in full at set increments

(e.g. an hour, day, etc.) including all mutations up until that point, such as in [40]. Mutations

are, therefore, not applied here and snapshots may just be swapped between. In the latter, only

a base graph snapshot is maintained in full, with each delta containing the difference between

20

this and the snapshot it represents[13]. This reduces the redundant information, but does mean

that the full graph has to be read alongside the delta and the changes applied. Continuous

mutations on the other hand come in the form of a list denoting each change individually, often

with a timestamp of when this occurred. These may be offline, such as a log, or online, such as a

stream where new information is continuously arriving. These may be applied individually, but

in many cases mutations from continuous sources are batched together to create the state of the

graph at a discrete point and to minimise the per-mutation impact[10].

2.2.2 Temporal Graph Models

A second way to approach the evolution of a network is to model it as a temporal graph. In

this instance mutations do not overwrite the current state of a graph component/label, but may

instead append the new state alongside, noting the time of change. This way the graph may

be queried as to whether it existed at any point in the past, as well as include time restrictions

as a component of the query. It is important to note here that having many multi-disciplinary

applications, a range of these models are available in the literature under various pseudonyms such

as temporal networks [2] and evolving graphs [41]. Within this space dynamic/time-evolving and

temporal are frequently used synonymously. To remove confusion, in this work temporal graphs

refer to those where the graph components and labels have an associated history of mutations,

denoting how that element changed throughout its lifetime. In contrast, dynamic/time evolving

graphs do not preserve any history, focusing only on maintaining the most up-to-date graph

model. Additionally, temporal graphs may be non-streaming, in the sense they contain all the

history they ever will and do not change, or streaming in that new information is still flowing in

and being appended. As the goal of this work is to create a system which maintains a streaming

temporal graph, we investigate how temporal graphs have been proposed and formalised, as

well as understand the manner in which temporal information is traditionally stored, discussing

desirable characteristics and noting possible expansions.

Beginning this overview with the most basic temporal graph models, [42] presents a directed

graph where each edge is labelled to show the initial time of connection between the source

and destination vertices. These labels may be used to find ‘time-respecting paths’ throughout

the graph where a hop can only proceed if the time on the next edge is non-decreasing. This

assumes that travel along an edge is instantaneous and overlooks the possibility of edge deletion.

In [43], however, graph edges are labelled with a range of time to include this feature. This

could be expanded further to allow multiple ranges if edges are to be re-added. Additionally,

whilst not included in the model, vertex deletion is discussed within the context of connectivity

problems/reachability. Another possible expansion would be to track the time at which vertices

are added and removed from the graph to encompass such analysis.

Instead of the explicit time range described in [43], time-varying graphs implemented within

[44] provide an edge presence function over a defined graph lifetime, returning true if the edge

is present within the graph at a specific point, or false if it is absent, enabling multiple ranges.

21

This work introduces multi-value labels, where each vertex and edge may have a set of properties

associated with it. These properties allow several edges to be set between a pair of vertices, so

long as they have different property values, creating a temporal multi-graph. Unfortunately,

because of this, these values must remain constant throughout the lifetime of the graph. A clear

area for improvement is, therefore, to allow label values to change throughout time, storing all

previous versions.

In a similar vein to the edge presence function, [45] provides an approximate view of the

temporal graph at a time t, over a set of time labelled edge triples. This is defined as G(t) =

V (t), E(t), where E(t) is the set of edges created prior to time t and V (t) the unique vertices

they connect. Finally, [46] envisions a static graph consisting of all possible edges and vertices

which could exist. These are then labelled with zero or more integers, denoting the points in

time they existed, with zero labels meaning they never have. These labels are denoted λ, and

the temporal graph is considered to be a set of static graphs [G1, G2 . . . , Gmaxλ] where a version

of the graph exists for each increment between 1 and the maximum time label, containing all

vertices and edges labelled with that time.

Building on top of these basic graph models, [47] defines a temporal property graph model as

G = (V,E, PV , PE) where vertices and edges are tuples (vid, σ, τ) ∈ V and (eid, σ, vidi, vidj , τ) ∈
E. Within these σ refers to the entity type/schema, where each type has an established set of

property keys. τ then refers to the time interval for which the entity exists. These may be used

as arguments to PV and PE (for vertices and edges respectively), returning the property values

at that point in the lifetime of the entity. A different take on the temporal property graph is

introduced in [48] and implemented in [49], where vertices and edges represent ‘temporally valid

graph events’ which exist for a time-instant or time-period. For this the tuple (id, t, P) ∈ V

refers to a vertex event which occurs at time t and has a set of properties P for this time.

Materialisation

The materialisation of temporal graphs comes in a variety of forms. Often the data structures

introduced above are used for the structural information, denoting all the vertices and edges

which have ever existed. The topological and property histories are then stored in auxiliary data

structures, or in many cases such as [49], indexed data-stores to handle the extra dimensionality

time adds to each entity/property pair. Some works, such as [50] and [35], suggest an alternative

to this where the temporal graph is ‘flattened’ into a standard graph. Here each version of a

vertex (including its properties at that time) exists as a separate entity, thus when a vertex is

‘updated’ a new instance of it appears in the network. Each version of a given edge is then drawn

between the temporally closest instance of their source and destination vertices. This allows the

full temporal graph to be inserted into the structures defined above without modification, but

adds an element of complexity when attempting to read the graph state or compute analysis on

top. Finally, it is worth noting that few, if any, of these models refer to the temporal graph in a

streaming context (as defined above), with those that do only providing brief reference to how

22

it may be updated in-between analysis.

2.3 Graph Analysis Categorisation

Whilst the manner in which analysis on a graph may be completed varies with use case, model

and system implementation (as discussed in section 2.5), it is important to understand the types

of analysis which may be undertaken. Across these, algorithms may focus just on the structure

of the underlying network, or may make ample use of the attributes/labels associated with

each vertex/edge. A sensible way to broadly categorise these is via the structural scope of an

algorithm. From this, four categories may be resolved: local queries; neighbourhood queries;

graph traversals; and global graph analytics[27].

A local query refers to singling out specific vertices or edges and extracting something about

them, for example the value of a property or checking associated labels. Returning to the social

media example from Section 2.2, this may be querying the number of interactions between two

known users. Neighbourhood queries expand this scope to look at an individual vertex, its edges

and those vertices adjacent to it. Within this scope we may ask questions such as the in/out

degree of a vertex, i.e. the number of friends/followers a user in a social network has. At this scope

there is also graph pattern matching or network motifs[51]. These are statistically significant

subgraphs surrounding a given vertex, often providing some deeper context to its activity within

the network. These find substantial use across many areas of network science, for example

product co-occurrence in e-commerce recommendation systems[52] and enzyme interaction in

biological networks[53].

Traversals are when the algorithm is still tethered to a singular vertex, or small set of vertices,

but expand past their neighbourhoods to explore a substantial portion of the graph. These

normally follow the pattern of stepping from vertex to vertex, i.e. traversing the network, until

a specific end goal is met. Notable examples of traversals are: single source shortest path

algorithms[54] for finding the quickest route between two points in the network; random walks[55]

for probabilistic modelling; and contagion/diffusion algorithms[56] to investigate how an infection

may spread throughout a population. Finally, global graph analytics is when all vertices in the

graph are involved in the algorithm, calculating some property for the entire network. These

may be global versions of the prior algorithms discussed, for example the average in-degree of the

network or counting the total triangles present[57]. They may also only exist in this category, for

example centrality and ranking algorithms such as PageRank[58] and betweenness centrality[59],

for finding the most important entities in the network.

2.3.1 Temporal Graph Analytics

The above algorithms all work on the assumption that the underlying graph is static, not per-

taining to any evolving or temporal properties. For this work it is important to understand how

23

graph algorithms may be expanded and applied when a temporal graph model is utilised. Snap-

shot based analysis and time-respecting traversal algorithms[50] are the two main camps for this.

The first of these is the simplest, whereby the state of the network at a specific time is extracted

from the temporal graph model, generating a traditional static graph, upon which any of the

algorithms above may then be applied without modification. This may be done throughout the

lifetime of the network, incrementing at set intervals, with deltas calculated between result sets

to see how the network evolved in relation to the chosen metric[60].

This type of analysis is low effort and may produce some interesting insights not available

on the aggregate graph, but it does not make full use of the temporal information within in

the model. This is the purpose of time-respecting graph algorithms which expand the scope of

those above, including the temporal dimension as part of the analysis. Each of the categories

discussed may, therefore, be explored through this new lens. At a local scope we may look at

how a vertex’s attributes have changed throughout time, noting periods of activity/in-activity or

anomalous behaviour[61]. For a vertex’s neighbourhood we may consider temporal motifs[62] or

subgraph patterns. These are pertinent when the order or temporal intervals[63] are important

within the pattern. For example, in money laundering and financial crime, illicit transactions

often cycle money back round to the original sender (i.e. have a temporal order) and occur at

systematic intervals[64].

Traversals find many applications with this new scope. For instance a shortest path algorithm

may now consider the amount of hops, the weight on edges and how this changes throughout time,

as well as the intervals at which edges/vertices exist[65]. This is useful in the context of GPS

navigation where the weight on edges may denote congestion on roads and change throughout

the day. We may then consider problems such as the earliest arrival path when leaving at a given

time, the latest departure path after which point the destination becomes unreachable or the

optimum departure time to minimise travel[50]. Finally for global analytics we may again expand

on those from other categories, for example defining temporal centrality rankings utilising time-

respecting shortest paths[66]. It is also now possible at this scope to cluster or group vertices in

the graph, not just on their structural locality, but also temporal locality[67]. This is useful for

seeing how communities form and shift, as well as noting key members.

An expansion of this section and an exploration of the different types of temporal graph

algorithms and their use cases enabled by this work can be found in Section 5.2.

2.4 Big Data Processing Systems

As datasets have become larger than can be managed by a single machine, even with mas-

sive vertical scaling, ‘big data’ platforms have become standard practice for analytics across all

sectors[68]. These drastically simplify the process of distributed computing, providing simple

APIs to allow users to describe their chosen algorithm, then fully orchestrate the execution of

this task across any number of available machines. Graph analytics is no exception here. It

24

makes sense, however, to initially cover more general big data systems to understand how these

operate and why graph solutions tend to be more bespoke. These general big data platforms

fall into two categories, batched/offline analysis and streaming/online analysis. Similar to the

discussion of static vs dynamic above, batched analysis refers to when the data already exists/is

‘bounded’ and may be processed in full in one batch; streaming based analysis refers to analysis

run on a continuous live feed of data (unbounded), possibly maintaining minimal state or having

some real-time requirement.

2.4.1 Batched Systems

A multitude of batched processing systems exist in the big data ecosystem. However, the two

enduring systems upon which many others are based are Hadoop MapReduce[69] and Apache

Spark[70]. MapReduce provides a simple two step API (which most algorithms can be adapted

into) consisting of mapping, where the raw data may be parsed into key value pairs, and reducing,

where aggregation may take place. The data on which the algorithm is set to run over is stored

in the Hadoop distributed file system (HDFS)[71], split into blocks and replicated across the

available cluster of machines. One mapping task is allocated per block of data, with each being

set to run in parallel on one of the machines storing the chosen blocks, ‘moving computation

to the data’. This is fully orchestrated by YARN[72] which manages the cluster resources,

allocating ‘containers’ to submitted jobs. Once the mapping phase is complete the output tuples

are grouped by their key and sent to the reduce tasks. These run the defined reduce function once

per allocated key, outputting the final aggregates back to HDFS. Key allocation is managed in

a decentralised manner where the mappers hash the output key and modulo this by the number

of reducers, sending the tuple to the resulting reducer task ID. As long as all mappers have

the same hashing function this allows Hadoop to scale to thousands of machines/tasks without

having a central bottleneck.

MapReduce encapsulates a surprising number of analytical problems, including many graph

algorithms. However, as graph analysis tends to have an iterative component to it (i.e. in

traversals, label propagation or score convergence) they are not the best fit in Hadoop. This

is because each MapReduce job must save the output to HDFS and then reingest it into the

mappers for the next iteration. Whilst this will be managed by Hadoop/YARN, the overhead

from constantly writing to and reading from disk massively increases the overall execution time.

In contrast to this, Spark is an in-memory processing system where data is maintained within

‘Resilient Distributed Datasets’ (RDDs) [73]. Upon these the user may perform functional ‘trans-

forms’, such as mapping and filtering the rows, and actions which materialise the output, such as

a reduceByKey (mimicking Hadoop) or saving the final transform to disk. Transforms are lazily

evaluated until an action is reached, at which point an optimiser will work alongside YARN to

establish the optimum execution order and which machines each stage should be performed in.

RDDs build up a lineage from the transforms executed, keeping these in-memory if possible. This

provides fault tolerance, but also simplifies iterative algorithms as the function may be called

25

repeatedly on the same RDD until it converges, at which point the output may be written to

disk. Spark may operate in the same cluster stack as Hadoop (with jobs run in-tandem if both

are managed by YARN), reading and writing from HDFS.

Spark, therefore, allows complex problems to be set out across a number of transforms. It

also solves the issue discussed within Hadoop, but in turn suffers with problems of its own for

graph algorithms. The main challenge here is that the elements of an RDD are completely

independent (so they may be executed upon in parallel) which makes it difficult to model a

graph which is inherently interconnected. Graph algorithms, therefore, require the execution of

many group-by/reduce-by steps to mimic vertex communication. These generate high network

traffic as the data repartitions around the cluster and cannot be optimised via lazy execution

as they are actions. Extensions of Spark have been created to address this, namely GraphX[74]

and GraphFrames[75], but were not successful in this endeavour as discussed below.

2.4.2 Streaming Systems

Streaming systems provide a wide variety of approaches to processing data. In the most general

term these are ‘processing engines designed with infinite datasets in mind’[76], where data tuples

may be handled as soon as they arrive or periodically in a ‘micro-batching’/windowing format[77].

Within this scope many, if not all, of the algorithms/analysis which can be computed in a

batched system may also be done within a streaming system. However, these often branch out

with different flavours, notably low-latency/real-time requirements, minimal state maintenance

or approximate analysis. The possible data sources are also expanded upon here, whereby a

streaming system may ingest data off of disk/HDFS, connect to an online API/endpoint, such

as the Twitter API[78], or subscribe to topics of interest via a message queueing system such as

Kafka[79].

Windowing and Micro-batches

Before discussing notable streaming systems it is important to first understand the concept of

windowing over streams. This is when a data source is split along temporal boundaries into a

number of batches which may then have an algorithm applied[76]. Windows may be fixed, where

the temporal size of the window is the same as the period between batches, or sliding where these

two are independent. Fixed windows have no overlap in the tuples they contain, whilst sliding

windows may have an overlap if the period is less than the window size, i.e. to include the last

hour of data every minute.

Within these the time upon which the windows are based may refer to ‘processing’ time

or ‘event’ time. Processing time refers to when the tuple was initially received by the system,

whereas event time refers to when it actually happened within the real world. Ideally event

time and processing time should be equal, but due to factors such as network delay, tuples often

arrive much later or out of order leading to these desynchronising, sometimes by large amounts.

26

Processing time windows are appropriate if the underlying data has no concept of event time or

the intention is to derive a result about the data as observed on arrival at the system. They are

also much simpler to handle, the system just buffering results for the period and then executing

the algorithm; this result then never changes. Event based windows provide a more accurate

view of what happened within the underlying data source at any given point. These are, however,

more complicated to produce as when a window is triggered for analysis it may be ‘incomplete’,

i.e. not all of the tuples within the period have arrived in the system. To improve correctness

the reported result for older windows may be incrementally refined as new tuples arrive[80].

Stream Semantics and Watermarks

A point of concern for streaming systems in general, but definitely in the case of window refine-

ment, is how many times a record is processed and the side-effects of non-idempotent analysis.

Alongside late arrival, tuples may be dropped or lost and as such streaming systems may con-

sider different semantics for handling this. At a high level these fall under: At-least-once, where

processed tuples must be acknowledged and, if not completed within a set timeout, are then re-

played; At-most-once, where duplication is not used as it negatively affects results, instead raising

an error and possibly accepting that some messages are lost; Exactly-once, where the data source

and streaming system work together to ensure that any replayed messages are only processed

once, with duplicates ignored, returning the correct result. The last of these is obviously the

desired choice, but in practice can be difficult to guarantee.

Even if exactly-once semantics are obtained, the process of window refinement will still require

the tuples to be reprocessed. To minimise the need for refinement, streaming systems may make

use of watermarking, which helps it to decide the best time to trigger an event window based on

the likelihood that all tuples for that window have arrived[76]. One type of watermark utilises

the timestamps of the oldest known tuple yet to be processed at the current step in the pipeline.

This can be propagated downstream letting later stages know to hold off on their analysis until

the timestamp has crossed the end of the window they are planning to trigger. A heuristic

watermark may then be created in-tandem with the first, calculating the probability that new

tuples with an event time prior to the window will appear in the system. This may be based

on prior delays experienced within the stream and help decide if it is better to wait longer or

if it is fairly safe to trigger the window. Of course these heuristics are in no way perfect so the

underlying algorithm should still be designed in a manner where re-execution has little or no

effect. Note, watermarking is discussed further in Section 4.7.

System Examples

Continuing from Section 2.4.1, Spark-Streaming[81] is an extension of the Spark framework which

converts it into a micro-batch based streaming system. Within this Spark creates a ‘streaming

context’ allowing it to connect to continuous data sources represented via a discretized stream

(DStream). DStreams are an abstraction for an ever growing list of RDDs, where each RDD is a

27

processing window micro-batch containing all tuples arriving within its allocated period. All of

the transforms which may be called on standard RDDs may also be called on DStreams, with the

function run on each contained batch independently. These, however, may be processed together

via an additional layer of windowing on-top, which itself may be sliding or fixed. DStreams

may also be joined using standard SQL join semantics (right, left, full-outer etc.) to create new

DStreams. Finally, Spark-Streaming is fully compatible with other Spark extensions, notably

Mllib[82], allowing machine learning algorithms to be run across the batches.

Apache Storm[83] takes a different approach to streaming, implementing a custom pipeline for

each task, known as a topology. Topologies operate on top of a set of worker units spread across

a cluster, running allocated logic/assignments contained within a set of ‘Spouts’ and ‘Bolts’. A

spout is Storm’s unit for connecting to external data sources, starting the topology and pushing

tuples to the first set of bolts. Bolts in turn are the general worker unit and may run any code on

tuples they receive. This includes the transforms, aggregations and joins seen in Spark, but these

may also run custom functions, maintain local state and can read and write from external sources

if required. Topologies are then defined by specifying which streams should receive as input for

each bolt (from the spouts or other bolt types). Bolts of the same type may be scaled horizontally

to handle greater throughput, with different stream partitioning strategies (‘groupings’) available

to split the work between them. Notably ‘shuffle grouping’ (round robin) to guarantee an equal

workload and ‘fields grouping’ (key hashing) to ensure tuples with the same key are processed

by the same bolt instance. Finally, bolts may be implemented using a windowing subclass, fully

supporting event and processing time windows. Watermarks are automatically calculated from

timestamps within the data and exactly-once semantics may be implemented via the Trident[84]

API which sits on top of Storm.

Apache Flink[85] attempts to unify streaming and batch analysis, providing both over continu-

ous data sources. At Flink’s core is a distributed dataflow[80] engine which executes programmes

built from stateful operators connected via data streams. These programmes are represented as

a Directed Acyclic Graph (DAG), similar to the Storm topology, and are created by both the

DataSet API for batch processing, and the DataStream API for stream processing. These stateful

operators may consist of transforms, joins and windows as above, but can also be much more com-

plex encompassing full algorithms. As their name suggests, state is explicitly incorporated into

the API allowing local variables to be registered, checkpointed and updated with exactly-once

semantics. The data streams connecting these may also distribute the data between producer

and consumer in various patterns, for example broadcasts, merges and repartitioning. In both

the batched and streaming context, Flink additionally allows iterative algorithms (directed cyclic

graphs), managed by a Bulk Synchronous Parallel (BSP)[86] execution model. These may also

be incremental[87], where the results of analysis on the prior version of the data are used as the

starting point for the next execution, speeding up convergence. This is the basis for both the

machine learning and graph libraries. Finally, once defined, DAGs are submitted to a ‘JobMan-

ager’ which interacts with a cluster controller such as YARN to distribute and paralyse the work

28

across the cluster.

Streaming Graphs

Across these types of streaming system, graph algorithms may be computed, with implementa-

tions existing in both the real-time and micro-batching camps. The first of these implementation

types are edge-centric stream[88] or semi-stream[89] algorithms which maintain minimal state/do

not build a full graph, possibly due to memory constraints. In this instance the stream of tuples

ingested each represent an edge in the graph and via one, or possibly several, passes over the

data the metric of interest is extracted. These algorithms have many applications, such as motif

mining[90], but are often approximate and slightly out of scope for this work.

The second manner in which graph algorithms may be applied is by building a full graph from

the tuples ingested within a window and performing the algorithm upon it. From an implemen-

tation perspective, these algorithms are similar to those seen in the batched systems above, hence

suffering from similar issues, but port over well. From an output perspective their results may

be drastically different. In this instance, instead of incrementally performing analysis on the full

aggregate graph as it changes throughout time, the user now has the ability to vary the size of the

window and hence how far back in time the graph looks. The deltas between results are, therefore,

able to extract new insights by comparing across time and window sizes. For example, [91] uses

this technique to extract core groups and patterns in social interaction networks by looking at

minute scale windows in comparison to the aggregate where these were obscured. Similarly, [92]

computes windowed graphs over mobile telephone communication networks. Through smaller

windows they were able to extract daily/weekly patterns, notably circadian rhythms in the pop-

ulations and drastically different call patterns between weekdays and weekends. Through longer

windows (months/years) the formation and evolution of communities could be seen instead.

Similar to deletions being included in the dataset, one unfortunate element of this analysis

is that incremental algorithms are often not possible. This is because prior vertices and edges

may no longer be present in the graph and for many metrics (notably label propagation and

paths) the starting state may now be impossible to reach, likely leading to an incorrect result

being returned. To enable analysis of the aggregate dynamic graph built from all tuples, the

logical next step is to create the full graph within the streaming system of choice, possibly via

an ever increasing window. However, streaming systems on the whole are not designed to work

with largely interconnected data models such as a graph, as typical streaming tasks are a lot

more independent. Nor are they designed to deal with ever increasing in-memory state (into

the gigabytes). Hence, instead of utilising these as a base, alternative bespoke streaming graph

processing systems have been developed to process large dynamic graphs, as discussed below in

Section 2.5.

Whilst this is a general rule there are a few notable exceptions which are important to raise

here. The first of these is Flink, as described above, which has this as a core feature. Secondly, one

can imagine hybrid deployments where a platform like Kafka Streams[93] handles the ingestion

29

and storage of graph data (either keeping it within broker logs or a distributed storage like

HDFS) whilst another more appropriate platform (such as Hadoop or Spark) handles analysis.

Thirdly, the work of Fernandez et al[94] attempts to tackle this issue for updating distributed data

structures within machine learning algorithms, which similarly are often heavily interconnected

and require large in-memory state.

In [94] the authors push back against the new programming paradigms required by the likes

of Spark and Hadoop, instead opting to keep the imperative algorithmic design most developers

are accustomed to. Within this, however, the user is required to annotate their data structures to

specify what must be globally accessible, what may be partitioned and, if required, how partial

state should be merged for the final results. These programs are then translated automatically

into a ‘stateful dataflow graph’ which combines ‘task elements’, representing the analytical steps

to be executed, with ‘state elements’ which encapsulate the state of the computation. Task

elements may be assigned to multiple physical nodes for parallel execution, with each allocated a

local state element which may be read and updated. Depending on the access patterns of these

task elements the state may be cleanly partitioned requiring no cross machine synchronisation.

Unfortunately in many instances access is arbitrary, meaning the state element must be ‘fully’

represented on each node. These may still be freely updated, but when a task element performs

a read the nodes must synchronise to return the correct result. This is optimised via partial

calculations/merges and addresses the issue of growing intertwined state well, but does ask a lot

from the user to consider what is going on under the hood, which is otherwise hidden by other

distributed programming paradigms.

2.5 Graph Processing Systems

Due to the issues graph models and algorithms bring in more generalised systems, an array

of bespoke graph focused platforms have appeared in recent years, both from academia and

industry. In this section these are split between graph databases and graph analytics platforms,

with the major focus being on the latter. This split, whilst in no way a hard and fast rule, is

based on a number of factors which can categorise systems into either camp. First and foremost,

graph databases will store the data in a permanent format on disk ready for querying. A graph

analytical tool on the other hand will read the data (bounded or unbounded) from an external

source, build this into a graph to analyse and then relinquish the memory (destroying the model)

once the algorithm has converged.

The second category of comparison is the workloads on which they focus. Graph databases

tend to focus on Online Transactional Processing (OLTP) workloads with thousands of par-

allel requests looking at small portions of the data. Analytical platforms on the other hand

have traditionally focused on singular offline analysis of the whole graph. Both, however, have

recently been exploring Online Analytical Processing (OLAP) workloads, overlapping in the mid-

dle. These mirror the categorisation of algorithms by scope in Section 2.3. This difference is

30

reflected in the chosen graph models, with databases having more complex models (LPGs and

RDF), whilst analytical engines are often more bare bones i.e. weighted graphs.

A final notable difference is the manner in which the systems interact with their data or

model. Databases often provide a declarative query language, abstracting away the underlying

data structures and allowing the database engine to handle retrieval. Conversely, analytical

platforms will provide an imperative API with few abstractions, allowing the user to work directly

with the data structures for optimum performance, although sacrificing usability.

2.5.1 Graph Databases

Whilst graphs may be modelled in relational databases[95] this provides numerous challenges.

Firstly, graphs do not always map directly to tables, although when they do very different

access patterns are produced in comparison to traditional relational workloads, often containing

irregular jumps instead of sequential reads. Secondly, traversals along edges are computed by

repeatedly joining the table storing the vertices on itself, which is both inefficient and, for many-

hop traversals, can require a query to be thousands of lines long, with each hop represented by

a repeated block of code. To this end there are many graph concepts which are very difficult, if

not impossible, to represent in relational languages such as SQL[96].

The goal of graph databases is, therefore, to provide access to the rich data associated with

their entities, much like their relational counterparts, whilst also enabling fast traversals through-

out the graph. This is done by taking a graph first approach, replacing the tables with vertices

and creating new query languages which accommodate key graph concepts such as edges, paths

and traversals. This solves the issues above as instead of performing table joins, vertices in

an adjacency list may just follow pointers to their neighbours[97] and multi-hop traversals may

simply be specified by a minimum and maximum hop number[24].

With this goal in mind, graph databases utilise more complex models to store both the struc-

ture of the network and the various properties of the entities within. RDF was originally the more

popular choice for this because of its use for knowledge graphs like Stardog[98]. However, more

modern and commercially successful graph databases have built around label property graphs,

with companies such as Neo4j[34] and TigerGraph[99] spearheading the movement. Along with

the more mature nature of knowledge graph/RDF systems these have a standard query language

in SPARQL[100], whereas LPG systems tend to develop their own query language, for instance

Neo4j’s Cypher[24] and the Linked Data Benchmark Councils (LDBC) G-Core[101]. These are,

however, beginning to converge, with an ISO standard graph query language (GQL) proposed

by the LDBC, alongside collaborating companies and academics[102].

A tertiary mention should also be made here to the Tinkerpop stack[103] and its language,

Gremlin, which is an open source framework upon which graph databases/systems may be built.

Gremlin straddles the line between declarative and imperative language as it is fairly high level,

but is used in conjunction with Java/Groovy in any practical application. This has been the base

of numerous community projects such as JanusGraph[104], but is also popular for prototyping

31

new ideas in this area. Excitingly in recent years this has been used for creating temporal graph

databases, notably Chronograph[105] and Chronograph[49].

2.5.2 Linear Algebra Based Graph Analytical Platforms

Graph analytical platforms take a number of different forms depending on their intended use case

and the resulting data-structure/programming paradigm. This form depends on the intended

environment of deployment, with variations covering single nodes, distributed clusters, GPUs

and, more recently, hardware designed specifically for graphs[106]. As a general rule, across all

of these, analytical systems are less focused on querying vertex/edge attributes and more focused

on properties of the overall graph structure. These global analytics may be online/dynamic where

the user is interested in seeing how these properties change as new data arrives, as well as being

time-aware (as discussed in Section 2.3.1) and are the key points of focus to be taken forward.

The first programming paradigm to look at in this area is the application of linear algebra for

graph analytics, whereby graph traversals can be represented as a combination of matrix-vector

multiplications. For example, paths of a given length l can be readily extracted from the lth

power of a graph adjacency matrix. This is fully defined in the GraphBLAS standard[107] where

BLAS (Basic Linear Algebra Subprograms) are the specifications for linear algebra subroutines

implemented in many popular programming languages. GraphBLAS focuses on a subset of these,

which are effective building blocks for implementing a wide range of graph algorithms when rep-

resented via a matrix. As explored in Section 2.2, these are simple models being at most directed

and weighted, but can often drastically outperform standard algorithmic implementations[108];

a perfect fit for use cases where only the structure is of interest. This paradigm also allows for

large datasets to be processed on modest hardware, updates to the graph including deletions and

optimisations for handling both sparse and dense graphs. As GraphBLAS is only a standard,

concrete examples of this are provided via the reference implementation SuiteSparse[109].

In conjunction with single threaded executions, much work has gone into parallelising these

matrix operations to extract additional speed-up via multi-core CPUs[110] as well as distributed

environments[111]. Building on top of this, GraphBLAS based algorithms have found even

greater success within GPUs, with systems such as GraphBlast[112] porting these over and

obtaining orders of magnitude faster convergence due to the level of parallelism which may be

achieved. This does, however, come at a cost in that the barrier to entry is very high from a

user’s perspective. Not only can it be difficult to understand the underlying mathematics, but

the onus is on the individual to ensure their algorithm is efficient. This is improving, but has

meant other paradigms have been more successful in their commercial and academic adoption,

most notably the vertex centric approach.

32

2.5.3 Vertex and Edge Centric Analytical Platforms

The vertex centric approach was introduced in Pregel[7], one of the cornerstones of distributed

graph processing, introducing many of the key concepts and techniques recurrent throughout

later systems[113]. It is built around the bulk synchronous parallel model [86] and champions

the idea of ‘thinking like a vertex’, where each vertex within the graph is viewed as an autonomous

entity, storing information about itself, its outgoing edges and executing user defined functions in

iterative batches known as supersteps. During these supersteps, vertices may alter their stored

state as well as communicating with each other via a messaging system, sending updates or

requesting information. At the end of the superstep, these messages are collected at the specified

destination vertices and processed in the next iteration. This manner of message sharing is

intrinsic for parallel processing within Pregel, as multiple nodes cannot attempt to access data

at the same time making it inherently free of deadlocks and race conditions. This has the

additional benefit of removing the need for remote data reads, which can be exceedingly high

latency operations and would need to occur after the vertices have finished making alterations.

By default, a Pregel graph is partitioned via a hash of the vertex IDs, splitting vertices

amongst the workers, although a function can be provided to make use of data locality. Once

the workers possess the data associated with their defined partitions they may initiate the first

superstep. If a vertex receives no messages from the previous superstep (or its values do not

change) it will vote to halt the process, no longer running calculations unless awoken by a message.

When all vertices vote to halt, the process self-terminates and the final output is returned. This

prevents unnecessary supersteps and reduces processing costs to a minimum as, if only 30% of the

graph’s vertices require updating, the remaining 70% will stay dormant. Pregel itself was never

released for use, but an open source implementation Giraph [114] was built on top of Hadoop.

Whilst this came with the iterative caveats of Hadoop, noted in Section 2.4.1, it was shown to

compute PageRank[58] on a one trillion edge graph in under three minutes per iteration [115].

An impressive feat even with the strict conditions of the experiment.

Following Pregel, PowerGraph [9] introduces the GAS (Gather Apply Scatter) graph compu-

tation model to better define vertex centric operations. In the GAS model each iteration of a

vertex task is split across three stages: gathering information from adjacent vertices; applying

this information to the executing vertex; and scattering the new value to all neighbours. It notes

that in many real world networks vertex degree follows a Powers Law distribution where a small

number of ‘star nodes’ are connected to a large portion of the graph, e.g. a celebrity on Twitter

who has millions of followers. Star nodes will often take much longer to compute their GAS

functions, stalling the completion of supersteps in Pregel. To enable parallelism within these

functions, PowerGraph proposes a variation to the GAS model whereby a ‘vertex-programme’ is

split into four functions: gather; sum; apply and scatter. The execution of the gather and scat-

ter phases are pushed from the vertex onto the edges, allowing each edge task to be distributed

amongst the cluster and removing the linear scaling caused by the vertex degree. The gather

and sum functions in this new model act as a MapReduce job, with the sum aggregating the

33

partial results of the gather.

A common approach to achieve high data locality is to distribute vertices among the cluster’s

nodes, so there are as few edges spanning machines as possible, known as edge cut partitioning.

In this situation, when two machines share an edge both will maintain a copy of its information.

When an update happens this must, therefore, be synchronised across the graph generating

network traffic. PowerGraph’s distribution of individual vertex-programmes allows it to instead

split vertices (vertex cut partitioning) and span them across nodes in the cluster. In this model

each machine assigned to a vertex is given an even share of its edges to store and process and,

therefore, updates to these do not need to be synchronised. Synchronisation is shifted from edges

to vertices where a much clearer IO/parallelism trade-off can be drawn, the amount of machines

assigned to a vertex depending on its degree. Once assigned to the vertex a master node will

be elected, receiving partial results from the ‘mirrors’, running the sum/apply functions and

propagating the changes.

GraphLab[8], the extension to PowerGraph, explores asynchronous alternatives to the BSP

model. Two design patterns are discussed, namely DAGs and the systolic abstraction [116]. A

systolic system is a network of independently executing worker nodes, extending upon the pipeline

model to allow iterative and cyclic computation. This is synonymous with the Pregel architecture,

allowing for rich computational dependencies, but forces computation to be decomposed into

small atomic components with limited communication. GraphLab expands further on this with

its shared memory ‘data graph’, which encodes the computational structure in a similar way to

the systolic model, but allows the user to allocate data blocks to vertices which can be accessed

concurrently without superstep synchronisation. This permits vertices to execute independently

of each other, reading and editing any data within their ‘scope’, where the scope is defined as

the data within themselves, their neighbours and the edges in-between Vertices also have access

to a ‘shared data table’, supporting a global state.

This introduces the possibility of race conditions if the scope of two executing vertices were

to overlap. To prevent this occurring, GraphLab maintains sequential consistency via a choice

of execution models: full consistency, which ensures the full scope of an executing vertex is pro-

tected, thus only vertices with no common neighbours may execute in parallel; edge consistency,

removing the protection on information stored within neighbours, allowing non-adjacent vertices

to execute in parallel; and vertex consistency, protecting only the information within an execut-

ing vertex, allowing all vertices to execute in parallel. The choice of model depends on the level

of information required by the algorithm and can heavily affect the throughput of the system. To

implement an algorithm, the user must create an update function to run on the vertices. These

can edit the data in the vertices scope and have read only access to the shared data table. To

enable complex algorithms to be executed, any number of these functions may be running at a

given time and are dynamically controlled by the GraphLab’s scheduler. The scheduler maintains

a distributed ordered list of tasks (function plus vertex) which require execution. These can be

handled in a simplistic manner utilising static schedulers, such as synchronous or round-robin,

34

or alternatively can be fully dynamic where the update functions can add to and reorder the

task list at run time. Furthermore, the user may even create multiple sets of tasks to execute in

a specified sequence.

Moving away from the distributed environment, Graphchi[117] looks at how the asynchronous

GraphLab style of processing may be computed on very large graphs, whilst only utilising a single

personal computer. This is a disk-based system where the only requirement is each vertex and

its edges must be individually able to fit into memory. To process these large graphs, Graphchi

introduces the Parallel Sliding Window (PSW) model. This stores the graph in a CSR format

on disk, which is then split up into ‘intervals’ or sequential sets of vertices which are a shard of

the full graph. PSW operates by sliding across this CSR, loading one interval at a time fully

into memory, denoted as the memory shard. Once an interval has been loaded the user defined

update functions (as specified in GraphLab) may be run on each vertex in parallel. However, to

remove race conditions, vertices which have edges with both the source and destination in the

same shard are labelled critical and updated sequentially. Vertices where this is not the case

may operate freely. Once the update functions have concluded, the new values for each edge and

vertex are written back to disk so they may be available for the next execution. As the update

functions directly modify the data blocks storing the edges, these are simply written back to disk,

fully overwriting the previous instance of the memory shard. PSW then slides further through

the CSR to load the next interval. PSW fits well with the asynchronous model as it is effectively

the same as only the vertices within the loaded subgraph being scheduled to run, if compared to

GraphLab, and will produce the same result.

Graphchi also allows the graph to be updated as it is processing, adding and removing edges.

This is done by maintaining an edge-buffer for each logical part of a shard. New ingested edges

are stored here until their interval is next loaded from disk, at which point the new edges will

be included. If, however, a buffer becomes too big it will be written to disk, merging it with

the edges present in that shard. If either of these operations make a shard too big to fit into

memory it will be split in half, creating two new intervals. For removals, edges are flagged to

be ignored during the next execution of their interval and then simply not written back to disk

when the next memory shard is loaded. Finally, updates are hidden from the perspective of

the user, with new edges only appearing in the next execution of an interval. This is done to

remove the complexity of having to write functions for vertices which are changing in parallel

with execution.

Vertex Centric Industry Take up

As well as existing independently, these programming paradigms have had a lasting impact on

the Graph Analytics ecosystem, most notably being used as the basis for graph computation

within Apache Spark and Apache Flink. Within Spark this began with the GraphX[74] library

which allowed the user to create a labelled graph built out of a ‘vertexRDD’ and ‘edgeRDD’.

A Pregel engine was then established allowing users to specify their own GAS functions which

35

run as transforms and actions on the RDDs. This, however, quickly runs out of memory for

larger datasets, because of the many joins/groupbys and did not get the same support from

the developers as other Spark libraries. GraphX was, therefore, phased out in favour of a new

graph processing extension for Spark, GraphFrames [75]. GraphFrames was built on top of Spark

SQL [118] utilising DataFrames in the same manner GraphX employs RDDs. Two DataFrames,

one for vertices and one for edges, are combined to make a GraphFrame with both permitted

to contain zero or more attributes akin to the property graph model. This supported GAS

functionality, a query language similar to Cypher, and was integrated with Mllib as DataFrames

are its base data structure. Unfortunately this has recently been discontinued as Spark has

moved away from graph processing.

Gelly, the equivalent library for Apache Flink, has fared better being a base module of the

framework and still supported. This similarly utilises a GAS based Pregel model, allowing users

to split on vertices, edges or a hybrid approach. Algorithms may be designed with both the

DataSet API and DataStream API, meaning Gelly can perform graph analytics on bounded

data as well as incrementally update the results if it is unbounded. Work has recently been

carried out to extend Gelly to perform temporal graph analytics by labelling the edges with

creation/deletion times and adding time-aware functionality. This was progressing under the

Tink[119] library, but development seems to have paused since initial publication.

2.5.4 Streaming Graph Analytics

As with Gelly, many academic graph platforms have begun to provide analytics of time-evolving

graphs over unbounded data sources. GraphTau[37], built on-top of Apache Spark, blends the

ideas of GraphX and Spark Streaming to provide ‘Discretized Graph Streams’; treating dynamic

graphs as a stream of graph snapshots at regular intervals. Updates to the graph (additions,

deletions and label updates) are batched in a ‘DeltaDStream’ which may be converted into a

‘GraphStream’, combining all prior updates to build the graph at each time increment. BSP

algorithms may be set running as micro-batches from the initial snapshot, but the algorithm

may additionally be moved onto new snapshots as they become available, even if it has yet to

converge. This is introduced as Pause-Shift-Resume (PSR) where the supersteps are paused on

the current snapshot, the metadata shifted to the new one and the algorithm resumed. This

works on the basis that the user is only interested on the latest state/reducing the staleness of

the result and that, for many algorithms (such as PageRank), the converged answer will not be

very different from the result archived from running the algorithm from scratch on the newer

snapshot. For those that do not fit this, or are affected by deletions (as discussed in Section 2.4.2)

GraphTau provides online rectification, which attempts to roll back the state to a point where

the deleted entity was yet to have an affect. This does, however, require vertices to maintain

their computational state for all snapshots.

Moving to fully bespoke systems, LLAMA[14] presents a multi-version CSR graph represen-

tation storing dynamism as a series of snapshots. Within this the graph exists as a combination

36

of a ‘Large Multiversioned Array’ (LAMA), storing the vertices for all versions of the graph,

alongside multiple delta edge arrays, one for each snapshot. As the edge arrays are deltas, a

vertex’s full adjacency list is spread across snapshots in ‘adjacency list fragments’ which must be

combined to form the full graph for analysis. This does, however, periodically trigger without

analysis, building a new base snapshot and bounding the overhead. Each property associated

with either edges or vertices is independently stored as a separate LAMA, containing all versions

of the associated value for each of the entities. As LLAMA is a non-distributed platform, it

allows implemented algorithms to simply loop through the vertices and their edges, which will

occur in parallel, or directly access vertices by ID. It also provides a GAS based API for when

the graph is larger than the available memory. Finally, as all prior graph versions are saved, it

is noted that the snapshots may be analysed ‘temporally’, although this is from the perspective

of the evolution of a metric, not time-aware analysis.

In contrast to LLAMAs snapshot approach, Stinger[120] views graphs as an infinite stream

of edge insertions, deletions, and updates, providing a dynamic CSR based data structure to

store these changes as they arrive. Instead of a contiguous edge array, edges are split into equal

sized blocks which are joined together in a linked list, growing and shrinking as new updates

arrive. This is a weighted graph where edge tuples consist of the neighbour ID, type, weight and a

timestamp of when the last update occurred. Several indexing optimisations are then made, such

as having only edges of the same type in an edge block to increase sequential reads. Updates are

handled individually for scale-free (Powers law) graphs to avoid star-nodes reducing throughput

and in batches when this is not the case. Interestingly, for batches Stinger runs all deletions

first to try to make room in existing blocks, compressing the data as best as possible. However,

this seems to create an artificial ordering and may end up creating different graphs depending

on how the batches are grouped across the stream. For analysis, Stinger provides macros for

looping through vertices and their edges, accessing weights and type labels. All vertices may be

accessed in parallel through these providing fast traversals, although it is not mentioned if this

may happen alongside ingestion.

Following Stinger, a subsequent version DStinger[121] was released, moving from a single

machine to a distributed environment. DStinger consists of a primary/replica architecture where

the primary nodes delegate computational tasks to the replicas. The replicas are then responsible

for maintaining a subset (partition) of the vertex array and the associated edge blocks, updating

these and completing analysis. The graph is edge cut with the vertices partitioned based upon

a hashing algorithm, claiming this is the fastest approach with the simplest logic, whilst com-

plex partitioning to minimise edge-cuts is often fruitless[122]. Finally, update synchronisation

and computation messages between replicas are handled autonomously via DStinger’s Message

Passing Interface (MPI). All messages between pairs of replicas are aggregated together into one

message, minimising network traffic, and processed within ongoing update batches for optimum

throughput.

Kineograph[10] is a distributed graph management system consisting of four components:

37

graph nodes; ingest nodes; a global progress table; and a ‘snapshooter’. Graph nodes act as

a distributed key value store, indexing on vertex ID. The value for these keys is split between

the structural metadata for the vertex (edges/associated information) and application data for

the algorithms incrementally run on the graph. Updates read into Kineograph are managed by

one of several ingest nodes, converting each tuple into a set of graph alterations known as a

transaction. This is assigned a sequence number and sent to all graph nodes storing an affected

vertex. Once these all confirm the update has been received, the ingest node reports a successful

transaction to the global progress table. This progress table stores a vector clock where each

number represents the latest fully committed transaction from each ingest node. Periodically

the ‘snapshooter’ will request the graph nodes to commit their stored transactions and create a

snapshot which may be executed upon. The graph nodes use the global vector clock to decide the

end of the ‘epoch’ and what transactions are within it. Transactions that have occurred before

the end of the epoch are committed in a deterministic order, whilst the remaining are ignored

until the next snapshot is taken. This allows the graph to be consistent across partitions, but

the order in which it implements is completely artificial, as with Stinger. Event time and casual

relationships are not taken into account, instead establishing an order by running sequentially

through the list of ingest nodes. During this time new transactions are still being processed by

the ingest nodes and sent to graph nodes in preparation for the following snapshots.

Running in parallel with ingestion, algorithmic execution in Kineograph is a more relaxed

version of GraphLab, such that neighbours may access each others information in parallel. Writ-

ing to neighbours is restricted, but this alone does not guarantee sequential consistency, although

it is claimed from their experiments to produce acceptable results. Instead of the GAS model,

Kineograph functions implement either the push or pull model of communication. The push

model has the user function calculate its new value and send this out along its outgoing edges.

As Kineograph supports incremental algorithms, vertices may also send their incremental change

allowing the receiving vertex to decide if the change is large enough to trigger a response. Alter-

natively in the pull model, an awoken vertex function requests the information it requires from

its neighbours to calculate its new value and propagate. This reduces overall network traffic, but

is no longer asynchronous IO.

Instead of only building coarse snapshots, where the update order between is lost, Weaver[11]

introduces a fully online graph model which may be queried and updated in parallel. This is

split between ‘shard servers’ and the ‘timeline coordinator’. Shard servers are analogous to graph

nodes within Kineograph, being assigned partitions (shards) of the overall graph, executing up-

dates and performing the requested graph analysis. The timeline coordinator provides ‘refinable

timestamps’ via a set of ‘gatekeeper’ servers and the ‘timeline oracle’. Gatekeepers contain a

vector clock array, incrementing their own counter when a new transaction is received and send-

ing it to the affected shards. Gatekeepers periodically exchange their vector clocks, establishing

a ‘happened-before’ partial order for updates. Overlapping updates received concurrently at dif-

ferent gatekeepers within the defined period then require the timeline oracle to ‘refine’ the order

38

and decide which happened first. Unfortunately, whilst the oracle is meant to be lightweight

when intervening, in practice it has been shown to bottleneck the system[1].

To perform analysis on the graph, Weaver provides read-only ‘node programmes’ which tra-

verse the graph via GAS. If a node programme wishes to alter the properties of a vertex or edge

it must specify this in the form of a transaction and resubmit it into the system. As the graph

is always updating, node programmes must somehow execute on a consistent snapshot. In order

for this to be enabled without blocking subsequent updates Weaver maintains a multi-version

(temporal) graph, storing all previous incarnations of graph entities along with the times at

which alterations occurred. For example, if a vertex is deleted by a transaction, the deletion is

inserted into the object representing the vertex and this ‘history’ is retained in-memory. Node

programmes are then assigned timestamps which the processing shard servers use to generate a

‘logically consistent’ snapshot; a view of the graph at the point of programme submission. This is

done by comparing the timestamp of node programme with the history of the vertices it wishes to

process on, requesting the oracle to establish an order if one does not exist. As node programmes

may be distributed across multiple shard servers, and there may be some variance in the time at

which they arrive, node programmes are blocked until all preceding and concurrent transactions

have finished committing to ensure all sections execute on the same snapshot. Interestingly, this

history is not used for time-aware queries and is only kept up until the timestamp of the oldest

ongoing programme, at which point it is cleared.

Unlike the hash partitioning used by all previous systems, Weaver also discusses (although

not implements) the idea of a streaming graph partitioning algorithm[123] which dynamically

collocates vertices with the majority of its neighbours, minimising edge cuts. This is fully fleshed

out in Vaquero et al[124] which provides a distributed graph processing engine allowing vertices

to move around the cluster as new updates arrive. As with DStinger, this is split into a master/-

worker architecture where the master provides the analysis API and the workers store partitions

of the graph, performing updates and analysis. Within this, once the initial graph is loaded and

partitioned (based on any strategy) new vertices and edges will begin to arrive. A background

label propagation job is then periodically set running, with the vertices adopting the label of the

majority of their neighbours. Once this has converged, the vertices may decide if they should

stay in their current partition or move to another. This is a greedy migration heuristic which

requires no global state, allowing it to scale freely with the number of partitions. Some limits

are, however, put in place where the number of vertices in any partition is capped and vertices

will have a preference to stay put to minimise overhead.

Analysis in Vaquero et al is completed in a Pregel BSP style with vertices allowed to mi-

grate between supersteps. Interestingly, similar to the Pause-Shift-Resume model, new updates

coming into the system are included in the next superstep if the algorithm is resilient to this

i.e. PageRank. Alternatively, updates are buffered until the algorithm has converged to stop

the wrong result from being returned. To allow workers to communicate for vertex messaging,

edge synchronisation and system metadata (capacity etc.), a messaging queueing system is used

39

(RabbitMQ[125]). This provides an asynchronous publish subscribe model allowing workers to

ingest messages without becoming overwhelmed. Finally, as vertices are moving around and there

is no global look-up table each worker maintains a ‘Vertex Locator’ which tracks the location of

vertices allowing messages to be routed to them.

2.5.5 Temporal Graph Analytics

Whilst it is important to keep up-to-date with the current state of a graph, ImmortalGraph

[12] focuses on how to process the evolution as a whole, although not online itself, executing

on static repositories. ImmortalGraph introduces three contributions, the first of which being

how to efficiently store a graph’s full history on disk without diminishing query performance.

Snapshots cannot be used here as the update order between these is lost and, whilst a full update

log does not lose any information, queries take longer the more of the log has to be ingested. To

compromise between these ImmortalGraph introduces ‘snapshot groups’. A snapshot group is

assigned a time range, maintaining a full snapshot for the start of the window and an update log

containing all changes up until the end. If an incoming query requires the graph at a point within

the specified range, the update log can be read into the base snapshot until this point is reached.

Secondly, ImmortalGraph elects four quadrants which queries may fall under with local/global

in the spacial dimension and time point/time range in the temporal dimension. It then discusses

how the memory layout of a snapshot can heavily affect the performance of a query depending on

where it falls within these quadrants. Snapshot groups may be stored with high spacial-locality,

placing neighbours within the same snapshot in close proximity, or with high temporal-locality,

where all versions of a vertex will be stored consecutively, providing access to the full history

of a vertex with one sequential read. As neither option is optimal in all cases, ImmortalGraph

creates multiple copies of stored snapshots, optimising each version for different access patterns.

ImmortalGraph uses an iterative GAS model for analysis, allowing snapshots to be processed

sequentially or independently in parallel. However, for temporal queries the ‘Locality-Aware

Batch Scheduling (LABS)’ model is introduced, batching the execution of each vertex together

across all snapshots. In this model, for N snapshots, the desired algorithm is first executed to

completion on the earliest snapshot in the graph’s history (Snapshot0). The output of this is then

utilised as the starting point for processing the remaining snapshots in the history (Snapshot1

through SnapshotN−1). This is completed by each vertex sequentially accessing its different

states within Snapshot1 → SnapshotN−1 and computing the assigned algorithm on each. These

can either be fully parallelised or organised into supersteps for synchronous algorithms. The user

can additionally choose between an edge-centric or vertex-centric processing model and push or

pull communications. Finally, a later version of ImmortalGraph was released under the name

Chronos[126]. This provided a distributed version of LABS, but based on whole snapshots being

placed on different machines, not on an actual partitioned graph.

Version Traveller [13] is a graph processing engine which tackles a similar problem to Immor-

talGraph, extracting temporal analytics on multi-version graphs. Instead of the LABS approach,

40

Version Traveller focuses on efficient ‘arbitrary local version switching’ between snapshots of a

graph. This is ‘local’ as sequentially processed snapshots are often similar in structure and val-

ues, but also ‘arbitrary’ as there may be no predetermined order for snapshot execution, i.e.

they do not have to be chronological. Previous systems have no awareness of the next graph

version, often dropping the current graph from memory and fully loading the next graph from

disk. Version Traveller computes the next snapshot from the current by combining it with a

delta. This is not an entirely new approach, but prior multi-version processing systems (such as

LLAMA) struggle with arbitrary version switching as their deltas are set up to be sequential.

To improve on this Version Traveller introduced a hybrid graph model, combining CSRs with

a Vector of Vectors (VoVs), which allows neighbour lists to be edited independently. In this

model a ‘root’ CSR neighbour array is created when the first version of the graph is loaded and

this then remains constant. When a new version is to be loaded, it is stored as a set of ‘vertex

delta entries’ containing the neighbourhood modifications for each vertex. The hybrid CSRs

pointer array then indicates if the neighbourhood of a vertex is stored in the neighbour array or

the delta for this snapshot, with Version Traveller reading from either during analysis. When

another arbitrary version is to be loaded, the CSR reverts to the base neighbourhood and the

process restarts.

Chronograph [15], similar to Weaver, provides a dynamic graph model which allows con-

current local modifications whilst maintaining a consistent global view. Various programming

paradigms may then execute on top of this, performing online approximations on the live dy-

namic graph and offline batch processing on consistent snapshots. Chronograph also tracks the

evolution of the graph, allowing retroactive snapshots to be generated and temporal analysis to

be performed. To provide asynchronous and scalable processing, Chronograph builds on top of

the actor model [127]. Within this model each vertex is considered an ‘actor’ which executes

actions upon its local state based on the information of incoming messages. Actors are com-

pletely reactive, computing only when they receive a message and have no access to data outside

their own internal state. To get information into the system a special class of I/O vertices are

utilised. These are part of the graph topology, but sit at the boundary between the internal

regular vertices and external IO operators, feeding in data via the messaging system. Upon

receiving this data the regular vertices may perform some user defined function, update their

local state, communicate with neighbours or alter the graph topology by creating new vertices

or outgoing edges. Eventually this will yield some approximate results which may be sent to

‘output vertices’, feeding back to the external data source.

Chronograph maintains the history of the graph via event sourcing[128], appending all incom-

ing events and the graph alterations they generate into an event log. All previous incarnations

of the graph may then be rebuilt by reapplying the stored events from the beginning up until

the desired point. To remove the bottlenecks of global ordering Chronograph allows each vertex

to store its own event log and that of its outgoing edges. A global log is then only required to

maintain vertex creation and deletion order for when the full graph is recreated. However, whilst

41

this may scale better, maintaining logs in this manner only provides eventual consistency, not

a globally consistent view. To provide such a view, each vertex additionally contains a vector

clock which is incremented whenever a message is processed. The vector clock is attached to all

outgoing messages, allowing the receiving vertex to track the state of its neighbours at their last

point of contact. By persisting this information alongside each logged composite event ‘casually

consistent’ snapshots may be created. This may not produce the exact same snapshot as a se-

quentially consistent log, but does guarantee no vertex within the snapshot will have received

a message which the source has yet to send. This method can be used to produce ‘retroactive

snapshots’ which provide a view of a previous point in the history of the graph, or ‘live snapshots’

which capture the graph’s state with minimum staleness.

Greycat[129], the final work in this area, provides a full temporal property graph which is

backed up via an underlying key-value store. Interestingly, within this model vertices are just

‘conceptual identifiers’ distinguished from their state which exists on a timeline of ‘state chunks’

representing each historic modification. A set of functions are defined to Read the state of a

vertex at a given time, returning the closest anterior chunk on the timeline, Insert new chunks

into the timeline, changing the state of a vertex at a chosen time, and Remove entities, inserting

a new ‘null’ chunk into the timeline in order that a Read will see the vertex as absent from that

point forwards. State chunks contain all attributes for the node and its outgoing edges and also

link to other state chunks representing the neighbours of a vertex at the latest time from its

perspective; similar to the flattened temporal graph model discussed in Section 2.2.2.

To analyse this graph Greycat provides an API similar to Tinkerpop, within which the user

starts at a state chunk of interest (returned from a read) and may then traverse forward following

the links to neighbouring state chunks. These paths are intrinsically time-aware, meaning tem-

poral algorithms are the assumed standard. This method additionally allows Greycat to lazily

load the state of the graph as new chunks are requested instead of having to read it all at the

start of a query. Finally, as some nodes may have millions of updates/chunks to manage, these

are indexed utilising red-black trees; noted as the most adopted structure for non-monotonic

time-series. These are, however, additionally modified to allow a coarse higher level indexing,

meaning only portions of the tree have to be checked when a new read takes place.

Whilst there has clearly been several successful attempts to include the evolving history of

a graph as a component, prior systems do not appear to have fully realised the potential of

maintaining this history in-memory. By doing so, many of the issues they faced could have

perhaps been resolved. For instance, if updates were to arrive out of order, they could still be

inserted correctly without expensive synchronisation steps or a centralised arbiter. This can also

ensure a correct event time based ordering of updates unlike the many artificial orders seen above.

Finally, whist databases are beginning to explore time-aware queries, many temporal analytics

platforms are still focused on deltas between discrete points in time. Those that do explore this

such as Greycat are focused more on traversals and less so on global time-aware analytics.

42

2.6 Summary

In summary this chapter has given a brief overview of the many areas underpinning the ultimate

goal of this work, to provide scalable online analytics of temporal graphs. To this end we

initially looked at what a graph consists of, the different expansions which have been proposed

and how these materialise within real world implementations. This was expanded with the

concept of dynamic graphs which evolve to reflect the changes seen in the underlying dataset.

These concepts were then brought together in the temporal graph model which stores the full

state of graph components across all points in time, disambiguating this from dynamic/time-

evolving graphs which only maintain the most up-to-date version. Following the graph concepts

introduction we looked at what type of graph algorithms exist, grouping these by the structural

scope which they cover; from local singular vertex queries to global analytics across all entities.

We then explored how algorithms across all structural scopes could be expanded to bring new

insights when given access to the time dimension present in temporal graphs.

Following on we looked at the big data processing platforms which have taken over as the

analytical tools of choice as datasets have increased past the capacity of a singular machine.

We split these between batched processing and stream processing systems, investigating notable

examples in both camps. We discussed how all systems mentioned may perform graph algorithms,

highlighting that the interconnectivity of a graph does not sit well with the data structures

utilised in general big data platforms and why this has lead to more bespoke solutions. Lastly

we highlighted some key elements of streaming systems which would be important within our

own implementations, notably windowing and watermarking.

Finally, we explored the plethora of graph-specific platforms, both commercially and within

the literature, categorising these under graph databases and graph analytical systems. This split

was based on the manner in which the two categories handle/store data, the sort of workloads they

prioritise and the elements of the graph which are primarily involved (structure vs properties).

Of these our focus was on the analytical systems, as they are the basis for the platform to be

developed within this work. Within this category we found distributed systems, both batched

and streaming based covering static, dynamic and temporal graph use cases. We highlighted

that whilst static and dynamic graphs have found strong adaption, few systems make full use of

updates being ingested and the temporal graph they may form. Those that do, have key flaws

in their implementations and provide ample space to explore and improve upon.

43

Chapter 3

Temporal Graph Model

3.1 Introduction

The first step to providing a system which maintains an updatable, in-memory, temporal graph

is to formalise the model. In this chapter such a model is presented, expanding on those seen

above in Chapter 2 to provide a full history of structural and property changes within the

graph. The semantics for modifying the state of this graph via a stream of updates are then

established, encompassing the addition/removal of vertices and edges, as well as updating their

associated properties. This includes the preconditions and effect of each update type, ensuring

the consistency of the graph is never broken, such as an edge without a source vertex.

To explore how the network has evolved and to view the graph as it would have looked at

any given point in its lifetime (from inception through to the most recent update) the semantics

for flattening the temporal graph into a traditional graph are discussed. These flattenings may

also be created with the additional aspect of a window, looking back only a set temporal depth

from the decided flattening time to assist in the investigation of short and long term patterns.

Finally, as with all the above, this initial model is defined from an abstract perspective and

does not consider the challenges that an instantiation of it would bring. Pertinent to this work is

the challenge of distributing the model over a set of real machines. In this environment the graph

must be partitioned, meaning state has to be split between machines, and this shared state must

then be synchronised whenever it is modified. In this instance both the updates coming from the

source and synchronisation messages between partitions may arrive out of order, breaking many

of the constraints and preconditions established for this first model. To alleviate this the model

and its update semantics are redefined with this distributed environment in mind, specifying

what a graph partition consists of and how out of order updates may be handled.

44

3.1.1 Chapter Roadmap

Section 3.2: Undistributed Model The undistributed model section introduces all of the

concepts of our temporal graph, defining the components it contains, their semantics and

how their history is mapped on top.

Section 3.3: Undistributed Update Semantics The undistributed update semantics section

then specifies how the temporal graph model may be updated, defining an update stream

and semantics for additions, deletions and property updates.

Section 3.4: Flattening the Temporal Graph Here we define the semantics for ‘graph

flattening’. This extracts a non-temporal graph representation from the model, given some

time parameters, simplifying exploration/analysis of the temporal graph.

Section 3.5: Challenges of Distribution and Implementation Drawing from the discus-

sion in Chapter 2 we next discuss the issues faced when attempting to implement graph

analysis in a scalable environment; touching topics of partitioning, distributed streams and

state management.

Section 3.6: Distributed Temporal Graph Model With these challenges in mind we re-

define the undistributed temporal graph model to include the concept of partitions which

contain portions of the graph. These partitions may then be distributed.

Section 3.7: Distributed Update Semantics In line with this redefinition the update se-

mantics are then also expanded to better fit the intended distributed environment; allowing

partitions of the graph to communicate and providing policy for handling out-of-order up-

dates.

3.2 Undistributed Model

A static graph G consists of a pair G=〈V,E〉 where V is the set of all vertices V={v1, v2, . . . , vn}
and E is the set of all edges E={〈vi, vj〉, 〈vk, vl〉, . . . , 〈vm, vn〉}. An edge in this model is defined

as an ordered pair of vertices 〈vi, vj〉, depicting directed relationships between vertices in V ;

thus 〈vi, vj〉 6= 〈vj , vi〉. E may contain looping edges where the source and destination are

the same (〈vi, vi〉), but E cannot contain multiple edges with the same source and destination

({〈vj , vk〉, 〈vj , vk〉}). Both vertices and edges are referred to as graph entities Y = V ∪E. To store

metadata for each vertex and edge we define a set of m keys K = {k1, k2, . . . , km} and define

properties of entities using key value pairs (where if not set, the value is null). The property for

key ki on entity y is then defined as pyi = valuei or pyi = ∅ if no value is set.

Moving into a dynamic setting where the graph is no longer static and will be updated over

time, the graph G=〈V,E〉 would instead be defined as G(t)=〈V (t), E(t)〉; where t is a specific

point within the lifetime of the graph; t0 ≤ t ≤ tn. This begins with the time of initialisation

45

(t0) where V (t0) = ∅ and E(t0) = ∅, and ends at tn, which denotes the time of the most recent

change. G(t0) is, therefore, the earliest version of the graph and G(tn) the most up-to-date

graph, referred to as the ‘Live Graph’. Within this range n updates will have been applied, each

at a unique time t1, t2, . . . , tn. Whilst t may equal any of these, it is not limited to their discrete

values and may specify a time in-between them. In this instance, G(t) will be exactly the graph

G(ti), where ti is the largest value within the set of update times such that ti ≤ t; i.e. G(t) is the

graph seen at the most recent change just before time t. Within G(t), V (t) contains all vertices

within the graph at time t and E(t) all the edges. Furthermore, for key ki ∈ K then pyi (t) will

return the associated value for entity y at time t (if one exists).

A temporal graph, therefore, encompasses all observed graphs G(t) from t0 (the initial graph)

to tn (the most recently observed graph). It is useful to define VT , the set of all unique ver-

tices which have existed within the graph VT = V (t0) ∪ V (t1) . . . ∪ V (tn), ET , the set of all

unique edges ET = E(t0) ∪ E(t1) ∪ . . . ∪ E(tn) and GT = 〈VT , ET 〉. To record the times

at which entities have joined or left the graph, each vertex and edge is assigned a history

Hy =
{
〈ti, created〉, 〈tj , deleted〉, . . . , 〈tl, created〉

}
, where each modification to the state of an

entity is represented as a pair containing the new state (either created or deleted) alongside a

timestamp of when the change occurred, allowing for chronological ordering. As with the dy-

namic graph, the state of an entity at a given time t is the same as the nearest change point

before t, that is 〈tm, statem〉 for the largest value of m such that tm ≤ t, e.g. in the above

example, Hy(t) = created if ti ≤ t < tj . Therefore, an entity is considered present or absent

for a set time range, or several time ranges if removed and re-added. Hy includes all of these

ranges, but a subset of the history may also be garnered by specifying a start and end point of

interest, e.g. Hy(t, t′) where t0 ≤ t < t′ ≤ tn. Note, when querying the state of an entity at time

t, either within the full history or a subset, if no such change point exists anterior to this time

(i.e. ∀〈tm, statem〉 ∈ Hy, t < tm) then Hy(t) = removed by default. This is because t is either a

point in time prior to the inception of y or y has no updates in the time range of interest.

In addition to the structural history stored in H, for an entity y and a key ki the property

pyi now contains a value history pyi = {〈tj , valuej〉, 〈tk, valuek〉, . . . , 〈tl, valuel〉}, specifying the

sequence of values associated with the key and the time at which the change occurred. If the

property for ki has never been set for y then pyi = ∅. As with the changes in entity state, the value

for a property at a given time t is equal to the closest update anterior to t, e.g. pyi (t) = valuej

if tj ≤ t < tk. These structural and property histories can be combined to create the overall

history of the graph.

3.2.1 Example Temporal Graph

Figure 3.1 provides a toy network with two nodes a and b which share two edges 〈a, b〉 and

〈b, a〉. These can be seen in the top left of the Figure within VT and ET respectively or via the

graph representation on the right. To provide an application of this model we may once again

refer to the social network example introduced in Section 2.2, where these two nodes can be

46

Figure 3.1: Example undistributed temporal graph based upon two users in a social network
following and unfollowing each other.

imagined as two users within a twitter style social network and are both following each other. In

the bottom half of this figure we can see the structural history of these entities alongside their

property histories. By exploring these we can establish the full story of their interaction. At

t1 vertex a joined the network with the property ‘username’ set to the value ‘Alice’. This was

followed at time t2 by vertex b with username ‘Bob’. At time t3 user Alice followed Bob (〈a, b〉
created), prompting Bob to follow back at t4 (〈b, a〉 created). At time t5 Alice unfollowed Bob,

causing 〈a, b〉 to be removed and a deleted state to be inserted into its history. Alice then left

the network at time t6, appending a deleted state into vertex a and all remaining connections

(〈b, a〉). Finally, Bob updated his username to ‘Ben’ at time t7 which was then appended into

the history of this property.

3.3 Undistributed Update Semantics

Updates to this temporal graph come in the form of an unbound stream of events S={〈t1, a1〉,
〈t2, a2〉, . . . , 〈tn, an〉}, where each event depicts an action (see Table 3.1) and the time of its

occurrence. Actions fall into three categories: Entity Addition - creation of a vertex or edge;

Entity Removal - deletion of a vertex or edge; Entity Update - changing the value of entity

properties. By applying all updates until a given update time ti, a graph G(ti) may be created

from the stream {〈t1, a1〉, 〈t2, a2〉, . . . , 〈ti, ai〉}.

47

Table 3.1: Table of events for an update at time tn+1.

Event Type Parameters Preconditions Effect
Add Vertex v, 〈ki, valuei〉 v /∈ VT Hv={〈tn+1, created〉} &
(new vertex) pvi := pvi ∪ {〈tn+1, valuei〉}

Add Vertex v, 〈ki, valuei〉 v ∈ VT & Hv(tn) = deleted Hv := Hv ∪ 〈tn+1, created〉 &
(established vertex) pvi := pvi ∪ {〈tn+1, valuei〉}

Add Edge e=〈vi, vj〉, 〈kl, valuel〉 e /∈ ET He={〈tn+1, created〉}
(new edge) vi ∈ VT & Hvi (tn) = created pel := pel ∪ {〈tn+1, valuel〉}

vj ∈ VT & Hvj (tn) = created

Add Edge e=〈vi, vj〉, 〈kl, valuel〉 e ∈ ET & He(tn) = deleted He:=He ∪ 〈tn+1, created〉
(established edge) vi ∈ VT & Hvi (tn) = created pel := pel ∪ {〈tn+1, valuel〉}

vj ∈ VT & Hvj (tn) = created

Remove Edge e=〈vi, vj〉 e ∈ ET & He(tn) = created He:=He ∪ 〈tn+1, deleted〉

Remove Vertex v v ∈ VT & Hv(tn) = created Hv :=Hv ∪ 〈tn+1, deleted〉
Remove all edges containing v

Update Property y, 〈ki, valuei〉 y ∈ YT & Hy(tn) = created pyi := pyi ∪ {〈tn+1, valuei〉}

As the stream is unbounded, stream ingestion becomes the problem of applying a new action

an+1 at time tn+1. We make the formal requirement tn+1 > tn to avoid the ambiguity which

may arise if an insertion and deletion of the same entity occurs at the same time. In addition

to this restriction, before an action can be applied its preconditions must be satisfied as it may

otherwise leave the graph in an inconsistent state. For example, if 〈tn+1, an+1〉 requests the

removal of an edge, this can only be considered valid if the edge exists at time tn. The full list of

these preconditions can be seen in Table 3.1. An example stream of updates which once ingested

would create the temporal graph seen in Figure 3.1 can be seen in Figure 3.2.

3.3.1 Entity Addition

For the addition of a given vertex v, it must first be checked if v ∈ VT . If v has never been a

member of the graph, VT is updated to include this new member VT := VT ∪ v; a history is then

assigned to v specifying the time of its creation Hv={〈tn+1, created〉}. If v ∈ VT we check if the

current status is deleted and if so add this new update into the history Hv := Hv∪〈tn+1, created〉.
If the current state is already created the update is considered invalid and is abandoned.

Edge addition is similar to this, where if an edge 〈vi, vj〉 is to be added we must first check

that vi and vj are present in VT and currently created. If this is not the case the addition is

rejected. If these are present, we may then check if 〈vi, vj〉 ∈ ET , dictating if the edge requires

insertion into ET or if its history requires appending, in the same fashion as described for vertex

addition. Note, as the combination of source and destination are an edges unique identifier,

there is no way to disambiguate between recreating an edge and inserting a new edge between

48

Figure 3.2: Example event stream which would create the temporal graph seen in Figure 3.1

the same two vertices (creating a multi-graph). If the latter was desired this would have to be

managed via associated edge properties.

3.3.2 Entity Removal

For an edge to be eligible for removal it must first be present within the graph. If it is present

and a removal performed, no information is actually deleted, instead its history is appended with

a deleted state at the time at which the update occurred. For example, for an edge e deleted at

time tn+1, its history would be updated as follows: He := He∪〈tn+1, deleted〉. Vertex removal is

executed in the same manner, but requires an additional step to remove all present edges within

ET with the vertex as a source or destination, as these are now considered hanging edges. This

is completed by appending their history with a deleted state at the time of vertex removal.

3.3.3 Entity Properties and Updates

Entity properties are established and updated during the creation of vertices and edges, as well

as standalone update commands. In the former case the addition of an entity y will come with

a set of one or more key value pairs, specifying the properties to update and their new values.

Take the case of a single property update uyi = 〈ki, valuei〉 arriving at time tn+1. This will be

added onto the history of ki for entity y, that is pyi := pyi ∪ 〈tn+1, valuei〉. Multiple properties

can be updated together in the obvious way. Note, this means entities may change the values

of established properties over time as well as gain new properties (if pyi = ∅ when the update

occurs). Property history may, therefore, vary in temporal depth, with their value prior to the

point of inception defaulting to ∅ to remove ambiguity.

Property updates separate from entity addition are analogous to this, but must first confirm

if the entity is present within YT and set to created at time tn. This is necessary as an entity

49

must be created before its properties can be updated and, in a similar vein, property values

should not change if the entity is currently removed from the graph. It should be noted that

changes to the entity state (creation or deletion) do not affect its associated properties unless

explicitly specified.

3.4 Flattening the Temporal Graph

A system which implements the temporal graph model over a stream of updates may inspect

how a static graph would have looked at any chosen point in time ti. We define this as a graph

flattening and ti as the flattening end or latest time point. A graph flattening consists of the

graph G(ti)=〈V (ti), E(ti)〉, where V (ti) and E(ti) contain all vertices and edges present at time

ti. The value of any properties associated with these present entities is then considered to be

the closest anterior value at ti i.e. pyx(ti) for a given entity y and property x. This may be ∅
if the property was added after ti, in which case the entity would not be attributed with this

property for the flattening. We assert that this is the same graph G(ti) which may be created

from the stream S = {〈t1, a1〉, 〈t2, a2〉, . . . , 〈ti, ai〉} as discussed above, but is extracted from the

structural and property histories within the temporal graph instead of having to reingest said

stream up until ti.

To explore the correctness of this we may consider that when ingesting a stream of updates

into a non-temporal graph the final state of each entity is not the aggregation of every prior

update which has affected it, but the most recent change to its state and the most recent value

set for each of its properties, as all prior values are overwritten. Similarly, when each entity is

viewed through the lens of a flattening within the temporal graph, only the most recent state

(with respect to the chosen time) is checked, giving no heed to anything prior or after this. The

culmination of doing this for all entities in the temporal graph would, therefore, return a graph

with the same vertices and edges and same property values as if it had been built directly from

the underlying update stream.

Next we define w as a set temporal depth to look back from the flattening end ti. Here, rather

than considering all updates since the inception of the stream (t0) to ti, we only consider updates

within the stream strictly after ti −w and up to and including ti. We define this as a windowed

graph flattening where w is the window size and the earliest time after the cutoff (ti − w) is

denoted as the flattening start. This collapses all the updates within the observation period into

a singular graph G(ti, w)=〈V (ti, w), E(ti, w)〉, where V (ti, w) ⊆ V (ti) and E(ti, w) ⊆ E(ti) such

that ∀y ∈ Y (ti, w), Hy((ti−w), ti) = created. Thus, an edge is only included in a windowed graph

flattening if its anterior update to flattening end is an addition and its associated timestamp is

between flattening start and flattening end. A vertex on the other hand will be included if itself

or any associated edge meets this requirement. This expansion for vertices simply ensures that

there are no hanging edges within a flattening. For example in Figure 3.3, vertex A and B are not

explicitly updated within the window period which without this expansion would require them

50

Figure 3.3: Left - Example stream of edge add updates with a window imposed over them. Right
- Windowed graph flattening derived from the updates, included within this window.

to be filtered. However, the edge 〈A,B〉 is added twice and would, therefore, be included in the

flattening; leaving 〈A,B〉 hanging. As such, the source and destination of an accepted edge are

always included, maintaining graph integrity. Finally, in the instance of a windowed flattening,

whilst the structural history is filtered, the property history is unaffected i.e. py(t) = py(t, w).

This is because property values do not change unless explicitly updated and would, therefore,

not return to null if not set within the observed window.

The windowed flattening G(ti, w) is, therefore, not the same graph as would be generated from

the Stream S = {〈t(i−w)+1, a(i−w)+1)〉, 〈t(i−w)+2, a(i−w)+2)〉, . . . , 〈ti, ai〉}, but is a more pragmatic

interpretation of what a person querying the state of the graph may expect. For instance,

returning to the stream of updates in Figure 3.2, the windowed flattening G(t4, 2) would include

the two edge additions creating 〈a, b〉 and 〈b, a〉. In this instance without keeping vertex a and b

in the flattening as they were not directly updated, the graph would be empty, which does not

seem the desired outcome. Similarly, for the same flattening, vertex a would lose the username

‘Alice’, as this was set outside the window, which could be an important characteristic in locating

the vertex or differentiating it from its peers.

Whilst the above semantics for a windowed graph flattening are, therefore, taken forward in

this work, we acknowledge that there are many different manners in which a window over the

temporal graph may be interpreted. For instance, we may hold a much stricter view of the window

in which G(ti, w) does equal the graph generated from the Stream S = {〈t(i−w)+1, a(i−w)+1)〉,

51

〈t(i−w)+2, a(i−w)+2)〉, . . . , 〈ti, ai〉}. Alternatively, within the defined semantics, if an entity is

added and then removed within the window period it would not be included within the flattening.

It could be argued that if an entity existed at a point within the observation period it should

be present, however, this seems to ignore the deletion altogether. Finally, the window could be

interpreted as including all entities present within the window period, even if not added within

it, more akin to our standard graph flattening. A fuller exploration of the different types of

windowing which could be applied over a temporal graph, and how these could be integrated

into novel temporal analysis can be seen in Section 7.2.3.

3.5 Challenges of Distribution and Implementation

Whilst these semantics explore how a temporal graph may be conceptually built, updated and

interacted on a single machine, to be able to expand past the limits of vertical scaling and handle

the large graphs generated by modern data demands, implementation must be done in a dis-

tributed fashion. This, however, comes with several challenges which are not addressed above.

Firstly, in practice, scalability through distribution is synonymous with graph partitioning, split-

ting the graph into manageable chunks for each machine. It must, therefore, be decided what a

temporal graph partition consists of and the strategy for splitting the overall graph whilst retain-

ing high data locality (e.g. edge-cut or vertex-cut, as described in PowerGraph[9]) and whether

the content of the data could be taken into account to retain high locality. The temporal nature

of the graph expands this question with the additional complexity of managing trade-offs between

structural locality (proximity to neighbours) and temporal locality (proximity to the history of

an entity) as assessed in ImmortalGraph [12], with the additional possibility of prioritising newer

neighbours over older ones. Furthermore, any viable partitioning strategy would have to work

for a graph built from a stream of updates, which is clearly difficult to pre-partition as there is

no way of knowing what updates are coming next and, even if possible, if not actively managed,

data locality will slowly degrade as more entities are added[124]. Finally, the outcome of these

decisions would be heavily affected by the type of analysis users were running and what graph

flattenings they were interested in. This would, therefore, require constant tweaking and data

migration[124] as otherwise the established strategy could actually be detrimental to the query

at hand.

Secondly, unlike single machine systems which can maintain global state, distributed systems

must continuously synchronise between machines which share state to minimise inconsistencies.

Within a distributed graph this shared state comes in the form of entities which have been cut

by the partitioning algorithm and must be copied onto all machines where they are utilised. This

can be mitigated with higher data locality, but irrelevant of the chosen partitioning strategy a

distributed graph will inadvertently have some entities spanning multiple partitions. It must,

therefore, be decided how to manage/propagate updates affecting such entities. For example,

if an edge-cut partitioning strategy were utilised, edges with the source and destination on

52

different machines would require synchronisation whenever an update to their state or properties

occurred. Furthermore, the effect of this requirement is multiplied for the removal of vertices,

which could potentially have millions of edges spanning the entire cluster, all of which would

require notification of the removal.

In conjunction with synchronisation, updates coming into the system may arrive out of order.

Whilst this is often due to unavoidable factors, such as random network delay between parti-

tions, it is exacerbated by mechanisms for increased throughput, such as concurrent ingestion

or multiple data sources. The update semantics above encompass all possible changes, but their

prerequisites are based on strict assumptions of serial ingestion and processing. A distributed en-

vironment breaks these constraints, meaning additional handling of updates is required to ensure

they are not processed incorrectly or dropped unnecessarily. For instance, if an edge add arrived

before the addition of its source vertex, the update would be incorrectly abandoned. Previous

systems have attempted to solve this problem by blocking update insertion until they can be

correctly ordered, e.g. Kineograph’s[10] epoch micro-batching, or via centralised ordering, e.g.

Weaver’s[11] oracle. These are, however, sub-optimal. Micro-batching often ignores the true

order of operations within a batch (executing all deletions first, followed by all additions) which

can easily generate an incorrect graph, not truly representing the data. Additionally, as the

micro-batch epochs execute on update processing time (when they arrive) instead of a set event

time (when it really happened), updates may appear in different snapshots, meaning subsequent

runs over the same data may differ greatly, causing issues for repeatability and testing. Cen-

tralised ordering does fair better than this, providing a consistent ground truth, but bottlenecks

the system, restricting its ability to scale[1]. This should, therefore, be solved in a manner which

processes updates on event time, creating the same graph for all executions, without relying on

a central entity for ground truth.

Finally, in addition to the problems of distribution, the above model makes no concessions

for memory utilisation when placed within real machines. This is an issue for all in-memory

systems where, even with a large cluster of servers, as the data grows the memory limitations

are eventually reached. However, this is even more of a factor here as all updates and previous

property values are maintained in-memory. The model must, therefore, be implemented in a

manner which minimises the per-update memory footprint, without compromising the readability

of an entity’s history/neighbour list during analysis[12].

3.6 Distributed Temporal Graph Model

With these challenges in mind, by incorporating the elements of distribution and synchronisation

into the temporal graph model and its update semantics, we can better guide the development

of real system implementations and preemptively alleviate the discussed issues. For the reasons

mentioned in Section 4.4.1, we take the model to have been partitioned in an edge cut fashion,

where a distributed temporal graph GDT consists of n partitions numbered 1 to n. As vertices are

53

not cut, any vertex is a member of exactly one partition and the set of vertices in each partition

do not intersect. Let R(vi) refer to the partition containing vi and let V Dj refer to the set of all

vertices which have existed in partition j.

As edges are cut, they may exist in either one or two partitions depending on the location

of their source and destination vertex. We define a local edge as any edge where their source vi

and destination vj are within the same partition i.e. R(vi) = R(vj) . The set of all local edges

which have existed within a partition k is defined as ELk . In contrast to local edges, we define

split edges as any edge where its source vi and destination vj are stored in different partitions

i.e. R(vi) 6= R(vj). The set of all split edges which have existed within a partition k is then

defined as ESk and the set of all edges, irrelevant of vertex location, as EDk = ESk ∪ELk . Note, for

a split edge 〈vi, vj〉, a copy will exist on both partitions containing the source and destination

i.e. 〈vi, vj〉 ∈ ES1 and 〈vi, vj〉 ∈ ES2 where R(vi) = 1 and R(vj) = 2.

3.7 Distributed Update Semantics

Whilst the distribution of the model touches upon the first challenge of partitioning, the semantics

of updating are drastically affected by the possible loss of ordering and the need to synchronise

edges which have been split across partitions. However, whilst many systems struggle with

handling updates in this manner, because of the possible loss of updates, the temporal graph

model offers a simple solution in the form of its structural and property histories. As these store

all mutations in chronological order, and do not overwrite/delete prior state when updated, all

changes to the graph become additive and, therefore, may be inserted in any order. This means

delayed or out of order updates may be safely ingested from the stream alongside synchronisation

messages between partitions. For this to be possible though, the preconditions and effect of the

update types established in Table 3.1 must be modified to fit this distributed environment.

Building from the definition of an unbounded stream within Section 3.3, once distributed,

the arrival of an update is no longer received by the temporal graph as a whole, but is instead

received by the relevant partition. We define the original source of the updates as partition 0

and the stream of updates from the source to a given partition r as S(0, r). This is a subset of

the equivalent undistributed stream S(0, r) ⊆ S such that for all updates in S(0, r), if the action

consists of a mutation to a given vertex v, R(v) = r. Alternatively, for actions mutating a given

edge 〈vi, vj〉, R(vi) = r, i.e. the partition storing the source vertex of an edge receives its updates.

If the edge in question is split, a synchronisation update must be sent to the partition storing

the second version of the edge e.g. R(vj). Therefore, we define synchronisation streams between

pairs of partitions, whereby S(1, 2) refers to the stream of synchronisation updates flowing from

partition 1 to partition 2.

We make the formal requirement that at the update source the prerequisites of each update

(as described in Table 3.1) must hold, as well as the requirement that for each new action an+1

at time tn+1, tn+1 > tn. However, from the perspective of the receiving partition these are

54

Figure 3.4: Example distributed temporal graph with two partitions, expanding on the graph
seen in Figure 3.1

both relaxed. For the prerequisites, modifications are made as described below. For the action

time, all timestamps must only be non-repeating discrete values, i.e. for an arriving update

〈tm, am〉,∀〈ti, ai〉 ∈ S(0, r), tm 6= ti for m 6= i . This relaxation allows for the updates to arrive

out of order, but still forbids the non-determinism of an insertion and deletion at the same time

step. By ordering on event time which is set at the source, delayed commands may be correctly

executed when received by appending the new information into the affected entity’s history. This

even includes the case of deletions which have arrived before the addition of the affected entity,

as discussed below in 3.7.3. Finally, for synchronisation messages between partitions, the second

constraint is relaxed completely as some updates (such as the edge addition below in 3.7.2) must

be converted into multiple graph changes, which are considered to occur at the same time, to

ensure the correct state is generated.

3.7.1 Example Distributed Temporal Graph and Update Streams

Before discussing the specifics of each update type in this distributed environment we may first

view an example partitioned temporal graph and the streams across it. Figure 3.4 shows an

expanded version of the example social network from Figure 3.1. In this instance the graph has

been split between two partitions, there are now two new vertices (c and d) and two new edges

(〈a, c〉 and 〈d, b〉). Partition 1 contains Vertex a and c which can be seen in V D1 and Partition 2

contains b and d which are present in V D2 . As vertices a and b are now in different partitions the

original edges (〈a, b〉 and 〈b, a〉) are considered split and stored in both ES1 and ES2 . The new

55

edges are, however, local as their source and destinations are in the same partition. These are,

therefore, stored in EL1 and EL2 respectively. A graph representation of this can be seen on the

bottom of the figure. Finally the stream of events S is now split between S(0, 1) and S(0, 2),

feeding the two partitions. The synchronisation streams can then be seen in the middle of the

figure (S(1, 2) and S(2, 1)) providing the required bidirectional flow.

3.7.2 Entity Addition

For the addition of a new vertex v at time tm, within a partition r such that v /∈ V Dr , the

update is treated in exactly the same manner as in the non-distributed temporal graph. It is

inserted into V Dr and its history is established. If alternatively the vertex is already established

such that v ∈ V Dr , we remove the precondition that its prior state must be deleted and insert

the created state into its history at the given update time Hv := Hv ∪ 〈tm, created〉. This is

because a deletion of the vertex may have been delayed, but upon arrival can be inserted between

two creations in the vertices history. In the intermediate view of the vertex (before the missing

update arrives) we specify that, for any two consecutive change points within the history of

an entity, where the associated states are equal, the most recent update may be ignored, i.e.

Hv =
{
〈t1, created〉, 〈t2, created〉

}
=

{
〈t1, created〉

}
.

The addition of an edge 〈vi, vj〉 is handled differently depending on whether it is local or

split. In the instance of a local edge, rather than checking if both the source and destina-

tion vertices exist and are currently present within V Dr , this precondition is replaced with

an expansion of the edge addition to include the addition of its source and destination, i.e.〈
tm, addE(〈vi, vj〉)

〉
=⇒

{〈
tm, addE(〈vi, vj〉)

〉
,
〈
tm, addV (vi)

〉
,
〈
tm, addV (vj)

〉}
. These vertex

additions are handled exactly as described above. This does not increase the number of vertices

in the graph, as the source and destination vertices are required to exist for the edge to have been

generated at the data source. However, the addition for either vertex may have yet to arrive at

the partition, leaving the edge hanging. This expansion, therefore, assures the integrity of the

graph such that no edges are hanging and once the delayed update does arrive (or if it already

has) this secondary creation point within the vertex’s history may just be ignored as above. The

edge may then be updated in the same manner as the non-distributed temporal graph, either

inserting the edge into ELr if it has yet to exist or updating its history with the new created

state. As with the vertex addition, in the case of the latter, the precondition for the edge’s prior

state to resolve to deleted is removed, allowing a possibly delayed edge deletion to be placed

between the two created change points.

If the edge is split, the initial transformation of the update still occurs, but partition r only

deals with the source vertex update and the creation/update of its own edge copy (inserted

into ESr instead of ELr). The destination vertex addition and the edge addition are then for-

warded to the partition handling the other copy of the edge i.e S(r,R(vj)) := S(r,R(vj)) ∪{〈
tm, addE(〈vi, vj〉)

〉
,
〈
tm, addV (vj)

〉}
. The second partition receiving these updates handles

them exactly as if they had arrived from the source, with the exception that the edge add is not

56

expanded a second time. This allows partitions to synchronise across their cut edges in parallel

with updates from the source, without fear of losing updates or generating an incorrect graph

state.

3.7.3 Entity Removal

In the non-distributed graph the removal of an edge has two prerequisites, for the prior state to

be created and the edge e to be a member of ET . Once distributed, this first prerequisite can

be removed in the same manner as the addition above, such that an addition of the edge may be

delayed and upon arrival, the associated created change point will need to be inserted between

the two deleted states. The second prerequisite may also be removed such that if e /∈ EDr at

the time of arrival of the update e is still inserted into EDr and its history initialised with the

deletion i.e. EDr := EDr ∪ e, He={〈tn+1, deleted〉}. Edges with only deletions in their history are

not considered to be a member of the graph as they are yet to exist at any point in time, would

be filtered out of all flattenings and, therefore, could never be observed. However, such edges

become a member as soon as a delayed addition arrives and its change point has been inserted

into the history. As stated above, this addition will also cover the creation of the edge’s source

and destination, ensuring the edge is not hanging now that it considered a member of the graph.

Unlike the addition of an edge, the deletion does not affect its associated source and destina-

tion vertices, as edges only including deletions do not break any integrity constraints. However,

if the edge is split this still requires synchronisation and, therefore, the edge removal must be sent

to the partition handling the destination, i.e. S(r,R(vj)) := S(r,R(vj))∪
{〈
tm, rmvE(〈vi, vj〉)

〉}
.

The receiving partition may then handle this in exactly the same manner as the original, minus

the synchronisation output.

For the removal of a given vertex v within partition r, previously this had to be a member of

VT and its most recent state had to be created. Both these constraints are removed in favour of

initialising the vertex via the deletion, in the case of the former, or adding a secondary deleted

change point into its history in the case of the latter. Vertices initialised as deleted are not

considered part of the graph yet, but this will allow the delayed vertex addition to be slotted

behind it once it arrives. As with the non-distributed vertex deletion the removal of a vertex also

implies the deletion of all associated edges. Whilst for local edges this may be handled in the

same way (with the exception that the removal will be placed in their history even if they are

currently removed) split edges require synchronisation. This means that for all split edges where

v is either the source or destination, the partition storing the second copy of the edge must be

informed, i.e. ∀〈vi, vj〉 ∈ ESr if vi = v, S(r,R(vj)) := S(r,R(vj)) ∪
{〈
tm, rmvE(〈vi, vj〉)

〉}
else

if vj = v, S(r,R(vi)) := S(r,R(vi)) ∪
{〈
tm, rmvE(〈vi, vj〉)

〉}
. The partition receiving this may

then handle it in the same manner as a normal edge deletion synchronisation. Note, as a vertex

deletion may arrive before a related edge has been inserted into EDr , this deleted change point

must be inserted into the history of any new edge where v is a source or destination from this

point forward, ensuring the edge does not miss this update due to incorrect update ordering. If

57

Figure 3.5: An example of how the distributed update semantics would be applied if update 4
(the creation of edge 〈b, a〉) from the stream in Figure 3.2 was delayed, arriving after the deletion
of vertex b (update 6).

the edge in question is split, this will also require synchronisation.

An example of this synchronisation can be seen in Figure 3.5 which is based on the social

network and its update stream from Figures 3.1 and 3.2. In this example update 4 (the addition

of the edge 〈b, a〉) has arrived at the very end of the stream, after the removal of its destination

vertex a at t6. This is initially received by Partition 2 through stream S(0, 2) as the source node

is b and R(b) = 2. This edge addition is then expanded as explained above to include the addition

of the source and destination vertex
〈
t4, addE(〈b, a〉)

〉
=⇒

{〈
t4, addE(〈b, a〉)

〉
,
〈
t4, addV (b)

〉
,〈

t4, addV (a)
〉}

. Partition 2 creates its copy of the edge and completes the vertex addition for b

but, as the edge is split, forwards the remaining update requirements to Partition 1, the container

of the destination node S(2, 1) := S(2, 1) ∪
{〈
t4, addE(〈b, a〉)

〉
,
〈
t4, addV (a)

〉}
. Partition 1 will

handle the two updates, including inserting the deletion of vertex a at t6 into the history of the

edge H〈b,a〉 := H〈b,a〉 ∪ 〈t6, deleted〉. Finally, as this is a split edge, Partition 1 must inform

Partition 2 that its version of this edge is missing this deletion in its history, forwarding the

information for it to be inserted S(1, 2)) := S(1, 2)∪
{〈
t6, rmvSync(〈b, a〉)

〉}
. Partition 2 inserts

this information into the history of its edge copy, completing the update and establishing the

same graph state which would have occurred if the updates have arrived in the correct order.

3.7.4 Entity Updates

Finally, updating the properties of an entity previously had the requirements that the entity must

exist in YT and its prior state must equal created. To nullify these, once distributed, instead of

defining property updates as a separate update type, they are converted to entity additions, i.e.〈
tm, updateE(〈vi, vj〉)

〉
=⇒

〈
tm, addE(〈vi, vj〉)

〉
,
〈
tm, updateV (v)

〉
=⇒

〈
tm, addV (v)

〉
. By doing

this, if the update arrives before the real addition it may establish/revive the entity and allow

the new property values to be stored alongside their given key. The change point established

58

by the real addition may then be inserted into the structural history behind this update, once

it arrives. Similarly, if the property update and the delayed entity addition both change the

value of the same keys, these older values may be inserted behind those of the update upon

arrival. This conversion also means that for split edges, where a change in property values must

be synchronised, this may be handled in exactly the same manner as the edge addition above.

3.8 Summary

In summary, we have taken inspiration from different graph models seen within Chapter 2 and

defined a temporal property graph model which may be mutated via a stream of updates. We

defined the semantics for these updates, both in the addition and deletion of entities and the

updating of their properties. We explored how when inserted into a temporal graph these updates

do not overwrite prior state, but instead append to it, generating both a structural and property

history for all entities. We discussed how the temporal graph may be ‘flattened’ into a static

graph, deriving how it would have looked at the flattening time from the structural and property

histories instead of having to reingest the updates up until this point. These graph flattenings

were then expanded to incorporate the concept of windows, only looking back a certain depth

into the history of the graph.

Once the base model had been defined we explored the challenges of implementation and

distribution. This required the splitting of the graph into partitions which could be placed on

different machines within a deployment. These partitions would then have a shared state (either

cut edges or vertices) which would have to be synchronised whenever one of the machines storing

it received an update. Both the updates coming from the stream source and the synchroni-

sation messages between partitions then have the possibility of arriving out of order, breaking

the constraints established within the original update semantics. To alleviate these issues we

recreated the temporal model with distribution in mind, defining what a graph partition consists

of, how the now parallel streams of messages from the original source and other partitions may

be interpreted and how out of order updates may be handled without losing data or breaking

the consistency of the graph.

59

Chapter 4

Raphtory Ingestion, Modelling

and Maintenance

4.1 Introduction

Chapter 3 defines the elements of a temporal graph and how it may be conceptually updated/dis-

tributed. This chapter initially introduces the Raphtory system which implements these guiding

principles, but focuses mainly on the many challenges which must be solved when it comes to

ingesting data into the system, modelling this as graph updates and maintaining the graph across

a set of real machines. These challenges are split broadly into distributed implementation issues,

as discussed in Section 3.5, and more practical challenges of how to make the system congenial

from a user’s perspective when ingesting their data and performing analysis.

To recap the issues of distribution, firstly it must be decided what a temporal graph partition

consists of and the strategy for splitting the overall graph. Secondly, unlike single machine

systems which can maintain global state, distributed systems must continuously synchronise

between machines which share state to minimise inconsistencies. This shared state comes in the

form of entities which have been cut by the partitioning algorithm and must be present on all

machines with related entities. Thirdly, updates coming into the system may arrive out of order,

which the distributed temporal graph model above makes allowances for, but there are many

corner cases which must be handled when actual objects are interacted with. Finally, the model

does not account for the large resource requirements of storing the graph history in-memory

within real machines, which must clearly be managed as otherwise the system will crash.

With regards to simplifying the ingestion process for the user, data may be stored in a plethora

of different ways, as well as being either of fixed size or continuously increasing over time (bounded

or unbounded). Each combination of these may then require its own distinct retrieval method

(push, pull, polling, etc.). Once the data is ingested, there must be a clear way of converting this

raw information into a stream of graph updates, which must then be correctly forwarded to the

60

right machine, built into graph entities and made available for querying. Finally, for submitted

queries, analysis should only be performed on graph flattenings, as defined in Section 3.4, where

all of the updates, up to and including that point of time, have fully synchronised, ensuring

the correct result. Therefore, a manner of tracking the latest safe update time across the whole

graph must be established.

As expanded on below, these problems have been tackled within Raphtory via three main

components: the Spout, providing an interface for connecting Raphtory to data repositories; the

Graph Router, which converts raw data into the stream of graph updates from which the graph

is constructed; and the Partition Managers, which are responsible for converting the stream of

graph updates into a temporal graph model, maintaining the data across a set of machines, a

visualisation of which can be seen in Figure 4.1. This Chapter discusses all of these components

and their interactions in depth, as well as how much involvement a user has to take at each step.

�
This chapter contains deep internal details of Raphtory’s implementation. For some

readers this will be very insightful, for others less so. As such, each section (barring

the overview) begins with one of these boxes providing the key takeaways, allowing

those less concerned with the specifics to continue reading past without fear of

missing something important.

4.1.1 Chapter Roadmap

Section 4.2: Raphtory Overview An initial overview of the Raphtory system, exploring how

all of the elements for ingestion and analysis relate, providing the reader context for the

sections following.

Section 4.3: Ingesting Data - Raphtory Spout Explanation of the Spout, Raphtory’s

point of connection to the outside world. Here we discuss how Raphtory ingests from

different datasets and how a user may implement their own Spout.

Section 4.4: Graph Modelling and Partitioning - Graph Router Discussion of the

Graph Router, the component which converts raw tuples from the user’s data source into

graph updates. Here we discuss how to model data as a graph, how this is partitioned in

Raphtory and how the user may define their own Routers.

Section 4.5: Graph Partition Manager An introduction to the Partition Manager and its

subordinates who manage the state of the in-memory graph as well as the execution of

analysis.

Section 4.6: Partition Writer A deep dive into the Partition Writer which handles the

ingestion of new graph updates from the Routers alongside update synchronisation with

its peers across partitions.

61

Figure 4.1: Raphtory Architecture Overview.

Section 4.7: Watermarking Here we describe how Raphtory tracks the updates each Partition

has ingested/synchronised; generating the live graph time and when in the history of the

graph is safe to analyse.

Section 4.8: Partition Archivist A look at the Partition Archivist which is in charge of

ensuring each partition does not run out of memory. Here we discuss how the graph state

is persisted, the oldest history ‘archived’ (moved out of memory), and how this is retrieved

for queries if once again required.

4.2 Raphtory Overview

Given that we now understand the temporal graph model and its semantics, the next step was

to use this as a blueprint to create a system which supports the model, provides online time-

aware graph analytics and addresses the challenges of distribution discussed above. For this we

have developed Raphtory, a system which maintains temporal graphs over a distributed set of

partitions. Raphtory is built to ingest and convert streams of events into graph updates, inserting

these in real-time into an in-memory temporal graph. The full structural and property history

of each vertex and edge is fully curated, ensuring all changes are correctly ordered and allowing

analysis on both the Live Graph and any point within its history.

4.2.1 Implementing the Distributed Temporal Graph Model

Raphtory’s core components for modelling and ingestion consist of Spouts, Graph Routers and

Graph Partition Managers. These can be seen on the left of Figure 4.1. Spouts are analogous to

the stream source discussed in Section 3.7 and attach to a user specified data source external to

Raphtory. Tuples are then pulled from this source and pushed into the system. These raw data

tuples are received by the Graph Routers, which convert each into one or more of the update

62

Figure 4.2: The structural and temporal scope of algorithms within Raphtory. Once an algo-
rithm is defined it may be run on any flattening throughout the lifetime of the graph, without
modification.

types established in Section 3.3 via a user defined parsing function. Updates are forwarded to

the Graph Partition Manager handling the affected entity. By decoupling these processes the

same data may be modelled as many different graphs by connecting the same Spout to Routers

with unique parsing functions or, alternatively, the same Router may be connected to various

Spouts pulling from independent data sources to join them into one graph.

Graph Partition Managers are Raphtory’s implementation of the temporal graph partition

established in Section 3.6. As their name suggests, these handle all operations of the partition,

ingesting graph updates, synchronising with peers and performing analysis. As updates arrive

via the pool of Graph Routers the manager will perform them as established in Section 3.7,

creating entity objects as required and inserting updates into the histories of affected entities

at the correct chronological position. Additionally, messages between Routers and Partition

Managers are watermarked to track the most recent update time (the Live Graph) and to know

when in the graph’s history is synchronised and, therefore, safe to analyse.

4.2.2 Performing Analysis on the Temporal Graph

Once Raphtory is established and ingesting the selected input, analysis of the graph may begin.

This is controlled via Analysis Tasks which are spawned when a user submits a query via the

Analysis Manager’s REST API; seen on the right of Figure 4.1. Analysis Tasks contain a user

63

Figure 4.3: The internal management of the components which make up a Raphtory deployment.

defined vertex centric algorithm[7] and coordinate with the Partition Managers to execute this in

BSP supersteps on the entities they control. These algorithms are implemented via Raphtory’s

analysis API which gives the user access to the structural and property histories of all entities.

Through this they may explore the local neighbourhood of a vertex, paths and subgraphs and

perform analytics across the entire graph. This can be seen at the top of Figure 4.2.

All algorithms in Raphtory are executed on graph flattenings as defined in Section 3.4. These

can be created for the Live Graph, or for any point back through the graph history. Tasks

may be set to run over ranges of the history, creating flattenings at set increments, or may

run continuously on the Live Graph, periodically creating flattenings as it updates. In both

instances the user may optionally specify a batch of windows which must all be applied at each

flattening end ; the output from this being a set of windowed flattenings which once analysed will

show the differing result of the algorithm when varying temporal depth. To simplify this process

for the user, algorithms only require implementing once as they interact with the temporal graph

through a Graph Lens which only returns the entities present once the window has been applied.

This may be seen at the bottom of Figure 4.2.

4.2.3 Underlying Frameworks and Deployment

Raphtory’s architecture is based on the actor model[127], a programming paradigm where ‘ac-

tors’ are the primitive unit of computation. Actors have no shared state and communicate via

messages which, based on message type, evoke defined control flows known as behaviours. Within

these an actor may change its internal state, send messages to other actors or possibly spawn child

actors to parallelise a given task. This greatly simplifies concurrent programming and mitigates

against traditional multithreading hazards such as deadlocks and stochastic behaviour [130].

This also provides a uniform communication protocol between local and remote actors, enabling

straightforward distribution and horizontal scaling. These together improve maintainability of

the code base, with the alternative multithreaded shared-state shown to become extremely cum-

bersome for large projects [131]. All components in Figure 4.1 are, therefore, implemented as

64

Figure 4.4: The Raphtory pipeline from data source through to Partition Manager.

actors utilising the Akka[132] Framework, as seen within Figure 4.3. Akka provides the founda-

tion for implementing component behaviour and handles all messaging both local and remote.

An additional Watchdog actor is also present within Raphtory which assigns UUIDs as Graph

Routers and Partition Managers connect, blocking ingestion/analysis until the deployment is

fully online.

4.3 Ingesting Data - Raphtory Spout

�
This section discusses how Raphtory ingests data from the outside world. A chosen

dataset may be bounded (non-changing) or un-bounded (continuously increasing in

size) and can be ingested from any source location (files, streams, databases, etc.).

Ingestion is handled via a component called the Spout which provides a simple user

API for connecting to the source, extracting tuples and pushing these into the next

component in the Raphtory pipeline - Graph Routers. No processing of the data is

done in the Spout, decoupling ingestion and parsing. This allows the same Spout to

feed different Graph Routers or many different Spouts to feed into the same graph

in parallel, joining their datasets.

Delving into the first component in the ingestion pipeline, the Spout provides an abstract

model for all data sources, allowing Raphtory to support any source the user requires. These

may range from traditional data stores, such as databases and file repositories, to streaming

APIs and message queueing systems, such as blockchain nodes and social media streams. The

Spout will perform the initial connection required to access data within one of these sources,

65

consuming tuples/events and pushing these towards the modelling stage of ingestion, i.e. the

Graph Routers.

Data ingestion is fully decoupled from all other processes ongoing within a Raphtory deploy-

ment, with Spouts permitted to join and leave the cluster at run-time. This is beneficial for a

multitude of reasons, firstly because this enables ingestion from multiple heterogeneous sources,

either consecutively or in parallel. This can be useful when, for example, historic backups of

the data are stored on disk, but up-to-date changes are arriving via a message queueing system

such as Kafka[79]. In this instance, one Spout can be initially set up to read and ingest data

from old records on disk and, as soon as it is complete, a second Spout can then be initialised to

continue ingestion from a Kafka stream, polling the latest information, until explicitly stopped.

As an example of this, the Ethereum[133] use case demonstrated in Section 6.4.2 has two main

Spouts, which can be seen in Appendix A.1 and A.2. The first connects to a Postgres database

which contains the majority of blocks, updated every 24 hours, and the second connects to a

synchronised Ethereum node which can then be polled to ingest any new blocks published to

the blockchain. This can also be seen in Figure 4.4, where one Spout is connecting to a local

database and the other to an online API, but both are pushing into the same pool of Routers.

Alternatively, it may be that the data of interest consists of differently formatted files which

are to be joined together when building the graph. As an example of this, in the LDBC Social

Network Benchmark (SNB)[134] each entity and relationship type is stored as a separate file.

These may, therefore, be ingested by a singular Spout aware of all the files, or in parallel by a

Spout for each. Similarly the output from these may be parsed by separate Router types (one

for each file), or by a singular Router with more complex logic. This second option, however,

would require each Spout to tag tuples with the original source file for correct parsing. Finally,

whilst these examples are all pull based in nature, where the Spout is polling some external

source, the user is free to forward data in a push based manner where the spout waits to receive

instead of actively requesting. This removes the need for middleware (such as Kafka above) as

the source can send updates directly into Raphtory. Though, as Raphtory is not a database,

in practice having a standard interface which can backup the stream and be read by multiple

systems alongside Raphtory is preferable.

The second reason decoupling is beneficial, as expanded upon in Section 4.4.3, is that the

same datasets may be interpreted in a variety of different graph structures, each modelled via

its own Router. By separating the manner in which the data is brought into Raphtory, only one

Spout is required and can feed the data into any number of varying Router deployments.

4.3.1 Spout API

As explained in Section 4.2, all components in Raphtory are Akka actors, with Spouts being no

exception. However, Raphtory hides much of this away behind its Spout API, which provides

a simple set of functions to get a Spout established and send tuples to the Routers. The user

is free to break down the connection and ingestion of data into any number of logical sub-tasks

66

which they may schedule via AllocateSpoutTask(). AllocateSpoutTask() takes a name and

a wait duration which represents the delay in seconds before the Spout is set to receive the

message. Messages are then handled by the ProcessSpoutTasks() function, which acts as a

switch mechanism redirecting all received messages to user-defined processing functions. This

allows the user to be in complete control of both the execution flow and the handling of the data.

Within the user-defined functions, users are able to further schedule other tasks and send tuples

to the pool of Graph Routers via the SendTuple() function. SendTuple() takes any type of

data as long as it is serialisable and will automatically load balance across the Routers via round

robin.

The different ways in which the Spout API can be utilised can be seen within the Ethereum

examples discussed above. Here, the Postgres Spout storing the majority of blocks has three

sub-tasks which it performs. The first task conducts the initial connection to the database and

then schedules the second task to run after a short pause. This second task submits an SQL

query to the database pulling all transactions from the first Ethereum block and forwarding

each transaction into the Router pool via SendTuple(). The task then reschedules itself to run

immediately, pulling the next block. This continues until the highest stored block is reached (all

data in the database has been read), at which point the third task is scheduled, shutting the

Spout down as it has completed its ingestion. In comparison, the Ethereum node Spout only

has one task, which contacts a REST API sequentially pulling blocks starting from where the

first Spout left off. If it successfully retrieves a block (set of transactions) it will send these to

the Routers and immediately schedule an attempt at the next block. If the requested block is

not yet available (i.e. it has fully ingested all published data) it will schedule a retry after a one

second pause. This will continue until the user decides to shut it down.

4.4 Graph Modelling and Partitioning - Graph Router

�
This section discusses how Raphtory converts raw data into a graph. This is handled

by components called Graph Routers. These receive the tuples output by Spouts,

parsing each piece of information via a user defined function. Within this function

the user must decide what the information means, what graph updates to extract

and the entities affected by these. Choosing the appropriate graph model here is an

important decision which can drastically affect the output of executed algorithms

later on. Once extracted the finalised updates are then handed back to the Router

which forwards them to the Partitions of the graph in control of affected entities.

The graph is partitioned via a global hashing algorithm, allowing components to

calculate the location of all graph entities. Raphtory recommends that datasets

have a time component included, to correctly order them in the temporal model.

It can, however, make do with orderable substitutes if unavailable.

67

Figure 4.5: The internal structure of a pool of Graph Routers within an example Raphtory
deployment.

Following on from the Spout, the next stage in the pipeline is Raphtory’s Graph Routers.

These take the raw events/tuples which have been extracted via a Spout and convert them into

one or more graph update operations, as defined in Section 3.3. Graph Routers operate on a tuple

by tuple basis allocating the actual data parsing to a pool of workers. These workers operate

completely independently and will forward any graph updates to the Partition Manager(s) storing

the affected entities as soon as they have been distilled from the data. This model allows the

resources allocated for data parsing to be freely scaled to match the magnitude of data throughput

by adding or removing Routers from the Raphtory cluster as required. An overview of a set of

Graph Routers can be seen in Figure 4.5.

To allow for the Graph Routers to operate without synchronisation, all generated graph

updates contain an assigned timestamp. This timestamp is relied upon by the Partition Managers

to place the updates in the correct historic order for all entities affected by the update. This

timestamp is created via time fields within the raw data under the assumption that the events

were originally in the correct order at the source or, in the worst case, this at least provides an

inherent and deterministic order within the data, as defined in the distributed stream semantics

within Section 3.7. If such a field was not present within the data, it could be considered to

utilise the internal clock of the Graph Routers, synchronised via the Precision Time Protocol

(PTP) [135]. However, by allocating timestamps around processing time (similar to Kineograph

[10]) rather than event time, the ingestion paradigm is shifted and all events would need to be

processed in the same order to generate the same temporal graph. Alternatively, the data may

be viewed as a set of updates which occur at the same time (i.e. a snapshot), as there can be no

deletions or multiple property values in this instance. Whilst technically against the underlying

model, the user would be free to ingest the data in such a manner and the same graph would be

generated each time. It would, however, be difficult to track if all the data has been fully ingested

(as discussed in Section 4.7) and drastically reduce the temporal analysis possible on the data

(as discussed in Chapter 5). Timestamps within the data are, therefore, strongly encouraged as

68

they allow events to be read in across a range of time periods in parallel, updates to be processed

late/out of order or the stream completely inverted and the temporal graph can still order them

correctly.

That being said, whilst it is possible to ingest data in any order, in practice it makes safe

analysis difficult as it is impossible to know if all updates prior to a selected flattening have been

ingested. This is because the system has no view of the outside world and can only estimate a

safe time based on the timestamps it has seen. For a bounded dataset, this is not an issue as

the unordered data can be bulk ingested and analysis can begin once all updates have finished

and synchronised. However, for an unbounded dataset/stream this would not be the case as

the data could never be considered fully ingested and updates for any point in time could still

arrive. As such we make the requirement that updates coming out of each Router Worker must

be chronologically ordered, i.e. the time associated with update N is equal to or less than N+1.

This allows the Partition Managers to establish a global safe time for analysis via watermarking,

as discussed further in Section 4.7. If this cannot be guaranteed, as the chosen stream suffers

from delayed events, the times may still be relied on, but the arrival of an out of order update

will raise an alert if it should have been included in a materialised flattening. The user may then

decide if they wish to re-execute any affected flattenings or if this can be ignored. The process of

re-executing window panes over streaming systems is common practice, as discussed in Section

2.4.2.

4.4.1 Partitioning Strategy and Routing

Graph Partitioning is an NP problem[136], even when the data is static and the temporal di-

mension is not included. There was, therefore, many factors to weigh up when deciding how the

graph would be partitioned in Raphtory, with this additionally having a major impact on the way

Routers and Partition Managers communicate. As discussed in Section 3.5, the graph may be

edge-cut or vertex-cut; may involve some element of temporal locality (should vertices be located

near old or new neighbours); may include domain specific knowledge to better group entities; and

can be periodically adapted to maintain high data locality as new updates arrive. Unfortunately,

across these options, any non-trivial partitioning algorithm will require some form of shared

state (either local or global), vertex reference tables/update redirecting (such as in [124]) or a

centralised decision maker (e.g. Weavers[11] oracle), which has been shown to scale poorly[1].

With this in mind, it was decided that the best initial method would be a global hashing

algorithm which decides the Partition Manager responsible for each vertex. This is an edge-

cut partitioning strategy where edges with the source and destination on different machines are

stored in both partitions and the Partition Manager controlling the source vertex maintains the

‘master’ copy. Whilst this seems quite basic it actually has many benefits. The primary one

being this requires no state and any Router or Partition Manager may instantly calculate the

location of required vertices for initial update propagation or edge synchronisation. This allows

the number of Routers and Partition Managers to scale freely, only dampened by the increased

69

Table 4.1: Update supported by the Graph Router, based on those defined in Table 3.1.

Update Type Required Parameters
Vertex Addition Update Time: The time at which the vertex add occurred, Vertex ID: The ID

of the vertex being added
Vertex Deletion Update Time: The time at which the vertex deletion occurred, Vertex ID: The

ID of the vertex being deleted
Edge Addition Update Time: The time at which the edge add occurred, Source ID: The ID

of source vertex, Destination ID: The ID of destination vertex
Edge Deletion Update Time: The time at which the edge deletion occurred, Source ID: The

ID of source vertex, Destination ID: The ID of destination vertex

Optional Parameters for Entity Addition
Entity Type: A label denoting the type of vertex or edge being added
Property Set: One or more properties associated with the entity consisting of a property key (name)
and value. This value may be a String (mutable or immutable), Long, Double or Boolean

number of split edges (which would exist no matter the algorithm). The second benefit, as with

most hashing algorithms, is that vertices are evenly distributed across the partitions, meaning

no machine has an inherently larger vertex centric workload. In this instance, for varied queries

over differing points in the history of the graph, processing time may fare better on average in

comparison to something more specialised for a set point in time.

The development of temporal aware dynamic partitioning algorithms is clearly an interesting

area of research which has very little coverage in the current literature. Whilst it is not imple-

mented here it is planned to be included in future versions of Raphtory once we have a better

idea of the workloads users deploy on the platform and a thorough investigation into the topic

has been completed; as discussed further in Section 7.2.

4.4.2 Graph Router API

As with the Spout, Raphtory provides an API for the Graph Router which sits atop the underly-

ing Akka actors. This API allows users to write a ParseTuple() function which is distributed to

all Router Workers and is called for each individual message sent from the Spout. This method

allows users to freely interpret the data in any way and output zero or more graph updates

via SendGraphUpdate(). The available graph updates, as seen in Table 4.1, consist of vertex

addition/deletion and edge addition/deletion. Property updates do not appear in this list as

they are modelled as entity additions. This allows them to execute before the original addition

if required as discussed in Section 3.7 and implemented below in Section 4.6.2. For all update

types, a timestamp is required specifying when the change occurred in the history of the graph.

For vertex updates a unique ID (Long) must be specified to identify the entity within the graph.

If such an identifier exists for the entity within the data, such as the ‘person ID’ within a gen-

erated LDBC SNB graph, this may be used. Alternatively, Raphtory provides the AssignID()

function which takes any non-numerical field within the data (or a combination of fields) and

returns a unique ID from it using a MurmurHash3[137]. MurmurHash was chosen as it is known

to be very quick, whilst minimising the number of collisions, and is frequently used in large

70

projects, notably nginx and Hadoop[138]. As an example of this, within the Ethereum Router

(see Appendix B.1), the hashes representing the wallets involved in each transaction are passed

to AssignID() which returns a unique long for each wallet. Edge updates similarly require the

identifier for the source and destination nodes associated with the edge, which are combined to

make the unique ID for the edge. These again may come directly from the data or by passing

the same fields to AssignID().

Following these mandatory components, there are also two optional parameters for all addi-

tions into the graph, allowing the user to specify additional information about the entity. The

first of these is the entity type, which is a label associated with the vertex or edge, specifying

its category/grouping. This can be used to model graphs with multiple types (as seen below

in 4.4.3) which may then be utilised to enrich queries during analysis, i.e. only propagating a

value along certain edge types. The second is the property set consisting of one or more property

names and its associated value at the time of the addition/update. The key for a property is

always a string, but the value may consist of a string, long, double or boolean depending on the

type of information it stores. These may be set to mutable or immutable allowing the user to

note if the property requires its own history or if a single value can be stored to save memory.

Continuing the pipeline from the Spouts established in Section 4.3.1 above, the Ethereum

Router (seen in Appendix B.1) can receive tuples from either the Postgres Spout or Ethereum

node Spout. Each tuple sent from these Spouts consists of an individual transaction between

two wallets within the Ethereum network which is interpreted via the ParseTuple() function.

In each instance the function extracts the time of the transaction, wallet IDs and the amount of

ether transferred, converting them into three graph updates, two vertex additions, one for each

wallet, and an edge addition for the transaction between them. Both vertex additions contain

their wallet hash as an immutable property as this value does not change. In contrast, the

transaction value is allocated on the edge as a mutable long, as many transactions may occur

between these two wallets and this value may be different every time. As there is only one vertex

and edge type in this network no explicit types are added.

4.4.3 Modelling Data as a Graph

When initially looking at a given dataset, there may be a clear manner in which individual

tuples are converted into updates and, therefore, how the overall dataset may be modelled as a

graph. However, there are often many ways to interpret data, with different vertex types which

may be extracted and numerous edge types which can be drawn between them. This provides a

clear motive as to why the Spout and Router are decoupled, allowing the user to view the same

data in a multitude of ways. In addition to this, dependent on the graph entities and structure

established by the Router, the output from a given algorithm will be completely different. This

means that the process for analysis begins at the Router and often requires the user to think

hard about what an algorithm is going to return, how this should be interpreted and what

modifications may need to be made, depending on the chosen model of the data.

71

Figure 4.6: Different graph models extracted from the Gab.ai social network dataset explored in
Section 6.4.1. Columns and vertices are colour coded so they may be matched easier.

As an example of this, the data explored in Section 6.4.1, extracted from the social network

Gab.ai, consists of posts and responses made by users of the network. Figure 4.6 demonstrates

various ways an example set of posts and comments may be interpreted, the simplest of these

being a User→User graph where edges are drawn between users when they interact with each

other. The results of a connected components algorithm run on this may be interpreted as the

different communities of the network and used to explore if these are isolated or largely intercon-

nected. Alternatively, if the data was formatted as a Post→Post graph, where responses create

edges between posts instead of users, the same algorithm would return the different communica-

tion threads within the network. Finally, in a more complex model, mixing both posts and users,

a simple connected components algorithm may begin to make less sense and, therefore, need to

be expanded to propagate based on edge/vertex type or be replaced with a more appropriate

function.

4.5 Graph Partition Manager

�
This section gives an overview of how Raphtory manages the state of the temporal

graph in a distributed environment. This is the job of the Partition Manager and its

three subordinates the Writer, Reader and Archivist. Writers handle graph updates

from the Routers and synchronise when needed with other partitions. Readers

perform analysis on the entities within the partition when a query is submitted.

Archivists work in the background to manage the in-memory history, backing up

older state to be removed if the history becomes too large for memory.

72

�
Vertices and Edges are represented as objects which have their history stored in an

ordered triemap for quick insertion and searching. Properties are similar, but may

be defined as immutable by the user if their value will never change to save space.

Vertices and Edges contain a map of their properties; vertices contain their edges in

incoming and outgoing maps; vertices are tracked in an Entity Storage. A Partition

Manager will control multiple Entity Storages, viewed as virtual partitions allowing

controlled multi-threading inside the partition.

Graph Partition Managers are Raphtory’s primary component, each storing a partition of the

overall in-memory graph. These partitions are an implementation of those defined in Section 3.6

and contain a unique set of vertices and their incoming/outgoing edges. Each Partition Manager

is responsible for maintaining up-to-date histories, completing analysis requests and performing

incremental backups for these entities. These tasks are delegated to three sub-components, the

Writer, Reader and Archivist. Writers are in charge of handing updates to the state of the

graph, inserting these into the history of entities affected. Readers handle requests for analysis,

executing the provided algorithm and returning the results. Archivists work in the background,

persisting new data to permanent storage and archiving the older history to alleviate memory

constraints.

4.5.1 Entity Modelling and Partition Storage

Based upon the model introduced in Section 3, the graph representation in Raphtory is split

between Entities and Properties. Entities are the supertype of Vertices and Edges, containing all

common attributes. The most important of these attributes is their previous state, associated

properties and entity type, which together constitute the structural and property history of the

entity. Structural history for an entity is stored in the form of a triemap where the keys are event

timestamps and the values are booleans; true for a creation/update, false for a deletion/removal.

This is then ordered from the newest to oldest timestamp i.e. the latest state of an entity is at

the head. A triemap was chosen principally because it provides fast insertions of new updates at

the head, as well as delayed or out of order updates further into the tree. However, in addition

to this, as two entries within a triemap cannot have the same key (time), updates to an entity

history are idempotent, i.e. if you run the same update twice it will not affect the end result.

Therefore, message delivery semantics can be relaxed from exactly-once to at-least once. This

fits with the update semantics defined in Section 3.7, whereby updates must occur at unique

timestamps to remove the order ambiguity they would otherwise generate. Properties associated

with an entity come in two varieties, mutable and immutable. Mutable properties store their

history in a similar triemap structure. However, whilst the key is still a timestamp, the value is

now an ‘Any’ (a Scala concept denoting any object type), allowing the property value to be a

string, number or boolean depending on the needs of the user. These are used for the majority

of properties which change through time, such as a person’s bank balance, which alters as they

73

Figure 4.7: The internal structure of an entity within Raphtory.

make and receive payments; as can be seen in Figure 4.7. Immutable properties on the other-

hand only store a singular value (which cannot change), together with the time this value was

first seen. This reduces memory overhead as duplicate values are not required in the history

for delayed updates to be slotted in-between. Immutable properties also require less attention

from the Archivist and reduce lookup times during analysis. This does, however, come with

the obvious caveat that it can only be chosen when the user is confident the value of the given

property will be static for the lifetime of the graph. There are many instances where this makes

sense, however, such as the person’s birthday in Figure 4.7, as people cannot change the day

they were born. Irrelevant of mutability, properties are additionally given a name allowing them

to be differentiated within each entity and read/updated at a later time.

The third of these components, the entity type, is handled in a similar manner to an im-

mutable property whereby the value cannot change once allocated. However, as these have a

known name and are treated as always existing in an entity (i.e. have no associated ‘first seen’

time) they are simply stored as a string. A visualisation of the type and structural/property

histories of an entity can be seen within Figure 4.7.

Based on the model proposed in Section 3.6, Raphtory’s in-memory graph is split in an edge-

cut fashion, with each vertex stored fully within one partition and edges managed primarily by

the Graph Partition Manager storing its source vertex. Edges are a subtype of entity and, in

addition to their properties and history, contain the IDs of their source and destination vertices,

which in turn becomes its unique identifier. If the destination vertex is contained within the same

partition, an edge is considered ‘local’; if it is in another partition the edge is considered ‘split’.

In the case of split edges, a copy of the edge is maintained by the Partition Manager storing the

destination vertex, allowing both partitions to access its state. Split edges are represented as

a further sub-class, allowing the Partition Manager to distinguish them. Split edges are stored

in the same fashion as a local edge, but additionally record the location of their master/ghost

74

Figure 4.8: The internal storage of a Partition Manager with its data split between ten Entity
Storages. Each storage is accessible by one Writer Worker (managed by the Writer and Archivist)
and one Reader Worker (managed by the Reader).

copy. If a change occurs to a split edge, this information can be utilised to forward the update,

synchronising the copy.

Vertices contain a unique ID (Long) which differentiates them from all other entities within

the graph. In addition to information about the node itself, each vertex contains two maps storing

its incoming and outgoing edges. The key for these maps is the ID of the other vertex sharing the

edge, i.e. for vertex v1, the key ‘2’ would retrieve the edge 〈v1, v2〉 from the outgoing map and

〈v2, v1〉 from the incoming. Storing the edges inside of their respective vertices in this manner

was chosen over one monolithic edge map to simplify the locking and maintenance of vertices,

as well as reducing lookup and insertion times. This also benefits the vertex from an analysis

perspective as it requires no external lookups and can easily iterate through its neighbours for

messaging or aggregation.

To ensure vertices are maintained and updated correctly they are kept within an ‘Entity

Storage’. This class stores vertex objects and provides an API for Partition Writers to modify

the graph state based on the update semantics defined in Section 3.7. It also provides an API

to allow the Partition Reader to safely query the graph in parallel with updates. Partition

Managers have a set of Entity Storages which each contain a portion of assigned vertices and

can, therefore, be viewed as sub-partitions. Each Entity Storage has an allocated Writer Worker

and Reader Worker which are the only actors allowed to read/edit its state. This allows the

Partition Manager to obtain a speed-up by multi-threading, whilst avoiding interleavings and

deadlocks. A visualisation of the Entity Storages within a partition and the workers which have

access to each can be seen in Figure 4.8. A view of the entity hierarchy within two local storages

and one remote storage can be seen in Figure 4.9.

75

Figure 4.9: A subset of the Entity Storages present in a Raphtory cluster. Storage 1.1 and 1.2 (in
yellow) are within the same Partition Manager whereas storage 2.1 (in red) is remote. Within
each of these you can see the entity hierarchy, with the storage containing the set of vertex
objects and each vertex containing its incoming and outgoing edges.

4.6 Partition Writer

�
This section provides a deep dive on how the Partition Writer implements the

distributed update stream described in Section 3.7. The writer itself has its own

workers, one for each Entity Storage. These writer workers receive updates directly

from the Routers, which can be imagined as the stream source. Each update type

must be handled in a specific manner. These all have their own subsections and

summaries below.

The Partition Writer is responsible for all updates to the state of the in-memory graph.

However, as touched upon in 4.5.1, the Writer does not perform the operations itself, instead

delegating to a set of Writer Workers which it oversees. This permits a controlled multi-threading

of updates (as Akka actors are inherently single threaded) and frees up the main actor to track

the overall state of the partition and recover/restart workers if any errors occur. Writer Workers

receive updates directly from the Graph Routers in parallel with synchronisation messages from

their peers. The semantics for correct update management and synchronisation across a parti-

tioned temporal graph are conceptualised and defined in Section 3.7. From the perspective of

76

Figure 4.10: Flowcharts demonstrating the process for creating/updating a vertex or edge object
within Raphtory. The sub-processes for Property/Type updates can be seen in Figure 4.11.
Note: objects in grey existed prior to the update.

these semantics, the stream source is represented by the pool of Graph Routers and each Writer

Worker is considered a partition in its own right. This section follows the same layout as 3.7

and explains in detail how each of the defined update types are implemented within the Writer

Workers. The only exception to this is explicit property updates which are already represented

as entity additions, as discussed in Section 4.4.2.

4.6.1 Adding and Updating Vertices

�
Vertex additions/updates are the simplest operation as they affect no other entity

and involve no synchronisation. They require a vertex object to be present in

the entity storage for the given ID. Once present the time of the update can be

inserted into the object’s history, specifying it was ‘alive’ at this point. Any included

properties are then created/updated in a similar fashion.

ð
This subsection is summarised within the flowchart for vertex addition on the left

of Figure 4.10 and the flowcharts for property updates in Figure 4.11.

Upon receiving a vertex addition request the Writer Worker will first check within its asso-

77

Figure 4.11: Flowcharts demonstrating the process for creating or updating the properties and
type associated with an entity.

ciated Entity Storage to see if an object for the given vertex ID exists. If nothing is present

one is instantiated, beginning its history at the timestamp within the update message. Property

objects are then created for all given keys within the property set of an update, establishing the

history of the property with the associated value and update timestamp. These are inserted into

the property map of the vertex, referenced by their key, and the vertex is placed into the Entity

Storage. Finally, if the update came with a vertex type, this will be stored within the object.

If a vertex object was already present, a new True state is inserted into its history alongside

the timestamp, even if the latest state also denotes True. This is done for two reasons: firstly

a remove command may have been delayed, which may then be slotted in-between these upon

arrival, establishing the correct history; secondly, without tracking every time the vertex is

touched we would not be able to accurately perform temporal windowing (as discussed in Section

3.4) as the vertex may be filtered out when the flattening is created (see Section 5.3.3). For all

properties included in the update, a similar check will then be performed to see if an object

already exists i.e. if the vertex already has the property. In the case of a mutable property,

if an object does exist, the new value and timestamp will be inserted into its history. For

immutable properties, if the new timestamp is earlier than the one already stored in the object,

this timestamp will be updated (the value is assumed to be the same). This is to remove the

possibility of any non-determinism where a later update arrives first and sets an incorrect earliest

appearance of the property. Immutable properties will otherwise ignore all updates. If no object

exists yet, one will be built as before and inserted into the vertices property map, again referenced

78

by its key. Finally, if the update contains a vertex type and one is yet to be allocated for the

entity, it will be stored; otherwise it will be ignored.

4.6.2 Adding and Updating Edges

�
Edge additions/updates are more complex as they require the source and desti-

nation vertices to be present and must synchronise if the edge is split between

workers. If the edge is ‘local’, requiring no synchronisation, the worker updates

both the source and destination vertices as above to ensure they are present. It

then creates/updates an edge object in the same fashion, ensuring that the source

vertex has reference to this as an outgoing edge and the destination vertex has

reference to it as an incoming edge. If the edge is ‘split’, requiring synchronisation,

the worker only updates the source vertex and its copy of the edge. It then forwards

the update to the worker in control of the destination vertex, who updates this and

its own copy of the edge.

ð
This subsection is summarised within the flowchart for full edge addition on the

left of Figure 4.12. This is supported by the flowchart for edge object creation on

the right of Figure 4.10 and the flowcharts for edge add synchronisation in Figure

4.13.

Case of local edge managed by one worker

The addition of an edge is more complex than that of a single vertex due to the different levels

of synchronisation required by edges, depending on the location of their destination vertex, for

which there are three possibilities. The simplest of these is that the Entity Storage associated

with the worker stores both the source and destination nodes, meaning the worker can fully

complete the update without contacting any other actors. In this instance the worker will first

check if vertex objects exist for both the source and destination, as conceptually the graph model

does not allow hanging edges, but also the edge object must be stored inside of the vertex objects

so they may be aware of the edge during any analysis. If either vertex does not exist they will be

instantiated with True inserted into the history at the timestamp within the edge update. Any

properties or types the vertices should have will then be created once the actual vertex addition

update arrives, managed in the same manner as described above. Alternatively, if the vertices

do already exist, this True state will still be inserted into the history to denote vertex activity

at the time of update; again important for windowing based analysis.

Once the worker has checked the presence of both the source and destination, it then checks

if these already contain an edge object for this ID i.e. has the edge been seen before. If it has

79

Figure 4.12: Left - The full process of handling an edge add update from the perspective of the
worker who first received it. The sub-processes for vertex/edge addition can be found in Figure
4.10. Right - The processes for extracting the deletions from a vertex and inserting them into a
new edge.

Figure 4.13: Different processes of synchronising an edge add depending on if it is the first time
the edge has been seen and if the second worker is local or remote.

80

not previously been seen, an edge object will be created in much the same way as a vertex object

(as seen on the right in Figure 4.10). This edge object is then added into the outgoing edge

map of the source vertex, referenced by the ID of the destination node, and the incoming edge

map of the destination, referenced by the ID of the source. Finally, any False states (deletions)

present within the history of the source and destination are inserted into the edge object. The

process for deletion extraction from a vertex and insertion into an edge can be seen on the right

hand side of Figure 4.12. This is done to counter the possible non-determinism caused when the

edge object creation is delayed or received after a vertex removal and, therefore, will not contain

this information within its history, as explained below in Section 4.6.4. This placement into the

edge maps and deletion synchronisation is only required the first time the edge is seen, every

time afterwards the new True state may simply be inserted into its history and any properties

updated in the same way as a vertex object. The process for fully local edge addition can be

seen by following the left hand side of the main flowchart in Figure 4.12.

Case of local edge shared between workers within one Partition Manager

The second option is that the destination node is stored in the same partition, but in another

Entity Storage and, therefore, controlled by a different worker. In this instance the source’s

Writer Worker, who first receives the command, will check if the source vertex exists, updating

it as required. It may then check if the edge has previously been seen and, given that is has

not, will place the new edge object (initialised by the update) into the outgoing edge map of

the source. This will then be updated with any False change points within the history of the

source. Alternatively if the source already exists, its history will just be updated with a new

True state at the time of update. The worker will then forward the edge object (passing by

reference) along with the update information to the worker who manages the destination node

to complete its half of the update. The process for this can be seen in the right hand side of the

flowchart in Figure 4.12. Upon receiving this update, the second worker will see if this is a new

edge and, if so, create/update the destination node as required and insert the edge object into

its incoming edge map. It will then extract any deletions from the destination node and send

these back to the original worker to insert into the edge object. This second synchronisation is

performed as the workers operate in parallel and could end up attempting to write on the same

edge object, leading to a corrupted state. To alleviate this, only the worker storing the source of

a local edge is allowed to edit it, the destination worker views this as read only. Fortunately this

second synchronisation has to happen only once, with any subsequent edge additions requiring

the second worker to insert a new True state into the history of the destination node at the

update time. The process for shared local edge addition can be seen by following the right hand

side of the main flowchart in Figure 4.12. The synchronisation steps can then be seen on the left

hand side (in yellow) of Figure 4.13.

81

Figure 4.14: Flowcharts demonstrating the process for creating or updating entity objects with
a deletion.

Case of split edge synchronised between workers across remote Partition Managers

The third option is that the destination node is stored in a separate partition i.e. a split edge. In

this case, the worker storing the source vertex, and who initially receives the update, follows the

same procedure as if it were a local edge shared between workers, i.e. only the synchronisation

differs. For this synchronisation the worker will propagate the command details to the Partition

Manager storing the destination vertex, along with any deletions present in the source vertex if its

the first time the edge has been seen. The remote worker receiving this will then create/update

the destination node and create its copy of the edge object, inserting this into the incoming edge

map of the destination and inserting all deletions from both the source and destination into the

edge. It will then take the deletions present within the destination and send them back to the first

worker allowing the master copy to be synchronised with the remote copy. As before this second

synchronisation only has to happen once at the first appearance of the edge. Alternatively, in

the instance that the edge has already been seen, the destination will be updated along with the

local split, but so will the edge as this is a completely separate object and any changes made to

one version must be reflected in the other. The process for these remote synchronisations can be

seen on the right hand side (in red) of Figure 4.13.

82

Figure 4.15: Full process for handling an edge delete update from the perspective of the worker
who first received it.The sub-processes for vertex/edge deletion can be found in Figure 4.14.

Figure 4.16: Different processes of synchronising an edge deletion depending on if it is the first
time the edge has been seen and if the second worker is local or remote.

83

4.6.3 Removing Edges

�
The overall process for removing an edge is very similar to an addition/update. The

key differences are that the edge’s history is appended to specify it was deleted at

the time of the update and that the update does not affect the history of the source

and destination vertices. This second point means that if the vertices already exist

nothing happens to them. However, if either vertex does not exist (i.e. the updates

have arrived out of order) they will require instantiation. This creates a placeholder

vertex with no history, which is not considered a member of the graph, but allows

the edge object to be stored correctly and both the vertex/edge to await the arrival

of their missing additions.

ð
This subsection is summarised within the flowchart for full edge deletion on the left

of Figure 4.15. This is supported by the flowchart for edge object deletion on the

right of Figure 4.14 and the flowcharts for edge deletion synchronisation in Figure

4.16.

Whilst the full process for edge deletion including synchronisation differs somewhat from an

addition, as all changes to the state of entities are additive/idempotent, the manner in which the

edge object is handled is almost identical. As can be seen on the right of Figure 4.14, when an

edge delete is processed, it is initially checked to see if the edge object exists, inserting a False

state into its history at the time of the update if it does. This will happen even if the newest

state is also False as an addition may have been delayed and need to be slotted in-between;

analogous to the two True states discussed when adding an entity. If the edge has yet to be

seen, the object will be created and its history will be initialised with the False state. Whilst

this conceptually means the edge does not actually exist within the graph, it allows the delayed

edge add to be placed in when it arrives and means this update is not lost.

Case of local edge managed by one worker

When synchronising the removal of an edge, the same three possibilities for synchronisation exist:

local and managed by one worker; local, but shared between workers; and split between remote

workers. In the first case, it is initially checked if the source and destination exist, but instead of

creating full vertex objects for those not present, a placeholder object is created. This is a vertex

which has no history and is, therefore, not technically part of the graph, but does provide a place

to store the edge object. The process for this can be seen on the right hand side of Figure 4.15.

This is done as an edge removal should have no bearing on the state of its source/destination,

but is important for the corner case of an edge deletion arriving before the edge or associated

vertices have even been created and ensures that this update is not lost/ignored. If this is the

84

first time the edge has been seen, it will be placed into the incoming/outgoing edge maps of its

source/destination and all deletions present in these will be inserted into the edge object. This

can clearly end up with an edge with several consecutive False states, but does ensure no matter

what the update order the same history is achieved. This process for local edge deletion can be

seen on the left of the main flowchart in Figure 4.15.

Case of local edge shared between workers within one Partition Manager

As with the addition, if the edge is shared between workers, the Writer Worker storing the source

vertex will perform the same process, but will omit the destination node as this must be handled

by the worker that controls it. This includes creating/updating the edge object, creating a

placeholder source vertex if required and inserting any deletions from the source which the edge

may have missed. Following this, if the edge is new, this first worker will send the edge object

(pass by reference) and update information to the worker hosting the destination node. This

worker will create a destination placeholder if the vertex does not exist or gather any deletions

from it if it does, sending them back to the first worker to complete the update. If the edge did

previously exist, the synchronisation with the second worker is unnecessary as the destination

vertex is unaffected by the deletion. This process for shared edge deletion can be seen on the

right of the main flowchart in Figure 4.15. The process for local synchronisation can be seen (in

yellow) within Figure 4.16.

Case of split edge synchronised between workers within remote Partition Managers

Finally, for a split edge between remote workers, the initial worker again performs the same

process as if the edge was shared locally. When reaching the end of its handling of the source

and edge objects, it packages up the update information and forwards the update to the remote

worker dealing with the destination node. In the instance of a new edge this remote worker

will check if the destination node exists, creating its own placeholder if not, then creating its

own copy of the edge and inserting any deletions from both the source and destination. The

deletions from the destination are then sent back to the primary worker to ensure the remote and

master copies are in-sync. Unfortunately, as this worker is not on the same machine, it requires

synchronisation whether the edge is new or not, as the deletion must be available within the

remote copy. Therefore, in the case of an existing edge, the remote worker will insert the new

False state into the history of the remote copy, but leave the destination vertex untouched. The

process for remote deletion synchronisation can be seen (in red) within Figure 4.16.

85

Figure 4.17: An example stream of graph updates & the equivalent temporal graph once dis-
tributed between two Partition Managers. Entities with dotted lines indicate their most recent
state is a deletion.

4.6.4 Removing Vertices

�
The removal of a vertex is the most complex of the updates and affects the history

of all edges with it as a source or destination. The change to the vertex itself is

minimal, requiring an object to exist and its history to be appended with a deletion

at the time of the update. This then generates edge deletions for all associated edges

which are handled exactly as above, including synchronising where required. The

real issue is that if updates are out-of-order and an edge creation arrives late, it may

miss this information. To ensure this doesn’t occur, whenever a new edge object

is created all deletions present in the history of its source and destination must be

appended into its history. This requires additional synchronisation if the edge is

split between partitions, but is only required once, not every update.

ð
This subsection is summarised within the flowchart for vertex deletion on the left

of Figure 4.14.

As with the removal of an edge, the initial process for removing a vertex is also additive

and handled in a similar manner to a vertex addition. The worker receiving the request will

check if the vertex has previously been seen and if so add the new False state into its history at

86

the timestamp provided. Alternatively, if an object is yet to exist, one will be created and the

structural history initialised with this False state. The issue that a vertex removal causes is that

all adjoining edges must also be removed from the graph so that these are not left hanging. This

creates the possibility for race conditions, as commands creating relevant edges may be delayed

or received after the vertex removal and, therefore, will not contain this information within

their history. For example, within Figure 4.17, if the command which deleted vertex 3 arrived

before the command which added edge 3→4, only edge 1→3 would exist when the deletion is

executed. 1→3 would, therefore, be updated with the new False state, but 3→4 would miss this

information. This is the reason for the extraction of removals from all source and destination

nodes seen above, as it ensures all edges contain this information, not only objects which existed

in memory at execution time. This overall process can be seen on the left of Figure 4.14.

To perform these edge removals the previously established method can be leveraged, only

requiring the correct workers to be informed. For all outgoing edges, the worker may handle

this itself as it is in control of the source node. This means it will insert a False state into the

history of all the outgoing edges at the timestamp within the vertex deletion. Those which are

split edges will then be synchronised by informing the remote worker handling the destination

vertex of this new deletion. For incoming edges, if the worker also handles the source vertex it

will update the edge itself as it is fully local. If the source is handled by a different worker in

the same partition, the worker cannot edit the edge object so will request the other worker to

complete the removal. Finally, if the source is remote, the worker will update its copy of the

edge and then request the worker handling the source node to update the master copy. It should

be reiterated that all of these requests are handled completely asynchronously and the worker

may continue processing other updates whilst the edge synchronisation occurs.

4.7 Watermarking

�
This section discusses how Raphtory tracks each partition’s progress in ingesting

and synchronising the stream of updates and, therefore, where in the history of the

graph is safe to analyse. This is managed via a watermarking system where the

stream between each Router/Writer pair is viewed as a channel and all updates

which flow through it are allocated a unique ID. These IDs are sequential and are

added into an ordered queue for the channel once synchronised. The set of queues

for all channels is viewed as a vector clock and allows the writer to establish where

it believes is safe for analysis in the graph’s history. The minimum value reported

across all writers is then considered the global ‘live graph’ time. Several corner cases

are additionally addressed here, notably partition starvation and the handling of

bounded datasets.

87

Figure 4.18: An overview of the watermarking process.

The update semantics defined in Section 3.7 and implemented above ensure any updates

coming into the graph will be placed in the correct position within the history of affected entities

and will eventually synchronise any split edges involved. Whilst this ensures updates will not

be overwritten/lost, it provides no guarantees on when an update will complete and, therefore,

there is no way to know if all partitions have fully synchronised up until a given point in the

stream. This is made additionally harder by vertex deletions, where multiple partitions need

to synchronise, and with data skew where certain partitions are receiving many more updates

than others. Not knowing where in the stream is safe to execute on is an issue as, if the user

wishes to materialise flattenings for analysis, it is unknown whether all updates for the given

flattening end have been ingested and, therefore, whether the correct result will be returned. As

such, an additional procedure must be established to determine the latest point of time in the

history where it is safe to analyse (i.e. the Live Graph time). This is difficult as updates arrive

at each partition from many Graph Routers in parallel and, even though an update may arrive

before another, it could require a larger amount of synchronisation, such as when removing a

high degree vertex, and therefore not complete until much later. Additionally, each partition

only sees a subset of the updates; it cannot confirm on its own what time is safe and must confer

with its peers to gather the full picture.

To manage this in Raphtory, updates extracted from the raw data are watermarked from

initial generation through to the final point of synchronisation. Writer Workers then track all

updates received from each Router Worker, ticking these off as they synchronise. This may then

be used to calculate the latest safe update time from each Router Worker based on the constraint

that they are arriving in chronological order, established in Section 4.4. The time an individual

Writer Worker considers safe may then be garnered by viewing the update times from all Router

Workers as a vector clock[139]. This clock contains the times of the latest synchronised update

from each Router Worker (where all prior updates are also synchronised) with the safe time

extracted as the minimum of these. The Live Graph time is then the minimum value reported

across all Writer Workers as they agree that updates prior to this time have been ingested and

synchronised. An overview of this may be seen in Figure 4.18.

This section explores the implementation of the watermarking process within Raphtory,

spread across three sub-processes. The first of these is the manner in which graph updates may

be uniquely identified, which Router Worker they originated from and how the Writer Workers

88

may asynchronously confirm that an update has been completed. Here it is also discussed how

these acknowledgements are stored, whilst minimising memory footprint. The second sub-process

is how these individual acknowledgement queues may be built into a vector clock, whereby the

Writer Worker can decide the latest time it may claim is safe from the partial information it

has received. This is followed by how these partial safe times are aggregated together upon an

analysis request, deciding the global Live Graph time and if a given flattening end can be ma-

terialised. The final sub-process deals with inequality in the amount of updates each partition

receives, ensuring no starved Writer Workers are holding back the Live Graph time via overly

conservative watermarking. This process also handles the manner in which a Spout ingesting a

bounded dataset may propagate the final update time downstream, allowing all Writer Workers

to report this value.

4.7.1 Update Tracking and Synchronisation Acknowledgement

To begin the watermarking process each Router Worker is instructed to keep a count of how

many messages it has sent to each Writer Worker. As data tuples from the Spout are only

processed by one Router Worker, when an update has been extracted from the data and sent to

a partition it may be uniquely identified across all updates. This unique identifier (UID) is built

from a combination of the ID of the Router Worker who sent it, the ID of the Writer Worker

receiving it and the new count of updates sent between these, after incrementing. For instance,

it can be seen on the left of Figure 4.19 that Router Worker 2 has sent Writer Worker 1 twelve

updates so far. The next update sent between these will, therefore, receive the UID [(2→1),13]

referring to the 13th update between this pair of actors i.e. [(Router Worker ID→Writer Worker

ID),Update Count].

To record which updates have been fully synchronised, Writer Workers maintain a queue for

each Router Worker, storing the count associated with completed updates alongside its event

time. When a Writer Worker receives an update it will only insert the corresponding update

count into the Router Worker’s queue once satisfied it has been fully synchronised. An example of

these queues may be seen on the right of Figure 4.19. Within the top queue it can be seen that all

twelve updates Writer Worker 1 has received from Router Worker 2 have been fully synchronised,

as the update counts are all stored within the queue with no gaps in the increments. On the other

hand, for Router Worker 1, whilst updates [(1→1),2], [(1→1),4] and [(1→1),5] are included in

the queue, signifying they are fully synchronised, update [(1→1),3] is not included. This means

Writer Worker 1 believes the update is still synchronising, important for deciding on when in the

stream it believes is safe (discussed further in Section 4.7.2).

Tracking update synchronisation builds on top of the established updating protocol discussed

in Section 4.6, with the update’s UID included in all synchronisation messages sent between

Writer Workers. As with the methods for synchronising different updates, there are different

processes for a Writer Worker to decide if a given update has been completed by all involved

partitions and may, therefore, be inserted into the Router Worker queue. For vertex addition and

89

Figure 4.19: On the left - the count of updates sent from each Router Worker to each Writer
Worker. On the right - the queues of completed updates for each Router Worker within Writer
Worker 1. Note update [(1→1),3] is missing, highlighted in red. Top - The key for how update
UIDs are expressed in the text.

any update to a fully local edge, as no other Writer Worker is involved, its count/timestamp is

inserted into the sending Router Worker’s queue once execution has completed within the Entity

Storage.

For updates to split edges, once the second Writer Worker has completed its portion of the

update, it will return an acknowledgement to the primary Writer Worker, including the UID and

timestamp it was sent with the original request. The count may then be extracted from the UID

and inserted into the corresponding Router Worker queue, signifying that the Writer Worker

is now content that the update is synchronised. This approach is taken so that updates may

continue to complete asynchronously without Writer Workers having to track all outstanding

requests; minimising management overhead and memory footprint.

Finally, when a vertex deletion is executed, the Writer Worker will have to track the number

of edge deletion synchronisation messages it sends out, which are recorded in a map referenced by

the UID of the vertex deletion. The edge deletion synchronisation requests are then acknowledged

in exactly the same manner as any other edge update, but when the confirmation is received

back by the primary Writer Worker the count of outstanding acks is first checked and if still

greater than 1 is decremented. Once this count reaches zero it means all of the edge deletions

have synchronised and this update may be considered complete, allowing it to be inserted into

the Router Worker queue.

4.7.2 Router Worker Vector Clocks and Live Graph Time Extraction

To enable the Writer Worker to extract the latest safe update, Router Worker queues are ordered

with the lowest UID at the head. As updates are assumed to arrive in chronological order from

each Router Worker (as discussed in Section 4.4), they may be iterated through until the end

is reached or the UID count increments by more than 1, meaning an update from this Router

90

Figure 4.20: An example of three Writer Workers and their queues from two Router Workers.
The safe updates within each queue which the Writer Workers may use to work out their safe
time are in green. These may then be aggregated into the global Live Graph time. Those in red
have prior updates yet to synchronise and are, therefore, excluded for the time being.

Worker has yet to be synchronised and is, therefore, only safe up until the prior message time. As

an example of this, on the left of Figure 4.20 are the queues for three Writer Workers. Looking

first at Writer Worker 1, it can be seen that the queue for Router Worker 2 is synchronised

until the last update ([(2→1),12]) as all updates prior have counts incrementing by 1. The same

cannot be said for those received from Router Worker 1, where update [(1→1),3] has yet to be

added to the queue meaning it is currently unsynchronised. Moving across to the associated

timestamps in these queues the Writer Worker may claim that [t59, t70] are safe with respect to

their source Routers. From these the lowest value (t59) may be extracted to use as the overall

safe timestamp for this worker and its associated Entity Storage. The lowest is used here as the

Writer Worker cannot claim to know any point above this time is safe, as the Router Workers

may have sent updates to other partitions within this range which are yet to complete.

The same process may be completed within Writer Workers 2 and 3, with them reporting

safe times of t58 and t68 respectively. The times from all workers may then be aggregated to

establish the global Live Graph time, again by selecting the minimum (t58 from worker 2) as

this ensures that all updates prior to this point have been synchronised across all partitions and,

therefore, any time prior to this may be safely analysed.

91

4.7.3 Router Time Sync and Partition Catch-up

As more updates arrive via the Router pool and begin to synchronise, the described watermark-

ing method will push forward the Live Graph time, permitting the inclusion of newer updates in

analysis, whilst ensuring nothing is executed on an ‘incomplete’ flattening of the graph. Unfor-

tunately, graph workloads often have a data skew with a small number of entities attracting a

large portion of the updates/edges[9], whereas other entities are not updated for long periods of

time. Depending on how clustered these highly updated nodes are within the partitions, some

workers may receive updates more frequently than their peers. This will naturally cause them

to report the highest safe times as they see the newest timestamps first. The other workers, on

the other hand, cannot know time has progressed until they receive new updates. This can lead

to a flattening on a recently ingested time being blocked for longer than necessary, even if all

the partitions have synchronised all updates, as an update starved partition is yet to see this

time and, therefore, cannot report it as safe. This is especially an issue for bounded datasets as

eventually the incoming updates will complete and if the safe time is still the lowest timestamp

from the pool of Writer Workers, a set of the final events will never be considered safe. For

example, looking back at the queues within the three workers in Figure 4.20, if no more updates

were sent, t64 would be their final reported Live Graph time and the updates between [t64− t79]

would never be analysable.

To solve the update starvation issue, the Router Workers will periodically announce their

most recently seen event time to all Writer Workers. These are considered an update from the

counts perspective, arriving at each Writer Worker with their own UID, and are inserted straight

into the queues. Whilst this does not specify any changes in the graph, once all prior updates

have synchronised, it will allow the writer to safely report a more recent time as it knows that

no updates prior to the sync time will be arriving. To solve the second issue of updates in a

bounded dataset being unanalysable, once the Spout has finished ingesting all the tuples from its

assigned data source, it will send a message to the last Router Worker it contacted, confirming

receipt of the final tuple. The receiving Router Worker will forward the event time extracted

from this tuple to all its peers who may then be used in the next round of time sync updates

between the Router Workers and Writer Workers, allowing the latter to report the final tuple

time and for this to be accepted as the global Live Graph time.

92

4.8 Partition Archivist

�
This last section discusses how the Archivist (introduced above) manages the state

of the graph within its partition and the memory usage of its host machine. The

first stage of this is graph persistence, making sure the history of the graph is

saved. This is done by combining periodic snapshots of the graph alongside the

recording of all updates between each Router and Writer Pair. In parallel with this,

Archivists poll their host machine’s available memory, ensuring it does not exceed

a safe threshold. If this does occur the Archivists coordinate to iteratively remove

the oldest history from memory until all hosts are back below this threshold. If a

user wishes to query a time which has been removed by this process the flattening

may instead be rebuilt by re-ingesting the closest snapshot and replaying the stored

updates between the snapshot time and the user’s chosen time. The scheduling of

this process is discussed below, but it is acknowledged that much work must be

done to allow the Writer, Archivist and Reader to optimally run in parallel.

The temporal graph model and its implementation within the Partition Writer resolves the

challenge of update ordering and synchronisation, but this model does bring the caveat of an

increased memory overhead as all previous state and property values are maintained in-memory.

This means that for larger or unbounded datasets, the combined RAM of all Partition Manager

host machines sets a hard limit on the overall size and temporal depth of the graph. To alleviate

this, each Partition Writer in Raphtory is paired with an Archivist, who is tasked with managing

the amount of memory utilised within the partition by running checks on the stored entities

and offloading the oldest history/entities onto secondary storage. This allows new updates to be

inserted into the graph, but also ensures history can be retrieved for analysis if the user needs

to go back further than the hardware limitations will allow.

As was shown in Figure 4.8, the Archivist/Writer pairing means archiving tasks are also

carried out by the pool of Writer Workers. This was done to avoid the complex locking required

to allow a separate set of workers to mutate the state of the vertices in parallel with the Writer

Workers, as well as the possibility of deadlocks or corrupted state. The Archivist has three main

tasks which it interleaves with the ongoing ingestion of data. These are: graph persistence,

snapshotting the graph at globally watermarked safe timestamps; archiving, checking which

entities may be safely removed from the graph without affecting analysis; and history retrieval,

bringing back history into the in-memory graph to allow the user to analyse flattenings which

have been pushed to disk.

4.8.1 Graph Persistence

The first stage in the archiving process is to persist the graph entities and their history to

secondary storage. This prevents data loss in the case of system errors and simplifies the actual

93

Figure 4.21: Example graph ready for archiving after it has been persisted and the two possible
new graphs depending on if ‘alive’ entities are permitted to be removed.

archiving stage when memory needs to be freed up. As in ImmortalGraph[12], persistence in

Raphtory is broken into two components, a snapshotting mechanism and an update log. For

the first of these, during each run of the Archivist’s persistence task a snapshot of the graph is

generated at its latest safe point, as specified below in Section 4.8.4. A snapshot in this instance

consists of the vertices and edges present at the snapshot time and the most recent change point

of their properties. The most recent update time of each entity (prior to the snapshot time) must

then be stored to allow the state of each entity to be rebuilt correctly. If this was not recorded

we would only know that the entities existed at the time of the snapshot, not when they were

added, losing some temporal resolution. Once re-ingested analysis performed upon this data may

return different results and must, therefore, be avoided. Finally, these entities may also be stored

alongside the ID of the Writer Worker in charge of them, allowing each machine to retrieve only

its entities when reading back into memory.

As snapshots only handle set points in the history of the graph and are created periodically,

missing out changes in-between, these are combined with an event log, which can fill in the gaps

between snapshot epochs. To provide this event log, all updates sent out from Graph Router

Workers must additionally be recorded in a message queueing system (such as Kafka[79]) with

each worker having its own topic which can be replayed (as discussed in 4.8.3). A message

queueing system is suggested over the inbuilt facilities of Akka Persist as it decouples the data

from the machine hosting the Router, can be replicated across brokers and, by additionally

recording the offsets associated with each snapshot, the workers can easily re-ingest only the

updates between two epochs.

94

4.8.2 Archiving History

Once entities have been persisted they are safe to be archived, i.e. removed from the in-memory

graph to free up space. For this, the Writer Worker iterates over all vertices within its Entity

Storage, removing structural events outside a set temporal depth (established in 4.8.4). The

worker will then do the same for the edges it controls within each vertex, i.e. outgoing edges and

split incoming edges where the source node is remote. Any property values outside the archiving

window will also be removed, unless its the most recent value which will always be kept. If all

events in the structural history are older than this depth, the whole entity may be considered

ready for archiving and, therefore, completely removed from the graph. There are two types of

archiving that may be considered here. The first is that an entity is only fully removed if its

latest state denotes a deletion, i.e. it would not be involved in any analysis. The second is that

all entities outside of the acceptable temporal depth are removed irrelevant of last state. By only

removing deleted entities we ensure all vertices and edges present at the chosen flattening end

are included within analysis and, therefore, results cannot be affected by the available memory.

However, the machines the Partition Managers are deployed over must have at least enough

memory for the most recent version of the graph. If not the dataset will have to be re-ingested

on a new deployment with more partitions or a greater allocation of RAM on each machine.

This second option ensures there is always enough memory for the most recent entities, but will

miss very old connections similar to a windowed flattening of the data (as discussed in Section

3.4). An example of this can be seen in Figure 4.21, where vertex 1 and its edge to vertex 2 are

added at the very beginning of the graph history, but will only be removed along with vertex 3

in this latter case. Whilst this second version could perhaps be considered a better solution to

the issue of memory constraints, it would mean that the same query of the graph could return

drastically different answers depending on how long the deployment had been running or how

much data had been ingested. This would cause a host of issues for testing and repeatability,

but more importantly would make Raphtory unusable in a production environment as it would

not be trusted to give a correct answer. Therefore, entities are only fully removed if their latest

state denotes a deletion.

4.8.3 History Retrieval

When the Partition Reader receives an analysis request (as explained in Section 5.4.1) it must

first check if the timestamp given is available within the partition as it may have yet to be

ingested, currently be unsafe, or have been archived due to memory limitations. In the latter

case the Reader notifies the Archivist of the timestamp required and tasks it with orchestrating

the re-ingestion into the in-memory temporal graph. This is completed in a two step process

which can be seen in Figure 4.22. In the first step the Archivist finds the closest snapshot prior

to the timestamp requested and queries the datastore to retrieve the vertices and edges within

it for its partition. As the rows are returned they are converted into graph update commands

95

Figure 4.22: Process for retrieving a flattening of the graph at a time which has been archived
due to memory constraints.

and pushed to each of the relevant Writer Workers for ingestion into the model. This can be

seen in the first box of Figure 4.22 where the closest snapshot to t8 is t5, which has brought

back the three vertices from Figure 4.21, establishing their history with the latest update prior

to the snapshot time. When this is completed, the Archivist will broadcast to the Router pool

requesting they re-ingest all changes between the snapshot time and the analysis flattening end.

Each Router Worker then connects to its message queueing system topic and pushes any updates

within this period back to the Writer Worker who originally received them, to once again build

the entity and propagate the update to other partitions as described in Section 4.6. This can be

seen on the right hand side of Figure 4.22, where edge 2 → 4 was actually deleted during this

period and edge 1 → 2 received an update to its state. Once these have all been ingested, the

flattening at the requested timestamp will be ready and the Partition Reader will be allowed to

proceed with analysis. The watermarking technique described in 4.7 is leveraged here to confirm

this, but as a parallel track to the normal updates so as not to affect the ongoing ingestion. The

Archivist will then be paused until the completion of the analysis, at which point an archiving

cycle will run to once again offload this data if there is not the space for it alongside the live

graph. This is, therefore, a process similar to caching and poses issues akin to the temporal

partitioning within Section 3.5. Maintaining the most appropriate history within memory, based

upon use workloads, is an area of ongoing research for Raphtory and is discussed further in

Section 7.2.

4.8.4 Scheduling and Thresholds

When Raphtory is deployed, each Archivist will begin monitoring the Entity Storages within its

partition and the available memory on its host machine. Periodically it will check if any updates

have occurred and, if so, will schedule a snapshot to be built at the latest safe timestamp. To

decide upon this timestamp, the Archivists will send their latest safe time (as specified in Section

4.7) to the Archivist in Partition Manager 1 (the de facto quorum leader), who upon receiving

all local minimums will calculate the global minimum safe time and broadcast this back to its

peers. Once this is received back, the Archivists may begin requesting the Writer Workers to

send the state of each entity at this time to the chosen datastore. In order that ingestion is

96

not fully paused, and to avoid I/O bottlenecks, this is completed one Writer Worker at a time

instead of in parallel.

In conjunction with this, the Archivists continuously poll the used memory to ensure it is

below a set threshold. If this threshold is broken, an archiving cycle is scheduled to run as soon

as possible, i.e. straightaway, as long as a snapshot is not currently being saved. Whilst the

user may change this value, the default threshold is set to 80% of the available memory. This

gives the Partition Managers some buffer room such that if they are filling up fast they may

still complete the archiving cycle before running out of space. As the range of times associated

with data ingested by Raphtory can vary from seconds to years, the temporal cut off for which

updates and entities will be compared cannot be based on a static amount. Instead it is set as

a percentage of the difference between the time of the oldest in-memory update and the latest

snapshot time, adjusting as more snapshots are created and as new data is ingested. This is

again scheduled one Writer Worker at a time so not to fully block ingestion. Once archiving is

complete across all workers, the Archivist will check to ensure used memory is back below the

threshold. If this is not the case, the process is restarted with the range beginning from the new

oldest update time. This continues until the used memory is back below the threshold or no

more history may be removed, at which point the user will currently have to redeploy on larger

machines as their graph has become too big to manage with the established resources. Assuming

this is not the case, once the archiving cycles have finished, the oldest update time will be sent

to the Archivist quorum leader who will broadcast this new cut off to all peers, requesting them

to perform an archiving cycle to the same depth, bringing the whole graph in line.

As Raphtory may be deployed over heterogeneous machines with varying RAM availability,

and because of the possibility of some partitions handling more updates than others, it was

initially considered not to synchronise the temporal cut off across Archivists. This was because

the most recent cutoff would have to be global, with the majority of partitions already below the

threshold and, therefore, forced to remove history which they had room for. This also increased

the disruption to ongoing ingestion via additional archiving cycles and meant that if a user

requested an archived flattening all partitions had to read the snapshot back from the datastore,

not just those running out of space. However, by allowing partitions to vary their temporal depth

there will be many cases where split edges exist in one machine, but not the other, breaking the

update semantics implemented in Section 4.6.

4.8.5 Future Exploration

Whilst the goal of the Archivist and its overall process structure have been established, there are

still many questions to be answered before it may be fully rolled out alongside the Writer and

Reader. The first of these is the default datastore to be utilised for snapshots. There are many

good options for this, but a full investigation into the best option must be performed before

one is chosen. The second is to investigate scheduling between the Reader/Writer/Archivist

to ensure the archiving process does not cause a reduction in throughput or interfere with any

97

objects which are currently being analysed. Thirdly, when re-ingesting history into the graph

this obviously requires memory, which may not be available and, therefore, requires the temporal

depth of the actual graph to be reduced. This is a trade-off which has yet to be fully explored

and could cause many issues if not managed well. Finally, as archiving fully deletes entity objects

from memory, there is a much higher risk of update loss due to interleavings, where one partition

believes an edge to exist whilst the other does not. This is mitigated somewhat by keeping all

partitions at the same temporal depth, but must be explored further to ensure there is no point

or update order which could end in a corrupted state. These challenges and other trialled ways

of reducing the used memory are discussed in Section 7.2.

4.9 Summary

In this section we have discussed how the distributed temporal graph model and its update

semantics, defined in Chapter 3, have been implemented within the Raphtory platform. We

split this between three key components, the Spout, Router and Partition Manager. Of these

the role of the Spout is to act as the stream source, pulling data into Raphtory. The Router

may then take these data tuples and parse them into graph updates, decoupling ingestion and

graph modelling, allowing the same data to be built into different graphs. The graph updates are

then handled by the Partition Managers who are each responsible for building and maintaining

a partition of the temporal graph from them.

We discussed how the Partition Manager splits its responsibility over the partition between

three sub-components, the Writer, Reader and Archivist. The Writer and its pool of workers are

responsible for the update handling and synchronisation between partitions. These workers also

track the completion of update synchronisation via watermarking to ensure no analysis executes

on a point of time where updates are only partially complete. The Reader is responsible for this

analysis on graph flattenings within the partition and is discussed further in the next chapter.

Finally, the Archivist manages the available memory of the host machine, creating snapshots of

the in-memory graph and removing older history/entities to make room for newer updates.

98

Chapter 5

Raphtory Analysis

5.1 Introduction

Once data ingestion has been established and the user defined graph is being maintained, the

subsequent milestone is to perform analytics upon it, extracting novel metrics and insights. As

with the ingestion this comes with its own set of challenges to be solved. Firstly, as the graph

is built from a stream, the processing model should enable continuous analysis of the graph,

ensuring updates are included in a timely manner, otherwise returned results could be as stale as

if ingestion had taken several minutes. This must be managed correctly though, as executing in

parallel with ingestion and on the most recent graph may easily yield incorrect results, whether

from race conditions, delayed updates or unsynchronised state.

Secondly, in contrast to timely analysis on new updates, being a temporal graph it should

be possible to perform analysis on the state at any point throughout its history; comparing

and contrasting. To streamline comparisons between historic points, this process should be

transparent from the perspective of the user, allowing the same algorithms to run on the Live

Graph and any generated flattening. Furthermore, whilst deltas between flattenings are an

advantage of the temporal model, the true benefit lies in the structural and property histories of

an entity being queryable within the analytical API, enabling time-aware analysis. This brings

many challenges of how much information to expose to the user, how to do it in a way which can

be deployed independent of the chosen time, as well as not interfering with ingestion and graph

maintenance.

Finally, one of the largest overheads for the deployment of distributed analysis is the time

taken to re-ingest data[140], which for many systems has to happen every time the code base

is altered as it must be recompiled. This is a major issue during prototyping as it bottlenecks

the development cycles, but more importantly it means the graph is offline for an undetermined

period of time if there is a need to change some ongoing analysis. It should, therefore, be possible

to submit new tasks without producing downtime for the graph.

99

This chapter discusses the different types of analysis possible within Raphtory which have

emerged whilst tackling these challenges, as well as how the challenges themselves were over-

come. To orchestrate analysis, Raphtory deploys an Analysis Manager alongside the ingestion

components discussed above. This provides a REST API[141] for users submitting jobs to run

on the graph, spawning Analysis Tasks for each one received. These oversee the workflow of

graph algorithms, communicate the request to each of the Partition Readers and aggregate their

returned results. Algorithms are then specified via the Analyser class which provides a time-

independent API for analysis, aggregation and data publishing. These then run in conjunction

with a graph lens which generates the user’s desired graph flattening, returning Entity Visitors

which safely expose the correct graph state. The implementation of the analysis components, as

well as both APIs, are explained within this chapter and explored further via concrete examples

in Chapter 6.

5.1.1 Chapter Roadmap

Section 5.2: Temporal Graph Algorithms The temporal graph algorithms section expands

on the discussion in Section 2.3, exploring the full structural scope of graph algorithms.

Here we additionally overview the different types of analysis Raphtory may perform, as

well as the different ways time may be incorporated into a Raphtory query.

Section 5.3: The Raphtory Graph Analysis Model Following this overview we take a

deeper look into the Raphtory analysis model, the API’s that a user interacts with and the

classes they must create to define a new algorithm.

Section 5.4: Underlying Implementation of Analysis in Raphtory This investigation

continues to the core of Raphtory’s analysis, looking under the hood at how these user

defined classes are handled and how Raphtory builds graph flattenings for the algorithms

to be run on.

Section 5.5: Submitting Queries - Analysis Manager Lastly we briefly touch on how a

user interacts with a running Raphtory deployment, submitting new queries consisting of

a defined algorithm and time parameters within which to run it.

5.2 Temporal Graph Algorithms

5.2.1 Structural Scope of Algorithms: From Queries to Analytics

Before discussing dynamic and temporal elements, it is important to understand the structural

scope a graph algorithm may have. Figure 5.1 provides a spectrum of possible analysis which

may be applied to a standard graph. This spectrum splits algorithms based upon their structural

scope, i.e. the portion of the graph they interact with[27]. This can often be orthogonal to the

actual difficulty of an algorithm, but is important in understanding the graph analysis ecosystem.

100

Figure 5.1: The varying complexity of analysis conducted upon graphs, ranging from local queries
on singular entities to global analytics over the whole graph. Based on Figure 21 from [27].

At the left of the spectrum, or the smallest scope, are queries on singular entities. This may refer

to requesting the value of a property or perhaps some structural value not involving neighbours

such as the in-degree of a vertex. Moving further right are queries which explore the local

neighbourhood of a vertex, for example a person’s friends, or friends of friends, as specified

in the LDBC interactive workload[142]. At this scope there is also graph pattern matching or

network motifs[51], which can vary from very simple through to intractable[143]. The third

category expanding past this is when a substantial portion of the graph begins to be interacted

with, either through complex many-hop queries or graph traversals, such as random walks[144]

or graph diffusion[56]. Finally the forth category, global analytics, is when the entire graph is

involved in the computation. Again this may be something simple such as average in-degree

for all nodes, or involve more complex and iterative algorithms such as PageRank[58], weakly

connected components or graph diameter. As explored in Chapter 2, within the graph processing

ecosystem there is often a divide between graph analytics and the remaining categories, with

many Pregel-like[7] systems focusing exclusively on analytics[145] and graph databases such as

Neo4j[34] tackling the rest.

5.2.2 Temporal Scope of Algorithms

Beyond Snapshots: Graph Flattening and Windows

The manner in which temporal scope is often explored in the context of graphs is by establishing

the chosen algorithm as a time-evolving query[37]. Here the algorithm will be reapplied as

the graph changes throughout time and the user may inspect the delta between each retrieved

result. However, many systems only perform this on the most recent version of the data or

historic snapshots taken at large intervals, often requiring re-ingestion. This limits the temporal

101

Figure 5.2: A set of graph updates between t1 and t11 with a selection of graph flattenings,
demonstrating the updates they would include as well as the state of the materialised graph.

scope to that of the intervals between snapshots and means the order of changes between these

epochs are lost. In contrast, Raphtory’s underlying temporal graph model allows the user to

flatten the graph history at any chosen flattening end to view exactly what it would look like at

that time. The graph generated from a flattening at flattening end t, will then include all updates

within the stream up to and including t; as explored in Section 3.4. To illustrate this, Figure

5.2 provides a timeline of updates between t1 and t11. Based on this stream, two graphs have

been materialised from flattenings at the latest time (t11) and at t6. The updates these include,

as well as the graphs themselves, may be seen within the figure. Any algorithms discussed in

Section 5.2 may be applied to these flattenings without modification as they are effectively seen

as a static graph.

In addition to flattenings, which include all updates since the start of the stream, Raphtory

may materialise graphs where a window has been applied from the chosen flattening end, spec-

ifying a lower bound of time after which all vertices and edges must either have been added

or updated, otherwise they are no longer considered part of the graph[146]. This has several

use cases and can drastically change the structure of a graph by varying the window size. For

example, if investigating the popularity of users within a social network over time, those with

tens of millions of followers may always appear high in the listing. By pruning inactive enti-

ties/connections, smaller users quickly rising in popularity, or with very active communities, will

become easier to distinguish from the background noise. Furthermore, by varying the window

size from minutes to months, a user will be able to experiment with both short and long term

102

Figure 5.3: Example Ethereum transactions from the local vertex perspective of wallet 1. Each
edge is labelled with the ether sent property denoting the individual amounts of currency sent to
or from the other wallets. Incoming edges are coloured green whilst outgoing edges are in blue.

patterns within their data[147]. To illustrate such a flattening, Figure 5.2 contains a third graph

materialised at t8 with a window size of three time increments. As with the non-windowed

flattenings, the algorithms discussed above may be applied without modification.

Including History: Temporal Algorithms

In contrast to the time-evolving approach, algorithms may be provided with a wider temporal

scope by incorporating the graph history directly into the algorithm. The chosen algorithm can

make use of this expanded set of information in a number of ways, which can relate back to the

categories within Figure 5.1. Beginning again from the left, within the local scope of an entity,

the user may now access all values associated with a property key. These may, therefore, be

used to derive aggregates or trends which could be useful in themselves or be fed into further

analysis. For instance, Figure 5.3 shows an example transaction network from the view of

a singular vertex, based on the Ethereum blockchain explored in Section 6.4.2. Within this,

vertices represent wallets and an edge between two wallets contains all the transactions the

source has sent to the destination. With this temporal view, the user may decide to calculate

the total amount sent one way between the wallets by summarising all values for the ‘ether sent’

property. The values across all edges may then be combined within the vertex to generate a

balance vector plotting the currency available to the wallet throughout time. Alternatively this

same information could be used to generate an average and standard deviation to raise an alert

on unusually high transactions. In conjunction with property queries, a vertex may compare its

current structural state to how itself and its edges looked in prior windows. These may also then

be aggregated to garner metrics, such as total/average consecutive windows present, allowing

entities (and their relations) to be categorised as either permanent or transient members of the

graph for a given window size.

Expanding the scope to the vertex neighbourhood, the time of connections between entities

can now be included in pattern matching or temporal motifs[62]. Within this a user may explore

the pace and duration of interactions between entities within the data, which can provide an

additional dimension of insight over a snapshot or flattening. As an example of this, in Figure

103

Figure 5.4: Change in perceived context of an interaction between vertices based upon added
temporal information.

Figure 5.5: The results of an example contagion algorithm over four vertices when seeding the
infection on vertex 2 at different times and when respecting the order of interactions.

5.4 a static graph can be seen with five edges between two vertices. When viewing this without

temporal information, it may be difficult to draw conclusions on the type of interaction this was.

However, by adding different timestamps to these the frame of reference drastically changes.

In the first instance the timestamps are very close together, meaning this was a short and

fast interaction, possibly a comment exchange on a post between two strangers (given a social

network context). Alternatively, in the second case the times are sparse and over a long duration,

which could suggest infrequent messages between old acquaintances. This context can be very

important for a wide array of applications. For instance, returning to the blockchain example,

100 transactions between two wallets over a year may draw no suspicion, but the same number

over the course of a minute could be someone splitting a much larger payment and trying to

avoid an alert, as discussed above.

In conjunction with pace and duration, the temporal scope also provides the order in which

interactions occur. This again adds to the context of a pattern/motif, but can be used to facilitate

104

Figure 5.6: Example temporal shortest path. Edges are labelled with their history denoting
periods when they existed within the graph (in green) and periods where they were absent from
the graph (in red). The pink arrows denote the shortest path from vertex 1 to 5 when starting
at time t1; the blue path is shortest at time t12.

more accurate traversals, especially in the context of diffusion or contagion algorithms[148].

Within this a basic diffusion will start at one (or more) ‘seed’ vertices and propagate through

connections until the entire graph is ‘infected’ or it burns out (no more connections between

infected and non-infected vertices). This may form the basis for modelling the spread of disease

within a population, but when applied to a non-temporal graph the infection may spread in a

way not possible given the actual order of interactions. For example, in Figure 5.5 we can see the

times in which four vertices interact with each other. When seeding vertex 2 and ignoring this

order, all vertices become infected. However, by providing a time of infection and only traversing

connections newer than the one the infection previously travelled, a more realistic spread may be

extracted. We can also see that it is not actually possible for the infection to reach vertex 4 from

vertex 2, as it has to wait until at least t4 to jump to a new host, at which point all interactions

with vertex 4 have passed.

As such, by combining pace, duration and order we can explore and extract patterns which

are inherently closer to what is happening in the data and, therefore, the real world. This

is a powerful functionality which has numerous benefits. For instance, once again returning

to the Ethereum use case, money laundering and illicit transaction patterns often contain large

cycles[64] which must obviously have a start and an end, as well as follow an internal order where

each transaction occurs before the next in the cycle. These also contain subtle temporal motifs

such as each transaction in the cycle occurring 24 hours apart and siphoning a percentage off the

value sent[149]. A temporal scope is, therefore, paramount in modelling the flow of illicit currency.

However, this also has the benefit of reducing the number of edges which need to be traversed,

as fewer fit the pattern, leading to a lower number of false positives and making the algorithm

less resource intensive. This is explored further within the Ethereum taint propagation[150] in

Section 6.4.2.

Finally, the temporal scope can also augment graph algorithms with a global scope, integrat-

ing the structural and property changes much in the same way seen above. A clear example of

this is when performing a single source shortest path, respecting edge history and availability

105

[49][151]. Looking at Figure 5.6, all edges are labelled with the times they were added and

deleted, i.e. they exist for set time ranges. When attempting to find the shortest path between

vertex 1 and 5 the answer now depends on the start time of the journey. For instance, starting

at time t1 the shortest route would be to wait until time t3 to hop to vertex 3 and then wait

until t7 to hop to vertex 5, arriving at t7 assuming instant travel. Alternatively, if starting at t12,

this path would no longer be available, requiring the blue path to be taken and arriving at time

t14. Note at t>55, vertex 5 would no longer be reachable as all connecting edges would have been

removed; this could be explored separately as a temporal reachability problem[152]. Time-aware

shortest path algorithms such as this can be used as the basis for important route planning. For

example, modelling flights between airports in this manner allows the band of time a flight is

available for boarding to be embedded in the edge. Holidaymakers planning multi-stop flights

may, therefore, explore the best routes and departure times based on reducing the overall journey

and time spent waiting in airports. Expanding this to include edge properties, if modelling a

road network, a congestion weighting may be integrated for each road (edge) at different times

of the day, alongside possible closures due to road maintenance etc. A navigation system may

then factor all this information into its suggested route when a user requests the quickest way

to a location.

5.2.3 Time Ranges, Window Batches and Live Analysis

Whilst the time-evolving model and expanded temporal scope of algorithms are initially discussed

separately. These may actually be utilised in conjunction with each other within Raphtory as

they exist at different levels of the analysis pipeline. Temporal algorithms require the user to

incorporate the history of the entity inside their desired functions and this is, therefore, exposed

inside the analysis API, alongside the building blocks for traditional graph analysis (as discussed

in Section 5.3.2). Once the user has finished designing the algorithm (temporal or otherwise)

this may then be set to run on any graph flattening. This will limit the temporal scope to the

updates included in that graph, i.e. the algorithm will not have access to changes further back

than a set window or further forward than the chosen flattening end.

This is taken one step further by automating the analysis of many graph flattenings through-

out a period of time. Within Raphtory this is referred to as Time Range analysis and allows

the user to specify a period of interest, within the history of the graph, and the time increment

with which they would like to move between these points. At each time step (inclusive of the

start and end) a graph flattening is generated and the algorithm applied, publishing the results

for each as they complete. Similarly to the stand alone graph flattenings seen above, Figure 5.7

shows the result of a time range between t2 and t6 of the same update stream from Figure 5.2,

with an increment of two time points. This materialises graphs at time t2, t4 and t6, which can

be seen within the figure along with the updates these would include. Note, the flattening at t6

from Figure 5.2 and the one inside of the range are identical.

For a non-temporal graph algorithm, this allows the user to extract some insight unavailable

106

Figure 5.7: The same set of graph updates from Figure 5.2, demonstrating the updates included
in materialised graph flattenings for a time range and batch of windows.

within the most recent version, such as how a set of known communities evolved to their current

state within a social network[153]. However, this can also be used to explore how the results for

a temporal algorithm evolve through the history of a graph in exactly the same manner. For

example, in the Ethereum taint analysis explored in Section 6.4.2, each wallet may be allocated

a score to show how much illicit currency has flown through them and, therefore, to what degree

the wallet owner is a ‘bad actor’ within the network. Whilst this algorithm does utilise the

history to correctly propagate the taint, scores allocated would be for the state of the graph at

that point in time. It is, therefore, interesting to see how the score for wallets of interest change

as new blocks are ingested or to highlight wallets which have a drastic shift in taint over a short

period of time.

In a similar vain to time ranges, it is possible to materialise a set of graph flattenings at the

same flattening end, but with different window sizes. Within Raphtory this is referred to as a

Temporal Window Batch, allowing the user to set all window sizes they are interested in. The

analysis will then be performed on each windowed graph, starting with the biggest window. To

illustrate this, Figure 5.7 contains a set of graph flattenings at time t9 with a window batch of 7,

5 and 3 time increments. The figure also notes the updates these would include. An interesting

point to note here is that the graphs generated for windows 7 and 5 are identical, as the only

difference is the edge 1 −→ 2 which is removed with vertex 2 upon deletion at t9.

107

Both of these techniques on their own can be quite powerful in extracting new insight from

the underlying data, but these may also be used in combination to truly get an understanding

of how the graph has evolved. This means that the user may set a range and window batch

of interest, and at every time-step within the range the batch of windowed flattenings will be

created and analysed. Depending on the combination of time increment and window sizes these

can be viewed as fixed, sliding[76] or disconnected windows over the stream of data. A fixed

window in this instance would be when the increment and window size are the same, leading

to non-overlapping, but connected views. A sliding window would be created when the window

size is much larger, such as hopping forward a day at a time, but looking back a week. A

disconnected window would be created if the increment was bigger, such as looking at the data

ingested on the first day of every month. These clearly will have drastically different outputs

and use cases even though the underlying algorithm is exactly the same. As a concrete example

of this combination, in Section 6.4.1 a set of simple algorithms were applied across two and a

half years of user interactions within a social network. For each algorithm the analysis moved

through the history at increments of an hour, building flattenings windowed to an hour, day,

week, month and year, as well as a no window aggregate graph. By comparing these windows

across the lifetime of the network many interesting patterns were discovered, notably the giant

connected component[154] seen in all window sizes remained present other than for the hour

window, where this would break down into small communities in the early hours of the morning,

rejoining together as the main userbase came online.

Live Graph Analysis

As discussed throughout this work Raphtory can continuously ingest new updates to the graph

with the intention of making these available for analysis as soon as possible. To integrate this

streaming/dynamic context and enable algorithm execution on the most recent state, i.e. the Live

Graph, a special type of time range with no end is provided, denoted as Live Graph Analysis.

There are two possible interpretations of the Live Graph which must be clarified. When an

update arrives at a Partition Manager this data is inserted into the Entity Storage and is, at

that point, processable. Unfortunately this update or any prior to it may require synchronisation

between partitions, meaning any analysis performed on this data runs the risk of returning

incorrect results. This could be characterised as some sort of approximate graph analysis[155],

but there would be no way to bound the possible error from update interleavings, which could

be drastic for some algorithms. For example, when calculating the shortest path between two

nodes, if an edge on this path was desynchronised it could be missed during the analysis, leading

to at best a longer path being returned or at worst an ‘unreachable’ verdict. As such, for the

purposes of analysis within Raphtory the Live Graph refers to the flattening at the most recent

watermarked timestamp (as described in Section 4.7). This guarantees all data is synchronised

between partitions and gives a consistent state across supersteps, ensuring a correct result.

By establishing the Live Graph as a flattened graph at the latest safe point, this additionally

108

Figure 5.8: Types of Analysis Task and their subtypes for windowing. Each task has a set of
arguments which the user must provide, with those in the supertype required in all subtypes.

means that all the different layers of analysis and established algorithms discussed above may

be applied on each new incarnation with minimal user input. The only decisions the user must

make are if the submitted analysis is to run once or repeatedly and, in the case of the latter, how

often. Once decided upon the frequency of the repetition, the user may consider if they want this

increment to be triggered on processing time or event time. Processing time in this sense would

mean that after the chosen period had passed the next analysis cycle would fire, irrelevant of

whether the latest watermark had also advanced this far. In the case of event time, the analysis

would only be run once the watermark had advanced past the next designated time requested.

These are similar, but can have different applications. For example, a processing time trigger may

be appropriate when running Raphtory over a bursty unbounded dataset to provide an ongoing

log of metrics, allowing the user to monitor the current graph state in near real-time. An event

time trigger, on the other-hand, may be more appropriate when looking at more complex trends

over a longer period. For instance, the user may be interested in maintaining a sliding window

over the latest state[156] looking back at the last 24 hours of updates every ten minutes.

5.2.4 Wrap-Up: Available Analysis Within Raphtory

In summary, the analysis available within Raphtory explores the full structural scope of graph

algorithms. Whilst analytics is the primary focus within this, as Raphtory’s model is based upon

rich property graphs[24], many of the traversals and queries may also be executed, albeit in a

vertex-centric manner as discussed below. These standard graph algorithms are then expanded

with a temporal scope by providing the user access to the full structural and property history

of each vertex and its edges, with respect to the graph flattening upon which the analysis is

performed.

109

Figure 5.9: The workflow of the Raphtory Analysis Model, following a query submitted by the
user and the subsequent steps carried out by the spawned Analysis Task and Partition Readers.

.

Once an algorithm has been devised (temporal or otherwise) it may be submitted to run

in Raphtory at any point in the history of the graph and with any window applied, without

requiring modification. The pairing of algorithm and flattening parameters is defined as an

Analysis Task and, as can be seen in Figure 5.8, these fall into three major categories. For

analysis at a single point of time within the history of the graph, Raphtory provides the Graph

Task. When the user is interested in applying a time-evolving version of the algorithm they may

alternatively use a Range Task, establishing a focal period within the graph history and how often

throughout this a flattening should be materialised. Finally, the Live Task simplifies the inclusion

of Raphtory’s streaming context, executing the algorithm on the most up-to-date graph, either

once or recurringly, with the recurrent trigger based on processing time or event time. For each

of these task types the user may additionally apply a window, or batch of windows, and for each

flattening end/window pair a flattening will be materialised, analysed, and the result returned.

The manner is which a Raphtory algorithm may be created, and the internal components for

flattening materialisation/algorithm execution, are discussed in the remaining sections of this

chapter.

5.3 The Raphtory Graph Analysis Model

5.3.1 Analysis Model Overview

At its core, Raphtory’s analysis architecture is based on a Bulk Synchronous Parallel (BSP)[86]

model whereby algorithms are executed in supersteps. Raphtory is vertex centric, similar to

Pregel[7], meaning algorithms are designed from the perspective of the vertex which only has

access to its state and that of its edges. Each vertex may then independently run a user defined

function for the superstep within which it may calculate and store state about itself, send mes-

110

Figure 5.10: The three main components of Raphtory’s analysis API: The Analyser, Graph Lens
and Entity Visitor.

.

sages to its neighbours, process messages received from the prior superstep and vote to halt the

algorithm if it believes it has converged. This model was chosen as Raphtory is a distributed

platform and, by viewing each vertex as an independent worker, it does not matter how many

partitions there are or where each vertex is stored as the algorithm may execute in the same

way. This additionally simplifies many aspects of parallelism within a partition as minimal locks

are required due to the lack of shared state between vertices. Finally, this is beneficial for the

user as it abstracts away the complexity of implementing distributed algorithms, similar to other

distributed frameworks such as MapReduce[69].

As can be seen in Figure 5.9, and discussed above in Section 5.2.4, when a user submits

a query an Analysis Task is spawned. This Analysis Task controls the BSP workflow of the

algorithm, i.e. deciding when supersteps should run, if the algorithm has converged across all

partitions and aggregating/publishing the final results if it has. Requests to execute a superstep

are sent to all Partition Readers who must then materialise their part of the graph flattening,

execute the user functions on each vertex under their control and synchronise any vertex messages

amongst themselves for the next superstep. Once they have finished they will report back to the

Analysis Task and return to idle awaiting the next request. This continues until the algorithm

has converged and the results are published for that flattening. If it was a range or live task

which was spawned, with multiple flattening ends to analyse, the task will begin the process

again on the next flattening. Batch windows are handled in parallel within the Partition Reader,

all of which is discussed in more detail in Section 5.4.

Finally, to facilitate analysis and allow the users to implement their algorithms, Raphtory

provides an API to encompass all the features described in Section 5.2. For this there are

three main components which the user may interact with: Analysers, Graph Lenses and Entity

Visitors. The overview of these and their interactions can be seen in Figure 5.10. Beginning at

the left of the figure, the functions to be executed by the partitions/vertices at each superstep are

111

Figure 5.11: An overview of the functions a user must define within an analyser which constitute
the general flow of an algorithm.

encapsulated within an Analyser class. This also specifies the partial results each partition should

return and how these responses may be aggregated into the final result. Within an analyser the

user will interact with the temporal graph through a graph lens. This returns the entities present

within a flattening, allowing the analyser to run agnostic of partition and flattening parameters.

To safeguard the graph state and ensure there are no clashes with ongoing ingestion these entities

are first wrapped in a visitor[157] object, before being returned. This ensures the user can only

access the data of the entity in a predefined manner, that the information returned respects the

flattening end and window applied and provides an interface for saving temporary analytical

state/messaging neighbours.

5.3.2 Analyser

The analyser is the class which encapsulates the whole algorithmic process, what vertices should

do in each superstep and how the results for each partition can be combined and returned to

the user. An overview of the main functions to be implemented can be seen in Figure 5.11 and

divides into two categories, those which will run within each Reader Worker and those which

will run at the end of the algorithm within the Analysis Task. Looking first at those within the

Reader Worker, there are three main functions which broadly cover the flow of an algorithm:

Setup(), Analyse() and ReturnResults(). Within all of these the user has access to the lens

112

API as well as any arguments submitted alongside an analyser.

Any iterative algorithm will begin with Setup(), which can be seen as superstep zero. Here

the user may establish default state for all vertices and send out initial messages. For example,

in the connected components algorithm from Appendix C.1, each vertex is allocated an initial

component label (its own ID) which it then forwards to all neighbours for them to compare in the

first superstep. This first superstep, and all those following, are then defined within Analyse().

Here the user specifies what each vertex must do within an iteration of the algorithm to converge

on the final answer. Continuing with the connected components example, all vertices will check

through their received messages to see if these contain a component ID lower than their current

ID. If one is found, they must replace their stored label with this new value and send it to all

neighbours, propagating it through the graph. If no new ID is found no messages are sent, and

if this happens for all vertices the algorithm is considered to have converged, i.e. all vertices are

labelled correctly. Once an algorithm has converged ReturnResults() will be executed which

extracts the final result from the partition and returns it to the Analysis Task. Finishing up with

the connected components example, the labels for each vertex in the partition are extracted and

grouped together, returning a count of vertices for each component ID seen to Analysis Task.

Algorithms may converge in two different ways. The first is that the maximum number of

supersteps is reached, set by the user via MaxSupersteps(). Note, if this is set to one or less

(i.e. non-iterative algorithms) only ReturnResults() is executed, such as in the degree ranking

analyser from Appendix C.2. The second manner for convergence is via voteToHalt(), where

all vertices request to stop the algorithm early as they believe they have converged on their final

state. This can be seen within the connected component analyser where, if a vertex does not

find a new component label within its messages it will raise a vote, which will be automatically

removed if new messages reach it. If all partitions report that their vertices have voted to halt

the algorithm, it may skip straight to ReturnResults() instead of completing the remaining

unnecessary supersteps.

Once an algorithm has converged, and all the partial results have been returned by the

Partition Readers, the Analysis Task may execute ProcessResults(). Here the user is given an

array of partial results from each worker and can decide how to aggregate these together. Once

the aggregation is complete, the result may be made available via PublishResult(), whereby it

will be accessible from the REST API as discussed in Section 5.5. In the connected components

example, the partial counts are combined to report on the biggest component and the total

number of components, as well as several characteristics such as the total number of ‘islands’

(components with only one vertex). This is then published in JSON format to be plotted, as can

be seen in Section 6.4.1. Whilst ProcessResults() is the default function for all flattenings,

there may be instances where windowed data has to be handled differently. As such the user

may optionally implement processWindowResults(), which again can be seen in the connected

components example reporting the window size alongside the flattening end to allow different

windows to be distinguished.

113

Figure 5.12: An overview of the Graph Lens API demonstrating the flattening building process
executed when the analyser requests the set of vertices for the partition. This abstraction allows
an analyser to be applied to any flattening without modification.

5.3.3 Graph Lenses

As discussed in Section 5.2, all analysis in Raphtory is executed on a flattening of the graph.

Graph lenses facilitate the ability to materialise graph flattenings at any user defined flatten-

ing end and apply a given analyser to this. Figure 5.12 provides an overview of this process,

whereby a user may request the set of vertices within each of the superstep functions via getVer-

tices(). Looking further into the flattening parameters, there are two possible lenses which may

be applied, one for windowed flattenings and one for those with only a flattening end. In either

case the vertices within each Entity Storage will be run through the lens to decide if they are

kept in the graph or not. Vertices which survive will be wrapped in a vertex visitor object and

have their incoming and outgoing edges checked with the same lens. Those which belong in the

flattening will be wrapped as edge visitors and stored within the vertex visitor, whilst those not

included will be filtered out. Note, this filtration process has no bearing on the state of the

actual Entity Storage/objects. Once the filtration is complete the set of vertex visitors will be

returned to the user allowing them to perform the required analysis. The superstep functions

may, therefore, be defined once and applied to any flattening, with the lens returning the correct

entity set.

As messaging is prevalent in almost all vertex centric algorithms, in addition to this selection

of all vertices within the flattening, the lens API additionally provides the function getMes-

sagedVertices() which only returns those vertices which have received messages for the current

job/superstep. This syntactic sugar means users do not have to worry about checking if the

mailbox of each vertex is empty or handling the remaining unmessaged vertices, as these are

considered to have implicitly voted to halt. This is used within the connected components

example as only those vertices with new labels to check are required to run.

114

Figure 5.13: Functions available to both vertex and edge visitors, providing access to the struc-
tural and property history of the entity with respect to the current flattening parameters.

5.3.4 Entity Visitors

As a clear goal of Raphtory is to enable parallel updates to the graph alongside analysis, there

must be stringent control over the entity objects avoiding deadlocks or invalid state. To manage

this, as well as provide an API for users to interact with entities in a meaningful manner, both

edges and vertices are made available via a visitor[157] wrapper class. These visitors contain the

original objects and are structured in a similar fashion, with the vertex visitor being the focal

component of the API and containing a map of incoming and outgoing edge visitors. Both of

these extend a supertype entity visitor class which provides access to the history/properties of

the entity, as well as each having specific functions which can be broadly categorised into: Edge

Access; Storage and Retrieval of analytical state; and Vertex Messaging.

Access to Entity State

Beginning with what is shared between both classes, the full structural and property history

of an entity is made available via getter functions, as can be seen in Figure 5.13. For the

structure, clearly the entity is present at the current time as it exists within the graph, but

the user may additionally wish to know how many updates the entity has received within the

flattening period, as well as when these have happened. For this the entity visitors contain the

getHistory() function, which will return a safe copy of the structural history of the entity filtered

within the bounds of the flattening, i.e. nothing past the flattening end or before the window

(if one has been set). This may then be utilised by the user in the exploration of temporal

patterns. In addition to the basic history access, the visitors provide many helper functions

such as latestState(), earliestState() and activityBetween(start,end) to simplify history

115

Figure 5.14: The functions with which the user may access the edges associated with a given
vertex. In yellow are basic functions to access all edges within the flattening. In red are time
constraints which may be applied to all those in yellow, i.e. getOutEdgesAfter() to retrieve the
subset of outgoing edges which have an historic event after the provided time.

exploration. As an example of this, the temporal triangle count analyser seen in Appendix C.3

looks to find triangles where the three edges (A −→ B,B −→ C,C −→ A) occur in chronological

order. To extract these triangles correctly, the first two of these functions are used to establish

a range of time within which a triangle may occur on a given vertex and the third function is

used to interact only with edges which respect these times.

Entity properties are handled in much the same way. The user may access the ‘current’ value

of a property from the perspective of the flattening via the getValue() function. This takes a

property key and returns an ‘Option’[158] object which will contain the value if the property

existed at the flattening end. Alternatively, if the user is interested in all associated values, they

may utilise getValues() which will return a bounded copy of the property history as with the

structural history above. Finally, the user may request the type of the entity via getType(), the

vertex ID of a vertex visitor via getID() and the source/destination ID of an edge visitor via

getSrc()/ getDst().

Edge Access

As the graph lens API returns a set of vertex visitors and these contain all related edges within

the flattening, a set of functions are provided to extract those the user requires, as summarised

in Figure 5.14. The most basic of these is getInEdges() and getOutEdges() which return the

set of edge visitors within the corresponding edge map. These may be utilised to extract edge

information or decide which neighbours to propagate messages to. If the user is looking for a

specific edge they may use getInEdge() and getOutEdge(), taking the ID of the vertex on the

other end and returning an option which will contain the visitor if the edge is present.

116

Figure 5.15: Functions for storing and retrieving temporary analytical state within each vertex
for an ongoing iterative task.

As an extension to these, all edge getter functions are also available with the time constraints

‘After’, ‘Before’ and ‘Between’ (i.e. getOutEdgesAfter()). These take time arguments and

return a subset of the edges associated with the vertex if their history within the bounds of

the flattening contains an update which passes this constraint. This can be utilised in temporal

contagion algorithms/random walks to correctly propagate forwards or backwards through time.

As an example of this, within the temporal taint algorithm in Section 6.4.2, each infected node

spreading the taint to its neighbours additionally informs them of the time at which they have

become infected. In the next superstep, when these newly infected nodes go to further propagate,

only outgoing edges with updates after this time are selected, never tainting vertices who have

not interacted with them since the infection took place.

Analytical State and Storage

Iterative vertex centric algorithms often require the storage of temporary state which can be

referred to/updated within each superstep as the algorithm works towards convergence. For

example, in the connected components implementation in Appendix C.1, vertices store the lowest

component ID that has been messaged to them, which may then be compared to any new

messages at each superstep and updated/propagated if a new minimum is found. As can be seen

in Figure 5.15, the API for this is fairly intuitive with the vertex visitor offering standard getter

and setter practices: setState() takes a variable name and a value (of any type) and stores this

within the vertex; getState() also takes a variable name and will return an option, as with the

property values above, in case the analysis variable is unset; these can then be combined via

getOrSetState() where the user may additionally give a default value instead of returning an

option; and finally appendState() can be used to record all partial results, such as in the case of

the temporal triangle count in Appendix C.3, where all triangles discovered for the vertex must

be recorded, not just the latest one.

117

Figure 5.16: Functions for sending and retrieving messages between vertices. Messages may
be sent direct to one vertex or broadcast to all neighbours. In red are temporally constrained
variations of this broadcast, similar to the edge selection in Figure 5.14.

Vertex Messaging

The final category of functions within the visitor API is how vertices communicate with each

other and can be seen summarised in Figure 5.16. Of these, the default messaging function

is sendMessage(), which takes two arguments, the ID of the vertex to be messaged and the

value to be sent (which may be any serialisable type). Note, this ID may be of any vertex

in the graph, not just neighbours. There are, however, many instances where the user may

want to send the same message to all neighbours of the vertex, for which they may utilise

messageInNeighbours(), messageOutNeighbours() and messageAllNeighbours(). This

is useful in global analytics such as in the PageRank implementation in Appendix C.4 where the

rank of the vertex must be sent along all outgoing edges. As with the edge access functions

above, the vertex visitor additionally provides ‘After’, ‘Before’ and ‘Between’ variations of these

functions, but only to message vertices within the set constraint who have been interacted with.

For instance, when propagating an infection in the temporal contagion analyser from Appendix

C.5, the messageOutNeighboursAfter() function is used to propagate only the contagion to

neighbours who have been interacted with after the initial time of infection for a vertex.

For a more localised message sending, the user may alternatively access a set of edge visitors,

which all provide the send() function and will deliver the given message to the vertex on the

other end of the edge. This is used in the temporal triangle count analyser to contact neighbours

who may be part of a triangle with the sender. Finally, once all messages have been synchronised

from the prior superstep, vertices may call getMessages() to access the full set of messages

they have received.

118

Figure 5.17: The internal storage of a Partition Manager with its data split between ten Entity
Storages. Each storage is accessible by one Writer Worker (managed by the Writer and Archivist)
and one Reader Worker (managed by the Reader).

5.4 Underlying Implementation of Analysis in Raphtory

Once an analyser has been created the next question is how it is executed. As discussed briefly

above, the responsibility of this is split between an Analysis Task and the set of Partition Readers

within each deployment. Analysis Tasks are instantiated for each submitted query and control

the flow of an algorithm at each flattening end of interest, requesting the execution of supersteps,

confirming convergence and returning results. The Partition Readers then build the requested

flattenings and orchestrate the safe execution of supersteps upon each partition.

5.4.1 Partition Reader

Partition Readers are the processing engine within Raphtory, overseeing the execution of user

defined functions on the entities within their partition. Readers operate much in the same manner

as the Partition Writer, managing a pool of workers who are each responsible for performing the

algorithm on an Entity Storage. As can be seen in Figure 5.17, this means that each Writer

Worker has a paired Reader Worker who will be analysing and reporting on the entities which

it updates/maintains. Whilst the Reader is in charge of initially establishing connection with

new tasks, once this is complete its managed workers will be contacted directly to check their

latest watermarks and compute desired supersteps. The Reader Workers handle these requests

completely independently, allowing each task to handle the full control logic of its assigned

algorithm and operate irrelevant of the number of partitions. Superstep requests are additionally

handled serially on the main thread of the Reader Worker, meaning no two requests will run on

the same data in parallel. Furthermore, all state generated by a superstep is fully encapsulated

and only accessible by other supersteps of the same task. These in combination mean the

supersteps of multiple tasks may be interleaved without affecting each others output.

119

5.4.2 Reader Worker Superstep Execution and Flattening Generation

As discussed above, superstep requests consist of running either Setup(), Analyse() or Return-

Results() upon a given flattening. All requests contain the chosen analyser and job metadata

required for this and are executed in the same standardised manner. The first step in this pro-

cess, building the flattening, is done by creating the correct lens (according to the Analysis Task

type) and injecting this, together with all arguments/job parameters into the analyser object.

This is how the analyser may be flattening agnostic, but allows all internal calls to the user API

to return the correct results for a given flattening end/window.

Figure 5.18: Left - flowchart for deciding if an entity should be kept in the graph for given
flattening parameters. The stages carried out by both the flattening lens and window lens are
denoted in yellow; only those executed by the window lens are in red. Right - the process executed
on an example history of an entity, with the decision given different flattening parameters.

Digging further into the process which the lens undertakes, the left side of Figure 5.18 de-

scribes the procedure enacted on each entity, based on the graph flattening definition from Section

3.4. At each stage of the process the entity either progresses or is filtered out. This begins with

a comparison between the oldest point in the history of the entity (indexed for O(1) lookup) and

the given flattening end, to ascertain if the entity existed within the graph prior to this time.

120

Entities which fail this test, as they were added to the graph after the flattening end, may be

removed without accessing/iterating through their full history, minimising the amount of lookups

required. An example of this can be seen in the right side of Figure 5.18, which shows an entity

history and how the lens decision differs given different flattening ends and windows. Within

this, the first lens requests the state of the entity at t15, but as the first update of the entity is

at t17 there is no need to check its history, it can simply be filtered.

Entities entering the next stage must have their histories scanned to find the update anterior

to the flattening end and extract its value. As the structural history is stored in chronological

order, this is done by starting at the head and descending through the nodes until the first one

is hit with a key (time) prior to the flattening end. Once the value has been extracted, if it is

true, the entity may progress as it would have been alive within the graph at this time; if false

it would not have been present and is filtered. The next two lenses on the right of Figure 5.18

provide an example of this. For the flattening at t30, the prior update is at t23 and resolves

to true, i.e. the entity would have been present in the graph and is kept. Alternatively, for the

flattening at t39, the entity is filtered as its prior update is now one node deeper in the history

at t34 which resolves to false.

Given that no window has been requested, at this point the entity would be wrapped in

its equivalent visitor and made available to the analyser. If, however, there is a window, the

entity may only be returned if the extracted update is within the established time range. This is

confirmed by subtracting the update time from the flattening end, the remainder of which must

be less than the window size. The final two lenses of Figure 5.18 demonstrate how this would

work on the example entity. The flattening at t60 would extract the value of the closest state at

t42, which would resolve to true, but as the window size is only 10 this update is too far back in

time and the entity would still be filtered (60− 42 > 10). On the other hand, for the flattening

at t70, the prior update is within the acceptable time range (70 − 61 < 10) and, therefore, the

entity would be kept.

Handling of Batched Windows

Whilst the flattenings materialised for each flattening end in a time range are done so in series,

if the Analysis Task contacting the Partition Reader Worker is a batched window variant it will

send all window sizes, along with the flattening end, to execute these within the same superstep.

In this instance, once the preprocessing of the lenses has concluded and the superstep function

has been run on the first window, the worker will shrink the window within the lens to the

next size and re-execute the function on the new set of vertices. This process happens for each

window within the batch (starting from the largest to the smallest) until all have been computed

and the worker can return to the Analysis Task. Within a superstep response will be the total

messages sent for all windows and whether every vertex in all incarnations are happy to halt.

For the return of partial results, this will include an array of responses (one from each window

size) which the Analysis Task will group by the window size internally, passing each to the

121

Figure 5.19: The superstep cycle from the perspective of a Reader Worker. In this example the
worker has received the request for a batch of windows which it executes from largest to smallest,
utilising the prior set of vertices each time when generating the flattenings with a smaller window.

processWindowResults() function seen above in Section 5.3.2. This is done as it minimises

the amount of times the vertices and edges have to be passed through the graph lens and removes

the need to message back and forth between the Analysis Task and the Reader Workers for each

window size.

An example of this batch execution can be seen in Figure 5.19. Here a Reader Worker has

received the request to execute a superstep with three window sizes of 1000, 100 and 10. The

first of these flattenings (t103 window 1000) is built from the vertices within the Reader Worker’s

associated Entity Storage. The analyser is then set to work with the final result. Once this has

concluded, the window size is shrunk to 100 and a new flattening is established. Note here that

the entity set for the larger window is used instead of the original Entity Storage as any entities

the bigger window has filtered out would be removed here so there is no point in checking these

again. The window is then shrunk for a final time and the output from all three is combined

into the response sent back to the Analysis Task.

5.4.3 Isolation of Analytical State and Vertex Messages

Analytical State

From the independent manner in which supersteps are executed within a Partition Reader

Worker, and as queries may be run in parallel with ingestion, there are several questions about the

safety of writing temporary analytical state to a vertex. The first issue is that the paired Writer

Worker could be updating a vertex at the same time as the analytical state is saved, leading to a

deadlock. To ensure this does not occur, analysis values are stored in a separate map from any

122

Figure 5.20: An overview of the contents of a vertex visitor. This consists of the original vertex
object and its mailbox (discussed below), the in and out edge visitor maps and the analytical
state map.

properties inserted via ingestion, which the Writer Worker may never access. In addition to this,

there may be the concern that the variable name is non-unique, which could lead to different jobs

overwriting the variables value/reading incorrect information. Variable clash may happen across

analysers, but definitely occur if the same analyser is being used over many flattening ends and

windows. To handle this, when the variable name is given to a state function it is internally com-

bined with the JobID, flattening end and window size, making it unique across all dimensions.

An example of this can be seen in Figure 5.20 where the connected components algorithm from

Appendix C.1 has been run on two window sizes (20,10) at t104. For the example vertex visitor,

the variable ‘CCLabel’ has been saved internally as CCLabel ConnectedComponents 104 20 and

CCLabel ConnectedComponents 104 10 respectively, allowing the superstep function for these

jobs to be intertwined. As can be seen here, the associated value is different for the two win-

dows, i.e. the vertex is in two distinct components, although this may change if the algorithm is

yet to converge.

Messaging

Similarly to analytical state, messages sent between vertices must be managed to ensure they

are processed in the correct superstep alongside the correct flattening. To enable this, once a

message request has been initiated it is packaged up via Akka along with meta information,

including the JobID, flattening end, window size and current superstep. As can be seen on the

top of Figure 5.21, this is then forwarded to the Reader Worker who handles the receiving vertex,

much in the same way that synchronisation messages are handled between Writer Workers. Upon

receiving the message the Reader Worker must store this until the next superstep, handled by

the Vertex Mailbox which can be seen on the bottom of Figure 5.21.

123

Figure 5.21: The process a message goes through when sent from one vertex to another. In
this example, vertex 1 sends a message to vertex 2 during the 5th superstep of a job with ID
‘ConnectedComponents’ at flattening end t104 with window size of 20. The mailbox of vertex 2
can then be seen to have messages for two windows (20,10) of the connected components query
described previously.

The mailbox is broken up into two identical maps, denoted ‘odd’ and ‘even’, as one is used

for odd numbered supersteps whilst the other is used for even supersteps. This is done so that

a vertex reading messages for the current superstep will not accidentally read messages for the

next one, which could lead to an incorrect result in both. To select the correct map, when

storing a message the accompanying superstep is incremented by 1 followed by a modulo of 2

(superstep+ 1%2), placing it within the map for the next superstep. As an example of this, in

the top of Figure 5.21 a message is sent within the 5th superstep, thus the even map is selected

as it should be read in the 6th. Once the map has been chosen, the JobID, flattening end and

window size will be combined into a key, extracting the correct queue for the message. If this is

the first time the key has been seen, a new queue will be generated and placed within the map.

As with the analytical state, this allows different jobs (or the same job with multiple windows)

to be run at the same time, interleaving their supersteps. This can be seen in the expanded

mailbox in Figure 5.21, where there are different queues for each window size of a connected

components job (10,20) in both the odd and even maps.

On the other side of this process, when reading the messages via getMessages(), a similar

operation occurs. To select the correct map, a modulo of 2 is performed on the current superstep

(without the increment) and the queue is extracted via the same key generator. This can be

seen in Figure 5.21 where the analyser has accessed the mailbox of vertex 2 and is reading the

messages for superstep 5 from the equivalent odd queue. Finally, there are two things to note

here. Firstly, when a queue is pulled in this manner it is wiped from the map to make space for

124

the next superstep or, in the case of the algorithm finishing, so that there is no accumulation of

queues filling up memory. Secondly, the whole mailbox process is hidden from the user via the

API, with the internal components passing the relevant metadata to allow it to work.

5.4.4 Analysis Task Workflow

Figure 5.22: The workflow of an analyser split between the Analysis Task on the left and the
Reader Worker on the right. Red dashed lines indicate the Analysis Task sending a request to
all Reader Workers. Yellow Dashed lines indicate a response from the worker to the task.

Raphtory’s component for managing the flow of an algorithm is the Analysis Task. An

Analysis Task is spawned upon the submission of a user query and is responsible for the full

execution of the chosen analyser, tracking which superstep the algorithm is on, which functions

each Reader Worker must run and any termination conditions, such as voting to halt or the

maximum supersteps reached. This execution workflow can be seen in Figure 5.22 and shows

the steps taken across both components, with the chart on the left hand side representing the

Analysis Task and the one on the right the Reader Workers. Here it can be seen that the

process within the Analysis Task is fully connected as it is in charge of the query from inception

through to finalisation, whilst the Reader Workers execute disjoint actions and return to idle

125

once complete to await the next instruction. Across this workflow there are three main stages:

Time Availability; Superstep Execution; and Result Processing/Restart.

Time Availability

Once the Analysis Task has confirmed its given analyser is available within the code base, its

initial step is to establish if the first flattening may be materialised. This must be checked as

the flattening end may currently be beyond the watermarked history and, therefore, unsafe to

analyse. For graph and range tasks this requires checking the earliest flattening end submitted

by the user, whilst the live tasks send a default 1 to check that ingestion has begun and to extract

the latest safe time. The Analysis Task will broadcast this value to all Reader Workers, who

will compare this to their latest safe timestamp (as discussed in section 4.7) and respond with a

confirmation if it is safe, or a rejection if it is not.

When the Analysis Task has received the responses from all Reader Workers it will check

that they all confirm timestamp availability, allowing the analysis to begin. Alternatively, if one

or more workers report the time is unavailable the Analysis Task will pause and await a defined

timeout before retying. This decouples the analysis from ingestion and means an Analysis Task

may be left to work through a large range of flattening ends, wait for a time in the future, or

simply run safely on the Live Graph without concern it will get ahead of the Partition Writers

and return incorrect results. Lastly, if it is a live task being executed, on confirmation that the

given time is safe, this will additionally aggregate the returned times together by selecting the

minimum safe point and defining this as the current Live Graph time. This time availability

process can be seen in the first section of Figure 5.22.

Superstep Execution - Setup, Analyse, Message Synchronisation and Convergence

Once the flattening end has been confirmed as safe, the analysis may begin. As discussed in

Section 5.3.2, the submitted analyser will have a defined maximum number of supersteps. If

this number is greater than 1, it is considered an iterative algorithm and the Analysis Task

must first run the Setup() function in each partition. A setup request is, therefore, broadcast

to all Reader Workers containing the analyser and the task’s metadata consisting of the JobID,

flattening end/windows, type of task and current superstep. A Reader Worker receiving this will

execute the Setup() function of the analyser on the chosen flattening and, upon finishing, will

return an acknowledgement to the Analysis Task, confirming it has finished the superstep, as well

as providing a count of any messages its vertices have sent during the execution. Alternatively,

if the number of supersteps is one or less, this will be seen as a non-iterative algorithm and the

Analysis Task will skip straight to ReturnResults().

Once all the Reader Workers have acknowledged the completion of the superstep, the total

messages sent is calculated and, if this is greater than 0, the Analysis Task requests each Reader

Worker to report how many messages they have received for the next superstep. This is tracked

by the Reader Workers via a counter they increment when receiving a new vertex message for

126

a given JobID and will be returned upon the request. Once all responses are in these will be

aggregated and compared to the messages sent. If these are equal, it means all deliveries have

been completed and it is safe to execute the next superstep. If not, there is a short pause and

the message count is rechecked until all have arrived. This is necessary as if a superstep runs

without all messages having arrived, vertices may be incorrectly filtered out, calculations may

have the wrong inputs and an incorrect result is very likely.

The successful arrival of all messages signifies the end of the setup, or superstep 0, and

the main analyse iterations may begin to work towards convergence. This happens much in the

same way as the setup, where the task will send a broadcast to all Reader Workers with the same

information, but this time requesting they execute the Analyse() function. Upon completion

of the function the worker will decide if its vertices have voted to halt, by all accessed vertices

raising a flag, and return this decision along with the number of messages sent.

Once the message synchronisation has completed (as with the setup) the Analysis Task will

check for convergence. This will be considered the case if the maximum number of supersteps

has been reached or if all Reader Workers have reported that their vertices have reached a final

state. Given this is the case the Analysis Task will progress to requesting the results. If the

algorithm has yet to converge, a new superstep will be undertaken via another analyse broadcast

and the process will start again. This process for superstep execution can be seen in the middle

block of Figure 5.22.

Result Processing and Restart

The penultimate stage on any analysis cycle is to extract the partial result from each partition,

aggregating and returning these to the user. This is handled in exactly the same manner as

a superstep, sending the same information via broadcast, but requesting the execution of the

analyser’s ReturnResults() function instead. The Reader Workers receiving this will execute

the function and return the partial aggregate as specified by the user. This will be stored

within a temporary array and, once all the responses are accounted for, will be passed to either

ProcessResults() or ProcessWindowResults() depending on if a window was set on the

flattening. If within this the user decides to utilise the PublishResults() function, the data

given will be stored within the Analysis Task object, making it available to retrieve via the REST

API as discussed below in Section 5.5.

Finally, the Analysis Task will check if there are more flattening ends to process and, there-

fore, if the process should restart with different parameters. This again depends on the task

type, but given there are more flattening ends in the range, the Analysis Task will broadcast a

new time check to all Reader Workers to see if this next time is available. If, however, this was

the last flattening end to be processed the task will become idle, awaiting further requests from

the user. This may be to either retrieve the results stored inside, or to kill the task now it has

concluded.

Looking at the three possible task types, a graph task will always return to idle as it only

127

stipulates analysis on a singular point in time. A range task on the other hand will increment

the current flattening end it has just completed by the chosen user interval to see if this is still

within the allocated range, i.e. less than the end time. If it is, the algorithm will restart on this

new time via the specified Time Check broadcast. If, however, the new value is greater than

the end time, this will be used instead (i.e. ranges are always inclusive of end time). This will

be the last execution and the task will become idle after its completion, as with the graph task.

Finally the live task will restart if the user has requested the analysis to be on repeat. In this

instance if the chosen live increment is set to processing time, the task will sleep for this period,

but once awoken will request the latest safe time and begin executing the algorithm on whatever

has returned. If event time is selected the live task will increment its Live Graph flattening end

(in the same manner as a range task) and will begin polling the Reader Workers for their latest

safe time. Once a safe time is available, greater than this value, the analysis will restart on this

new safe point. A repeating live task will never become fully idle, with a next flattening always

planned until killed by the user. The result gathering and restart process can be seen at the

bottom of Figure 5.22.

5.5 Submitting Queries - Analysis Manager

The final component of the Raphtory analysis architecture, and the way in which users may

interact with a running Raphtory deployment, is the Analysis Manager. This sits alongside

the ingestion and maintenance components and provides a REST API[141] to allow the user to

submit queries, check progress and extract results. The Analysis Manager itself is stateless and

does not compute any results, instead spawning an Analysis Task to manage each submitted

query. An overview of the components and scope of the Analysis Manager can be seen in Figure

5.23.

5.5.1 REST endpoints and Query API

The Analysis Manager’s REST API is split between endpoints for query submission and for

accessing the status of established tasks. Looking first at submission it can be seen that three end

points exist, one for each type of task (graph, range and live) which may be set running. When

submitting a request to any of these endpoints the user must supply a JSON object containing

the required parameters for the task type (as discussed in Section 5.2.4). These may then be

joined by optional arguments, such as desired windows, and an ‘args’ array, to pass any additional

information pertinent to this run of the analyser. The Analysis Manager, upon receiving a valid

request, will convert this into an Analysis Task which contains all the user parameters and may

begin executing the desired analysis. List 5.1 shows an example valid query used to compute

connected components on the Gab data discussed in Section 6.4.1. Here the required parameters

can be seen at the top, including the JobID, chosen analyser and start/end/increment. Note

these times are specified in millisecond epochs and refer to the time of the first post within the

128

Figure 5.23: The different REST endpoints available from the Analysis Manager.

Gab network, the last post recorded during our scraping period and an increment of an hour.

Following this is an optional batch of windows which, in this instance, are for 6, 4, 3 and 2 month

periods.

1 {
2 "jobID":"connectedComponentsGabRange",

3 "analyser":"Algorithms.ConnectedComponents",

4 "start":1470801517000,"end":1525372257000,"increment":3600000,

5 "windowType":"batched",

6 "windowSet":[

7 15768000000,10512000000,7884000000,5256000000

8]

9 }

Listing 5.1: Example range query submitted to execute connected components on the Gab

dataset.

Once the query has been successfully submitted the user may leave the task to complete or

begin monitoring it via the status end points. There are also three options here consisting of

the query progress, extracted results and facility to kill an existing task. When querying for

status the user only requires the JobID to which the Analysis Manager will respond according

to task type. For a graph task this will consist of whether the analyser has converged on the

flattening, for a range task how many flattenings have been executed and how many remain,

and for a live task how recently the last flattening completed. When querying for results, the

129

Analysis Manager will return anything the user has requested to publish via PublishResults().

As with the submitted query the response will be in JSON, a sample of which can be seen in

Listing 5.2. This is a subset of the information returned from the connected components query

from Listing 5.1 and shows the state of the network in its early stages (20 August 2016 03:58:37)

with a window of 2 months applied. Finally, if the user requests a job to be killed the Analysis

Manager will return an acknowledgement and begin decommissioning the task. Any ongoing

analysis which it was completing will be stopped during this process.

1 {
2 "time":1471665517000,

3 "windowsize":5256000000,

4 "biggest":152,"proportion":0.99346405,

5 "total":2,"totalIslands":1

6 }

Listing 5.2: Example result returned for the query in List 5.1. The reported information consists

of the flattening end and applied window; the size of the biggest connected component and

its proportion of the graph; and the total components/how many of these are islands (vertices

without connections).

5.5.2 Handling New Analysers at Run-time

As discussed in [124] a major issue with dynamic/streaming analytical platforms is that once

deployed and ingesting data it becomes quite difficult to add new forms of analysis as this

often requires recompilation, redeployment or re-ingestion. This clearly can take some time,

within which the platform may be offline, leading to functions being able to change only during

scheduled maintenance. To remedy this within Raphtory, the user may submit new analysers

via the REST API which will be compiled at run-time and utilised by both the Analysis Task

and Reader Workers.

Upon instantiation of an Analysis Task it will initially check the provided analyser class path

to ensure this exists within the compiled code base. If it does not, the submitted query must

contain the source code which the task will then compile (via the Scala run-time toolbox[159]) into

an analyser object to utilise throughout the analysis process. If the class fails to compile or the

file is missing, the stacktrace will be returned to the user to help fix the issue for re-submission.

Assuming the compilation was successful, the task must then propagate this throughout the

cluster. This occurs following the initial connection between the Analysis Task and the Partition

Readers, whereby the task will broadcast the class paths, requesting all Readers check the classes

are present. Once all the responses have been received, the task will forward the provided source

code for any missing classes to allow them to build the object. The new analyser object will

then be stored within the worker as the ‘factory master’, labelled by its desired class path. For

any subsequent requests for the class this master version may be cloned to utilise within a given

130

superstep run. This means the new classes only require compilation once per partition for the

lifetime of the deployment.

5.6 Summary

To summarise, in this chapter we first explored the range of graph algorithms which are available

within Raphtory, covering the full structural scope and how these are expanded with the inclu-

sion of entity history. We discussed how all analysis is run on graph flattenings, allowing the

user to develop the algorithm once and deploy it at any point within the history of the graph.

We introduced time ranges, which allow for flattenings to be built across periods of interest and

window batches, which provide a set of temporal depths to investigate at a given point in time;

further discussing how these may be combined together. Finally, within the overview, we intro-

duced Live Graph analysis and explained how all prior techniques, including access to history

and window batches, could be applied on the latest graph instance.

Following the overview we introduced the Raphtory analysis API, which is broken down into

three components. The first of these is the analyser, which encompasses the full algorithm,

allowing the user to implement all steps required to converge on the desired result. The second

component is the entity visitor, which provides a safe way for the user to access information

about the entity, save analytical state and send messages between vertices. Thirdly is the graph

lens, which returns the correct entities included in a requested flattening, allowing analysers to

be time independent.

Penultimately in this chapter we discussed the underlying implementation details of how the

analysis works, both from the perspective of the API and the interactions between the Partition

Readers/Analysis Task controlling the overall workflow of an algorithm. Lastly, the higher level

REST API was introduced, showing how users may submit queries to Raphtory, check how their

ongoing analysis is progressing and retrieve their results.

131

Chapter 6

Evaluation

6.1 Introduction

Now that we have defined the underlying graph model, discussed how Raphtory builds and

maintains such a graph and how analysis may be performed alongside, this chapter provides

an evaluation of the current implementation. This in itself has provided a novel challenge as,

whilst there are clear methodologies for benchmarking pure streaming systems and batch oriented

graph processing systems, no framework exists to combine elements of both. To this end we first

define a testbed and clear methodology for the Raphtory evaluation, stressing its features in an

automated and reproducible manner.

The evaluation of Raphtory is split between its two key areas, namely ingestion and analysis.

Within the ingestion evaluation three major areas are investigated. Firstly, the throughput which

can be achieved by the Spout, Router and Partition Manager when scaling up the computational

resources allocated. Secondly, the effect of deletions on this attained throughput. Thirdly, the

number of updates, and the size of the graph, which can be ingested and maintained across an

increasing number of Partition Managers when scaling out Raphtory in a distributed setting.

Through this it is shown that Raphtory can comfortably handle the rate of traffic output from

many real world datasets, may continue to perform in situations with a high degree of node churn

where entities are continuously joining and leaving the network and, finally, is able to scale the

size of the stored graph in line with the amount of machines it is allocated, ingesting over 1.5

billion updates across 200 million edges within the largest deployment we have tested (16 AWS

m5a.8xlarge VM’s).

Following this, the evaluation of Raphtory’s analytical capabilities is focused around two

use cases and the insights which could be garnered via the unique model and API. The first of

these is an analysis of the Gab.ai[160] social network, applying batches of windows across the

full history of the network to see how it changed through time under a short and long term

lens. This produced notable insights, not just about Gab, but also extracted patterns never

132

previously seen within social networks. The second use case then focused around the Ethereum

network, tracking the flow of illicit currency over a three month period following the hack of a

Korean exchange[161]. This was done utilising a temporal tainting algorithm, where the history

of the edges was employed to ensure the taint only travelled forwards in time. Through this

Raphtory was able to track the stolen funds through almost 200,000 wallets and find a selection

of exchanges where the hacker had been able to convert it into fiat currency.

Raphtory’s capability to perform analytics efficiently was then tested by comparing the im-

plementation of the above Gab use case to a replication implemented in Spark GraphX. Here

Raphtory was shown to be over 300x faster in some instances with the overall job taking 110

minutes in Raphtory and over 4 days in Spark.

Finally, following the evaluation of Raphtory, it was felt that there was a need for some

standard manner to compare the growing number of systems in the dynamic/temporal graph

space. As such we created GraphTides[1], a framework for evaluating stream-based graph pro-

cessing platforms. Within this we open the discussion of how to merge the important features

of a streaming benchmark (throughput, update order, etc.) with those of a graph analytics

benchmark (appropriate query workloads) in a standardised/repeatable manner.

6.1.1 Chapter Roadmap

Section 6.2: Evaluation Methodology To begin the evaluation of Raphtory a testing

methodology is established to ensure the tests are repeatable. This includes defining the

test environment, automating the test process and establishing which metrics are being

recorded.

Section 6.3: Raphtory Ingestion Evaluation The ingestion capabilities are then tested.

This includes exploration of initial issues, scale up tests for update throughput, scale out

tests for maximum achievable graph size and an investigation into the effect of entity

deletions on the attained throughput.

Section 6.4: Raphtory Analysis Evaluation The analysis functionality of Raphtory is then

evaluated through two different use cases. This consists of a windowing focused workload

over the social network Gab.ai and a temporal tainting algorithm run on a large scale

cryptocurrency network.

Section 6.5: Comparison To Other Graph Analytics Platforms This analysis evaluation

then continues by comparing the implementation for the Gab.ai use case to a replication

in Spark GraphX where Raphtory is shown to be much more efficient.

Section 6.6: GraphTides: A Framework for Evaluating Stream-based Graph Pro-

cessing Platforms Finally, drawing from what we have learnt from this evaluation, we

look to open the discussion of how to standardise the evaluation of similar systems in the

future, formalising these ideas in the GraphTides framework.

133

Figure 6.1: How Raphtory may be deployed onto a cluster of machines via Docker/Kubernetes
and how these deployments are monitored.

6.2 Evaluation Methodology

6.2.1 Raphtory Evaluation Testbed

To begin the evaluation of Raphtory an investigation into the manner with which similar stream-

based graph processing systems were benchmarked was conducted. Unfortunately no standard

manner for evaluation had been established with the algorithms, datasets and test environments

varying widely. Therefore, we moved to explore the wider remit of benchmarking literature to

develop a methodology which borrows from well established evaluation principles.

To ensure all benchmark tests are as fair and reproducible as possible, this evaluation follows

the principles laid out in Jain [162] for test definitions and the Popper[163] conventions for

deployment. Jain requires the system and its constituents to be fully defined and the goals

of the analysis to be laid out beforehand. The appropriate metrics relating to this goal are

then established (e.g. throughput, response time) and the optimum value decided. Following

this, the set of possible parameters affecting the performance of the system are constructed

(both system parameters and properties of the actual workload) with those to be varied for the

experiment chosen and appropriate levels defined for those remaining. The experiment may then

be conducted on a variety of system setups, which may consist of both scale up and scale out.

To facilitate these varying setups, Popper establishes a pipeline which automates the experiment

from inception and execution through metric collection and publication of results.

To begin providing a Popper appropriate testbed Raphtory’s implementation was compiled

into a Docker Image1, allowing deployment via container orchestration software (e.g. Kubernetes

[164]); as can be seen within Figure 6.1. All deployments then consist of one main actor per

container with Akka/Docker handling the discovery phase, connecting all actors together. This

means the number of Spouts, Routers and Partition Managers can be set within a configuration

file, along with the computational resources they are allocated, and instances will be spawned

1https://hub.docker.com/r/miratepuffin/raphtory/

134

and set about their given roles. Furthermore, the classes for these actors may also be set within

configuration, minimising the need to recompile the image.

To provide metrics on each of these containers, the monitoring tool Kamon[165] is installed

within Raphtory, automatically logging system metrics as well as tracking Raphtory internals.

These are stored in Prometheus[166], a time series database which has also been containerised.

Prometheus provides REST endpoints for all stored data allowing it to be pulled and plotted

automatically. Finally, to remove the difficulty of reproducing exact hardware setups, all ex-

periments are carried out on Amazon Web Services (AWS). Through AWS a variety of virtual

machine (VM) instances were utilised across the conducted tests. A summary of their specifica-

tions can be seen within Table 6.1. The scripts for deployment and plotting of results can then

be found within the Raphtory Repository2, completing the Popper pipeline.

Table 6.1: Amazon Web Service Machines Utilised

Instance
Name

Allocated CPU Available Memory Network Bandwidth

m5a.large 2 core AMD EPYC 7571 at 2.5 Ghz 8GB Up to 10 Gigabit
m5a.xlarge 4 core AMD EPYC 7571 at 2.5 Ghz 16GB Up to 10 Gigabit
m5a.2xlarge 8 core AMD EPYC 7571 at 2.5 Ghz 32GB Up to 10 Gigabit
m5a.4xlarge 16 core AMD EPYC 7571 at 2.5 Ghz 64GB Up to 10 Gigabit
m5a.8xlarge 32 core AMD EPYC 7571 at 2.5 Ghz 128GB Up to 10 Gigabit
m5a.16xlarge 64 core AMD EPYC 7571 at 2.5 Ghz 256GB 12 Gigabit

6.2.2 Recorded Metrics

For all tests executed a selection of key metrics are extracted from those recorded by Kamon,

categorised under Host System, JVM (Java Virtual Machine), Akka and Raphtory; an overview

of which can be found in Figure 6.2. Starting from the lowest level, each machine hosting a

Raphtory component provides metrics on the systems resource utilisation from which the average

CPU usage and the amount of inbound/outbound network traffic is extracted. Moving up a layer,

inside of each container the JVM is monitored to provide insight into its internal execution and

memory management. For execution this consists of a breakdown of the parallelism achieved

by each thread pool, of which Akka makes ample use of. On the other hand, for memory

management, the allocated heap space is tracked along with the time taken/space reclaimed

from garbage collection cycles. Expanding past the base JVM, Akka exposes information about

the message processing of individual actors to investigate work skew or which components in

the pipeline are bottlenecking those further downstream. This consists of the average processing

time of a message, the average time spent in the mailbox of the actor waiting to be processed

and the overall mailbox size. Alongside this it exposes errors experienced by actors split between

unhandled messages (messages arriving where they shouldn’t) and dead letters (messages dropped

because the actor is overloaded and its mailbox is full).

2https://github.com/miratepuffin/Raphtory-Deployment

135

Figure 6.2: An overview of the metrics recorded during all test runs of Raphtory.

Finally, internal to Raphtory, each component tracks its own progress split across ingestion

and analysis metrics. For ingestion the full journey of graph updates are tracked. This begins

with the Spout recording how many tuples it is outputting, following these into the Router

Workers which track how many graph updates these convert into. The Writer Workers then

record how many ‘primary’ updates they are receiving from the Router pool, as well as how

many intra-writer (workers in the same partition) and inter-writer synchronisation messages

have to be processed. The writers then report the difference between the latest update time

(unsynchronised) and the latest safe time which may be analysed, as well as the average time it

takes for a tuple arriving at the Spout to be available for analysis. These are great indicators of

the ability of the cluster to handle the current throughput.

During analysis a similar process takes place within the Reader Workers and Analysis Tasks,

tracking the time taken for each flattening. For the Analysis Task this consists of the overall

time for the analysis to converge and the results to return. For the Reader Workers, this consists

of the time to complete the current superstep and within this the average time taken to build

the flattening via the graph lens. This provides insight into bottlenecks within/between each

superstep and if data skew is causing one worker to take longer than the others.

136

6.3 Raphtory Ingestion Evaluation

The first set of tests conducted focused on the ingestion components of Raphtory, investigating

their throughput, ability to scale up and out and the current bottlenecks which will be the

focus of future improvements. For this, four tests were conducted, utilising Ethereum blockchain

transactions as the underlying data source. The first test looked to highlight initial bottlenecks

within the components and establish a sensible testbed (machine sizes and component numbers)

for the remaining experiments. Test two looked at scaling up a singular Partition Manager by

deploying it within the full range of machines seen within Table 6.1. This doubled the available

CPU and memory each time, ascertaining the increase in throughput as more resources were

allocated. The third test compared this throughput with Ethereum transactions augmented

with an increasing number of deletions (both vertex and edge) to probe the impact that these

have. Finally, test four scaled out the number of Partition Managers from 1 to 16 to see how much

more of the total Ethereum network may be ingested and modelled as the available machines

and memory increased.

6.3.1 Test 1 - Initial Component Comparison

Test Plan

To establish a sensible standard deployment for the subsequent scale up and out stages of eval-

uation, initial tests were conducted to probe the stability and throughput of the Spout, Router

and Partition Manager. The goal here was to discover any issues which could be resolved prior

to the ‘real’ tests and to see which components would be a sensible focus within these. This was

run on the minimum viable Raphtory cluster, i.e. one of each component (Watchdog, Spout,

Router, Partition Manager and Analysis Manager), with each deployed on its own machine to

minimise contention for resources and provide the fairest testbed for comparison. For these tests

each component was deployed on a m5a.16xlarge, the biggest machine available, with the Spout

set to read 300,000 blocks of Ethereum (some 33 million transactions) from disk, providing finer

control over the amount of tuples output each second in comparison to pulling from a database

or stream. Each transaction was converted into three graph updates, two vertex adds for the

sender and receiver and an edge add specifying the transaction. The vertices were then given an

immutable property of their wallet hash, with the edge containing a value property specifying

the amount of currency sent. Once the cluster was established, the Spout began ingesting the

transactions and outputting these at a rate of 1,000 tuples a second. This rate was increased

by 1,000 every minute until either maximum Spout throughput was achieved (∼200k messages a

second), a component reported a failure (denoted by one or more dead letters) or the data was

fully ingested.

137

Preliminary Run

The preliminary runs of this test proved unsatisfactory, with both the Router and Partition

Manager producing dead letters at low throughput, which was clearly a cause for concern. Upon

investigation it was noted that whilst the CPU was almost idle within their respective machines,

there were periods of sustained ∼100% utilisation across all cores, often followed by the dead

letters. By attaching a JVM profiler to these machines it could be seen that these periods were

actually garbage collection (GC) cycles. These were ‘stop the world’[167] implementations, which

would only run once the (large) heap was full and would take tens of seconds to complete the

mark and sweep. Once the system was permitted to return to processing, its TCP connections

and the Akka actor keep alive messages had all timed out, and the cluster had assumed the node

had been lost, hence the dead letters.

To solve this issue several garbage collectors were trialled, with the clear winner being Shenan-

doah [168]. Shenandoah reduces GC pause times by performing most garbage collection concur-

rently, including concurrent compaction. This means pause times are no longer proportional to

heap size and, therefore, collecting on the large heaps within the established testbed has similar

low pauses to much smaller machines. The impact from this may be seen in Figure 6.3, the

results from the second run, where in the bottom right plot both the Partition Manager and

Router have large GC cycles, but no pauses until the very end. The side effect of this, however,

is that Shenandoah makes ample use of the available heap space, making it quite difficult to see

how much memory is actually being used within the component. This can be seen in the bottom

left of Figure 6.3 where the Router and Partition Manager jump to the maximum available heap

and stay there for the remainder of the execution.

There are two important aspects to note here. Firstly, to highlight the massive impact it

had, Shenandoah is not plotted against other garbage collectors tested (such as G1 and CMS),

not because the same tests weren’t run, but because these were simply not fit for purpose and

the system crashed before comparable results could be garnered. Secondly, whilst Akka has

provided a fantastic base for the development of Raphtory and handles many of the frustrating

networking issues that distributed systems are often plagued with, this comes at the downside of

transparency. Many of Akka’s classes are compiled at run-time, meaning heap dumps compose

almost entirely of basic types like strings and tuples. Similarly, as it controls the internals for

networking, it is very hard to draw direct correlations between in-bound/out-bound messages

through Akka and the network throughput seen in the underlying system metrics (as it does a lot

of batching etc. internally). These combined made it difficult to investigate many issues, notably

why the garbage collector was keeping certain objects in-memory or why throughput seemed to

be dropping, even when well below the available bandwidth of the host machines. This is not

inherently an issue now, as can be seen in the tests below, but will need to be revisited as the

development of Raphtory progresses.

138

0 10 20 30 40 50 60 70
Time (Minutes)

0

20000

40000

60000

80000

100000
M

es
sa

ge
s/

s

Spout, Router and Partition Writer Throughput

Spout Output
Router Worker Output
Partition Manager Writer Input

0 10 20 30 40 50 60 70
Time (Minutes)

0

20

40

60

Tr
af

fic
 (M

B
/s

)

Spout, Router and Partition Network Traffic

Spout Outbound
Router Inbound
Router Outbound
Partition Manager Inbound

0 10 20 30 40 50 60 70
Time (Minutes)

0

50

100

150

200

H
ea

p
(G

B
)

Spout, Router and Partition Writer JVM Committed Memory

Spout
Router Worker
Partition Manager Writer

0 10 20 30 40 50 60 70
Time (Minutes)

0

200

400

600

800

M
ai

lb
ox

 s
iz

e

Pending Messages In Akka mailbox/Spout to PM transfer Time

Spout Mailbox
Router Mailbox
Partition Manager Mailbox

0 10 20 30 40 50 60 70
Time (Minutes)

0

10

20

30

M
ed

ia
n

C
or

e
(%

)

Spout, Router and Partition Writer CPU Utilisation

Spout
Router Worker
Partition Manager Writer

0 10 20 30 40 50 60 70
Time (Minutes)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

A
ct

iv
e

Ti
m

e
(S

ec
on

ds
)

Garbage Collection Cycles and Pauses

Router GC Cycles
Router GC Pauses
Partition Manager GC Cycles
Partition Manager GC Pauses

0

100

200

300

400

500

M
ed

ia
n

S
po

ut
 to

 P
M

 (S
ec

on
ds

)

Spout to PM Transfer Time

Figure 6.3: The Results and System Metrics of a minimum viable deployment with one Spout,
Router and Partition Manager; slowly increasing throughput from the Spout.

Run 2 - Minimum Viable Deployment

Once the Raphtory image had been rebuilt with these GC configurations, the tests could run

to completion with the Spout able to fully ingest the dataset and the full graph built within

the Partition Manager. The results for the first of these runs, utilising the minimum viable

Raphtory cluster, can be seen in Figure 6.3. Looking first at the throughput of each component

in the top left it can be seen that the Spout achieved a maximum output of 45,000 transactions

a second before running out of data. The Router seemed to be keeping up well with this until

the 40 minute mark where its output became more erratic. At this point the Router had reached

a maximum output of 80,000 updates a second, as each transaction translates to three graph

updates (∼100million in total). The Partition Manager unfortunately lagged substantially behind

both of these, keeping up with the Router until 40,000 updates a second, at which point it

appeared to saturate.

In an attempt to discover the cause of this saturation it was checked where the Partition

Manager or Router had been bottlenecked. Looking first at the CPU in the middle right of

Figure 6.3, whilst both the Router and Partition Manager are trending upwards, overall neither

were highly taxed and this was unlikely the cause of either not keeping up with the incoming

data. Looking next at the network I/O in the middle left of Figure 6.3, it can be seen that

whilst the Spout output and Router input are consistently in-sync, the Router output drops

139

0 10 20 30 40
Time (Minutes)

20000

40000

60000

80000

100000

120000

M
es

sa
ge

s/
s

Spout, Router and Partition Writer Throughput

Spout Output
Router Worker Output
Partition Manager Writer Input

0 10 20 30 40
Time (Minutes)

0

20

40

60

80

100

120

Tr
af

fic
 (M

B
/s

)

Spout, Router and Partition Network Traffic

Spout Outbound
Router Inbound
Router Outbound
Partition Manager Inbound

0 10 20 30 40
Time (Minutes)

0

500

1000

1500

2000

2500

3000

3500

M
ai

lb
ox

 s
iz

e
(M

es
sa

ge
s)

Pending Messages In Akka mailbox/Spout to PM transfer Time

Spout Mailbox
Router Mailbox
Partition Manager Mailbox

0 10 20 30 40
Time (Minutes)

0

10

20

30

40

M
ed

ia
n

C
or

e
U

sa
ge

 (%
)

Spout, Router and Partition Writer CPU Utilisation

Spout
Router Worker
Partition Manager Writer

0

1

2

3

4

5

6

M
ed

ia
n

S
po

ut
 to

 P
M

 (S
ec

on
ds

)

Spout to PM Transfer Time

Figure 6.4: The Results and System Metrics of a deployment with one Spout, four Routers and
one Partition Manager; slowly increasing the output from the Spout.

and becomes irregular shortly before its maximum achieved output. Even though this is much

lower than the throughput specified for the machine by AWS this could explain the drop off of

the Router, but does not explain why the Partition Manager saturates well before this. Finally,

the top right of Figure 6.3 shows the size of each actors mailbox and the time taken on average

for an update to reach the Partition Manager from the Spout and be processed. Interestingly

here, the Partition Manager’s mailbox is almost always empty, i.e. it has completed all received

updates. This is even the case after the time taken for updates to arrive and be processed begins

to massively increase. The point of this increase, around the 20 minute mark, also seems to

coincide with the point of saturation in the updates processed by the Partition Manager. This,

however, did not seem to be the fault of the Partition Manager which was completing all arriving

updates as per its mailbox.

Run 3 - Four Router Deployment

From the mailboxes it appeared that the Router was the cause of the bottleneck, with the updates

it was outputting clearly not arriving at the Partition Manager until well after it reported they

were sent. As such, a tertiary run was executed increasing the number of Routers to four; the

results of which can be seen in Figure 6.4. In this run the Spout reached a similar throughput

to the prior test, but now the Routers were able to keep up fully with this, producing three

times the amount of updates until the test was stopped. Interestingly, the Partition Manager

was also able to keep up with this, processing over 100,000 updates a second, at which point

140

it began to fail. The network I/O of all components was also fully in line within this run and

the Routers’ CPU utilisation dropped to idle whilst the Partition Manager is clearly trending

up; as can be seen in the bottom two plots. Finally, looking at the mailbox size and transfer

time, the drop in Partition Manager throughput now coincides with an increase in the size of

its mailbox and the time taken for updates to be processed; suggesting the Partition Manager is

now actually saturated. Whilst this does not provide an exact cause of why the singular Router

became overwhelmed, it does establish a testbed which may be taken forward. There are clearly

improvements to be made here, possibly implementing some sort of back-pressure[169] to allow

components to communicate when they are receiving too much traffic. Alternatively, the pipeline

could be changed to pull based where Routers and Partitions request data and would, therefore,

not be overloaded by additional messages when something like a GC pause occurs. This being

said, whilst not directly comparable, this is ingesting the same throughput as the results reported

by Kineograph[10] with 8x fewer machines, correct event order and no batching.

6.3.2 Test 2 - Scale Up Ingestion Throughput

Test Plan

Following the establishment of a testbed where the Spouts and Routers would not interfere

with the Partition Manager, the purpose of the second test was to investigate the capability of

Partition Managers to make use of available resources when scaling up the number of CPU cores

and allocated memory. Thus, within each run the Spout and Routers remained on m5a.16xlarge

instances, whilst the Partition Manager was deployed on each of the virtual machines seen in

Table 6.1, beginning with the m5a.large (2 cores, 8GB RAM). The output of the Spout was then

ramped up in the same manner as the prior test until the Partition Manager failed. Again the

Ethereum transactions dataset was utilised, but this now began from block 1 with all 10 million

blocks available. Upon completion of a test run, the maximum achieved throughput was noted

and the next run established. After five runs of the same instance type had completed and an

average gathered, the Partition Manager’s instance was upgraded to the next VM, allowing the

next five runs to commence. Once all runs had completed, the maximum throughput could be

compared across instance type to see the degree of scalability achieved.

Test Results

The results from this test can be seen in Figure 6.5, with the smallest machine achieving a

throughput of 9,000 updates a second and the largest achieving over 120,000 in some runs. These

results are very promising, but may be better understood given the context of real datasets/use

cases. The Ethereum network itself completes ∼10 transactions a second[170]. The average

number of tweets generated across Twitter is ∼6000 a second[171]. Finally, for the largest of

datasets, there were 134 billion (non-cash) monetary transactions across the whole of Europe in

2017[172], averaging to a rate of ∼150,000 a second. Whilst there will be times when these use

141

m5a.large m5a.xlarge m5a.2xlarge m5a.4xlarge m5a.8xlarge m5a.16xlarge
Partition Manager Machine

20000

40000

60000

80000

100000

120000
M

ax
im

um
 U

pd
at

es
/s

Update Throughput With Increasing Machine Size

Figure 6.5: The maximum updates processed per second by Partition Managers deployed on
VMs of increasing size, doubling CPU cores and allocated memory each time.

cases spike dramatically, possibly by orders of magnitude, it clearly contextualises the speed at

which Raphtory may operate. Furthermore, additional throughput will be gained by scaling out,

which would be required anyway to store all the data within a real world deployment(as explored

in Section 6.3.4).

There are also two notable patterns within these results. Firstly, the throughput appears

to be more variable as the machine size increases, but this is a by-product of recording the

absolute maximum throughput. When the smaller machines become overwhelmed they quickly

crash, whereas the larger machines are more stable, having ample resources to buffer updates and

attempt to hold out before finally subsiding, generating some variability. Secondly, the increase

in throughput between the first five machines appears linear, but then this doubles between the

8xlarge and the 16xlarge. This suggests a bottleneck is not present within the largest machine,

but exists in all those prior. Unfortunately, due to the issue of Akka obscuring the finer details

of thread usage, heap objects and network traffic, the investigation into this bottleneck will be

future work once a better internal view can be resolved.

142

6.3.3 Test 3 - Deletion Workloads

Test Plan

Following the scale up evaluation, the third test was to investigate the effect of deletions on the

achieved throughput. To allow these to be comparable to the figures reported in Section 6.3.2, the

Ethereum transactions dataset was once again utilised, augmented with increasing percentages

of deletions. To create these deletions the Routers, upon sending out a vertex or edge addition,

had a configurable probability of also sending an entity removal for the same edge/vertex, set

at the next time step (current block + 1). For this test the established four Router testbed was

utilised, with two Partition Managers deployed to include inter-worker synchronisation within the

evaluation. These Partition Managers were set to run on 8xlarge VMs, with all other components

each allocated a 16xlarge.

Once deployed, the Spout slowly increased the throughput in the same manner as all previous

tests until a maximum was reached. This was conducted five times per setting to gather an

average, starting with no deletions to provide a baseline comparison. Next 0.1% edge deletions

was run to demonstrate the difference between this, no deletions and when vertex deletions were

included. Finally, both types of deletions were enabled, starting at 0.1% and increasing through

to 8%. Note, during all runs the same pseudo-random seed was utilised, ensuring the generated

data remained consistent across all runs.

Test Results

The results from this test can be seen in the top plot of Figure 6.6. Two Partition Managers were

able to almost double the throughput of their singular counterpart in the prior test, reaching

∼115 thousand updates a second, when no deletions were included. Upon enabling edge dele-

tions this throughput decreased by a marginal amount, as most of the generated updates would

require some synchronisation between workers, but demonstrates that these can be integrated

without largely affecting the system. The real notable drop occurred when vertex deletions were

enabled, reducing the throughput by over half with 0.1% of vertex additions being paired with

an equivalent deletion. This reduced further as the deletion percentage was increased, ending at

one tenth of the original throughput when 8% of additions spawned a removal.

This is not unexpected as even 0.1% per update is larger than the rate of node churn seen

within most real world networks, where vertex deletion is rare. The process for generating

deletions additionally means that vertices with more transactions have a greater probability of

deletion; the opposite of which is observed in e.g. social networks[173]. This is, therefore, clearly

a worst case situation where the highest degree vertices are deleted, generating many more

synchronisation messages to be handled. These can be seen in the bottom plot of Figure 6.6,

where the number of synchronisation messages per update increases from 0.2 with no deletions

(25,000 synchronisation messages for 110,000 updates) to almost 10 with 8% deletions (80,000

for 10,000 updates). Even with this being the case, Raphtory is still able to ingest above the

143

0% 0.1% (Edge Deletions) 0.1% 0.25% 0.50% 1% 2% 4% 8%
Percentage Deletions

20000

40000

60000

80000

100000

120000
M

ax
im

um
 U

pd
at

es
/s

Update Throughput With Increasing Amount of Deletions

0% 0.1% (Edge Deletions) 0.1% 0.25% 0.50% 1% 2% 4% 8%
Percentage Deletions

0

2

4

6

8

10

12

14

R
at

io

Ratio of Synchronisation Messages to Updates

Figure 6.6: Top - The maximum throughput achieved across two Partition Managers when in-
creasing the number of deletions within the underlying dataset (Ethereum transactions). Bottom
- The corresponding ratio of synchronisation messages to graph updates for these deployments.

rate of throughput for several of the uses cases introduced in Section 6.3.2.

6.3.4 Test 4 - Scale out

Test Plan

The final test for ingestion then looked at how well Raphtory was able to make use of additional

resources when scaling out the number of Partition Managers. As throughput on a singular

Partition had appeared to satisfy many real world datasets, this focused on the volume of data

which could be processed and the size of the graph which could be stored in memory. The

Ethereum transactions dataset was once again utilised with the goal of seeing how much of the

10 million blocks and 700 million transactions could be modelled and stored in each deployment.

As with the scale up tests the resources were doubled each time, beginning with 1 Partition

Manager deployed on an 8xlarge VM and increasing through to 16 Partition Managers. Each

deployment was run five times with a conservative throughput below the recorded maximum.

This began at 40,000/s for the singular partition and was increased by 20,000 each time the

144

partitions were doubled. Updates then continued until one of the Partition Managers reported it

could no longer store new updates, at which point the size of the graph was recorded, the cluster

was decommissioned and the next deployment began.

Figure 6.7: Top - The total updates processed when increasing the number of Partition Managers
deployed to ingest Ethereum transactions and the count of distinct edges these created. Bottom
- The skew in updates processed by each Writer Worker across Partition Manager deployments.
Note: The Y Axis appears constant for each deployment due to the hashing partitioning ensuring
each Writer Worker has the same number of vertices.

Test Results

The results for this test may be seen in the top of Figure 6.7. Here the singular Partition

Manager was able to process ∼130million updates (43 million transactions) across 13 million

edges, encompassing 6% of all Ethereum transactions. Reassuringly, as the partitions double,

the number of processed updates closely follows, with the 16 partition deployment able to ingest

greater than 1.5 billion updates across 200 million unique edges (74% of the total Ethereum

transactions). This is especially positive as within the largest deployment almost 99% of edges

would require some form of synchronisation message and ∼90% would be split and stored within

two partitions.

The biggest issue faced was the underlying skew within the dataset with certain vertices,

notably exchanges and Ethereum contracts, being involved in thousands of times more transac-

145

tions than the average wallet. The Writer Workers, which are tasked with handling these entities

must, therefore, store a disproportionate amount of edges and history and are always the first

component to report an issue. This can be seen within the bottom plot of Figure 6.7 where all

size deployments have clear outliers in the amount of updates processed, even though the number

of vertices are evenly divided. A notable example of this is the small collection of workers within

the 16 partition deployment which processed over 50 million updates; ten times that of their

lightest loaded peer.

6.4 Raphtory Analysis Evaluation

Following the assessment of Raphtory’s capability to ingest and maintain large datasets, the sec-

ond half of the evaluation focuses on its ability to perform analytics on the generated graphs and

garner new insights. For this, two use cases are presented. The first looks at applying windowed

flattenings over the social network Gab.ai[160], investigating the structural characteristics of the

network as it evolves through time by focusing on user interactions. The second performs taint

analysis[174] on the Ethereum dataset ingested above, tracking the diffusion of currency stolen

during the hack of the UpBit Exchange[161]. All ingestion and analytics was performed on the

established four Router testbed with four Partition Managers deployed on 8xlarge instances to

maintain the graph. The raw results from the executed analysers was then pulled back via the

Analysis Managers REST API for plotting.

6.4.1 Social Network Window Analysis - Gab.ai

Gab.ai is a fairly new social media platform, in many ways similar to Twitter, where users may

post character limited ‘gabs’ which can then be shared, liked and commented upon by their

followers. Gab has received quite a lot of attention in recent years as it champions “free speech,

individual liberty and the free flow of information online” and has gained quite a notorious user

base[175]. However, content aside, it provides a great use case for social network analysis as, up

until quite recently, full access was provided to its internal REST API. By crawling this the full

Gab network could be downloaded and ingested into Raphtory. This consists of 95 GB of raw

data, containing ∼19 million gabs and replies posted between 10 August 2016, the start of the

Gab network, and 5 May 2018, when an API update made it difficult to identify new posts.

This dataset is, therefore, perfect for investigating the efficacy of windowed flattenings at

extracting short and long term structural patterns, as it does not suffer from the underlying

sampling bias which plagues similar datasets, e.g [176]. For this the posts were ingested into

Raphtory converting them into a user−→user interaction graph via a custom Gab Router. As

explored in Section 4.4.3, within this abstraction users are represented as vertices and when a

user comments on a ‘gab’ an edge is draw between them and the original poster. The contents

of posts and user profiles are stripped away during this process to look purely at the structure

of user interactions. Once the data was fully ingested, batched window range analysis tasks

146

Figure 6.8: CCDF for proportion of time a user spends ranked in the top 20.

were set running across the full history of the network, moving forward an hour at a time and

executing the analysers on windows ranging between an hour and a year. The results of these

were then compared to see how they differ across time and across the window sizes. These results

are additionally discussed further within the full publication[21].

In-degree User Ranking

The first algorithm run on the network was a singular step local scope analyser looking at ranking

the users based on their in-degree. As this is an interaction network, a user with more inbound

interactions is someone garnering attention/popularity. By extracting the top users at differing

temporal depths we can see how many users ever become influential on the platform, and for

how long this status lasts. Each Reader Worker was, therefore, tasked with ranking the vertices

within their Entity Storage based on the size of their incoming edge map and returning the top

20 users for each window. These could then be aggregated within the Analysis Task to gather

the global top twenty users. The code for this analyser can be seen in Appendix C.2.

Figure 6.8 shows the results of this analyser run over the network with windows of an hour,

day, week, and month, plotting the proportion of windows a user spends in the top 20 at each

timescale. This unearths two interesting properties of Gab. Firstly, nine users ranked within

the top 20 in more than half of the month windows are also found in nearly half of the week

windows, and 30% of the day windows, supporting the finding that Gab users display strong

elitism [177]. Secondly, when looking through a timescale of a day, we see a large pool of more

than 800 different users enter the top 20. For the most part, however, this influence is very short

lived, with nearly half of these entering the ranks once and never again, demonstrating a strong

‘fifteen minutes of fame’ effect.

147

Figure 6.9: Left - The largest connected component (LCC) across the observation period. Right
- CDF of the size of the LCC as a proportion of the total graph for each window size. Bottom:
A zoom in on the hourly window for an average week.

Largest Connected Component

The second algorithm to run on Gab was then a multistep global scope analyser, calculating

the largest connected component (LCC) within each flattening. This is implemented via label

propagation where during setup all vertices label themselves with their ID and send this to all

their neighbours (incoming and outgoing). In each following analyse superstep, vertices which

have received messages check to see if these contain an ID with a value less than their current

label. If this is the case they use this as their new label and propagate it forward to all neighbours.

If not they vote to halt, keeping their current label. Once all vertices have voted to halt, the

Reader Workers group their vertices per label and send the aggregates to the Analysis Task. The

task summarises these values and reports the LCC in terms of total size and relative proportion

of the overall graph. The code for this algorithm is available to view within Appendix C.1.

Extracting the LCC was chosen to run on Gab as its user-base is characterised by homogeneity,

especially driven by political topics. It was, therefore, interesting to investigate the extent to

which they form a single interacting community. Aggregate graphs of social networks almost

always show the majority of users in a network are part of a ‘giant connected component’[154],

but by applying a range of different window sizes to this we could dig deeper into how this grows

and changes throughout the observation period.

The top left of Figure 6.9 shows the total size of the LCC across time, comparing the aggregate

graph to flattenings with windows of an hour, day, week, month and year. When looking at the

148

aggregate and yearly windows, a general upwards trend can be garnered as the network appears

to grow in size and new users interact with the established community. However, viewing this

on the monthly and weekly scales it can be seen that the LCC periodically swells quickly and

then shrinks back down. This is caused by an influx of new users joining the network following

real world events popular on Gab (notably Trumps presidential inauguration and the Unite the

Right rally in Charlottesville), who mostly leave after the news cycle has moved on[21]. This can

be seen clearer on the right of Figure 6.9 which shows the proportion of users connected by the

LCC across an expanded set of window sizes. Here at a window size of one day (and all longer

windows) the LCC connects 90% of users for the vast majority of flattenings. This means the

spikes in LCC size consist of almost the whole of Gab and actually the overall size of the network

is fairly consistent across the observation period, not continually growing as it appears from the

aggregate. This also shows that the giant connected component still exists at this scale.

In contrast with this, however, the smaller the window size observed below a day, the higher

variability found in the size of the LCC. As might be expected the number of users (and hence

the absolute size of the LCC) varies considerably with time of day when studied at the hour

level. In fact, at this timescale Gab usage is highly diurnal, with the proportion of users who

are part of the LCC varying hugely across peak and off-peak hours; driven by a userbase that is

largely US and Europe-based [177]. This can be seen in the bottom of Figure 6.9 which focuses

on the proportion of users in the one hour LCC for an average week. At peak hours, 70 – 80% of

active users are part of a single LCC. At off-peak hours, the LCC contains no more than 30% of

users and Gab becomes several smaller completely disconnected networks that can be thought

of as isolated groups talking among themselves. The daily shattering and reforming of the LCC

appears to have never previously been observed in social network data. This shows the ability of

Raphtory to extract new insights from datasets, even when running standard graph algorithms.

Furthermore, this batched window task consisted of over 136,000 flattenings which Raphtory

completed in one pass without issue.

6.4.2 Cryptocurrency Taint Tracking - Ethereum Network

Whilst the majority of cryptocurrency usage is for legitimate transactions, it has also opened a

new way for criminal entities to exchange and launder money[178]. This has lead to the devel-

opment of methods to track illicit currency throughout blockchain networks, warning businesses

and exchanges not to accept trades from linked entities/wallets and assisting the authorities to

bring those involved to justice. A popular form of this is to build the transactions into a network

and ‘taint’ known bad actors, then allow this taint to propagate throughout the network via a

contagion algorithm. The nodes which become tainted during this process may then be investi-

gated further for their links to the original crime. In this section such an algorithm is showcased

for use within Raphtory, deploying this to trace the path of stolen ether, following the hack of

the UpBit exchange in late 2019[161]. During this attack 342,000 Ethereum ($50 million) was

stolen and transferred to a singular wallet, after which the attacker began fanning this money

149

into smaller and smaller amounts in an attempt to hide its origin and transfer it into real fiat.

Unlike other cryptocurrencies, such as Bitcoin which have mixers[179] and multi-in/out trans-

actions to obfuscate the source of currency, Ethereum has one input (the sending wallet) and

one output (the receiving wallet). For the showcased algorithm the traditional tainting utilising

FIFO and haircut[174] may, therefore, be forgone, instead demonstrating how Raphtory may

calculate a path through the graph, moving forward in time, utilising the history native within

the underlying model. This was run on a singular flattening across blocks 9,000,000 to 9,300,000,

encapsulating the three months following the initial hack. The set objective was to trace the

currency until the latest block, tagging any exchanges which had been reached. The amount sent

to the exchange could then be recorded and the wallet theoretically passed onto the authorities

as a possible lead. The addresses for known exchange wallets was embedded into the analyser

after being scraped from the verified listings of Etherscan[180], a reputable Ethereum analysis

site.

Temporal Contagion Algorithm

To begin the algorithm, in the setup, each Reader Worker checks through its vertices to see if it

contains the initial source of the taint, a vertex with the ID property matching that of the UpBit

hacker. If this is located within the Entity Storage, all outgoing neighbours with a transaction

after the time of infection (the block including the hack) are sent a message informing them they

are now tainted. This message includes a new time of infection, which will be the time associated

with the first interaction of the vertex with the tainted node after the original infection time,

extracted from the history of the edge. This way the infection only travels forward in time,

never propagating down edges which occurred prior and would not contain any tainted currency;

minimising the amount of false positives.

In all subsequent analyse supersteps, nodes which have received messages informing them of

their tainted state will find the message with the earliest infection time and label themselves

with this. These nodes will then once again propagate the taint forward on all edges which have

an interaction after the given time of infection. During this process if a vertex which is already

infected receives new messages, it will check if the earliest infection time within these is prior

to its record time and if so will repropagate. This is because illicit edges may have been missed

with the prior time filtering them out. If, however, the times are later, it is simply a cycle and

is ignored. Finally, the algorithm burns out once it reaches an infection time which has no edges

occurring after it, or an exchange is hit which will not propagate forward as this would infect

innocent nodes. An infected exchange will record the total amount of ether sent from this tainted

wallet to itself after the given time of infection, extracted from the history of the ‘value’ property.

Once the algorithm has concluded, the tainted vertices and connecting edges are extracted

as a subgraph and sent to the Analysis Task. Here the partial subgraphs from each worker are

aggregated into the final result and published for the user to access. This algorithm can be seen

in Appendix C.5.

150

Figure 6.10: Subsection of the tracing of the UpBit hacker through the Ethereum Network.
Looking at the first 40,000 blocks, prior to the ramping up of transactions. The hacker is
coloured in red, exchanges are coloured green and tainted wallets in-between are coloured blue.

Results

Upon completion of the flattening, the subgraph extracted was much larger than expected, with

almost 200,000 vertices tainted by the algorithm. It appears that whilst the hacker initially

made very few movements, after the first month this began to massively ramp up, breaking their

spoils into thousands of tiny amounts and fanning out across a large array of wallets. Of all the

nodes touched, only 78 were known exchanges with ∼12,000 Ethereum extracted in total, roughly

4%. This suggests that the hacker is understandably very cautious with this process and it may

be years before the full amount is siphoned out. However, as ether has been extracted these

transactions could prove an initial lead to trace back to the original actor/group responsible.

To provide a visual insight of how this looks, Figure 6.10 shows the tainting algorithm running

on the first 40,000 blocks following the attack, prior to the ramping up of transactions. The initial

fanning out of transactions can be seen here, alongside paths of arbitrary depth beginning to

form. This is probably done as most algorithms set a maximum depth to check and by quickly

exceeding this the currency will be safer to exchange. Interestingly, however, exchanges appear

at all depths within the tree, with notable temporal anomalies. For example, the exchange in

the bottom right was reached 3,000 blocks (roughly 12 hours) prior to the exchange at the top,

two hops away from the original source. These structural/temporal patterns prove an interesting

line of inquiry for which Raphtory is clearly suited and is discussed further in Chapter 7.

151

6.5 Comparison To Other Graph Analytics Platforms

The final tests carried out were to compare the capabilities of Raphtory to those of the graph

processing systems introduced in Section 2.5. It was initially planned to perform ingestion

comparisons against graph streaming systems (i.e. Kineograph[10] and Weaver[11]) and analysis

comparisons against those with temporal capabilities (i.e. Chronograph[15] and Greycat[129]).

Unfortunately, the vast majority of platforms discussed in this section are closed source and,

therefore, not possible to compare in the same environments or with the same use cases. Those

which were accessible, notably only Weaver and Greycat, were then plagued with issues when

attempting to install and run even their basic examples. It was, therefore, decided to compare

Raphtory to Spark GraphX as it would be the option of choice for the majority of people

attempting to perform similar analysis in the real world, given Spark’s prevalence and the lack

of other appropriate platforms.

6.5.1 Test Plan

As Raphtory was going to be compared to a ‘batched’ processing system, it did not make sense

to compare the speed of ingestion. The devised test, therefore, had to focus on the analytical

capabilities of both systems. Spark does not natively support temporal analytics, but can filter

datasets on timestamps, allowing it to effectively extract the same graph flattenings as Raphtory.

It was, therefore, decided to repeat the windowed analysis of Gab as this could be implemented

on both platforms. This would focus on the connected components algorithm as this has a global

scope, is iterative in nature and requires a final aggregation of all allocated values; stressing the

system’s analytical, messaging and querying capabilities. This would run over the full range

of the dataset, moving forward a day at a time, applying five different windows (an hour, day,

week, month and year). Finally, for budgetary reasons the deployment had to be swapped

from AWS to Microsoft’s Azure cloud platform. Within this Raphtory was deployed over 6

‘E32s v3’ virtual machines (32 vcpus, 256 GiB memory) with 4 allocated to Partition Managers.

These machines were the closest available to the m5a.8xlarge used above, with similar CPU and

network specifications, but double the available memory. Spark was then deployed via the Azure

Databricks environment, with an underlying cluster of the same 6 machines. This was Databricks

version 7.5 which includes Apache Spark 3.0.1 and Scala 2.12.

6.5.2 Spark Code

The implementation of this test within Spark can be found in Appendix D.1, however, it can be

briefly summarised as follows: We first define a class for the user interactions in the Gab data

including the timestamp, source and destination IDs. The raw data is then loaded from the Azure

distributed file storage and parsed into this format. We then define the start time and end time

of interest (Aug 10 2016 to May 03 2018 – 1470797917000 to 1525368897000) and the window

sizes as stated above in milliseconds (3600000, 86400000, 604800000, 2592000000, 31536000000).

152

With these a 2 tier for-loop is established, performing the desired operation on all windows for

every day within the period. This operation consists of filtering the raw interactions to within

the timestamp and window (building the flattening), extracting the unique vertices, converting

the remaining interactions to GraphX edge objects and building the final graph. We then call

the connectedComponents() function on the graph (predefined in GraphX) and then extract the

largest component via a groupBy(). Finally, when all windows for the day are complete the time

taken is recorded.

6.5.3 Raphtory Implementation

For Raphtory’s implementation the data was stored in a file on the machine hosting the Spout and

read directly by Raphtory’s default FileSpout3. This was then parsed by the GabUserRouter

which can be seen in Appendix D.2. Here the IDs of the two interacting users are extracted from

each line along with the time of interaction. This is then used to generate two Vertex Adds for

the users and an Edge Add representing the interaction between them. Once the data is fully

ingested a connected components analyser request is submitted to the Range Analysis API end-

point, specifying the same start and end times and window sizes as the Spark code above. The

implementation of this algorithm was discussed in Section 5.3.2 and can be found in Appendix

C.1. The submitted query can be seen in Listing 6.1. Raphtory by default reports the time taken

for each view, this was therefore used to compare to the output from the Spark code.

1 {"jobID":"connectedComponentsGabRange",
2 "analyser":"Algorithms.ConnectedComponents",

3 "start":1470797917000,"end":1525368897000,"increment":86400000,

4 "windowType":"batched",

5 "windowSet":[3600000,86400000,604800000,2592000000,31536000000]}

Listing 6.1: Query submitted to execute connected components on the Gab dataset.

6.5.4 Results

To initially make sure that the Spark algorithm was correct and producing the same output as

Raphtory, both were tested locally on the first three months of the data. The execution times

for this can be found on the left of Figure 6.11, with the individual times at the top and the

cumulative times at the bottom. Note that the time taken by Raphtory to ingest the data is

included in the cumulative plot to represent the full time taken to execute the job. Here we

can see that Raphtory is across the board faster than Spark, ranging from 300x for the earlier

points in time and 10x for the later points in time, leading to Raphtory completing the job in 85

seconds (15 for ingestion) whilst Spark took 32 minutes. This is because Raphtory can quickly

3
https://github.com/Raphtory/Raphtory/blob/master/mainproject/src/main/scala/com/raphtory/spouts/FileSpout.scala

153

Figure 6.11: Comparison of time taken between Raphtory and Spark GraphX, performing the
windowed connected components analysis of the Gab network discussed in Section 6.4.1. The
test was conducted both locally on a sample dataset (left of figure) and then in a distributed
setting on the full dataset (right of figure). Note the cumulative time for Raphtory includes the
time for ingestion.

generate a flattening from the temporal model, with the processing time then proportional to

the number of vertices included and messages propagated. Spark is somewhat similar in that

the time to complete the connected components algorithm once the graph is built increases from

the start of the sample period through to the end. However, this is dwarfed by the amount of

time it takes to rebuild the graph from scratch for each window and timestamp, which averaged

90% of the total execution time for each day. This seemed quite extreme and warranted different

Spark models to be trialled to see if an improvement could be garnered. Several changes were

attempted, notably building a graph with all interactions and labeling them with the time of

occurrence. This was intended to be then filtered down via the subgraph() function, but did not

generate a noticeable improvement.

Once the systems were swapped into the defined Azure cluster and run on the full dataset

this gap was only widened. The results for this can be found on the right of Figure 6.11 with

the individual times at the top and the cumulative times at the bottom, again including the

ingestion. Here we can see that Raphtory was able to complete the job in 110 minutes (3 for

ingestion) with the time taken for each day increasing from 500ms at the beginning through to

25 seconds for the last flattenings. Spark on the other hand was taking ∼500 seconds for each

day from the outset and was only increasing as it progressed through the workload. This was

halted after four hours as at that pace it would take almost four and a half days to finish. The

cause of this was exactly the same as the local deployment, whereby the time taken to extract

154

Figure 6.12: Conceptual overview of the GraphTides framework and test harness.

the graph from the millions of interactions was a huge proportion of the processing time for

each day. This demonstrates the benefit garnered from Raphtory’s temporal model and why in

instances where we wish to drop the increments even lower (such as the hourly increments used

in the real analysis of Gab), no other available tool would be appropriate.

6.6 GraphTides: A Framework for Evaluating Stream-

based Graph Processing Platforms

As discussed in Section 6.2, when initially investigating the best manner in which Raphtory could

be evaluated, similar stream-based graph processing systems were checked to see if a standard

manner for evaluation had been established. Unfortunately this was not the case, with the al-

gorithms, datasets and test environments varying widely. This was interesting as, whilst there

are various benchmarking approaches for traditional batch-oriented graph processing systems, as

well as pure streaming systems, there were no common procedures for evaluating stream-based

graph systems. To remedy this, we developed GraphTides[1], a generic test harness and method-

ology to support system development and comparisons of relevant performance measurements;

an overview of which can be seen in Figure 6.12.

GraphTides explores the intersecting parameter space between graph and stream benchmarks.

It extracts standard computations from graph benchmarks such as LDBC Graphalytics[181] and

integrates concepts of varying load/throughput from stream benchmarks such as StreamBench

155

[182]. Through these we defined the concept of a workload, which consists of one or more streams

of data and computations to be run on the resulting graph. A stream in this context is defined

by multiple compositional dimensions, notably: Topology changes, growth and/or decay of the

graph over time; State changes, updating the properties of vertices and edges; and stream rate

variability, consistent throughput vs inconsistent traffic spikes. As shown in the top of the figure,

these streams are generated offline prior to testing, creating a replayable file. Once a system is

under test this file may be output in a repeatable manner alongside marker events (watermarks)

to track the true throughput of the system i.e. the time between the source outputting a tuple and

this tuple being seen within the results. This setup also allows for the controlled manipulation of

the stream, such as deterministic delay/dropping of updates, simulating real world environments

to see how systems would react when deployed in ‘production’; similar to the principles of chaos

engineering[183]. By understanding what a stream consists of, and by providing replayability

via a test harness, systems can be fairly compared across a variety of workloads.

To enable this comparison ‘Runtime metric loggers’ record output from the stream alongside

metrics reported by all components of the system under test. These are then coalesced by a

log collector to allow for automated plotting and comparison. To maximise the fairness when

comparing these metrics, alongside a Popper[163] pipeline and Jain[162] compliant methodology,

we also wanted to address the varying levels of access a evaluator may have of the systems under

test. For this we define three evaluation levels and the comparisons which would be appropriate

when taking these into consideration. This begins at level 0 where the system is considered a black

box, it only provides an interface for ingesting the graph stream and for accessing computation

results. In this instance only host system measurements may be made. Level 1 encompasses

level 0 by exposing a native metrics interface. This additional source of information can be used

to collect platform-internal data at runtime (e.g., current throughput, platform load). Finally at

Level 2 a system will provide complete access to its internals and the evaluator is able to modify

the source code to inject specific measurement logic. The evaluation goal and its execution,

therefore, depend on the maximum level supported by the systems. For instance, the comparison

of two systems in regard to their average CPU usage for a given workload is possible on level 0.

In-depth performance comparison of internal scheduling components would require level 2.

Whilst it is not expected that GraphTides itself will be picked up as the explicit framework

that all graph systems are compared with, it was important to bring these issues to light within

the community in the hopes of being the catalyst for change in more established benchmarks. To

this end we have had success in many of these ideas being adopted into the LDBC benchmarks[20],

with the intention of also integrating temporal queries in the near future.

6.7 Summary

In summary, an initial methodology was taken forward to investigate the current ingestion and

analysis capabilities of Raphtory. For the ingestion this included a scale-up throughput test,

156

demonstrating that Partition Managers make good use of the resources allocated to them and

may ingest over 100,000 updates a second, comfortably encapsulating many real world use cases.

These results were then compared to the same dataset augmented with large proportions of worst

case vertex deletions, demonstrating how detrimental these are, but that Raphtory can handle

high network churn. Finally, a scale out test was performed to see how much of the Ethereum

network could be stored across increasing number of graph partitions. Here Raphtory was able

to almost double the size of the stored graph inline with the additional allocated resources, only

hampered by the underlying data skew and the edge distribution this generated.

For analysis two use cases were explored. The first looked at applying batched windowed

flattenings over the social network Gab.ai, extracting the difference between the same algorithms

run with varying temporal depth. Within this Raphtory was able to extract interesting new

insights, not only about Gab, but patterns not previously seen within online social networks. This

was namely the continuous formation and collapse of a giant connected component following the

diurnal cycle of user activity at the hour window scale. The second use case then performed taint

analysis across the Ethereum network ingested in the prior tests, tracking the currency stolen

during a high profile hack of a cryptocurrency exchange. Within this algorithm the history

of edges was exploited to propagate the taint forward in time, looking for transactions with

exchanges where the hacker had successfully converted the stolen currency into fiat. Within the

3 months following the hack, Raphtory was able to discover 78 exchanges which had accepted

the illicit currency after it had been transferred through the hands of almost 200,000 wallets.

During this process many interesting structural and temporal patterns were noted, as well as

methodologies for extracting new insights from historic data sources. Alongside the continuation

of the work above, these are being taken in a variety of exciting directions on a diverse array of

datasets. This includes legal, insurance, Covid-19 and Urban Analytics to name a few. These

are discussed in detail in Section 7.2.4.

Following this, when comparing how a user would implement the Gab analysis within more

generic big data tooling such as Spark GraphX, Raphtory was shown to be over 300x more

efficient at generating and analysing flattenings for the graph; taking 2 hours to complete a job

that would take Spark 4 days on the same hardware. This was due to the large amount of

preprocessing Spark had to do to build each flattening of the data, where as Raphtory could

simply extract it from the temporal model.

Finally, based on what we have learnt from the evaluation of Raphtory, we created Graph-

Tides, a framework/methodology to evaluate and compare stream-based graph processing sys-

tems. GraphTides establishes the concept of a graph stream workload, which can be replayed

through its test harness in a repeatable manner to fairly compare systems under different condi-

tions. It additionally introduces a three tier hierarchy to describe the level of internal access an

evaluator has to the systems under test, discussing appropriate comparisons for each. This work

has then fed into more established graph benchmarks as they have begun to provide their own

stream based ecosystems.

157

Chapter 7

Conclusions and Future Work

Returning briefly to the initial motivation behind this work, it was discussed how the application

of graph modelling finds an array of application across business sectors. Unfortunately, many

of these applications are still being run periodically as offline batched analysis on stale data

repositories, whilst the original source of the data continues to grow and evolve. To solve this a

variety of dynamic graph processing solutions have been proposed, but only consider the most

up-to-date version of the graph, failing to realise that by overwriting older property values and

not maintaining the order of graph evolution many potential insights are lost. The temporal

graph processing systems which attempt to tackle this are often offline, work on coarse snapshots

(which lose temporal resolution), inject artificial event ordering and often do not natively support

‘time-aware’ graph algorithms where the history/update order is included.

In conjunction with this, graph processing faces a number of challenges which must be

overcome[5] as they mature. Pertinent within this are issues of scalability, difficult ETL (extrac-

t/transform/load) pipelines to ingest the raw data into a graph, complex deployment (especially

in distributed environments) and convoluted user APIs. To this end the goal of this work was

to build a distributed dynamic temporal graph processing engine which could scale along with

the ever increasing demands of modern datasets, providing intuitive ingestion/analysis APIs and

innovative analytical functionality.

7.1 Summary of Contributions

Whilst there is still a way to go in many respects, the contributions within this work, culminating

in the production of Raphtory, has seen this goal come to fruition. These contributions may be

categorised under the four chapters which house them, namely: The distributed temporal graph

model and stream semantics in Chapter 3; Raphtory’s novel approach to ingestion and mainte-

nance of the in-memory temporal graph in Chapter 4; The Raphtory analytical model in Chapter

5; and finally the GraphTides evaluation methodology, Raphtory’s deployment infrastructure,

158

together with the novel insights the platform produced in Chapter 6.

Beginning with the first of these, it was shown in Chapter 2 that a wide variety of graph

models have been proposed and defined for both standard and temporal graphs. Within the

latter of these the evolution towards temporal property graphs was explored, with each model

possessing useful characteristics able to be expanded upon. However, none of these works defined

the semantics for updating their temporal graph or reasoned about the model in a distributed

context, off-setting this as purely an implementation detail. A dynamic temporal property graph

was, therefore, defined within Chapter 3, additionally conceptualising a stream of events at

discrete times, from which an equivalent graph could be garnered by ingesting all updates from

it. The semantics for entity addition, deletion and property updates were then defined from the

perspective of a temporal graph, where all updates provide additive information which become

part of the graph history. Thirdly, the concept of a ‘graph flattening’ was introduced, discussing

how the temporal graph could be viewed at any point within its history, returning a standard

graph equivalent to one built from the updates ingested until the chosen point. The concept

of stream windows was then additionally applied, defining a ‘windowed flattening’ where the

resolved graph only contained entities updated within the set window period.

After contemplating the issues of graph distribution, focusing on partitioning, synchronisation

and out of order messages, the model was redefined in a distributed context. This included a set

of partitions overseeing the structural and property history for a portion of the graph entities,

split in an edge-cut fashion. Similarly the stream semantics were defined in this new context,

specifying streams between all partitions to facilitate synchronisation messaging. The constraints

for updates were then relaxed and the manner in which updates could occur was brought in line

with the desired distributed setting. These semantics allowed the graph to ingest updates in

any order whilst still producing the same temporal graph, mitigating many of the issues faced

in prior distributed system implementations.

Following on from the definition of the model, Chapter 4 discussed how the distributed tem-

poral graph and the stream which feeds it could be materialised. Taking architectural direction

from streaming systems such as Storm and Kineograph, the Spout was introduced as the repre-

sentation of the stream source and the user’s interface to ingest data. This was then paired with

the Graph Routers which could scale along with the throughput of tuples ingested by the Spout,

parsing these into graph updates via user defined functions. This decoupling of ingestion and

modelling was important as it meant that the same data parsing could easily be executed across

multiple data sources. This also allowed the same data source to be transformed into a number

of different graph models by extracting different entities and relationships from the data. These

models could return very different results for the same algorithms adding a new dimension to

the analysis; one of the differentiators of graph analytics.

Once the desired extraction had been established, the updates were automatically routed to

the Partition Manager responsible for the entities involved; handled via vertex hashing, which

required no centralised organisation. These were the representation of the partition introduced

159

in Chapter 3, splitting their responsibility between the Partition Writer for ingestion/synchro-

nisation of updates and Partition Archivist for memory management. Similar to Routers, the

Partition Managers could be scaled along with the size of the data, distributing the graph across

any number of machines. Updates arriving at a Partition Writer were handled by a full imple-

mentation of the distributed stream semantics defined in Section 3.7. This meant that updates

may arrive out of order and by following the the Writer would still be able to create the correct

objects, update the relevant entity histories and synchronise with its peers to generate the same

end state, utilising the event time of the update to establish the correct order. This was shown in

Chapter 6 to scale well, both in terms of update throughput and graph capacity, encompassing

many real world use cases.

Alongside ingestion a novel watermarking approach was implemented between Routers and

Writers, tagging each message with a unique identifier. The UIDs for fully synchronised updates

were then stored in a queue for their sending Router, generating a vector clock with which the

Writer could calculate what time it considered safe for execution. By aggregating this time across

all the partitions, Raphtory was able to establish a global ‘live’ time for the graph before which

it was safe to analyse. Finally, the Partition Archivists worked in the background to snapshot

the temporal graph, backing it up onto secondary storage, alongside monitoring the amount

of memory used by each partition. If this memory exceeded a set threshold, Archivists across

partitions coordinated to offload older history which occurred before an agreed point. This could

be loaded back from storage if a user wished to perform analysis at a point prior to the cutoff.

In parallel with ingestion and maintenance, Raphtory may also run analytics on the graph

at any point within its safe history. This is executed on graph flattenings, as defined in Chapter

3 and materialised via the graph lens. This returns a set of entity visitors to the user, which

grant access to the structural and property history within the bounds of the flattening, whilst

protecting the underlying data structures which may still be changing as new updates arrive.

Algorithms executed on this set of entities are completed in a vertex centric manner and may

span the range of structural scopes from local queries to global analytics. Across this range

the algorithms may also be time-aware, making use of order, pace and duration within singular

entities or whole graph patterns. These are then executed by the Partition Readers, which are

in charge of analysis within each partition, orchestrated by the Analysis Manager whom the user

submits queries to.

Algorithms are packaged as an analyser which may be run on any graph flattening. This

means the algorithm only needs to be written once and can then be executed throughout the

lifetime of the graph and with any window size. This includes ranges of time, generating flat-

tenings at set increments, and with batches of windows, defining a variety of temporal depths;

managed by the Raphtory REST API. This allows the user to see how a metric garnered from the

algorithm differs across time by calculating deltas between results (as with snapshot based sys-

tems), allows the exploration of different temporal depths alongside, executed in window batches,

and allows time-aware algorithms to be executed in the same manner, meaning the user may see

160

how these also evolve and differ with depth, a combination not previously explored. With even

the most basic of algorithms this approach was able to extract new insights from well analysed

datasets, as demonstrated with the Gab social network and Ethereum blockchain in Chapter 6.

As this is an online streaming system, all of these different analytical techniques may be used

in combination on the Live Graph, returning ongoing results for the most recent state of the

network. Comparing this implementation to a replication within Spark GraphX yielded a 300x

speedup for Raphtory over the more generic big data framework, reducing multi day jobs to sub

hour times and demonstrating the power of the temporal graph model.

Finally, in the evaluation of Raphtory it was discovered that whilst streaming systems and

batched graph systems had clearly defined benchmarks, those which intersect the two (i.e. Raph-

tory) do not. As such the GraphTides evaluation framework was devised, consisting of a test

harness and methodology for providing repeatable and comparable results. A notable element

of this was the definition of a workload, which combined a stream context (speed, update con-

sistency, spikes, delays, etc.) with the algorithm executing on top, as this obviously had a

large impact on the resulting evaluation metrics. This methodology was developed alongside the

evaluation of Raphtory, resulting in a fully containerised and monitored implementation which

allowed repeatable tests and improved the usability of Raphtory when deployed in a distributed

environment.

7.2 Future Work

Looking forward from this point, there are many expansions and improvements which may be

made to Raphtory as it develops. Within this there are two main perspectives, one viewing the

project from a software engineering standpoint, productising Raphtory and improving usability,

and the other a wider research context, looking at the interesting directions this project has

unearthed. Whilst the first of these is not covered in detail here, it is worth noting some examples

which have made appearances throughout this work to get a flavour of what this will entail. For

instance: adding an alerting system for delayed updates and the re-execution of flattenings which

should have included them; adding backpressure between the Spouts, Routers and Partition

Managers to stop components becoming overwhelmed.

Looking into the wider areas of research, there are four major directions which will be pursued

next within the Raphtory project. The first of these involves revisiting the partitioning utilised

within Raphtory to improve locality in a dynamic manner, whilst additionally leveraging the

history available within the graph. The second will look at providing a concrete archiving

strategy and answer questions on the scheduling of concurrent queries executing at times within

and beyond the archiving cut off. The third will aim to expand the analytical API, adding

interesting new functionality in both the generation of flattenings and state access. Finally, the

fourth direction will be the exploration of new use cases and datasets, as well as digging deeper

into those seen in Chapter 6.

161

7.2.1 Partitioning

As discussed in Section 4.4.1, Raphtory currently utilises a hash partitioning algorithm over an

edge cut graph. There are, however, many interesting avenues to explore in improving this. An

initial aspect would be to provide some sort of stream partitioning algorithm, as discussed in

Vaquero et al[124], where new vertices are initially sent to a partition based upon a hash, but

may then elect to move around partitions as they gain/lose edges with the growth of the graph.

This provides a difficult engineering challenge as all Routers and Partition Managers need to

know the location of vertices for updates, synchronisation and vertex messaging. Managing this

in a centralised manner should clearly be avoided because of the issues it causes in systems such

as Weaver[11]. One possible option here could be to have a local cache where the hash is initially

relied upon, but if an actor receives a message for a vertex it no longer controls it may forward

it on and inform the sender of its new location. This may, however, generate more traffic overall,

so would need to be closely monitored, feeding back into the vertex movement heuristic.

Once the manner in which vertices can be safely re-partitioned has been established, the

temporal element of the graph brings an additional layer of complexity. It is unclear if the

history of a vertex, or frequency in which it interacts with certain neighbours, may be a help or

hindrance in creating higher data locality. For example, should a vertex be placed near its most

recent neighbours, those it has the most interactions with, or its oldest neighbours? The answer

to this may depend drastically on the workload the user intends to run over the graph. For

instance if there is only interest in running live analysis on the most recent version of the graph,

this may have a very different partitioning strategy compared to an aim to build flattenings

at small increments throughout the lifetime of the graph. The structural scope of user queries

would also have a large effect in this regard. A sensible approach to this may be to allow the

user to provide some level of information about their desired outcomes which could be fed into

the re-partitioning process. In a similar vein, information about the underlying dataset could

be included here which can have a large impact. The final expansion to this, of course, is that

Raphtory could learn and adapt as more queries are submitted, finding the best balance between

the number of updates coming in, which entities are predominantly affected and what analysis

is run in parallel.

An interesting solution in this regard could come in the parallel deployment of multiple

sets of Partition Managers, each ingesting the same data, but storing the graph with different

partitioning strategies. If there are many parallel queries being submitted across a range of times

and structural scopes, this could garner a speed up as they are no longer contending for resources

and could be directed to the partition set with the most appropriate partitioning strategy. This

would, however, have the obvious caveat of a lot more compute power being utilised, so would

need to be justified on a case by case basis.

162

7.2.2 Archiving

As initially covered in Section 4.8, memory management within Raphtory is controlled by the

Archivist which tracks the used memory on a partition’s host machine, removing older history

if this surpasses a set threshold. There are still, however, many open questions surrounding this

process. Firstly, for a concrete implementation, it must be decided which back-end datastore

to use. Several have previously been trialled, notably MongoDB[184] and Cassandra [185], with

the former unable to handle the throughput and the latter not quite fitting as snapshot storage.

The next direction with this will be to try Apache Hive [186], a database wrapper for the HDFS

which converts SQL like queries into MapReduce jobs. This should be able to scale along with

the number of partitions and provide high availability and fault tolerance as standard. This

could also reduce the complexity of establishing Raphtory in a new cluster, as most have HDFS,

as well as exposing the snapshots to more standard big data platforms, such as Hadoop and

Spark, for external offline analysis. Such a setup could also facilitate the batch ingestion of the

latest state of the graph into a new larger set of partitions if the current deployment has run out

of memory (even with archiving).

Secondly, the thresholds for when older history is removed, and the portions which are re-

moved in each archiving cycle, must be established. Alongside this there must be a full investiga-

tion into the possible interleavings which may occur when deleting history/objects from memory,

i.e. one partition believes an edge to exist, but the other no longer does so. This could break the

current semantics for updating and would, therefore, require an additional set of post archiving

update steps or strict global synchronisation on what history is considered available. These both

have possible downsides, as the first may require considerably more synchronisation messages

between workers and the latter queries on the history of an entity before deciding how to proceed

with an update.

A third direction, not mentioned above, but explored in the original Raphtory paper[19], is

looking for a manner to compress the older history/entities which still leaves them in a readable

state, but reduces the memory footprint. In prior attempts, the structural/property history

of each entity was reduced by pruning all consecutive updates of the same type (past a cutoff

established by the watermarking) keeping only the oldest instance. This meant entities had

a ‘writable’ portion of history, where new updates could still be inserted, and an older ‘read-

only’ compressed history, which would take less space, but could not be changed. However, this

brought numerous issues. For instance, breaking the manner in which windows are generated,

losing information for certain properties where duplicates mattered and opening the ambiguity of

what to do if a delayed update arrived past the compression cutoff. As such it was disabled, but

remains a clear line of enquiry to alleviate the issues of archiving and allow Raphtory to ingest

larger graphs. This is somewhat orthogonal to the engineering issue of reducing the memory

footprint of all entities and updates, but obviously shares the same goal.

The final area of query for archiving revolves around scheduling and priority. There are several

layers to this. Firstly on how the resources of a Partition Manager should be shared between the

163

Figure 7.1: Top - Example update stream and Live Graph flattening, originally seen within
Figure 5.2. Bottom - Time decay and prefiltering of the Live Graph flattening.

Writer, Reader and Archivist when all three are active. In this instance, it is unclear if it is more

important to let the Archivist offload older history, the Writer to maintain throughput or the

current analysis to finish running. This may depend on a number of factors, some automated

and some user defined. Secondly, in a similarly vein, if there are two or more queries submitted

in parallel looking at opposite extremes of the history within the graph, which is given priority?

In the worst case the Archivist may be required to load back a large amount of history for one

query, which could even push out the required range of the other. There is currently no clear

answer to these questions and the development of some heuristics may be required to attempt

to balance CPU allocation and intelligently order flattening supersteps.

7.2.3 Analytics Improvements

We are only just scratching the surface with the types of analysis which may be performed over

the temporal graph model established in Raphtory and, as such, there are many directions the

API may be taken in. Three interesting lines of enquiry which do stand out, however, are: the

materialisation of ‘complex flattenings’; providing entities with a safe way to access information

from prior flattenings; and the creation and distribution of a global graph state.

Complex Flattenings

Whilst the flattenings of the graph discussed in Section 3.4 focus purely on the time of updates,

there is also space to explore more complex preprocessing of the entities prior to the applica-

tion of the chosen algorithm. One option here is a softer form of windowing known as time

decay[187]. In this instance, rather than pushing old entities out of the graph, they are allocated

an ‘importance’ score within the flattening based upon their last update time and the chosen

164

window size. A variety of decay algorithms exist for this, a popular choice being exponential,

where the importance is halved for each window of time back required to reach the latest update.

The importance of an entity may then be exposed to the user, allowing them to integrate this

into their algorithm in whichever way they see fit. This has many applications. For example,

within a social network this could allow newer connections to contribute to the majority of a

user’s ranking (by multiplying each connections vote by its importance), but still permit older

connections to have some effect.

As an example, taking the stream of updates at the top of Figure 7.1 and a simple node

ranking algorithm where one incoming edge equals one vote, the bottom of Figure 7.1 explores

the affect of time decay. Looking at the first graph with default edge rankings, a three way tie

can be seen between vertex 1, 3 and 4, but by applying a time decay with a window size of 2,

prioritising very recent edges, a clear ranking can be established. Within this vertex 1 leads as

its edge 5 −→ 1 exists in the first window and, therefore, its score remains untouched. Vertex 4

is ranked second as its edge 3 −→ 4 is one window back and, therefore, has had its value halved.

Finally Vertex 3 is in third as its edge 1 −→ 3 is two windows back and has had its value halved

twice.

Following this, given the expressiveness of the property graph model and the size of the graphs

being operated on, there may be instances where the user is not interested in the whole graph at

a given point in time, but a subgraph containing vertices and edges with certain characteristics.

A second more broader type of flattening preprocessing may, therefore, be envisaged, selectively

filtering entities based on their structural and property values. This could cover everything

within the scope of a local query, meaning the user may choose vertices and edges of a given

type (or set of types), select those with properties valued at, above or below thresholds, or base

selection on local structural values such as in/out degree. The results of prior algorithms could

also be utilised here. This obviously would require an additional input from the user, but once a

filter is established it could be applied to flattenings at any point in time and with any window

size. As an example of this process, the third flattening in the bottom of Figure 7.1 shows the

Live Graph after it has been filtered to remove entities which have no in-coming edges, i.e. nodes

which have no rank according to the algorithm. This drops vertex 5 and 6 (as well as their

edges) and means that vertex 1 now falls to the bottom of the rankings as its votes were only

from nodes without any capital (i.e. bots in a social network).

Aggregate Windows and Prior Flattening Values

Currently an entity may look at its history (within the bounds of the flattening) and calculate

its presence within smaller windows. For example, for a flattening with a window size of a year,

edges may calculate how many of the days within that year they were active, possibly feeding

into an investigation of the permanence of relationships in a local neighbourhood or across the

network as a whole. However, there is currently no way to feed this information into future

analysis or allow it to be done across the window flattenings submitted by the user. As such the

165

analyser API could be expanded to allow entities access to information about multiple window

flattenings or prior flattening state. In this instance entities would be able to ask questions such

as ‘did I exist in the prior flattening?’, ‘how many of the total flattenings have I been involved

in?’ as well as for vertices, ascertaining their final state from the execution of prior algorithms.

This opens many possible opportunities for new forms of composite analysis, speeding up

convergence of subsequent flattenings as well as basing entity actions on the deltas between

current and prior states (such as raising alerts for an anomaly). There are, however, many

practical and semantic challenges here, predominantly surrounding the breaking of the current

isolation that flattenings have. This means the results of algorithms using this part of the API

require some number of prior flattenings to have run and, therefore, the end output may depend

on the start and end times of a range, along with a host of other factors. This would obviously be

worse if the API allowed access to the results of other analysis tasks/running algorithms, which

may have differing start/end times, window size and increment. A manner in which this could

be mediated is by formalising a set of queries into a DAG (similar to Flink) specifying run order.

There may, however, be large webs of dependencies here, confusing to the user to establish and

difficult to schedule for the Partition Managers. As such this is an open problem.

Global State

A final area where the API could be improved is to provide access to a global state/aggregate.

This is important in the application of many algorithms, for example in the normalisation of

PageRank where each score is divided by the total number of vertices. This could, however, be

additionally used, in combination with the ideas of flattening aggregates above, to expand the

analysis possible within Raphtory. An example of this would be requesting the average number of

vertices/edges over n prior flattenings to see how the current flattening compares. Alternatively,

compare the global median consecutive number of windows which edges appear in to the same

metric for an individual edge, to gather a better idea of its relative permanence in the network.

Within the current implementation this would require the aggregation to take place in the

Analysis Task, followed by a broadcast back to the Reader Workers. However, each superstep

would require a reduction at the end of it, which means a larger amount of networking and a

clear possible bottleneck. This must be managed in a way which mitigates this, possibly by a

partial aggregation on the partition side, all of which would require defining by the user. This

would additionally require a reworking of the current analyser API, where the user would now

have to specify if the global value only needed to be calculated in the setup or, if not, the value

to be returned from each execution of the analyse function.

7.2.4 Future Use Cases

The final area of future research currently being looked at within the Raphtory project is the

expansion of use cases for which the tool may be used, together with digging further into those

166

started in Chapter 6. Beginning with those previously seen, investigations may be carried

out in other social networks similar to Gab, utilising the full range of analytical capabilities

within Raphtory, not just windowing. The result of these may then be compared to extract

which temporal patterns are generalisable across social networks and which are unique to each

ecosystem. Secondly, the initial investigation into Ethereum was just the beginning of our delve

into blockchain/cryptocurrency datasets, where temporal graph analysis is gaining traction[188].

Within this there is a large push to improve the algorithms for identifying bad actors to assist

in the fight to legitimise the sector. Our next direction in this space will be developing algo-

rithms to extract semantically significant temporal motifs and cluster wallets based on how often

these patterns appear in their history. This will be done with the intention of improving the

automated detection of wallets associated with markets, both dark and legitimate, and ‘mixers’,

services which try to obscure the activities of their customers.

Raphtory is also being applied in a multitude of new use cases, both by the core team

as well as researchers which have found the tool a perfect addition to their repertoire. For

instance, the techniques used to analyse Gab are being applied in a legal context, looking at the

patterns within 400 years of citations between court judgements. Within many legal systems, but

especially English common law, court cases will cite prior decisions to provide evidence for why

a given verdict has been made. This creates a long running temporal network that could provide

insight into how the impact of legal cases grow and shrink through time, as well as predicting

the importance of recent judgements and their possible effects on the future.

In a totally different direction, there is ongoing work applying Raphtory in the urban analytics

space where the movement of people within a city, across time and on different forms of transport,

may be modelled as a typed geospatial temporal network. Through probing this we may be

able to better understand issues within the city, denote clear areas of congestion and see the

positive/negative effects of government projects (such as the pedestrianisation of a street) by

viewing the footfall before and after the change point. In a similar nature, there is clear scope to

expand this work in the realm of contact tracing for Covid-19, which naturally fits a graph model

and where the time, order and duration of interactions are paramount for accurate predictions

of spreading. Finally, these ideas are in parallel being taken forward in the insurance sector

for supply-chains and tracked goods. Within this domain we are looking at extracting patterns

leading up to fraudulent claims with the aim of predicting if/when an insured entity is going to

attempt to defraud the insurer.

167

Appendices

168

Appendix A

Example Spouts

A.1 Postgres Spout

class EthereumPostgresSpout extends SpoutTrait {

var startBlock = System.getenv().getOrDefault("STARTING_BLOCK", "46147").trim.toInt

//first block to have a transaction by default

val batchSize = System.getenv().getOrDefault("BLOCK_BATCH_SIZE", "100").trim.toInt

//number of blocks to pull each query

val maxblock = System.getenv().getOrDefault("MAX_BLOCK", "8828337").trim.toInt

//Maximum block in database to stop querying once this is reached

val dbURL = System.getenv().getOrDefault("DB_URL", "jdbc:postgresql:ether").trim

//db connection string, default is for local with db called ether

val dbUSER = System.getenv().getOrDefault("DB_USER", "postgres").trim //db

user defaults to postgres

val dbPASSWORD = System.getenv().getOrDefault("DB_PASSWORD", "").trim

//default no password

// querying done with doobie wrapper for JDBC (https://tpolecat.github.io/doobie/)

implicit val cs = IO.contextShift(ExecutionContexts.synchronous)

val dbconnector = Transactor.fromDriverManager[IO](

"org.postgresql.Driver",

dbURL,

dbUSER,

dbPASSWORD,

Blocker.liftExecutionContext(ExecutionContexts.synchronous)

)

override def ProcessSpoutTask(message: Any): Unit = message match {

169

case StartSpout => AllocateSpoutTask(Duration(1, MILLISECONDS), "nextBatch")

case "nextBatch" => running()

case _ => println("message not recognized!")

}

protected def running(): Unit = {

sql"select from_address, to_address, value,block_timestamp from transactions where

block_number >= $startBlock AND block_number < ${startBlock + batchSize} "

.query[

(String, String, String, String)

] //get the to,from,value and time for

transactions within the set block batch

.to[List] // ConnectionIO[List[String]]

.transact(dbconnector) // IO[List[String]]

.unsafeRunSync // List[String]

.foreach(x => sendTuple(x.toString())) //send each transaction to the routers

startBlock += batchSize //increment batch for the next

query

if (startBlock > maxblock) stop() //if we have reached the max

block we stop querying the database

AllocateSpoutTask(Duration(1, MILLISECONDS), "nextBatch") // line up the next batch

}

}

170

A.2 Ethereum Node Spout

class EthereumNodeSpout extends SpoutTrait {

var currentBlock = System.getenv().getOrDefault("SPOUT_ETHEREUM_START_BLOCK_INDEX",

"9014194").trim.toInt

var highestBlock = System.getenv().getOrDefault("SPOUT_ETHEREUM_MAXIMUM_BLOCK_INDEX",

"10026447").trim.toInt

val nodeIP = System.getenv().getOrDefault("SPOUT_ETHEREUM_IP_ADDRESS",

"127.0.0.1").trim

val nodePort = System.getenv().getOrDefault("SPOUT_ETHEREUM_PORT", "8545").trim

val baseRequest = requestBuilder()

implicit val materializer = ActorMaterializer()

implicit val EthFormat = jsonFormat14(EthResult)

implicit val EthTransactionFormat = jsonFormat3(EthTransaction)

override protected def ProcessSpoutTask(message: Any): Unit = message match {

case StartSpout => pullNextBlock()

case "nextBlock" => pullNextBlock()

}

def pullNextBlock(): Unit = {

if (currentBlock > highestBlock)

return

try {

log.debug(s"Trying block $currentBlock")

val transactionCountHex = executeRequest("eth_getBlockTransactionCountByNumber",

"\"0x" + currentBlock.toHexString + "\"");

val transactionCount = Integer.parseInt(transactionCountHex.fields("result")

.toString().drop(3).dropRight(1), 16)

if(transactionCount>0){

var transactions = "["

for (i <- 0 until transactionCount)

transactions = transactions +

batchRequestBuilder("eth_getTransactionByBlockNumberAndIndex",

s"0x${currentBlock.toHexString}","0x${i.toHexString}")+","

val trasnactionBlock = executeBatchRequest(transactions.dropRight(1)+"]")

val transList = trasnactionBlock.parseJson.convertTo[List[EthTransaction]]

transList.foreach(t => {

try{sendTuple(s"${t.result.blockNumber.get},

${t.result.from.get},${t.result.to.get},${t.result.value.get}")}

171

catch {case e:NoSuchElementException =>}

})

}

currentBlock += 1

AllocateSpoutTask(Duration(1, NANOSECONDS), "nextBlock")

} catch {

case e: NumberFormatException => AllocateSpoutTask(Duration(1, SECONDS),

"nextBlock")

case e: Exception => e.printStackTrace(); AllocateSpoutTask(Duration(1,

SECONDS), "nextBlock")

}

}

def batchRequestBuilder(command:String,params:String):String = s"""{"jsonrpc": "2.0",

"id":"100", "method": "$command", "params": [$params]}"""

def executeBatchRequest(data: String) = requestBatch(data).execute().body.toString

def requestBatch(data: String): HttpRequest = baseRequest.postData(data)

def requestBuilder() =

if (nodeIP.matches(Utils.IPRegex))

Http("http://" + nodeIP + ":" + nodePort).header("content-type",

"application/json")

else

Http("http://" + hostname2Ip(nodeIP) + ":" + nodePort).header("content-type",

"application/json")

def request(command: String, params: String = ""): HttpRequest =

baseRequest.postData(s"""{"jsonrpc": "2.0", "id":"100", "method": "$command",

"params": [$params]}""")

def executeRequest(command: String, params: String = "") = request(command,

params).execute().body.toString.parseJson.asJsObject

def hostname2Ip(hostname: String): String =

InetAddress.getByName(hostname).getHostAddress()

}

172

Appendix B

Example Routers

B.1 Ethereum Router

class EthereumRouter(override val routerId: Int,override val workerID:Int, val

initialManagerCount: Int) extends RouterWorker {

def hexToInt(hex: String) = Integer.parseInt(hex.drop(2), 16)

override protected def parseTuple(value: Any): Unit = {

print(value)

val transaction = value.toString.split(",")

val blockNumber = hexToInt(transaction(0))

val from = transaction(1).replaceAll("\"", "").toLowerCase

val to = transaction(2).replaceAll("\"", "").toLowerCase

val sent = transaction(3).replaceAll("\"", "")

val sourceNode = assignID(from) //hash the id to get a vertex ID

val destinationNode = assignID(to) //hash the id to get a vertex ID

sendGraphUpdate(

VertexAddWithProperties(blockNumber, sourceNode, properties =

Properties(ImmutableProperty("id", from)))

)

sendGraphUpdate(

VertexAddWithProperties(blockNumber, destinationNode, properties =

Properties(ImmutableProperty("id", to)))

)

sendGraphUpdate(

EdgeAddWithProperties(

173

blockNumber,

sourceNode,

destinationNode,

properties = Properties(StringProperty("value", sent))

)

)

}

}

174

Appendix C

Example Analysers

C.1 Connected Components

class ConnectedComponents(args:Array[String]) extends Analyser(args){

override def setup(): Unit =

view.getVertices().foreach { vertex =>

vertex.setState("cclabel", vertex.ID)

vertex.messageAllNeighbours(vertex.ID)

}

override def analyse(): Unit =

view.getMessagedVertices().foreach { vertex =>

val label = vertex.messageQueue[Long].min

if (label < vertex.getState[Long]("cclabel")) {

vertex.setState("cclabel", label)

vertex messageAllNeighbours label

}

else

vertex.voteToHalt()

}

override def returnResults(): Any =

view.getVertices()

.map(vertex => vertex.getState[Long]("cclabel"))

.groupBy(f => f)

.map(f => (f._1, f._2.size))

175

override def processResults(results: ArrayBuffer[Any], timestamp: Long,

viewCompleteTime: Long): Unit = {

val er = extractData(results)

val text = s"{"time":$timestamp,"top5":[${er.top5.mkString(",")}]",...

publishData(text)

}

override def processWindowResults(results: ArrayBuffer[Any], timestamp: Long,

windowSize: Long, viewCompleteTime: Long): Unit = {

val er = extractData(results)

var output_folder = System.getenv().getOrDefault("OUTPUT_FOLDER", "/app").trim

var output_file = output_folder + "/" +

System.getenv().getOrDefault("OUTPUT_FILE","ConnectedComponents.json").trim

val text = s"{"time":$timestamp,"windowsize":$windowSize,"...

publishData(text)

}

def extractData(results:ArrayBuffer[Any]):extractedData ={

val endResults = results.asInstanceOf[ArrayBuffer[immutable.ParHashMap[Long, Int]]]

try {

val grouped = endResults.flatten.groupBy(f => f._1).mapValues(x => x.map(_._2).sum)

val groupedNonIslands = grouped.filter(x => x._2 > 1)

val biggest = grouped.maxBy(_._2)._2

val sorted = groupedNonIslands.toArray.sortBy(_._2)(sortOrdering).map(x=>x._2)

val top5 = if(sorted.length<=5) sorted else sorted.take(5)

val total = grouped.size

val totalWithoutIslands = groupedNonIslands.size

val totalIslands = total - totalWithoutIslands

val proportion = biggest.toFloat / grouped.map(x => x._2).sum

val totalGT2 = grouped.filter(x => x._2 > 2).size

extractedData(top5,total,totalIslands,proportion,totalGT2)

} catch {

case e: UnsupportedOperationException => extractedData(Array(0),0,0,0,0)

}

}

override def defineMaxSteps(): Int = 100

}

176

C.2 Degree Ranking

class DegreeRanking(args:Array[String]) extends Analyser(args){

val weighted = false

override def analyse(): Unit = {}

override def setup(): Unit = {}

override def returnResults(): Any = {

val degree =

if (weighted) {

view.getVertices().map { vertex =>

val outDegree = vertex.getOutEdges.map{e => e.getHistory().size}.sum

val inDegree = vertex.getIncEdges.map{e => e.getHistory().size}.sum

(vertex.ID, outDegree, inDegree)}}

else {

view.getVertices().map { vertex =>

val outDegree = vertex.getOutEdges.size

val inDegree = vertex.getIncEdges.size

(vertex.ID, outDegree, inDegree)}

}

val totalV = degree.size

val totalOut = degree.map(x => x._2).sum

val totalIn = degree.map(x => x._3).sum

val topUsers = degree.toArray.sortBy(x => x._3)(sortOrdering).take(20)

(totalV, totalOut, totalIn, topUsers)

}

override def defineMaxSteps(): Int = 1

override def processResults(results: ArrayBuffer[Any], timeStamp: Long,

viewCompleteTime: Long): Unit = {

val endResults = results.asInstanceOf[ArrayBuffer[(Int, Int, Int, Array[(Int, Int,

Int)])]]

val totalVert = endResults.map(x => x._1).sum

val totalEdge = endResults.map(x => x._3).sum

val degree =

try totalEdge.toDouble / totalVert.toDouble

catch { case e: ArithmeticException => 0 }

var bestUserArray = "["

177

val bestUsers = endResults

.map(x => x._4)

.flatten

.sortBy(x => x._3)(sortOrdering)

.take(20)

.map(x => s"""{"id":${x._1},"indegree":${x._3},"outdegree":${x._2}}""")

.foreach(x => bestUserArray += x + ",")

bestUserArray = if (bestUserArray.length > 1) bestUserArray.dropRight(1) + "]" else

bestUserArray + "]"

val text =

s"{"time":$timeStamp,"vertices":$totalVert,"edges":$totalEdge,

"degree":$degree,"bestusers":$bestUserArray,"...

publishData(text)

}

override def processWindowResults(results: ArrayBuffer[Any],timestamp:

Long,windowSize: Long,viewCompleteTime: Long): Unit = {

val endResults = results.asInstanceOf[ArrayBuffer[(Int, Int, Int, Array[(Int, Int,

Int)])]]

val startTime = System.currentTimeMillis()

val totalVert = endResults.map(x => x._1).sum

val totalEdge = endResults.map(x => x._3).sum

val degree =

try totalEdge.toDouble / totalVert.toDouble

catch { case e: ArithmeticException => 0 }

var bestUserArray = "["

val bestUsers = endResults

.map(x => x._4)

.flatten

.sortBy(x => x._3)(sortOrdering)

.take(20)

.map(x => s"""{"id":${x._1},"indegree":${x._3},"outdegree":${x._2}}""")

.foreach(x => bestUserArray += x + ",")

bestUserArray = if (bestUserArray.length > 1) bestUserArray.dropRight(1) + "]" else

bestUserArray + "]"

val text =

s"{"time":$timestamp,"windowsize":$windowSize,"vertices":$totalVert,

"edges":$totalEdge,"degree":$degree,"bestusers":$bestUserArray,"...

publishData(text)

}

}

178

C.3 Temporal Triangle Count

class TemporalTriangleCount(args:Array[String]) extends Analyser(args) {

override def setup(): Unit =

view.getVertices().foreach { vertex =>

val edgeTimes = vertex.getIncEdges.map(edge => edge.latestActivity()._1)

val t_max = if(edgeTimes.nonEmpty) edgeTimes.max else -1 //get incoming edgeTimes

and then find the most recent edge with respect to timestamp and window

vertex.getOutEdgesBefore(t_max).foreach(neighbour => {

neighbour.send((Array(vertex.ID()),t_max))

})

}

override def analyse(): Unit =

view.getMessagedVertices().foreach { vertex =>

val queue = vertex.messageQueue[(Array[Long], Long)]

queue.foreach(message=> {

val path = message._1

val sender = path(path.length-1)

val t_max = message._2

val t_min = vertex.getInEdge(sender).get.earliestActivity()._1 //to include

deletions check

if(path.length<2) { //for step two of the algorithm i.e. the second node in the

triangle

vertex.getOutEdgesBetween(t_min, t_max).foreach(neighbour => {

neighbour.send((message._1 ++ Array(vertex.ID()), t_max))

})

}

else{ //for the 3rd node in the triangle to see if the final edge exists

val source = path(0)

vertex.getOutEdgeBetween(source,t_min,t_max) match {

case Some(edge) =>

vertex.appendToState("TrianglePath",(path ++

Array(vertex.ID())).mkString("["," ","]"))

case None =>

}

}

})

}

override def returnResults(): Any =

179

view.getVertices()

.filter(vertex=>

vertex.containsState("TrianglePath"))

.flatMap(vertex =>

vertex.getState[Array[String]]("TrianglePath")).to

override def processResults(results: ArrayBuffer[Any], timeStamp: Long,

viewCompleteTime: Long): Unit = {

val endResults = results.asInstanceOf[ArrayBuffer[ParArray[String]]].flatten.toArray

publishData(s"""{"timestamp":$timeStamp,triangles:[""" +endResults.map(triangle =>

triangle+",").fold("")(_+_).dropRight(1)+"]}")

}

override def defineMaxSteps(): Int = 2

}

180

C.4 PageRank

class PageRank(args:Array[String]) extends Analyser(args) {

val d = 0.85 // damping factor

override def setup(): Unit =

view.getVertices().foreach { vertex =>

val outEdges = vertex.getOutEdges

val outDegree = outEdges.size

if (outDegree > 0) {

val toSend = 1.0/outDegree

vertex.setState("prlabel",toSend)

outEdges.foreach(edge => {

edge.send(toSend)

})

} else {

vertex.setState("prlabel",0.0)

}

}

override def analyse(): Unit =

view.getMessagedVertices().foreach {vertex =>

val currentLabel = vertex.getState[Double]("prlabel")

val newLabel = 1 - d + d * vertex.messageQueue[Double].sum

vertex.setState("prlabel",newLabel)

if (Math.abs(newLabel-currentLabel)/currentLabel > 0.01) {

val outEdges = vertex.getOutEdges

val outDegree = outEdges.size

if (outDegree > 0) {

val toSend = newLabel/outDegree

outEdges.foreach(edge => {

edge.send(toSend)

})

}

}

else {

vertex.voteToHalt()

}

}

override def returnResults(): Any = {

val pageRankings = view.getVertices().map { vertex =>

val pr = vertex.getState[Double]("prlabel")

181

(vertex.ID, pr)

}

val totalV = pageRankings.size

val topUsers = pageRankings.toArray.sortBy(x => x._2)(sortOrdering).take(10)

(totalV, topUsers)

}

override def defineMaxSteps(): Int = 20

override def processResults(results: ArrayBuffer[Any], timeStamp: Long,

viewCompleteTime: Long): Unit = {

val endResults = results.asInstanceOf[ArrayBuffer[(Int, Array[(Long,Double)])]]

val totalVert = endResults.map(x => x._1).sum

val bestUsers = endResults

.map(x => x._2)

.flatten

.sortBy(x => x._2)(sortOrdering)

.take(10)

.map(x => s"""{"id":${x._1},"pagerank":${x._2}}""").mkString("[",",","]")

val text = s"""{"time":$timeStamp,"vertices":$totalVert,

"bestusers":$bestUsers,"viewTime":$viewCompleteTime}"""

publishData(text)

}

override def processWindowResults(results: ArrayBuffer[Any], timestamp: Long,

windowSize: Long, viewCompleteTime: Long):

Unit = {

val endResults = results.asInstanceOf[ArrayBuffer[(Int, Array[(Long,Double)])]]

val totalVert = endResults.map(x => x._1).sum

val bestUsers = endResults

.map(x => x._2)

.flatten

.sortBy(x => x._2)(sortOrdering)

.take(10)

.map(x => s"""{"id":${x._1},"pagerank":${x._2}}""").mkString("[",",","]")

val text =

s"""{"time":$timestamp,"windowsize":$windowSize,"vertices":$totalVert,

"bestusers":$bestUsers,"viewTime":$viewCompleteTime}"""

publishData(text)

}

}

182

C.5 Temporal Contagion (Ethereum)

class TaintTrackExchangeStop(args:Array[String]) extends Analyser(args) {

val infectedNode = args(0).trim.toLowerCase

val infectionStartingBlock = args(1).trim.toLong

val listOfExchanges = Array("0x83053C32b7819F420dcFed2D218335fe430Fe3b5",

"0x05f51aab068caa6ab7eeb672f88c180f67f17ec7",...)

.map(x=>x.toLowerCase())

override def setup(): Unit = view.getVertices().foreach { vertex =>

val walletID = vertex.getPropertyValue("id").get.asInstanceOf[String]

if(walletID contains infectedNode) {

vertex.getOrSetState("infected", infectionStartingBlock)

vertex.getOrSetState("infectedBy", "Start")

vertex.getOutEdgesAfter(infectionStartingBlock).foreach { neighbour =>

neighbour.send((walletID,neighbour.firstActivityAfter

(infectionStartingBlock),vertex.ID()))

}

}

}

override def analyse(): Unit =

view.getMessagedVertices().foreach { vertex =>

try{

var infectionBlock = infectionStartingBlock

var infector = infectedNode

val queue = vertex.messageQueue[(String,Long,Long)]

infectionBlock = queue.map(x=>x._2).min

val tuple = queue.filter(x=>x._2==infectionBlock).head

infector = tuple._1

val walletID = vertex.getPropertyValue("id").get.asInstanceOf[String]

if(vertex.containsState("infected")){

if(infectionBlock<vertex.getState[Long]("infected")){

if(listOfExchanges contains walletID){

vertex.setState("exchangeHit", true)

vertex.setState("sent",vertex.getInEdge(tuple._3).get

.getPropertyValuesAfter("value",infectionBlock).get

.map(x=>x.asInstanceOf[Double]).sum)

vertex.setState("infected", infectionBlock)

vertex.setState("infectedBy",infector)

183

}

else{

vertex.setState("infected", infectionBlock)

vertex.setState("infectedBy",infector)

vertex.getOutEdgesAfter(infectionBlock).take(100).foreach { neighbour =>

neighbour.send((walletID,neighbour

.firstActivityAfter(infectionBlock),vertex.ID()))

}

}

}

}

else{

if(listOfExchanges contains walletID){

vertex.setState("exchangeHit", true)

vertex.setState("sent",vertex.getInEdge(tuple._3).get

.getPropertyValuesAfter("value",infectionBlock).get

.map(x=>x.asInstanceOf[Double]).sum)

vertex.setState("infected", infectionBlock)

vertex.setState("infectedBy",infector)

}

else{

vertex.setState("infected", infectionBlock)

vertex.setState("infectedBy",infector)

vertex.getOutEdgesAfter(infectionBlock).take(100).foreach { neighbour =>

neighbour.send((walletID,neighbour

.firstActivityAfter(infectionBlock),vertex.ID()))

}

}

}

}catch {case e:Exception => }

}

override def returnResults(): Any = {

val tosend = view

.getVertices()

.map { vertex =>

if (vertex.containsState("exchangeHit"))

(vertex.getPropertyValue("id").get.asInstanceOf[String],

vertex.getState[Long]("infected"),vertex.getState[String]("infectedBy")

,true,vertex.getState[Double]("sent"))

else if (vertex.containsState("infected"))

(vertex.getPropertyValue("id").get.asInstanceOf[String],

vertex.getState[Long]("infected"),vertex.getState[String]("infectedBy"),

false,0)

184

else

("", -1L,"",false,-1)

}

.filter(f => f._2 >= 0)

}

override def defineMaxSteps(): Int = 100

override def processResults(results: ArrayBuffer[Any], timeStamp: Long,

viewCompleteTime: Long): Unit = {

val endResults = results.asInstanceOf[ArrayBuffer[immutable.ParIterable[(String,

Long,String,Boolean,Double)]]].flatten

var data = s"""{"block":$timeStamp,"edges":["""

for (elem <- endResults)

data+=s"""{"infected":"${elem._1}","block":${elem._2},

"infector":"${elem._3}","exchange":"${elem._4}","value":${elem._5}},"""

data+="]}"

publishData(data)

}

}

185

Appendix D

Code For Spark Comparison

D.1 Windowed Connected Components Across Time in

Spark

import java.text.SimpleDateFormat

import org.apache.spark.{SparkConf, SparkContext, graphx}

import org.apache.spark.rdd.RDD

import org.apache.spark.graphx.{VertexId, _}

case class Interaction(time:Long,source:Int,destination:Int) //class to represent each

user interation

def dateToUnixTime(timestamp: => String): Long = { //convert timestamps to epochs

val sdf = new SimpleDateFormat("yyyy-MM-dd’T’HH:mm:ss")

val dt = sdf.parse(timestamp)

val epoch = dt.getTime

epoch

}

def parseGabData(raw: RDD[String]) = { //turn lines into interactions

raw.mapPartitionsWithIndex {

(idx, iter) => if (idx == 0) iter.drop(1) else iter

}.map(line=> {

val fileLine = line.split(";")

Interaction(dateToUnixTime(fileLine(0)),fileLine(2).toInt,fileLine(5).toInt)

})

186

val gabdata = parseGabData(sc.textFile("/FileStore/tables/gab.csv"))

val startTimestamp = 1470797917000L //set the time parameters for the analysis

val endTimestamp = 1525368897000L //whole range of gab data

val windows = Array(3600000L,86400000L,604800000L,2592000000L,31536000000L) // windows

of an hour to year

val range = startTimestamp.to(endTimestamp,86400000L) //hopping forward a day at a time

for(timestamp <- range){

val startingTime = System.currentTimeMillis()

for(window <- windows) {

val currentDataset = gabdata.filter(interaction => //get data between timestamp

and window

interaction.time >= timestamp - window && interaction.time <= timestamp)

val vertices: RDD[(VertexId, (String, String))] = currentDataset

.map(interaction => (interaction.source.toLong, ("", "")))

.union(currentDataset.map(interaction =>

(interaction.destination.toLong, ("", "")))) //extract unique users

val edges = currentDataset.filter(interaction => interaction.destination >= 0)

.map(interaction => Edge(interaction.source.toLong,

interaction.destination.toLong, "x")) //convert interactions to GraphX Edges

val graph = Graph(vertices, edges, ("", "")) //build the graph

graph.connectedComponents().vertices

.groupBy(x => x._2).map(x => (x._1, x._2.size))

.collect().mkString(",")) //get the biggest components

}

reflect.io.File("/FileStore/tables/sparktest.csv")

.appendAll(s"$timestamp,${System.currentTimeMillis()-startingTime} \n")

//output the time taken

}

187

D.2 Router For Generating Gab User Graph

class GabUserRouter(override val routerId: Int,override val workerID:Int, val

initialManagerCount: Int) extends RouterWorker {

override def parseTuple(tuple: String) = {

val fileLine = tuple.split(";").map(_.trim)

val sourceNode = fileLine(2).toInt // extract the source and destination nodes

val targetNode = fileLine(5).toInt

val creationDate = dateToUnixTime(timestamp = fileLine(0).slice(0, 19)) //turn the

date into a unix time

sendUpdate(VertexAdd(creationDate, sourceNode, Type("User")))

sendUpdate(VertexAdd(creationDate, targetNode, Type("User")))

sendUpdate(EdgeAdd(creationDate, sourceNode, targetNode, Type("User to User")))

//send update for the source, destnation and interaction between

}

def dateToUnixTime(timestamp: => String): Long = {

val sdf = new SimpleDateFormat("yyyy-MM-dd’T’HH:mm:ss")

val dt = sdf.parse(timestamp)

val epoch = dt.getTime

epoch

}

}

188

Bibliography

[1] B. Erb, D. Meissner, F. Kargl, B. Steer, F. Cuadrado, D. Margan, and P. Pietzuch, “Graph-

tides: a framework for evaluating stream-based graph processing platforms,” in Proceedings

of the 1st ACM SIGMOD joint international workshop on graph data management experi-

ences & systems (GRADES) and network data analytics (NDA), pp. 1–10, 2018.

[2] P. Holme and J. Saramäki, “Temporal networks,” Physics Reports, vol. 519, no. 3, pp. 97

– 125, 2012.

[3] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in temporal graphs,”

Proceedings of the VLDB Endowment, vol. 7, no. 9, pp. 721–732, 2014.

[4] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou, “Real-time constrained

cycle detection in large dynamic graphs,” Proceedings of the VLDB Endowment, vol. 11,

no. 12, pp. 1876–1888, 2018.

[5] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The ubiquity of large graphs

and surprising challenges of graph processing: extended survey,” The VLDB Journal, pp. 1–

24, 2019.

[6] K. Ammar and T. Ozsu, “Experimental analysis of distributed graph systems,” arXiv

preprint arXiv:1806.08082, 2018.

[7] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski,

“Pregel: a system for large-scale graph processing,” in Proceedings of the 2010 ACM SIG-

MOD International Conference on Management of data, pp. 135–146, 2010.

[8] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein, “Graphlab:

A new framework for parallel machine learning,” arXiv preprint arXiv:1408.2041, 2014.

[9] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph: Distributed

graph-parallel computation on natural graphs,” in Presented as part of the 10th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 12), pp. 17–30, 2012.

189

[10] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou, F. Zhao,

and E. Chen, “Kineograph: taking the pulse of a fast-changing and connected world,” in

Proceedings of the 7th ACM European conference on Computer Systems, pp. 85–98, 2012.

[11] A. Dubey, G. Hill, R. Escriva, and E. G. Sirer, “Weaver: A high-performance, transactional

graph database based on refinable timestamps,” Proceedings of the VLDB Endowment,

vol. 9, no. 11, 2016.

[12] Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, E. Chen, and

W. Chen, “Immortalgraph: A system for storage and analysis of temporal graphs,” ACM

Transactions on Storage (TOS), vol. 11, no. 3, pp. 1–34, 2015.

[13] X. Ju, D. Williams, H. Jamjoom, and K. Shin, “Version traveler: Fast and memory-

efficient version switching in graph processing systems,” in 2016 USENIX Annual Technical

Conference (USENIX ATC 16), pp. 523–536, 2016.

[14] P. Macko, V. Marathe, D. Margo, and M. Seltzer, “Llama: Efficient graph analytics us-

ing large multiversioned arrays,” in 2015 IEEE 31st International Conference on Data

Engineering, pp. 363–374, IEEE, 2015.

[15] B. Erb, D. Meissner, J. Pietron, and F. Kargl, “Chronograph: A distributed processing

platform for online and batch computations on event-sourced graphs,” in Proceedings of the

11th ACM International Conference on Distributed and Event-based Systems, pp. 78–87,

2017.

[16] B. Steer, F. Cuadrado, and R. Clegg, “Raphtory: Decentralised streaming for temporal

graphs: Doctoral symposium,” in Proceedings of the 11th ACM International Conference

on Distributed and Event-Based Systems, DEBS ’17, (New York, NY, USA), p. 363–365,

Association for Computing Machinery, 2017.

[17] “Debs 2017 award winners.” Available at: http://www.debs2017.org/awards/. Accessed:

28/08/2017.

[18] B. Steer, A. Di Stefano, R. Clegg, and F. Cuadrado, “Building distributed temporal graphs

from event streams,” Proceedings of the VLDB Endowment, vol. 11, no. 8, 2018.

[19] B. Steer, F. Cuadrado, and R. Clegg, “Raphtory: Streaming analysis of distributed tem-

poral graphs,” Future Generation Computer Systems, vol. 102.

[20] J. Waudby, B. Steer, A. Prat-Pérez, and G. Szárnyas, “Supporting dynamic graphs and

temporal entity deletions in the ldbc social network benchmark’s data generator.,” in

GRADES, pp. 8–1, 2020.

[21] N. Arnold, B. Steer, I. Hafnaoui, H. Parada, R. Mondragon, F. Cuadrado, R. G. Clegg,

et al., “Moving with the times: Investigating the alt-right network gab with temporal

interaction graphs,” arXiv preprint arXiv:2009.08322, 2020.

190

[22] S. A. Myers, A. Sharma, P. Gupta, and J. Lin, “Information network or social network? the

structure of the twitter follow graph,” in Proceedings of the 23rd International Conference

on World Wide Web, pp. 493–498, 2014.

[23] A. Bretto, Hypergraphs: Basic Concepts, pp. 1–21. Heidelberg: Springer International

Publishing, 2013.

[24] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow,

M. Rydberg, P. Selmer, and A. Taylor, “Cypher: An evolving query language for property

graphs,” in Proceedings of the 2018 International Conference on Management of Data,

SIGMOD ’18, (New York, NY, USA), p. 1433–1445, Association for Computing Machinery,

2018.

[25] J. Hayes, “A graph model for rdf,” Darmstadt University of Technology/University of Chile,

2004.

[26] O. Hartig and J. Hidders, “Defining schemas for property graphs by using the graphql

schema definition language,” GRADES-NDA’19, (New York, NY, USA), ACM, 2019.

[27] M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski, C. Barthels, G. Alonso,

and T. Hoefler, “Demystifying graph databases: Analysis and taxonomy of data organiza-

tion, system designs, and graph queries,” arXiv preprint arXiv:1910.09017, 2019.

[28] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs.,” SEMANTICS

(Posters and Demos Track), vol. 48, pp. 1–4, 2016.

[29] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific American,

vol. 284, no. 5, pp. 34–43, 2001.

[30] J. Spinrad, Efficient graph representations. American Mathematical Society, 2003.

[31] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler, “Practice of stream-

ing and dynamic graphs: Concepts, models, systems, and parallelism,” arXiv preprint

arXiv:1912.12740, 2019.

[32] A. Davoudian, L. Chen, and M. Liu, “A survey on nosql stores,” ACM Computing Surveys,

vol. 51, pp. 1–43, 04 2018.

[33] C. Rickett, U. Haus, J. Maltby, and K. Maschhoff, “Loading and querying a trillion rdf

triples with cray graph engine on the cray xc,” Cray Users Group, 2018.

[34] J. Miller, “Graph database applications and concepts with neo4j,” in Proceedings of the

Southern Association for Information Systems Conference, Atlanta, GA, USA, vol. 2324,

2013.

191

[35] A. Zaki, M. Attia, D. Hegazy, and S. Amin, “Comprehensive survey on dynamic graph

models,” International Journal of Advanced Computer Science and Applications, vol. 7,

no. 2, pp. 573–582, 2016.

[36] F. Harary and G. Gupta, “Dynamic graph models,” Mathematical and Computer Mod-

elling, vol. 25, no. 7, pp. 79–87, 1997.

[37] A. Iyer, E. Li, T. Das, and I. Stoica, “Time-evolving graph processing at scale,” in Pro-

ceedings of the Fourth International Workshop on Graph Data Management Experiences

and Systems, GRADES ’16, (New York, NY, USA), ACM, 2016.

[38] B. Wheatman and H. Xu, “Packed compressed sparse row: A dynamic graph representa-

tion,” in 2018 IEEE High Performance extreme Computing Conference (HPEC), pp. 1–7,

2018.

[39] S. Firmli and C. Dalila, A Review of Engines for Graph Storage and Mutations, pp. 214–

223. 01 2020.

[40] Y. Yang, J. Yu, H. Gao, J. Pei, and J. Li, “Mining most frequently changing component

in evolving graphs,” World Wide Web, vol. 17, no. 3, pp. 351–376, 2014.

[41] F. Kuhn and R. Oshman, “Dynamic networks: Models and algorithms,” SIGACT News,

vol. 42, pp. 82–96, Mar. 2011.

[42] D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and inference problems for temporal

networks,” Journal of Computer and System Sciences, vol. 64, no. 4, pp. 820 – 842, 2002.

[43] J. Moody, “The importance of relationship timing for diffusion,” Social Forces - SOC

FORCES, vol. 81, pp. 25–56, 09 2002.

[44] N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Amblard, “Time-varying

graphs and social network analysis: Temporal indicators and metrics,” AISB 2011: Social

Networks and Multiagent Systems, 02 2011.

[45] P. Holme, “Network dynamics of ongoing social relationships,” EPL (Europhysics Letters),

vol. 64, 08 2003.

[46] O. Michail, “An introduction to temporal graphs: An algorithmic perspective,” Internet

Mathematics, vol. 12, no. 4, pp. 239–280, 2016.

[47] S. Ramesh, A. Baranawal, and Y. Simmhan, “A distributed path query engine for temporal

property graphs,” arXiv preprint arXiv:2002.03274, 2020.

[48] J. Byun, “Enabling time-centric computation for efficient temporal graph traversals from

multiple sources,” IEEE Transactions on Knowledge and Data Engineering, 06 2020.

192

[49] J. Byun, S. Woo, and D. Kim, “Chronograph: Enabling temporal graph traversals for

efficient information diffusion analysis over time,” IEEE Transactions on Knowledge and

Data Engineering, vol. 32, no. 3, pp. 424–437, 2019.

[50] Y. Wang, Y. Yuan, Y. Ma, and G. Wang, “Time-dependent graphs: Definitions, applica-

tions, and algorithms,” Data Science and Engineering, vol. 4, no. 4, pp. 352–366, 2019.

[51] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network

motifs: simple building blocks of complex networks,” Science, vol. 298, no. 5594, pp. 824–

827, 2002.

[52] Z. Shen and N. Sundaresan, “Ebay: An e-commerce marketplace as a complex network,”

WSDM ’11, (New York, NY, USA), p. 655–664, ACM, 2011.

[53] A. Masoudi-Nejad, F. Schreiber, and Z. Kashani, “Building blocks of biological networks:

a review on major network motif discovery algorithms,” IET Systems Biology, vol. 6,

pp. 164–174(10), October 2012.

[54] U. Meyer and P. Sanders, “δ-stepping: A parallel single source shortest path algorithm,”

in European symposium on algorithms, pp. 393–404, Springer, 1998.

[55] L. Lovász, “Random walks on graphs: A survey,” Combinatorics, Paul erdos is eighty,

vol. 2, no. 1, pp. 1–46, 1993.

[56] T. Valente and G. Vega Yon, “Diffusion/contagion processes on social networks,” Health

Education & Behavior, 2020.

[57] S. Chu and J. Cheng, “Triangle listing in massive networks and its applications,” in Pro-

ceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’11, (New York, NY, USA), p. 672–680, ACM, 2011.

[58] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing

order to the web.,” tech. rep., Stanford InfoLab, 1999.

[59] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathematical so-

ciology, vol. 25, no. 2, pp. 163–177, 2001.

[60] U. Khurana and A. Deshpande, “Efficient snapshot retrieval over historical graph data,”

Proceedings - International Conference on Data Engineering, 07 2012.

[61] M. He, S. Pathak, U. Muaz, J. Zhou, S. Saini, S. Malinchik, and S. Sobolevsky, “Pattern

and anomaly detection in urban temporal networks,” arXiv preprint arXiv:1912.01960,

2019.

[62] A. Paranjape, A. Benson, and J. Leskovec, “Motifs in temporal networks,” in Proceedings

of the Tenth ACM International Conference on Web Search and Data Mining, pp. 601–610,

2017.

193

[63] J. F. Allen, “Maintaining knowledge about temporal intervals,” Communications of the

ACM, vol. 26, no. 11, pp. 832–843, 1983.

[64] C. Jedrzejek, J. Bak, and M. Falkowski, “Graph mining for detection of a large class

of financial crimes,” in 17th International Conference on Conceptual Structures, Moscow,

Russia, vol. 46, 2009.

[65] K. Cooke and E. Halsey, “The shortest route through a network with time-dependent

internodal transit times,” Journal of mathematical analysis and applications, vol. 14, no. 3,

pp. 493–498, 1966.

[66] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora, “Graph metrics

for temporal networks,” in Temporal networks, pp. 15–40, Springer, 2013.

[67] T. Peixoto and M. Rosvall, “Modelling sequences and temporal networks with dynamic

community structures,” Nature communications, vol. 8, no. 1, pp. 1–12, 2017.

[68] R. Rao, P. Mitra, R. Bhatt, and A. Goswami, “The big data system, components, tools,

and technologies: a survey,” Knowledge and Information Systems, pp. 1–81, 2019.

[69] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[70] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica, et al., “Spark: Cluster

computing with working sets,” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[71] D. Borthakur, “Hdfs architecture guide,” Hadoop Apache Project, vol. 53, no. 1-13, p. 2,

2008.

[72] V. Vavilapalli, A. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,

H. Shah, and S. Seth, “Apache hadoop yarn: Yet another resource negotiator,” in Proceed-

ings of the 4th annual Symposium on Cloud Computing, pp. 1–16, 2013.

[73] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. Franklin, S. Shenker,

and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing,” in Presented as part of the 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12), pp. 15–28, 2012.

[74] R. Xin, J. Gonzalez, M. Franklin, and I. Stoica, “Graphx: A resilient distributed graph

system on spark,” in First international workshop on graph data management experiences

and systems, pp. 1–6, 2013.

[75] A. Dave, A. Jindal, E. Li, R. Xin, J. Gonzalez, and M. Zaharia, “Graphframes: an inte-

grated api for mixing graph and relational queries,” in Proceedings of the Fourth Interna-

tional Workshop on Graph Data Management Experiences and Systems, pp. 1–8, 2016.

194

[76] T. Akidau, S. Chernyak, and R. Lax, Streaming systems: the what, where, when, and how

of large-scale data processing. ” O’Reilly Media, Inc.”, 2018.

[77] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K. Nus-

baum, K. Patil, B. Peng, and P. Poulosky, “Benchmarking streaming computation engines:

Storm, flink and spark streaming,” in 2016 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), pp. 1789–1792, 2016.

[78] Twitter, Inc, “Filter realtime tweets.” Available at https://developer.twitter.com/en/

docs/tweets/filter-realtime/overview, 2018. Accessed: 03-05-2018.

[79] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging system for log pro-

cessing,” in Proceedings of the NetDB, vol. 11, pp. 1–7, 2011.

[80] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-Moctezuma, R. Lax,

S. McVeety, D. Mills, F. Perry, and E. Schmidt, “The dataflow model: a practical approach

to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data

processing,” 2015.

[81] Z. Nabi, Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark.

Apress, 2016.

[82] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, and S. Owen, “Mllib: Machine learning in apache spark,” The Journal of Ma-

chine Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.

[83] A. Jain and A. Nalya, Learning storm. Packt Publishing, 2014.

[84] A. Jain, Mastering apache storm: Real-time big data streaming using kafka, hbase and

redis. Packt Publishing, 2017.

[85] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache

flink: Stream and batch processing in a single engine,” Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, vol. 36, no. 4, 2015.

[86] L. G. Valiant, “A bridging model for parallel computation,” Communications of the ACM,

vol. 33, no. 8, pp. 103–111, 1990.

[87] W. Fan, C. Hu, and C. Tian, “Incremental graph computations: Doable and undoable,” in

Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD

’17, (New York, NY, USA), p. 155–169, ACM, 2017.

[88] A. McGregor, “Graph stream algorithms: a survey,” ACM SIGMOD Record, vol. 43, no. 1,

pp. 9–20, 2014.

195

[89] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “On graph problems in a

semi-streaming model,” Departmental Papers (CIS), 2005.

[90] A. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and I. Stoica, “Asap: Fast,

approximate graph pattern mining at scale,” in 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pp. 745–761, 2018.

[91] V. Sekara, A. Stopczynski, and S. Lehmann, “Fundamental structures of dynamic social

networks,” Proceedings of the National Academy of Sciences, vol. 113, p. 9977–9982, Aug

2016.

[92] J. Saramäki and E. Moro, “From seconds to months: an overview of multi-scale dynamics

of mobile telephone calls,” The European Physical Journal B, vol. 88, Jun 2015.

[93] W. Bejeck, N. Narkhede, et al., Kafka streams in action. Manning Publications Co.,, 2018.

[94] R. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch, “Making state explicit

for imperative big data processing,” in Proceedings of the 2014 USENIX Conference on

USENIX Annual Technical Conference, USENIX ATC’14, (USA), p. 49–60, USENIX As-

sociation, 2014.

[95] S. Batra and C. Tyagi, “Comparative analysis of relational and graph databases,” Inter-

national Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 2, pp. 509–512,

2012.

[96] B. Steer, A. Alnaimi, M. Lotz, F. Cuadrado, L. Vaquero, and J. Varvenne, “Cytosm:

Declarative property graph queries without data migration,” in Proceedings of the Fifth In-

ternational Workshop on Graph Data-management Experiences & Systems, pp. 1–6, 2017.

[97] I. Robinson, J. Webber, and E. Eifrem, Graph databases: new opportunities for connected

data. ” O’Reilly Media, Inc.”, 2015.

[98] “Stardog: Turn your data into knowledge. . . fast.” https://www.stardog.com/. Accessed:

02/09/2020.

[99] A. Deutsch, Y. Xu, M. Wu, and V. Lee, “Tigergraph: A native mpp graph database,”

arXiv preprint arXiv:1901.08248, 2019.

[100] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of sparql,” ACM Trans-

actions on Database Systems (TODS), vol. 34, no. 3, pp. 1–45, 2009.

[101] R. Angles, M. Arenas, P. Barceló, P. Boncz, G. Fletcher, C. Gutierrez, T. Lindaaker,

M. Paradies, S. Plantikow, and J. Sequeda, “G-core: A core for future graph query lan-

guages,” in Proceedings of the 2018 International Conference on Management of Data,

pp. 1421–1432, 2018.

196

[102] “Gql standard.” https://www.gqlstandards.org/. Accessed: 02/10/2020.

[103] “Apache tinkerpop.” https://tinkerpop.apache.org/. Accessed: 02/10/2020.

[104] “Janusgraph: Distributed, open source, massively scalable graph database.”

https://janusgraph.org/. Accessed: 02/10/2020.

[105] M. Haeusler, T. Trojer, J. Kessler, M. Farwick, E. Nowakowski, and R. Breu, “Chrono-

graph: A versioned tinkerpop graph database,” in International Conference on Data Man-

agement Technologies and Applications, pp. 237–260, Springer, 2017.

[106] “Programmable unified memory architecture.” https://archive.fosdem.org/. Accessed:

02/10/2020.

[107] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison, M. Ku-

mar, A. Lumsdaine, H. Meyerhenke, et al., “Mathematical foundations of the graphblas,”

in 2016 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–9, IEEE,

2016.

[108] M. Kumar, J. Moreira, and P. Pattnaik, “Graphblas: handling performance concerns in

large graph analytics,” in Proceedings of the 15th ACM International Conference on Com-

puting Frontiers, CF 2018, Ischia, Italy, May 08-10, 2018 (D. Kaeli and M. Pericàs, eds.),

pp. 260–267, ACM, 2018.

[109] T. A. Davis, “Algorithm 1000: Suitesparse:graphblas: Graph algorithms in the language

of sparse linear algebra,” ACM Trans. Math. Softw., vol. 45, Dec. 2019.

[110] M. Aznaveh, J. Chen, T. Davis, B. Hegyi, S. Kolodziej, T. Mattson, and G. Szárnyas,

“Parallel graphblas with openmp,” in 2020 Proceedings of the SIAM Workshop on Combi-

natorial Scientific Computing, pp. 138–148, SIAM, 2020.

[111] A. Buluç and J. Gilbert, “The combinatorial blas: Design, implementation, and applica-

tions,” The International Journal of High Performance Computing Applications, vol. 25,

no. 4, pp. 496–509, 2011.

[112] C. Yang, A. Buluc, and J. Owens, “Graphblast: A high-performance linear algebra-based

graph framework on the gpu,” arXiv preprint arXiv:1908.01407, 2019.

[113] R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex: A survey of vertex-

centric frameworks for large-scale distributed graph processing,” ACM Comput. Surv.,

vol. 48, Oct. 2015.

[114] C. Avery, “Giraph: Large-scale graph processing infrastructure on hadoop,” Hadoop Sum-

mit, vol. 11, no. 3, pp. 5–9, 2011.

197

[115] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, “One trillion

edges: Graph processing at facebook-scale,” Proceedings of the VLDB Endowment, vol. 8,

no. 12, pp. 1804–1815, 2015.

[116] H. Kung and C. Leiserson, “Algorithms for VLSI processor arrays,” Introduction to VLSI

systems, pp. 271–292, 1980.

[117] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph computation on

just a pc,” in Presented as part of the 10th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 12), pp. 31–46, 2012.

[118] M. Armbrust, R. Xin, C. Lian, Y. Huai, D. Liu, J. Bradley, X. Meng, T. Kaftan,

M. Franklin, A. Ghodsi, et al., “Spark sql: Relational data processing in spark,” in Pro-

ceedings of the 2015 ACM SIGMOD international conference on management of data,

pp. 1383–1394, 2015.

[119] W. Lightenberg, Y. Pei, G. Fletcher, and M. Pechenizkiy, “Tink: A temporal graph analyt-

ics library for apache flink,” in Companion Proceedings of the The Web Conference 2018,

pp. 71–72, 2018.

[120] D. Ediger, R. McColl, J. Riedy, and D. Bader, “Stinger: High performance data structure

for streaming graphs,” in 2012 IEEE Conference on High Performance Extreme Computing,

pp. 1–5, IEEE, 2012.

[121] G. Feng, X. Meng, and K. Ammar, “Distinger: A distributed graph data structure for

massive dynamic graph processing,” in 2015 IEEE International Conference on Big Data

(Big Data), pp. 1814–1822, IEEE, 2015.

[122] J. Mondal and A. Deshpande, “Managing large dynamic graphs efficiently,” in Proceedings

of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 145–

156, 2012.

[123] I. Stanton and G. Kliot, “Streaming graph partitioning for large distributed graphs,” in

ACM SIGKDD, pp. 1222–1230, ACM, 2012.

[124] L. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella, “Adaptive partitioning for large-

scale dynamic graphs,” in 2014 IEEE 34th International Conference on Distributed Com-

puting Systems, pp. 144–153, IEEE, 2014.

[125] D. Dossot, RabbitMQ essentials. Packt Publishing Ltd, 2014.

[126] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, and

E. Chen, “Chronos: a graph engine for temporal graph analysis,” in Proceedings of the

Ninth European Conference on Computer Systems, pp. 1–14, 2014.

198

[127] G. Agha, “Actors: A model of concurrent computation in distributed systems.,” tech. rep.,

MIT Cambridge Artificial Intelligence Lab, 1985.

[128] B. Erb, G. Habiger, and F. Hauck, “On the potential of event sourcing for retroactive

actor-based programming,” PMLDC ’16, (New York, NY, USA), ACM, 2016.

[129] T. Hartmann, F. Fouquet, M. Jimenez, R. Rouvoy, and Y. Le Traon, “Analyzing complex

data in motion at scale with temporal graphs,” 2020.

[130] S. Rehfeld, H. Tramberend, and M. Latoschik, “An actor-based distribution model for

realtime interactive systems,” in 2013 6th Workshop on Software Engineering and Archi-

tectures for Realtime Interactive Systems (SEARIS), pp. 9–16, IEEE, 2013.

[131] E. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp. 33–42, 2006.

[132] “The Akka Actor Framework.” Available at: http://akka.io/. Accessed: 28/08/2017.

[133] V. Buterin et al., “Ethereum white paper,” GitHub repository, vol. 1, pp. 22–23, 2013.

[134] R. Angles, J. Antal, A. Averbuch, P. Boncz, O. Erling, A. Gubichev, V. Haprian, M. Kauf-

mann, J. L. Pey, N. Mart́ınez, et al., “The ldbc social network benchmark,” arXiv preprint

arXiv:2001.02299, 2020.

[135] IEEE, “Ieee standard for a precision clock synchronization protocol for networked mea-

surement and control systems.” Available at https://standards.ieee.org/findstds/

standard/1588-2008.html, 2008. Accessed: 03-05-2018.

[136] K. Andreev and H. Racke, “Balanced graph partitioning,” Theory of Computing Systems,

vol. 39, no. 6, pp. 929–939, 2006.

[137] “Murmurhash3 information and brief performance results.” Available at: https://

github.com/aappleby/smhasher/wiki/MurmurHash3. Accessed: 13/08/2020.

[138] M. Kidoň and R. Dobai, “Evolutionary design of hash functions for ip address hashing

using genetic programming,” in 2017 IEEE Congress on Evolutionary Computation (CEC),

pp. 1720–1727, 2017.

[139] C. J. Fidge, “Timestamps in message-passing systems that preserve the partial ordering,”

in Proc. 11th Australian Comput. Science Conf., pp. 56–66, 1988.

[140] L. Vaquero, A. Celorio, F. Cuadrado, and R. Cuevas, “Deploying large-scale datasets on-

demand in the cloud: treats and tricks on data distribution,” IEEE Transactions on Cloud

Computing, vol. 3, no. 2, pp. 132–144, 2014.

[141] M. Masse, REST API Design Rulebook: Designing Consistent RESTful Web Service In-

terfaces. ” O’Reilly Media, Inc.”, 2011.

199

[142] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat, M. Pham, and

P. Boncz, “The ldbc social network benchmark: Interactive workload,” in Proceedings of

the 2015 ACM SIGMOD International Conference on Management of Data, pp. 619–630,

2015.

[143] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu, “Graph pattern matching: From

intractable to polynomial time,” Proc. VLDB Endow., vol. 3, p. 264–275, Sept. 2010.

[144] N. Masuda, M. Porter, and R. Lambiotte, “Random walks and diffusion on networks,”

Physics reports, vol. 716, pp. 1–58, 2017.

[145] M. Han, K. Daudjee, K. Ammar, T. Özsu, X. Wang, and T. Jin, “An experimental compar-

ison of pregel-like graph processing systems,” Proc. VLDB Endow., vol. 7, p. 1047–1058,

Aug. 2014.

[146] A. Aghasadeghi, S. Schelter, and J. Stoyanovich, “Zooming out on an evolving graph,”

in Proceedings of the 23rd International Conference on Extending Database Technology

(EDBT), 2020.

[147] J. Saramäki and E. Moro, “From seconds to months: an overview of multi-scale dynamics

of mobile telephone calls,” The European Physical Journal B, vol. 88, no. 6, p. 164, 2015.

[148] K. Lerman, R. Ghosh, and T. Surachawala, “Social contagion: An empirical study of

information spread on digg and twitter follower graphs,” 2012.

[149] S. Jordan, D. McCoy, and G. Savage, “A fistful of bitcoins: Characterizing payments among

men with no names,” 2013.

[150] R. Anderson, I. Shumailov, and M. Ahmed, “Making bitcoin legal,” in Cambridge Inter-

national Workshop on Security Protocols, pp. 243–253, Springer, 2018.

[151] S. Huang, J. Cheng, and H. Wu, “Temporal graph traversals: Definitions, algorithms, and

applications,” arXiv preprint arXiv:1401.1919, 2014.

[152] J. Whitbeck, M. Dias de Amorim, V. Conan, and J. Guillaume, “Temporal reachability

graphs,” in Proceedings of the 18th Annual International Conference on Mobile Computing

and Networking, Mobicom ’12, (New York, NY, USA), p. 377–388, ACM, 2012.

[153] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution of communities in

dynamic social networks,” in 2010 international conference on advances in social networks

analysis and mining, pp. 176–183, IEEE, 2010.

[154] R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution of online social networks,”

in Link mining: models, algorithms, and applications, pp. 337–357, Springer, 2010.

200

[155] M. Elkin, “Distributed approximation: A survey,” SIGACT News, vol. 35, p. 40–57, Dec.

2004.

[156] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream statistics over sliding

windows,” SIAM journal on computing, vol. 31, no. 6, pp. 1794–1813, 2002.

[157] J. Palsberg and C. Jay, “The essence of the visitor pattern,” in Proceedings. The Twenty-

Second Annual International Computer Software and Applications Conference (Compsac

’98) (Cat. No.98CB 36241), pp. 9–15, 1998.

[158] T. Morris, “Asymmetric lenses in scala,” 2012.

[159] “Scala: Code interpretation at runtime.” Available at: https://scalerablog.

wordpress.com/2016/06/20/scala-code-interpretation-at-runtime/. Accessed:

13/05/2020.

[160] S. Zannettou, B. Bradlyn, E. De Cristofaro, H. Kwak, M. Sirivianos, G. Stringini, and

J. Blackburn, “What is gab: A bastion of free speech or an alt-right echo chamber,” in

Companion Proceedings of the The Web Conference 2018, pp. 1007–1014, 2018.

[161] “Hackers steal $48.7m in ethereum from south korean cryptocurrency exchange upbit.”

https://thenextweb.com/hardfork/2019/11/27/ethereum-upbit-cryptocurrency-exchange-

hackers-stolen-million-hot-wallet/.

[162] R. Jain, The Art of Computer Systems Performance Analysis - Techniques for Experimental

Design, Measurement, Simulation, and Modeling. Wiley Professional Computing, Wiley,

1991.

[163] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead, K. Mohror, A. Arpaci-

Dusseau, and R. Arpaci-Dusseau, “The popper convention: Making reproducible sys-

tems evaluation practical,” in Parallel and Distributed Processing Symposium Workshops

(IPDPSW), 2017 IEEE International, pp. 1561–1570, IEEE, 2017.

[164] G. Sayfan, Mastering kubernetes. Packt Publishing, 2017.

[165] “Automatically instrument, monitor and debug distributed systems.” Available at: https:

//kamon.io/. Accessed: 26/05/2020.

[166] Prometheus, “Prometheus homepage.” Available at https://prometheus.io/, 2017. Ac-

cessed: 22-11-2018.

[167] “Stop-the-world vs. incremental vs. concurrent.” Available at: https://en.wikipedia.

org/wiki/Tracing_garbage_collection#Stop-the-world_vs._incremental_vs.

_concurrent. Accessed: 13/05/2020.

201

[168] C. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin, “Shenandoah: An open-source

concurrent compacting garbage collector for openjdk,” in Proceedings of the 13th Inter-

national Conference on Principles and Practices of Programming on the Java Platform:

Virtual Machines, Languages, and Tools, pp. 1–9, 2016.

[169] “Backpressure in akka streams.” Available at: https://dzone.com/articles/

backpressure-in-akka-streams. Accessed: 02/09/2020.

[170] “Ethereum transactions per second.” https://blockchair.com/ethereum/charts/

transactions-per-second. Accessed: 02/09/2020.

[171] “Twitter usage statistics.” https://www.internetlivestats.com/twitter-statistics/. Ac-

cessed: 02/09/2020.

[172] “Non-cash transactions globally and regionally – forecast growth rates, 2017-2022f.”

https://worldpaymentsreport.com/non-cash-payments-volume-2/non-cash-transactions-

2017-2022f. Accessed: 02/09/2020.

[173] L. Lőrincz, J. Koltai, A. Győr, and K. Takács, “Collapse of an online social network:

Burning social capital to create it?,” Social Networks, vol. 57, pp. 43–53, 2019.

[174] R. Anderson, I. Shumailov, M. Ahmed, and A. Rietmann, “Bitcoin redux,” Workshop on

the Economics of Information Security, 2019.

[175] L. Lima, J. Reis, P. Melo, F. Murai, L. Araujo, P. Vikatos, and F. Benevenuto, “Inside

the right-leaning echo chambers: Characterizing Gab, an unmoderated social system,” in

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

(ASONAM), pp. 515–522, IEEE, 2018.

[176] Pfeffer, Jürgen, Mayer, Katja, and Morstatter, Fred, “Tampering with twitter´s sample

api,” EPJ Data Sci., vol. 7, no. 1, p. 50, 2018.

[177] Y. Zhou, M. Dredze, D. Broniatowski, and W. Adler, “Elites and foreign actors among the

alt-right: The gab social media platform,” First Monday, vol. 24, no. 9, 2019.

[178] S. Foley, J. Karlsen, and T. Putniņš, “Sex, drugs, and bitcoin: How much illegal activity

is financed through cryptocurrencies?,” The Review of Financial Studies, vol. 32, no. 5,

pp. 1798–1853, 2019.

[179] R. Van Wegberg, J. Oerlemans, and O. van Deventer, “Bitcoin money laundering: mixed

results?,” Journal of Financial Crime, 2018.

[180] “A list of centralized cryptocurrency exchanges which are online platforms

that allow customers to buy and sell cryptocurrencies for other assets..”

https://etherscan.io/accounts/label/exchange.

202

[181] M. Capotă, T. Hegeman, A. Iosup, A. Prat-Pérez, O. Erling, and P. Boncz, “Graphalytics:

A big data benchmark for graph-processing platforms,” in Proceedings of the GRADES’15,

pp. 1–6, 2015.

[182] R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards benchmarking modern dis-

tributed stream computing frameworks,” in 2014 IEEE/ACM 7th International Conference

on Utility and Cloud Computing, pp. 69–78, IEEE, 2014.

[183] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and C. Rosen-

thal, “Chaos engineering,” IEEE Software, vol. 33, no. 3, pp. 35–41, 2016.

[184] K. Chodorow, MongoDB: the definitive guide: powerful and scalable data storage. ” O’Reilly

Media, Inc.”, 2013.

[185] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” ACM

SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[186] E. Capriolo, D. Wampler, and J. Rutherglen, Programming Hive: Data warehouse and

query language for Hadoop. ” O’Reilly Media, Inc.”, 2012.

[187] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu, “Forward decay: A practical time

decay model for streaming systems,” in 2009 IEEE 25th international conference on data

engineering, pp. 138–149, IEEE, 2009.

[188] Q. Bai, C. Zhang, Y. Xu, X. Chen, and X. Wang, “Evolution of ethereum: A temporal

graph perspective,” arXiv preprint arXiv:2001.05251, 2020.

203

