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SUMMARY 17 

 18 

Feeding in starfish is a remarkable process in which the cardiac stomach is everted over 19 

prey and then retracted when prey tissue has been resorbed. Previous studies have revealed 20 

that SALMFamide-type neuropeptides trigger cardiac stomach relaxation and eversion in 21 

the starfish Asterias rubens. We hypothesised, therefore, that a counteracting neuropeptide 22 

system controls cardiac stomach contraction and retraction. Members of the NG peptide 23 

family cause muscle contraction in other echinoderms (e.g. NGFFFamide in sea urchins and 24 

NGIWYamide in sea cucumbers), so we investigated NG peptides as candidate regulators of 25 

cardiac stomach retraction in starfish. Generation and analysis of neural transcriptome 26 

sequence data from Asterias rubens revealed a precursor protein comprising two copies of a 27 

novel NG peptide, NGFFYamide, which was confirmed by mass spectrometry. A 28 

noteworthy feature of the NGFFYamide precursor is a C-terminal neurophysin domain, 29 

indicative of a common ancestry with vasopressin/oxytocin-type neuropeptide precursors. 30 

Interestingly, in precursors of other NG peptides the neurophysin domain has been 31 

retained (e.g. NGFFFamide) or lost (e.g. NGIWYamide and human neuropeptide S) and its 32 

functional significance remains to be determined. Investigation of the pharmacological 33 

actions of NGFFYamide in starfish revealed that it is a potent stimulator of cardiac 34 

stomach contraction in vitro and that it triggers cardiac stomach retraction in vivo.  Thus, 35 

discovery of NGFFYamide provides a novel insight on neural regulation of cardiac stomach 36 

retraction as well as a rationale for chemically based strategies to control starfish that feed 37 

on economically important shellfish (e.g. mussels) or protected marine fauna (e.g. coral).  38 

 39 

 40 
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INTRODUCTION 46 

Feeding in many starfish species, including the common European starfish Asterias rubens, 47 

involves eversion of the cardiac stomach through a narrow oral opening over the digestible parts 48 

of prey. This remarkable feeding mechanism enables starfish to feed on relatively large prey (e.g. 49 

mussels) as tissue is partially digested externally and then transported internally to the pyloric 50 

caecae, where digestion and absorption is completed. When the soft tissue of prey has been 51 

entirely resorbed, the cardiac stomach is retracted back into the central disk region of the starfish 52 

body (Anderson, 1954).  53 

 Experimental studies on Asterias rubens have revealed that cardiac stomach eversion is 54 

triggered by injection of the starfish SALMFamide neuropeptides S1 and S2. Furthermore, 55 

consistent with these in vivo effects of SALMFamides, S1 and S2 cause dose-dependent 56 

relaxation of cardiac stomach preparations in vitro (Elphick et al., 1995; Elphick et al., 1991; 57 

Melarange et al., 1999; Newman et al., 1995a; Newman et al., 1995b). Thus, neural control of 58 

cardiac stomach eversion in starfish appears to be mediated, at least in part, by the release of 59 

neuropeptides (SALMFamides) that cause muscle relaxation. We hypothesize, therefore, that a 60 

counteracting neuropeptide(s) that causes muscle contraction may mediate neural control of 61 

cardiac stomach retraction in starfish.   62 

          Muscle preparations from the sea cucumber Apostichopus japonicus have been used as 63 

bioassays to screen for myoactive neuropeptides in echinoderms (Elphick, 2012; Inoue et al., 64 

1999; Iwakoshi et al., 1995; Ohtani et al., 1999). Two SALMFamide-type neuropeptides were 65 

identified as muscle relaxants and the pentapeptide Asn-Gly-Ile-Trp-Tyr-NH2 (NGIWYamide) 66 

was identified as a muscle contractant. Furthermore, subsequent studies have revealed that 67 

NGIWYamide also causes contraction of tube foot preparations from the starfish Asterina 68 

pectinifera and consistent with this finding NGIWYamide-like immunoreactivity was detected in 69 

the starfish nervous system (Saha et al., 2006). However, the molecular identity of 70 

NGIWYamide-like peptide(s) in Asterina pectinifera or in other starfish species has been not 71 

determined. 72 

 Facilitated by genome sequencing (Burke et al., 2006; Sodergren et al., 2006), an 73 

NGIWYamide-like neuropeptide was recently identified in the sea urchin Strongylocentrotus 74 

purpuratus. The sea urchin peptide has the amino acid sequence Asn-Gly-Phe-Phe-Phe-NH2 75 

(NGFFFamide) and, consistent with the myoactivity of NGIWYamide, NGFFFamide causes 76 
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contraction of tube foot and oesophagus preparations from the sea urchin Echinus esculentus 77 

(Elphick and Rowe, 2009). An interesting feature of the precursor protein that NGFFFamide is 78 

derived from is that it contains a neurophysin domain, a polypeptide hitherto thought to be 79 

uniquely associated with precursors of vasopressin/oxytocin-type neuropeptides and that is 80 

required for biosynthesis of these neuropeptides (De Bree, 2000; De Bree and Burbach, 1998). 81 

Furthermore, NGFFFamide belongs to a family of neuropeptides in deuterostomian invertebrates 82 

that have an Asn-Gly motif (“NG peptides”) and that are typically derived from neurophysin-83 

containing precursors (Elphick, 2010). These include NGFYNamide and NGFWNamide in the 84 

hemichordate Saccoglossus kowalevskii and SFRNGVamide in the cephalochordate 85 

Branchiostoma floridae. Interestingly, however, the prototype of the NG peptide family – the sea 86 

cucumber neuropeptide NGIWYamide – is derived from a precursor protein that lacks a 87 

neurophysin domain (Elphick, 2012).  88 

 The discovery and functional characterisation of the NG peptide family in echinoderms 89 

and other deuterostomian invertebrates provided a rationale for investigation of NG peptides as 90 

potential regulators of cardiac stomach retraction in starfish. To address this issue, we tested the 91 

effects of the sea urchin neuropeptide NGFFFamide on in vitro cardiac stomach preparations 92 

from the starfish Asterias rubens and found that it causes contraction (R. Melarange & M.R. 93 

Elphick, unpublished data). Thus, the aim of this study was to determine the molecular identity of 94 

the NG peptide(s) in the starfish Asterias rubens and to investigate a potential physiological role 95 

in regulation of cardiac stomach retraction.  96 
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MATERIAL AND METHODS 97 

 98 

Animals and chemicals 99 

Starfish (Asterias rubens) were collected at low tide from the Thanet coast (Kent, UK) and 100 

transported to Queen Mary, University of London, where they were maintained in a seawater 101 

aquarium at approximately 11°C and fed with mussels (Mytilus edulis). Synthetic neuropeptides 102 

were custom synthesised by Peptide Protein Research Ltd (Bishops Waltham, Hampshire, UK). 103 

 104 

Sequencing and analysis of Asterias rubens nerve cord transcriptome 105 

Radial nerve cords (~30 mg) dissected from a male adult specimen of Asterias rubens were used 106 

for RNA isolation (Total RNA Isolation System, Promega). Library preparation (TruSeqv2 kit, 107 

Illumina) was performed at the QMUL Genome Centre and sequencing was performed on an 108 

Illumina HiSeq platform at NIMR (Mill Hill), with cBot used to generate clusters. Raw sequence 109 

data was assembled using SOAPdenovo-Trans version 1.0 110 

(http://soap.genomics.org.cn/SOAPdenovo-Trans.html), a short-read assembly method developed 111 

by the Beijing Genomics Institute (Li et al., 2008). Contigs were assembled from reads with an 112 

overlap greater than 31 bp, which were then mapped back to the raw reads. The 326,816 contigs 113 

generated (with 16,316 over 1000 bp) were then set up for BLAST analysis using 114 

SequenceServer (http://www.sequenceserver.com/), which is freely available to academic users 115 

(Priyam et al., in prep). 116 

 117 

NanoLC-ESI-MS/MS mass spectrometry 118 

Radial nerve cords were dissected from five specimens of Asterias rubens using a method 119 

described previously (Chaet, 1964) and neuropeptides were extracted in 1 ml 80% acetone on ice 120 

(Elphick et al., 1991). After removal of the acetone by evaporation using nitrogen, the aqueous 121 

fraction was centrifuged (13,000 rpm in MiniSpin® (Eppendorf) centrifuge) for 10 min and the 122 

supernatant frozen at -80°C. The acetone extract was thawed and filtered through a 0.22 µm 123 

Costar® Spin-X® centrifuge tube filter to remove particulates. Then the extract was analysed by 124 

means of nanoflow liquid chromatography with electrospray ionisation quadrupole time-of-flight 125 

tandem mass spectrometry (nanoLC-ESI-MS/MS) using a nanoAcquity UPLC system coupled to 126 
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a Q-TOF Ultima Global mass spectrometer (Waters Corporation, Milford, MA) and MassLynx 127 

v4.0 service pack 4 software.  128 

The mobile phases used for the chromatographic separation were: 0.1% aqueous formic 129 

acid (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B). An aliquot 130 

containing 5 µl of the nerve extract was applied to a trapping column (Symmetry C18 180 µm x 131 

20 mm, 5 µm particle size, 100 Å pore size, Waters Corporation) using 99.9% mobile phase A at 132 

a flow rate of 15 µl/min for 1 min, after which the fluidic flow path included the analytical 133 

capillary column (HSS T3 75 µm x 150 mm, 1.8 µm particle size, 100 Å pore size, Waters 134 

Corporation) and a linear gradient of 5–40% mobile phase B over 45 min was utilised with a total 135 

run time of 60 min. 136 

The nanoflow ESI source conditions were as follows: capillary voltage 3.5 kV, sample 137 

cone voltage 25 V with a source temperature of 80oC. A data dependent acquisition was 138 

performed that would trigger an MS/MS scan on any singly charged peptide having a 139 

mass/charge (m/z) ratio of 646.2989, or a doubly charged peptide of m/z 323.6534.  A tolerance 140 

of 150 mDa was allowed on the precursor m/z. MS/MS spectra, obtained from data dependent 141 

acquisition, were processed using MassLynx software.  Spectra were combined and processed 142 

using the MaxEnt 3 algorithm to generate singly charged, monoisotopic spectra for interpretation 143 

and manual validation.  144 

 145 

In vitro pharmacology 146 

Cardiac stomachs were dissected from specimens of Asterias rubens and set up in a 20 ml organ 147 

bath as described previously (Elphick et al., 1995; Melarange et al., 1999). Cardiac stomach 148 

contraction was recorded using an isotonic transducer (Harvard, Edenbridge, Kent, UK; 0.5 g 149 

load) linked to a Goerz SE 120 chart recorder (Recorderlab, Sutton, Surrey, UK). Stock solutions 150 

of synthetic neuropeptides tested were prepared in distilled water and added to the organ bath to 151 

achieve final concentrations ranging from 30 pM to 1 µM. 152 

 153 

In vivo pharmacology 154 

Ten specimens of Asterias rubens, which had been withheld from a food supply for one week, 155 

were placed in a glass tank containing 2% magnesium chloride (MgCl2) dissolved in seawater, 156 

which acts as a muscle relaxant in marine invertebrates (Mayer, 1909). This treatment 157 
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conveniently and reproducibly causes eversion of the cardiac stomach in Asterias rubens, 158 

typically within a period of ~ 30 min (M.R. Elphick, unpublished observations). Hamilton® 75N 159 

5 μl syringes (Sigma-Aldrich®) were used to inject test compounds into the perivisceral coelom 160 

of animals at two sites in the aboral body wall of the arms proximal to the junctions with the 161 

central disk region. Care was taken to inject test agents into the perivisceral coelom and not into 162 

the cardiac stomach. Animals were first injected with a total of 10 μl distilled water (control) and 163 

video recorded for 4 min. The same animals were then injected with 10 μl of 100 nM peptide (a 164 

concentration selected based on results from in vitro pharmacology) and video recorded for 4 165 

min. Static images from video recordings were captured at 20 s intervals from the time of 166 

injection. Then the 2D area of everted cardiac stomach was measured from the images using 167 

Image J software (NIH, USA; http://rsb.info.nih.gov/ij/) and normalised as a percentage of the 168 

area of cardiac stomach everted at the time of injection.  169 
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RESULTS 170 

 171 

Identification of a transcript in Asterias rubens encoding a precursor protein with a C-172 

terminal neurophysin domain and two copies of the putative novel NG peptide 173 

NGFFYamide 174 

To search for a transcript encoding an NG peptide in the starfish Asterias rubens, the 175 

Strongylocentrotus purpuratus NGFFFamide precursor protein sequence (Elphick and Rowe, 176 

2009) was submitted as a query in a tBLASTn search of Asterias rubens radial nerve cord 177 

transcriptome sequence data. The top hit was contig 1104160 (1268 bp), which encodes a 239 178 

residue protein comprising a 23-residue N-terminal signal peptide (as predicted by SignalP 3.0; 179 

(Bendtsen et al., 2004)), two copies of the amino acid sequence Asn-Gly-Phe-Phe-Tyr-Gly 180 

(NGFFYG) flanked by putative dibasic cleavage sites (KR) and a 100-residue C-terminal 181 

neurophysin domain (Fig. 1). Thus, subject to conversion of the C-terminal glycine to an amide 182 

(Bradbury et al., 1982), this protein is the precursor of two copies of a novel putative NG peptide: 183 

NGFFYamide. The sequence of the 1268 bp NGFFYamide precursor transcript has been 184 

deposited in the GenBank database and assigned accession number KC977457.  185 

 186 

Confirmation that NGFFYamide is present in Asterias rubens 187 

Synthetic NGFFYamide peptide was analysed using nanoLC-ESI-MS/MS mass spectrometry and 188 

eluted at a retention time of 30.3 min with the singly charged species observed at a mass-to-189 

charge ratio (m/z) of 646.3.  Analysis of Asterias rubens radial nerve cord extract under identical 190 

conditions revealed that a single charged peptide with a m/z of 646.3 eluted at a similar retention 191 

time to synthetic NGFFYamide. Both peptides were subjected to MS/MS during the experiment 192 

and the resulting deconvoluted, singly charged, monoisotopic spectra were compared, confirming 193 

the presence of NGFFYamide in the radial nerve cord extract (Fig. 2 and Fig. S1).  194 

  195 

NGFFYamide is a potent stimulator of cardiac stomach contraction in vitro 196 

Analysis of the in vitro effect of NGFFYamide on cardiac stomach preparations from Asterias 197 

rubens revealed that it caused dose-dependent contraction at concentrations ranging from 30 pM 198 

to 1 µM, with maximal efficacy at 100 nM (Fig. 3A,B). The sea urchin NG peptide NGFFFamide 199 

also caused dose-dependent contraction of cardiac stomach preparations but with lower efficacy 200 
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and potency than NGFFYamide (Fig. 3A). Accordingly, comparison of the NGFFFamide and 201 

NGFFYamide data using a random intercept linear mixed effects model (Bates and Sarkar, 2007) 202 

revealed a significant difference in the effect of NGFFFamide and NGFFYamide on cardiac 203 

stomach contraction, irrespective of concentration (p < 0.001). 204 

 205 

NGFFYamide triggers cardiac stomach retraction in vivo 206 

To investigate the effects of NGFFYamide in vivo, the peptide was tested on starfish in which 207 

cardiac stomach eversion had been induced by immersion in seawater containing 2% MgCl2. 208 

Injection of NGFFYamide (10 µl of 100 nM) into the perivisceral coelom of the central disk 209 

region triggered retraction of the cardiac stomach (Fig. 4A), consistent with the contracting action 210 

of NGFFYamide in vitro. NGFFYamide triggered cardiac stomach retraction in all experiments 211 

but with variability in the rate and extent of retraction. The graph in figure 4B shows data from 212 

ten experiments, with the mean area of cardiac stomach everted at 20 s intervals during a 220 s 213 

recording period following peptide injection at T0 expressed as a percentage of the area everted at 214 

T0. Importantly, in a control experiment in which starfish were injected with water no retraction 215 

of the cardiac stomach was observed. Accordingly, comparison of control (water) and treatment 216 

(NGFFYamide) data using a random intercept linear mixed effects model (Bates and Sarkar, 217 

2007) revealed a significant difference in cardiac stomach retraction between the control (water) 218 

and treatment (NGFFYamide) (p < 0.001). 219 

  220 
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DISCUSSION 221 

 222 

Discovery of NGFFYamide, a novel neurophysin-associated NG peptide in starfish 223 

We report here the discovery of NGFFYamide, a neuropeptide in the starfish Asterias rubens. 224 

NGFFYamide is a novel member of a family of “NG peptides” that have been identified in 225 

deuterostomes (Elphick, 2010). The NGFFYamide precursor contains an N-terminal signal 226 

peptide, two copies of the sequence NGFFYG in tandem flanked by dibasic cleavage sites (KR) 227 

and a C-terminal neurophysin domain (Fig. 1). Comparison of the NGFFYamide precursor with 228 

NG peptide precursors in other echinoderms reveals similarity with the sea urchin NGFFFamide 229 

precursor (Elphick and Rowe, 2009), which has two copies of the sequence NGFFFG in tandem 230 

and a C-terminal neurophysin domain (Fig. 5B). This contrasts with the NGIWYamide precursor 231 

in the sea cucumber Apostichopus japonicus, which lacks a C-terminal neurophysin domain and 232 

contains five copies of the sequence NGIWYG (Elphick, 2012). The similarity of the 233 

NGFFYamide precursor and NGFFFamide precursor probably reflects conservation of features 234 

of a common ancestral precursor. Furthermore, taking into account that sea urchins and sea 235 

cucumbers belong to sister classes within the phylum Echinodermata (Pisani et al., 2012), we 236 

conclude that the lack of a neurophysin domain in the Apostichopus japonicus NGIWYamide 237 

precursor is a derived characteristic. Evidence in support of this conclusion is provided by 238 

comparison of the echinoderm NG peptide precursors with NG peptide precursors in other 239 

deuterostomian invertebrates. Thus, NG peptide precursors in the hemichordate Saccoglossus 240 

kowalevskii and the cephalochordate Branchiostoma floridae both have a C-terminal neurophysin 241 

domain (Fig. 5B and (Elphick, 2010)). 242 

 The discovery that the starfish neuropeptide NGFFYamide and other NG peptides are 243 

derived from precursors that contain a neurophysin domain provides an insight on the 244 

evolutionary origin of these peptides. The only other proteins known to contain a neurophysin 245 

domain are precursors of vasopressin/oxytocin-type neuropeptides (De Bree, 2000; De Bree and 246 

Burbach, 1998). Therefore, NG peptide precursors and vasopressin/oxytocin-type precursors 247 

probably originated by duplication of a gene encoding a common ancestral precursor protein. In 248 

support of this hypothesis, genes encoding the vasopressin/oxytocin-type precursor (Brafl-84802) 249 

and the NG peptide precursor (Brafl-84803) are located adjacently in the genome of 250 

Branchiostoma floridae (M.R. Elphick, unpublished observations; (Mirabeau and Joly, 2013; 251 
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Putnam et al., 2008)). Because the neurophysin domain is required for biosynthesis of 252 

vasopressin/oxytocin-type neuropeptides (De Bree, 2000; De Bree and Burbach, 1998), the 253 

conservation of this domain in the NGFFYamide precursor and the majority of other identified 254 

NG peptide precursors suggests that neurophysin may be similarly required for biosynthesis of 255 

these neuropeptides. However, the absence of a neurophysin domain in the sea cucumber 256 

NGIWYamide precursor suggests that the neurophysin domain is dispensable.  257 

 Precursor proteins comprising NG peptides with a neurophysin domain have not been 258 

discovered in vertebrates. However, the NG peptide precursor in the cephalochordate 259 

Branchiostoma floridae comprises two copies of a putative neuropeptide (SFRNGVamide) that is 260 

identical to the N-terminal region of neuropeptide S (Fig. 5A), an anxiolytic neuropeptide in 261 

mammals and other vertebrates (Elphick, 2010; Xu et al., 2004). This suggests a common 262 

evolutionary ancestry of neuropeptide S precursors found in vertebrates and NG peptide 263 

precursors in deuterostomian invertebrates. Furthermore, the absence of a neurophysin domain in 264 

neuropeptide S precursors (Fig. 5B) may be further evidence that neurophysins are dispensable 265 

for biosynthesis of NG peptide-type neuropeptides. In conclusion, it remains unclear why the 266 

neurophysin domain has been lost in some NG peptide type precursors and retained in others. 267 

Discovery of the neurophysin-containing NGFFYamide precursor in starfish provides a new 268 

experimental system in which the functional significance of conservation of the neurophysin 269 

domain could be investigated.   270 

 271 

NGFFYamide: a regulator of cardiac stomach retraction in starfish 272 

Analysis of the in vitro pharmacological effects of NGFFYamide revealed that it causes dose-273 

dependent contraction of starfish cardiac stomach preparations at concentrations ranging from 30 274 

pM to 1 µM, with a maximal efficacy at 100 nM. The sea urchin NG peptide NGFFFamide also 275 

causes dose-dependent contraction of cardiac stomach preparations but with lower efficacy and 276 

potency than NGFFYamide (Fig. 3). Interestingly, the difference in the potency and efficacy of 277 

NGFFYamide and NGFFFamide can be attributed to a single hydroxyl group (OH), which is 278 

present on the C-terminal tyrosine (Y) residue in NGFFYamide but not on the C-terminal 279 

phenylalanine (F) residue in NGFFFamide. Therefore, this OH group is probably important for 280 

activation of the as yet unidentified NGFFYamide receptor(s).  281 

 Importantly, analysis of the in vivo pharmacological effects of NGFFYamide revealed 282 
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that it triggers retraction of the everted cardiac stomach in Asterias rubens (Fig. 4). Accordingly, 283 

endogenous release of NGFFYamide may mediate neural control of cardiac stomach retraction in 284 

starfish. This is of interest because it provides a new insight on physiological mechanisms 285 

underlying the unusual feeding behaviour of starfish. Thus, cardiac stomach eversion and 286 

retraction that occurs during feeding in starfish appears to be controlled by counteracting 287 

neuropeptide systems, with SALMFamide neuropeptides triggering stomach eversion (Melarange 288 

et al., 1999) and NGFFYamide triggering stomach retraction. Previous studies have revealed that 289 

the SALMFamides S1 and S2 are synthesized by neurons intrinsic to the cardiac stomach 290 

(Newman et al., 1995a; Newman et al., 1995b) and therefore it will be of interest to determine if 291 

NGFFYamide-expressing neurons are similarly located in the cardiac stomach. Additionally, 292 

identification of receptors that mediate the effects of NGFFYamide and SALMFamides would 293 

facilitate investigation of the mechanisms by which these peptides exert their counteracting 294 

effects on the cardiac stomach in starfish.  295 

 It is noteworthy that NGGFYamide is much more potent than the SALMFamides S1 and 296 

S2, both in vitro and in vivo. Thus, the maximal contracting effect of NGFFYamide in vitro was 297 

observed at 100 nM (this study), whilst at this concentration the relaxing effect of S1 or S2 was, 298 

respectively, only ~25% and ~50% of the effect at the highest concentration tested (10 µM) 299 

(Melarange et al., 1999). Accordingly, 100 µl of 1 mM S1 or S2 induced stomach eversion in 300 

vivo within a period of up to 30 min (Melarange et al., 1999), whilst stomach retraction within a 301 

period of up to 4 min was triggered by only 10 µl of 100 nM NGFYYamide (this study). 302 

However, these apparent differences in potency may not be physiologically relevant. Recently, it 303 

was discovered that in the starfish Patiria miniata S1 and an S2-like peptide are derived from 304 

precursor proteins that comprise fourteen other putative SALMFamides (Elphick et al., 2013). 305 

Likewise, we have identified neural transcripts encoding the S1 and S2 precursors in Asterias 306 

rubens and have found that the S1 precursor contains six other putative SALMFamides and the 307 

S2 precursor contains seven other putative SALMFamides (D.C. Semmens, M.R. Pancholi and 308 

M.R. Elphick, unpublished data). Therefore, for a physiologically relevant comparison to be 309 

made it will be necessary to compare the effect of NGFFYamide with the effects of “cocktails” of 310 

S1 precursor-derived SALMFamides and/or S2 precursor-derived SALMFamides.  311 

 Discovery of neuropeptides that trigger cardiac stomach eversion or retraction in starfish 312 

is of interest from economic and environmental perspectives. The feeding behaviour of starfish 313 
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species such as Asterias rubens has an economic impact due to predation on shellfish that are 314 

harvested as foodstuffs (Aguera et al., 2012; Dare, 1982; Dolmer, 1998; Magnesen and 315 

Redmond, 2012). Furthermore, other starfish species such as the crown-of-thorns starfish 316 

Acanthaster planci feed on reef-building corals and periodic increases in the population density 317 

of this species causes massive destruction of Pacific reef tracts (De'ath et al., 2012; Kayal et al., 318 

2012; Timmers et al., 2012). Identification of neuropeptides that trigger cardiac stomach eversion 319 

(SALMFamides) or retraction (NGFFYamide) may provide a basis for development of non-320 

peptidic small molecule agonists or antagonists that mimic or block the effects of SALMFamides 321 

or NGFFYamide, which could be used for chemical control of starfish feeding. 322 
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FIGURE LEGENDS 447 

 448 

Fig. 1. Asterias rubens NGFFYamide precursor. The DNA sequence of a transcript (contig 449 

1104160; lowercase, 1268 bases) encoding the NGFFYamide precursor protein (uppercase, 239 450 

amino acid residues) is shown. The predicted signal peptide of the precursor protein is shown in 451 

blue, the two copies of NGFFYamide are highlighted in red, interrupted and flanked by putative 452 

dibasic cleavage sites (KR), which are shown in green. The C-terminal region of the protein 453 

comprises a neurophysin domain, with 14 cysteine residues (underlined) that are a characteristic 454 

and conserved feature of neurophysins (purple). The asterisk shows the position of the stop 455 

codon.  456 

 457 

Fig. 2. Mass spectrometric confirmation that NGFFYamide is present in an acetone extract of 458 

radial nerve cords from Asterias rubens. The deconvoluted monoisotopic, singly charged 459 

spectrum derived from MS/MS data is shown, with the b series of fragment ions annotated (b2, 460 

b3, b4). Also labeled are two fragment ions from the y series (y1, y2), immonium ions from 461 

phenylalanine (F) and tyrosine (Y) and the precursor ion (NGFFFamide; 646.31). A 462 

complementary spectrum derived from MS/MS analysis of synthetic NGFFYamide peptide is 463 

shown in supplementary figure S1. 464 

 465 

Fig. 3. NGFFYamide is a potent stimulator of starfish cardiac stomach contraction in vitro. (A) 466 

Representative recordings from a single cardiac stomach preparation showing the dose-dependent 467 

effect of NGFFYamide. NGFFYamide causes cardiac stomach contraction when applied (upward 468 

pointing arrowheads), an effect that is reversed by washing (downward pointing arrowheads). (B) 469 

Dose-response curves comparing the effects of NGFFYamide (filled circles) and NGFFFamide 470 

(filled squares) in causing cardiac stomach contraction. Effects of both peptides are normalized to 471 

the maximal effect observed with NGFFYamide in each experiment, with mean values (± s.e.m.) 472 

from eight experiments shown. 473 

 474 

Fig. 4. NGFFYamide triggers cardiac stomach retraction in starfish (A) Photographs from an 475 

experiment showing that injection of NGFFYamide (10 µl 100 nM) causes retraction of the 476 

cardiac stomach. At time 0 the fully everted cardiac stomach and the needles of the syringes used 477 
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for peptide injection can be seen. At 60 s, 120 s and 180 s after injection of NGFFYamide the 478 

area of cardiac stomach everted (marked by white dots) is progressively reduced. (B) Graph 479 

comparing experiments where starfish were first injected with vehicle (filled circles; 10 µl 480 

distilled water) and then injected with NGFFYamide (filled squares; 10 µl of 100 nM 481 

NGFFYamide). The area of cardiac stomach everted (in 2D) at each time point (0 – 220 s) is 482 

normalized to the area of cardiac stomach everted at T0, with means (± s.e.m.) from ten 483 

experiments shown. 484 

 485 

Fig. 5. NG peptides and NG peptide precursors A. Comparison of the sequence of NGFFYamide 486 

with the sequences of related “NG peptides” that share a common NG motif (highlighted in 487 

yellow), with arrangement in accordance with animal phylogeny. B. Comparison of the 488 

NGFFYamide precursor with NG peptide precursors in other deuterostomian invertebrates and 489 

the human neuropeptide S precursor, with arrangement in accordance with animal phylogeny. N-490 

terminal signal peptides are shown in blue, NG peptides are shown in red, cleavage sites are 491 

shown in green and C-terminal neurophysin domains are shown in purple. The NGFFYamide 492 

precursor in the starfish Asterias rubens (Ar) has a similar structure to the NGFFFamide 493 

precursor in the sea urchin Strongylocentrotus purpuratus (Sp) with two NG peptides in tandem 494 

and a C-terminal neurophysin domain; this probably reflects conservation of the features of a 495 

common ancestral precursor. In contrast, the NGIWYamide precursor in the sea cucumber 496 

Apostichopus japonicus (Aj) has what appears to be a derived precursor structure comprising five 497 

copies of NGIWYamide without a C-terminal neurophysin domain. The NG peptide precursor in 498 

the hemichordate Saccoglossus kowalevskii (Sk), which contains five copies of NGFWNamide 499 

and one copy of NGFYNamide, and the SFRNGVamide precursor cephalochordate 500 

Branchiostoma floridae (Bf) both have a C-terminal neurophysin domain, indicating that this is 501 

an ancestral characteristic of NG peptide precursors in deuterostomes, but the number and 502 

positions of NG peptide copies is variable. Vertebrate (e.g. human) precursors of neuropeptide S, 503 

which shares 100% N-terminal sequence identity with the Branchiostoma NG peptide 504 

SFRNGVamide, do not have a C-terminal neurophysin domain, indicating loss of this character 505 

in the vertebrate lineage.  506 












